101
|
Yang XM, Hou LJ, Dong DJ, Shao HL, Wang JX, Zhao XF. Cathepsin B-like proteinase is involved in the decomposition of the adult fat body of Helicoverpa armigera. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2006; 62:1-10. [PMID: 16612807 DOI: 10.1002/arch.20115] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Cathepsin B-like proteinase (HCB, EC 3.4.22.1) is expressed in Helicoverpa armigera oocytes and adult fat bodies. Previous work has revealed that HCB plays a key role in the degradation of yolk proteins during embryogenesis. This study investigated the function and regulatory activation of HCB in adult fat bodies during aging and oogenesis. The HCB transcript was detected at all stages from larval to adult fat bodies with Northern blot analysis. Pro-HCB was also detected in fat bodies at these stages with an immunoblot assay using a monoclonal antibody against HCB. However, mature HCB and its activity were only detected in fat bodies of pre-adults and adults. This evidence suggested that HCB is regulated post-translationally by activation of the pro-enzyme during the pupa-adult metamorphosis. The activation of HCB was coupled with the expression of hormone receptor 3 (HHR3), and was up-regulated by the ecdysteroid agonist, RH-2485, suggesting that HCB activation is related to the ecdysone regulatory system. The decomposition of the adult fat bodies during aging and oogenesis was found to occur via programmed cell death, in which HCB took part.
Collapse
Affiliation(s)
- Xiao-Mei Yang
- School of Life Sciences, Shandong University, Jinan, China
| | | | | | | | | | | |
Collapse
|
102
|
Ramos IB, Miranda K, De Souza W, Machado EA. Calcium-regulated fusion of yolk granules during early embryogenesis ofPeriplaneta americana. Mol Reprod Dev 2006; 73:1247-54. [PMID: 16868923 DOI: 10.1002/mrd.20560] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This work reported membrane fusion of yolk granules (YGs) during early embryogenesis of the insect Periplaneta americana (P. americana). We showed that eggs from Day 5 of embryogenesis possess a greater amount of enlarged YGs in comparison with Day 1. Day 5 is also the period when the largest amount of free calcium is found (approximately 17 mM) within the oothecae from early embryogenesis. Treatment of Day 1-YGs fraction with 17 mM Ca2+ resulted in a YG size pattern very similar to the one observed in Day 5 eggs, where enlarged YGs were formed. YG membrane fusion was observed by fluorescent membrane dye transfer from previously labeled small YGs to larger ones and was also visualized by electron microscopy. We also showed that the small "in fusion" YGs seemed to be acidic, suggesting that acidification is correlated with YG membrane fusion. Hence, it was shown that YGs are capable of membrane fusion in a calcium-dependent manner and this process probably occurs in vivo during early embryogenesis of P. americana.
Collapse
Affiliation(s)
- I B Ramos
- Laboratório de Entomologia Médica do Programa de Parasitologia e Biologia Celular, Instituto de Biofísica Carlos Chagas Filho (IBCCF), Brasil
| | | | | | | |
Collapse
|
103
|
Raldúa D, Fabra M, Bozzo MG, Weber E, Cerdà J. Cathepsin B-mediated yolk protein degradation during killifish oocyte maturation is blocked by an H+-ATPase inhibitor: effects on the hydration mechanism. Am J Physiol Regul Integr Comp Physiol 2005; 290:R456-66. [PMID: 16141306 DOI: 10.1152/ajpregu.00528.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In teleost oocytes, yolk proteins (YPs) derived from the yolk precursors vitellogenins are partially cleaved into free amino acids and small peptides during meiotic maturation before ovulation. This process increases the osmotic pressure of the oocyte that drives its hydration, which is essential for the production of buoyant eggs by marine teleosts (pelagophil species). However, this mechanism also occurs in marine species that produce benthic eggs (benthophil), such as the killifish (Fundulus heteroclitus), in which oocyte hydration is driven by K+. Both in pelagophil and benthophil teleosts, the enzymatic machinery underlying the maturation-associated proteolysis of YPs is poorly understood. In this study, lysosomal cysteine proteinases potentially involved in YP processing, cathepsins L, B, and F (CatL, CatB, and CatF, respectively), were immunolocalized in acidic yolk globules of vitellogenic oocytes from the killifish. During oocyte maturation in vitro induced with the maturation-inducing steroid (MIS), CatF disappeared from yolk organelles and CatL became inactivated, whereas CatB proenzyme was processed into active enzyme. Consequently, CatB enzyme activity and hydrolysis of major YPs were enhanced. Follicle-enclosed oocytes incubated with the MIS in the presence of bafilomycin A1, a specific inhibitor of vacuolar-type H+-ATPase, underwent maturation in vitro, but acidification of yolk globules, activation of CatB, and proteolysis of YPs were prevented. In addition, MIS plus bafilomycin A1-treated oocytes accumulated less K+ than those stimulated with MIS alone; hence, oocyte hydration was reduced. These results suggest that CatB is the major protease involved in yolk processing during the maturation of killifish oocytes, whose activation requires acidic conditions maintained by a vacuolar-type H+-ATPase. Also, the data indicate a link between ion translocation and YP proteolysis, suggesting that both events may be equally important physiological mechanisms for oocyte hydration in benthophil teleosts.
Collapse
|
104
|
Cristofoletti PT, Ribeiro AF, Terra WR. The cathepsin L-like proteinases from the midgut of Tenebrio molitor larvae: sequence, properties, immunocytochemical localization and function. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2005; 35:883-901. [PMID: 15944084 DOI: 10.1016/j.ibmb.2005.03.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2004] [Revised: 03/23/2005] [Accepted: 03/23/2005] [Indexed: 05/02/2023]
Abstract
CDNAs coding for five procathepsin L-like proteinases (pCALs) were cloned and sequenced from a cDNA library prepared from Tenebrio molitor larval midguts: pCAL1a (with the isoforms pCAL1b and pCAL1c), pCAL2, and pCAL3. All the pCALs have the active residues Cys 25, His 169, Asn 175, and Gln 19 (papain numbering), the ERFNIN motif of papain-like enzymes and their sequences are homologous to cathepsin L enzymes. pCAL1a was expressed in bacterial systems. It is auto-catalytically activated at low pH, has kinetic properties and N-terminal sequence identical to hemocyte cathepsin L-like proteinase (CAL) and was used to raise antibodies. Semi-quantitative RT-PCR data showed that mRNAs for pCAL2 and pCAL3 were transcribed in midgut and in lesser amounts in hemolymph, whereas that for pCAL1a was transcribed in these tissues and also in fat body, Malpighian tubules, and carcass. Imunochemical detection recognized pCAL1a translation in all tissue homogenates, except anterior midgut. At this region, the presence of pCAL2 is suggested on the grounds of electrophoretical migration and high recovery of CAL2 activity from anterior midgut cells and from isolated midgut contents. Immunocytochemical localization data revealed that pCAL1a occurs in lysosome-like vesicles in all tissues, except anterior midgut, where a labelling considered to correspond to pCAL2 is found in large acidic granules being released by apocrine secretion. Putative pCAL2 was also detected in midgut contents, probably in the form of CAL2, the major luminal CAL, which was purified to homogeneity. A cladogram of insect CALs result in a monophyletic branch with lysosomal T. molitor enzymes and enzymes from five insect orders and in a polyphyletic array of coleopteran sequences, including digestive CALs from T. molitor. The data suggest that only Coleoptera have digestive CALs that may originate by gene duplication and independent evolution relative to the gene encoding the lysosomal enzyme.
Collapse
Affiliation(s)
- Plínio T Cristofoletti
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, C. P. 26077, 05513-970, São Paulo, Brasil
| | | | | |
Collapse
|
105
|
LaFleur GJ, Raldúa D, Fabra M, Carnevali O, Denslow N, Wallace RA, Cerdà J. Derivation of major yolk proteins from parental vitellogenins and alternative processing during oocyte maturation in Fundulus heteroclitus. Biol Reprod 2005; 73:815-24. [PMID: 15930322 DOI: 10.1095/biolreprod.105.041335] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Various Coomassie blue-staining yolk proteins (YPs) present in oocytes and eggs of Fundulus heteroclitus, a teleost that produces low hydrated, demersal eggs (benthophil species), were subjected to N-terminal microsequencing. Four YPs were N-terminally blocked, while five yielded sequence information. Of the latter, four corresponded to internal sequences of vitellogenin 1 (Vg1), whereas a fifth band corresponded to the N-terminal sequence of Vg2. Phosphorylated YPs (phosvitins and phosvettes) derived from the polyserine domain of Vg were not successfully sequenced. The major N-terminally blocked 122-and 103-kDa YPs both represented the lipovitellin heavy chain of Vg1 (LvH1), and thus most of the oocyte YPs were derived from Vg1. During oocyte maturation in vivo and in vitro, the LvH1 122 is degraded, concomitant with an increased enzymatic activity of cathepsin B, while the 45-kDa YP is converted to a 42-kDa YP. The LvH1 122 was found to contain a consensus site for proteolytic degradation (PEST) near its C-terminus, which is missing from its stable, but truncated twin sequence, LvH1 103. We suggest that this site becomes exposed to cathepsin B during the hydration process that accompanies oocyte maturation and renders the LvH1 122 susceptible to proteolysis. PEST sites are found in Vg sequences from other benthophil fish, whereas, interestingly, they are missing in marine teleosts that spawn highly hydrated, pelagic eggs (pelagophil species), displaying a different pattern of Vg incorporation into YPs and LvH1 and LvH2 processing to that found in F. heteroclitus. Thus, different models of Vg/YP precursor/product relationship and further processing during oocyte maturation and hydration are proposed for pelagophil and benthophil teleosts.
Collapse
Affiliation(s)
- Gary J LaFleur
- Nicholls State University, Thibodaux, Louisiana 70310, USA
| | | | | | | | | | | | | |
Collapse
|
106
|
Zhao XF, Wang JX, Li FX, Sueda S, Kondo H. Analysis of Substrate Specificity and Endopeptidyl Activities of the Cathepsin B-like Proteinase from Helicoverpa armigera. Protein J 2005; 24:219-25. [PMID: 16283544 DOI: 10.1007/s10930-005-6714-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The cathepsin B-like proteinase from Helicoverpa armigera (HCB) is involved in the degradation of yolk proteins during embryonic development. In order to gain insight into the substrate specificity of this proteinase, various proteins from animals and plants were tested as substrates. The specific cleavage sites of this enzyme on endopeptide bonds were assayed using bovine serum albumin (BSA) as a substrate. Results showed that BSA was degraded into several fragments, which suggests that HCB cleaves BSA at specific endopeptidyl sites. The amino acid sequences of the BSA derived peptides were determined, revealing cleavage of the bonds between residues Arg81-Glu82, Val423-Glu424 and Gly430-Lys431. This suggests that the minimum requirement for a scissile bond to be recognized by HCB is the presence of an ionic amino acid at the P1 ' position and the P1 position can vary. These observations suggest that HCB cleaves bonds at the N-terminal side of ionic amino acid residues giving HCB a wide range of substrates, though other factors dictating the substrate specificity of this enzyme remains to be clarified. Our results provide new evidence that HCB functions as an endopeptidase on some proteins.
