101
|
Hubert P, Roncarati P, Demoulin S, Pilard C, Ancion M, Reynders C, Lerho T, Bruyere D, Lebeau A, Radermecker C, Meunier M, Nokin MJ, Hendrick E, Peulen O, Delvenne P, Herfs M. Extracellular HMGB1 blockade inhibits tumor growth through profoundly remodeling immune microenvironment and enhances checkpoint inhibitor-based immunotherapy. J Immunother Cancer 2021; 9:e001966. [PMID: 33712445 PMCID: PMC7959241 DOI: 10.1136/jitc-2020-001966] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND High-mobility group box 1 (HMGB1) is a multifunctional redox-sensitive protein involved in various intracellular (eg, chromatin remodeling, transcription, autophagy) and extracellular (inflammation, autoimmunity) processes. Regarding its role in cancer development/progression, paradoxical results exist in the literature and it is still unclear whether HMGB1 mainly acts as an oncogene or a tumor suppressor. METHODS HMGB1 expression was first assessed in tissue specimens (n=359) of invasive breast, lung and cervical cancer and the two distinct staining patterns detected (nuclear vs cytoplasmic) were correlated to the secretion profile of malignant cells, patient outcomes and the presence of infiltrating immune cells within tumor microenvironment. Using several orthotopic, syngeneic mouse models of basal-like breast (4T1, 67NR and EpRas) or non-small cell lung (TC-1) cancer, the efficacy of several HMGB1 inhibitors alone and in combination with immune checkpoint blockade antibodies (anti-PD-1/PD-L1) was then investigated. Isolated from retrieved tumors, 14 immune cell (sub)populations as well as the activation status of antigen-presenting cells were extensively analyzed in each condition. Finally, the redox state of HMGB1 in tumor-extruded fluids and the influence of different forms (oxidized, reduced or disulfide) on both dendritic cell (DC) and plasmacytoid DC (pDC) activation were determined. RESULTS Associated with an unfavorable prognosis in human patients, we clearly demonstrated that targeting extracellular HMGB1 elicits a profound remodeling of tumor immune microenvironment for efficient cancer therapy. Indeed, without affecting the global number of (CD45+) immune cells, drastic reductions of monocytic/granulocytic myeloid-derived suppressor cells (MDSC) and regulatory T lymphocytes, a higher M1/M2 ratio of macrophages as well as an increased activation of both DC and pDC were continually observed following HMGB1 inhibition. Moreover, blocking HMGB1 improved the efficacy of anti-PD-1 cancer monoimmunotherapy. We also reported that a significant fraction of HMGB1 encountered within cancer microenvironment (interstitial fluids) is oxidized and, in opposite to its reduced isoform, oxidized HMGB1 acts as a tolerogenic signal in a receptor for advanced glycation endproducts-dependent manner. CONCLUSION Collectively, we present evidence that extracellular HMGB1 blockade may complement first-generation cancer immunotherapies by remobilizing antitumor immune response.
Collapse
Affiliation(s)
- Pascale Hubert
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, Liege, Belgium
| | - Patrick Roncarati
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, Liege, Belgium
| | - Stephanie Demoulin
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, Liege, Belgium
| | - Charlotte Pilard
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, Liege, Belgium
| | - Marie Ancion
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, Liege, Belgium
| | - Celia Reynders
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, Liege, Belgium
| | - Thomas Lerho
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, Liege, Belgium
| | - Diane Bruyere
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, Liege, Belgium
| | - Alizee Lebeau
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, Liege, Belgium
| | - Coraline Radermecker
- Laboratory of Immunophysiology, GIGA-I3, University of Liege, Liege, Belgium
- Faculty of Veterinary Medicine, University of Liege, Liege, Belgium
| | - Margot Meunier
- Laboratory of Immunophysiology, GIGA-I3, University of Liege, Liege, Belgium
- Faculty of Veterinary Medicine, University of Liege, Liege, Belgium
| | - Marie-Julie Nokin
- Metastasis Research Laboratory, GIGA-Cancer, University of Liege, Liege, Belgium
| | - Elodie Hendrick
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, Liege, Belgium
| | - Olivier Peulen
- Metastasis Research Laboratory, GIGA-Cancer, University of Liege, Liege, Belgium
| | - Philippe Delvenne
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, Liege, Belgium
- Department of Pathology, University Hospital Center of Liege, Liege, Belgium
| | - Michael Herfs
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, Liege, Belgium
| |
Collapse
|
102
|
Ludes PO, de Roquetaillade C, Chousterman BG, Pottecher J, Mebazaa A. Role of Damage-Associated Molecular Patterns in Septic Acute Kidney Injury, From Injury to Recovery. Front Immunol 2021; 12:606622. [PMID: 33732235 PMCID: PMC7957065 DOI: 10.3389/fimmu.2021.606622] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 02/02/2021] [Indexed: 12/12/2022] Open
Abstract
Damage-associated molecular patterns (DAMPs) are a group of immunostimulatory molecules, which take part in inflammatory response after tissue injury. Kidney-specific DAMPs include Tamm-Horsfall glycoprotein, crystals, and uromodulin, released by tubular damage for example. Non-kidney-specific DAMPs include intracellular particles such as nucleus [histones, high-mobility group box 1 protein (HMGB1)] and cytosol parts. DAMPs trigger innate immunity by activating the NRLP3 inflammasome, G-protein coupled class receptors or the Toll-like receptor. Tubular necrosis leads to acute kidney injury (AKI) in either septic, ischemic or toxic conditions. Tubular necrosis releases DAMPs such as histones and HMGB1 and increases vascular permeability, which perpetuates shock and hypoperfusion via Toll Like Receptors. In acute tubular necrosis, intracellular abundance of NADPH may explain a chain reaction where necrosis spreads from cell to cell. The nature AKI in intensive care units does not have preclinical models that meet a variation of blood perfusion or a variation of glomerular filtration within hours before catecholamine infusion. However, the dampening of several DAMPs in AKI could provide organ protection. Research should be focused on the numerous pathophysiological pathways to identify the relative contribution to renal dysfunction. The therapeutic perspectives could be strategies to suppress side effect of DAMPs and to promote renal function regeneration.
Collapse
Affiliation(s)
- Pierre-Olivier Ludes
- Department of Anesthesiology and Intensive Care, Hautepierre Hospital, Strasbourg University Hospital, Strasbourg, France.,EA 3072, Mitochondrie Stress Oxydant et Protection Musculaire, Faculté de Médecine, FRU 6702, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Charles de Roquetaillade
- Department of Anesthesiology and Critical Care, Hôpital Lariboisière, DMU Parabol, APHP.Nord, Paris, France.,Inserm U942 MASCOT, Université de Paris, Paris, France
| | - Benjamin Glenn Chousterman
- Department of Anesthesiology and Critical Care, Hôpital Lariboisière, DMU Parabol, APHP.Nord, Paris, France.,Inserm U942 MASCOT, Université de Paris, Paris, France
| | - Julien Pottecher
- Department of Anesthesiology and Intensive Care, Hautepierre Hospital, Strasbourg University Hospital, Strasbourg, France.,EA 3072, Mitochondrie Stress Oxydant et Protection Musculaire, Faculté de Médecine, FRU 6702, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Alexandre Mebazaa
- Department of Anesthesiology and Critical Care, Hôpital Lariboisière, DMU Parabol, APHP.Nord, Paris, France.,Inserm U942 MASCOT, Université de Paris, Paris, France
| |
Collapse
|
103
|
Xie K, Chen YQ, Chai YS, Lin SH, Wang CJ, Xu F. HMGB1 suppress the expression of IL-35 by regulating Naïve CD4+ T cell differentiation and aggravating Caspase-11-dependent pyroptosis in acute lung injury. Int Immunopharmacol 2021; 91:107295. [PMID: 33360086 DOI: 10.1016/j.intimp.2020.107295] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is a severe form of inflammatory lung disease. Its development and progression are regulated by cytokines. The purpose of this study was to determine the effects of HMGB1 involved in the regulation of Treg cells and IL-35. METHODS A cecal ligation and puncture (CLP)-induced ALI model was used to investigate the changes in IL-35, Tregs, and the expression of RAGE and caspase-11 after HMGB1 inhibition (glycyrrhizin was used as an inhibitor of HMGB1). CD4+ naïve T cells sorted from C57BL/6 mice spleens were cultured to explore the role of HMGB1 in the differentiation from CD4+ naïve T cells to Tregs. RESULTS HMGB1 promoted lung injury and uncontrolled inflammation in the CLP mouse model. HMGB1, NF-κB p65, RAGE, and caspase-11 expression in the lungs of CLP mice decreased significantly after pretreatment with glycyrrhizin. We found that the Treg proportion and IL-35 expression were upregulated in the serum and lung of CLP mice after inhibiting HMGB1. In our in vitro experiments, we found that recombinant HMGB1 significantly suppressed the proportion of CD4+CD25+FOXP3+Tregs differentiated from CD4+ naïve T cells. CONCLUSIONS The inhibition of HMGB1 increased the proportion of Treg and expression of IL-35 and alleviated lung injury in the CLP-induced ALI model. Furthermore, inhibition of HMGB1 reduced caspase-11-dependent pyroptosis in the lungs of the CLP-induced ALI model.
Collapse
Affiliation(s)
- Ke Xie
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yan-Qing Chen
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yu-Sen Chai
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shi-Hui Lin
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chuan-Jiang Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Fang Xu
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
104
|
Biapenem reduces sepsis mortality via barrier protective pathways against HMGB1-mediated septic responses. Pharmacol Rep 2021; 73:786-795. [PMID: 33515401 DOI: 10.1007/s43440-020-00212-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND As a late mediator of sepsis, the role of high mobility group box 1 (HMGB1) has been recognized as important, and suppression of HMGB1 release and restoration of vascular barrier integrity are regarded as potentially promising therapeutic strategies for sepsis. For repositioning of previously FDA-approved drugs to develop new therapies for human diseases, screening of chemical compound libraries, biological active, is an efficient method. Our study illustrates an example of drug repositioning of Biapenem (BIPM), a carbapenem antibiotic, for the modulation of HMGB1-induced septic responses. METHODS We tested our hypothesis that BIPM inhibits HMGB1-induced vascular hyperpermeability and thereby increases the survival of septic mouse model from suppression of HMGB1 release upon lipopolysaccharide (LPS)-stimulation. In LPS-activated human umbilical vein endothelial cells (HUVECs) and a cecal ligation and puncture (CLP)-induced sepsis mouse model, antiseptic activity of BIPM was investigated from suppression of vascular permeability, pro-inflammatory proteins, and markers for tissue injury. RESULTS BIPM significantly suppressed release of HMGB1 both in LPS-activated HUVECs (upto 60%) and the CLP-induced sepsis mouse model (upto 54%). BIPM inhibited hyperpermeability (upto 59%) and reduced HMGB1-mediated vascular disruptions (upto 62%), mortality (upto 50%), and also tissue injury including lung, liver, and kidney in mice. CONCLUSION Reduction of HMGB1 release and septic mortality by BIPM (in vitro, from 5 to 15 μM for 6 h; in vivo, from 0.37 to 1.1 mg/kg, 24 h) indicate a possibility of successful repositioning of BIPM for the treatment of sepsis.
Collapse
|
105
|
Yu F, Zhu J, Lei M, Wang C, Xie K, Xu F, Lin S. Exploring the metabolic phenotypes associated with different host inflammation of acute respiratory distress syndrome (ARDS) from lung metabolomics in mice. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e8971. [PMID: 33049802 PMCID: PMC7646044 DOI: 10.1002/rcm.8971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/21/2020] [Accepted: 09/30/2020] [Indexed: 06/11/2023]
Abstract
RATIONALE The aim of this study was to analyze the metabolomics of lung with different host inflammation of acute respiratory distress syndrome (ARDS) for the identification of biomarkers for predicting severity under different inflammatory conditions. METHODS Cecal ligation and puncture (CLP) and lipopolysaccharide (LPS)-intratracheal injection induced acute lung injury (ALI) were used. A mouse model was used to explore lung metabolomic biomarkers in ALI/ARDS. The splenectomy model was used as an auxiliary method to distinguish between hyper- and hypo-inflammatory subtypes. Plasma, lung tissue and bronchoalveolar lavage fluid (BALF) samples were collected from mice after CLP/LPS. The severity of lung injury was evaluated. Expression of tumor necrosis factor-α (TNF-α) in mice serum and lung was tested by enzyme-linked immunosorbent assay (ELISA) and polymer chain reaction (PCR). Polymorphonuclear cells in BALF were counted. The lung metabolites were detected by gas chromatography/mass spectrometry (GC/MS), and the metabolic pathways predicted using the KEGG database. RESULTS The LPS/CLP-Splen group had more severe lung injury than the corresponding ALI group; that in the CLP-Splen group was more serious than in the LPS-Splen group. TNF-α expression was significantly elevated in the serum and lung tissue after LPS or CLP, and higher in the LPS/CLP-Splen group than in the corresponding ALI group. The level of TNF-α in the CLP-Splen group was elevated significantly over that in the LPS-Splen group. Both these groups also showed significant neutrophil exudation within the lungs. During differential inflammation, more differential metabolites were detected in the lungs of the CLP group ALI mice than in the LPS group. A total of 41 compounds were detected in the lungs of the CLP and CLP-Splen groups. Contrastingly, eight compounds were detected in the lungs of the LPS and LPS-Splen groups. The LPS-Splen and CLP-Splen groups had significant neutrophil exudation in the lung. Random forest analysis of lung-targeted metabolomics data indicated 4-hydroxyphenylacetic acid, 1-aminocyclopentanecarboxylic acid (ACPC), cis-aconitic acid, and hydroxybenzoic acid as strong predictors of the hyper-inflammatory subgroup in the CLP group. Furthermore, with splenectomy, 13 differential metabolic pathways between the CLP and LPS groups were revealed. CONCLUSIONS Hyper-inflammatory subgroups of ARDS have a greater inflammatory response and a more active lung metabolism. Combined with the host inflammation background, biomarkers from metabolomics could help evaluate the response severity of ARDS.
