101
|
Degirolamo C, Sabbà C, Moschetta A. Intestinal nuclear receptors in HDL cholesterol metabolism. J Lipid Res 2014; 56:1262-70. [PMID: 25070952 DOI: 10.1194/jlr.r052704] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Indexed: 12/18/2022] Open
Abstract
The intestine plays a pivotal role in cholesterol homeostasis by functioning as an absorptive and secretory organ in the reverse cholesterol transport pathway. Enterocytes control cholesterol absorption, apoAI synthesis, HDL biogenesis, and nonbiliary cholesterol fecal disposal. Thus, intestine-based therapeutic interventions may hold promise in the management of diseases driven by cholesterol overload. Lipid-sensing nuclear receptors (NRs) are highly expressed in the intestinal epithelium and regulate transcriptionally the handling of cholesterol by the enterocytes. Here, we discuss the NR regulation of cholesterol fluxes across the enterocytes with special emphasis on NR exploitation as a bona fide novel HDL-raising strategy.
Collapse
Affiliation(s)
- Chiara Degirolamo
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori "Giovanni Paolo II", 70124 Bari, Italy
| | - Carlo Sabbà
- Clinica Medica "Cesare Frugoni", Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Antonio Moschetta
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori "Giovanni Paolo II", 70124 Bari, Italy Clinica Medica "Cesare Frugoni", Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| |
Collapse
|
102
|
Marshall SM, Gromovsky AD, Kelley KL, Davis MA, Wilson MD, Lee RG, Crooke RM, Graham MJ, Rudel LL, Brown JM, Temel RE. Acute sterol o-acyltransferase 2 (SOAT2) knockdown rapidly mobilizes hepatic cholesterol for fecal excretion. PLoS One 2014; 9:e98953. [PMID: 24901470 PMCID: PMC4047063 DOI: 10.1371/journal.pone.0098953] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 05/09/2014] [Indexed: 02/05/2023] Open
Abstract
The primary risk factor for atherosclerotic cardiovascular disease is LDL cholesterol, which can be reduced by increasing cholesterol excretion from the body. Fecal cholesterol excretion can be driven by a hepatobiliary as well as a non-biliary pathway known as transintestinal cholesterol efflux (TICE). We previously showed that chronic knockdown of the hepatic cholesterol esterifying enzyme sterol O-acyltransferase 2 (SOAT2) increased fecal cholesterol loss via TICE. To elucidate the initial events that stimulate TICE, C57Bl/6 mice were fed a high cholesterol diet to induce hepatic cholesterol accumulation and were then treated for 1 or 2 weeks with an antisense oligonucleotide targeting SOAT2. Within 2 weeks of hepatic SOAT2 knockdown (SOAT2HKD), the concentration of cholesteryl ester in the liver was reduced by 70% without a reciprocal increase in hepatic free cholesterol. The rapid mobilization of hepatic cholesterol stores resulted in a ∼ 2-fold increase in fecal neutral sterol loss but no change in biliary cholesterol concentration. Acute SOAT2HKD increased plasma cholesterol carried primarily in lipoproteins enriched in apoB and apoE. Collectively, our data suggest that acutely reducing SOAT2 causes hepatic cholesterol to be swiftly mobilized and packaged onto nascent lipoproteins that feed cholesterol into the TICE pathway for fecal excretion.
Collapse
Affiliation(s)
- Stephanie M. Marshall
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Anthony D. Gromovsky
- Department of Cellular and Molecular Medicine, Cleveland Clinic Foundation – Lerner Research Institute, Cleveland, Ohio, United States of America
| | - Kathryn L. Kelley
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Matthew A. Davis
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Martha D. Wilson
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Richard G. Lee
- Cardiovascular Group, Antisense Drug Discovery, Isis Pharmaceuticals, Carlsbad, California, United States of America
| | - Rosanne M. Crooke
- Cardiovascular Group, Antisense Drug Discovery, Isis Pharmaceuticals, Carlsbad, California, United States of America
| | - Mark J. Graham
- Cardiovascular Group, Antisense Drug Discovery, Isis Pharmaceuticals, Carlsbad, California, United States of America
| | - Lawrence L. Rudel
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
| | - J. Mark Brown
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
- Department of Cellular and Molecular Medicine, Cleveland Clinic Foundation – Lerner Research Institute, Cleveland, Ohio, United States of America
| | - Ryan E. Temel
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, Kentucky, United States of America
| |
Collapse
|
103
|
Uto-Kondo H, Ayaori M, Sotherden GM, Nakaya K, Sasaki M, Yogo M, Komatsu T, Takiguchi S, Yakushiji E, Ogura M, Nishida T, Endo Y, Ikewaki K. Ezetimibe enhances macrophage reverse cholesterol transport in hamsters: contribution of hepato-biliary pathway. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:1247-55. [PMID: 24989153 DOI: 10.1016/j.bbalip.2014.05.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 05/13/2014] [Accepted: 05/27/2014] [Indexed: 11/15/2022]
Abstract
Reverse cholesterol transport (RCT) is pivotal in the return of excess cholesterol from peripheral tissues to the liver for excretion in bile and eventually feces. RCT from macrophages is a critical anti-atherogenicity mechanism of HDL. As the cholesterol absorption inhibitor ezetimibe promoted RCT in mice, which lack cholesterol ester transfer protein (CETP), we investigated its effects in hamsters, which have CETP. A high-cholesterol diet (HC) increased cholesterol levels throughout lipoprotein fractions and ezetimibe markedly reduced VLDL/LDL cholesterol levels under both normal chow (NC) and HC. However, ezetimibe did not affect and reduced HDL-cholesterol levels under NC and HC, respectively. Intraperitoneal injection of (3)H-cholesterol pre-labeled macrophages in an in vivo RCT assay increased tracer accumulation in the liver but reduced it in bile under HC, and these changes were completely cancelled by ezetimibe. Under both NC and HC, ezetimibe reduced tracer levels in the liver but increased them in feces, indicating promotion of RCT in vivo. We performed a RCT assay using hamsters subjected to bile duct ligation (BDL) to clarify whether a transintestinal cholesterol efflux (TICE) pathway contributes to ezetimibe's enhancement of RCT. BDL markedly inhibited macrophage-derived (3)H-cholesterol excretion to feces and cancelled ezetimibe's stimulatory effect on RCT, suggesting that biliary cholesterol excretion is a major contributor in RCT promotion by ezetimibe but the contribution of the TICE pathway is minimal. In conclusions, ezetimibe exerts an additive anti-atherogenic property by enhancing RCT in hamsters. Our findings suggest that this property is independent of the TICE pathway.