Collapse
Affiliation(s)
- Xiao-Fan Zhao
- Department of Biology, School of Life Sciences, Shandong University, Jinan, 250100, China.
| | | | | | | | | |
Collapse
|
107
|
Fialho E, Nakamura A, Juliano L, Masuda H, Silva-Neto MAC. Cathepsin D-mediated yolk protein degradation is blocked by acid phosphatase inhibitors. Arch Biochem Biophys 2005; 436:246-53. [PMID: 15797237 DOI: 10.1016/j.abb.2005.01.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2004] [Revised: 01/05/2005] [Indexed: 10/25/2022]
Abstract
Vitellin (VT) is a lipoglycophosphoprotein stored inside the eggs of every oviparous organism during oogenesis. In the blood-sucking bug Rhodnius prolixus, VT is deposited inside growing oocytes together with two acid hydrolases: acid phosphatase (AP) and cathepsin D (CD). Egg fertilization triggers AP activity and VT proteolysis in vivo [Insect Biochem. Mol. Biol. 2002 (32) 847]. Here, we show that CD is the main protease targeting VT proteolysis during egg development. CD activity in total egg homogenates is blocked by the classical aspartyl protease inhibitor, pepstatin A. Surprisingly, AP inhibitors such as NaF, Na+/K+ tartrate, and inorganic phosphate also block VT proteolysis, whereas this effect is not observed when tyrosine phosphatase inhibitors such as vanadate and phenylarsine oxide or an inhibitor of alkaline phosphatases such as levamisole are used in a VT proteolysis assay. NaF concentrations that block isolated AP activity do not affect the activity of partially purified CD. Therefore, a specific repressor of VT proteolysis must be dephosphorylated by AP in vivo. In conclusion, these results demonstrate for the first time that acid hydrolases act cooperatively to promote yolk degradation during egg development in arthropods.
Collapse
Affiliation(s)
- Eliane Fialho
- Instituto de Bioquímica Médica, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, UFRJ, P.O. Box 68041, Cidade Universitária, Rio de Janeiro, CEP 21941-590, RJ, Brazil
| | | | | | | | | |
Collapse
|
108
|
Gene expression patterns associated with blood-feeding in the malaria mosquito Anopheles gambiae. BMC Genomics 2005; 6:5. [PMID: 15651988 PMCID: PMC546002 DOI: 10.1186/1471-2164-6-5] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2004] [Accepted: 01/14/2005] [Indexed: 01/31/2023] Open
Abstract
Background Blood feeding, or hematophagy, is a behavior exhibited by female mosquitoes required both for reproduction and for transmission of pathogens. We determined the expression patterns of 3,068 ESTs, representing ~2,000 unique gene transcripts using cDNA microarrays in adult female Anopheles gambiae at selected times during the first two days following blood ingestion, at 5 and 30 min during a 40 minute blood meal and at 0, 1, 3, 5, 12, 16, 24 and 48 hours after completion of the blood meal and compared their expression to transcript levels in mosquitoes with access only to a sugar solution. Results In blood-fed mosquitoes, 413 unique transcripts, approximately 25% of the total, were expressed at least two-fold above or below their levels in the sugar-fed mosquitoes, at one or more time points. These differentially expressed gene products were clustered using k-means clustering into Early Genes, Middle Genes, and Late Genes, containing 144, 130, and 139 unique transcripts, respectively. Several genes from each group were analyzed by quantitative real-time PCR in order to validate the microarray results. Conclusion The expression patterns and annotation of the genes in these three groups (Early, Middle, and Late genes) are discussed in the context of female mosquitoes' physiological responses to blood feeding, including blood digestion, peritrophic matrix formation, egg development, and immunity.
Collapse
|
109
|
Zhao XF, An XM, Wang JX, Dong DJ, Du XJ, Sueda S, Kondo H. Expression of the Helicoverpa cathepsin B-like proteinase during embryonic development. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2005; 58:39-46. [PMID: 15599933 DOI: 10.1002/arch.20030] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Cathepsin B-like proteinase from Helicoverpa armigera (HCB) was proposed as being involved in the degradation of yolk proteins during embryonic development. Recombinant HCB was expressed as a fusion protein with GST in Escherichia coli BL21 on the basis of its cDNA and purified to homogeneity. The fusion protein was cleaved with thrombin to generate a soluble protease with a mass of 37 kDa. A polyclonal antiserum against this recombinant protein, raised in the rabbit, recognized three isoforms of HCB in an ovary homogenate of this insect. Expression of this enzyme during embryonic development was studied using immunoblotting, immunohistochemistry and activity assay. It was found that HCB was expressed during embryonic development and that its proteolytic activity was detected from embryonic developmental eggs. The fact that HCB activity is observed in ovaries and developing eggs suggested that the enzyme had already been activated before embryonic development. Immunohistochemistry indicated that the enzyme was located in follicular cells, the sphere of yolk granules, and the fat bodies of female adult. These lines of evidence suggested strongly that HCB takes part in the degradation of yolk proteins during the development of embryo.
Collapse
Affiliation(s)
- Xiao-Fan Zhao
- Department of Biology, School of Life Sciences, Shandong University, Jinan 250100, China.
| | | | | | | | | | | | | |
Collapse
|
110
|
Nirmala X, Marinotti O, James AA. The accumulation of specific mRNAs following multiple blood meals in Anopheles gambiae. INSECT MOLECULAR BIOLOGY 2005; 14:95-103. [PMID: 15663779 DOI: 10.1111/j.1365-2583.2005.00535.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
One approach to genetic control of transmission of the parasites that cause human malaria is based on expressing effector genes in mosquitoes that disable the pathogens. Endogenous mosquito promoter and other cis-acting DNA sequences are needed to direct the optimal tissue-, stage- and sex-specific expression of the effector molecules. The mRNA accumulation profiles of eight different genes expressed specifically in the midgut, salivary glands or fat body tissues of the malaria vector, Anopheles gambiae, were characterized as a measure of their suitability to direct the expression of effector molecules designed to disable specific stages of the parasites. RT-PCR techniques were used to determine the abundance of the gene products and their duration following multiple blood meals. Transcription from the midgut-expressed carboxypeptidase-encoding gene, AgCP, follows a cyclical, blood-inducible expression pattern with maximum accumulation every 3 h post blood meal. Other midgut-expressed genes encoding a trypsin and chymotrypsin, Antryp2 and Anchym1, respectively, and the fat body-expressed genes, Vg1 and Cathepsin, also show a blood-inducible pattern of expression with maximum accumulation 24 h after every blood meal. Expression of the Lipophorin gene in the fat body and apyrase and D7-related genes (AgApy and D7r2) in the salivary glands is constitutive and not significantly affected by blood meals. Promoters of the midgut- and fat body-expressed genes may lead to maximum accumulation of antiparasite effector molecule transcripts after multiple blood meals. The multiple feeding behaviour of An. gambiae thus can be an advantage to express high levels of antiparasite effector molecules to counteract the parasites throughout most of adult development.
Collapse
Affiliation(s)
- X Nirmala
- Department of Molecular Biology & Biochemistry, University of California, Irvine, CA 92697-3900, USA
| | | | | |
Collapse
|
111
|
KOTAKI TOYOMI. Oosorption in the stink bug,Plautia crossota stali: Follicle cells as the site of protein degradation. INVERTEBR REPROD DEV 2005. [DOI: 10.1080/07924259.2005.9652155] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
112
|
Kollien AH, Waniek PJ, Nisbet AJ, Billingsley PF, Schaub GA. Activity and sequence characterization of two cysteine proteases in the digestive tract of the reduviid bug Triatoma infestans. INSECT MOLECULAR BIOLOGY 2004; 13:569-579. [PMID: 15606805 DOI: 10.1111/j.0962-1075.2004.00504.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Cathepsin B- and cathepsin L-like activities were identified in gut extracts of the blood-sucking bug Triatoma infestans using specific substrates and inhibitors. Activities decreased during the first 2 days after feeding but increased to a maximum value at 5 and 10 days post feeding. The deduced 332 and 328 amino acid sequences showed high levels of identity (50-60%) to other insect cathepsin B- and L-like proteases, respectively. The three amino acid residues of the catalytic domain, CHN, and the GCNGG motif were conserved in both cathepsins, but the occluding loop, characterizing B-like cathepsins, was present only in one. ERFNIN and GNFD motifs occurred in the other sequence, defining it as cathepsin L-like. The cathepsin B-like gene was expressed at low, constitutive levels in unfed and fed T. infestans.
Collapse
Affiliation(s)
- A H Kollien
- Department of Special Zoology, Ruhr-University, Bochum, Germany.
| | | | | | | | | |
Collapse
|
113
|
Donald KM, Day AJ, Smerdon GR, Cross LJ, Hawkins AJS. Quantification of gene transcription and enzyme activity for functionally important proteolytic enzymes during early development in the Pacific oyster Crassostrea gigas. Comp Biochem Physiol B Biochem Mol Biol 2004; 136:383-92. [PMID: 14602147 DOI: 10.1016/s1096-4959(03)00211-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Gene transcripts and enzyme activities were quantified for a selection of functionally important aminopeptidases at 2-day intervals throughout the first 72 days of development in the Pacific oyster Crassostrea gigas. Leucine aminopeptidase (LAP) and cathepsin B (CathB) gene transcripts were quantified using fluorogenic ('real time') PCR. LAP and CathB gene transcripts were detected at all time points. The proportion of CathB transcripts remained essentially constant and low throughout development (Ct<35). The proportion of LAP transcripts was often similar (Ct<30), but with a distinct peak in transcript abundance at day 19 (Ct approximately 23). CathB and cathepsin D (CathD) enzyme activities were measured biochemically. Whilst CathD activity peaked at day 19, LAP and CathB activities both peaked at day 24. The closely coupled increase in transcript and enzyme activity for LAP indicates regulation at the transcriptional level. Alternatively, the peak in enzyme activity for CathB without enhanced transcriptional activity suggests post-transcriptional regulation. Similar mechanisms of regulation for LAP and CathB have been observed in both plants and mammals, indicating widespread conservation.