Collapse
Affiliation(s)
- Feng Yu
- Department of Critical Care MedicineThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
- Department of Critical Care MedicineChangshou People's HospitalChongqing401220China
| | - Jing Zhu
- Department of Critical Care MedicineThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Ming Lei
- Department of Critical Care MedicineThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
- Department of Critical Care MedicineThe Seventh Affiliated Hospital, Sun Yat‐sen UniversityShenzhen518000China
| | - Chuan‐jiang Wang
- Department of Critical Care MedicineThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Ke Xie
- Department of Critical Care MedicineThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Fang Xu
- Department of Critical Care MedicineThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Shi‐hui Lin
- Department of Critical Care MedicineThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| |
Collapse
|
106
|
Li L, Lu YQ. The Regulatory Role of High-Mobility Group Protein 1 in Sepsis-Related Immunity. Front Immunol 2021; 11:601815. [PMID: 33552058 PMCID: PMC7862754 DOI: 10.3389/fimmu.2020.601815] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/07/2020] [Indexed: 12/16/2022] Open
Abstract
High-mobility group box 1 (HMGB1), a prototypical damage-associated molecular pattern (DAMP) molecule, participates in multiple processes of various inflammatory diseases through binding to its corresponding receptors. In the early phase, sepsis is mainly characterized as a multi-bacterial-induced complex, excessive inflammatory response accompanied by the release of pro-inflammatory mediators, which subsequently develops into immune paralysis. A growing number of in vivo and in vitro investigations reveal that HMGB1 plays a pivotal role in the processes of inflammatory response and immunosuppression of sepsis. Therefore, HMGB1 exerts an indispensable role in the immune disorder and life-threatening inflammatory syndrome of sepsis. HMGB1 mainly mediate the release of inflammatory factors via acting on immune cells, pyroptosis pathways and phosphorylating nuclear factor-κB. Moreover HMGB1 is also associated with the process of sepsis-related immunosuppression. Neutrophil dysfunction mediated by HMGB1 is also an aspect of the immunosuppressive mechanism of sepsis. Myeloid-derived suppressor cells (MDSCs), which are also one of the important cells that play an immunosuppressive effect in sepsis, may connect with HMGB1. Thence, further understanding of HMGB1-associated pathogenesis of sepsis may assist in development of promising treatment strategies. This review mainly discusses current perspectives on the roles of HMGB1 in sepsis-related inflammation and immunosuppressive process and its related internal regulatory mechanisms.
Collapse
Affiliation(s)
- Li Li
- Department of Emergency Medicine, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Department of Geriatrics, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-Chemical Injury Diseases, Hangzhou, China
| | - Yuan-Qiang Lu
- Department of Emergency Medicine, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Department of Geriatrics, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-Chemical Injury Diseases, Hangzhou, China
| |
Collapse
|
107
|
Potential therapeutic effects of interleukin-35 on the differentiation of naïve T cells into Helios +Foxp3 + Tregs in clinical and experimental acute respiratory distress syndrome. Mol Immunol 2021; 132:236-249. [PMID: 33494935 PMCID: PMC8058740 DOI: 10.1016/j.molimm.2021.01.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 01/02/2021] [Accepted: 01/05/2021] [Indexed: 12/12/2022]
Abstract
Regulatory T lymphocytes are important targets for the treatment of acute respiratory distress syndrome (ARDS). IL-35 is a newly identified IL-12 cytokine family member that plays an important protective role in a variety of immune system diseases by regulating Treg cell differentiation; however, the role of IL-35 in the pathogenesis of ARDS is still unclear. Here, we found that IL-35 was significantly elevated in adult patients with ARDS compared to controls. Additionally, IL-35 was positively and significantly correlated with IL-6, IL-10 and the oxygenation index (PaO2/FiO2 ratio) but negatively correlated with TNF-α, IL-1β and APACHE II score during ARDS. Moreover, the proportion of Treg/CD4+ cells in the peripheral blood of ARDS patients and the expression of NF-κB in PMBCs were significantly higher than in healthy individuals. Recombinant IL-35 improved survival in a murine model of CLP-induced ARDS. Additionally, IL-35 administration decreased the inflammatory response, as reflected by lower levels of cytokines (including IL-2, TNF-α, IL-1β and IL-6) and less lung damage in CLP-induced ARDS. Furthermore, recombinant IL-35 reduced the apoptosis of lung tissue and the expression of NF-κB signalling in a CLP-induced ARDS model and increased the proportion of Treg cells in spleen and peripheral blood. In vitro experiments revealed that IL-35 can affect the phosphorylation of STAT5 during differentiation of naïve CD4+ T lymphocytes into Foxp3+Helios+ Tregs. Our findings suggest that IL-35 attenuates ARDS by promoting the differentiation of naïve CD4+ T cells into Foxp3+Helios+ Tregs, thereby providing a novel tool for anti-ARDS therapy.
Collapse
|
108
|
Lee W, Choi HJ, Sim H, Choo S, Song GY, Bae JS. Barrier protective functions of hederacolchiside-E against HMGB1-mediated septic responses. Pharmacol Res 2021; 163:105318. [PMID: 33246171 DOI: 10.1016/j.phrs.2020.105318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/20/2022]
Abstract
The role of high mobility group box 1 (HMGB1) has been recognized as important, and suppression of HMGB1 release and restoration of vascular barrier integrity are regarded as potentially promising therapeutic strategies against sepsis. Hederacolchiside-E (HCE), namely 3-O-{α-L-rhamnopyranosyl (1→2)-[β-D-glucopyranosyl(1→4)]-α-L-arabinopyranosyl}-28-O-[α-L-rhamnopyranosyl (1→4)-β-D-glucopyranosyl(1→6)-β-D-glucopyranosyl ester, is a bidesmosidic oleanane saponin first isolated in 1970 from the leaves of Hedera colchica. We tested our hypothesis that HCE inhibits HMGB1-induced vascular hyperpermeability and thereby increases the survival of septic mouse model from suppression of HMGB1 release upon lipopolysaccharide (LPS)-stimulation. In LPS-activated human endothelial cells and a sepsis mouse model by cecal ligation and puncture (CLP), antiseptic activity of HCE was investigated from suppression of vascular permeability, pro-inflammatory proteins, and tissue injury markers. Post-treatment of HCE significantly suppressed HMGB1 release both in LPS-activated human endothelial cells and the CLP-induced sepsis mouse model. HCE inhibited hyperpermeability and alleviated HMGB1-mediated vascular disruptions, and reduced sepsis-related mortality and tissue injury in mice. Our results suggest that reduction of HMGB1 release and septic mortality by HCE may be useful for the drug candidate of sepsis, indicating a possibility of successful repositioning of HCE.
Collapse
Affiliation(s)
- Wonhwa Lee
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, Kyungpook National University, Daegu 41566, Republic of Korea; Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Hui-Ji Choi
- College of Pharmacy, Chungnam National University, Daejon 34134, Republic of Korea
| | - Hyunchae Sim
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Samyeol Choo
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Gyu Yong Song
- College of Pharmacy, Chungnam National University, Daejon 34134, Republic of Korea.
| | - Jong-Sup Bae
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
109
|
Didari T, Hassani S, Baeeri M, Navaei-Nigjeh M, Rahimifard M, Haghi-Aminjan H, Gholami M, Nejad SM, Hassan FI, Mojtahedzadeh M, Abdollahi M. Short-term Effects of Metformin on Cardiac and Peripheral Blood Cells Following Cecal Ligation and Puncture-induced Sepsis. Drug Res (Stuttg) 2020; 71:257-264. [PMID: 33348389 DOI: 10.1055/a-1322-7478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
AIM OF THE STUDY Sepsis has well-documented inflammatory effects on cardiovascular and blood cells. This study is designed to investigate potential anti-inflammatory effects of metformin on cardiac and blood cells 12 and 24 h following cecal ligation and puncture (CLP)-induced sepsis. METHODS For the purpose of this study, 36 male Wistar rats were divided into six groups: two groups underwent CLP, two groups underwent CLP and received metformin, and two groups only received sham operations. 12 h later, 18 rats (half of rats in each of the three aforementioned groups) were sacrificed and cardiac and blood cells were harvested. Subsequently, 12 h later, the rest of the rats were euthanatized. In all harvested blood and cardiac cells, oxidative stress indicators, antioxidant properties, count of blood cells, neutrophil infiltration, percentage of weight loss and pathological assessment were conducted. RESULTS In our experiment, metformin elevated antioxidant levels, improved function of blood cells and percentage of weight loss. Moreover, in the groups which received metformin, oxidative stress and neutrophil infiltration markers were decreased significantly. Moreover, pathological investigations of cardiac cell injury were reduced in the metformin group. CONCLUSIONS Our findings suggest that in CLP induced sepsis model, metformin can improve the function of blood and cardiac cells through alleviating inflammation, improvement of anti-inflammation properties, and enhancement of blood profile, and all these effects are more pronounced after 24 h in comparison with 12 h after induction of sepsis.
Collapse
Affiliation(s)
- Tina Didari
- Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Shokoufeh Hassani
- Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Baeeri
- Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mona Navaei-Nigjeh
- Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mahban Rahimifard
- Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Haghi-Aminjan
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mahdi Gholami
- Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Solmaz Mohammadi Nejad
- Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Fatima Ismail Hassan
- Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mojtaba Mojtahedzadeh
- Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.,Department of Clinical Pharmacy, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.,Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
110
|
Sowinska A, Rensing M, Klevenvall L, Neog M, Lundbäck P, Harris HE. Cleavage of HMGB1 by Proteolytic Enzymes Associated with Inflammatory Conditions. Front Immunol 2020; 11:448262. [PMID: 33391251 PMCID: PMC7772184 DOI: 10.3389/fimmu.2020.448262] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 11/11/2020] [Indexed: 01/30/2023] Open
Abstract
Extracellular HMGB1 acts as an alarmin in multiple autoimmune diseases. While its release and functions have been extensively studied, there is a substantial lack of knowledge regarding HMGB1 regulation at the site of inflammation. Herein we show that enzymes present in arthritis-affected joints process HMGB1 into smaller peptides in vitro. Gel electrophoresis, Western blotting and mass spectrometry analyses indicate cleavage sites for human neutrophil elastase, cathepsin G, and matrix metalloproteinase 3 within the HMGB1 structure. While human neutrophil elastase and matrix metalloproteinase 3 might alter the affinity of HMGB1 to its receptors by cleaving the acidic C-terminal tail, cathepsin G rapidly and completely degraded the alarmin. Contrary to a previous report we demonstrate that HMGB1 is not a substrate for dipeptidyl peptidase IV. We also provide novel information regarding the presence of these proteases in synovial fluid of juvenile idiopathic arthritis patients. Correlation analysis of protease levels and HMGB1 levels in synovial fluid samples did not, however, reveal any direct relationship between the recorded levels. This study provides knowledge of proteolytic processing of HMGB1 relevant for the regulation of HMGB1 during inflammatory disease.
Collapse
Affiliation(s)
- Agnieszka Sowinska
- Division for Rheumatology, Center for Molecular Medicine, Department of Medicine Karolinska Institutet, Karolinska University Hospital in Solna, Stockholm, Sweden
| | - Merlin Rensing
- Division for Rheumatology, Center for Molecular Medicine, Department of Medicine Karolinska Institutet, Karolinska University Hospital in Solna, Stockholm, Sweden
| | - Lena Klevenvall
- Division for Rheumatology, Center for Molecular Medicine, Department of Medicine Karolinska Institutet, Karolinska University Hospital in Solna, Stockholm, Sweden
| | - Manoj Neog
- Division for Rheumatology, Center for Molecular Medicine, Department of Medicine Karolinska Institutet, Karolinska University Hospital in Solna, Stockholm, Sweden
| | - Peter Lundbäck
- Division for Rheumatology, Center for Molecular Medicine, Department of Medicine Karolinska Institutet, Karolinska University Hospital in Solna, Stockholm, Sweden
| | - Helena Erlandsson Harris
- Division for Rheumatology, Center for Molecular Medicine, Department of Medicine Karolinska Institutet, Karolinska University Hospital in Solna, Stockholm, Sweden
| |
Collapse
|
111
|
Gou X, Ying J, Yue Y, Qiu X, Hu P, Qu Y, Li J, Mu D. The Roles of High Mobility Group Box 1 in Cerebral Ischemic Injury. Front Cell Neurosci 2020; 14:600280. [PMID: 33384585 PMCID: PMC7770223 DOI: 10.3389/fncel.2020.600280] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/25/2020] [Indexed: 12/11/2022] Open
Abstract
High mobility group box 1 (HMGB1) is a ubiquitous nuclear protein that plays an important role in stabilizing nucleosomes and DNA repair. HMGB1 can be passively released from necrotic neurons or actively secreted by microglia, macrophages/monocytes, and neutrophils. Cerebral ischemia is a major cause of mortality and disability worldwide, and its outcome depends on the number of neurons dying due to hypoxia in the ischemic area. HMGB1 contributes to the pathogenesis of cerebral ischemia via mediating neuroinflammatory responses to cerebral ischemic injury. Extracellular HMGB1 regulates many neuroinflammatory events by interacting with its different cell surface receptors, such as receptors for advanced glycation end products, toll-like receptor (TLR)-2, and TLR-4. Additionally, HMGB1 can be redox-modified, thus exerting specific cellular functions in the ischemic brain and has different roles in the acute and late stages of cerebral ischemic injury. However, the role of HMGB1 in cerebral ischemia is complex and remains unclear. Herein, we summarize and review the research on HMGB1 in cerebral ischemia, focusing especially on the role of HMGB1 in hypoxic ischemia in the immature brain and in white matter ischemic injury. We also outline the possible mechanisms of HMGB1 in cerebral ischemia and the main strategies to inhibit HMGB1 pertaining to its potential as a novel critical molecular target in cerebral ischemic injury.