Collapse
Affiliation(s)
- Harumi Uto-Kondo
- Division of Anti-aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Makoto Ayaori
- Division of Anti-aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan.
| | - Grace Megumi Sotherden
- Division of Anti-aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Kazuhiro Nakaya
- Division of Anti-aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Makoto Sasaki
- Division of Anti-aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Makiko Yogo
- Division of Anti-aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Tomohiro Komatsu
- Division of Anti-aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Shunichi Takiguchi
- Division of Anti-aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Emi Yakushiji
- Division of Anti-aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Masatsune Ogura
- Division of Anti-aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Takafumi Nishida
- Division of Anti-aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Yasuhiro Endo
- Division of Anti-aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Katsunori Ikewaki
- Division of Anti-aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| |
Collapse
|
104
|
Hong C, Tontonoz P. Liver X receptors in lipid metabolism: opportunities for drug discovery. Nat Rev Drug Discov 2014; 13:433-44. [DOI: 10.1038/nrd4280] [Citation(s) in RCA: 401] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
105
|
Cross-talk between liver and intestine in control of cholesterol and energy homeostasis. Mol Aspects Med 2014; 37:77-88. [PMID: 24560594 DOI: 10.1016/j.mam.2014.02.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 12/04/2013] [Accepted: 02/10/2014] [Indexed: 12/19/2022]
Abstract
A major hurdle for organisms to dispose of cholesterol is the inability to degrade the sterol nucleus which constitutes the central part of the molecule. Synthesis of the sterol nucleus requires a complex, energy costly, metabolic pathway but also generates a diverse array of intermediates serving crucial roles in cellular energy metabolism and signal transduction. This may be the reason why this complex pathway has survived evolutionary pressure. The only way to get rid of substantial amounts of cholesterol is conversion into bile acid or direct excretion of the sterol in the feces. The lack of versatility in disposal mechanisms causes a lack of flexibility to regulate cholesterol homeostasis which may underlie the considerable human pathology linked to cholesterol removal from the body. Export of cholesterol from the body requires an intricate communication between intestine and the liver. The last decade this inter-organ cross talk has been focus of intense research leading to considerable new insight. This novel information on particular the cross-talk between liver and intestine and role of bile acids as signal transducing molecules forms the focus of this review.
Collapse
|
106
|
Dikkers A, Annema W, de Boer JF, Iqbal J, Hussain MM, Tietge UJF. Differential impact of hepatic deficiency and total body inhibition of MTP on cholesterol metabolism and RCT in mice. J Lipid Res 2014; 55:816-25. [PMID: 24511105 DOI: 10.1194/jlr.m042986] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Because apoB-containing lipoproteins are pro-atherogenic and their secretion by liver and intestine largely depends on microsomal triglyceride transfer protein (MTP) activity, MTP inhibition strategies are actively pursued. How decreasing the secretion of apoB-containing lipoproteins affects intracellular rerouting of cholesterol is unclear. Therefore, the aim of the present study was to determine the effects of reducing either systemic or liver-specific MTP activity on cholesterol metabolism and reverse cholesterol transport (RCT) using a pharmacological MTP inhibitor or a genetic model, respectively. Plasma total cholesterol and triglyceride levels were decreased in both MTP inhibitor-treated and liver-specific MTP knockout (L-Mttp(-/-)) mice (each P < 0.001). With both inhibition approaches, hepatic cholesterol as well as triglyceride content was consistently increased (each P < 0.001), while biliary cholesterol and bile acid secretion remained unchanged. A small but significant decrease in fecal bile acid excretion was observed in inhibitor-treated mice (P < 0.05), whereas fecal neutral sterol excretion was substantially increased by 75% (P < 0.001), conceivably due to decreased intestinal absorption. In contrast, in L-Mttp(-/-) mice both fecal neutral sterol and bile acid excretion remained unchanged. However, while total RCT increased in inhibitor-treated mice (P < 0.01), it surprisingly decreased in L-Mttp(-/-) mice (P < 0.05). These data demonstrate that: i) pharmacological MTP inhibition increases RCT, an effect that might provide additional clinical benefit of MTP inhibitors; and ii) decreasing hepatic MTP decreases RCT, pointing toward a potential contribution of hepatocyte-derived VLDLs to RCT.
Collapse
Affiliation(s)
- Arne Dikkers
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
107
|
Byun HW, Hong EM, Park SH, Koh DH, Choi MH, Jang HJ, Kae SH, Lee J. Pravastatin activates the expression of farnesoid X receptor and liver X receptor alpha in Hep3B cells. Hepatobiliary Pancreat Dis Int 2014; 13:65-73. [PMID: 24463082 DOI: 10.1016/s1499-3872(14)60009-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Statins are suggested to preserve gallbladder function by suppressing pro-inflammatory cytokines and preventing cholesterol accumulation in gallbladder epithelial cells. They also affect cross-talk among the nuclear hormone receptors that regulate cholesterol-bile acid metabolism in the nuclei of hepatocytes. However, there is controversy over whether or how statins change the expression of peroxisome proliferator-activated receptor (PPAR)alpha, PPARgamma, liver X receptor alpha (LXRalpha), farnesoid X receptor (FXR), ABCG5, ABCG8, and 7alpha-hydroxylase (CYP7A1) which are directly involved in the cholesterol saturation index in bile. METHODS Human Hep3B cells were cultured on dishes. MTT assays were performed to determine the appropriate concentrations of reagents to be used. The protein expression of PPARalpha and PPARgamma was measured by Western blotting analysis, and the mRNA expression of LXRalpha, FXR, ABCG5, ABCG8 and CYP7A1 was estimated by RT-PCR. RESULTS In cultured Hep3B cells, pravastatin activated PPARalpha and PPARgamma protein expression, induced stronger expression of PPARgamma than that of PPARalpha, increased LXRalpha mRNA expression, activated ABCG5 and ABCG8 mRNA expression mediated by FXR as well as LXRalpha, enhanced FXR mRNA expression, and increased CYP7A1 mRNA expression mediated by the PPARgamma and LXRalpha pathways, together or independently. CONCLUSION Our data suggested that pravastatin prevents cholesterol gallstone diseases via the increase of FXR, LXRalpha and CYP7A1 in human hepatocytes.
Collapse
Affiliation(s)
- Hyun Woo Byun
- Division of Gastroenterology, Department of Internal Medicine, Hallym University College of Medicine, Dongtan Sacred Heart Hospital, 40 Seokwoo-dong, Hwasung, Kyungki-Do 445-170, Republic of Korea.
| | | | | | | | | | | | | | | |
Collapse
|
108
|
Back SS, Kim J, Choi D, Lee ES, Choi SY, Han K. Cooperative transcriptional activation of ATP-binding cassette sterol transporters ABCG5 and ABCG8 genes by nuclear receptors including Liver-X-Receptor. BMB Rep 2014; 46:322-7. [PMID: 23790976 PMCID: PMC4133900 DOI: 10.5483/bmbrep.2013.46.6.246] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ATP-binding cassette transporters ABCG5 and ABCG8 form heterodimers that limit absorption of dietary sterols in the intestine and promote cholesterol elimination from the body through hepatobiliary secretion. To identify cis-regulatory elements of the two genes, we have cloned and analyzed twenty-three evolutionary conserved region (ECR) fragments using the CMV-luciferase reporter system in HepG2 cells. Two ECRs were found to be responsive to the Liver-X-Receptor (LXR). Through elaborate deletion studies, regions containing putative LXREs were identified and the binding of LXRα was demonstrated by EMSA and ChIP assay. When the LXREs were inserted upstream of the intergenic promoter, synergistic activation by LXRα/RXRα in combination with GATA4, HNF4α, and LRH-1, which had been shown to bind to the intergenic region, was observed. In conclusion, we have identified two LXREs in ABCG5/ABCG8 genes for the first time and propose that these LXREs, especially in the ECR20, play major roles in regulating these genes. [BMB Reports 2013; 46(6): 322-327]
Collapse
Affiliation(s)
- Su Sun Back
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702, Korea
| | | | | | | | | | | |
Collapse
|
109
|
Marshall SM, Kelley KL, Davis MA, Wilson MD, McDaniel AL, Lee RG, Crooke RM, Graham MJ, Rudel LL, Brown JM, Temel RE. Reduction of VLDL secretion decreases cholesterol excretion in niemann-pick C1-like 1 hepatic transgenic mice. PLoS One 2014; 9:e84418. [PMID: 24404162 PMCID: PMC3880293 DOI: 10.1371/journal.pone.0084418] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 11/07/2013] [Indexed: 12/25/2022] Open
Abstract
An effective way to reduce LDL cholesterol, the primary risk factor of atherosclerotic cardiovascular disease, is to increase cholesterol excretion from the body. Our group and others have recently found that cholesterol excretion can be facilitated by both hepatobiliary and transintestinal pathways. However, the lipoprotein that moves cholesterol through the plasma to the small intestine for transintestinal cholesterol efflux (TICE) is unknown. To test the hypothesis that hepatic very low-density lipoproteins (VLDL) support TICE, antisense oligonucleotides (ASO) were used to knockdown hepatic expression of microsomal triglyceride transfer protein (MTP), which is necessary for VLDL assembly. While maintained on a high cholesterol diet, Niemann-Pick C1-like 1 hepatic transgenic (L1Tg) mice, which predominantly excrete cholesterol via TICE, and wild type (WT) littermates were treated with control ASO or MTP ASO. In both WT and L1Tg mice, MTP ASO decreased VLDL triglyceride (TG) and cholesterol secretion. Regardless of treatment, L1Tg mice had reduced biliary cholesterol compared to WT mice. However, only L1Tg mice treated with MTP ASO had reduced fecal cholesterol excretion. Based upon these findings, we conclude that VLDL or a byproduct such as LDL can move cholesterol from the liver to the small intestine for TICE.