Collapse
Affiliation(s)
- K M Donald
- Plymouth Marine Laboratory, Prospect Place, Plymouth, Devon, PL1 3DH, UK.
| | | | | | | | | |
Collapse
|
114
|
Britton C, Murray L. Cathepsin L protease (CPL-1) is essential for yolk processing during embryogenesis in Caenorhabditis elegans. J Cell Sci 2004; 117:5133-43. [PMID: 15456850 DOI: 10.1242/jcs.01387] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cysteine proteases are involved in the degradation of intracellular and extracellular proteins, although their precise roles in vivo are not well understood. Here we characterise a genetic mutant of the Caenorhabditis elegans cathepsin L protease gene cpl-1. CPL-1 is provided maternally and is essential for C. elegans embryogenesis. Immunofluorescence and electron microscopy data show that yolk endocytosis and initial yolk platelet formation occur normally in cpl-1 mutant oocytes and embryos. However, at around the 8-12 cell stage of embryogenesis, yolk platelets begin to aggregate and these enlarged yolk platelets fill the cytoplasm of cpl-1 mutant embryos. Coincident with this aggregation is loss of fluorescence from a yolk green fluorescent protein (YP170::GFP). This suggests that loss of CPL-1 activity leads to aberrant processing and/or conformational changes in yolk proteins, resulting in abnormal platelet fusion. This study has relevance to the abnormal fusion and aggregation of lysosomes in cathepsin L-deficient mice and to other lysosomal disorders.
Collapse
Affiliation(s)
- Collette Britton
- Department of Veterinary Parasitology, Institute of Comparative Medicine, University of Glasgow, Garscube Estate, Bearsden Road, G61 1QH, UK.
| | | |
Collapse
|
115
|
Fabra M, Cerdà J. Ovarian cysteine proteinases in the teleost Fundulus heteroclitus: molecular cloning and gene expression during vitellogenesis and oocyte maturation. Mol Reprod Dev 2004; 67:282-94. [PMID: 14735489 DOI: 10.1002/mrd.20018] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The cysteine proteinases cathepsins B and L are members of the multigene family of lysosomal proteases that have been implicated in the processing of yolk proteins (YPs) in teleost oocytes. However, the full identification of the type of cathepsins expressed in fish ovarian follicles and embryos, as well as their regulatory mechanisms and specific function(s), are not yet elucidated. In this study, cDNAs encoding cathepsins B, L, F, K, S, Z, C, and H have been isolated from the teleost Fundulus heteroclitus, and the analysis of their deduced amino acid sequences revealed highly similar structural features to vertebrate orthologs, and confirmed in this species the existence of cathepsin L-like, cathepsin B-like, and cathepsin F-like subfamilies of cysteine proteinases. While all identified cathepsins were expressed in ovarian follicles, the corresponding mRNAs showed different temporal expression patterns. Thus, similar mRNA levels of cathepsins L, F, S, B, C, and Z were found throughout the oocyte growth or vitellogenesis period, whereas those for cathepsin H and K appeared to decrease as vitellogenesis advanced. During oocyte maturation, a transient accumulation of cathepsins L, S, H, and F mRNAs, approximately a 3-, 1.5-, 1.6-, and 6-fold increase, respectively, was detected in ovarian follicles within the 20-25 hr after hormone stimulation, coincident with the maximum proteolysis of the oocyte major YPs. The specific temporal pattern of expression of these genes may indicate a potential role of cathepsin L-like and cathepsin F proteases in the YP processing events occurring during fish oocyte maturation and/or early embryogenesis.
Collapse
Affiliation(s)
- Mercedes Fabra
- Center of Aquaculture-IRTA, 43540-San Carlos de la Rápita, Tarragona, Spain
| | | |
Collapse
|
116
|
Kutsukake M, Shibao H, Nikoh N, Morioka M, Tamura T, Hoshino T, Ohgiya S, Fukatsu T. Venomous protease of aphid soldier for colony defense. Proc Natl Acad Sci U S A 2004; 101:11338-43. [PMID: 15277678 PMCID: PMC509204 DOI: 10.1073/pnas.0402462101] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2004] [Indexed: 01/10/2023] Open
Abstract
In social aphids, morphological, behavioral, and physiological differences between soldiers and normal insects are attributed to differences in gene expression between them, because they are clonal offspring parthenogenetically produced by the same mothers. By using cDNA subtraction, we identified a soldier-specific cysteine protease of the family cathepsin B in a social aphid, Tuberaphis styraci, with a second-instar soldier caste. The cathepsin B gene was specifically expressed in soldiers and first-instar nymphs destined to be soldiers. The cathepsin B protein was preferentially produced in soldiers and showed a protease activity typical of cathepsin B. The cathepsin B mRNA and protein were localized in the midgut of soldiers. For colony defense, soldiers attack enemies with their stylet, which causes paralysis and death of the victims. Notably, after soldiers attacked moth larvae, the cathepsin B protein was detected from the paralyzed larvae. Injection of purified recombinant cathepsin B protein certainly killed the recipient moth larvae. From these results, we concluded that the cathepsin B protein is a major component of the aphid venom produced by soldiers of T. styraci. Soldier-specific expression of the cathepsin B gene was found in other social aphids of the genus Tuberaphis. The soldier-specific cathepsin B gene showed an accelerated molecular evolution probably caused by the action of positive selection, which had been also known from venomous proteins of other animals.
Collapse
Affiliation(s)
- Mayako Kutsukake
- Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Japan
| | | | | | | | | | | | | | | |
Collapse
|
117
|
Guiliano DB, Hong X, McKerrow JH, Blaxter ML, Oksov Y, Liu J, Ghedin E, Lustigman S. A gene family of cathepsin L-like proteases of filarial nematodes are associated with larval molting and cuticle and eggshell remodeling. Mol Biochem Parasitol 2004; 136:227-42. [PMID: 15478801 DOI: 10.1016/j.molbiopara.2004.03.015] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Cysteine proteinases are involved in a variety of important biological processes and have been implicated in molting and tissue remodeling in free living and parasitic nematodes. We show that in the lymphatic filarial nematode Brugia pahangi molting of third-stage larvae (L3) to fourth-stage larvae is dependent on the activity of a cathepsin L-like cysteine protease (CPL), which can be detected in the excretory/secretory (ES) products of molting L3. Directed cloning of a cysteine protease gene in B. pahangi and analysis of the expressed sequence tag (EST) and genomic sequences of the closely related human lymphatic filarial nematode Brugia malayi have identified a family of CPLs. One group of these enzymes, Bm-cpl-1, -4, -5 and Bp-cpl-4, is highly expressed in the B. malayi and B. pahangi infective L3 larvae. Immunolocalization indicates that the corresponding enzymes are synthesized and stored in granules of the glandular esophagus of L3 and released during the molting process. Functional analysis of these genes in Brugia and closely related CPL genes identified in the filarial nematode Onchocerca volvulus and the free living model nematode Caenorhabditis elegans indicate that these genes are also involved in cuticle and eggshell remodeling.
Collapse
Affiliation(s)
- David B Guiliano
- Department of Biological Sciences, Imperial College of Science and Technology, London SW7 2AY, UK
| | | | | | | | | | | | | | | |
Collapse
|
118
|
Meemon K, Grams R, Vichasri-Grams S, Hofmann A, Korge G, Viyanant V, Upatham ES, Habe S, Sobhon P. Molecular cloning and analysis of stage and tissue-specific expression of cathepsin B encoding genes from Fasciola gigantica. Mol Biochem Parasitol 2004; 136:1-10. [PMID: 15138062 DOI: 10.1016/j.molbiopara.2004.02.010] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2003] [Revised: 02/22/2004] [Accepted: 02/24/2004] [Indexed: 11/25/2022]
Abstract
The transcriptional products of Fasciola gigantica genes encoding cathepsin B proteases were cloned from adult, newly excysted juvenile (NEJ), and metacercarial stages. The obtained cDNAs were named FG cat-B1, FG cat-B2, and FG cat-B3. The deduced amino acid sequences of the encoded proteases have identities ranging from 64 to 79%. Sequence comparison with homologous proteins showed that all functional important residues formerly described for cathepsin B are conserved. Southern analysis confirmed the presence of a family of related cathepsin B genes in the genome of F. gigantica. Northern analysis revealed a common transcript size of 1400 nucleotides with abundant cathepsin B transcripts detected in metacercarial and NEJ stages. Cathepsin B transcripts were located by RNA in situ hybridization in the caecal epithelial cells, in cells underlining the proximal part of the digestive tract, and in the tegumental cells underlining the surface tegument. Furthermore, transcripts were detected in the tissues of the reproductive system including cells of prostate, Mehlis, and vitelline glands, testis, and eggs. Stage-specific gene expression was investigated by RT-PCR using gene-specific primers and hybridization with a labeled cathepsin B probe. FG cat-B1 transcripts were detected in all stages, whereas FG cat-B2 and FG cat-B3 transcripts were expressed in metacercariae, NEJ, and juvenile parasites only. The switching off of the cat-B2 and cat-B3 genes during the maturation of the parasites implicates that these enzymes may be involved in digesting host tissues during penetration and migration to the liver, whereas cat-B1 present in all stages may perform general digestive function.
Collapse
Affiliation(s)
- Krai Meemon
- Department of Anatomy, Faculty of Science, Mahidol University, Rama VI Rd., Bangkok 10400, Thailand
| | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Sun G, Zhu J, Raikhel AS. The early gene E74B isoform is a transcriptional activator of the ecdysteroid regulatory hierarchy in mosquito vitellogenesis. Mol Cell Endocrinol 2004; 218:95-105. [PMID: 15130514 DOI: 10.1016/j.mce.2003.12.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2003] [Accepted: 12/17/2003] [Indexed: 10/26/2022]
Abstract
In the mosquito Aedes aegypti, blood feeding activates vitellogenesis that involves yolk protein precursor (YPP) genes in an insect metabolic tissue, the fat body. Vitellogenesis is regulated by the 20-hydroxyecdysone (20E) regulatory hierarchy, in which the Ets-domain protein E74 is a key transcriptional regulator. The mosquito AaE74 gene encodes two isoforms-AaE74A and AaE74B. Both AaE74 isoforms are 20E-inducible early gene products. AaE74B reaches its maximal expression at 10(-7)M of 20E, while AaE74A requires 10(-6)M of 20E, a concentration at which the YPP genes reach their maximal induction level. In transfection assay, AaE74B is capable of activating a reporter construct containing E74-response elements, while expression of AaE74A has no effect on the basal levels of the reporter. The AaE74B binding activity is present in the fat body nuclei only during active vitellogenesis. Taken together, our findings demonstrate that AaE74B isoform plays the role of a transcriptional activator during vitellogenesis.
