101
|
Dhiman P, Rajora N, Bhardwaj S, Sudhakaran SS, Kumar A, Raturi G, Chakraborty K, Gupta OP, Devanna BN, Tripathi DK, Deshmukh R. Fascinating role of silicon to combat salinity stress in plants: An updated overview. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 162:110-123. [PMID: 33667964 DOI: 10.1016/j.plaphy.2021.02.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/07/2021] [Indexed: 05/04/2023]
Abstract
Salt stress limits plant growth and productivity by severely impacting the fundamental physiological processes. Silicon (Si) supplementation is considered one of the promising methods to improve plant resilience under salt stress. Here, the role of Si in modulating physiological and biochemical processes that get adversely affected by high salinity, is discussed. Although numerous reports show the beneficial effects of Si under stress, the precise molecular mechanism underlying this is not well understood. Questions like whether all plants are equally benefitted with Si supplementation despite having varying Si uptake capability and salinity tolerance are still elusive. This review illustrates the Si uptake and accumulation mechanism to understand the direct or indirect participation of Si in different physiological processes. Evaluation of plant responses at transcriptomics and proteomics levels are promising in understanding the role of Si. Integration of physiological understanding with omics scale information highlighted Si supplementation affecting the phytohormonal and antioxidant responses under salinity as a key factor defining improved resilience. Similarly, the crosstalk of Si with lignin and phenolic content under salt stress also seems to be an important phenomenon helping plants to reduce the stress. The present review also addressed various crucial mechanisms by which Si application alleviates salt stress, such as a decrease in oxidative damage, decreased lipid peroxidation, improved photosynthetic ability, and ion homeostasis. Besides, the application and challenges of using Si-nanoparticles have also been addressed. Comprehensive information and discussion provided here will be helpful to better understand the role of Si under salt stress.
Collapse
Affiliation(s)
- Pallavi Dhiman
- National Agri-Food Biotechnology Institute (NABI) Mohali, Punjab, India; Department of Biotechnology Panjab University, Chandigarh, India
| | - Nitika Rajora
- National Agri-Food Biotechnology Institute (NABI) Mohali, Punjab, India
| | - Shubham Bhardwaj
- National Institute of Plant Genome Research (NIPGR), New Delhi, India
| | - Sreeja S Sudhakaran
- National Agri-Food Biotechnology Institute (NABI) Mohali, Punjab, India; Department of Biotechnology Panjab University, Chandigarh, India
| | - Amit Kumar
- National Agri-Food Biotechnology Institute (NABI) Mohali, Punjab, India
| | - Gaurav Raturi
- National Agri-Food Biotechnology Institute (NABI) Mohali, Punjab, India; Department of Biotechnology Panjab University, Chandigarh, India
| | | | - Om Prakash Gupta
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, India
| | - B N Devanna
- ICAR-National Rice Research Institute, Cuttack, Odisha, India
| | - Durgesh Kumar Tripathi
- Amity Institute of Organic Agriculture (AIOA), Amity University Uttar Pradesh, Noida, India
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute (NABI) Mohali, Punjab, India.
| |
Collapse
|
102
|
Thorne SJ, Hartley SE, Maathuis FJM. The Effect of Silicon on Osmotic and Drought Stress Tolerance in Wheat Landraces. PLANTS (BASEL, SWITZERLAND) 2021; 10:814. [PMID: 33924159 PMCID: PMC8074377 DOI: 10.3390/plants10040814] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 12/13/2022]
Abstract
Drought stress reduces annual global wheat yields by 20%. Silicon (Si) fertilisation has been proposed to improve plant drought stress tolerance. However, it is currently unknown if and how Si affects different wheat landraces, especially with respect to their innate Si accumulation properties. In this study, significant and consistent differences in Si accumulation between landraces were identified, allowing for the classification of high Si accumulators and low Si accumulators. Landraces from the two accumulation groups were then used to investigate the effect of Si during osmotic and drought stress. Si was found to improve growth marginally in high Si accumulators during osmotic stress. However, no significant effect of Si on growth during drought stress was found. It was further found that osmotic stress decreased Si accumulation for all landraces whereas drought increased it. Overall, these results suggest that the beneficial effect of Si commonly reported in similar studies is not universal and that the application of Si fertiliser as a solution to agricultural drought stress requires detailed understanding of genotype-specific responses to Si.
Collapse
Affiliation(s)
- Sarah J. Thorne
- Department of Biology, University of York, York YO10 5DD, UK;
| | - Susan E. Hartley
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK;
| | | |
Collapse
|
103
|
Ramírez-Olvera SM, Trejo-Téllez LI, Gómez-Merino FC, Ruíz-Posadas LDM, Alcántar-González EG, Saucedo-Veloz C. Silicon Stimulates Plant Growth and Metabolism in Rice Plants under Conventional and Osmotic Stress Conditions. PLANTS (BASEL, SWITZERLAND) 2021; 10:777. [PMID: 33920948 PMCID: PMC8071275 DOI: 10.3390/plants10040777] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/08/2021] [Accepted: 04/10/2021] [Indexed: 11/17/2022]
Abstract
Exogenous silicon (Si) can enhance plant resistance to various abiotic factors causing osmotic stress. The objective of this research was to evaluate the application of 1 and 2 mM Si to plants under normal conditions and under osmotic stress. Morelos A-98 rice seedlings, were treated with 1 and 2 mM SiO2 for 28 d. Subsequently, half of the plants were subjected to osmotic stress with the addition of 10% polyethylene glycol (PEG) 8000; and continued with the addition of Si (0, 1 and 2 mM SiO2) for both conditions. The application of Si under both conditions increased chlorophyll b in leaves, root volume, as well as fresh and dry biomass of roots. Interestingly, the number of tillers, shoot fresh and dry biomass, shoot water content, concentration of total chlorophyll, chlorophyll a/b ratio, and the concentration of total sugars and proline in shoot increased with the addition of Si under osmotic stress conditions. The addition of Si under normal conditions decreased the concentration of sugars in the roots, K and Mn in roots, and increased the concentration of Fe and Zn in shoots. Therefore, Si can be used as a potent inorganic biostimulant in rice Morelos A-98 since it stimulates plant growth and modulates the concentration of vital biomolecules and essential nutrients.
Collapse
Affiliation(s)
- Sara Monzerrat Ramírez-Olvera
- Department of Plant Physiology, College of Postgraduates in Agricultural Sciences Campus Montecillo, Montecillo 56230, Mexico;
| | - Libia Iris Trejo-Téllez
- Department of Soil Science, College of Postgraduates in Agricultural Sciences Campus Montecillo, Montecillo 56230, Mexico;
| | - Fernando Carlos Gómez-Merino
- Department of Biotechnology, College of Postgraduates in Agricultural Sciences Campus Córdoba, Amatlán de los Reyes, Veracruz 94953, Mexico
| | - Lucero del Mar Ruíz-Posadas
- Department of Botany, College of Postgraduates in Agricultural Sciences Campus Montecillo, Montecillo 56230, Mexico;
| | | | - Crescenciano Saucedo-Veloz
- Department of Fruit Growing, College of Postgraduates in Agricultural Sciences Campus Montecillo, Montecillo 56230, Mexico;
| |
Collapse
|
104
|
Tripathi DK, Vishwakarma K, Singh VP, Prakash V, Sharma S, Muneer S, Nikolic M, Deshmukh R, Vaculík M, Corpas FJ. Silicon crosstalk with reactive oxygen species, phytohormones and other signaling molecules. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124820. [PMID: 33516974 DOI: 10.1016/j.jhazmat.2020.124820] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/20/2020] [Accepted: 12/08/2020] [Indexed: 05/28/2023]
Abstract
Exogenous applications of silicon (Si) can initiate cellular defence pathways to enhance plant resistance to abiotic and biotic stresses. Plant Si accumulation is regulated by several transporters of silicic acid (e.g. Lsi1, Lsi2, and Lsi6), but the precise mechanisms involved in overall Si transport and its beneficial effects remains unclear. In stressed plants, the accumulation of Si leads to a defence mechanism involving the formation of amorphous or hydrated silicic acid caused by their polymerization and interaction with other organic substances. Silicon also regulates plant ionic homeostasis, which involves the nutrient acquisition, availability, and replenishment in the soil through biogeochemical cycles. Furthermore, Si is implicated in modulating ethylene-dependent and jasmonate pathways, as well as other phytohormones, particularly under stress conditions. Crosstalk between Si and phytohormones could lead to improvements in Si-mediated crop growth, especially when plants are exposed to stress. The integration of Si with reactive oxygen species (ROS) metabolism appears to be a part of the signaling cascade that regulates plant phytohormone homeostasis, as well as morphological, biochemical, and molecular responses. This review aims to provide an update on Si interplays with ROS, phytohormones, and other signaling molecules that regulate plant development under stress conditions.
Collapse
Affiliation(s)
- Durgesh Kumar Tripathi
- Amity Institute of Organic Agriculture (AIOA), Amity University Uttar Pradesh, Sector-125, Noida, India
| | - Kanchan Vishwakarma
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Sector-125, Noida, India
| | - Vijay Pratap Singh
- Department of Botany, C.M.P. Degree College, A Constituent PG College of University of Allahabad, Prayagraj, India
| | - Ved Prakash
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - Shivesh Sharma
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - Sowbiya Muneer
- School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Miroslav Nikolic
- Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Marek Vaculík
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, Mlynská dolina, Bratislava, Slovakia; Institute of Botany, Plant Science. and Biodiversity Centre, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, Slovakia
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry and Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Profesor Albareda, Granada, Spain.
| |
Collapse
|
105
|
Katz O, Puppe D, Kaczorek D, Prakash NB, Schaller J. Silicon in the Soil-Plant Continuum: Intricate Feedback Mechanisms within Ecosystems. PLANTS (BASEL, SWITZERLAND) 2021; 10:652. [PMID: 33808069 PMCID: PMC8066056 DOI: 10.3390/plants10040652] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/22/2021] [Accepted: 03/26/2021] [Indexed: 11/28/2022]
Abstract
Plants' ability to take up silicon from the soil, accumulate it within their tissues and then reincorporate it into the soil through litter creates an intricate network of feedback mechanisms in ecosystems. Here, we provide a concise review of silicon's roles in soil chemistry and physics and in plant physiology and ecology, focusing on the processes that form these feedback mechanisms. Through this review and analysis, we demonstrate how this feedback network drives ecosystem processes and affects ecosystem functioning. Consequently, we show that Si uptake and accumulation by plants is involved in several ecosystem services like soil appropriation, biomass supply, and carbon sequestration. Considering the demand for food of an increasing global population and the challenges of climate change, a detailed understanding of the underlying processes of these ecosystem services is of prime importance. Silicon and its role in ecosystem functioning and services thus should be the main focus of future research.
Collapse
Affiliation(s)
- Ofir Katz
- Dead Sea and Arava Science Center, Mt. Masada, Tamar Regional Council, 86910 Tamar, Israel
- Eilat Campus, Ben-Gurion University of the Negev, Hatmarim Blv, 8855630 Eilat, Israel
| | - Daniel Puppe
- Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany; (D.P.); (D.K.); (J.S.)
| | - Danuta Kaczorek
- Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany; (D.P.); (D.K.); (J.S.)
- Department of Soil Environment Sciences, Warsaw University of Life Sciences (SGGW), 02776 Warsaw, Poland
| | - Nagabovanalli B. Prakash
- Department of Soil Science and Agricultural Chemistry, University of Agricultural Sciences, GKVK, Bangalore 560065, India;
| | - Jörg Schaller
- Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany; (D.P.); (D.K.); (J.S.)
| |
Collapse
|
106
|
Hassan SM, El-Bebany AF, Salem MZM, Komeil DA. Productivity and Post-Harvest Fungal Resistance of Hot Pepper as Affected by Potassium Silicate, Clove Extract Foliar Spray and Nitrogen Application. PLANTS 2021; 10:plants10040662. [PMID: 33808406 PMCID: PMC8066216 DOI: 10.3390/plants10040662] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/16/2021] [Accepted: 03/19/2021] [Indexed: 11/29/2022]
Abstract
In the present study, growth and productivity of hot pepper planted in the two successive summer seasons of 2017 and 2018 were evaluated under the effect of foliar spray of variable doses of potassium silicate (PS), and clove water extract (CWE) with different rates of nitrogen (N) fertilization application. The post-harvest resistance of hot pepper fruits to Alternaria alternata fungal infection, was also evaluated. Maximum plant height was achieved with the application of the highest rates of N, PS and CWE, while the intermediate rates were sufficient to reach the maximum number of branches, the highest leaf dry matter and chlorophyll accumulation. Fruit yield progressively increased with increasing the applied N rate. The foliar application of PS and CWE exerted a limited, yet positive effect on fruit yield. Generally, the least amount of fruit yield, amounting to 18.84 and 18.00 t ha−1, resulted from the application of the lowest N rate (144 kg ha−1) in the absence of PS and CWE. The highest significant fruit yield, amounting to 31.71 and 31.22 t ha−1, for 2017 and 2018, respectively, accompanied the application of the maximum levels of the three factors. The application of high N rates increased the post-harvest Alternaria fruit rot severity. The positive effect of CWE application in counterbalancing the negative effects associated with the high rates of N and PS may be related to the presence of phenolic and flavonoid compounds ellagic acid, benzoic acid, catechol gallic acid, rutin, myricetin, quercetin, apigenin and kaempferol as identified by High Performance Liquid Chromatography (HPLC).