Collapse
Affiliation(s)
- Stephanie M. Marshall
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
- Department of Cellular and Molecular Medicine, Cleveland Clinic Foundation – Lerner Research Institute, Cleveland, Ohio, United States of America
| | - Kathryn L. Kelley
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Matthew A. Davis
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Martha D. Wilson
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Allison L. McDaniel
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Richard G. Lee
- Cardiovascular Group, Antisense Drug Discovery, Isis Pharmaceuticals, Carlsbad, California, United States of America
| | - Rosanne M. Crooke
- Cardiovascular Group, Antisense Drug Discovery, Isis Pharmaceuticals, Carlsbad, California, United States of America
| | - Mark J. Graham
- Cardiovascular Group, Antisense Drug Discovery, Isis Pharmaceuticals, Carlsbad, California, United States of America
| | - Lawrence L. Rudel
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
| | - J. Mark Brown
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
- Department of Cellular and Molecular Medicine, Cleveland Clinic Foundation – Lerner Research Institute, Cleveland, Ohio, United States of America
| | - Ryan E. Temel
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, Kentucky, United States of America
| |
Collapse
|
110
|
Ding L, Pang S, Sun Y, Tian Y, Yu L, Dang N. Coordinated Actions of FXR and LXR in Metabolism: From Pathogenesis to Pharmacological Targets for Type 2 Diabetes. Int J Endocrinol 2014; 2014:751859. [PMID: 24872814 PMCID: PMC4020365 DOI: 10.1155/2014/751859] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 04/09/2014] [Indexed: 12/13/2022] Open
Abstract
Type 2 diabetes (T2D) is the most prevalent metabolic disease, and many people are suffering from its complications driven by hyperglycaemia and dyslipidaemia. Nuclear receptors (NRs) are ligand-inducible transcription factors that mediate changes to metabolic pathways within the body. As metabolic regulators, the farnesoid X receptor (FXR) and the liver X receptor (LXR) play key roles in the pathogenesis of T2D, which remains to be clarified in detail. Here we review the recent progress concerning the physiological and pathophysiological roles of FXRs and LXRs in the regulation of bile acid, lipid and glucose metabolism and the implications in T2D, taking into account that these two nuclear receptors are potential pharmaceutical targets for the treatment of T2D and its complications.
Collapse
Affiliation(s)
- Lin Ding
- Endocrinology Department, Jinan Central Hospital Affiliated to Shandong University, No. 105 Jiefang Road, Jinan, Shandong 250013, China
| | - Shuguang Pang
- Endocrinology Department, Jinan Central Hospital Affiliated to Shandong University, No. 105 Jiefang Road, Jinan, Shandong 250013, China
- *Shuguang Pang:
| | - Yongmei Sun
- Endocrinology Department, Jinan Central Hospital Affiliated to Shandong University, No. 105 Jiefang Road, Jinan, Shandong 250013, China
| | - Yuling Tian
- Endocrinology Department, Jinan Central Hospital Affiliated to Shandong University, No. 105 Jiefang Road, Jinan, Shandong 250013, China
| | - Li Yu
- Endocrinology Department, Jinan Central Hospital Affiliated to Shandong University, No. 105 Jiefang Road, Jinan, Shandong 250013, China
| | - Ningning Dang
- Endocrinology Department, Jinan Central Hospital Affiliated to Shandong University, No. 105 Jiefang Road, Jinan, Shandong 250013, China
| |
Collapse
|
111
|
McFarlane MR, Liang G, Engelking LJ. Insig proteins mediate feedback inhibition of cholesterol synthesis in the intestine. J Biol Chem 2013; 289:2148-56. [PMID: 24337570 DOI: 10.1074/jbc.m113.524041] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Enterocytes are the only cell type that must balance the de novo synthesis and absorption of cholesterol, although the coordinate regulation of these processes is not well understood. Our previous studies demonstrated that enterocytes respond to the pharmacological blockade of cholesterol absorption by ramping up de novo sterol synthesis through activation of sterol regulatory element-binding protein-2 (SREBP-2). Here, we genetically disrupt both Insig1 and Insig2 in the intestine, two closely related proteins that are required for the feedback inhibition of SREBP and HMG-CoA reductase (HMGR). This double knock-out was achieved by generating mice with an intestine-specific deletion of Insig1 using Villin-Cre in combination with a germ line deletion of Insig2. Deficiency of both Insigs in enterocytes resulted in constitutive activation of SREBP and HMGR, leading to an 11-fold increase in sterol synthesis in the small intestine and producing lipidosis of the intestinal crypts. The intestine-derived cholesterol accumulated in plasma and liver, leading to secondary feedback inhibition of hepatic SREBP2 activity. Pharmacological blockade of cholesterol absorption was unable to further induce the already elevated activities of SREBP-2 or HMGR in Insig-deficient enterocytes. These studies confirm the essential role of Insig proteins in the sterol homeostasis of enterocytes.
Collapse
|
112
|
Su K, Sabeva NS, Wang Y, Liu X, Lester JD, Liu J, Liang S, Graf GA. Acceleration of biliary cholesterol secretion restores glycemic control and alleviates hypertriglyceridemia in obese db/db mice. Arterioscler Thromb Vasc Biol 2013; 34:26-33. [PMID: 24202306 DOI: 10.1161/atvbaha.113.302355] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Recent studies support a role for cholesterol in the development of obesity and nonalcoholic fatty liver disease. Mice lacking the ABCG5 ABCG8 (G5G8) sterol transporter have reduced biliary cholesterol secretion and are more susceptible to steatosis, hepatic insulin resistance, and loss of glycemic control when challenged with a high-fat diet. We hypothesized that accelerating G5G8-mediated biliary cholesterol secretion would correct these phenotypes in obese mice. APPROACH AND RESULTS Obese (db/db) male and their lean littermates were administered a cocktail of control adenovirus or adenoviral vectors encoding ABCG5 and ABCG8 (AdG5G8). Three days after viral administration, measures of lipid and glucose homeostasis were determined, and tissues were collected for biochemical analyses. AdG5G8 increased biliary cholesterol and fecal sterol elimination. Fasting glucose and triglycerides declined, and glucose tolerance improved in obese mice expressing G5G8 compared with mice receiving control adenovirus. These changes were associated with a reduction in phosphorylated eukaryotic initiation factor 2α and c-Jun N-terminal kinase in liver, suggesting alleviation of endoplasmic reticulum stress. Phosphorylated insulin receptor and protein kinase B were increased, indicating restored hepatic insulin signaling. However, there was no reduction in hepatic triglycerides after the 3-day treatment period. CONCLUSIONS Accelerating biliary cholesterol secretion restores glycemic control and reduces plasma triglycerides in obese db/db mice.