Collapse
Affiliation(s)
- GuoQiang Sun
- Department of Entomology, University of California, Riverside, CA 92521, USA
| | | | | |
Collapse
|
120
|
Seo SJ, Cheon HM, Sun J, Sappington TW, Raikhel AS. Tissue- and stage-specific expression of two lipophorin receptor variants with seven and eight ligand-binding repeats in the adult mosquito. J Biol Chem 2003; 278:41954-62. [PMID: 12917414 DOI: 10.1074/jbc.m308200200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We identified two splice variants of lipophorin receptor (LpR) gene products specific to the mosquito fat body (AaLpRfb) and ovary (AaLpRov) with respective molecular masses of 99.3 and 128.9 kDa. Each LpR variant encodes a member of the low density lipoprotein receptor family with five characteristic domains: 1) ligand recognition, 2) epidermal growth factor precursor, 3) putative O-linked sugar, 4) single membrane-spanning domains, and 5) the cytoplasmic tail with a highly conserved internalization signal FDNPVY. Proposed phylogenetic relationships among low density lipoprotein receptor superfamily members suggest that the LpRs of insects are more closely related to vertebrate low density lipoprotein receptors and very low density lipoprotein receptor/vitellogenin receptor than to insect vitellogenin receptor/yolk protein receptors. Two mosquito LpR isoforms differ in their amino termini, the ligand-binding domains, and O-linked sugar domains, which are generated by differential splicing. Polymerase chain reaction and Southern blot hybridization analyses show that these two transcripts originated from a single gene. Significantly, the putative ligand-binding domain consists of seven and eight complement-type, cysteine-rich repeats in AaLpRfb and AaLRov, respectively. Seven cysteine-rich repeats in AaLpRfb are identical to the second through eighth repeats of AaLpRov. Previous analyses (1) have indicated that the AaLpRov transcript is present exclusively in ovarian germ-line cells, nurse cells, and oocytes throughout the previtellogenic and vitellogenic stages, with the peak at 24-30 h after blood meal, coincident with the peak of yolk protein uptake. In contrast, the fat body-specific AaLpRfb transcript expression is restricted to the postvitellogenic period, during which yolk protein production is terminated and the fat body is transformed to a storage depot of lipid, carbohydrate, and protein.
Collapse
Affiliation(s)
- Sook-Jae Seo
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju 660-701, Gyeongnam, Korea
| | | | | | | | | |
Collapse
|
121
|
Hsiao CD, Tsai HJ. Transgenic zebrafish with fluorescent germ cell: a useful tool to visualize germ cell proliferation and juvenile hermaphroditism in vivo. Dev Biol 2003; 262:313-23. [PMID: 14550794 DOI: 10.1016/s0012-1606(03)00402-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Juvenile zebrafish are hermaphroditic; undifferentiated gonads first develop into ovary-like tissues, which then either become ovaries and produce oocytes (female) or degenerate and develop into testes (male). In order to fully capture the dynamic processes of germ cells' proliferation and juvenile hermaphroditism in zebrafish, we established transgenic lines TG(beta-actin:EGFP), harboring an enhanced green fluorescent protein (EGFP) gene driven by a medaka beta-actin promoter. In TG(beta-actin:EGFP), proliferating germ cells and female gonads strongly expressed EGFP, but fluorescence was only dimly detected in male gonads. Based on the fluorescent (+) or nonfluorescent (-) appearance of germ cells seen in living animals, three distinct groups were evident among TG(beta-actin:EGFP). Transgenics in ++ group (44%) were females, had fluorescent germ cells as juveniles, and female gonads continuously fluoresced throughout sexual maturation. Transgenics in +- (23%) and -- (33%) groups were males. Fluorescent germ cells were transiently detected in +- transgenics from 14 to 34 days postfertilization (dpf), but were not detected in -- transgenics throughout their life span. Histological analyses showed that 26-dpf-old transgenics in ++, +-, and -- groups all developed ovary-like tissues: Germ cells in -- group juveniles arrested at the gonocyte stage and accumulated low quantities of EGFP, while those in ++ group juveniles highly proliferated into diplotene to perinucleolar stages and accumulated high quantities of EGFP. In +- group juveniles, degenerating oocytes, gonocytes, and spermatogonia were coexistent in transiently fluorescent gonads. Therefore, the fluorescent appearance of gonads in this study was synchronous with the differentiation of ovary-like tissues. Thus, TG(beta-actin:EGFP) can be used to visualize germ cells' proliferation and juvenile hermaphroditism in living zebrafish for the first time.
Collapse
Affiliation(s)
- Chung-Der Hsiao
- Institute of Molecular and Cell Biology, and Institute of Fisheries Science, National Taiwan University, 1 Roosevelt Road, Section 4, 106, Taipei, Taiwan
| | | |
Collapse
|
122
|
Cecchettini A, Locci MT, Masetti M, Fausto AM, Gambellini G, Mazzini M, Giorgi F. Vitellin cleavage products are proteolytically degraded by ubiquitination in stick insect embryos. Micron 2003; 34:39-48. [PMID: 12694856 DOI: 10.1016/s0968-4328(02)00057-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Vitellin polypeptides are proteolytically processed in ovarian follicles and embryos of the stick insect Carausius morosus. Data show that vitellin polypeptide A(3) of 54kDa is processed to yield polypeptide A(3)(*) of about 48kDa upon completion of ovarian development, whereas vitellin polypeptide A(2) of 90kDa yields polypeptide E(9) during embryonic development. As vitellin polypeptides are processed, polypeptides A(3)(*) and E(9) are transferred from the yolk granules to the cytosolic space of the vitellophages and start to express a ubiquitin reactivity. At the confocal microscope, anti-ubiquitin antibodies label specifically numerous small yolk granules and the cytosolic space of vitellophages. During embryonic development, ubiquitin carrying granules undergo acidification in much the same way as larger yolk granules. However, only these latter organelles are capable of converting a latent cysteine pro-protease into an active yolk protease upon acidification of their luminal space. These data are interpreted as indicating that ubiquitin-like polypeptides are restricted to small granules throughout ovarian and embryonic development, and that vitellin cleavage products are ubiquitinated following acidification of large yolk granules and transfer to the cytosolic space of the vitellophages.
Collapse
|
123
|
Aoki H, Ahsan MN, Watabe S. Molecular cloning and characterization of cathepsin B from the hepatopancreas of northern shrimp Pandalus borealis. Comp Biochem Physiol B Biochem Mol Biol 2003; 134:681-94. [PMID: 12670793 DOI: 10.1016/s1096-4959(03)00023-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We cloned a cDNA encoding cathepsin B from the hepatopancreas of northern shrimp Pandalus borealis (NsCtB). Nucleotide sequence of the isolated clone encoded a preproenzyme of 328 amino acids, comprising a 15-residue putative signal peptide, a 60-residue propeptide and the 253-residue mature enzyme. The mature NsCtB was 53% identical to human cathepsin B and conserved all the structural features characteristic of cysteine protease. The presence of an occluding loop in the mature region, a unique feature of cathepsin B, suggested the shrimp protein to be cathepsin B. Northern blot analysis revealed expression of NsCtB transcripts exclusively in the hepatopancreas tissues, suggesting a possible digestive role of this enzyme. An interesting feature of NsCtB was its remarkably high negative charge in comparison with other cysteine proteases, which was predicted to effectively locate and guide the positively charged residues of a substrate into the binding cleft. We also observed a repertoire of cysteine protease activities in the acidic milieu of shrimp hepatopancreas using synthetic substrates specific to various cathepsins. The activity profile revealed cathepsin B as the single most dominant enzyme with a specific activity comparable to that attributable to combined activities of other cathepsins. This activity could be blocked by E-64, a cysteine protease inhibitor, but not by Z-Phe-Tyr (t-Bu)-CHN(2), a specific inhibitor of cathepsin L.
Collapse
Affiliation(s)
- Hitoshi Aoki
- Laboratory of Aquatic Molecular Biology and Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, 113-8657, Tokyo, Japan
| | | | | |
Collapse
|
124
|
Kotaki T. Oosorption in the stink bug, Plautia crossota stali: induction and vitellogenin dynamics. JOURNAL OF INSECT PHYSIOLOGY 2003; 49:105-113. [PMID: 12770003 DOI: 10.1016/s0022-1910(02)00254-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Oosorption, resorption of developing oocytes in the ovary, in P. c. stali is characterized by changes in appearance of oocytes from opaque greyish green or orange to transparent, degeneration of yolk granules and disappearance of oocyte contents. Starvation and virginity were indicated to be factors that induce oosorption. SDS PAGE/Western blotting analysis using anti-vitellogenin antiserum detected two major and many minor bands in haemolymph samples. Egg extracts showed a more complicated set of positive bands in the same analysis. Yolk protein, vitellin, therefore, seemed to be formed after complicated processing of vitellogenin following its uptake by the oocytes. In starved, oosorption-induced females, vitellogenin concentration in the haemolymph was lower than that of fed females, and Western blotting failed to detect either oosorption-specific or ovary-specific peptide fragments in haemolymph samples collected from those females. These results suggest that once oosorption was induced vitellogenin/vitellin in oocytes was degraded rapidly and released into the haemolymph in the form of amino acids or small peptides too small to be recognized by the anti-vitellogenin antiserum.