Collapse
Affiliation(s)
- Shimaa M. Hassan
- Department of Vegetable crops, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria 21545, Egypt;
| | - Ahmed F. El-Bebany
- Department of Plant Pathology, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria 21545, Egypt;
| | - Mohamed Z. M. Salem
- Forestry and Wood Technology Department, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria 21545, Egypt;
| | - Doaa A. Komeil
- Department of Plant Pathology, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria 21545, Egypt;
- Correspondence:
| |
Collapse
|
107
|
Numan M, Khan AL, Asaf S, Salehin M, Beyene G, Tadele Z, Ligaba-Osena A. From Traditional Breeding to Genome Editing for Boosting Productivity of the Ancient Grain Tef [ Eragrostis tef (Zucc.) Trotter]. PLANTS (BASEL, SWITZERLAND) 2021; 10:628. [PMID: 33806233 PMCID: PMC8066236 DOI: 10.3390/plants10040628] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023]
Abstract
Tef (Eragrostis tef (Zucc.) Trotter) is a staple food crop for 70% of the Ethiopian population and is currently cultivated in several countries for grain and forage production. It is one of the most nutritious grains, and is also more resilient to marginal soil and climate conditions than major cereals such as maize, wheat and rice. However, tef is an extremely low-yielding crop, mainly due to lodging, which is when stalks fall on the ground irreversibly, and prolonged drought during the growing season. Climate change is triggering several biotic and abiotic stresses which are expected to cause severe food shortages in the foreseeable future. This has necessitated an alternative and robust approach in order to improve resilience to diverse types of stresses and increase crop yields. Traditional breeding has been extensively implemented to develop crop varieties with traits of interest, although the technique has several limitations. Currently, genome editing technologies are receiving increased interest among plant biologists as a means of improving key agronomic traits. In this review, the potential application of clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated proteins (CRISPR-Cas) technology in improving stress resilience in tef is discussed. Several putative abiotic stress-resilient genes of the related monocot plant species have been discussed and proposed as target genes for editing in tef through the CRISPR-Cas system. This is expected to improve stress resilience and boost productivity, thereby ensuring food and nutrition security in the region where it is needed the most.
Collapse
Affiliation(s)
- Muhammad Numan
- Laboratory of Molecular Biology and Biotechnology, Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27412, USA; (M.N.); (M.S.)
| | - Abdul Latif Khan
- Natural and Medical Sciences Research Center, Biotechnology and OMICs Laboratory, University of Nizwa, Nizwa 616, Oman; (A.L.K.); (S.A.)
| | - Sajjad Asaf
- Natural and Medical Sciences Research Center, Biotechnology and OMICs Laboratory, University of Nizwa, Nizwa 616, Oman; (A.L.K.); (S.A.)
| | - Mohammad Salehin
- Laboratory of Molecular Biology and Biotechnology, Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27412, USA; (M.N.); (M.S.)
| | - Getu Beyene
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA;
| | - Zerihun Tadele
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, CH-3013 Bern, Switzerland;
| | - Ayalew Ligaba-Osena
- Laboratory of Molecular Biology and Biotechnology, Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27412, USA; (M.N.); (M.S.)
| |
Collapse
|
108
|
Hömberg A, Knorr KH, Schaller J. Methane Production Rate during Anoxic Litter Decomposition Depends on Si Mass Fractions, Nutrient Stoichiometry, and Carbon Quality. PLANTS 2021; 10:plants10040618. [PMID: 33805021 PMCID: PMC8063934 DOI: 10.3390/plants10040618] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/10/2021] [Accepted: 03/19/2021] [Indexed: 11/16/2022]
Abstract
While Si influences nutrient stoichiometry and decomposition of graminoid litter, it is still unclear how Si influences anoxic litter decomposition and CH4 formation in graminoid dominated fen peatlands. First, Eriophorum vaginatum plants were grown under different Si and P availabilities, then shoots and roots were characterized regarding their proportions of C, Si, N and P and regarding C quality. Subsequently the Eriophorum shoots were subjected to anoxic decomposition. We hypothesized; that (I) litter grown under high Si availability would show a higher Si but lower nutrient mass fractions and a lower share of recalcitrant carbon moieties; (II) high-Si litter would show higher CH4 and CO2 production rates during anoxic decomposition; (III) methanogenesis would occur earlier in less recalcitrant high-Si litter, compared to low-Si litter. We found a higher Si mass fraction that coincides with a general decrease in C and N mass fractions and decreased share of recalcitrant organic moieties. For high-Si litter, the CH4 production rate was higher, but there was no long-term influence on the CO2 production rate. More labile high-Si litter and a differential response in nutrient stoichiometry led to faster onset of methanogenesis. This may have important implications for our understanding of anaerobic carbon turnover in graminoid-rich fens.
Collapse
Affiliation(s)
- Annkathrin Hömberg
- Ecohydrology & Biogeochemistry Group, University of Münster, Heisenbergstraße 2, 48149 Münster, Germany;
- Correspondence:
| | - Klaus-Holger Knorr
- Ecohydrology & Biogeochemistry Group, University of Münster, Heisenbergstraße 2, 48149 Münster, Germany;
| | - Jörg Schaller
- Leibniz Center for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany;
| |
Collapse
|
109
|
Effect of Soil Characteristics on Arsenic Accumulation in Phytolith of Gramineae (Phragmites japonica) and Fern (Thelypteris palustris) Near the Gilgok Gold Mine. SUSTAINABILITY 2021. [DOI: 10.3390/su13063421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In South Korea, most metal mines were abandoned and caused contamination for more than 30 years. Even the soil is highly contaminated with trace elements, plants still grow in the area and can affect the contamination. Phytolith is amorphous silica in the plant body. Phytolith is resistant to decomposition, and the stabilization of carbon, nutrients, and toxic substances accumulated in the phytolith is being studied. In this study, the Gilgok gold mine, which is contaminated with arsenic was selected as the research site. We selected Phragmites japonica and Thelypteris palustris as targets for the analysis of arsenic accumulation in plants and phytolith. Plants accumulate more phytolith at the riverside. The higher water content of soil increased the Arsenic (As) concentration in the frond of the T. palustris. Soil available silicon (Si) did not affect phytolith accumulation but increased As accumulation in the plant and phytolith. The research result showed that P. japonica and T. palustris have the ability to accumulate As in phytolith and the accumulation can be changed with soil characteristics and plant species. This As accumulation in phytolith can affect plant tolerance in contaminated areas and change the As availability in the soil. The result of the research can be used as a database to build a sustainable environment.
Collapse
|
110
|
Tombeur F, Laliberté E, Lambers H, Faucon M, Zemunik G, Turner BL, Cornelis J, Mahy G. A shift from phenol to silica‐based leaf defences during long‐term soil and ecosystem development. Ecol Lett 2021; 24:984-995. [DOI: 10.1111/ele.13713] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 01/07/2021] [Accepted: 02/06/2021] [Indexed: 01/02/2023]
Affiliation(s)
- Felix Tombeur
- TERRA Teaching and Research Centre Gembloux Agro‐Bio Tech University of Liege Gembloux Belgium
| | - Etienne Laliberté
- Institut de Recherche en Biologie Végétale Université de Montréal 4101 Sherbrooke Est Montréal QC H1X 2B2 Canada
- School of Biological Sciences The University of Western Australia Crawley (Perth) WA 6009 Australia
| | - Hans Lambers
- School of Biological Sciences The University of Western Australia Crawley (Perth) WA 6009 Australia
| | - Michel‐Pierre Faucon
- AGHYLE SFR Condorcet FR CNRS 3417 UniLaSalle 19 rue Pierre Waguet Beauvais 60026 France
| | - Graham Zemunik
- School of Biological Sciences The University of Western Australia Crawley (Perth) WA 6009 Australia
| | - Benjamin L. Turner
- Smithsonian Tropical Research Institute Apartado 0843‐03092 Balboa Ancon Panama
- Soil and Water Science Department University of Florida Gainesville FL 32611 USA
| | - Jean‐Thomas Cornelis
- TERRA Teaching and Research Centre Gembloux Agro‐Bio Tech University of Liege Gembloux Belgium
- Faculty of Land and Food Systems The University of British Columbia Vancouver BC V6T 1Z4 Canada
| | - Grégory Mahy
- TERRA Teaching and Research Centre Gembloux Agro‐Bio Tech University of Liege Gembloux Belgium
| |
Collapse
|
111
|
Vasil’eva IE, Shabanova EV. Plant-Matrix Certified Reference Materials as a Tool for Ensuring the Uniformity of Chemical Measurements. JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1134/s1061934821020143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
112
|
Mundada PS, Barvkar VT, Umdale SD, Anil Kumar S, Nikam TD, Ahire ML. An insight into the role of silicon on retaliation to osmotic stress in finger millet (Eleusine coracana (L.) Gaertn). JOURNAL OF HAZARDOUS MATERIALS 2021; 403:124078. [PMID: 33265064 DOI: 10.1016/j.jhazmat.2020.124078] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 09/15/2020] [Accepted: 09/19/2020] [Indexed: 06/12/2023]
Abstract
Finger millet, a vital nutritional cereal crop provides food security. It is a well-established fact that silicon (Si) supplementation to plants alleviates both biotic and abiotic stresses. However, precise molecular targets of Si remain elusive. The present study attempts to understand the alterations in the metabolic pathways after Si amendment under osmotic stress. The analysis of transcriptome and metabolome of finger millet seedlings treated with distilled water (DW) as control, Si (10 ppm), PEG (15%), and PEG (15%) + Si (10 ppm) suggest the molecular alterations mediated by Si for ameliorating the osmotic stress. Under osmotic stress, uptake of Si has increased mediating the diversion of an enhanced pool of acetyl CoA to lipid biosynthesis and down-regulation of TCA catabolism. The membrane lipid damage reduced significantly by Si under osmotic stress. A significant decrease in linolenic acid and an increase of jasmonic acid (JA) in PEG + Si treatment suggest the JA mediated regulation of osmotic stress. The relative expression of transcripts corroborated with the corresponding metabolites abundance levels indicating the activity of genes in assuaging the osmotic stress. This work substantiates the role of Si in osmotic stress tolerance by reprogramming of fatty acids biosynthesis in finger millet.
Collapse
Affiliation(s)
- Pankaj S Mundada
- Department of Botany, Savitribai Phule Pune University, Pune 411007, Maharashtra, India; Department of Biotechnology, Yashavantrao Chavan Institute of Science, Satara 415001, Maharashtra, India
| | - Vitthal T Barvkar
- Department of Botany, Savitribai Phule Pune University, Pune 411007, Maharashtra, India
| | - Suraj D Umdale
- Department of Botany, Jaysingpur College, Jaysingpur, Maharashtra 416101, India
| | - S Anil Kumar
- Department of Biotechnology, Vignan's Foundation for Science, Technology & Research, Vadlamudi, Guntur, Andhra Pradesh 522213, India
| | - Tukaram D Nikam
- Department of Botany, Savitribai Phule Pune University, Pune 411007, Maharashtra, India
| | - Mahendra L Ahire
- Department of Botany, Yashavantrao Chavan Institute of Science, Satara 415001, Maharashtra, India.
| |
Collapse
|
113
|
Qi L, Sun T, Guo X, Guo Y, Li FY. Phytolith-occluded carbon sequestration potential in three major steppe types along a precipitation gradient in Northern China. Ecol Evol 2021; 11:1446-1456. [PMID: 33598143 PMCID: PMC7863665 DOI: 10.1002/ece3.7155] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/27/2020] [Accepted: 11/29/2020] [Indexed: 11/20/2022] Open
Abstract
Phytolith-occluded carbon (PhytOC) is an important long-term stable carbon fraction in grassland ecosystems and plays a promising role in global carbon sequestration. Determination of the PhytOC traits of different plants in major grassland types is crucial for precisely assessing their phytolith carbon sequestration potential. Precipitation is the predominant factor in controlling net primary productivity (NPP) and species composition of the semiarid steppe grasslands. We selected three representative steppe communities of the desert steppe, the dry typical steppe, and the wet typical steppe in Northern Grasslands of China along a precipitation gradient, to investigate their species composition, biomass production, and PhytOC content for quantifying its long-term carbon sequestration potential. Our results showed that (a) the phytolith and PhytOC contents in plants differed significantly among species, with dominant grass and sedge species having relatively high contents, and the contents are significantly higher in the below- than the aboveground parts. (b) The phytolith contents of plant communities were 16.68, 17.94, and 15.85 g/kg in the above- and 86.44, 58.73, and 76.94 g/kg in the belowground biomass of the desert steppe, the dry typical steppe, and the wet typical steppe, respectively; and the PhytOC contents were 0.68, 0.48, and 0.59 g/kg in the above- and 1.11, 0.72, and 1.02 g/kg in the belowground biomass of the three steppe types. (c) Climatic factors affected phytolith and PhytOC production fluxes of steppe communities mainly through altering plant production, whereas their effects on phytolith and PhytOC contents were relatively small. Our study provides more evidence on the importance of incorporating belowground PhytOC production for estimating phytolith carbon sequestration potential and suggests it crucial to quantify belowground PhytOC production taking into account of plant perenniality and PhytOC deposition over multiple years.