Collapse
Affiliation(s)
- Kai Su
- From the Department of Pharmaceutical Sciences, Graduate Center for Nutritional Sciences and Saha Cardiovascular Research Center, University of Kentucky, Lexington (K.S., Y.W., X.L., J.D.L., G.A.G.); Department of Neuroscience, Universidad Central del Caribe, Bayamon, Puerto Rico (N.S.S.); Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas (J.L.); and Department of Clinical Laboratories, Jinshan Branch of the Sixth People's Hospital of Shanghai, Shanghai, China (S.L.)
| | | | | | | | | | | | | | | |
Collapse
|
113
|
Dávalos A, Fernández-Hernando C. From evolution to revolution: miRNAs as pharmacological targets for modulating cholesterol efflux and reverse cholesterol transport. Pharmacol Res 2013; 75:60-72. [PMID: 23435093 PMCID: PMC3825518 DOI: 10.1016/j.phrs.2013.02.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 02/11/2013] [Indexed: 02/09/2023]
Abstract
There has been strong evolutionary pressure to ensure that an animal cell maintains levels of cholesterol within tight limits for normal function. Imbalances in cellular cholesterol levels are a major player in the development of different pathologies associated to dietary excess. Although epidemiological studies indicate that elevated levels of high-density lipoprotein (HDL)-cholesterol reduce the risk of cardiovascular disease, recent genetic evidence and pharmacological therapies to raise HDL levels do not support their beneficial effects. Cholesterol efflux as the first and probably the most important step in reverse cholesterol transport is an important biological process relevant to HDL function. Small non-coding RNAs (microRNAs), post-transcriptional control different aspects of cellular cholesterol homeostasis including cholesterol efflux. miRNA families miR-33, miR-758, miR-10b, miR-26 and miR-106b directly modulates cholesterol efflux by targeting the ATP-binding cassette transporter A1 (ABCA1). Pre-clinical studies with anti-miR therapies to inhibit some of these miRNAs have increased cellular cholesterol efflux, reverse cholesterol transport and reduce pathologies associated to dyslipidemia. Although miRNAs as therapy have benefits from existing antisense technology, different obstacles need to be solved before we incorporate such research into clinical care. Here we focus on the clinical potential of miRNAs as therapeutic target to increase cholesterol efflux and reverse cholesterol transport as a new alternative to ameliorate cholesterol-related pathologies.
Collapse
|
114
|
Polyphenol-rich black chokeberry (Aronia melanocarpa) extract regulates the expression of genes critical for intestinal cholesterol flux in Caco-2 cells. J Nutr Biochem 2013; 24:1564-70. [DOI: 10.1016/j.jnutbio.2013.01.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 01/02/2013] [Accepted: 01/09/2013] [Indexed: 02/06/2023]
|
115
|
Tietge UJF, Groen AK. Role the TICE?: advancing the concept of transintestinal cholesterol excretion. Arterioscler Thromb Vasc Biol 2013; 33:1452-3. [PMID: 23766383 DOI: 10.1161/atvbaha.113.301562] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
116
|
Bujold K, Mellal K, Zoccal KF, Rhainds D, Brissette L, Febbraio M, Marleau S, Ong H. EP 80317, a CD36 selective ligand, promotes reverse cholesterol transport in apolipoprotein E-deficient mice. Atherosclerosis 2013; 229:408-14. [DOI: 10.1016/j.atherosclerosis.2013.05.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 05/08/2013] [Accepted: 05/31/2013] [Indexed: 01/05/2023]
|
117
|
Holleboom AG, Jakulj L, Franssen R, Decaris J, Vergeer M, Koetsveld J, Luchoomun J, Glass A, Hellerstein MK, Kastelein JJP, Hovingh GK, Kuivenhoven JA, Groen AK, Turner SM, Stroes ESG. In vivo tissue cholesterol efflux is reduced in carriers of a mutation in APOA1. J Lipid Res 2013; 54:1964-71. [PMID: 23650622 DOI: 10.1194/jlr.p028449] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Atheroprotection by high density lipoprotein (HDL) is considered to be mediated through reverse cholesterol transport (RCT) from peripheral tissues. We investigated in vivo cholesterol fluxes through the RCT pathway in patients with low plasma high density lipoprotein cholesterol (HDL-c) due to mutations in APOA1. Seven carriers of the L202P mutation in APOA1 (mean HDL-c: 20 ± 19 mg/dl) and seven unaffected controls (mean HDL-c: 54 ± 11 mg/dl, P < 0.0001) received a 20 h infusion of (13)C2-cholesterol ((13)C-C). Enrichment of plasma and erythrocyte free cholesterol and plasma cholesterol esters was measured. With a three-compartment SAAM-II model, tissue cholesterol efflux (TCE) was calculated. TCE was reduced by 19% in carriers (4.6 ± 0.8 mg/kg/h versus 5.7 ± 0.7 mg/kg/h in controls, P = 0.02). Fecal (13)C recovery and sterol excretion 7 days postinfusion did not differ significantly between carriers and controls: 21.3 ± 20% versus 13.3 ± 6.3% (P = 0.33), and 2,015 ± 1,431 mg/day versus 1456 ± 404 mg/day (P = 0.43), respectively. TCE is reduced in carriers of mutations in APOA1, suggesting that HDL contributes to efflux of tissue cholesterol in humans. The residual TCE and unaffected fecal sterol excretion in our severely affected carriers suggest, however, that non-HDL pathways contribute to RCT significantly.
Collapse
Affiliation(s)
- Adriaan G Holleboom
- Department of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
118
|
The role of the gut in reverse cholesterol transport--focus on the enterocyte. Prog Lipid Res 2013; 52:317-28. [PMID: 23608233 DOI: 10.1016/j.plipres.2013.04.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 03/01/2013] [Accepted: 04/10/2013] [Indexed: 11/20/2022]
Abstract
In the arterial intima, macrophages become cholesterol-enriched foam cells and atherosclerotic lesions are generated. This atherogenic process can be attenuated, prevented, or even reversed by HDL particles capable of initiating a multistep pathway known as the macrophage-specific reverse cholesterol transport. The macrophage-derived cholesterol released to HDL is taken up by the liver, secreted into the bile, and ultimately excreted in the feces. Importantly, the absorptive epithelial cells lining the lumen of the small intestine, the enterocytes, express several membrane-associated proteins which mediate the influx of luminal cholesterol and its subsequent efflux at their apical and basolateral sides. Moreover, generation of intestinal HDL and systemic effects of the gut microbiota recently revealed a direct link between the gut and the cholesterol cargo of peripheral macrophages. This review summarizes experimental evidence establishing that the reverse cholesterol transport pathway which initiates in macrophages is susceptible to modulation in the small intestine. We also describe four paths which govern cholesterol passage across the enterocyte and define a role for the gut in the regulation of reverse cholesterol transport. Understanding the concerted function of these paths may be useful when designing therapeutic strategies aimed at removing cholesterol from the foam cells which occupy atherosclerotic lesions.