Collapse
Affiliation(s)
- T Kotaki
- Laboratory of Insect Physiology and Life-cycles, National Institute of Agrobiological Sciences, Ohwashi, Tsukuba, Ibaraki 305-8634, Japan.
| |
Collapse
|
125
|
Yamahama Y, Uto N, Tamotsu S, Miyata T, Yamamoto Y, Watabe S, Takahashi SY. In vivo activation of pro-form Bombyx cysteine protease (BCP) in silkmoth eggs: localization of yolk proteins and BCP, and acidification of yolk granules. JOURNAL OF INSECT PHYSIOLOGY 2003; 49:131-140. [PMID: 12770006 DOI: 10.1016/s0022-1910(02)00257-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The present study was designed to investigate the process of acidification of yolk granules during embryogenesis. In oocytes of mature Bombyx mori silkmoth, yolk proteins and a cysteine protease (pro-form BCP) were found in yolk granules. BCP was localized in small sized yolk granules (SYG, 3-6 microm in diameter) and yolk proteins in large sized granules (LYG, 6-11 microm in diameter), which might result in a spatial separation of protease and its substrates to avoid unnecessary hydrolysis. The granules were isolated on Percoll density gradient centrifugation. Although separation of LYG and SYG was incomplete, the granules sedimented in different fractions when using unfertilized egg extract, in which LYG was recovered from heavier fractions and BCP from lighter fractions. Acid phosphatase, as well as other lysosomal marker enzymes tested, was recovered from LYG-containing fractions. When extracts were prepared from developing eggs (day 3), some BCP-containing granules co-sedimented with LYG. The inactive pro-form BCP was activated in vivo, in parallel with yolk protein degradation, and as demonstrated previously in vitro under acidic conditions (). These results suggest that acidification occurs in yolk granules during embryogenesis. This was also confirmed using acridine orange fluorescent dye. In early development, most yolk granules were neutral, but became acidic during embryonic development. SYG were progressively recovered in heavier density fractions, displaying acidic interior. In this fraction, BCP-containing granules seem to be associated with larger granules (6-11 microm in size). In addition, SYG (BCP containing granules) were likely to be acidified earlier than LYG. Our results suggest that acidification initiates yolk degradation through activation of pro-form BCP.
Collapse
Affiliation(s)
- Y Yamahama
- Department of Biology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan.
| | | | | | | | | | | | | |
Collapse
|
126
|
Zhao XF, Wang JX, Xu XL, Schmid R, Wieczorek H. Molecular cloning and characterization of the cathepsin B-like proteinase from the cotton boll worm, Helicoverpa armigera. INSECT MOLECULAR BIOLOGY 2002; 11:567-575. [PMID: 12421414 DOI: 10.1046/j.1365-2583.2002.00366.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
An enzyme purified from the ovaries of Helicoverpa armigera, as an active form with molecular mass of 30 kDa on SDS-PAGE, was identified as a cysteine proteinase because it could be inhibited by E-64, a specific inhibitor of cysteine proteinase, and required reducing conditions for activity. This enzyme was further identified as a cathepsin B-like cysteine proteinase by partial amino acid sequencing. A cDNA encoding this proteinase was cloned from H. armigera, using degenerate primers and RACE techniques. Results of Northern blots indicated that the mRNA encoding the proteinase was transcribed in the ovaries, the fat bodies of female and male adults, pupae and in the larvae. No mRNA was detected from the larval epidermis or from the midgut. Hence, transcription of the cathepsin B-like cysteine proteinase from H. armigera was tissue-specific, but not gender- or developmental stage-specific. However, proteolytic activities were only detected from ovaries, and adult female and male fat bodies. No activity was observed from pupal and larval fat bodies, from the larval epidermis or from the midgut. Only one form of mRNA of approximately 1100 bases was detected, and in situ hybridization showed that the transcripts were distributed in the adult female fat bodies, follicular cells and the oocytes. Since the proteinase expressed in ovaries was able to degrade vitellin in vitro, it may be involved in the degradation of vitellin during embryonic development.
Collapse
Affiliation(s)
- X-F Zhao
- Department of Biology, School of Life Sciences, Shandong University, Jinan 250100, China
| | | | | | | | | |
Collapse
|
127
|
Logullo C, Moraes J, Dansa-Petretski M, Vaz IS, Masuda A, Sorgine MHF, Braz GR, Masuda H, Oliveira PL. Binding and storage of heme by vitellin from the cattle tick, Boophilus microplus. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2002; 32:1805-1811. [PMID: 12429132 DOI: 10.1016/s0965-1748(02)00162-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We have previously shown (, Curr. Biol. 9, 703-706) that the cattle tick Boophilus microplus does not synthesize heme, relying solely on the recovery of the heme from the diet to make all its hemeproteins. Here we present evidence that Vitellin (VN(1)), the main tick yolk protein, is a reservoir of heme for embryo development. VN was isolated from eggs at different days throughout embryogenesis. Immediately after oviposition, Boophilus VN contains approximately one mol of heme/mol of protein. During embryo development about one third of egg VN is degraded. The remaining VN molecules bind part of the heme released. These results suggest that VN functions as a heme reservoir, binding any free heme that exceeds the amount needed for development. In vitro measurement of the binding of heme to VN showed that each VN molecule binds up to 31 heme molecules. The association of heme with VN strongly inhibits heme-induced lipid peroxidation, suggesting that binding of heme is an important antioxidant mechanism to protect embryo cells from oxidative damage. This mechanism allows this hematophagous arthropod to safely store heme obtained from a blood meal inside their eggs for future use. Taken together our data suggest that, besides its known roles, VN also plays additional functions as a heme deposit and an antioxidant protective molecule.
Collapse
Affiliation(s)
- C Logullo
- Departamento de Bioquímica Médica, ICB - CCS - UFRJ, Bloco D, sala DS-5, Ilha do Fundão, Cidade Universitária, Rio de Janeiro, Brazil, CEP 21941-690.
| | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Wang SF, Li C, Sun G, Zhu J, Raikhel AS. Differential expression and regulation by 20-hydroxyecdysone of mosquito ecdysteroid receptor isoforms A and B. Mol Cell Endocrinol 2002; 196:29-42. [PMID: 12385823 DOI: 10.1016/s0303-7207(02)00225-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cloning of the AaEcR-A isoform, along with the previously cloned AaEcR-B isoform, has permitted us to evaluate the expression of AaEcR isoforms during mosquito vitellogenesis. Mosquito EcR isoform transcripts exhibited dramatically different patterns of expression after a blood meal-triggered activation of vitellogenesis in the fat body. The AaEcR-B transcript level rose sharply by 4-h post blood meal (PBM), coinciding with the small ecdysteroid peak, and then declined reaching its lowest level at 16-24-h PBM. In contrast, the AaEcR-A transcript peaked at 16-20-h PBM, coinciding with the large ecdysteroid peak. AaEcR-B and AaEcR-A transcripts exhibited a striking difference in sensitivity to 20-hydroxyecdysone (20E), being maximally activated at 10(-8) and 10(-6) M, respectively. Both ecdysteroid receptor (EcR) isoform mRNAs were transcribed in a cycloheximide-independent manner, suggesting that they are direct targets of 20E. However, AaEcR-A transcription requires continuous presence of 20E, while AaEcR-B mRNA level rose for 4 h and then declined under the same conditions. These results indicate the mosquito EcR isoforms play distinct physiological functions during vitellogenesis in the mosquito fat body.
Collapse
Affiliation(s)
- Sheng-Fu Wang
- Program in Genetics, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | | |
Collapse
|
129
|
Vandingenen A, Hens K, Baggerman G, Macours N, Schoofs L, De Loof A, Huybrechts R. Isolation and characterization of an angiotensin converting enzyme substrate from vitellogenic ovaries of Neobellieria bullata. Peptides 2002; 23:1853-63. [PMID: 12383874 DOI: 10.1016/s0196-9781(02)00144-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Vitellogenic ovaries of the gray fleshfly Neobellieria bullata contain a variety of unidentified substances that interact, either as a substrate or as an inhibitor, with angiotensin converting enzyme (ACE). We here report the isolation and characterization of the first ACE interactive compound hereof. This 1312.7 Da peptide with the sequence NKLKPSQWISL, is substrate to both insect and human ACE. It is a novel peptide that shows high sequence similarity to a sequence at the N-terminal part of dipteran yolk polypeptides (YPs). We propose to call it N. bullata ovary-derived ACE interactive factor or Neb-ODAIF. Both insect and human ACE hydrolyze Neb-ODAIF by sequentially cleaving off two C-terminal dipeptides. K(m) values of Neb-ODAIF and Neb-ODAIF(1-9) (NKLKPSQWI) for human somatic ACE (sACE) are 17 and 81 microM, respectively. Additionally, Neb-ODAIF(1-7) (NKLKPSQ) also interacts with sACE (K(m/i)=90 microM). These affinity-constants are in range with those of the physiological ACE substrates and suggest the importance of Neb-ODAIF and its cleavage products in the elucidation of the physiological role of insect ACE. Alternatively, they can serve as lead compounds in the development of new drugs against ACE-related diseases in humans.
Collapse
Affiliation(s)
- Anick Vandingenen
- Laboratory of Developmental Physiology and Molecular Biology, Zoological Institute of the Catholic University of Leuven, Naamsestraat 59, B-3000 Leuven, Belgium.
| | | | | | | | | | | | | |
Collapse
|
130
|
Raikhel AS, Kokoza VA, Zhu J, Martin D, Wang SF, Li C, Sun G, Ahmed A, Dittmer N, Attardo G. Molecular biology of mosquito vitellogenesis: from basic studies to genetic engineering of antipathogen immunity. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2002; 32:1275-1286. [PMID: 12225918 DOI: 10.1016/s0965-1748(02)00090-5] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Elucidation of molecular mechanisms underlying stage- and tissue-specific expression of genes activated by a blood meal is of great importance for current efforts directed towards utilizing molecular genetics to develop novel strategies of mosquito and pathogen control. Regulatory regions of such genes can be used to express anti-pathogen effector molecules in engineered vectors in a precise temporal and spatial manner, designed to maximally affect a pathogen. The fat body is a particularly important target for engineering anti-pathogen properties because in insects, it is a potent secretory tissue releasing its products to the hemolymph, an environment or a crossroad for most pathogens. Recently, we have provided proof of this concept by engineering stable transformant lines of Aedes aegypti mosquito, in which the regulatory region A. aegypti vitellogenin (Vg) gene activates high-level fat body-specific expression of a potent anti-bacterial factor, defensin, in response to a blood meal. Further study of the Vg gene utilizing Drosophila and Aedes transformation identified cis-regulatory sites responsible for state- and fat body-specific activation of this gene via a blood-meal-triggered cascade. These analyses revealed three regulatory regions in the 2.1-kb upstream portion of the Vg gene. The proximal region, containing binding sites to EcR/USP, GATA, C/EBP and HNF3/fkh, is required for the correct tissue- and stage-specific expression at a low level. The median region, carrying sites for early ecdysone response factors E74 and E75, is responsible for a stage-specific hormonal enhancement of the Vg expression. Finally, the distal GATA-rich region is necessary for extremely high expression levels characteristic to the Vg gene. Furthermore, our study showed that several transcription factors involved in controlling the Vg gene expression, are themselves targets of the blood meal-mediated regulatory cascade, thus greatly amplifying the effect of this cascade on the Vg gene. This research serves as the foundation for the future design of mosquito-specific expression cassettes with predicted stage- and tissue specificity at the desired levels of transgene expression.