Collapse
Affiliation(s)
- Xiaoyun Gou
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu, China
| | - Junjie Ying
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu, China
| | - Yan Yue
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu, China
| | - Xia Qiu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu, China
| | - Peng Hu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu, China
| | - Yi Qu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu, China
| | - Jinhui Li
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu, China
| | - Dezhi Mu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu, China
| |
Collapse
|
112
|
Li ZL, Gao M, Yang MS, Xiao XF, Liu JJ, Yang BC. Sesamin attenuates intestinal injury in sepsis via the HMGB1/TLR4/IL-33 signalling pathway. PHARMACEUTICAL BIOLOGY 2020; 58:898-904. [PMID: 32893702 PMCID: PMC8641667 DOI: 10.1080/13880209.2020.1787469] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
CONTEXT Sepsis is currently one of the leading causes of death in intensive care units (ICUs). Sesamin was previously reported to inhibit inflammation. However, no studies have revealed the impact of sesamin on sepsis. OBJECTIVE We studied the mechanism underlying the effect of sesamin on the pathophysiology of sepsis through the HMGB1/TLR4/IL-33 signalling pathway. MATERIALS AND METHODS Fifty male BALB/c mice (n = 10 per group) were used to establish a caecal ligation and puncture (CLP) mouse model, and given daily injections of sesamin at a low, middle, or high concentration (25, 50, or 100 μM) during the seven-day study period; survival curves were generated by the Kaplan-Meier method. H&E staining and TUNEL staining were performed to assess changes in intestinal morphology intestinal damage in the mouse intestinal epithelium. Molecules related to the HMGB1/TLR4/IL-33 pathway were assessed by RT-qPCR and Western blotting. RESULTS We found mice in the sepsis group survived for only 4 days, while those treated with sesamin survived for 6-7 days. In addition, sesamin significantly relieved the increase in the levels of MPO (21%, 33.3%), MDA (40.5% and 31.6%), DAO (1.24-fold and 2.31-fold), and pro-inflammatory cytokines such as TNF-α (75% and 79%) and IL-6 (1-fold and 1.67-fold) 24 and 48 h after sepsis induction and downregulated the expression of HMGB1, TLR4, and IL-33 while upregulating the expression of ZO-1 and occludin. DISCUSSION AND CONCLUSIONS Sesamin improved the 7-day survival rate of septic mice, suppressed the inflammatory response in sepsis through the HMGB-1/TLR4/IL-33 signalling pathway, and further alleviated intestinal injury.
Collapse
Affiliation(s)
- Zhi-Ling Li
- Translational Medicine Center of Sepsis, The Third Xiangya Hospital of Central South University, Changsha, PR China
- Department of Critical Care Medicine, The Third Xiangya Hospital of Central South University, Changsha, PR China
| | - Min Gao
- Translational Medicine Center of Sepsis, The Third Xiangya Hospital of Central South University, Changsha, PR China
- Department of Critical Care Medicine, The Third Xiangya Hospital of Central South University, Changsha, PR China
| | - Ming-Shi Yang
- Translational Medicine Center of Sepsis, The Third Xiangya Hospital of Central South University, Changsha, PR China
- Department of Critical Care Medicine, The Third Xiangya Hospital of Central South University, Changsha, PR China
| | - Xue-Fei Xiao
- Translational Medicine Center of Sepsis, The Third Xiangya Hospital of Central South University, Changsha, PR China
- Department of Critical Care Medicine, The Third Xiangya Hospital of Central South University, Changsha, PR China
| | - Jing-Jing Liu
- Translational Medicine Center of Sepsis, The Third Xiangya Hospital of Central South University, Changsha, PR China
- Department of Critical Care Medicine, The Third Xiangya Hospital of Central South University, Changsha, PR China
| | - Bing-Chang Yang
- Translational Medicine Center of Sepsis, The Third Xiangya Hospital of Central South University, Changsha, PR China
- Department of Critical Care Medicine, The Third Xiangya Hospital of Central South University, Changsha, PR China
- CONTACT Bing-Chang Yang Department of Critical Care Medicine, The Third Xiangya Hospital of Central South University, No. 138, Tongzipo Road, Yuelu District, Changsha410013, Hunan Province, PR China
| |
Collapse
|
113
|
Contribution of Connexin Hemichannels to the Pathogenesis of Acute Lung Injury. Mediators Inflamm 2020; 2020:8094347. [PMID: 33293898 PMCID: PMC7688369 DOI: 10.1155/2020/8094347] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 10/07/2020] [Accepted: 10/19/2020] [Indexed: 11/17/2022] Open
Abstract
Connexin (Cx) family members form hemichannels (HCs) and gap junctions (GJs). Biological functions of Cx HCs have not been adequately characterized due to the inability to selectively target HCs or GJs. Recently, we developed a 6-mer peptide mimetic (P5) of the first extracellular loop of Cx43 and showed that it can block the permeability of HCs but not GJs formed by Cx43. In this study, we further characterized the HC blocking property of P5 and investigated the role of Cx HCs in acute lung injury (ALI). We found that P5 administration decreased HC permeability, in pulmonary microvascular endothelial cells, HepG2 cells, and even Cx43-deficient astrocytes, which express different sets of Cxs, suggesting that P5 is a broad spectrum Cx HC blocker. In addition, P5 reduced HC permeability of alveolar cells in vivo. Moreover, P5 decreased endotoxin-induced release, by vascular endothelial cells in vitro, of high mobility group box protein 1 (HMGB1), a critical mediator of acute lung injury (ALI), and reduced HMGB1 accumulation in bronchoalveolar lavage fluid (BALF) of mice subjected to intratracheal endotoxin instillation. Furthermore, P5 administration resulted in a significant decrease in the concentrations of ALT, AST, and LDH in the BALF, the accumulation of leukocytes in alveoli, and the mortality rate of mice subjected to ALI. Wright-Giemsa staining showed that P5 caused similar reductions of both neutrophils and monocytes in BALF of ALI mice. Together, these results suggest that Cx HCs mediate HMGB1 release, augment leukocyte recruitment, and contribute to ALI pathology.
Collapse
|
114
|
Prantner D, Nallar S, Vogel SN. The role of RAGE in host pathology and crosstalk between RAGE and TLR4 in innate immune signal transduction pathways. FASEB J 2020; 34:15659-15674. [PMID: 33131091 DOI: 10.1096/fj.202002136r] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/07/2020] [Accepted: 10/13/2020] [Indexed: 12/15/2022]
Abstract
Although the innate immune receptor protein, Receptor for Advanced Glycation End products (RAGE), has been extensively studied, there has been renewed interest in RAGE for its potential role in sepsis, along with a host of other inflammatory diseases of chronic, noninfectious origin. In contrast to other innate immune receptors, for example, Toll-like receptors (TLRs), that recognize ligands derived from pathogenic organisms that are collectively known as "pathogen-associated molecular patterns" (PAMPs) or host-derived "damage-associated molecular patterns" (DAMPs), RAGE has been shown to recognize a broad collection of DAMPs exclusively. Historically, these DAMPs have been shown to be pro-inflammatory in nature. Early studies indicated that the adaptor molecule, MyD88, might be important for this change. More recent studies have explored further the mechanisms underlying this inflammatory change. Overall, the newer results have shown that there is extensive crosstalk between RAGE and TLRs. The three canonical RAGE ligands, Advanced Glycation End products (AGEs), HMGB1, and S100 proteins, have all been shown to activate both TLRs and RAGE to varying degrees in order to induce inflammation in in vitro models. As with any field that delves deeply into innate signaling, obstacles of reagent purity may be a cause of some of the discrepancies in the literature, and we have found that commercial antibodies that have been widely used exhibit a high degree of nonspecificity. Nonetheless, the weight of published evidence has led us to speculate that RAGE may be physically interacting with TLRs on the cell surface to elicit inflammation via MyD88-dependent signaling.
Collapse
Affiliation(s)
- Daniel Prantner
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Shreeram Nallar
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Stefanie N Vogel
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, MD, USA
| |
Collapse
|
115
|
Li Y, Wang S, Liu J, Li X, Lu M, Wang X, Ren Y, Li X, Xiang M. Induced Pluripotent Stem Cells Attenuate Acute Lung Injury Induced by Ischemia Reperfusion via Suppressing the High Mobility Group Box-1. Dose Response 2020; 18:1559325820969340. [PMID: 33192202 PMCID: PMC7607776 DOI: 10.1177/1559325820969340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 11/24/2022] Open
Abstract
Pulmonary endothelial cell injury is a hallmark of acute lung injury. High-mobility group box 1 (HMGB1) can modulate the inflammatory response via endothelial cell activation and release of inflammatory molecules. Thus, we tested whether induced pluripotent stem cells (iPSCs) can alleviate ischemia/reperfusion (I/R) induced lung injury, and, if so, whether HMGB1 mediates the effect in a male C57BL/6 mouse model. Intravenously injected iPSCs into mice 2 h after I/R showed a significant attenuation of lung injury (assessed by lung mechanics, edema, and histology) 24 h after reperfusion (compared with controls), along with decreases in HMGB1, phosphorylated nuclear factor-κB, inflammatory cytokines [interleukin (IL)1β, IL6 and tumor necrosis factor-α], and the activation of endothelial cells. Furthermore, these effects of iPSCs can be mimicked by blocking HMGB1 with an inhibitor in vivo and in vitro. We conclude that iPSCs can be a potential therapy for I/R-induced lung injury. These cells may exert therapeutic effects through blocking HMGB1 and inflammatory cytokines.
Collapse
Affiliation(s)
- Yijun Li
- Department of Physiology & Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Shun Wang
- Department of Physiology & Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Jinbo Liu
- Department of Physiology & Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Xingyu Li
- Department of Physiology & Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Meng Lu
- Department of Physiology & Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Xiaokai Wang
- Department of Physiology & Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Yansong Ren
- Department of Physiology & Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Xiaoming Li
- Department of Pathology, People's Hospital of Bao'an District, Affiliated Bao'an Hospital of Shenzhen, Southern Medical University, The Second Affiliated Hospital of Shenzhen University, Shenzhen, People's Republic of China
| | - Meng Xiang
- Department of Physiology & Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
116
|
Sitapara RA, Gauthier AG, Patel VS, Lin M, Zur M, Ashby CR, Mantell LL. The α7 nicotinic acetylcholine receptor agonist GTS-21 improves bacterial clearance in mice by restoring hyperoxia-compromised macrophage function. Mol Med 2020; 26:98. [PMID: 33126860 PMCID: PMC7596622 DOI: 10.1186/s10020-020-00224-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 10/07/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mechanical ventilation, in combination with supraphysiological concentrations of oxygen (i.e., hyperoxia), is routinely used to treat patients with respiratory distress, such as COVID-19. However, prolonged exposure to hyperoxia compromises the clearance of invading pathogens by impairing macrophage phagocytosis. Previously, we have shown that the exposure of mice to hyperoxia induces the release of the nuclear protein high mobility group box-1 (HMGB1) into the pulmonary airways. Furthermore, extracellular HMGB1 impairs macrophage phagocytosis and increases the mortality of mice infected with Pseudomonas aeruginosa (PA). The aim of this study was to determine whether GTS-21 (3-(2,4-dimethoxybenzylidene) anabaseine), an α7 nicotinic acetylcholine receptor (α7nAChR) agonist, could (1) inhibit hyperoxia-induced HMGB1 release into the airways; (2) enhance macrophage phagocytosis and (3) increase bacterial clearance from the lungs in a mouse model of ventilator-associated pneumonia. METHOD GTS-21 (0.04, 0.4, and 4 mg/kg) or saline were administered by intraperitoneal injection to mice that were exposed to hyperoxia (≥ 99% O2) and subsequently challenged with PA. RESULTS The systemic administration of 4 mg/kg i.p. of GTS-21 significantly increased bacterial clearance, decreased acute lung injury and decreased accumulation of airway HMGB1 compared to the saline control. To determine the mechanism of action of GTS-21, RAW 264.7 cells, a macrophage-like cell line, were incubated with different concentrations of GTS-21 in the presence of 95% O2. The phagocytic activity of macrophages was significantly increased by GTS-21 in a dose-dependent manner. In addition, GTS-21 significantly inhibited the cytoplasmic translocation and release of HMGB1 from RAW 264.7 cells and attenuated hyperoxia-induced NF-κB activation in macrophages and mouse lungs exposed to hyperoxia and infected with PA. CONCLUSIONS Our results indicate that GTS-21 is efficacious in improving bacterial clearance and reducing acute lung injury via enhancing macrophage function by inhibiting the release of nuclear HMGB1. Therefore, the α7nAChR represents a possible pharmacological target to improve the clinical outcome of patients on ventilators by augmenting host defense against bacterial infections.