Collapse
|
119
|
van der Wulp MYM, Verkade HJ, Groen AK. Regulation of cholesterol homeostasis. Mol Cell Endocrinol 2013; 368:1-16. [PMID: 22721653 DOI: 10.1016/j.mce.2012.06.007] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 05/17/2012] [Accepted: 06/11/2012] [Indexed: 12/28/2022]
Abstract
Hypercholesterolemia is an important risk factor for cardiovascular disease. It is caused by a disturbed balance between cholesterol secretion into the blood versus uptake. The pathways involved are regulated via a complex interplay of enzymes, transport proteins, transcription factors and non-coding RNA's. The last two decades insight into underlying mechanisms has increased vastly but there are still a lot of unknowns, particularly regarding intracellular cholesterol transport. After decades of concentration on the liver, in recent years the intestine has come into focus as an important control point in cholesterol homeostasis. This review will discuss current knowledge of cholesterol physiology, with emphasis on cholesterol absorption, cholesterol synthesis and fecal excretion, and new (possible) therapeutic options for hypercholesterolemia.
Collapse
|
120
|
Bura KS, Lord C, Marshall S, McDaniel A, Thomas G, Warrier M, Zhang J, Davis MA, Sawyer JK, Shah R, Wilson MD, Dikkers A, Tietge UJF, Collet X, Rudel LL, Temel RE, Brown JM. Intestinal SR-BI does not impact cholesterol absorption or transintestinal cholesterol efflux in mice. J Lipid Res 2013; 54:1567-1577. [PMID: 23564696 DOI: 10.1194/jlr.m034454] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Reverse cholesterol transport (RCT) can proceed through the classic hepatobiliary route or through the nonbiliary transintestinal cholesterol efflux (TICE) pathway. Scavenger receptor class B type I (SR-BI) plays a critical role in the classic hepatobiliary route of RCT. However, the role of SR-BI in TICE has not been studied. To examine the role of intestinal SR-BI in TICE, sterol balance was measured in control mice and mice transgenically overexpressing SR-BI in the proximal small intestine (SR-BI(hApoCIII-ApoAIV-Tg)). SR-BI(hApoCIII-ApoAIV-Tg) mice had significantly lower plasma cholesterol levels compared with wild-type controls, yet SR-BI(hApoCIII-ApoAIV-Tg) mice had normal fractional cholesterol absorption and fecal neutral sterol excretion. Both in the absence or presence of ezetimibe, intestinal SR-BI overexpression had no impact on the amount of cholesterol excreted in the feces. To specifically study effects of intestinal SR-BI on TICE we crossed SR-BI(hApoCIII-ApoAIV-Tg) mice into a mouse model that preferentially utilized the TICE pathway for RCT (Niemann-Pick C1-like 1 liver transgenic), and likewise found no alterations in cholesterol absorption or fecal sterol excretion. Finally, mice lacking SR-BI in all tissues also exhibited normal cholesterol absorption and fecal cholesterol disposal. Collectively, these results suggest that SR-BI is not rate limiting for intestinal cholesterol absorption or for fecal neutral sterol loss through the TICE pathway.
Collapse
Affiliation(s)
- Kanwardeep S Bura
- Department of Pathology, Section on Lipid Sciences, Wake Forest School of Medicine, Winston-Salem, NC
| | - Caleb Lord
- Department of Pathology, Section on Lipid Sciences, Wake Forest School of Medicine, Winston-Salem, NC
| | - Stephanie Marshall
- Department of Pathology, Section on Lipid Sciences, Wake Forest School of Medicine, Winston-Salem, NC
| | - Allison McDaniel
- Department of Pathology, Section on Lipid Sciences, Wake Forest School of Medicine, Winston-Salem, NC
| | - Gwyn Thomas
- Department of Pathology, Section on Lipid Sciences, Wake Forest School of Medicine, Winston-Salem, NC
| | - Manya Warrier
- Department of Pathology, Section on Lipid Sciences, Wake Forest School of Medicine, Winston-Salem, NC
| | - Jun Zhang
- Department of Pathology, Section on Lipid Sciences, Wake Forest School of Medicine, Winston-Salem, NC
| | - Matthew A Davis
- Department of Pathology, Section on Lipid Sciences, Wake Forest School of Medicine, Winston-Salem, NC
| | - Janet K Sawyer
- Department of Pathology, Section on Lipid Sciences, Wake Forest School of Medicine, Winston-Salem, NC
| | - Ramesh Shah
- Department of Pathology, Section on Lipid Sciences, Wake Forest School of Medicine, Winston-Salem, NC
| | - Martha D Wilson
- Department of Pathology, Section on Lipid Sciences, Wake Forest School of Medicine, Winston-Salem, NC
| | - Arne Dikkers
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Uwe J F Tietge
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Xavier Collet
- INSERM U1048, Institute of Metabolic and Cardiovascular Diseases of Rangueil Hospital, BP 84225, Toulouse, France
| | - Lawrence L Rudel
- Department of Pathology, Section on Lipid Sciences, Wake Forest School of Medicine, Winston-Salem, NC
| | - Ryan E Temel
- Department of Pathology, Section on Lipid Sciences, Wake Forest School of Medicine, Winston-Salem, NC.
| | - J Mark Brown
- Department of Pathology, Section on Lipid Sciences, Wake Forest School of Medicine, Winston-Salem, NC.
| |
Collapse
|
121
|
Le May C, Berger JM, Lespine A, Pillot B, Prieur X, Letessier E, Hussain MM, Collet X, Cariou B, Costet P. Transintestinal cholesterol excretion is an active metabolic process modulated by PCSK9 and statin involving ABCB1. Arterioscler Thromb Vasc Biol 2013; 33:1484-93. [PMID: 23559630 DOI: 10.1161/atvbaha.112.300263] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Transintestinal cholesterol excretion (TICE) is an alternate pathway to hepatobiliary secretion. Our study aimed at identifying molecular mechanisms of TICE. APPROACH AND RESULTS We studied TICE ex vivo in mouse and human intestinal explants, and in vivo after bile diversion and intestinal cannulation in mice. We provide the first evidence that both low-density lipoprotein (LDL) and high-density lipoprotein deliver cholesterol for TICE in human and mouse jejunal explants at the basolateral side. Proprotein convertase subtilisin kexin type 9 (PCSK9)(-/-) mice and intestinal explants show increased LDL-TICE, and acute injection of PCSK9 decreases TICE in vivo, suggesting that PCSK9 is a repressor of TICE. The acute repression was dependent on the LDL receptor (LDLR). Further, TICE was increased when mice were treated with lovastatin. These data point to an important role for LDLR in TICE. However, LDLR(-/-) mice showed increased intestinal LDL uptake, contrary to what is observed in the liver, and tended to have higher TICE. We interpret these data to suggest that there might be at least 2 mechanisms contributing to TICE; 1 involving LDL receptors and other unidentified mechanisms. Acute modulation of LDLR affects TICE, but chronic deficiency is compensated for most likely by the upregulation of the unknown mechanisms. Using mice deficient for apical multidrug active transporter ATP-binding cassette transporter B1 a and b, and its inhibitor, we show that these apical transporters contribute significantly to TICE. CONCLUSIONS TICE is operative in human jejunal explants. It is a metabolically active process that can be acutely regulated, inversely related to cholesterolemia, and pharmacologically activated by statins.