Collapse
Affiliation(s)
- Alexander S Raikhel
- Department of Entomology, University of California, Riverside, CA 92521-0314, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Fialho E, Silveira AB, Masuda H, Silva-Neto MAC. Oocyte fertilization triggers acid phosphatase activity during Rhodnius prolixus embryogenesis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2002; 32:871-880. [PMID: 12110294 DOI: 10.1016/s0965-1748(01)00175-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Acid phosphatase activity, previously identified in Rhodnius prolixus oocytes, was studied during egg development. Fertilized eggs exhibited a five fold increase of total acid phosphatase activity during the first days of development. In contrast non-fertilized oviposited eggs showed no activation of this enzyme. An optimum pH of 4.0 for pNPP hydrolysis in a saturable linear reaction and a strong inhibition by lysosomal acid phosphatase inhibitors such as NaF (10 mM) and Na(+)/K(+) tartrate (0.5 mM) are the major biochemical properties of this enzyme. Fractionation of egg homogenates through gel filtration chromatography revealed a single peak of activity with a molecular mass of 94 kDa. The role of this enzyme in VT dephosphorylation was next evaluated. Western blots probed with anti-phosphoserine polyclonal antibody demonstrated that VT phosphoaminoacid content decreases during egg development. In vivo dephosphorylation during egg development was confirmed by following the removal of (32)P from (32)P-VT in metabolically labeled eggs. Vitellin was the only phosphorylated molecule able to inhibit pNPPase activity of partially purified acid phosphatase. These data indicate that acid phosphatase activation follows oocyte fertilization and this enzyme seems to be involved in VT dephosphorylation.
Collapse
Affiliation(s)
- Eliane Fialho
- Departamento de Bioquímica Médica, Instituto de Ciências Biomédicas, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, UFRJ, P.O. Box 68041, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, CEP 21941-590, RJ, Brazil
| | | | | | | |
Collapse
|
132
|
Sun G, Zhu J, Li C, Tu Z, Raikhel AS. Two isoforms of the early E74 gene, an Ets transcription factor homologue, are implicated in the ecdysteroid hierarchy governing vitellogenesis of the mosquito, Aedes aegypti. Mol Cell Endocrinol 2002; 190:147-57. [PMID: 11997188 DOI: 10.1016/s0303-7207(01)00726-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In the anautogenous mosquito, Aedes aegypti, vitellogenesis is under the strict control of 20-hydroxyecdysone (20E), which is produced via a blood meal-activated hormonal cascade. Several genes of the ecdysteroid-regulatory hierarchy are conserved between vitellogenesis in mosquitoes and metamorphosis in Drosophila. We report characterization of two isoforms of the mosquito early E74 gene (AaE74), which have a common C-terminal Ets DNA-binding domain and unique N-termini. They exhibited a high level of identity to Drosophila E74 isoforms A and B and showed structural features typical for Ets transcription factors. Both mosquito E74 isoforms bound to an E74 consensus motif C/AGGAA. In the fat body and ovary, the transcript of AaE74 isoform homologous to Drosophila E74B was induced by a blood meal exhibiting its highest level coinciding with the peak of vitellogenesis. In contrast, the transcript of AaE74 isoform homologous to Drosophila E74A was activated at the termination of vitellogenesis. These findings suggest that AaE74A and AaE74B isoforms play different roles in regulation of vitellogenesis in mosquitoes.
Collapse
Affiliation(s)
- Guoqiang Sun
- Program in Genetics and Department of Entomology, Michigan State University, S-138 Plant Biology Building, East Lansing 48824, USA
| | | | | | | | | |
Collapse
|
133
|
Cecchettini A, Scarcelli V, Locci MT, Masetti M, Giorgi F. Vitellin polypeptide pathways in late insect yolk sacs. ARTHROPOD STRUCTURE & DEVELOPMENT 2002; 30:243-250. [PMID: 18088959 DOI: 10.1016/s1467-8039(01)00031-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2001] [Accepted: 09/03/2001] [Indexed: 05/25/2023]
Abstract
A panel of monoclonal antibodies was raised against late yolk sacs of the stick insect Carausius morosus and tested by immunoblotting to establish the extent vitellin polypeptides are processed proteolytically during embryonic development. Cryosections of late yolk sacs were also examined by confocal laser microscopy to determine how vitellin cleavage products become spatially distributed amongst yolk granules during the same developmental period. Distinct labelling patterns were obtained on yolk granules depending on: (1) the nature of the proteolytic processing; (2) the origin of vitellin cleavage products; and ultimately (3) their molecular sizes. Monoclonal antibodies raised against vitellin cleavage products resulting from proteolytic processing appeared to label: (1) the entire volume of many yolk granules; (2) their limiting membrane; or (3) a number of small vesicles interposed between larger yolk granules. On the other hand, monoclonal antibodies against vitellin cleavage products that remain invariant throughout development appeared to label either the serosa membrane or the cytosolic space comprised between adjacent yolk granules. Data are interpreted as indicating that vitellin cleavage products may leak out from the yolk granules, gain access to the cytosolic space of the vitellophages and eventually percolate through the serosa membrane enclosing the yolk sac.
Collapse
Affiliation(s)
- A Cecchettini
- Department of Human Morphology and Applied Biology, Via A. Volta 4, 56126 Pisa, Italy
| | | | | | | | | |
Collapse
|
134
|
Yan J, Cheng Q, Li CB, Aksoy S. Molecular characterization of three gut genes from Glossina morsitans morsitans: cathepsin B, zinc-metalloprotease and zinc-carboxypeptidase. INSECT MOLECULAR BIOLOGY 2002; 11:57-65. [PMID: 11841503 DOI: 10.1046/j.0962-1075.2001.00308.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Insect gut enzymes are involved in digestion of dietary proteins. Additionally, these enzymes have been implicated in the process of pathogen establishment in several insects including the tsetse fly (Diptera:Glossinidae), which is the vector for African trypanosomes. Both the male and female tsetse can transmit trypanosomes and are strict blood feeders during all stages of their development. Here, we describe the molecular characterization of three gut genes: cathepsin B (GmCatB), zinc-metalloprotease (GmZmp) and zinc-carboxypeptidase (GmZcp). The cDNA for GmCatB encodes a protein for 340 amino acids with a predicted molecular mass of 38.2 kDa, while the 854 bp GmZmp cDNA encodes a protein of 254 amino acids with a molecular mass of 29 kDa. The GmZcp cDNA is 1319 bp in length and has a 354 amino acids open reading frame for coding a 40 kDa protein. All three cDNAs have signal peptide sequences associated with their N-terminal domains and structure analysis indicates that GmCatB and GmZmp are expressed as zymogens with pro-domains proteolytically removed for activity. The activation domain associated with the carboxypeptidase sequences is lacking in GmZcp. While GmCatB transcription is constitutive, teneral flies express very low levels of transcripts for GmZmp and GmZcp prior to the first bloodmeal. Transcription of all genes is induced and remains high throughout the digestion cycle within a few hours following the first bloodmeal ingestion. Both GmCatB and GmZcp are parasite responsive, with the expression of both genes being higher in trypanosome infected flies.
Collapse
Affiliation(s)
- J Yan
- Institute of Genetics, Fudan University, Shanghai, PR China
| | | | | | | |
Collapse
|
135
|
Hashmi S, Britton C, Liu J, Guiliano DB, Oksov Y, Lustigman S. Cathepsin L is essential for embryogenesis and development of Caenorhabditis elegans. J Biol Chem 2002; 277:3477-86. [PMID: 11707440 DOI: 10.1074/jbc.m106117200] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cysteine proteases play critical biological roles in both intracellular and extracellular processes. We characterized Ce-cpl-1, a Caenorhabditis elegans cathepsin L-like cysteine protease. RNA interference with Ce-cpl-1 activity resulted in embryonic lethality and a transient delayed growth of larvae to egg producing adults, suggesting an essential role for cpl-1 during embryogenesis, and most likely during post-embryonic development. Cpl-1 gene (Ce-cpl-1:lacZ) is widely expressed in the intestine and hypodermal cells of transgenic worms, while the fusion protein (Ce-CPL-1::GFP) was expressed in the hypodermis, pharynx, and gonad. The CPL-1 native protein accumulates in early to late stage embryos and becomes highly concentrated in gut cells during late embryonic development. CPL-1 is also present near the periphery of the eggshell as well as in the cuticle of larval stages suggesting that it may function not only in embryogenesis but also in further development of the worm. Although the precise role of Ce-CPL-1 during embryogenesis is not yet clear it could be involved in the processing of nutrients responsible for synthesis and/or in the degradation of eggshell. Moreover, an increase in the cpl-1 mRNA is seen in the intermolt period approximately 4 h prior to each molt. During this process Ce-CPL-1 may act as a proteolytic enzyme in the processing/degradation of cuticular or other proteins. Similar localization of a related cathepsin L in the filarial nematode Onchocerca volvulus, eggshell and cuticle, suggests that some of the Ce-CPL-1 function during development may be conserved in other parasitic nematodes.
Collapse
Affiliation(s)
- Sarwar Hashmi
- Laboratory of Molecular Parasitology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York 10021, USA
| | | | | | | | | | | |
Collapse
|
136
|
Kwon JY, Prat F, Randall C, Tyler CR. Molecular characterization of putative yolk processing enzymes and their expression during oogenesis and embryogenesis in rainbow trout (Oncorhynchus mykiss). Biol Reprod 2001; 65:1701-9. [PMID: 11717131 DOI: 10.1095/biolreprod65.6.1701] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Vitellogenin is the major yolk protein precursor in fish, but little is known about its processing pathway in the oocyte, nor about mobilization of yolk proteins during embryogenesis. In this study we cloned three putative yolk processing enzymes; specifically, cathepsin B and L, and lipoprotein lipase (LPL), from the rainbow trout ovary and determined their patterns of gene expression, together with cathepsin D, during oogenesis and embryogenesis using reverse transcription-polymerase chain reaction. The approximate sizes of both cathepsin B and cathepsin L transcripts were estimated as 1.7-1.8 kilobases by Northern blot analysis. Cathepsin D mRNA and cathepsin L mRNA were expressed constitutively throughout vitellogenesis and embryogenesis, showing the highest levels of expression at around fertilization. Cathepsin B and LPL were expressed exclusively during oogenesis. Quantitatively, expression of cathepsin D mRNA was higher than cathepsin B, cathepsin L, and LPL mRNA throughout the period studied. The different patterns of expression for these genes during oogenesis and embryogenesis signify specific temporal roles in yolk protein processing.