Collapse
Affiliation(s)
- Ravikumar A Sitapara
- Department of Pharmaceutical Sciences, St. John's University College of Pharmacy and Health Sciences, 8000 Utopia Parkway, Queens, NY, 11439, USA
| | - Alex G Gauthier
- Department of Pharmaceutical Sciences, St. John's University College of Pharmacy and Health Sciences, 8000 Utopia Parkway, Queens, NY, 11439, USA
| | - Vivek S Patel
- Department of Pharmaceutical Sciences, St. John's University College of Pharmacy and Health Sciences, 8000 Utopia Parkway, Queens, NY, 11439, USA
| | - Mosi Lin
- Department of Pharmaceutical Sciences, St. John's University College of Pharmacy and Health Sciences, 8000 Utopia Parkway, Queens, NY, 11439, USA
| | - Michelle Zur
- Department of Pharmaceutical Sciences, St. John's University College of Pharmacy and Health Sciences, 8000 Utopia Parkway, Queens, NY, 11439, USA
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, St. John's University College of Pharmacy and Health Sciences, 8000 Utopia Parkway, Queens, NY, 11439, USA
| | - Lin L Mantell
- Department of Pharmaceutical Sciences, St. John's University College of Pharmacy and Health Sciences, 8000 Utopia Parkway, Queens, NY, 11439, USA. .,The Feinstein Institute for Medical Research, Northwell Health System, Manhasset, NY, 11030, USA.
| |
Collapse
|
117
|
Xue J, Suarez JS, Minaai M, Li S, Gaudino G, Pass HI, Carbone M, Yang H. HMGB1 as a therapeutic target in disease. J Cell Physiol 2020; 236:3406-3419. [PMID: 33107103 DOI: 10.1002/jcp.30125] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/23/2020] [Accepted: 10/13/2020] [Indexed: 12/30/2022]
Abstract
High-mobility group box 1 (HMGB1) was initially recognized as a ubiquitous nuclear protein involved in maintaining the nucleosome integrity and facilitating gene transcription. HMGB1 has since been reevaluated to be a prototypical damage-associated molecular pattern (DAMP) protein, and together with its exogenous counterpart, pathogen-associated molecular pattern (PAMP), completes the body's alarmin system against disturbances in homeostasis. HMGB1 can be released into the extracellular matrix (ECM) by either granulocytes or necrotic cells to serve as a chemotaxis/cytokine during infection, endotoxemia, hypoxia, ischemia-reperfusion events, and cancer. Different isoforms of HMGB1 present with distinctive physiological functions in ECM-fully-reduced HMGB1 (all thiol) acts as the initial damage signal to recruit circulating myeloid cells, disulfide HMGB1 behaves as a cytokine to activate macrophages and neutrophils, and both signals are turned off when HMGB1 is terminally oxidized into the final sulfonate form. Targeting HMGB1 constitutes a favorable therapeutic strategy for inflammation and inflammatory diseases. Antagonists such as ethyl pyruvate inhibit HMGB1 by interfering with its cytoplasmic exportation, while others such as glycyrrhizin directly bind to HMGB1 and render it unavailable for its receptors. The fact that a mixture of different HMGB1 isoforms is present in the ECM poses a challenge in pinpointing the exact role of an individual antagonist. A more discriminative probe for HMGB1 may be necessary to advance our knowledge of HMGB1, HMGB1 antagonists, and inflammatory-related diseases.
Collapse
Affiliation(s)
- Jiaming Xue
- Thoracic Oncology Program, University of Hawaii Cancer Center, Honolulu, Hawaii, USA.,John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Joelle S Suarez
- Thoracic Oncology Program, University of Hawaii Cancer Center, Honolulu, Hawaii, USA
| | - Michael Minaai
- Thoracic Oncology Program, University of Hawaii Cancer Center, Honolulu, Hawaii, USA
| | - Shuangjing Li
- Thoracic Oncology Program, University of Hawaii Cancer Center, Honolulu, Hawaii, USA.,Central Laboratory of Liaocheng People's Hospital, Liaocheng, Shandong, China
| | - Giovanni Gaudino
- Thoracic Oncology Program, University of Hawaii Cancer Center, Honolulu, Hawaii, USA
| | - Harvey I Pass
- Department of Cardiothoracic Surgery, New York University Langone Medical Center, New York, New York, USA
| | - Michele Carbone
- Thoracic Oncology Program, University of Hawaii Cancer Center, Honolulu, Hawaii, USA
| | - Haining Yang
- Thoracic Oncology Program, University of Hawaii Cancer Center, Honolulu, Hawaii, USA
| |
Collapse
|
118
|
Li J, Bao G, Wang H. Time to Develop Therapeutic Antibodies Against Harmless Proteins Colluding with Sepsis Mediators? Immunotargets Ther 2020; 9:157-166. [PMID: 33117741 PMCID: PMC7547129 DOI: 10.2147/itt.s262605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/22/2020] [Indexed: 12/29/2022] Open
Abstract
Sepsis refers to a systemic inflammatory response syndrome resulting from microbial infections, and is partly attributable to dysregulated inflammation and associated immunosuppression. A ubiquitous nuclear protein, HMGB1, is secreted by activated leukocytes to orchestrate inflammatory responses during early stages of sepsis. When it is released by injured somatic cells at overwhelmingly higher quantities, HMGB1 may induce macrophage pyroptosis and immunosuppression, thereby impairing the host's ability to eradicate microbial infections. A number of endogenous proteins have been shown to bind HMGB1 to modulate its extracellular functions. Here, we discuss an emerging possibility to develop therapeutic antibodies against harmless proteins that collude with pathogenic mediators for the clinical management of human sepsis and other inflammatory diseases.
Collapse
Affiliation(s)
- Jianhua Li
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY11030, USA
| | - Guoqiang Bao
- Department of General Surgery, Tangdu Hospital, Xi’an, Shaanxi710032, People’s Republic of China
| | - Haichao Wang
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY11549, USA
| |
Collapse
|
119
|
Asbestos induces mesothelial cell transformation via HMGB1-driven autophagy. Proc Natl Acad Sci U S A 2020; 117:25543-25552. [PMID: 32999071 DOI: 10.1073/pnas.2007622117] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Asbestos causes malignant transformation of primary human mesothelial cells (HM), leading to mesothelioma. The mechanisms of asbestos carcinogenesis remain enigmatic, as exposure to asbestos induces HM death. However, some asbestos-exposed HM escape cell death, accumulate DNA damage, and may become transformed. We previously demonstrated that, upon asbestos exposure, HM and reactive macrophages releases the high mobility group box 1 (HMGB1) protein that becomes detectable in the tissues near asbestos deposits where HMGB1 triggers chronic inflammation. HMGB1 is also detectable in the sera of asbestos-exposed individuals and mice. Searching for additional biomarkers, we found higher levels of the autophagy marker ATG5 in sera from asbestos-exposed individuals compared to unexposed controls. As we investigated the mechanisms underlying this finding, we discovered that the release of HMGB1 upon asbestos exposure promoted autophagy, allowing a higher fraction of HM to survive asbestos exposure. HMGB1 silencing inhibited autophagy and increased asbestos-induced HM death, thereby decreasing asbestos-induced HM transformation. We demonstrate that autophagy was induced by the cytoplasmic and extracellular fractions of HMGB1 via the engagement of the RAGE receptor and Beclin 1 pathway, while nuclear HMGB1 did not participate in this process. We validated our findings in a novel unique mesothelial conditional HMGB1-knockout (HMGB1-cKO) mouse model. Compared to HMGB1 wild-type mice, mesothelial cells from HMGB1-cKO mice showed significantly reduced autophagy and increased cell death. Autophagy inhibitors chloroquine and desmethylclomipramine increased cell death and reduced asbestos-driven foci formation. In summary, HMGB1 released upon asbestos exposure induces autophagy, promoting HM survival and malignant transformation.
Collapse
|
120
|
Vijayakumar EC, Bhatt LK, Prabhavalkar KS. High Mobility Group Box-1 (HMGB1): A Potential Target in Therapeutics. Curr Drug Targets 2020; 20:1474-1485. [PMID: 31215389 DOI: 10.2174/1389450120666190618125100] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 05/29/2019] [Accepted: 05/29/2019] [Indexed: 02/06/2023]
Abstract
High mobility group box-1 (HMGB1) mainly belongs to the non-histone DNA-binding protein. It has been studied as a nuclear protein that is present in eukaryotic cells. From the HMG family, HMGB1 protein has been focused particularly for its pivotal role in several pathologies. HMGB-1 is considered as an essential facilitator in diseases such as sepsis, collagen disease, atherosclerosis, cancers, arthritis, acute lung injury, epilepsy, myocardial infarction, and local and systemic inflammation. Modulation of HMGB1 levels in the human body provides a way in the management of these diseases. Various strategies, such as HMGB1-receptor antagonists, inhibitors of its signalling pathway, antibodies, RNA inhibitors, vagus nerve stimulation etc. have been used to inhibit expression, release or activity of HMGB1. This review encompasses the role of HMGB1 in various pathologies and discusses its therapeutic potential in these pathologies.
Collapse
Affiliation(s)
- Eyaldeva C Vijayakumar
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India
| | - Kedar S Prabhavalkar
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India
| |
Collapse
|
121
|
韩 宁, 杜 凌, 严 丽, 唐 红. [The mechanism and treatment strategies of SARS-CoV-2 mediated inflammatory response]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2020; 37:572-578. [PMID: 32840072 PMCID: PMC10319537 DOI: 10.7507/1001-5515.202003030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Indexed: 02/05/2023]
Abstract
Since the emergence of novel coronavirus pneumonia in late 2019, it has quickly spread to many countries and regions around the world, causing a significant impact on human beings and society, posing a great threat to the global public health system. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was highly infectious, and some complications emerged rapidly in some patients, including acute respiratory distress syndrome, and multiple organ failure. The virus could trigger a series of immune responses, which might lead to excessive immune activation, thereby bringing about the immune system imbalance of the body. Up to now, there was no specific antiviral drug, and we conjectured that immunomodulatory therapy might play an essential part in the treatment of coronavirus disease 2019 (COVID-19) as adjuvant therapy. Therefore, we analyzed the possible mechanism of immune imbalance caused by the new coronavirus, and summarized the immunotherapeutic means of COVID-19 based on the mechanisms, to provide some reference for follow-up research and clinical prevention and treatment of COVID-19.
Collapse
Affiliation(s)
- 宁 韩
- 四川大学华西医院感染性疾病中心(成都 610041)Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, P.R.China
| | - 凌遥 杜
- 四川大学华西医院感染性疾病中心(成都 610041)Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, P.R.China
| | - 丽波 严
- 四川大学华西医院感染性疾病中心(成都 610041)Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, P.R.China
| | - 红 唐
- 四川大学华西医院感染性疾病中心(成都 610041)Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, P.R.China
| |
Collapse
|
122
|
Zhao Z, Hu Z, Zeng R, Yao Y. HMGB1 in kidney diseases. Life Sci 2020; 259:118203. [PMID: 32781069 DOI: 10.1016/j.lfs.2020.118203] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/31/2020] [Accepted: 08/01/2020] [Indexed: 12/20/2022]
Abstract
High mobility group box 1 (HMGB1) is a highly conserved nucleoprotein involving in numerous biological processes, and well known to trigger immune responses as the damage-associated molecular pattern (DAMP) in the extracellular environment. The role of HMGB1 is distinct due to its multiple functions in different subcellular location. In the nucleus, HMGB1 acts as a chaperone to regulate DNA events including DNA replication, repair and nucleosome stability. While in the cytoplasm, it is engaged in regulating autophagy and apoptosis. A great deal of research has explored its function in the pathogenesis of renal diseases. This review mainly focuses on the role of HMGB1 and summarizes the pathway and treatment targeting HMGB1 in the various renal diseases which may open the windows of opportunities for the development of desirable therapeutic ends in these pathological conditions.
Collapse
Affiliation(s)
- Zhi Zhao
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei 430030, China
| | - Zhizhi Hu
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei 430030, China
| | - Rui Zeng
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei 430030, China.
| | - Ying Yao
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei 430030, China.
| |
Collapse
|
123
|
Kaur I, Behl T, Bungau S, Kumar A, Mehta V, Setia D, Uddin MS, Zengin G, Aleya L, Arora S. Exploring the therapeutic promise of targeting HMGB1 in rheumatoid arthritis. Life Sci 2020; 258:118164. [PMID: 32739467 DOI: 10.1016/j.lfs.2020.118164] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/25/2020] [Accepted: 07/25/2020] [Indexed: 12/22/2022]
Abstract
High mobility group box-1 (HMGB1) protein is a diverse, single polypeptide moiety, present in mammalian eukaryotic cells. In response to stimuli, this nuclear protein is actively secreted in to the extracellular compartment or passively released by the necrotic cells, in order to mediate inflammatory responses, by forming complexes with IL-1α, IL-1β, LPS and other moieties, and binding to RAGE, TLR and other receptor ligands, initiating downstream, signaling processes. This molecule acts as a proinflammatory cytokine and contributes to the progression of diseases like, acute lung injury, autoimmune liver damage, graft rejection immune response and arthritis. Small concentrations of HMGB1 are released during apoptosis, which facilitates oxidative regulation on Cys106, and propagates immune inactivating tolerogenic signals in the body. The review portrays the role of HMGB1 in rheumatoid arthritis, evidently supported by pre-clinical and clinical investigations, demonstrating extensive HMGB1 expression in synovial tissue and fluid as well as serum, excessive expression of transduction receptor signaling molecules, bone remodeling and uncontrolled expression of bone destroying osteoclastogenesis, resulting in destruction of articular cartilage, bone deformation and synovial proliferation, alleviating the pathogenesis in RA disease. Moreover, the review highlights the therapeutic regime targeting HMGB1, facilitating inhibition of its actions and release into the extracellular compartment, to ameliorate the destructive events that prevail in rheumatoid arthritis.
Collapse
Affiliation(s)
- Ishnoor Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine of Pharmacy, University of Oradea, Oradea, Romania
| | - Arun Kumar
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Vineet Mehta
- Department of Pharmacology, Government College of Pharmacy, Rohru, Distt. Shimla, Himachal Pradesh, India
| | - Dhruv Setia
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh; Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, University Campus, Konya, Turkey
| | - Lotfi Aleya
- Department of Biology, Faculty of Science, University Campus, Konya, Turkey; Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, France
| | - Sandeep Arora
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
124
|
Menegazzi M, Campagnari R, Bertoldi M, Crupi R, Di Paola R, Cuzzocrea S. Protective Effect of Epigallocatechin-3-Gallate (EGCG) in Diseases with Uncontrolled Immune Activation: Could Such a Scenario Be Helpful to Counteract COVID-19? Int J Mol Sci 2020; 21:ijms21145171. [PMID: 32708322 PMCID: PMC7404268 DOI: 10.3390/ijms21145171] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/16/2020] [Accepted: 07/18/2020] [Indexed: 01/22/2023] Open
Abstract
Some coronavirus disease 2019 (COVID-19) patients develop acute pneumonia which can result in a cytokine storm syndrome in response to Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) infection. The most effective anti-inflammatory drugs employed so far in severe COVID-19 belong to the cytokine-directed biological agents, widely used in the management of many autoimmune diseases. In this paper we analyze the efficacy of epigallocatechin 3-gallate (EGCG), the most abundant ingredient in green tea leaves and a well-known antioxidant, in counteracting autoimmune diseases, which are dominated by a massive cytokines production. Indeed, many studies registered that EGCG inhibits signal transducer and activator of transcription (STAT)1/3 and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) transcription factors, whose activities are crucial in a multiplicity of downstream pro-inflammatory signaling pathways. Importantly, the safety of EGCG/green tea extract supplementation is well documented in many clinical trials, as discussed in this review. Since EGCG can restore the natural immunological homeostasis in many different autoimmune diseases, we propose here a supplementation therapy with EGCG in COVID-19 patients. Besides some antiviral and anti-sepsis actions, the major EGCG benefits lie in its anti-fibrotic effect and in the ability to simultaneously downregulate expression and signaling of many inflammatory mediators. In conclusion, EGCG can be considered a potential safe natural supplement to counteract hyper-inflammation growing in COVID-19.