Collapse
Affiliation(s)
- Limin Qi
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland EcologySchool of Ecology and EnvironmentInner Mongolia UniversityHohhotChina
- Collaborative Innovation Center for Grassland Ecological SecurityMinistry of Education of China and Inner Mongolia Autonomous RegionInner Mongolia UniversityHohhotChina
- Institute of Grassland Research of Chinese Academy of Agricultural SciencesHohhotChina
| | - Tingyu Sun
- Collaborative Innovation Center for Grassland Ecological SecurityMinistry of Education of China and Inner Mongolia Autonomous RegionInner Mongolia UniversityHohhotChina
| | - Xudong Guo
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland EcologySchool of Ecology and EnvironmentInner Mongolia UniversityHohhotChina
| | - Ying Guo
- Collaborative Innovation Center for Grassland Ecological SecurityMinistry of Education of China and Inner Mongolia Autonomous RegionInner Mongolia UniversityHohhotChina
| | - Frank Yonghong Li
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland EcologySchool of Ecology and EnvironmentInner Mongolia UniversityHohhotChina
- Collaborative Innovation Center for Grassland Ecological SecurityMinistry of Education of China and Inner Mongolia Autonomous RegionInner Mongolia UniversityHohhotChina
| |
Collapse
|
114
|
Sun Y, Xu J, Miao X, Lin X, Liu W, Ren H. Effects of exogenous silicon on maize seed germination and seedling growth. Sci Rep 2021; 11:1014. [PMID: 33441695 PMCID: PMC7806671 DOI: 10.1038/s41598-020-79723-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 12/10/2020] [Indexed: 01/20/2023] Open
Abstract
As the global population continues to increase, global food production needs to double by 2050 to meet the demand. Given the current status of the not expansion of cultivated land area, agronomic seedlings are complete, well-formed and strong, which is the basis of high crop yields. The aim of this experiment was to study the effects of seed germination and seedling growth in response to silicon (from water-soluble Si fertilizer). The effects of Si on the maize germination, seedling growth, chlorophyll contents, osmoprotectant contents, antioxidant enzyme activities, non-enzymatic antioxidant contents and stomatal characteristics were studied by soaking Xianyu 335 in solutions of different concentrations of Si (0, 5, 10, 15, 20, and 25 g·L-1). In this study, Si treatments significantly increased the seed germination and per-plant dry weight of seedlings (P < 0.05), and the optimal concentration was 15 g·L-1. As a result of the Si treatment of the seeds, the chlorophyll content, osmotic material accumulation and antioxidant defence system activity increased, reducing membrane system damage, reactive oxygen species contents, and stomatal aperture. The results suggested that 15 g·L-1 Si significantly stimulated seed germination and promoted the growth of maize seedlings, laying a solid foundation for subsequent maize growth.
Collapse
Affiliation(s)
- Yankun Sun
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Jiaqi Xu
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Xiangyang Miao
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Xuesong Lin
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Wanzhen Liu
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Hongyu Ren
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
115
|
Bathoova M, Švubová R, Bokor B, Neděla V, Tihlaříková E, Martinka M. Silicon triggers sorghum root enzyme activities and inhibits the root cell colonization by Alternaria alternata. PLANTA 2021; 253:29. [PMID: 33423117 DOI: 10.1007/s00425-020-03560-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
Silicon inhibits the growth of Alternaria alternata into sorghum root cells by maintaining their integrity through stimulating biochemical defense reactions rather than by silica-based physical barrier creation. Although the ameliorating effect of silicon (Si) on plant resistance against fungal pathogens has been proven, the mechanism of its action needs to be better understood on a cellular level. The present study explores the effect of Si application in sorghum roots infected with fungus Alternaria alternata under controlled in vitro conditions. Detailed anatomical and cytological observations by both fluorescent and electron microscopy revealed that Si supplementation results in the inhibition of fungal hyphae growth into the protoplast of root cells. An approach of environmental scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy enabling spatial detection of Si even at low concentrations showed that there is no continual solid layer of silica in the root cell walls of the rhizodermis, mesodermis and exodermis physically blocking the fungal growth into the protoplasts. Additionally, biochemical evidence suggests that Si speeds up the onset of activities of phenylpropanoid pathway enzymes phenylalanine ammonia lyase, peroxidases and polyphenol oxidases involved in phenolic compounds production and deposition to plant cell walls. In conclusion, Si alleviates the negative impact of A. alternata infection by limiting hyphae penetration through sorghum root cell walls into protoplasts, thus maintaining their structural and functional integrity. This might occur by triggering plant biochemical defense responses rather than by creating compact Si layer deposits.
Collapse
Affiliation(s)
- Monika Bathoova
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynska dolina, Ilkovicova 6, 842 15, Bratislava 4, Slovak Republic.
| | - Renáta Švubová
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynska dolina, Ilkovicova 6, 842 15, Bratislava 4, Slovak Republic
| | - Boris Bokor
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynska dolina, Ilkovicova 6, 842 15, Bratislava 4, Slovak Republic
- Comenius University Science Park, Comenius University in Bratislava, Ilkovicova 8, 841 04, Bratislava, Slovak Republic
| | - Vilém Neděla
- Environmental Electron Microscopy Group, Institute of Scientific Instruments of the Czech Academy of Sciences, Kralovopolska 147, 612 00, Brno, Czech Republic
| | - Eva Tihlaříková
- Environmental Electron Microscopy Group, Institute of Scientific Instruments of the Czech Academy of Sciences, Kralovopolska 147, 612 00, Brno, Czech Republic
| | - Michal Martinka
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynska dolina, Ilkovicova 6, 842 15, Bratislava 4, Slovak Republic
| |
Collapse
|
116
|
Yan G, Fan X, Tan L, Yin C, Li T, Liang Y. Root silicon deposition and its resultant reduction of sodium bypass flow is modulated by OsLsi1 and OsLsi2 in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 158:219-227. [PMID: 33243712 DOI: 10.1016/j.plaphy.2020.11.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 11/02/2020] [Indexed: 06/11/2023]
Abstract
Silicon (Si) can alleviate salt stress by decreasing Na+ bypass flow in rice (Oryza sativa L.), however, the mechanisms underpinning remain veiled. In this study, we investigated the roles of OsLsi1 and OsLsi2 in Si-induced reduction of bypass flow and its resultant alleviation of salt stress by using lsi1 and lsi2 mutants (defective in OsLsi1 and OsLsi2, respectively) and their wild types (WTs). Under salt stress, Si promoted plant growth and decreased root-to-shoot Na+ translocation in WTs, but not in mutants. Simultaneously, quantitative estimation and fluorescent visualization of trisodium-8-hydroxy-1,3,6-pyrenetrisulphonic (PTS, an apoplastic tracer) showed Si reduced bypass flow in WTs, but not in mutants. Energy-dispersive X-ray microanalysis (EDX) showed Si was deposited at root endodermis in WTs, but not in mutants. Moreover, results obtained from root split experiment using lsi1 WT showed down-regulated expression of Si transport genes (OsLsi1 and OsLsi2) in root accelerated Si deposition at root endodermis. In summary, our results reveal that Si deposition at root endodermis and its resultant reduction of Na+ bypass flow is modulated by OsLsi1 and OsLsi2 and regulated by the expression of OsLsi1 and OsLsi2, implying that root Si deposition could be an active and physiologically-regulated process in rice.
Collapse
Affiliation(s)
- Guochao Yan
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoping Fan
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Li Tan
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chang Yin
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Tingqiang Li
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yongchao Liang
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
117
|
Griffith A, Wise P, Gill R, Paukett M, Donofrio N, Seyfferth AL. Combined effects of arsenic and Magnaporthe oryzae on rice and alleviation by silicon. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 750:142209. [PMID: 33182188 DOI: 10.1016/j.scitotenv.2020.142209] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/17/2020] [Accepted: 09/03/2020] [Indexed: 06/11/2023]
Abstract
While the impacts of arsenic (As) and Magnaporthe oryzae on rice have been well-studied, a dearth of knowledge exists on how rice responds to their combined stress. Moreover, increasing exogenous silicon (Si) can alleviate M. oryzae infection and As uptake, but how increasing exogenous Si affects the combined stress of M. oryzae and As is unknown. We grew three cultivars of rice that varied in their susceptibility to As and M. oryzae under low (50 μM, SiL) and high (1500 μM, SiH) Si with and without As (4 μM, 80/20 As (III)/As(V)) and with or without M. oryzae infection and examined the impacts of treatments on plant As and Si concentrations, severity of disease by M. oryzae, and stress via targeted gene expression. SiH treatments generally decreased shoot As concentrations by 20-70% compared to SiL treatments depending on cultivar and M. oryzae exposure. There was no effect of Si or As treatments on percent of leaf diseased in the As-tolerant cultivar M206, but in the As-sensitive cultivar IR66, SiH treatment decreased percent of leaf diseased in the absence of As and had no impact when As was present. In the M. oryzae-susceptible Sariceltik, plants receiving SiH had significantly fewer lesions than those receiving SiL and plants with the fewest lesions were in the SiH + As treatments. Plants that were exposed to As + M. oryzae were the most stressed when grown under SiL, but this stress response was lowered by SiH treatments. A separate pathogenicity assay with Sariceltik showed that in contrast to our hypothesis, As exposure decreased lesion growth, particularly under SiH treatments, and lessened the impact of M. oryzae on rice. These results suggest that rice grown under replete Si will be able to withstand combined stressors of M. oryzae and As, but will be highly stressed under Si deficient scenarios.
Collapse
Affiliation(s)
- Amelia Griffith
- Department of Plant & Soil Sciences, University of Delaware, Newark, DE, USA
| | - Patrick Wise
- Department of Plant & Soil Sciences, University of Delaware, Newark, DE, USA
| | - Rattandeep Gill
- Research Innovation Office, University of Guelph, Guelph, ON, Canada
| | - Michelle Paukett
- Department of Plant Pathology & Environmental Microbiology, Pennsylvania State University, University Park, PA, USA
| | - Nicole Donofrio
- Department of Plant & Soil Sciences, University of Delaware, Newark, DE, USA
| | - Angelia L Seyfferth
- Department of Plant & Soil Sciences, University of Delaware, Newark, DE, USA.
| |
Collapse
|
118
|
Ribeiro IDA, Volpiano CG, Vargas LK, Granada CE, Lisboa BB, Passaglia LMP. Use of Mineral Weathering Bacteria to Enhance Nutrient Availability in Crops: A Review. FRONTIERS IN PLANT SCIENCE 2020; 11:590774. [PMID: 33362817 PMCID: PMC7759553 DOI: 10.3389/fpls.2020.590774] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 11/26/2020] [Indexed: 05/19/2023]
Abstract
Rock powders are low-cost potential sources of most of the nutrients required by higher plants for growth and development. However, slow dissolution rates of minerals represent an obstacle to the widespread use of rock powders in agriculture. Rhizosphere processes and biological weathering may further enhance mineral dissolution since the interaction between minerals, plants, and bacteria results in the release of macro- and micronutrients into the soil solution. Plants are important agents in this process acting directly in the mineral dissolution or sustaining a wide diversity of weathering microorganisms in the root environment. Meanwhile, root microorganisms promote mineral dissolution by producing complexing ligands (siderophores and organic acids), affecting the pH (via organic or inorganic acid production), or performing redox reactions. Besides that, a wide variety of rhizosphere bacteria and fungi could also promote plant development directly, synergistically contributing to the weathering activity performed by plants. The inoculation of weathering bacteria in soil or plants, especially combined with the use of crushed rocks, can increase soil fertility and improve crop production. This approach is more sustainable than conventional fertilization practices, which may contribute to reducing climate change linked to agricultural activity. Besides, it could decrease the dependency of developing countries on imported fertilizers, thus improving local development.