Collapse
Affiliation(s)
- Cédric Le May
- INSERM, UMR 1087, CNRS UMR 6291, Nantes F-44000, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Leança CC, Nunes VS, Nakandakare ER, de Faria EC, Quintao ECR. Does plasma HDL-C concentration interact with whole-body cholesterol metabolism? Nutr Metab Cardiovasc Dis 2013; 23:279-284. [PMID: 23333727 DOI: 10.1016/j.numecd.2012.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 12/04/2012] [Accepted: 12/06/2012] [Indexed: 01/08/2023]
Abstract
This review examines the interactions between plasma high density lipoprotein (HDL) metabolism and whole-body cholesterol economy. More specifically, this review addresses three questions: 1) does plasma HDL-C concentration correlate with the parameters of whole-body cholesterol metabolism? 2) Do variations in cholesterol metabolism interfere with plasma HDL-C concentrations? 3) Are the markers of cholesterol synthesis and intestinal absorption specifically under the control of plasma HDL? The following answers were provided to each question, respectively: 1) plasma HDL influences whole-body cholesterol synthesis rate but the evidence that HDL modifies the total amount of cholesterol absorbed by the intestine is not clearly supported by present investigations; 2) there are suggestions that changes in whole body cholesterol metabolism rates do not interfere with plasma HDL-C concentrations; 3) markers of cholesterol synthesis and absorption may specifically be controlled by plasma HDL-C concentrations regarding the genetic causes of extremely low HDL-C concentrations, although within the general population plasma HDL-C concentration is likely ascribed to insulin resistance or diabetes mellitus.
Collapse
Affiliation(s)
- C C Leança
- Lipids Laboratory (LIM-10), Endocrinology and Metabolism Division of Hospital das Clinicas, Faculty of Medical Sciences, University of Sao Paulo, Av. Dr. Arnaldo 455, Room 3305, 01246-000 São Paulo, SP, Brazil
| | | | | | | | | |
Collapse
|
123
|
Xie P, Jia L, Ma Y, Ou J, Miao H, Wang N, Guo F, Yazdanyar A, Jiang XC, Yu L. Ezetimibe inhibits hepatic Niemann-Pick C1-Like 1 to facilitate macrophage reverse cholesterol transport in mice. Arterioscler Thromb Vasc Biol 2013; 33:920-5. [PMID: 23471229 DOI: 10.1161/atvbaha.112.301187] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Controversies have arisen from recent mouse studies about the essential role of biliary sterol secretion in reverse cholesterol transport (RCT). The objective of this study was to examine the role of biliary cholesterol secretion in modulating macrophage RCT in Niemann-Pick C1-Like 1 (NPC1L1) liver only (L1(LivOnly)) mice, an animal model that is defective in both biliary sterol secretion and intestinal sterol absorption, and determine whether NPC1L1 inhibitor ezetimibe facilitates macrophage RCT by inhibiting hepatic NPC1L1. APPROACH AND RESULTS L1(LivOnly) mice were generated by crossing NPC1L1 knockout (L1-KO) mice with transgenic mice overexpressing human NPC1L1 specifically in liver. Macrophage-to-feces RCT was assayed in L1-KO and L1(LivOnly) mice injected intraperitoneally with [(3)H]-cholesterol-labeled peritoneal macrophages isolated from C57BL/6 mice. Inhibition of biliary sterol secretion by hepatic overexpression of NPC1L1 substantially reduced transport of [(3)H]-cholesterol from primary peritoneal macrophages to the neutral sterol fraction in bile and feces in L1(LivOnly) mice without affecting tracer excretion in the bile acid fraction. Ezetimibe treatment for 2 weeks completely restored both biliary and fecal excretion of [(3)H]-tracer in the neutral sterol fraction in L1(LivOnly) mice. High-density lipoprotein kinetic studies showed that L1(LivOnly) mice compared with L1-KO mice had a significantly reduced fractional catabolic rate without altered hepatic and intestinal uptake of high-density lipoprotein-cholesterol ether. CONCLUSIONS In mice lacking intestinal cholesterol absorption, macrophage-to-feces RCT depends on efficient biliary sterol secretion, and ezetimibe promotes macrophage RCT by inhibiting hepatic NPC1L1 function.
Collapse
Affiliation(s)
- Ping Xie
- Department of Biochemistry, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Bonamassa B, Moschetta A. Atherosclerosis: lessons from LXR and the intestine. Trends Endocrinol Metab 2013; 24:120-8. [PMID: 23158108 DOI: 10.1016/j.tem.2012.10.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 10/12/2012] [Accepted: 10/18/2012] [Indexed: 12/17/2022]
Abstract
Modulation of the cholesterol-sensing liver X receptors (LXRs) and their downstream targets has emerged as promising therapeutic avenues in atherosclerosis. The intestine is important for its unique capabilities to act as a gatekeeper for cholesterol absorption and to participate in the process of cholesterol elimination in the feces and reverse cholesterol transport (RCT). Pharmacological and genetic intestine-specific LXR activation have been shown to protect against atherosclerosis. In this review we discuss the LXR-targeted molecular players in the enterocytes as well as the intestine-driven pathways contributing to cholesterol homeostasis with therapeutic potential as targets in the prevention and treatment of atherosclerosis..
Collapse
Affiliation(s)
- Barbara Bonamassa
- Laboratory of Lipid Metabolism and Cancer, Department of Translational Pharmacology, Consorzio Mario Negri Sud, Via Nazionale 8/A, 66030 Santa Maria Imbaro (CH), Italy
| | | |
Collapse
|
125
|
The Impairment of Macrophage-to-Feces Reverse Cholesterol Transport during Inflammation Does Not Depend on Serum Amyloid A. J Lipids 2013; 2013:283486. [PMID: 23431457 PMCID: PMC3572687 DOI: 10.1155/2013/283486] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 12/18/2012] [Accepted: 12/19/2012] [Indexed: 01/19/2023] Open
Abstract
Studies suggest that inflammation impairs reverse cholesterol transport (RCT). We investigated whether serum amyloid A (SAA) contributes to this impairment using an established macrophage-to-feces RCT model. Wild-type (WT) mice and mice deficient in SAA1.1 and SAA2.1 (SAAKO) were injected intraperitoneally with 3H-cholesterol-labeled J774 macrophages 4 hr after administration of LPS or buffered saline. 3H-cholesterol in plasma 4 hr after macrophage injection was significantly reduced in both WT and SAAKO mice injected with LPS, but this was not associated with a reduced capacity of serum from LPS-injected mice to promote macrophage cholesterol efflux in vitro. Hepatic accumulation of 3H-cholesterol was unaltered in either WT or SAAKO mice by LPS treatment. Radioactivity present in bile and feces of LPS-injected WT mice 24 hr after macrophage injection was reduced by 36% (P < 0.05) and 80% (P < 0.001), respectively. In contrast, in SAAKO mice, LPS did not significantly reduce macrophage-derived 3H-cholesterol in bile, and fecal excretion was reduced by only 45% (P < 0.05). Injection of cholesterol-loaded allogeneic J774 cells, but not syngeneic bone-marrow-derived macrophages, transiently induced SAA in C57BL/6 mice. Our study confirms reports that acute inflammation impairs steps in the RCT pathway and establishes that SAA plays only a minor role in this impairment.