Collapse
Affiliation(s)
- Marta Menegazzi
- Department of Neuroscience, Biomedicine and Movement Sciences, Biochemistry Section, School of Medicine, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy; (R.C.); (M.B.)
- Correspondence:
| | - Rachele Campagnari
- Department of Neuroscience, Biomedicine and Movement Sciences, Biochemistry Section, School of Medicine, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy; (R.C.); (M.B.)
| | - Mariarita Bertoldi
- Department of Neuroscience, Biomedicine and Movement Sciences, Biochemistry Section, School of Medicine, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy; (R.C.); (M.B.)
| | - Rosalia Crupi
- Department of Veterinary Science, University of Messina, Polo Universitario dell’Annunziata, I-98168 Messina, Italy;
| | - Rosanna Di Paola
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, I-98166 Messina, Italy; (R.D.P.); (S.C.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, I-98166 Messina, Italy; (R.D.P.); (S.C.)
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| |
Collapse
|
125
|
RAGE modulatory effects on cytokines network and histopathological conditions in malarial mice. Exp Parasitol 2020; 216:107946. [PMID: 32622941 DOI: 10.1016/j.exppara.2020.107946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/25/2020] [Accepted: 06/28/2020] [Indexed: 11/23/2022]
Abstract
This study was aimed at investigating the involvement of Receptor for Advanced Glycation End Products (RAGE) during malaria infection and the effects of modulating RAGE on the inflammatory cytokines release and histopathological conditions of affected organs in malarial animal model. Plasmodium berghei (P. berghei) ANKA-infected ICR mice were treated with mRAGE/pAb and rmRAGE/Fc Chimera drugs from day 1 to day 4 post infection. Survival and parasitaemia levels were monitored daily. On day 5 post infection, mice were sacrificed, blood were drawn for cytokines analysis and major organs including kidney, spleen, liver, brain and lungs were extracted for histopathological analysis. RAGE levels were increased systemically during malaria infection. Positive correlation between RAGE plasma concentration and parasitaemia development was observed. Treatment with RAGE related drugs did not improve survival of malaria-infected mice. However, significant reduction on the parasitaemia levels were recorded. On the other hand, inhibition and neutralization of RAGE production during the infection significantly increased the plasma levels of interleukin (IL-4, IL-17A, IL-10 and IL-2) and reduced interferon (IFN)-γ secretion. Histopathological analysis revealed that all treated malarial mice showed a better outcome in histological assessment of affected organs (brain, liver, spleen, lungs and kidney). RAGE is involved in malaria pathogenesis and targeting RAGE could be beneficial in malaria infected host in which RAGE inhibition or neutralization increased the release of anti-inflammatory cytokines (IL-10 and IL-4) and reduce pro-inflammatory cytokine (IFNγ) which may help alleviate tissue injury and improve histopathological conditions of affected organs during the infection.
Collapse
|
126
|
Abstract
The high-mobility group box 1 (HMGB1) has been shown to exert proinflammatory effects on many cells of the innate immune system. Originally identified as a nuclear protein, HMGB1 has been found to play an important role in mediating inflammation when released from apoptotic or necrotic cells as a damage-associated molecular pattern (DAMP). Systemic lupus erythematosus (SLE) is a disease of non-resolving inflammation, characterized by the presence of autoantibodies and systemic inflammation involving multiple organ systems. SLE patients have impaired clearance of apoptotic debris, which releases HMGB1 and other DAMPs extracellularly. HMGB1 activity is implicated in multiple disease phenotypes in SLE, including lupus nephritis and neuropsychiatric lupus. Elucidating the various properties of HMGB1 in SLE provides a better understanding of the disease and opens up new opportunities for designing potential therapeutics.
Collapse
Affiliation(s)
- Tianye Liu
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Myoungsun Son
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Betty Diamond
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| |
Collapse
|
127
|
Wang S, Cai S, Zhang W, Liu X, Li Y, Zhang C, Zeng Y, Xu M, Rong R, Yang T, Shi B, Chandraker A, Yang C, Zhu T. High-mobility group box 1 protein antagonizes the immunosuppressive capacity and therapeutic effect of mesenchymal stem cells in acute kidney injury. J Transl Med 2020; 18:175. [PMID: 32312307 PMCID: PMC7169035 DOI: 10.1186/s12967-020-02334-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/08/2020] [Indexed: 12/13/2022] Open
Abstract
Background Kidney ischemia reperfusion injury (IRI) is a common cause of acute kidney injury and an unavoidable consequence of kidney transplantation and still lacks specific therapeutics. Recently, mesenchymal stem cell (MSC) has been emerging as a promising cell-based therapy for IRI in the context of transplantation. MSC negatively regulates the secretion of pro-inflammatory as well as the activation of immune cells during IRI through its unique immunosuppressive property. Methods We employed mice kidney IRI model and MSC cell line to monitor the IRI related checkpoints. siRNAs were utilized to knock down the potential key factors for mechanistic analysis. Statistical analysis was performed by using one-way ANOVA with Tukey’s post hoc procedure by SPSS. Results The expression of high-mobility group box 1 protein (HMGB1) is increased in the acute phase as well as the recovery stage of IRI. Importantly, the HMGB1 upregulation is correlated with the injury severity. HMGB1 diminishes the MSC induced immunosuppressive capacity in the presence of pro-inflammatory cytokines in vitro. Toll like receptor 4 (TLR4)-mediated inducible nitric oxide synthase (iNOS) inhibition contributes to the negative effect of HMGB1 on MSCs. HMGB1-TLR4 signaling inhibition augments the therapeutic efficacy of MSCs in mice renal IRI model. Conclusions These findings demonstrate that HMGB1 plays a crucial role in shaping the immunoregulatory property of MSCs within the microenvironments, providing novel insights into the crosstalk between MSCs and microenvironment components, suggesting HMGB1 signals as a promising target to improve MSC-based therapy.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai Key Laboratory of Organ Transplantation, 180 Fenglin Road, Shanghai, 200032, China.,Department of Urology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Songjie Cai
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Ave, LRMC 301, Boston, MA, 02115, USA
| | - Weitao Zhang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai Key Laboratory of Organ Transplantation, 180 Fenglin Road, Shanghai, 200032, China
| | - Xigao Liu
- Department of Urology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Yan Li
- Department of Urology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Chao Zhang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai Key Laboratory of Organ Transplantation, 180 Fenglin Road, Shanghai, 200032, China
| | - Yigang Zeng
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai Key Laboratory of Organ Transplantation, 180 Fenglin Road, Shanghai, 200032, China.,Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Ming Xu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai Key Laboratory of Organ Transplantation, 180 Fenglin Road, Shanghai, 200032, China
| | - Ruiming Rong
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai Key Laboratory of Organ Transplantation, 180 Fenglin Road, Shanghai, 200032, China.,Department of Transfusion, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Tianshu Yang
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Benkang Shi
- Department of Urology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Anil Chandraker
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Ave, LRMC 301, Boston, MA, 02115, USA.
| | - Cheng Yang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai Key Laboratory of Organ Transplantation, 180 Fenglin Road, Shanghai, 200032, China. .,Fudan Zhangjiang Institute, Shanghai, 201203, China.
| | - Tongyu Zhu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai Key Laboratory of Organ Transplantation, 180 Fenglin Road, Shanghai, 200032, China. .,Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China.
| |
Collapse
|
128
|
Chen W, Qiang X, Wang Y, Zhu S, Li J, Babaev A, Yang H, Gong J, Becker L, Wang P, Tracey KJ, Wang H. Identification of tetranectin-targeting monoclonal antibodies to treat potentially lethal sepsis. Sci Transl Med 2020; 12:eaaz3833. [PMID: 32295901 PMCID: PMC7169984 DOI: 10.1126/scitranslmed.aaz3833] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 03/09/2020] [Indexed: 12/12/2022]
Abstract
For the clinical management of sepsis, antibody-based strategies have only been attempted to antagonize proinflammatory cytokines but not yet been tried to target harmless proteins that may interact with these pathogenic mediators. Here, we report an antibody strategy to intervene in the harmful interaction between tetranectin (TN) and a late-acting sepsis mediator, high-mobility group box 1 (HMGB1), in preclinical settings. We found that TN could bind HMGB1 to reciprocally enhance their endocytosis, thereby inducing macrophage pyroptosis and consequent release of lactate dehydrogenase and apoptosis-associated speck-like protein containing a C-terminal caspase recruitment domain. The genetic depletion of TN expression or supplementation of exogenous TN protein at subphysiological doses distinctly affected the outcomes of potentially lethal sepsis, revealing a previously underappreciated beneficial role of TN in sepsis. Furthermore, the administration of domain-specific polyclonal and monoclonal antibodies effectively inhibited TN/HMGB1 interaction and endocytosis and attenuated the sepsis-induced TN depletion and tissue injury, thereby rescuing animals from lethal sepsis. Our findings point to a possibility of developing antibody strategies to prevent harmful interactions between harmless proteins and pathogenic mediators of human diseases.
Collapse
Affiliation(s)
- Weiqiang Chen
- The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd., Hempstead, NY 11549, USA
| | - Xiaoling Qiang
- The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd., Hempstead, NY 11549, USA
| | - Yongjun Wang
- The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA
| | - Shu Zhu
- The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd., Hempstead, NY 11549, USA
| | - Jianhua Li
- The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA
| | - Ariella Babaev
- The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA
| | - Huan Yang
- The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd., Hempstead, NY 11549, USA
| | - Jonathan Gong
- The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd., Hempstead, NY 11549, USA
| | - Lance Becker
- The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd., Hempstead, NY 11549, USA
| | - Ping Wang
- The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd., Hempstead, NY 11549, USA
| | - Kevin J Tracey
- The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd., Hempstead, NY 11549, USA
| | - Haichao Wang
- The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA.
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd., Hempstead, NY 11549, USA
| |
Collapse
|
129
|
Li W, Deng M, Loughran PA, Yang M, Lin M, Yang C, Gao W, Jin S, Li S, Cai J, Lu B, Billiar TR, Scott MJ. LPS Induces Active HMGB1 Release From Hepatocytes Into Exosomes Through the Coordinated Activities of TLR4 and Caspase-11/GSDMD Signaling. Front Immunol 2020; 11:229. [PMID: 32328059 PMCID: PMC7160675 DOI: 10.3389/fimmu.2020.00229] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 01/28/2020] [Indexed: 12/30/2022] Open
Abstract
High-mobility group box-1 (HMGB1), a ubiquitous nuclear protein, acts as a late mediator of lethality when released extracellularly during sepsis. The major source of circulating HMGB1 in sepsis is hepatocytes. However, the mechanism of HMGB1 release of hepatocytes during sepsis is not very clear. We have previously shown that bacterial endotoxin [lipopolysaccharide (LPS)] sensing pathways, including Toll-like receptor (TLR)4 and caspase-11, regulate hepatocyte HMGB1 release in response to LPS. Here, we report the novel function of caspase-11 and gasdermin D (GsdmD) in LPS-induced active HMGB1 released from hepatocytes. HMGB1 release during endotoxemia was caspase-11/GsdmD dependent via an active way in vivo and in vitro. Caspase-11/GsdmD was responsible for HMGB1 translocation from nucleus to the cytoplasm via calcium changing-induced phosphorylation of calcium-calmodulin kinase kinase (camkk)β during endotoxemia. Cleaved GsdmD accumulated on the endoplasmic reticulum, suggesting this may lead to calcium leak and intracellular calcium increase. Furthermore, we investigated that exosome was an important pathway for HMGB1 release from hepatocytes; this process was dependent on TLR4, independent of caspase-11 and GsdmD in vivo and in vitro. These findings provide a novel mechanism that TLR4 signaling results in an increase in caspase-11 expression, as well as increased exosome release, while caspase-11/GsdmD activation/cleavage leads to accumulation of HMGB1 in the cytoplasm through a process associated with the release of calcium from the endoplasmic reticulum and camkkβ activation.
Collapse
Affiliation(s)
- Wenbo Li
- Department of Burn and Plastic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Meihong Deng
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Patricia A. Loughran
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, United States
| | - Muqing Yang
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Surgery, Tenth People's Hospital of Tongji University, Shanghai, China
| | - Minjie Lin
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
- The Second Xiangya Hospital of Central South University, Clinical Skills Training Center, Changsha, China
| | - Chenxuan Yang
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
- School of Medicine, Tsinghua University, Beijing, China
| | - Wentao Gao
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Shuqing Jin
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Anesthesiology, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Shilai Li
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jingjing Cai
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ben Lu
- Department of Hematopathology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Timothy R. Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, United States
| | - Melanie J. Scott
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
130
|
Lee W, Lee H, Lee T, Park EK, Bae JS. Inhibitory functions of maslinic acid, a natural triterpene, on HMGB1-mediated septic responses. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 69:153200. [PMID: 32163831 DOI: 10.1016/j.phymed.2020.153200] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/22/2020] [Accepted: 02/29/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Maslinic acid (MA), a natural triterpenoid from Olea europaea, prevents oxidative stress and pro-inflammatory cytokine generation. High mobility group box 1 (HMGB1) has been recognized as a late mediator of sepsis, and the inhibition of the release of HMGB1 and the recovery of vascular barrier integrity have emerged as attractive therapeutic strategies for the management of sepsis. METHODS We tested the hypothesis that MA induces sirtuin 1 and heme oxygenase-1, which inhibit the release of HMGB1 in lipopolysaccharide (LPS)-stimulated cells, thus inhibiting HMGB1-induced hyperpermeability and increasing the survival of septic mice. MA was administered after LPS or HMGB1 challenge, and the antiseptic activity of MA was determined based on permeability, the activation of pro-inflammatory proteins, and the production of markers for tissue injury in HMGB1-activated human umbilical vein endothelial cells (HUVECs) and a cecal ligation and puncture (CLP)-induced sepsis mouse model. RESULTS MA significantly reduced the release of HMGB1 in LPS-activated HUVECs and attenuated the CLP-induced release of HMGB1. Additionally, MA alleviated HMGB1-mediated vascular disruption and inhibited hyperpermeability in mice, and in vivo analysis revealed that MA reduced sepsis-related mortality and tissue injury. CONCLUSION Taken together, the present results suggest that MA reduced HMGB1 release and septic mortality and thus may be useful in the treatment of sepsis.