Collapse
Affiliation(s)
- Igor Daniel Alves Ribeiro
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Camila Gazolla Volpiano
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Luciano Kayser Vargas
- Laboratório de Microbiologia Agrícola, Departamento de Diagnóstico e Pesquisa Agropecuária, Secretaria Estadual da Agricultura, Pecuária e Desenvolvimento Rural, Porto Alegre, Brazil
| | | | - Bruno Brito Lisboa
- Laboratório de Microbiologia Agrícola, Departamento de Diagnóstico e Pesquisa Agropecuária, Secretaria Estadual da Agricultura, Pecuária e Desenvolvimento Rural, Porto Alegre, Brazil
| | | |
Collapse
|
119
|
Kumar S, Adiram-Filiba N, Blum S, Sanchez-Lopez JA, Tzfadia O, Omid A, Volpin H, Heifetz Y, Goobes G, Elbaum R. Siliplant1 protein precipitates silica in sorghum silica cells. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6830-6843. [PMID: 32485738 DOI: 10.1093/jxb/eraa258] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/26/2020] [Indexed: 05/26/2023]
Abstract
Silicon is absorbed by plant roots as silicic acid. The acid moves with the transpiration stream to the shoot, and mineralizes as silica. In grasses, leaf epidermal cells called silica cells deposit silica in most of their volume using an unknown biological factor. Using bioinformatics tools, we identified a previously uncharacterized protein in Sorghum bicolor, which we named Siliplant1 (Slp1). Slp1 is a basic protein with seven repeat units rich in proline, lysine, and glutamic acid. We found Slp1 RNA in sorghum immature leaf and immature inflorescence. In leaves, transcription was highest just before the active silicification zone (ASZ). There, Slp1 was localized specifically to developing silica cells, packed inside vesicles and scattered throughout the cytoplasm or near the cell boundary. These vesicles fused with the membrane, releasing their content in the apoplastic space. A short peptide that is repeated five times in Slp1 precipitated silica in vitro at a biologically relevant silicic acid concentration. Transient overexpression of Slp1 in sorghum resulted in ectopic silica deposition in all leaf epidermal cell types. Our results show that Slp1 precipitates silica in sorghum silica cells.
Collapse
Affiliation(s)
- Santosh Kumar
- Robert H Smith Institute of Plant Sciences and Genetics in Agriculture, Robert H Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | | | - Shula Blum
- Robert H Smith Institute of Plant Sciences and Genetics in Agriculture, Robert H Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Javier Arturo Sanchez-Lopez
- Department of Entomology, Robert H Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Oren Tzfadia
- Bioinformatics and Systems Biology, VIB/Ghent University, Gent, Belgium
| | - Ayelet Omid
- Danziger Innovations Limited, Mishmar Hashiva, Israel
| | - Hanne Volpin
- Danziger Innovations Limited, Mishmar Hashiva, Israel
| | - Yael Heifetz
- Department of Entomology, Robert H Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Gil Goobes
- Department of Chemistry, Bar-Ilan University, Ramat Gan, Israel
| | - Rivka Elbaum
- Robert H Smith Institute of Plant Sciences and Genetics in Agriculture, Robert H Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
120
|
Tripathi DK, Singh VP, Lux A, Vaculik M. Silicon in plant biology: from past to present, and future challenges. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6699-6702. [PMID: 33264414 DOI: 10.1093/jxb/eraa448] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Affiliation(s)
| | - Vijay Pratap Singh
- Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Allahabad, India
| | - Alexander Lux
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Marek Vaculik
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
- Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
121
|
Hodson MJ, Evans DE. Aluminium-silicon interactions in higher plants: an update. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6719-6729. [PMID: 31950161 PMCID: PMC7709911 DOI: 10.1093/jxb/eraa024] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 01/13/2020] [Indexed: 05/04/2023]
Abstract
Aluminium (Al) and silicon (Si) are abundant in soils, but their availability for plant uptake is limited by low solubility. However, Al toxicity is a major problem in naturally occurring acid soils and in soils affected by acidic precipitation. When, in 1995, we reviewed this topic for the Journal of Experimental Botany, it was clear that under certain circumstances soluble Si could ameliorate the toxic effects of Al, an effect mirrored in organisms beyond the plant kingdom. In the 25 years since our review, it has become evident that the amelioration phenomenon occurs in the root apoplast, with the formation of hydroxyaluminosilicates being part of the mechanism. A much better knowledge of the molecular basis for Si and Al uptake by plants and of Al toxicity mechanisms has been developed. However, relating this work to amelioration by Si is at an early stage. It is now clear that co-deposition of Al and Si in phytoliths is a fairly common phenomenon in the plant kingdom, and this may be important in detoxification of Al. Relatively little work on Al-Si interactions in field situations has been done in the last 25 years, and this is a key area for future development.
Collapse
Affiliation(s)
- Martin J Hodson
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Headington, Oxford, UK
| | - David E Evans
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Headington, Oxford, UK
| |
Collapse
|
122
|
Deshmukh R, Sonah H, Belanger RR. New evidence defining the evolutionary path of aquaporins regulating silicon uptake in land plants. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6775-6788. [PMID: 32710120 DOI: 10.1093/jxb/eraa342] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/20/2020] [Indexed: 05/26/2023]
Abstract
Understanding the evolution events defining silicon (Si) uptake in plant species is important for the efficient exploration of Si-derived benefits. In the present study, Si accumulation was studied in 456 diverse plant species grown in uniform field conditions, and in a subset of 151 species grown under greenhouse conditions, allowing efficient comparison among the species. In addition, a systematic analysis of nodulin 26-like intrinsic proteins III (NIP-III), which form Si channels, was performed in >1000 species to trace their evolutionary path and link with Si accumulation. Significant variations in Si accumulation were observed among the plant species studied. For their part, species lacking NIP-IIIs systematically showed low Si accumulation. Interestingly, seven NIP-IIIs were identified in three moss species, namely Physcomitrella patens, Andreaea rupestris, and Scouleria aquatica, indicating that the evolution of NIP-IIIs dates back as early as 515 million years ago. These results were further supported from previous reports of Si deposition in moss fossils estimated to be from around the Ordovician era. The taxonomical distribution provided in the present study will be helpful for several other disciplines, such as palaeoecology and geology, that define the biogeochemical cycling of Si. In addition to the prediction of Si uptake potential of plant species based on sequence information and taxonomical positioning, the evolutionary path of the Si uptake mechanism described here will be helpful to understand the Si environment over the different eras of land plant evolution.
Collapse
Affiliation(s)
- Rupesh Deshmukh
- Département de Phytologie, Faculté des Sciences de l'Agriculture et de l'Alimentation (FSAA), Université Laval, Québec, QC, Canada
- National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - Humira Sonah
- Département de Phytologie, Faculté des Sciences de l'Agriculture et de l'Alimentation (FSAA), Université Laval, Québec, QC, Canada
- National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - Richard R Belanger
- Département de Phytologie, Faculté des Sciences de l'Agriculture et de l'Alimentation (FSAA), Université Laval, Québec, QC, Canada
| |
Collapse
|
123
|
Mandlik R, Thakral V, Raturi G, Shinde S, Nikolić M, Tripathi DK, Sonah H, Deshmukh R. Significance of silicon uptake, transport, and deposition in plants. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6703-6718. [PMID: 32592476 DOI: 10.1093/jxb/eraa301] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 06/20/2020] [Indexed: 05/28/2023]
Abstract
Numerous studies have shown the beneficial effects of silicon (Si) for plant growth, particularly under stress conditions, and hence a detailed understanding of the mechanisms of its uptake, subsequent transport, and accumulation in different tissues is important. Here, we provide a thorough review of our current knowledge of how plants benefit from Si supplementation. The molecular mechanisms involved in Si transport are discussed and we highlight gaps in our knowledge, particularly with regards to xylem unloading and transport into heavily silicified cells. Silicification of tissues such as sclerenchyma, fibers, storage tissues, the epidermis, and vascular tissues are described. Silicon deposition in different cell types, tissues, and intercellular spaces that affect morphological and physiological properties associated with enhanced plant resilience under various biotic and abiotic stresses are addressed in detail. Most Si-derived benefits are the result of interference in physiological processes, modulation of stress responses, and biochemical interactions. A better understanding of the versatile roles of Si in plants requires more detailed knowledge of the specific mechanisms involved in its deposition in different tissues, at different developmental stages, and under different environmental conditions.
Collapse
Affiliation(s)
- Rushil Mandlik
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Vandana Thakral
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Gaurav Raturi
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Suhas Shinde
- Department of Biology and Gus R. Douglass Institute, West Virginia State University, Institute, WV, USA
| | - Miroslav Nikolić
- Plant Nutrition Research Group, Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Durgesh K Tripathi
- Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Noida, UP, India
| | - Humira Sonah
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| |
Collapse
|
124
|
Ahanger MA, Bhat JA, Siddiqui MH, Rinklebe J, Ahmad P. Integration of silicon and secondary metabolites in plants: a significant association in stress tolerance. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6758-6774. [PMID: 32585681 DOI: 10.1093/jxb/eraa291] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/16/2020] [Indexed: 05/03/2023]
Abstract
As sessile organisms, plants are unable to avoid being subjected to environmental stresses that negatively affect their growth and productivity. Instead, they utilize various mechanisms at the morphological, physiological, and biochemical levels to alleviate the deleterious effects of such stresses. Amongst these, secondary metabolites produced by plants represent an important component of the defense system. Secondary metabolites, namely phenolics, terpenes, and nitrogen-containing compounds, have been extensively demonstrated to protect plants against multiple stresses, both biotic (herbivores and pathogenic microorganisms) and abiotic (e.g. drought, salinity, and heavy metals). The regulation of secondary metabolism by beneficial elements such as silicon (Si) is an important topic. Silicon-mediated alleviation of both biotic and abiotic stresses has been well documented in numerous plant species. Recently, many studies have demonstrated the involvement of Si in strengthening stress tolerance through the modulation of secondary metabolism. In this review, we discuss Si-mediated regulation of the synthesis, metabolism, and modification of secondary metabolites that lead to enhanced stress tolerance, with a focus on physiological, biochemical, and molecular aspects. Whilst mechanisms involved in Si-mediated regulation of pathogen resistance via secondary metabolism have been established in plants, they are largely unknown in the case of abiotic stresses, thus leaving an important gap in our current knowledge.
Collapse
Affiliation(s)
| | - Javaid Akhter Bhat
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Manzer H Siddiqui
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, Wuppertal, Germany
- Department of Environment, Energy, and Geoinformatics, Sejong University, Seoul, Republic of Korea
| | - Parvaiz Ahmad
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
- Department of Botany, S.P. College Srinagar, Jammu and Kashmir, India
| |
Collapse
|
125
|
Wang B, Chu C, Wei H, Zhang L, Ahmad Z, Wu S, Xie B. Ameliorative effects of silicon fertilizer on soil bacterial community and pakchoi (Brassica chinensis L.) grown on soil contaminated with multiple heavy metals. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115411. [PMID: 32866868 DOI: 10.1016/j.envpol.2020.115411] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 08/03/2020] [Accepted: 08/08/2020] [Indexed: 06/11/2023]
Abstract
Contamination of soil with heavy metals seriously harms the growth of crops. Silicon fertilizer is known to promote growth of crops and alleviate heavy metals stresses in vegetables. However, little is known about the effects of silicon fertilizer on pakchoi vegetable growth and soil microbial community in soil contaminated with multiple heavy metals. In order to elucidate this question, current study was designed to analyze the impact of different silicon fertilizer doses on the growth of pakchoi, heavy metals accumulation in pakchoi, and diversity and composition of bacterial community in heavy metals contaminated soil. Results of the study showed that, silicon fertilizer application significantly improved the yield of pakchoi and reduced the content of heavy metals in pakchoi. Moreover, the silicon fertilizer led to the heterogeneity of bacterial community structure in soil. Linear discriminant analysis (LDA) effect size (LEfSe) test showed the change of soil bacterial community structures under the higher silicon fertilizer doses (0.8-3.2%). Similarly, soil bacteria associated with heavy metal resistance and carbon/nitrogen metabolism showed a more active response to medium fertilizer dose (0.8% w/w). In addition, Mantel test and Redundancy analysis (RDA) showed that both the soil bacterial community structures and pakchoi growth were significantly correlated with soil EC, available K and pH. Study suggested that the application of silicon fertilizer provided richer bacteria associated with heavy metal resistance and plant growth, and more favorable soil physicochemical environment for the growth of pakchoi under multiple heavy metal contamination, and the impact was dependent on fertilizing dose.