Collapse
|
126
|
Wegner CJ, Kim B, Lee J. Trust your gut: galvanizing nutritional interest in intestinal cholesterol metabolism for protection against cardiovascular diseases. Nutrients 2013; 5:208-22. [PMID: 23325147 PMCID: PMC3571644 DOI: 10.3390/nu5010208] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 01/09/2013] [Accepted: 01/11/2013] [Indexed: 02/08/2023] Open
Abstract
Recent studies have demonstrated that the intestine is a key target organ for overall health and longevity. Complementing these studies is the discovery of the trans-intestinal cholesterol efflux pathway and the emerging role of the intestine in reverse cholesterol transport. The surfacing dynamics of the regulation of cholesterol metabolism in the intestine provides an attractive platform for intestine-specific nutritional intervention strategies to lower blood cholesterol levels for protection against cardiovascular diseases. Notably, there is mounting evidence that stimulation of pathways associated with calorie restriction may have a large effect on the regulation of cholesterol removal by the intestine. However, intestinal energy metabolism, specifically the idiosyncrasies surrounding intestinal responses to energy deprivation, is poorly understood. The goal of this paper is to review recent insights into cholesterol regulation by the intestine and to discuss the potential for positive regulation of intestine-driven cholesterol removal through the nutritional induction of pathways associated with calorie restriction.
Collapse
Affiliation(s)
- Casey J Wegner
- Department of Nutritional Sciences, University of Connecticut, 216 Advanced Technology Laboratory Building, 1392 Storrs Road, Storrs, CT 06269, USA.
| | | | | |
Collapse
|
127
|
Briand F, Thieblemont Q, Muzotte E, Sulpice T. Upregulating Reverse Cholesterol Transport With Cholesteryl Ester Transfer Protein Inhibition Requires Combination With the LDL-Lowering Drug Berberine in Dyslipidemic Hamsters. Arterioscler Thromb Vasc Biol 2013; 33:13-23. [DOI: 10.1161/atvbaha.112.252932] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Objective—
This study aimed to investigate whether cholesteryl ester transfer protein inhibition promotes in vivo reverse cholesterol transport in dyslipidemic hamsters.
Methods and Results—
In vivo reverse cholesterol transport was measured after an intravenous injection of
3
H-cholesteryl-oleate–labeled/oxidized low density lipoprotein particles (
3
H-oxLDL), which are rapidly cleared from plasma by liver-resident macrophages for further
3
H-tracer egress in plasma, high density lipoprotein (HDL), liver, and feces. A first set of hamsters made dyslipidemic with a high-fat and high-fructose diet was treated with vehicle or torcetrapib 30 mg/kg (TOR) over 2 weeks. Compared with vehicle, TOR increased apolipoprotein E–rich HDL levels and significantly increased
3
H-tracer appearance in HDL by 30% over 72 hours after
3
H-oxLDL injection. However, TOR did not change
3
H-tracer recovery in liver and feces, suggesting that uptake and excretion of cholesterol deriving from apolipoprotein E-rich HDL is not stimulated. As apoE is a potent ligand for the LDL receptor, we next evaluated the effects of TOR in combination with the LDL-lowering drug berberine, which upregulates LDL receptor expression in dyslipidemic hamsters. Compared with TOR alone, treatment with TOR+berberine 150 mg/kg resulted in lower apolipoprotein E–rich HDL levels. After
3
H-oxLDL injection, TOR+berberine significantly increased
3
H-tracer appearance in fecal cholesterol by 109%.
Conclusion—
Our data suggest that cholesteryl ester transfer protein inhibition alone does not stimulate reverse cholesterol transport in dyslipidemic hamsters and that additional effects mediated by the LDL-lowering drug berberine are required to upregulate this process.
Collapse
|
128
|
Bulmer AC, Verkade HJ, Wagner KH. Bilirubin and beyond: a review of lipid status in Gilbert's syndrome and its relevance to cardiovascular disease protection. Prog Lipid Res 2012. [PMID: 23201182 DOI: 10.1016/j.plipres.2012.11.001] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gilbert's syndrome (GS) is characterized by a benign, mildly elevated bilirubin concentration in the blood. Recent reports show clear protection from cardiovascular disease in this population. Protection of lipids, proteins and other macromolecules from oxidation by bilirubin represents the most commonly accepted mechanism contributing to protection in this group. However, a recent meta-analysis estimated that bilirubin only accounts for ~34% of the cardioprotective effects within analysed studies. To reveal the additional contributing variables we have explored circulating cholesterol and triacylglycerol concentrations, which appear to be decreased in hyperbilirubinemic individuals/animals, and are accompanied by lower body mass index in highly powered studies. These results suggest that bilirubin could be responsible for the development of a lean and hypolipidemic state in GS. Here we also discuss the possible contributing mechanisms that might reduce circulating cholesterol and triacylglycerol concentrations in individuals with syndromes affecting bilirubin metabolism/excretion, which we hope will stimulate future research in the area. In summary, this article is the first review of lipid status in animal and human studies of hyperbilirubinemia and explores possible mechanisms that could contribute to lowering circulating lipid parameters and further explain cardiovascular protection in Gilbert's syndrome.
Collapse
Affiliation(s)
- A C Bulmer
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Gold Coast, Australia
| | | | | |
Collapse
|
129
|
Bonde Y, Plösch T, Kuipers F, Angelin B, Rudling M. Stimulation of murine biliary cholesterol secretion by thyroid hormone is dependent on a functional ABCG5/G8 complex. Hepatology 2012; 56:1828-37. [PMID: 22829162 PMCID: PMC3533177 DOI: 10.1002/hep.25861] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 05/15/2012] [Indexed: 12/07/2022]
Abstract
UNLABELLED Secretion of cholesterol into bile is important for the elimination of cholesterol from the body. Thyroid hormone (TH) increases biliary cholesterol secretion and hepatic gene expression of adenosine triphosphate (ATP)-binding cassette, subfamily G (WHITE), member 5 (ABCG5) and ATP-binding cassette, subfamily G (WHITE), member 8 (ABCG8), two half-transporters that act as a heterodimeric complex promoting sterol secretion. In addition, nuclear liver x receptor-alpha (LXRa), also regulated by TH, induces gene expression of ABCG5/G8. We here investigated if the TH-induced stimulation of biliary cholesterol secretion is mediated by the ABCG5/G8 complex in vivo, and if so, whether LXRa is involved. Mice homozygous for disruption of Abcg5 (Abcg5(-/-) ) or Lxra (Lxra(-/-) ) and their wild-type counterparts were treated with triiodothyronine (T3) for 14 days and compared to untreated mice of corresponding genetic backgrounds. Bile was collected by gallbladder cannulation, and liver samples were analyzed for gene expression levels. Basal biliary cholesterol secretion in Abcg5(-/-) mice was 72% lower than in Abcg5(+/+) mice. T3 treatment increased cholesterol secretion 3.1-fold in Abcg5(+/+) mice, whereas this response was severely blunted in Abcg5(-/-) mice. In contrast, biliary cholesterol secretion in T3-treated Lxra(+/+) and Lxra(-/-) mice was increased 3.5- and 2.6-fold, respectively, and did not differ significantly. CONCLUSIONS TH-induced secretion of cholesterol into bile is largely dependent on an intact ABCG5/G8 transporter complex, whereas LXRa is not critical for this effect.