Collapse
Affiliation(s)
- Wonhwa Lee
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea; Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Hayeong Lee
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Taeho Lee
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Eui Kyun Park
- Department of Pathology and Regenerative Medicine, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Jong-Sup Bae
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea.
| |
Collapse
|
131
|
Yang H, Wang H, Andersson U. Targeting Inflammation Driven by HMGB1. Front Immunol 2020; 11:484. [PMID: 32265930 PMCID: PMC7099994 DOI: 10.3389/fimmu.2020.00484] [Citation(s) in RCA: 392] [Impact Index Per Article: 78.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/02/2020] [Indexed: 12/22/2022] Open
Abstract
High mobility group box 1 (HMGB1) is a highly conserved, nuclear protein present in all cell types. It is a multi-facet protein exerting functions both inside and outside of cells. Extracellular HMGB1 has been extensively studied for its prototypical alarmin functions activating innate immunity, after being actively released from cells or passively released upon cell death. TLR4 and RAGE operate as the main HMGB1 receptors. Disulfide HMGB1 activates the TLR4 complex by binding to MD-2. The binding site is separate from that of LPS and it is now feasible to specifically interrupt HMGB1/TLR4 activation without compromising protective LPS/TLR4-dependent functions. Another important therapeutic strategy is established on the administration of HMGB1 antagonists precluding RAGE-mediated endocytosis of HMGB1 and HMGB1-bound molecules capable of activating intracellular cognate receptors. Here we summarize the role of HMGB1 in inflammation, with a focus on recent findings on its mission as a damage-associated molecular pattern molecule and as a therapeutic target in inflammatory diseases. Recently generated HMGB1-specific inhibitors for treatment of inflammatory conditions are discussed.
Collapse
Affiliation(s)
- Huan Yang
- Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Haichao Wang
- Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Ulf Andersson
- Department of Women's and Children's Health, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
132
|
Audrito V, Messana VG, Deaglio S. NAMPT and NAPRT: Two Metabolic Enzymes With Key Roles in Inflammation. Front Oncol 2020; 10:358. [PMID: 32266141 PMCID: PMC7096376 DOI: 10.3389/fonc.2020.00358] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/02/2020] [Indexed: 12/13/2022] Open
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) and nicotinate phosphoribosyltransferase (NAPRT) are two intracellular enzymes that catalyze the first step in the biosynthesis of NAD from nicotinamide and nicotinic acid, respectively. By fine tuning intracellular NAD levels, they are involved in the regulation/reprogramming of cellular metabolism and in the control of the activity of NAD-dependent enzymes, including sirtuins, PARPs, and NADases. However, during evolution they both acquired novel functions as extracellular endogenous mediators of inflammation. It is well-known that cellular stress and/or damage induce release in the extracellular milieu of endogenous molecules, called alarmins or damage-associated molecular patterns (DAMPs), which modulate immune functions through binding pattern recognition receptors (PRRs), such as Toll-like receptors (TLRs), and activate inflammatory responses. Increasing evidence suggests that extracellular (e)NAMPT and eNAPRT are novel soluble factors with cytokine/adipokine/DAMP-like actions. Elevated eNAMPT were reported in several metabolic and inflammatory disorders, including obesity, diabetes, and cancer, while eNAPRT is emerging as a biomarker of sepsis and septic shock. This review will discuss available data concerning the dual role of this unique family of enzymes.
Collapse
Affiliation(s)
- Valentina Audrito
- Laboratory of Tumor Immunogenetics, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Vincenzo Gianluca Messana
- Laboratory of Tumor Immunogenetics, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Silvia Deaglio
- Laboratory of Tumor Immunogenetics, Department of Medical Sciences, University of Turin, Turin, Italy
| |
Collapse
|
133
|
Entamoeba histolytica stimulates the alarmin molecule HMGB1 from macrophages to amplify innate host defenses. Mucosal Immunol 2020; 13:344-356. [PMID: 31772322 DOI: 10.1038/s41385-019-0233-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/22/2019] [Accepted: 11/07/2019] [Indexed: 02/04/2023]
Abstract
Even though Entamoeba histolytica (Eh)-induced host pro-inflammatory responses play a critical role in disease, we know very little about the host factors that regulate this response. Direct contact between host cell and Eh signify the highest level of danger, and to eliminate this threat, the host immune system elicits an augmented immune response. To understand the mechanisms of this response, we investigated the induction and release of the endogenous alarmin molecule high-mobility group box 1 (HMGB1) that act as a pro-inflammatory cytokine and chemoattractant during Eh infection. Eh in contact with macrophage induced a dose- and time-dependent secretion of HMGB1 in the absence of cell death. Secretion of HMGB1 was facilitated by Eh surface Gal-lectin-activated phosphoinositide 3-kinase and nuclear factor-κB signaling and up-regulation of histone acetyltransferase activity to trigger acetylated HMGB1 translocation from the nucleus. Unlike lipopolysaccharide, Eh-induced HMGB1 release was independent of caspase-1-mediated inflammasome and gasdermin D pores. In vivo, Eh inoculation in specific pathogen-free but not germ-free mice was associated with high levels of pro-inflammatory cytokines such as tumor necrosis factor-α, interleukin-1β, and keratinocyte-derived chemokine, which was suppressed with HMGB1 neutralization. This study reveals that Eh-induced active secretion of the HMGB1 plays a key role in shaping the pro-inflammatory landscape critical in innate host defense against amebiasis.
Collapse
|
134
|
Le Bagge S, Fotheringham AK, Leung SS, Forbes JM. Targeting the receptor for advanced glycation end products (RAGE) in type 1 diabetes. Med Res Rev 2020; 40:1200-1219. [PMID: 32112452 DOI: 10.1002/med.21654] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/09/2019] [Accepted: 11/12/2019] [Indexed: 12/18/2022]
Abstract
Type 1 diabetes (T1D) is one of the most common chronic diseases manifesting in early life, with the prevalence increasing worldwide at a rate of approximately 3% per annum. The prolonged hyperglycaemia characteristic of T1D upregulates the receptor for advanced glycation end products (RAGE) and accelerates the formation of RAGE ligands, including advanced glycation end products, high-mobility group protein B1, S100 calcium-binding proteins, and amyloid-beta. Interestingly, changes in the expression of RAGE and these ligands are evident in patients before the onset of T1D. RAGE signals via various proinflammatory cascades, resulting in the production of reactive oxygen species and cytokines. A large number of proinflammatory ligands that can signal via RAGE have been implicated in several chronic diseases, including T1D. Therefore, it is unsurprising that RAGE has become a potential therapeutic target for the treatment and prevention of disease. In this review, we will explore how RAGE might be targeted to prevent the development of T1D.
Collapse
Affiliation(s)
- Selena Le Bagge
- Glycation and Diabetes, Translational Research Institute (TRI), Mater Research Institute-The University of Queensland (MRI-UQ), Brisbane, Queensland, Australia.,School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Amelia K Fotheringham
- Glycation and Diabetes, Translational Research Institute (TRI), Mater Research Institute-The University of Queensland (MRI-UQ), Brisbane, Queensland, Australia.,School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Sherman S Leung
- Glycation and Diabetes, Translational Research Institute (TRI), Mater Research Institute-The University of Queensland (MRI-UQ), Brisbane, Queensland, Australia.,School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Josephine M Forbes
- Glycation and Diabetes, Translational Research Institute (TRI), Mater Research Institute-The University of Queensland (MRI-UQ), Brisbane, Queensland, Australia.,Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Mater Clinical School, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
135
|
Paudel YN, Angelopoulou E, Semple B, Piperi C, Othman I, Shaikh MF. Potential Neuroprotective Effect of the HMGB1 Inhibitor Glycyrrhizin in Neurological Disorders. ACS Chem Neurosci 2020; 11:485-500. [PMID: 31972087 DOI: 10.1021/acschemneuro.9b00640] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Glycyrrhizin (glycyrrhizic acid), a bioactive triterpenoid saponin constituent of Glycyrrhiza glabra, is a traditional medicine possessing a plethora of pharmacological anti-inflammatory, antioxidant, antimicrobial, and antiaging properties. It is a known pharmacological inhibitor of high mobility group box 1 (HMGB1), a ubiquitous protein with proinflammatory cytokine-like activity. HMGB1 has been implicated in an array of inflammatory diseases when released extracellularly, mainly by activating intracellular signaling upon binding to the receptor for advanced glycation end products (RAGE) and toll-like receptor 4 (TLR4). HMGB1 neutralization strategies have demonstrated disease-modifying outcomes in several preclinical models of neurological disorders. Herein, we reveal the potential neuroprotective effects of glycyrrhizin against several neurological disorders. Emerging findings demonstrate the therapeutic potential of glycyrrhizin against several HMGB1-mediated pathological conditions including traumatic brain injury, neuroinflammation and associated conditions, epileptic seizures, Alzheimer's disease, Parkinson's disease, and multiple sclerosis. Glycyrrhizin's effects in neurological disorders are mainly attributed to the attenuation of neuronal damage by inhibiting HMGB1 expression and translocation as well as by downregulating the expression of inflammatory cytokines. A large number of preclinical findings supports the notion that glycyrrhizin might be a promising therapeutic alternative to overcome the shortcomings of the mainstream therapeutic strategies against neurological disorders, mainly by halting disease progression. However, future research is warranted for a deeper exploration of the precise underlying molecular mechanism as well as for clinical translation.
Collapse
Affiliation(s)
- Yam Nath Paudel
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor 46150, Malaysia
| | - Efthalia Angelopoulou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Bridgette Semple
- Department of Neuroscience, Central Clinical School, Monash University, The Alfred Hospital, Melbourne 3800, Australia
- Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Iekhsan Othman
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor 46150, Malaysia
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor 46150, Malaysia
| |
Collapse
|
136
|
Ying C, Ying L, Yanxia L, Le W, Lili C. High mobility group box 1 antibody represses autophagy and alleviates hippocampus damage in pilocarpine-induced mouse epilepsy model. Acta Histochem 2020; 122:151485. [PMID: 31870503 DOI: 10.1016/j.acthis.2019.151485] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 11/27/2019] [Accepted: 12/03/2019] [Indexed: 12/24/2022]
Abstract
As a neurological disorder, epilepsy has affected over 65 million people all over the world because of the unforeseeable seizures it might cause. However, in-depth understandings of the pathogenesis of epilepsy and effective treatments for the disease are still lacked. Recent discoveries suggest that autophagy, as an endogenous self-cleansing pathway in mammals, might be involved in the onset of epilepsy. Our study assumes that a non-histone DNA binding protein, high mobility group box-1 (HMGB1), formerly considered as a crucial inflammatory factor, may mediate the autophagy of neurons in epileptic mouse brain. To verify this hypothesis, pilocarpine induced epilepsy mouse model was constructed. The mice were treated with HMGB1 antibody for 4 weeks after the initial epileptic seizure. Behavioral test results suggested a recovery of learning ability and memory in epileptic mice when treated with HMGB1 antibody. Pathological changes in hippocampus were inspected under microscopes and hippocampus damages caused by seizures in mouse with epilepsy such as increased intracellular space were alleviated by HMGB1 antibody treatment. Moreover, the expressions of the proteins involved in autophagy pathways were detected by immunofluorescence staining and western blot. microtubule-associated protein 1A/1B-light chain 3 (LC3), Beclin 1, autophagy protein-5 (ATG5), and ATG7 levels were significantly decreased by HMGB1 antibody while the level of p62 was increased. TdT-mediated dUTP Nick-End Labeling (TUNEL) illustrated that cell apoptosis induced by seizures in hippocampus was mitigated by HMGB1 antibody. In conclusion, we propose that HMGB1 may induce increased autophagy in epilepsy mouse model.