Collapse
Affiliation(s)
- Binghan Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Science, East China Normal University, Shanghai, 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China; Eco-environmental Protection Institute of Shanghai Academy of Agricultural Science, Shanghai, 201403, China
| | - Changbin Chu
- Eco-environmental Protection Institute of Shanghai Academy of Agricultural Science, Shanghai, 201403, China
| | - Huawei Wei
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Science, East China Normal University, Shanghai, 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Liangmao Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Science, East China Normal University, Shanghai, 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Zahoor Ahmad
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Science, East China Normal University, Shanghai, 200241, China; Department of Soil Science, The University of Haripur, Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Shuhang Wu
- Eco-environmental Protection Institute of Shanghai Academy of Agricultural Science, Shanghai, 201403, China
| | - Bing Xie
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Science, East China Normal University, Shanghai, 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
126
|
Jian H, Gao Y, Yang F, Li J, Zhang Q, Wang C, Sun H. Effects of tourmaline catalyzed Fenton-like combined with bioremediation on the migration of PBDEs in soil-plant systems: Soil properties and physiological response of lettuce and selective uptake of PBDEs. CHEMOSPHERE 2020; 260:127668. [PMID: 32758779 DOI: 10.1016/j.chemosphere.2020.127668] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 07/04/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
A series of pollutants can be removed from soil using a Fenton-like oxidation and biological treatment. As a natural mineral, tourmaline has been used for as a material of Fenton-like reaction. In the present study, the risks of remediation technology tourmaline catalyzed Fenton-like reaction (TCFR) combined with Phanerochaete chrysosporium (TCFR + P) were assessed through measuring soil properties, physiological response of plant, and PBDEs migration from soil to plant. Batch pot experiments showed that the silicon contents, specific surface area and soil pore size of soil in TCFR and 5%TCFR + P groups increased obviously. TCFR and TCFR + P treatments promoted the lettuce growth compared to control. Moreover, chlorophyll content of lettuce in 2%TCFR + P and 5%TCFR + P group increased by 46.74% and 44.57% than that in the CK, respectively. The treatment of 2%TCFR decreased the total concentration of PBDEs in rhizosphere soil and non-rhizosphere soil by 52.0.2% and 64.17%, respectively, after 60 days compared to the soil of CK, and did not prompt the uptake of lower-brominated PBDEs by lettuce. TCFR and TCFR + P can alter the migration of BDE isomers from soil to plant, the ratio of BDE99/BDE100 in lettuce shoots decreased slightly. BDE-99/BDE-100 ratios in the shoots were lower than those in the roots, while BDE153/BDE154 ratios were higher than 1.0 and ratios in shoots were higher than those in roots. Therefore, our findings illustrated that the TCFR could be applied to remediate the agricultural soil, considering the appropriate doses of tourmaline.
Collapse
Affiliation(s)
- Hongxian Jian
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, PR China
| | - Yue Gao
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, PR China
| | - Fang Yang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, PR China
| | - Jing Li
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, PR China
| | - Qi Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, PR China
| | - Cuiping Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, PR China.
| | - Hongwen Sun
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, PR China
| |
Collapse
|
127
|
Biru FN, Cazzonelli CI, Elbaum R, Johnson SN. Contrasting effects of Miocene and Anthropocene levels of atmospheric CO 2 on silicon accumulation in a model grass. Biol Lett 2020; 16:20200608. [PMID: 33232651 DOI: 10.1098/rsbl.2020.0608] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Grasses are hyper-accumulators of silicon (Si), which they acquire from the soil and deposit in tissues to resist environmental stresses. Given the high metabolic costs of herbivore defensive chemicals and structural constituents (e.g. cellulose), grasses may substitute Si for these components when carbon is limited. Indeed, high Si uptake grasses evolved in the Miocene when atmospheric CO2 concentration was much lower than present levels. It is, however, unknown how pre-industrial CO2 concentrations affect Si accumulation in grasses. Using Brachypodium distachyon, we hydroponically manipulated Si-supply (0.0, 0.5, 1, 1.5, 2 mM) and grew plants under Miocene (200 ppm) and Anthropocene levels of CO2 comprising ambient (410 ppm) and elevated (640 ppm) CO2 concentrations. We showed that regardless of Si treatments, the Miocene CO2 levels increased foliar Si concentrations by 47% and 56% relative to plants grown under ambient and elevated CO2, respectively. This is owing to higher accumulation overall, but also the reallocation of Si from the roots into the shoots. Our results suggest that grasses may accumulate high Si concentrations in foliage when carbon is less available (i.e. pre-industrial CO2 levels) but this is likely to decline under future climate change scenarios, potentially leaving grasses more susceptible to environmental stresses.
Collapse
Affiliation(s)
- Fikadu N Biru
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, New South Wales 2751, Australia.,College of Agriculture and Veterinary Medicine, Jimma University, Jimma 307, Ethiopia
| | - Christopher I Cazzonelli
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, New South Wales 2751, Australia
| | - Rivka Elbaum
- R H Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Scott N Johnson
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, New South Wales 2751, Australia
| |
Collapse
|
128
|
Caubet M, Cornu S, Saby NPA, Meunier JD. Agriculture increases the bioavailability of silicon, a beneficial element for crop, in temperate soils. Sci Rep 2020; 10:19999. [PMID: 33203877 PMCID: PMC7672074 DOI: 10.1038/s41598-020-77059-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 10/15/2020] [Indexed: 11/22/2022] Open
Abstract
Crops may take benefits from silicon (Si) uptake in soil. Plant available Si (PAS) can be affected by natural weathering processes or by anthropogenic forces such as agriculture. The soil parameters that control the pool of PAS are still poorly documented, particularly in temperate climates. In this study, we documented PAS in France, based on statistical analysis of Si extracted by CaCl2 (SiCaCl2) and topsoil characteristics from an extensive dataset. We showed that cultivation increased SiCaCl2 for soils developed on sediments, that cover 73% of France. This increase is due to liming for non-carbonated soils on sediments that are slightly acidic to acidic when non-cultivated. The analysis performed on non-cultivated soils confirmed that SiCaCl2 increased with the < 2 µm fraction and pH but only for soils with a < 2 µm fraction ranging from 50 to 325 g kg-1. This increase may be explained by the < 2 µm fraction mineralogy, i.e. nature of the clay minerals and iron oxide content. Finally, we suggest that 4% of French soils used for wheat cultivation could be deficient in SiCaCl2.
Collapse
Affiliation(s)
- M Caubet
- INRAE, Infosol, US 1106, Orléans, France
| | - S Cornu
- Aix-Marseille Univ, CNRS, IRD, Coll de France, INRAE, CEREGE, Aix-en-Provence, France.
| | - N P A Saby
- INRAE, Infosol, US 1106, Orléans, France
| | - J-D Meunier
- Aix-Marseille Univ, CNRS, IRD, Coll de France, INRAE, CEREGE, Aix-en-Provence, France
| |
Collapse
|
129
|
Gómez-Merino FC, Trejo-Téllez LI, García-Jiménez A, Escobar-Sepúlveda HF, Ramírez-Olvera SM. Silicon flow from root to shoot in pepper: a comprehensive in silico analysis reveals a potential linkage between gene expression and hormone signaling that stimulates plant growth and metabolism. PeerJ 2020; 8:e10053. [PMID: 33194376 PMCID: PMC7648454 DOI: 10.7717/peerj.10053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 09/07/2020] [Indexed: 12/24/2022] Open
Abstract
Background Silicon (Si) is categorized as a quasi-essential element for plants thanks to the benefits on growth, development and metabolism in a hormetic manner. Si uptake is cooperatively mediated by Lsi1 and Lsi2. Nevertheless, Lsi channels have not yet been identified and characterized in pepper (Capsicum annuum), while genes involved in major physiological processes in pepper are Si-regulated. Furthermore, Si and phytohormones may act together in regulating plant growth, metabolism and tolerance against stress. Our aim was to identify potential synergies between Si and phytohormones stimulating growth and metabolism in pepper, based on in silico data. Methods We established a hydroponic system to test the effect of Si (0, 60, 125 and 250 mg L−1 Si) on the concentrations of this element in different pepper plant tissues. We also performed an in silico analysis of putative Lsi genes from pepper and other species, including tomato (Solanum lycopersicum), potato (Solanum tuberosum) and Arabidopsis thaliana, to look for cis-acting elements responsive to phytohormones in their promoter regions. With the Lsi1 and Lsi2 protein sequences from various plant species, we performed a phylogenetic analysis. Taking into consideration the Lsi genes retrieved from tomato, potato and Arabidopsis, an expression profiling analysis in different plant tissues was carried out. Expression of Si-regulated genes was also analyzed in response to phytohormones and different plant tissues and developmental stages in Arabidopsis. Results Si concentrations in plant tissues exhibited the following gradient: roots > stems > leaves. We were able to identify 16 Lsi1 and three Lsi2 genes in silico in the pepper genome, while putative Lsi homologs were also found in other plant species. They were mainly expressed in root tissues in the genomes analyzed. Both Lsi and Si-regulated genes displayed cis-acting elements responsive to diverse phytohormones. In Arabidopsis, Si-regulated genes were transcriptionally active in most tissues analyzed, though at different expressed levels. From the set of Si-responsive genes, the NOCS2 gene was highly expressed in germinated seeds, whereas RABH1B, and RBCS-1A, were moderately expressed in developed flowers. All genes analyzed showed responsiveness to phytohormones and phytohormone precursors. Conclusion Pepper root cells are capable of absorbing Si, but small amounts of this element are transported to the upper parts of the plant. We could identify putative Si influx (Lsi1) and efflux (Lsi2) channels that potentially participate in the absorption and transport of Si, since they are mainly expressed in roots. Both Lsi and Si-regulated genes exhibit cis-regulatory elements in their promoter regions, which are involved in phytohormone responses, pointing to a potential connection among Si, phytohormones, plant growth, and other vital physiological processes triggered by Si in pepper.
Collapse
Affiliation(s)
- Fernando Carlos Gómez-Merino
- Department of Soil Science, Laboratory of Plant Nutrition, College of Postgraduates in Agricultural Sciences, Texcoco, State of Mexico, Mexico
| | - Libia Iris Trejo-Téllez
- Department of Soil Science, Laboratory of Plant Nutrition, College of Postgraduates in Agricultural Sciences, Texcoco, State of Mexico, Mexico
| | - Atonaltzin García-Jiménez
- Department of Plant Physiology, College of Postgraduates in Agricultural Sciences, Texcoco, State of Mexico, Mexico
| | | | | |
Collapse
|
130
|
Waterman JM, Hall CR, Mikhael M, Cazzonelli CI, Hartley SE, Johnson SN. Short‐term resistance that persists: Rapidly induced silicon anti‐herbivore defence affects carbon‐based plant defences. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13702] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jamie M. Waterman
- Hawkesbury Institute for the EnvironmentWestern Sydney University Richmond NSW Australia
| | - Casey R. Hall
- Hawkesbury Institute for the EnvironmentWestern Sydney University Richmond NSW Australia
| | - Meena Mikhael
- School of Medicine Western Sydney University Campbelltown NSW Australia
| | | | | | - Scott N. Johnson
- Hawkesbury Institute for the EnvironmentWestern Sydney University Richmond NSW Australia
| |
Collapse
|
131
|
Verma KK, Wu KC, Verma CL, Li DM, Malviya MK, Singh RK, Singh P, Chen GL, Song XP, Li YR. Developing mathematical model for diurnal dynamics of photosynthesis in Saccharum officinarum responsive to different irrigation and silicon application. PeerJ 2020; 8:e10154. [PMID: 33194396 PMCID: PMC7597626 DOI: 10.7717/peerj.10154] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/21/2020] [Indexed: 01/30/2023] Open
Abstract
In the dynamic era of climate change, agricultural farming systems are facing various unprecedented problems worldwide. Drought stress is one of the serious abiotic stresses that hinder the growth potential and crop productivity. Silicon (Si) can improve crop yield by enhancing the efficiency of inputs and reducing relevant losses. As a quasi-essential element and the 2nd most abundant element in the Earth's crust, Si is utilized by plants and applied exogenously to combat drought stress and improve plant performance by increasing physiological, cellular and molecular responses. However, the physiological mechanisms that respond to water stress are still not well defined in Saccharum officinarum plants. To the best of our knowledge, the dynamics of photosynthesis responsive to different exogenous Si levels in Saccharum officinarum has not been reported to date. The current experiment was carried out to assess the protective role of Si in plant growth and photosynthetic responses in Saccharum officinarum under water stress conditions. Saccharum officinarum cv. 'GT 42' plants were subjected to drought stress conditions (80-75%, 55-50% and 35-30% of soil moisture) after ten weeks of normal growth, followed by the soil irrigation of Si (0, 100, 300 and 500 mg L-1) for 8 weeks. The results indicated that Si addition mitigated the inhibition in Saccharum officinarum growth and photosynthesis, and improved biomass accumulation during water stress. The photosynthetic responses (photosynthesis, transpiration and stomatal conductance) were found down-regulated under water stress, and it was significantly enhanced by Si application. No phytotoxic effects were monitored even at excess (500 mg L-1). Soil irrigation of 300 mg L-1 of Si was more effective as 100 and 500 mg L-1 under water stress condition. It is concluded that the stress in Saccharum officinarum plants applied with Si was alleviated by improving plant fitness, photosynthetic capacity and biomass accumulation as compared with the control. Thus, this study offers new information towards the assessment of growth, biomass accumulation and physiological changes related to water stress with Si application in plants.