Collapse
Affiliation(s)
- J Y Kwon
- School of Biological Sciences, University of Exeter, Exeter EX4 4PS, United Kingdom
| | | | | | | |
Collapse
|
137
|
Fausto AM, Gambellini G, Mazzini M, Cecchettini A, Locci MT, Masetti M, Giorgi F. Serosa membrane plays a key role in transferring vitellin polypeptides to the perivitelline fluid in insect embryos. Dev Growth Differ 2001; 43:725-33. [PMID: 11737153 DOI: 10.1046/j.1440-169x.2001.00614.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In mid-embryogenesis, the stick insect Carausius morosus comes to be comprised of three distinct districts: the embryo proper, the yolk sac and the perivitelline fluid. A monolayered epithelium, the so-called serosa membrane, encloses the yolk sac and its content of vitellophages and large yolk granules. During embryonic development, the yolk sac declines gradually in protein concentration due to Vt polypeptides undergoing limited proteolysis to yield a number of Vt cleavage products of lower molecular weights. mAbs 1D1 and 5H11 are monoclonal antibodies raised against some of the Vt cleavage products generated by this process in the yolk sac. At the confocal microscope, antibody fluorescence is initially associated with a few yolk granules, while it is gradually displaced in the cytosolic spaces of the vitellophages. With the proceeding of embryonic development, label appears also in the serosa membrane in the form of clustered dots. At the ultrastructural level, gold particles are initially associated with the vitellophages that are labeled on a few yolk granules and in the cytosolic space flanking the yolk granules. Subsequently, the serosa cells become labeled on vesicles close to the yolk granules or just underneath the plasma membrane. Inside the serosa cells, label is also associated with granules budding from the Golgi apparatus, but never with the intercellular channels percolating the serosa membrane. These observations are interpreted as indicating that Vt cleavage products leak out from the yolk granules into the cytosolic spaces of the vitellophages and are eventually transferred to the perivitelline fluid via transcytosis through the serosa cells.
Collapse
Affiliation(s)
- A M Fausto
- Department of Environmental Sciences, Tuscia University, Largo dell'Università 1, 01100 Viterbo, Italy
| | | | | | | | | | | | | |
Collapse
|
138
|
Xu Y, Kawasaki H. Isolation and expression of cathepsin B cDNA in hemocytes during metamorphosis of Bombyx mori. Comp Biochem Physiol B Biochem Mol Biol 2001; 130:393-9. [PMID: 11567902 DOI: 10.1016/s1096-4959(01)00448-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
By using RT-PCR and 5'- and 3'-RACE methods, we isolated cathepsin B cDNA from hemocytes of Bombyx mori. The predicted open reading frame encoded 337 amino acids with 54% identity with the human cathepsin B, and 55% identity with the 29-kDa proteinase of the blowfly. Three active sites characteristic for cathepsin B were conserved in the deduced amino acid sequences of BmCtB cDNA at positions Cys-111, His-280 and Asn-300. Northern analysis identified a 1.3-kb mRNA. Expression of BmCtB was observed in the hemocytes from the day of wandering and was strongest at day 1 pupa. With in situ hybridization, strong signals were observed in the granular cells and plasmatocytes of day 0 pupa, but not in those of day 5 of the fifth larval instar. The results indicate another function of cathepsin B and insect hemocyte during metamorphosis.
Collapse
Affiliation(s)
- Y Xu
- College of Animal Sciences, Zhejiang University, 310029, Hangzhou, PR China
| | | |
Collapse
|
139
|
Uchida K, Ohmori D, Ueno T, Nishizuka M, Eshita Y, Fukunaga A, Kominami E. Preoviposition activation of cathepsin-like proteinases in degenerating ovarian follicles of the mosquito Culex pipiens pallens. Dev Biol 2001; 237:68-78. [PMID: 11518506 DOI: 10.1006/dbio.2001.0357] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Within developing ovaries of many insects, some developing follicles or oocytes usually degenerate (follicular atresia or oosorption), while the others may continue to grow to maturity, thus maintaining the balance between the number of eggs and reproductive circumstances such as available nutrients. To help clarify the phenomenon of follicular atresia during ovarian development, we examined cysteine proteinases stored in mosquito Culex pipiens pallens ovaries. First, analysis using synthesized substrates showed that cathepsin B- and L-like proteinases gradually accumulated in the developing ovaries after a blood meal, which required more than 10 min of preincubation under acidic conditions to reach their maximum activities. However, homogenates of degenerating follicles 3 days after feeding showed proteolytic activities without acid treatment, suggesting that the proteinases had already been activated, while the extract of normally developing follicles collected from the same ovaries required more than 10 min of acid preincubation to reach the optimum activities, suggesting that the enzymes remained as inactive forms. Chemical and immunohistochemical analyses showed that more proteinases are located in the cytoplasm, rather than being associated with yolk granules. Ovarian proteinases, which are believed to become activated at the onset of embryogenesis, should also be activated during oogenesis, presumably to enhance oosorption.
Collapse
Affiliation(s)
- K Uchida
- Department of Biology, Juntendo University School of Medicine, Inba-gun, 1-1 Hiraga Gakuerdai, Chiba 270-1695, Japan.
| | | | | | | | | | | | | |
Collapse
|
140
|
Pang YP, Xu K, Kollmeyer TM, Perola E, McGrath WJ, Green DT, Mangel WF. Discovery of a new inhibitor lead of adenovirus proteinase: steps toward selective, irreversible inhibitors of cysteine proteinases. FEBS Lett 2001; 502:93-7. [PMID: 11583118 DOI: 10.1016/s0014-5793(01)02672-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Using the computer docking program EUDOC, in silico screening of a chemical database for inhibitors of human adenovirus cysteine proteinase (hAVCP) identified 2,4,5,7-tetranitro-9-fluorenone that selectively and irreversibly inhibits hAVCP in a two-step reaction: reversible binding (Ki = 3.09 microM) followed by irreversible inhibition (ki = 0.006 s(-1)). The reversible binding is due to molecular complementarity between the inhibitor and the active site of hAVCP, which confers the selectivity of the inhibitor. The irreversible inhibition is due to substitution of a nitro group of the inhibitor by the nearby Cys122 in the active site of hAVCP. These findings suggest a new approach to selective, irreversible inhibitors of cysteine proteinases involved in normal and abnormal physiological processes ranging from embryogenesis to apoptosis and pathogen invasions.
Collapse
Affiliation(s)
- Y P Pang
- Mayo Clinic Cancer Center, Mayo Foundation for Medical Education and Research, Rochester, MN 55905, USA.
| | | | | | | | | | | | | |
Collapse
|
141
|
Abdu U, Yehezkel G, Weil S, Ziv T, Sagi A. Is the unique negatively charged polypeptide of crayfish yolk HDL a component of crustacean vitellin? THE JOURNAL OF EXPERIMENTAL ZOOLOGY 2001; 290:218-26. [PMID: 11479901 DOI: 10.1002/jez.1052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The yolk protein of Cherax quadricarinatus contains six major high-density lipoprotein (HDL) subunits with the approximate molecular masses of 177, 155, 106, 95, 86, and 75 kDa, of which only the 106-kDa polypeptide is negatively charged. On the basis of their molecular weights, time of appearance and disappearance, their floating density and susceptibility to enzyme degradation (by a serine proteinase), these six HDL polypeptides were classified into two subgroups. One group comprises the higher-molecular-weight compounds above 106 kDa, and the other includes the lower-molecular-weight compounds up to 95 kDa. Other than being different from the lower-molecular-weight polypeptides, the negatively charged 106-kDa polypeptide was significantly different from members of its higher-molecular-weight group belonging to a different, less abundant, yolk protein as shown by HPLC separation. Immunological studies and peptide mapping in which the 106-kDa polypeptide did not show similarity to any of the other HDL components confirmed these differences. Moreover, the amino acid composition of the 106-kDa polypeptide was different from that of known vitellin from other crustacean species. This unique negatively charged polypeptide presents an enigma as it is known to be a secondary vitellogenic-related HDL polypeptide, immunolocalized in yolk globules; however, it is different to all the other HDL polypeptides, thus presenting the question whether it is indeed a component of "classical" crustacean vitellin.
Collapse
Affiliation(s)
- U Abdu
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | | | | | | | | |
Collapse
|
142
|
Cecchettini A, Falleni A, Gremigni V, Locci MT, Masetti M, Bradley JT, Giorgi F. Yolk utilization in stick insects entails the release of vitellin polypeptides into the perivitelline fluid. Eur J Cell Biol 2001; 80:458-65. [PMID: 11499788 DOI: 10.1078/0171-9335-00179] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This study investigates the developmental fate of vitellin (Vt) polypeptides generated by limited proteolysis in an insect embryo. To this end, a number of polyclonal (pAb) and monoclonal antibodies (mAb) were raised against the yolk sac and the perivitelline fluid of late embryos of the stick insect Carausius morosus. Two dimensional immuno gel electrophoresis and Western blotting demonstrate that polypeptides resulting from Vt processing are present both in the yolk sac and the perivitelline fluid. At the confocal microscope, different labelling patterns were detected in the ooplasm depending on the stage of development attained by the embryo. At early developmental stages, label is associated with large unsegmented portions of the fluid ooplasm. During embryonic development, the fluid ooplasm is gradually transformed into yolk granules by intervention of vitellophages. Prior to dorsal closure, the yolk sac is separated from the perivitelline fluid by interposition of serosa cells (the so called serosa membrane). Several mAbs raised against the perivitelline fluid react specifically with this membrane suggesting that the release of Vt polypeptides from the yolk sac occurs by intracellular transit through the serosa cells. By immunocytochemistry, gold label appears associated with the cell surface and a number of vacuoles of the serosa membrane. These data are interpreted as suggesting that Vt polypeptides resulting from limited proteolysis in stick insect embryos are not exhaustively degraded within the yolk sac, but are instead transferred transcytotically to the perivitelline fluid through the serosa membrane.