Collapse
Affiliation(s)
- Cui Ying
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, People's Republic of China; Department of Geratology, Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong 250014, People's Republic of China
| | - Liang Ying
- Department of General Medicine, Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong 250014, People's Republic of China
| | - Liu Yanxia
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, People's Republic of China
| | - Wang Le
- Department of Neurology, Dezhou People's Hospital, Dezhou, Shandong 253014, People's Republic of China
| | - Cao Lili
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, People's Republic of China.
| |
Collapse
|
137
|
Wen S, Li X, Ling Y, Chen S, Deng Q, Yang L, Li Y, Shen J, Qiu Y, Zhan Y, Lai H, Zhang X, Ke Z, Huang W. HMGB1-associated necroptosis and Kupffer cells M1 polarization underlies remote liver injury induced by intestinal ischemia/reperfusion in rats. FASEB J 2020; 34:4384-4402. [PMID: 31961020 DOI: 10.1096/fj.201900817r] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 10/07/2019] [Accepted: 01/13/2020] [Indexed: 12/11/2022]
Abstract
Reperfusion of the ischemic intestine often leads to drive distant organ injury, especially injuries associated with hepatocellular dysfunction. The precise molecular mechanisms and effective multiple organ protection strategies remain to be developed. In the current study, significant remote liver dysfunction was found after 6 hours of reperfusion according to increased histopathological scores, serum lactate dehydrogenase (LDH), alanine aminotransferase (ALT)/aspartate aminotransferase (AST) levels, as well as enhanced bacterial translocation in a rat intestinal ischemia/reperfusion (I/R) injury model. Moreover, receptor-interacting protein kinase 1/3 (RIP1/3) and phosphorylated-MLKL expressions in tissue were greatly elevated, indicating that necroptosis occurred and resulted in acute remote liver function impairment. Inhibiting the necroptotic pathway attenuated HMGB1 cytoplasm translocation and tissue damage. Meanwhile, macrophage-depletion study demonstrated that Kupffer cells (KCs) are responsible for liver damage. Blocking HMGB1 partially restored the liver function via suppressed hepatocyte necroptosis, tissue inflammation, hepatic KCs, and circulating macrophages M1 polarization. What's more, HMGB1 neutralization further protects against intestinal I/R-associated liver damage in microbiota-depleted rats. Therefore, intestinal I/R is likely associated with acute liver damage due to hepatocyte necroptosis, and which could be ameliorated by Nec-1 administration and HMGB1 inhibition with the neutralizing antibody and inhibitor. Necroptosis inhibition and HMGB1 neutralization/inhibition, may emerge as effective pharmacological therapies to minimize intestinal I/R-induced acute remote organ dysfunction.
Collapse
Affiliation(s)
- Shihong Wen
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiang Li
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yihong Ling
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shaoqian Chen
- Department of Medical Laboratory, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qiwen Deng
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lu Yang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ying Li
- State Key Laboratory of Applied Microbiology Southern China, Guangzhou, China.,Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jiantong Shen
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuxin Qiu
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yaqing Zhan
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hanjin Lai
- Surgical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xuyu Zhang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zunfu Ke
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenqi Huang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
138
|
Choi M, Jeong H, Kim S, Kim M, Lee M, Rhim T. Targeted delivery of Chil3/Chil4 siRNA to alveolar macrophages using ternary complexes composed of HMG and oligoarginine micelles. NANOSCALE 2020; 12:933-943. [PMID: 31840707 DOI: 10.1039/c9nr06382j] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cell-type-specific genes involved in disease can be effective therapeutic targets; therefore, the development of a cell-type-specific gene delivery system is essential. In this study, targeted delivery of Chil3 and Chil4 siRNA to activated macrophages was developed using a ligand called high mobility group (HMG) and oligoarginine (OR) micelles. HMG binds to TLR4 and RAGE located on the surface of activated macrophages. Since HMG is positively charged, it binds to the negatively charged siRNA by charge interaction. However, the stable formation of the siRNA/HMG complex requires an additional molecule to act as a carrier. In this study, OR micelles were used as the carrier. Gel retardation assays showed that siRNA, HMG, and OR micelles formed stable siRNA/HMG/OR micelle ternary complexes. In vitro transfection showed that the ternary complexes selectively delivered siRNA to TLR4 expressing macrophages. In addition, intratracheal administration of siRNA/HMG/OR ternary complexes delivered Chil3 and Chil4 siRNA specifically to alveolar macrophages. Furthermore, the siRNA that was delivered using ternary complexes reduced Chil3 and Chil4 expression and suppressed the symptoms of asthma, such as airway inflammation and mucin secretion.
Collapse
Affiliation(s)
- Moonhwan Choi
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, 04763, Korea.
| | | | | | | | | | | |
Collapse
|
139
|
Abstract
As a ubiquitous nuclear protein, high-mobility group box 1 (HMGB1) is constitutively expressed and can be actively secreted by macrophages/monocytes, as well as passively released from damaged cells following pathological injuries. Studies indicate that HMGB1 functions as a mediator of infection- and injury-elicited inflammatory diseases. Although intracellular HMGB1 functions as a regulator of tumorigenesis, epigenetic anticancer agents or therapeutic γ-ray irradiation could also cause active secretion or passive release of HMGB1, enabling serum HMGB1 to serve as a biomarker for the diagnosis and therapy of various cancers. Here we describe a semiquantitative immune blotting method to measure HMGB1 in human serum, in comparison with a commercially available HMGB1 enzyme-linked immunosorbent assay (ELISA) technique.
Collapse
Affiliation(s)
- Weiqiang Chen
- Laboratory of Emergency Medicine, The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Guoqiang Bao
- Laboratory of Emergency Medicine, The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Lin Zhao
- Laboratory of Emergency Medicine, The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Haichao Wang
- Laboratory of Emergency Medicine, The Feinstein Institute for Medical Research, Manhasset, NY, USA.
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.
- The Feinstein Institute for Medical Research, Northwell Health System, Manhasset, NY, USA.
| |
Collapse
|
140
|
Infection-induced innate antimicrobial response disorders: from signaling pathways and their modulation to selected biomarkers. Cent Eur J Immunol 2020; 45:104-116. [PMID: 32425688 PMCID: PMC7226557 DOI: 10.5114/ceji.2020.94712] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 07/31/2018] [Indexed: 12/13/2022] Open
Abstract
Severe infections are a major public health problem responsible for about 40-65% of hospitalizations in intensive care units (ICU). The high mortality (30-50%) of persons diagnosed with severe infection is caused by largely unknown mechanisms of sepsis-induced immune system response. Severe infections with dynamic progress are accompanied with SIRS (systemic inflammatory reaction syndrome) and CARS (compensatory anti-inflammatory response syndrome), and require a biological treatment appropriate to the phase of immune response. The mechanisms responsible for severe infection related to immune system response particularly attract extensive interest of non-specific defense mechanisms, including signaling pathways of Toll-like receptors (mainly TLR4 and TLR2) that recognize distinct pathogen-associated molecular patterns (PAMP) and play a critical role in innate immune response. There are attempts of treatment, followed by blocking ligand binding with TLR or modulation of intracellular signaling pathways, to inhibit signal transduction. Moreover, researches regarding new and more efficient diagnostics biomarkers were mostly focused on indicators related to innate response to infection as well as connections of pro-inflammatory response with anti-inflammatory response.According to these studies, in case of ICU septic patients with high-risk of mortality, the solution for the problem will require mainly early immune and genetic diagnostics (e.g. cytokines, microRNA, cluster of differentiation-64 [CD64], triggering receptor expressed on myeloid cells-1 [TREM-1], and high mobility group box 1 protein [HMGB1]).
Collapse
|
141
|
Hagiwara J, Yamada M, Motoda N, Yokota H. Intravenous Immunoglobulin Attenuates Cecum Ligation and Puncture-Induced Acute Lung Injury by Inhibiting Apoptosis of Alveolar Epithelial Cells. J NIPPON MED SCH 2019; 87:129-137. [PMID: 31902854 DOI: 10.1272/jnms.jnms.2020_87-303] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
PURPOSE Intravenous immunoglobulin (IVIG) therapy has been used to treat sepsis, but its mechanisms of action remain unclear. Sepsis causes multiple organ failure, such as acute lung injury (ALI), which involves apoptosis of alveolar epithelial cells. In this study, we hypothesized that IVIG suppresses apoptosis in alveolar epithelial cells and evaluated mortality, cytokine levels, histological changes in the lung, and alveolar epithelial cell apoptosis after IVIG administration, in mice with experimentally induced sepsis. METHODS Mice received an injection of vehicle (saline) or immunoglobulin (100 mg/kg or 400 mg/kg) into the tail vein, after which they underwent cecal ligation and puncture. A sham-operated group was used as the normal control. Survival was assessed in all groups after 72 hours. Plasma levels of TNF-α and IL-6, histopathological changes and wet-to-dry ratio in lung, and alveolar epithelial cell apoptosis were evaluated in all groups at 4 hours after surgery. RESULTS In the vehicle group, histopathological injury of the lung was severe, and apoptosis of alveolar epithelial cells was significant. Survival and plasma cytokine levels were better in the IVIG treatment groups than in the vehicle group. IVIG 400 mg/kg suppressed apoptosis of alveolar epithelial cells and reduced ALI. CONCLUSION IVIG suppressed inflammatory cytokine levels and improved survival. Lung histopathology and alveolar epithelial cell apoptosis were improved by IVIG treatment, in a dose-dependent manner. Suppressing apoptosis in alveolar epithelial cells appears to be a mechanism by which IVIG improves survival.
Collapse
Affiliation(s)
- Jun Hagiwara
- Department of Emergency and Critical Care Medicine, Graduate School of Medicine, Nippon Medical School
| | - Marina Yamada
- Faculty of Medical Science, Nippon Sport Science University
| | - Norio Motoda
- Department of Pathology, Nippon Medical School Musashi Kosugi Hospital
| | - Hiroyuki Yokota
- Department of Emergency and Critical Care Medicine, Graduate School of Medicine, Nippon Medical School
| |
Collapse
|
142
|
Mei L, He M, Zhang C, Miao J, Wen Q, Liu X, Xu Q, Ye S, Ye P, Huang H, Lin J, Zhou X, Zhao K, Chen D, Zhou J, Li C, Li H. Paeonol attenuates inflammation by targeting HMGB1 through upregulating miR-339-5p. Sci Rep 2019; 9:19370. [PMID: 31852965 PMCID: PMC6920373 DOI: 10.1038/s41598-019-55980-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 12/02/2019] [Indexed: 12/26/2022] Open
Abstract
Sepsis is a life-threatening disease caused by infection. Inflammation is a key pathogenic process in sepsis. Paeonol, an active ingredient in moutan cortex (a Chinese herb), has many pharmacological activities, such as anti-inflammatory and antitumour actions. Previous studies have indicated that paeonol inhibits the expression of HMGB1 and the transcriptional activity of NF-κB. However, its underlying mechanism is still unknown. In this study, microarray assay and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) results confirmed that paeonol could significantly up-regulate the expression of miR-339-5p in RAW264.7 cells stimulated by LPS. Dual-luciferase assays indicated that miR-339-5p interacted with the 3′ untranslated region (3′-UTR) of HMGB1. Western blot, immunofluorescence and enzyme-linked immunosorbent assay (ELISA) analyses indicated that miR-339-5p mimic and siHMGB1 both negatively regulated the expression and secretion of inflammatory cytokines (e.g., HMGB1, IL-1β and TNF-α) in LPS-induced RAW264.7 cells. Studies have confirmed that IKK-β is targeted by miR-339-5p, and we further found that paeonol could inhibit IKK-β expression. Positive mutual feedback between HMGB1 and IKK-β was observed when we silenced HMGB1 or IKK-β. These results indicated that paeonol could attenuate the inflammation mediated by HMGB1 and IKK-β by upregulating miR-339-5p expression. In addition, we constructed CLP model mice by cecal ligation and puncture. Paeonol was used to intervene to investigate its anti-inflammatory effect in vivo. The results showed that paeonol could improve the survival rate of sepsis mice and protect the kidney of sepsis mice.
Collapse
Affiliation(s)
- Liyan Mei
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, China
| | - Meihong He
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, China
| | - Chaoying Zhang
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, China
| | - Jifei Miao
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, China
| | - Quan Wen
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Xia Liu
- School of Basic Medical Sciences, Guiyang University of Chinese Medicine, Guiyang, Guizhou Province, 550025, China
| | - Qin Xu
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, China
| | - Sen Ye
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, China
| | - Peng Ye
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, China
| | - Huina Huang
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, China
| | - Junli Lin
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, China
| | - Xiaojing Zhou
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, China
| | - Kai Zhao
- School of Nursing Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, China
| | - Dongfeng Chen
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, China
| | - Jianhong Zhou
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, China
| | - Chun Li
- School of Nursing Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, China
| | - Hui Li
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, China.
| |
Collapse
|
143
|
Biscetti F, Rando MM, Nardella E, Cecchini AL, Pecorini G, Landolfi R, Flex A. High Mobility Group Box-1 and Diabetes Mellitus Complications: State of the Art and Future Perspectives. Int J Mol Sci 2019; 20:ijms20246258. [PMID: 31835864 PMCID: PMC6940913 DOI: 10.3390/ijms20246258] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 12/08/2019] [Accepted: 12/09/2019] [Indexed: 12/17/2022] Open
Abstract
Diabetes mellitus (DM) is an endemic disease, with growing health and social costs. The complications of diabetes can affect potentially all parts of the human body, from the heart to the kidneys, peripheral and central nervous system, and the vascular bed. Although many mechanisms have been studied, not all players responsible for these complications have been defined yet. High Mobility Group Box-1 (HMGB1) is a non-histone nuclear protein that has been implicated in many pathological processes, from sepsis to ischemia. The purpose of this review is to take stock of all the most recent data available on the role of HMGB1 in the complications of DM.
Collapse
Affiliation(s)
- Federico Biscetti
- U.O.C. Clinica Medica e Malattie Vascolari, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (G.P.); (R.L.); (A.F.)
- Laboratory of Vascular Biology and Genetics, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
- Correspondence: ; Tel.: +39-06-3015-4335; Fax: +39-06-3550-7232
| | | | - Elisabetta Nardella
- Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (M.M.R.); (E.N.); (A.L.C.)
| | | | - Giovanni Pecorini
- U.O.C. Clinica Medica e Malattie Vascolari, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (G.P.); (R.L.); (A.F.)
- Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (M.M.R.); (E.N.); (A.L.C.)
| | - Raffaele Landolfi
- U.O.C. Clinica Medica e Malattie Vascolari, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (G.P.); (R.L.); (A.F.)
- Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (M.M.R.); (E.N.); (A.L.C.)
| | - Andrea Flex
- U.O.C. Clinica Medica e Malattie Vascolari, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (G.P.); (R.L.); (A.F.)