Collapse
Affiliation(s)
- Krishan K. Verma
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Kai-Chao Wu
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Chhedi Lal Verma
- Central Soil Salinity Research Institute (RRS), Lucknow, Uttar Pradesh, India
| | - Dong-Mei Li
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Mukesh Kumar Malviya
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Rajesh Kumar Singh
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Pratiksha Singh
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Gan-Lin Chen
- Institute of Biotechnology, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Xiu Peng Song
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Yang Rui Li
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| |
Collapse
|
132
|
Cibils-Stewart X, Powell JR, Popay AJ, Lattanzi FA, Hartley SE, Johnson SN. Reciprocal Effects of Silicon Supply and Endophytes on Silicon Accumulation and Epichloë Colonization in Grasses. FRONTIERS IN PLANT SCIENCE 2020; 11:593198. [PMID: 33193551 PMCID: PMC7652995 DOI: 10.3389/fpls.2020.593198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/07/2020] [Indexed: 06/11/2023]
Abstract
Cool season grasses associate asymptomatically with foliar Epichloë endophytic fungi in a symbiosis where Epichloë spp. protects the plant from a number of biotic and abiotic stresses. Furthermore, many grass species can accumulate large quantities of silicon (Si), which also alleviates a similar range of stresses. While Epichloë endophytes may improve uptake of minerals and nutrients, their impact on Si is largely unknown. Likewise, the effect of Si availability on Epichloë colonization remains untested. To assess the bidirectional relationship, we grew tall fescue (Festuca arundinacea) and perennial ryegrass (Lolium perenne) hydroponically with or without Si. Grasses were associated with five different Epichloë endophyte strains [tall fescue: AR584 or wild type (WT); perennial ryegrass: AR37, AR1, or WT] or as Epichloë-free controls. Reciprocally beneficial effects were observed for tall fescue associations. Specifically, Epichloë presence increased Si concentration in the foliage of tall fescue by at least 31%, regardless of endophyte strain. In perennial ryegrass, an increase in foliar Si was observed only for plants associated with the AR37. Epichloë promotion of Si was (i) independent of responses in plant growth, and (ii) positively correlated with endophyte colonization, which lends support to an endophyte effect independent of their impacts on root growth. Moreover, Epichloë colonization in tall fescue increased by more than 60% in the presence of silicon; however, this was not observed in perennial ryegrass. The reciprocal benefits of Epichloë-endophytes and foliar Si accumulation reported here, especially for tall fescue, might further increase grass tolerance to stress.
Collapse
Affiliation(s)
- Ximena Cibils-Stewart
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
- Instituto Nacional de Investigación Agropecuaria, Colonia, Uruguay
| | - Jeff R. Powell
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | | | | | - Sue Elaine Hartley
- Department of Animal and Plant Sciences, The University of Sheffield, Sheffield, United Kingdom
| | - Scott Nicholas Johnson
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| |
Collapse
|
133
|
Gaur S, Kumar J, Kumar D, Chauhan DK, Prasad SM, Srivastava PK. Fascinating impact of silicon and silicon transporters in plants: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 202:110885. [PMID: 32650140 DOI: 10.1016/j.ecoenv.2020.110885] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 05/06/2023]
Abstract
Silicon (Si) is a metalloid which is gaining worldwide attention of plant scientists due to its ameliorating impact on plants' growth and development. The beneficial response of Si is observed predominantly under numerous abiotic and biotic stress conditions. However, under favorable conditions, most of the plant can grow without it. Therefore, Si has yet not been fully accepted as essential element rather it is being considered as quasi-essential for plants' growth. Si is also known to enhance resilience in plants by reducing the plant's stress. Besides its second most abundance on the earth crust, most of the soils lack plant available form of Si i.e. silicic acid. In this regard, understanding the role of Si in plant metabolism, its uptake from roots and transport to aerial tissues along with its ionomics and proteomics under different circumstances is of great concern. Plants have evolved a well-optimized Si-transport system including various transporter proteins like Low silicon1 (Lsi1), Low silicon2 (Lsi2), Low silicon3 (Lsi3) and Low silicon6 (Lsi6) at specific sub-cellular locations along with the expression profiling that creates precisely coordinated network among these transporters, which also facilitate uptake and accumulation of Si. Though, an ample amount of information is available pertinent to the solute specificity, active sites, transcriptional and post-transcriptional regulation of these transporter genes. Similarly, the information regarding transporters involved in Si accumulation in different organelles is also available particularly in silica cells occurred in poales. But in this review, we have attempted to compile studies related to plants vis à vis Si, its role in abiotic and biotic stress, its uptake in various parts of plants via different types of Si-transporters, expression pattern, localization and the solute specificity. Besides these, this review will also provide the compiled knowledge about the genetic variation among crop plants vis à vis enhanced Si uptake and related benefits.
Collapse
Affiliation(s)
- Shweta Gaur
- DD Pant Interdisciplinary Research Laboratory, Department of Botany, University of Allahabad, Prayagraj, U.P, 211002, India.
| | - Jitendra Kumar
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Prayagraj, U.P, 211002, India; Institute of Engineering and Technology, Dr. Shakuntla Misra National Rehabilitation University, Mohaan Road, Lucknow, U.P, 226017, India.
| | - Dharmendra Kumar
- DD Pant Interdisciplinary Research Laboratory, Department of Botany, University of Allahabad, Prayagraj, U.P, 211002, India
| | - Devendra Kumar Chauhan
- DD Pant Interdisciplinary Research Laboratory, Department of Botany, University of Allahabad, Prayagraj, U.P, 211002, India.
| | - Sheo Mohan Prasad
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Prayagraj, U.P, 211002, India.
| | - Prabhat Kumar Srivastava
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Prayagraj, U.P, 211002, India; Department of Botany, KS Saket PG College, Ayodhya U.P, 224123., India.
| |
Collapse
|
134
|
Wang Y, Zhang K, Lu L, Xiao X, Chen B. Novel insights into effects of silicon-rich biochar (Sichar) amendment on cadmium uptake, translocation and accumulation in rice plants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114772. [PMID: 32454359 DOI: 10.1016/j.envpol.2020.114772] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 06/11/2023]
Abstract
The effects and mechanisms of biochars with different silicon (Si) contents on Cadmium (Cd) uptake, translocation and accumulation in rice plants are not fully understood. Herein, we report a pot study to disentangle the interaction mechanisms of Si-rich biochars (Sichar RH300, RH700) and Si-deficient biochars (WB300, WB700) with high-Si soil (HSS) and low-Si soil (LSS) on Cadmium (Cd) and Si accumulation in rice (including grains, straw, and roots). Sichar was found to be better than Si-deficient biochars in reducing Cd uptake and accumulation in rice, and RH300 amendment was better than the RH700 treatment. The surface complexation of Cd with carboxyl groups and Si from biochar led Cd immobilization in soil, as portrayed by Fourier transformed infrared spectroscopy and X-ray photoelectron spectroscopy. The high Si content of biochars indicates a relatively lower bioaccumulation factor and translocation factor of Cd. The Sichar (e.g., RH300) treatment significantly increases the silicon concentration in rice (including grains, straw, and roots), but the Si concentrations of rice grains and roots decrease with WB700-amended LSS. Negative correlations between the concentrations of rice Si and Cd were observed, which could be related to lower expression as observed by Si transport genes (Lsi1 and Lsi3) in rice by Sichar amendment. These findings suggest that the Si released from Sichars can reduce the gene expression of Si transport channel of rice roots and inhibit the transport channel of Si, thus thereby inhibiting the Cd uptake, probably due to the utilization of same channel for Cd and Si. Integrative mechanisms of Sichar (RH300 and RH700) reduced Cd plant accumulation can be proposed by soil immobilization, inhibition of root transport, and prevention of plant translocation.
Collapse
Affiliation(s)
- Yaofeng Wang
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang, 310058, China; College of Grassland and Environmental Science, Xinjiang Agricultural University, Urumqi, Xinjiang, 830052, China
| | - Kun Zhang
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang, 310058, China
| | - Lun Lu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang, 310058, China
| | - Xin Xiao
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang, 310058, China
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
135
|
Sheng H, Chen S. Plant silicon-cell wall complexes: Identification, model of covalent bond formation and biofunction. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:13-19. [PMID: 32736240 DOI: 10.1016/j.plaphy.2020.07.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 05/10/2023]
Abstract
Silicon (Si) is the second most abundant element on earth crust, consisting primarily of silicate minerals. Si is found in the tissues of almost all terrestrial plants and is mostly deposited in specialized cells or cell walls as amorphous silica. Numerous discoveries have shown that in addition to non-covalent interactions through amorphous silica, Si can form covalent bonds with plant cell wall components such as hemicelluloses, pectin and lignin. The covalent bonds may be formed via Si-O-C linkages between monosilicic acid (H4SiO4) and cis-diols of cell wall polysaccharides or lignin. The covalently bound organosilicon, independent of amorphous inorganic silica, may play a crucial role in plant cell wall structure and remodeling and thus plant growth and its resistance against biotic and abiotic stresses. This review discusses the existing research on the discovery of plant silicon-cell wall complexes and proposes a model of their covalent bond formation and biofunction.
Collapse
Affiliation(s)
- Huachun Sheng
- Biomass Energy Center for Arid and Semi-Arid Lands, Northwest A&F University, Yangling, Shaanxi, 712100, PR China; College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, PR China.
| | - Shaolin Chen
- Biomass Energy Center for Arid and Semi-Arid Lands, Northwest A&F University, Yangling, Shaanxi, 712100, PR China; College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, PR China; Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China.
| |
Collapse
|
136
|
Mohamed Sh M, Mahmoud Yo AES, Ahmed Bakr B, Safwat El- HM, Abd El-Moh A. Potential Impacts of Carbon Tube and Silicon Oxide Nanoparticles on Growth, Yield and Antioxidant System of Soybean Plant. ASIAN JOURNAL OF PLANT SCIENCES 2020; 19:495-507. [DOI: 10.3923/ajps.2020.495.507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
137
|
The DROOPING LEAF (DR) gene encoding GDSL esterase is involved in silica deposition in rice (Oryza sativa L.). PLoS One 2020; 15:e0238887. [PMID: 32913358 PMCID: PMC7482962 DOI: 10.1371/journal.pone.0238887] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/25/2020] [Indexed: 11/19/2022] Open
Abstract
Leaf morphology is one of the most important agronomic traits in rice breeding because of its contribution to crop yield. The drooping leaf (dr) mutant was developed from the Ilpum rice cultivar by ethyl methanesulfonate (EMS) mutagenesis. Compared with the wild type, dr plants exhibited drooping leaves accompanied by a small midrib, short panicle, and reduced plant height. The phenotype of the dr plant was caused by a mutation within a single recessive gene on chromosome 2, dr (LOC_Os02g15230), which encodes a GDSL esterase. Analysis of wild-type and dr sequences revealed that the dr allele carried a single nucleotide substitution, glycine to aspartic acid. RNAi targeted to LOC_Os02g15230 produced same phenotypes to the dr mutation, confirming LOC_Os02g15230 as the dr gene. Microscopic observations and plant nutrient analysis of SiO2 revealed that silica was less abundant in dr leaves than in wild-type leaves. This study suggests that the dr gene is involved in the regulation of silica deposition and that disruption of silica processes lead to drooping leaf phenotypes.
Collapse
|
138
|
Affiliation(s)
- Joanna Carey
- Division of Math & Science, Babson College, Wellesley, MA 02481, USA.
| |
Collapse
|
139
|
Vieira Filho LO, Monteiro FA. Silicon modulates copper absorption and increases yield of Tanzania guinea grass under copper toxicity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:31221-31232. [PMID: 32488716 DOI: 10.1007/s11356-020-09337-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 05/18/2020] [Indexed: 05/04/2023]
Abstract
Silicon (Si) is a beneficial element which was proven to enhance the tolerance of plants to excess metal in a given growth medium. However, the efficacy of Si in mitigating Cu toxicity in plants can vary between plant species and with the amount of copper (Cu) present in the soil/medium. An experiment was performed to investigate the role of Si in alleviating Cu toxicity in Tanzania guinea grass (Panicum maximum cv. Tanzania). The experimental design consisted on complete random blocks with tree replicates containing three Si rates (0, 1, and 3 mmol L-1) and four Cu rates (0.3, 250, 500, and 750 μmol L-1). The grass was grown for 62 days in a greenhouse under hydroponic conditions, with a total of 36 pots. Thirteen days after sowing, seedlings were transplanted to pots and grown for further 25 days, and then exposed to the set Cu rates for 7 days. The plants were also evaluated more for 30 days after the first harvesting. The results confirmed that the Si supply to Tanzania guinea grass can alleviate the effects of excessive Cu. Plant yield increased with Si supply and decreased with the increment of Cu rates in both growth periods. Copper concentration in diagnostic leaves (DL) and in roots, and Cu content in shoots and roots were higher in plants exposed to Cu of 750 μmol L-1 with no Si application than in other combinations. Besides reducing Cu concentration in plant tissues, the most important Si role was reducing the transport of Cu from roots to shoots, which allowed successive harvesting. Graphical abstract.