Collapse
Affiliation(s)
- A Cecchettini
- Department of Human Morphology and Applied Biology, University of Pisa, Italy.
| | | | | | | | | | | | | |
Collapse
|
143
|
Cheon HM, Seo SJ, Sun J, Sappington TW, Raikhel AS. Molecular characterization of the VLDL receptor homolog mediating binding of lipophorin in oocyte of the mosquito Aedes aegypti. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2001; 31:753-760. [PMID: 11378410 DOI: 10.1016/s0965-1748(01)00068-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Lipophorin (Lp) functions as a yolk protein precursor in the mosquito Aedes aegypti and it is internalized via receptor-mediated endocytosis (Insect Biochem. Mol. Biol., 30 (2000) 1161). We cloned and molecularly characterized a putative mosquito ovarian lipophorin receptor (AaLpRov) cDNA. The cDNA has a length of 3468 bp coding for a 1156-residue protein with a predicted molecular mass of 128.9 kDa. The deduced amino acid sequence of the cDNA revealed that it encodes a protein homolog of the LDL receptor superfamily, and that it harbors eight cysteine-rich ligand binding repeats at the N-terminus like vertebrate VLDL receptors. The deduced amino acid sequence of this mosquito ovarian receptor is most similar to that of the locust lipophorin receptor (LmLpR) (64.3%), and is only distantly related to the mosquito vitellogenin receptor (VgR) (18.3%), another ovarian LDLR homolog with a different ligand. The AaLpRov cDNA was expressed in a TnT Coupled Reticulocyte Lysate system, and co-immunoprecipitation experiments confirmed that the receptor protein specifically binds Lp. Developmental expression profiles clearly showed that AaLpRov transcripts are present in the vitellogenic ovary, with peak expression at 24-36 h post blood meal. In situ hybridization indicated that AaLpRov transcripts are present only in female germ line cells. Distance-based phylogenetic analyses suggest that the insect LpR and vertebrate LDL/VLDL receptor lineages separated after divergence from the insect VgR lineage.
Collapse
Affiliation(s)
- H M Cheon
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Chinju 660-701, Gyeongnam, South Korea
| | | | | | | | | |
Collapse
|
144
|
Ribolla PE, Bijovsky AT. Procathepsin and acid phosphatase are stored in Musca domestica yolk spheres. JOURNAL OF INSECT PHYSIOLOGY 2001; 47:225-232. [PMID: 11119768 DOI: 10.1016/s0022-1910(00)00114-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Yolk spheres present in mature invertebrate oocytes are composed of yolk proteins and proteolytic enzymes. In the fly Musca domestica, yolk proteins are degraded during embryogenesis by a cathepsin-like proteinase that is stored as a zymogen. An acid phosphatase is also active in the yolk spheres during Musca embryogenesis. In this paper we show that procathepsin and acid phosphatase are initially stored by a different pathway from the one followed by yolk protein precursors. Both enzymes are taken up by the oocytes and transitorily stored into small vesicles (lysosomes) surrounding the early yolk spheres. Fusion of both structures, the early yolk spheres and lysosomes, creates the mature yolk spheres.
Collapse
Affiliation(s)
- PE Ribolla
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, 05508-900, SP, São Paulo, Brazil
| | | |
Collapse
|
145
|
Martín D, Wang SF, Raikhel AS. The vitellogenin gene of the mosquito Aedes aegypti is a direct target of ecdysteroid receptor. Mol Cell Endocrinol 2001; 173:75-86. [PMID: 11223179 DOI: 10.1016/s0303-7207(00)00413-5] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In the female mosquito Aedes aegypti, vitellogenin (Vg), the major YPP, is activated by 20-hydroxyecdysone (20E) at the transcriptional level. We used cell transfection assays in the Drosophila S2 cells to investigate whether 20E acts directly on the Vg gene via its functional receptor, the heterodimer composed of the ecdysteroid receptor (EcR) and the ultraspiracle (USP) proteins. We demonstrated that the Vg 5'-regulatory region contains a functional ecdysteroid-responsive element (VgEcRE1) that is necessary to confer responsiveness to 20E. VgEcRE binds directly to EcR-USP produced in vitro and extracted from the vitellogenic fat body nuclei. The binding intensity of the EcR-USP-EcRE1 complex from nuclear extracts corresponds to the levels of ecdysteroids and of the Vg transcript during the vitellogenic cycle. Given the modest level of 20E-dependent activation, it is likely that the EcR-USP receptor acts synergistically with other transcription factors to bring about the high level of Vg gene expression.
Collapse
Affiliation(s)
- D Martín
- Department of Entomology and Programs in Genetics and Cell and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | | | | |
Collapse
|
146
|
Martín D, Piulachs MD, Raikhel AS. A novel GATA factor transcriptionally represses yolk protein precursor genes in the mosquito Aedes aegypti via interaction with the CtBP corepressor. Mol Cell Biol 2001; 21:164-74. [PMID: 11113191 PMCID: PMC88790 DOI: 10.1128/mcb.21.1.164-174.2001] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In anautogenous mosquitoes, vitellogenesis, the key event in egg maturation, requires a blood meal. Consequently, mosquitoes are vectors of many devastating human diseases. An important adaptation for anautogenicity is the previtellogenic arrest (the state of arrest) preventing the activation of the yolk protein precursor (YPP) genes Vg and VCP prior to blood feeding. A novel GATA factor (AaGATAr) that recognizes GATA binding motifs (WGATAR) in the upstream region of the YPP genes serves as a transcriptional repressor at the state of arrest. Importantly, AaGATAr can override the 20-hydroxyecdysone transactivation of YPP genes, and its transcriptional repression involves the recruitment of CtBP, one of the universal corepressors. AaGATAr transcript is present only in the adult female fat body. Furthermore, in nuclear extracts of previtellogenic fat bodies with transcriptionally repressed YPP genes, there is a GATA binding protein forming a band with mobility similar to that of AaGATAr. The specific repression of YPP genes by AaGATAr in the fat body of the female mosquito during the state of arrest represents an important molecular adaptation for anautogenicity.
Collapse
Affiliation(s)
- D Martín
- Department of Entomology and Program in Genetics, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | |
Collapse
|
147
|
Sun J, Hiraoka T, Dittmer NT, Cho KH, Raikhel AS. Lipophorin as a yolk protein precursor in the mosquito, Aedes aegypti. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2000; 30:1161-1171. [PMID: 11044662 DOI: 10.1016/s0965-1748(00)00093-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We examined expression of the lipophorin (Lp) gene, lipophorin (Lp) synthesis and secretion in the mosquito fat body, as well as dynamic changes in levels of this lipoprotein in the hemolymph and ovaries, during the first vitellogenic cycle of females of the yellow fever mosquito, Aedes aegypti. Lipophorin was purified by potassium bromide (KBr) density gradient ultracentrifugation and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Polyclonal antibodies were produced against individual Lp apoproteins, apolipoprotein-I (apoLp-I) and apolipoprotein-II (apoLp-II), with molecular weights of 240 and 75 kDa, respectively. We report here that in the mosquito A. aegypti, Lp was synthesized by the fat body, with a low level of the Lp gene expression and protein synthesis being maintained in pre- and postvitellogenic females. Following a blood meal, the Lp gene expression and protein synthesis were significantly upregulated. Our findings showed that the fat body levels of Lp mRNA and the rate of Lp secretion by this tissue reached their maximum at 18 h post-blood meal (PMB). 20-Hydroxyecdysone was responsible for an increase in the Lp gene expression and Lp protein synthesis in the mosquito fat body. Finally, the immunocytochemical localization of Lp showed that in vitellogenic female mosquitoes, this protein was accumulated by developing oocytes where it was deposited in yolk granules.
Collapse
Affiliation(s)
- J Sun
- Department of Entomology, Michigan State University, East Lansing, MI 48824-1115, USA
| | | | | | | | | |
Collapse
|
148
|
Li C, Kapitskaya MZ, Zhu J, Miura K, Segraves W, Raikhel AS. Conserved molecular mechanism for the stage specificity of the mosquito vitellogenic response to ecdysone. Dev Biol 2000; 224:96-110. [PMID: 10898964 DOI: 10.1006/dbio.2000.9792] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the mosquito Aedes aegypti, the adult female becomes competent for a vitellogenic response to ecdysone after previtellogenic development. Here, we show that betaFTZ-F1, the nuclear receptor implicated as a competence factor for stage-specific responses to ecdysone during Drosophila metamorphosis, serves a similar function during mosquito vitellogenesis. AaFTZ-F1 is expressed highly in the mosquito fat body during pre- and postvitellogenic periods when ecdysteroid titers are low. The mosquito AaFTZ-F1 transcript nearly disappears in mid-vitellogenesis when ecdysteroid titers are high. An expression peak of HR3, a nuclear receptor implicated in the activation of betaFTZ-F1 in Drosophila, precedes each rise in mosquito FTZ-F1 expression. In in vitro fat body culture, AaFTZ-F1 expression is inhibited by 20-hydroxyecdysone (20E) and superactivated by its withdrawal. Following in vitro AaFTZ-F1 superactivation, a secondary 20E challenge results in superinduction of the early AaE75 gene and the late target VCP gene. Electrophoretic mobility-shift assays show that the onset of ecdysone-response competence in the mosquito fat body is correlated with the appearance of the functional AaFTZ-F1 protein at the end of the previtellogenic development. These findings suggest that a conserved molecular mechanism for controlling stage specificity is reiteratively used during metamorphic and reproductive responses to ecdysone.
Collapse
Affiliation(s)
- C Li
- Program in Genetics and Department of Entomology, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | | | | | |
Collapse
|
149
|
Zhu J, Miura K, Chen L, Raikhel AS. AHR38, a homolog of NGFI-B, inhibits formation of the functional ecdysteroid receptor in the mosquito Aedes aegypti. EMBO J 2000; 19:253-62. [PMID: 10637229 PMCID: PMC305559 DOI: 10.1093/emboj/19.2.253] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In anautogenous mosquitoes, vitellogenesis, the key event in egg maturation, requires a blood meal. Consequently, mosquitoes are vectors of numerous devastating human diseases. After ingestion of blood, 20-hydroxyecdysone activates yolk protein precursor (YPP) genes in the metabolic tissue, the fat body. An important adaptation for anautogenicity is the previtellogenic developmental arrest (the state-of-arrest) preventing the activation of YPP genes in previtellogenic females prior to blood feeding. Here, we show that a retinoid X receptor homolog, Ultraspiracle (AaUSP), which is an obligatory partner in the functional ecdysteroid receptor, exists at the state-of-arrest as a heterodimer with the orphan nuclear receptor AHR38, a homolog of Drosophila DHR38 and nerve growth factor-induced protein B. Yeast two-hybrid and glutathione S-transferase pull-down assays demonstrate that AHR38 can interact strongly with AaUSP. AHR38 also disrupts binding of ecdysteroid receptor to ecdysone response elements. Cell co-transfection of AHR38 with AaEcR and AaUSP inhibits ecdysone-dependent activation of a reporter gene by the ecdysteroid receptor. Co-immunoprecipitation experiments indicate that AaUSP protein associates with AHR38 instead of AaEcR in fat body nuclei at the state-of-arrest.
Collapse
Affiliation(s)
- J Zhu
- Program in Genetics and Department of Entomology, Michigan State University, East Lansing, MI 488240-1115, USA
| | | | | | | |
Collapse
|