- Laboratory of Vascular Biology and Genetics, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
- Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (M.M.R.); (E.N.); (A.L.C.)
| |
Collapse
|
144
|
Abstract
High levels of antimicrobial drug resistance deleteriously affecting the outcome of treatment with antibacterial agents are causing increasing concern worldwide. This is particularly worrying in patients with cirrhosis with a depressed immune system and heightened susceptibility to infection. Antibiotics have to be started early before results of microbiological culture are available. Current guidelines for the empirical choice of antibiotics in this situation are not very helpful, and embracing antimicrobial stewardship including rapid de-escalation of therapy are not sufficiently emphasised. Multi-drug resistant organism rates to quinolone drugs of up to 40% are recorded in patients with spontaneous bacterial peritonitis on prophylactic antibiotics, leading to a break-through recurrence of intra-peritoneal infection. Also considered in this review is the value of rifaximin-α, non-selective beta-blockers, and concerns around proton pump inhibitor drug use. Fecal microbial transplantation and other gut-targeting therapies in lessening gut bacterial translocation are a promising approach, and new molecular techniques for determining bacterial sensitivity will allow more specific targeted therapy.
Collapse
|
145
|
Wang R, Wu W, Li W, Huang S, Li Z, Liu R, Shan Z, Zhang C, Li W, Wang S. Activation of NLRP3 Inflammasome Promotes Foam Cell Formation in Vascular Smooth Muscle Cells and Atherogenesis Via HMGB1. J Am Heart Assoc 2019; 7:e008596. [PMID: 30371306 PMCID: PMC6404867 DOI: 10.1161/jaha.118.008596] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Background This study aimed at investigating whether NLRP3 (the Nod like receptor family, pyrin domain‐containing 3 protein) inflammasome activation induced HMGB1 (high mobility group box‐1 protein) secretion and foam cell formation in human vascular smooth muscle cells (VSMCs) and atherosclerosis in ApoE−/− mice. Methods and Results VSMCs or ApoE−/− mice were treated with lipopolysaccharides (LPS) and/or ATP or LPS and high‐fat diet to induce NLRP3 inflammasome activation. HMGB1 distribution and foam cell formation in VSMCs were characterized. Liver X receptor α and ATP‐binding cassette transporter expression were determined. The impact of NLRP3 or receptor for advanced glycation end product silencing, ZYVAD‐FMK (caspase‐1 inhibitor), glycyrrhizin (HMGB1 inhibitor) or receptor for advanced glycation end product antagonist peptide on HMGB1 secretion, foam cell formation, liver X receptor α and ATP‐binding cassette transporter expression was examined. Expression level of HMGB1 in human atherosclerosis obliterans arterial tissues was characterized. Our results found that NLRP3 inflammasome activation promoted foam cell formation and HMGB1 secretion in VSMCs. Extracellular HMGB1 was a key signal molecule in inflammasome activation‐mediated foam cell formation. Furthermore, inflammasome activation‐induced HMGB1 activity and foam cell formation were achieved by receptor for advanced glycation end product/liver X receptor α /ATP‐binding cassette transporter glycyrrhizin. Experiments in vivo found glycyrrhizin significantly attenuated the LPS/high‐fat diet‐induced atherosclerosis and serum HMGB1 levels in mice. Finally, levels of HMGB1 and NLRP3 were increased in tunica media adjacent to intima of atherosclerosis obliteran arteries. Conclusions Our results revealed that HMGB1 is a key downstream signal molecule of NLRP3 inflammasome activation and plays an important role in VSMCs foam cell formation and atherogenesis by downregulating liver X receptor α and ATP‐binding cassette transporter expression through receptor for advanced glycation end product.
Collapse
Affiliation(s)
- Rui Wang
- 1 Division of Vascular Surgery Guangdong Key Engineering Laboratory for Diagnosis and Treatment of Vascular Disease First Affiliated Hospital Sun Yat-sen University Guangzhou China
| | - Weibin Wu
- 1 Division of Vascular Surgery Guangdong Key Engineering Laboratory for Diagnosis and Treatment of Vascular Disease First Affiliated Hospital Sun Yat-sen University Guangzhou China
| | - Wen Li
- 1 Division of Vascular Surgery Guangdong Key Engineering Laboratory for Diagnosis and Treatment of Vascular Disease First Affiliated Hospital Sun Yat-sen University Guangzhou China
| | - Shuichuan Huang
- 1 Division of Vascular Surgery Guangdong Key Engineering Laboratory for Diagnosis and Treatment of Vascular Disease First Affiliated Hospital Sun Yat-sen University Guangzhou China
| | - Zilun Li
- 1 Division of Vascular Surgery Guangdong Key Engineering Laboratory for Diagnosis and Treatment of Vascular Disease First Affiliated Hospital Sun Yat-sen University Guangzhou China
| | - Ruiming Liu
- 2 Laboratory of General Surgery Guangdong Key Engineering Laboratory for Diagnosis and Treatment of Vascular Disease First Affiliated Hospital Sun Yat-sen University Guangzhou China
| | - Zhen Shan
- 1 Division of Vascular Surgery Guangdong Key Engineering Laboratory for Diagnosis and Treatment of Vascular Disease First Affiliated Hospital Sun Yat-sen University Guangzhou China
| | - Chunxiang Zhang
- 3 Department of Biomedical Engineering School of Medicine University of Alabama at Birmingham AL
| | - Wen Li
- 2 Laboratory of General Surgery Guangdong Key Engineering Laboratory for Diagnosis and Treatment of Vascular Disease First Affiliated Hospital Sun Yat-sen University Guangzhou China
| | - Shenming Wang
- 1 Division of Vascular Surgery Guangdong Key Engineering Laboratory for Diagnosis and Treatment of Vascular Disease First Affiliated Hospital Sun Yat-sen University Guangzhou China.,3 Department of Biomedical Engineering School of Medicine University of Alabama at Birmingham AL
| |
Collapse
|
146
|
Zhang YG, Zhu X, Lu R, Messer JS, Xia Y, Chang EB, Sun J. Intestinal epithelial HMGB1 inhibits bacterial infection via STAT3 regulation of autophagy. Autophagy 2019; 15:1935-1953. [PMID: 30894054 PMCID: PMC6844505 DOI: 10.1080/15548627.2019.1596485] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 02/20/2019] [Accepted: 03/01/2019] [Indexed: 12/30/2022] Open
Abstract
Extracellular HMGB1 (high mobility group box 1) is considered as a damage-associated molecular pattern protein. However, little is known about its intracellular role. We studied the mechanism whereby intestinal epithelial HMGB1 contributes to host defense, using cell culture, colonoids, conditional intestinal epithelial HMGB1-knockout mice with Salmonella-colitis, il10-/- mice, and human samples. We report that intestinal HMGB1 is an important contributor to host protection from inflammation and infection. We identified a physical interaction between HMGB1 and STAT3. Lacking intestinal epithelial HMGB1 led to redistribution of STAT3 and activation of STAT3 post bacterial infection. Indeed, Salmonella-infected HMGB1-deficient cells exhibited less macroautophagy/autophagy due to decreased expression of autophagy proteins and transcriptional repression by activated STAT3. Then, increased p-STAT3 and extranuclear STAT3 reduced autophagic responses and increased inflammation. STAT3 inhibition restored autophagic responses and reduced bacterial invasion in vitro and in vivo. Moreover, low level of HMGB1 was correlated with reduced nuclear STAT3 and enhanced p-STAT3 in inflamed intestine of il10-/- mice and inflammatory bowel disease (IBD) patients. We revealed that colonic epithelial HMGB1 was directly involved in the suppression of STAT3 activation and the protection of intestine from bacterial infection and injury. Abbreviations: ATG16L1: autophagy-related 16-like 1 (S. cerevisiae); DAMP: damage-associated molecular pattern; HBSS: Hanks balanced salt solution; HMGB1: high mobility group box 1; IBD: inflammatory bowel disease; IL1B/Il-1β: interleukin 1 beta; IL10: interleukin 10; IL17/IL-17: interleukin 17; MEFs: mouse embryonic fibroblasts; STAT3: signal transducer and activator of transcription 3; TLR: toll-like receptor; TNF/TNF-α: tumor necrosis factor.
Collapse
Affiliation(s)
- Yong-Guo Zhang
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Xiaorong Zhu
- Department of Medicine, Knapp Center for Biomedical Discovery, University of Chicago, Chicago, IL, USA
| | - Rong Lu
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Jeannette S. Messer
- Department of Medicine, Knapp Center for Biomedical Discovery, University of Chicago, Chicago, IL, USA
| | - Yinglin Xia
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Eugene B. Chang
- Department of Medicine, Knapp Center for Biomedical Discovery, University of Chicago, Chicago, IL, USA
| | - Jun Sun
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
147
|
Cheng KJ, Alshawsh MA, Mejia Mohamed EH, Thavagnanam S, Sinniah A, Ibrahim ZA. HMGB1: an overview of its versatile roles in the pathogenesis of colorectal cancer. Cell Oncol (Dordr) 2019; 43:177-193. [PMID: 31677065 DOI: 10.1007/s13402-019-00477-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND In recent years, the high mobility group box-1 (HMGB1) protein, a damage-associated molecular pattern (DAMP) molecule, has been found to play multifunctional roles in the pathogenesis of colorectal cancer. Although much attention has been given to the diagnostic and prognostic values of HMGB1 in colorectal cancer, the exact functional roles of the protein as well as the mechanistic pathways involved have remained poorly defined. This systematic review aims to discuss what is currently known about the roles of HMGB1 in colorectal cancer development, growth and progression, and to highlight critical areas for future investigations. To achieve this, the bibliographic databases Pubmed, Scopus, Web of Science and ScienceDirect were systematically screened for articles from inception till June 2018, which address associations of HMGB1 with colorectal cancer. CONCLUSIONS HMGB1 plays multiple roles in promoting the pathogenesis of colorectal cancer, despite a few contradicting studies. HMGB1 may differentially regulate disease-related processes, depending on the redox status of the protein in colorectal cancer. Binding of HMGB1 to various protein partners may alter the impact of HMGB1 on disease progression. As HMGB1 is heavily implicated in the pathogenesis of colorectal cancer, it is crucial to further improve our understanding of the functional roles of HMGB1 not only in colorectal cancer, but ultimately in all types of cancers.
Collapse
Affiliation(s)
- Kim Jun Cheng
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | | | | | - Surendran Thavagnanam
- Paediatric Department, Royal London Hospital, Whitechapel Road, Whitechapel, London, E1 1BB, UK
| | - Ajantha Sinniah
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Zaridatul Aini Ibrahim
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
148
|
Khambu B, Yan S, Huda N, Yin XM. Role of High-Mobility Group Box-1 in Liver Pathogenesis. Int J Mol Sci 2019; 20:ijms20215314. [PMID: 31731454 PMCID: PMC6862281 DOI: 10.3390/ijms20215314] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 10/16/2019] [Accepted: 10/23/2019] [Indexed: 12/21/2022] Open
Abstract
High-mobility group box 1 (HMGB1) is a highly abundant DNA-binding protein that can relocate to the cytosol or undergo extracellular release during cellular stress or death. HMGB1 has a functional versatility depending on its cellular location. While intracellular HMGB1 is important for DNA structure maintenance, gene expression, and autophagy induction, extracellular HMGB1 acts as a damage-associated molecular pattern (DAMP) molecule to alert the host of damage by triggering immune responses. The biological function of HMGB1 is mediated by multiple receptors, including the receptor for advanced glycation end products (RAGE) and Toll-like receptors (TLRs), which are expressed in different hepatic cells. Activation of HMGB1 and downstream signaling pathways are contributing factors in the pathogenesis of non-alcoholic fatty liver disease (NAFLD), alcoholic liver disease (ALD), and drug-induced liver injury (DILI), each of which involves sterile inflammation, liver fibrosis, ductular reaction, and hepatic tumorigenesis. In this review, we will discuss the critical role of HMGB1 in these pathogenic contexts and propose HMGB1 as a bona fide and targetable DAMP in the setting of common liver diseases.
Collapse
Affiliation(s)
- Bilon Khambu
- Correspondence: ; Tel.: +1-317-274-1789; Fax: +1-317-491-6639
| | | | | | | |
Collapse
|
149
|
Murakami Y, Ishikawa K, Nakao S, Sonoda KH. Innate immune response in retinal homeostasis and inflammatory disorders. Prog Retin Eye Res 2019; 74:100778. [PMID: 31505218 DOI: 10.1016/j.preteyeres.2019.100778] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 08/12/2019] [Accepted: 09/02/2019] [Indexed: 01/03/2023]
Abstract
Innate immune cells such as neutrophils, monocyte-macrophages and microglial cells are pivotal for the health and disease of the retina. For the maintenance of retinal homeostasis, these cells and immunosuppressive molecules in the eye actively regulate the induction and the expression of inflammation in order to prevent excessive activation and subsequent tissue damage. In the disease context, these regulatory mechanisms are modulated genetically and/or by environmental stimuli such as damage-associated molecular patterns (DAMPs), and a chronic innate immune response regulates or contributes to the formation of diverse retinal disorders such as uveitis, retinitis pigmentosa, retinal vascular diseases and retinal fibrosis. Here we summarize the recent knowledge regarding the innate immune response in both ocular immune regulation and inflammatory retinal diseases, and we describe the potential of the innate immune response as a biomarker and therapeutic target.
Collapse
Affiliation(s)
- Yusuke Murakami
- Department of Ophthalmology, Graduate School of Medical Science, Kyushu University, Fukuoka, 812-8582, Japan
| | - Keijiro Ishikawa
- Department of Ophthalmology, Graduate School of Medical Science, Kyushu University, Fukuoka, 812-8582, Japan
| | - Shintaro Nakao
- Department of Ophthalmology, Graduate School of Medical Science, Kyushu University, Fukuoka, 812-8582, Japan
| | - Koh-Hei Sonoda
- Department of Ophthalmology, Graduate School of Medical Science, Kyushu University, Fukuoka, 812-8582, Japan.
| |
Collapse
|
150
|
Paudel YN, Angelopoulou E, Piperi C, Balasubramaniam VR, Othman I, Shaikh MF. Enlightening the role of high mobility group box 1 (HMGB1) in inflammation: Updates on receptor signalling. Eur J Pharmacol 2019; 858:172487. [DOI: 10.1016/j.ejphar.2019.172487] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/19/2019] [Accepted: 06/19/2019] [Indexed: 12/17/2022]
|