Collapse
Affiliation(s)
- Leandro Otavio Vieira Filho
- "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, 13418-900, Brazil
- Range Cattle Research and Education Center, University of Florida, Ona, 33865, USA
| | | |
Collapse
|
140
|
Hao Q, Yang S, Song Z, Li Z, Ding F, Yu C, Hu G, Liu H. Silicon Affects Plant Stoichiometry and Accumulation of C, N, and P in Grasslands. FRONTIERS IN PLANT SCIENCE 2020; 11:1304. [PMID: 33013953 PMCID: PMC7493684 DOI: 10.3389/fpls.2020.01304] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 08/11/2020] [Indexed: 05/25/2023]
Abstract
Silicon (Si) plays an important role in improving soil nutrient availability and plant carbon (C) accumulation and may therefore impact the biogeochemical cycles of C, nitrogen (N), and phosphorus (P) in terrestrial ecosystems profoundly. However, research on this process in grassland ecosystems is scarce, despite the fact that these ecosystems are one of the most significant accumulators of biogenic Si (BSi). In this study, we collected the aboveground parts of four widespread grasses and soil profile samples in northern China and assessed the correlations between Si concentrations and stoichiometry and accumulation of C, N, and P in grasses at the landscape scale. Our results showed that Si concentrations in plants were significantly negatively correlated (p < 0.01) with associated C concentrations. There was no significant correlation between Si and N concentrations. It is worth noting that since the Si concentration increased, the P concentration increased from less than 0.10% to more than 0.20% and therefore C:P and N:P ratios decreased concomitantly. Besides, the soil noncrystalline Si played more important role in C, N, and P accumulation than other environmental factors (e.g., MAT, MAP, and altitude). These findings indicate that Si may facilitate grasses in adjusting the utilization of nutrients (C, N, and P) and may particularly alleviate P deficiency in grasslands. We conclude that Si positively alters the concentrations and accumulation of C, N, and P likely resulting in the variation of ecological stoichiometry in both vegetation and litter decomposition in soils. This study further suggests that the physiological function of Si is an important but overlooked factor in influencing biogeochemical cycles of C and P in grassland ecosystems.
Collapse
Affiliation(s)
- Qian Hao
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, China
| | - Shilei Yang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, China
| | - Zhaoliang Song
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, China
| | - Zichuan Li
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, China
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou, China
| | - Fan Ding
- College of Land and Environment, Shenyang Agriculture University, Shenyang, China
| | - Changxun Yu
- Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Guozheng Hu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongyan Liu
- College of Urban and Environmental Sciences, Peking University, Peking, China
| |
Collapse
|
141
|
Agrafioti P, Faliagka S, Lampiri E, Orth M, Pätzel M, Katsoulas N, Athanassiou CG. Evaluation of Silica-Coated Insect Proof Nets for the Control of Aphis fabae, Sitophilus oryzae, and Tribolium confusum. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1658. [PMID: 32847010 PMCID: PMC7557586 DOI: 10.3390/nano10091658] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/14/2020] [Accepted: 08/18/2020] [Indexed: 12/18/2022]
Abstract
Insect proof nets are widely used in agriculture as mechanical and physical barriers to regulate pest populations in a greenhouse. However, their integration in the greenhouse ventilation openings is highly associated with the decrease of air flow and the adequate ventilation. Thus, there is need for alternative pest management tools that do not impair adequate ventilation. In the present study, we tested four net formulations of relatively large mesh size coated with SiO2 nanoparticles, namely, ED3, ED3-P, ED5, and ED5-P to evaluate their insecticidal properties against adults of Aphis fabae and Sitophilus oryzae and larvae of Tribolium confusum. ED3 and ED5 nets were coated with SiO2 nanoparticles of different diameter, while in the case of ED3-P and ED5-P, paraffin was added to increase the mass of the deposited particles on the net's surface. In the first series of bioassays, the knockdown and mortality rates of these species were evaluated after exposure to the aforementioned net formulations for 5, 10, 15, 20, 25, 30, 60, 90, and 180 min. In the second series of bioassays, knockdown and mortality of these species were recorded after 1, 7, and 10 days of post-exposure to the nets for different time intervals (15, 30, and 60 min). Based on our results, all nets significantly affected A. fabae, since all insects were dead at the 1-day post-exposure period to the silica-treated nets. Conversely, at the same interval, no effect on either S. oryzae adults or T. confusum larvae was observed. However, in the case of S. oryzae, the efficacy of all nets reached 100% 7 days after the exposure, even for adults that had been initially exposed for 15 min to the treated nets. Among the species tested, T. confusum larvae exhibited the lowest mortality rate, which did not exceed 34% at the 10 days of post-exposure interval. Our work underlines the efficacy of treated nets in pest management programs, under different application scenarios, at the pre- and post-harvest stages of agricultural commodities.
Collapse
Affiliation(s)
- Paraskevi Agrafioti
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Phytokou str., 38446 Volos, Magnesia, Greece; (E.L.); (C.G.A.)
| | - Sofia Faliagka
- Laboratory of Agricultural Constructions and Environmental Control, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Phytokou Street, 38446 Volos Magnesia, Greece; (S.F.); (N.K.)
| | - Evagelia Lampiri
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Phytokou str., 38446 Volos, Magnesia, Greece; (E.L.); (C.G.A.)
| | - Merle Orth
- Institut für Textiltechnik der RWTH Aachen University, Otto-Blumenthal-St. 1, 52074 Aachen, Germany; (M.O.); (M.P.)
| | - Mark Pätzel
- Institut für Textiltechnik der RWTH Aachen University, Otto-Blumenthal-St. 1, 52074 Aachen, Germany; (M.O.); (M.P.)
| | - Nikolaos Katsoulas
- Laboratory of Agricultural Constructions and Environmental Control, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Phytokou Street, 38446 Volos Magnesia, Greece; (S.F.); (N.K.)
| | - Christos G. Athanassiou
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Phytokou str., 38446 Volos, Magnesia, Greece; (E.L.); (C.G.A.)
| |
Collapse
|
142
|
Thorne SJ, Hartley SE, Maathuis FJM. Is Silicon a Panacea for Alleviating Drought and Salt Stress in Crops? FRONTIERS IN PLANT SCIENCE 2020; 11:1221. [PMID: 32973824 PMCID: PMC7461962 DOI: 10.3389/fpls.2020.01221] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/27/2020] [Indexed: 05/04/2023]
Abstract
Salinity affects around 20% of all arable land while an even larger area suffers from recurrent drought. Together these stresses suppress global crop production by as much as 50% and their impacts are predicted to be exacerbated by climate change. Infrastructure and management practices can mitigate these detrimental impacts, but are costly. Crop breeding for improved tolerance has had some success but is progressing slowly and is not keeping pace with climate change. In contrast, Silicon (Si) is known to improve plant tolerance to a range of stresses and could provide a sustainable, rapid and cost-effective mitigation method. The exact mechanisms are still under debate but it appears Si can relieve salt stress via accumulation in the root apoplast where it reduces "bypass flow of ions to the shoot. Si-dependent drought relief has been linked to lowered root hydraulic conductance and reduction of water loss through transpiration. However, many alternative mechanisms may play a role such as altered gene expression and increased accumulation of compatible solutes. Oxidative damage that occurs under stress conditions can be reduced by Si through increased antioxidative enzymes while Si-improved photosynthesis has also been reported. Si fertilizer can be produced relatively cheaply and to assess its economic viability to improve crop stress tolerance we present a cost-benefit analysis. It suggests that Si fertilization may be beneficial in many agronomic settings but may be beyond the means of smallholder farmers in developing countries. Si application may also have disadvantages, such as increased soil pH, less efficient conversion of crops into biofuel and reduced digestibility of animal fodder. These issues may hamper uptake of Si fertilization as a routine agronomic practice. Here, we critically evaluate recent literature, quantifying the most significant physiological changes associated with Si in plants under drought and salinity stress. Analyses show that metrics associated with photosynthesis, water balance and oxidative stress all improve when Si is present during plant exposure to salinity and drought. We further conclude that most of these changes can be explained by apoplastic roles of Si while there is as yet little evidence to support biochemical roles of this element.
Collapse
Affiliation(s)
- Sarah J. Thorne
- Department of Biology, University of York, York, United Kingdom
| | - Susan E. Hartley
- Department of Biology, University of Sheffield, Sheffield, United Kingdom
| | | |
Collapse
|
143
|
Petkowski JJ, Bains W, Seager S. On the Potential of Silicon as a Building Block for Life. Life (Basel) 2020; 10:E84. [PMID: 32532048 PMCID: PMC7345352 DOI: 10.3390/life10060084] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 12/21/2022] Open
Abstract
Despite more than one hundred years of work on organosilicon chemistry, the basis for the plausibility of silicon-based life has never been systematically addressed nor objectively reviewed. We provide a comprehensive assessment of the possibility of silicon-based biochemistry, based on a review of what is known and what has been modeled, even including speculative work. We assess whether or not silicon chemistry meets the requirements for chemical diversity and reactivity as compared to carbon. To expand the possibility of plausible silicon biochemistry, we explore silicon's chemical complexity in diverse solvents found in planetary environments, including water, cryosolvents, and sulfuric acid. In no environment is a life based primarily around silicon chemistry a plausible option. We find that in a water-rich environment silicon's chemical capacity is highly limited due to ubiquitous silica formation; silicon can likely only be used as a rare and specialized heteroatom. Cryosolvents (e.g., liquid N2) provide extremely low solubility of all molecules, including organosilicons. Sulfuric acid, surprisingly, appears to be able to support a much larger diversity of organosilicon chemistry than water.
Collapse
Affiliation(s)
- Janusz Jurand Petkowski
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge, MA 02139, USA; (W.B.); (S.S.)
| | - William Bains
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge, MA 02139, USA; (W.B.); (S.S.)
| | - Sara Seager
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge, MA 02139, USA; (W.B.); (S.S.)
- Department of Physics, Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge, MA 02139, USA
- Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge, MA 02139, USA
| |
Collapse
|
144
|
Trejo-Téllez LI, García-Jiménez A, Escobar-Sepúlveda HF, Ramírez-Olvera SM, Bello-Bello JJ, Gómez-Merino FC. Silicon induces hormetic dose-response effects on growth and concentrations of chlorophylls, amino acids and sugars in pepper plants during the early developmental stage. PeerJ 2020; 8:e9224. [PMID: 32551195 PMCID: PMC7292026 DOI: 10.7717/peerj.9224] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 04/30/2020] [Indexed: 01/01/2023] Open
Abstract
Background Silicon (Si) is a beneficial element that has been proven to influence plant responses including growth, development and metabolism in a hormetic manner. Methods In the present study, we evaluated the effect of Si on the growth and concentrations of chlorophylls, total amino acids, and total sugars of pepper plants (Capsicum annuum L.) during the early developmental stage in a hydroponic system under conventional (unstressed) conditions. We tested four Si concentrations (applied as calcium silicate): 0, 60, 125 and 250 mg L-1, and growth variables were measured 7, 14, 21 and 28 days after treatment (dat), while biochemical variables were recorded at the end of the experiment, 28 dat. Results The application of 125 mg L-1 Si improved leaf area, fresh and dry biomass weight in leaves and stems, total soluble sugars, and concentrations of chlorophylls a and b in both leaves and stems. The amino acids concentration in leaves and roots, as well as the stem diameter were the highest in plants treated with 60 mg L-1 Si. Nevertheless, Si applications reduced root length, stem diameter and total free amino acids in leaves and stems, especially when applied at the highest concentration (i.e., 250 mg L-1 Si). Conclusion The application of Si has positive effects on pepper plants during the early developmental stage, including stimulation of growth, as well as increased concentrations of chlorophylls, total free amino acids and total soluble sugars. In general, most benefits from Si applications were observed in the range of 60-125 mg L-1 Si, while some negative effects were observed at the highest concentration applied (i.e., 250 mg L-1 Si). Therefore, pepper is a good candidate crop to benefit from Si application during the early developmental stage under unstressed conditions.
Collapse
Affiliation(s)
- Libia Iris Trejo-Téllez
- Department of Soil Science. Laboratory of Plant Nutrition, College of Postgraduates in Agricultural Sciences Campus Montecillo, Texcoco, State of Mexico, Mexico
| | - Atonaltzin García-Jiménez
- Department of Plant Physiology, College of Postgraduates in Agricultural Sciences Campus Montecillo, Texcoco, State of Mexico, Mexico
| | | | - Sara Monzerrat Ramírez-Olvera
- Department of Plant Physiology, College of Postgraduates in Agricultural Sciences Campus Montecillo, Texcoco, State of Mexico, Mexico
| | - Jericó Jabín Bello-Bello
- Department of Biotechnology, CONACYT-College of Postgraduates in Agricultural Sciences Campus Córdoba, Amatlán de los Reyes, Veracruz, Mexico
| | - Fernando Carlos Gómez-Merino
- Department of Soil Science. Laboratory of Plant Nutrition, College of Postgraduates in Agricultural Sciences Campus Montecillo, Texcoco, State of Mexico, Mexico
| |
Collapse
|
145
|
Wang J, Xue R, Ju X, Yan H, Gao Z, Esmail Abdalla Elzaki M, Hu L, Zeng R, Song Y. Silicon-mediated multiple interactions: Simultaneous induction of rice defense and inhibition of larval performance and insecticide tolerance of Chilo suppressalis by sodium silicate. Ecol Evol 2020; 10:4816-4827. [PMID: 32551063 PMCID: PMC7297785 DOI: 10.1002/ece3.6235] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 01/02/2023] Open
Abstract
The rice striped stem borer (SSB, Chilo suppressalis) is one of the most destructive pests of rice plants. Si-mediated rice defense against various pests has been widely reported, and sodium silicate (SS) has been used as an effective source of silicon for application to plants. However, there is quite limited information about the direct effects of Si application on herbivorous insects. SSB larval performance and their insecticide tolerance were examined after they had been reared either on rice plants cultivated in nutrient solution containing 0.5 and 2.0 mM SS or on artificial diets with 0.1% and 0.5% SS. SS amendment in either rice culture medium or artificial diets significantly suppressed the enzymatic activities of acetylcholinesterase, glutathione S-transferases, and levels of cytochrome P450 protein in the midgut of C. suppressalis larvae. Larvae fed on diets containing SS showed lower insecticide tolerance. Additionally, RNA-seq analysis showed that SS-mediated larval insecticide tolerance was closely associated with fatty acid biosynthesis and pyruvate metabolism pathways. Our results suggest that Si not only enhances plant resistance against insect herbivore, but also impairs the insect's capacity to detoxify the insecticides. This should be considered as another important aspect in Si-mediated plant-insect interaction and may provide a novel approach of pest management.
Collapse
Affiliation(s)
- Jie Wang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of CropsCollege of AgricultureFujian Agriculture and Forestry UniversityFuzhouChina
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Rongrong Xue
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of CropsCollege of AgricultureFujian Agriculture and Forestry UniversityFuzhouChina
| | - Xueyang Ju
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of CropsCollege of AgricultureFujian Agriculture and Forestry UniversityFuzhouChina
| | - Hui Yan
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of CropsCollege of AgricultureFujian Agriculture and Forestry UniversityFuzhouChina
| | - Zhou Gao
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of CropsCollege of AgricultureFujian Agriculture and Forestry UniversityFuzhouChina
| | - Mohammed Esmail Abdalla Elzaki
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of CropsCollege of AgricultureFujian Agriculture and Forestry UniversityFuzhouChina
| | - Lin Hu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of CropsCollege of AgricultureFujian Agriculture and Forestry UniversityFuzhouChina
| | - Rensen Zeng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of CropsCollege of AgricultureFujian Agriculture and Forestry UniversityFuzhouChina
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Yuanyuan Song
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of CropsCollege of AgricultureFujian Agriculture and Forestry UniversityFuzhouChina
| |
Collapse
|
146
|
Liu L, Song Z, Yu C, Yu G, Ellam RM, Liu H, Singh BP, Wang H. Silicon Effects on Biomass Carbon and Phytolith-Occluded Carbon in Grasslands Under High-Salinity Conditions. FRONTIERS IN PLANT SCIENCE 2020; 11:657. [PMID: 32528507 PMCID: PMC7264264 DOI: 10.3389/fpls.2020.00657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/28/2020] [Indexed: 05/06/2023]
Abstract
Changes in climate and land use are causing grasslands to suffer increasingly from abiotic stresses, including soil salinization. Silicon (Si) amendment has been frequently proposed to improve plant resistance to multiple biotic and abiotic stresses and increase ecosystem productivity while controlling the biogeochemical carbon (C) cycle. However, the effects of Si on plant C distribution and accumulation in salt-suffering grasslands are still unclear. In this study, we investigated how salt ions affected major elemental composition in plants and whether Si enhanced biomass C accumulation in grassland species in situ. In samples from the margins of salt lakes, our results showed that the differing distance away from the shore resulted in distinctive phytocoenosis, including halophytes and moderately salt-tolerant grasses, which are closely related to changing soil properties. Different salinity (Na+/K+, ranging from 0.02 to 11.8) in plants caused negative effects on plant C content that decreased from 53.9 to 29.2% with the increase in salinity. Plant Si storage [0.02-2.29 g Si m-2 dry weight (dw)] and plant Si content (0.53 to 2.58%) were positively correlated with bioavailable Si in soils (ranging from 94.4 to 192 mg kg-1). Although C contents in plants and phytoliths were negatively correlated with plant Si content, biomass C accumulation (1.90-83.5 g C m-2 dw) increased due to the increase of Si storage in plants. Plant phytolith-occluded carbon (PhytOC) increased from 0.07 to 0.28‰ of dry mass with the increase of Si content in moderately salt-tolerant grasses. This study demonstrates the potential of Si in mediating plant salinity and C assimilation, providing a reference for potential manipulation of long-term C sequestration via PhytOC production and biomass C accumulation in Si-accumulator dominated grasslands.
Collapse
Affiliation(s)
- Linan Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
- Institute of Surface-Earth System Science, Tianjin University, Tianjin, China
| | - Zhaoliang Song
- Institute of Surface-Earth System Science, Tianjin University, Tianjin, China
| | - Changxun Yu
- Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Guanghui Yu
- Institute of Surface-Earth System Science, Tianjin University, Tianjin, China
| | - Rob M. Ellam
- Institute of Surface-Earth System Science, Tianjin University, Tianjin, China
- Scottish Universities Environmental Research Centre, East Kilbride, United Kingdom
| | - Hongyan Liu
- College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Bhupinder Pal Singh
- School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW, Australia
| | - Hailong Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan, China
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A & F University, Hangzhou, China
| |
Collapse
|
147
|
Hall CR, Dagg V, Waterman JM, Johnson SN. Silicon Alters Leaf Surface Morphology and Suppresses Insect Herbivory in a Model Grass Species. PLANTS (BASEL, SWITZERLAND) 2020; 9:E643. [PMID: 32438683 PMCID: PMC7285219 DOI: 10.3390/plants9050643] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/15/2020] [Accepted: 05/16/2020] [Indexed: 12/25/2022]
Abstract
Grasses accumulate large amounts of silicon (Si) which is deposited in trichomes, specialised silica cells and cell walls. This may increase leaf toughness and reduce cell rupture, palatability and digestion. Few studies have measured leaf mechanical traits in response to Si, thus the effect of Si on herbivores can be difficult to disentangle from Si-induced changes in leaf surface morphology. We assessed the effects of Si on Brachypodium distachyon mechanical traits (specific leaf area (SLA), thickness, leaf dry matter content (LDMC), relative electrolyte leakage (REL)) and leaf surface morphology (macrohairs, prickle, silica and epidermal cells) and determined the effects of Si on the growth of two generalist insect herbivores (Helicoverpa armigera and Acheta domesticus). Si had no effect on leaf mechanical traits; however, Si changed leaf surface morphology: silica and prickle cells were on average 127% and 36% larger in Si supplemented plants, respectively. Prickle cell density was significantly reduced by Si, while macrohair density remained unchanged. Caterpillars were more negatively affected by Si compared to crickets, possibly due to the latter having a thicker and thus more protective gut lining. Our data show that Si acts as a direct defence against leaf-chewing insects by changing the morphology of specialised defence structures without altering leaf mechanical traits.
Collapse
Affiliation(s)
- Casey R. Hall
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW 2751, Australia; (V.D.); (J.M.W.); (S.N.J.)
| | | | | | | |
Collapse
|
148
|
Putative Silicon Transporters and Effect of Temperature Stresses and Silicon Supplementation on Their Expressions and Tissue Silicon Content in Poinsettia. PLANTS 2020; 9:plants9050569. [PMID: 32365688 PMCID: PMC7284485 DOI: 10.3390/plants9050569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/10/2020] [Accepted: 04/28/2020] [Indexed: 11/24/2022]
Abstract
Silicon (Si) is a beneficial element for plants. To understand Si uptake and accumulation in poinsettia, the Si transporters and their expression patterns were investigated. Nodulin 26-like intrinsic membrane proteins (NIPs) act as transporters of water and small solutes, including silicic acid. In this study, one NIP member, designated EpLsi1, was identified. Additionally, a protein from the citrate transporter family, designated EpLsi2, was identified. Sequence analyses indicated that EpLsi1 belonged to the NIP-I subgroup, which has a low Si uptake capacity. Consistently, the measured tissue Si content in the poinsettia was less than 1.73 ± 0.17 mg·g−1 dry weight, which was very low when compared to that in high Si accumulators. The expressions of EpLsi1 and EpLsi2 in poinsettia cuttings treated with 0 mg·L−1 Si decreased under temperature stresses. A short-term Si supplementation decreased the expressions of both EpLsi1 and EpLsi2 in the roots and leaves, while a long-term Si supplementation increased the expression of EpLsi1 in the leaves, bracts, and cyathia, and increased the expression of EpLsi2 in the roots and leaves. Tissue Si content increased in the roots of cuttings treated with 75 mg·L−1 Si at both 4 and 40 °C, indicating that the transport activities of the EpLsi1 were enhanced under temperature stresses. A long-term Si supplementation increased the tissue Si content in the roots of poinsettia treated with 75 mg·L−1 Si. Overall, poinsettia was a low Si accumulator, the expressions of Si transporters were down-regulated, and the tissue Si content increased with temperature stresses and Si supplementation. These results may help the breeding and commercial production of poinsettia.
Collapse
|
149
|
Guerriero G, Stokes I, Valle N, Hausman JF, Exley C. Visualising Silicon in Plants: Histochemistry, Silica Sculptures and Elemental Imaging. Cells 2020; 9:cells9041066. [PMID: 32344677 PMCID: PMC7225990 DOI: 10.3390/cells9041066] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/15/2020] [Accepted: 04/22/2020] [Indexed: 02/01/2023] Open
Abstract
Silicon is a non-essential element for plants and is available in biota as silicic acid. Its presence has been associated with a general improvement of plant vigour and response to exogenous stresses. Plants accumulate silicon in their tissues as amorphous silica and cell walls are preferential sites. While several papers have been published on the mitigatory effects that silicon has on plants under stress, there has been less research on imaging silicon in plant tissues. Imaging offers important complementary results to molecular data, since it provides spatial information. Herein, the focus is on histochemistry coupled to optical microscopy, fluorescence and scanning electron microscopy of microwave acid extracted plant silica, techniques based on particle-induced X-ray emission, X-ray fluorescence spectrometry and mass spectrometry imaging (NanoSIMS). Sample preparation procedures will not be discussed in detail, as several reviews have already treated this subject extensively. We focus instead on the information that each technique provides by offering, for each imaging approach, examples from both silicifiers (giant horsetail and rice) and non-accumulators (Cannabis sativa L.).
Collapse
Affiliation(s)
- Gea Guerriero
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, 5, rue Bommel, Z.A.E. Robert Steichen, L-4940 Hautcharage, Luxembourg;
- Correspondence: (G.G.); (C.E.); Tel.: +352-2758885096 (G.G.); +44-1782-734080 (C.E.)
| | - Ian Stokes
- The Birchall Centre, Lennard-Jones Laboratories, Keele University, Keele ST5 5BG, Staffordshire, UK;
| | - Nathalie Valle
- Material Research and Technology (MRT) Department, Luxembourg Institute of Science and Technology, 41 rue du Brill, L-4422 Belvaux, Luxembourg;
| | - Jean-Francois Hausman
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, 5, rue Bommel, Z.A.E. Robert Steichen, L-4940 Hautcharage, Luxembourg;
| | - Christopher Exley
- The Birchall Centre, Lennard-Jones Laboratories, Keele University, Keele ST5 5BG, Staffordshire, UK;
- Correspondence: (G.G.); (C.E.); Tel.: +352-2758885096 (G.G.); +44-1782-734080 (C.E.)
| |
Collapse
|
150
|
Quigley KM, Griffith DM, Donati GL, Anderson TM. Soil nutrients and precipitation are major drivers of global patterns of grass leaf silicification. Ecology 2020; 101:e03006. [PMID: 32020594 PMCID: PMC7317429 DOI: 10.1002/ecy.3006] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 11/26/2019] [Accepted: 12/20/2019] [Indexed: 11/23/2022]
Abstract
Grasses accumulate high concentrations of silicon (Si) in their tissues, with potential benefits including herbivore defense, improved water balance, and reduced leaf construction costs. Although Si is one of the most widely varying leaf constituents among individuals, species, and ecosystems, the environmental forces driving this variation remain elusive and understudied. To understand relationships between environmental factors and grass Si accumulation better, we analyzed foliar chemistry of grasses from 17 globally distributed sites where nutrient inputs and grazing were manipulated. These sites span natural gradients in temperature, precipitation, and underlying soil properties, which allowed us to assess the relative importance of soil moisture and nutrients across variation in climate. Foliar Si concentration did not respond to large mammalian grazer exclusion, but significant variation in herbivore abundance among sites may have precluded the observation of defoliation effects at these sites. However, nutrient addition consistently reduced leaf Si, especially at sites with low soil nitrogen prior to nutrient addition. Additionally, a leaf‐level trade‐off between Si and carbon (C) existed that was stronger at arid sites than mesic sites. Our results suggest soil nutrient limitation favors investment in Si over C‐based leaf construction, and that fixing C is especially costly relative to assimilating Si when water is limiting. Our results demonstrate the importance of soil nutrients and precipitation as key drivers of global grass silicification patterns.
Collapse
Affiliation(s)
- Kathleen M Quigley
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, 27109, USA
| | - Daniel M Griffith
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, 27109, USA
| | - George L Donati
- Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina, 27109, USA
| | - T Michael Anderson
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, 27109, USA
| |
Collapse
|