Collapse
Affiliation(s)
- Ylva Bonde
- Metabolism Unit, Center for Endocrinology, Metabolism, and Diabetes, Department of Medicine, Karolinska University Hospital HuddingeStockholm, Sweden,Molecular Nutrition Unit, Department of Biosciences and Nutrition, Karolinska Institute, Karolinska University Hospital HuddingeStockholm, Sweden
| | - Torsten Plösch
- Center for Liver, Digestive, and Metabolic Diseases, Laboratory of Pediatrics, University Medical Center Groningen, University of GroningenGroningen, The Netherlands
| | - Folkert Kuipers
- Center for Liver, Digestive, and Metabolic Diseases, Laboratory of Pediatrics, University Medical Center Groningen, University of GroningenGroningen, The Netherlands
| | - Bo Angelin
- Metabolism Unit, Center for Endocrinology, Metabolism, and Diabetes, Department of Medicine, Karolinska University Hospital HuddingeStockholm, Sweden,Molecular Nutrition Unit, Department of Biosciences and Nutrition, Karolinska Institute, Karolinska University Hospital HuddingeStockholm, Sweden
| | - Mats Rudling
- Metabolism Unit, Center for Endocrinology, Metabolism, and Diabetes, Department of Medicine, Karolinska University Hospital HuddingeStockholm, Sweden,Molecular Nutrition Unit, Department of Biosciences and Nutrition, Karolinska Institute, Karolinska University Hospital HuddingeStockholm, Sweden,Address reprint requests to: Mats Rudling, M.D., Professor, Metabolism Unit, Center for Endocrinology, Metabolism, and Diabetes, C2:94, Karolinska University Hospital Huddinge, Hälsovägen, Flemingsberg, S-141 86 Stockholm, Sweden E-mail: . fax: +4687110710
| |
Collapse
|
130
|
Hu X, Steffensen KR, Jiang ZY, Parini P, Gustafsson JÅ, Gåfvels M, Eggertsen G. LXRβ activation increases intestinal cholesterol absorption, leading to an atherogenic lipoprotein profile. J Intern Med 2012; 272:452-64. [PMID: 22329358 DOI: 10.1111/j.1365-2796.2012.02529.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Liver X receptors (LXRs) are essential for the regulation of intestinal cholesterol absorption. Because two isoforms exist, LXRα and LXRβ, with overlapping but not identical functions, we investigated whether LXRα and LXRβ exert different effects on intestinal cholesterol absorption. DESIGN Wild-type (WT), LXRα(-/-) and LXRβ(-/-) mice were fed control diet, 0.2% cholesterol-enriched diet or 0.2% cholesterol-enriched diet plus the LXR agonist GW3965. RESULTS When fed a control diet, all three genotypes showed similar levels of cholesterol absorption. Of interest, a significant increase in cholesterol absorption was found in the LXRα(-/-) mice, but not in the WT or LXRβ(-/-) animals, when fed a diet enriched with 0.2% cholesterol or 0.2% cholesterol + GW3965. Reduced faecal neutral sterol excretion and a hydrophobic bile acid profile were also observed in LXRα(-/-) mice. Greater increases in the apolipoprotein (apo)B-containing lipoproteins in serum were seen in the LXRα(-/-) mice. A 0.2% cholesterol +GW3965 diet suppressed intestinal Npc1l1 protein expression to the same extent for all genotypes, while Abca1 and Abcg5 were elevated to the same degree. CONCLUSIONS In the intestine, LXRα and LXRβ seem to exert similar effects on expression of cholesterol-transporting proteins such as Npc1l1. Selective activation of LXRβ may generate effects such as increased cholesterol absorption and elevated serum levels of apoB-containing lipoproteins, which seem to be counteracted by LXRα. Therefore, an intestinal LXRβ-specific pathway might exist in terms of cholesterol transportation in addition to the main pathway.
Collapse
Affiliation(s)
- X Hu
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
131
|
Ikegami T, Hyogo H, Honda A, Miyazaki T, Tokushige K, Hashimoto E, Inui K, Matsuzaki Y, Tazuma S. Increased serum liver X receptor ligand oxysterols in patients with non-alcoholic fatty liver disease. J Gastroenterol 2012; 47:1257-66. [PMID: 22569763 DOI: 10.1007/s00535-012-0585-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 03/06/2012] [Indexed: 02/04/2023]
Abstract
BACKGROUND This study is a post-hoc analysis of a subset of patients who participated in our multi-institutional case-control study that evaluated the effects of pitavastatin in patients with non-alcoholic fatty liver disease (NAFLD) with hypercholesterolemia. METHODS Serum samples of fifteen patients with biopsy-proven NAFLD with dyslipidemia were investigated. Serum markers of lipid metabolism were quantified by liquid chromatography-mass spectrometry (LC-MS)/MS. These data were then compared with those of 36 sex- and age-matched healthy controls. In addition, changes in these markers produced by treatment with pitavastatin were evaluated. RESULTS Serum non-cholesterol sterols, reflecting intestinal cholesterol absorption, were significantly lower in the NAFLD patients compared to the controls, and the cholesterol synthesis marker, the ratio of lathosterol to cholesterol, was not significantly different between the two groups. Serum proportions of liver X receptor α (LXRα) ligand oxysterols (ratios to cholesterol) were significantly elevated in the NAFLD patients compared to the controls. The sum of oxysterols relative to cholesterol and the homeostasis model assessment as an index of insulin resistance (HOMA-IR) were significantly correlated. The marker representing cholesterol synthesis was significantly suppressed by pitavastatin treatment, from 3 months after initiation of the treatment, and the suppression remained significant during the observation period. The markers representing cholesterol absorption were unchanged at 3 months, but had significantly increased at 12 months. Serum oxysterol levels relative to cholesterol maintained high values and did not change significantly during the 12-month period of treatment. CONCLUSIONS We speculate that serum LXRα ligand oxysterol levels (relative to cholesterol) could be surrogate markers of insulin resistance, and that high oxysterol levels in the circulation may play an important role in the development of hepatic and peripheral insulin resistance followed by NAFLD.
Collapse
Affiliation(s)
- Tadashi Ikegami
- Division of Gastroenterology and Hepatology, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuo, Ami-machi, Inashiki-gun, Ibaraki 300-0395, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Abstract
OBJECTIVES Polyethylene glycol (PEG) is a frequently used laxative agent. It is unknown, however, whether PEG affects the absorptive capacity of the intestine. Reduced lipid (dietary fat and cholesterol) absorption induced by long-term PEG treatment could negatively affect growth in children. We tested whether PEG accelerates gastrointestinal transit and alters lipid absorption and plasma lipid levels. METHODS Wistar rats were administered drinking water with or without PEG (7%) for 2 weeks. We studied whole gut transit time by recording the first appearance of red feces after intragastric carmine red administration. We measured plasma concentrations of cholesterol and triglycerides, dietary fat absorption by 48-hour fat balance and by plasma appearance of intragastrically administered stable-isotope labeled fats, and cholesterol absorption with a dual stable isotope technique. RESULTS PEG decreased whole gut transit time by 20% (P=0.028) without causing diarrhea. PEG treatment did neither affects overall dietary fat balance nor fat uptake kinetics, cholesterol absorption, or plasma lipid concentrations. CONCLUSIONS PEG does not affect lipid absorption nor steady-state plasma lipid levels in rats, although it accelerates the gastrointestinal transit.
Collapse
|
133
|
Effect of Huxin Formula (护心方) on reverse cholesterol transport in ApoE-gene knockout mice. Chin J Integr Med 2012; 18:451-6. [DOI: 10.1007/s11655-012-1123-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Indexed: 11/27/2022]
|
134
|
Vrins CLJ, Ottenhoff R, van den Oever K, de Waart DR, Kruyt JK, Zhao Y, van Berkel TJC, Havekes LM, Aerts JM, van Eck M, Rensen PCN, Groen AK. Trans-intestinal cholesterol efflux is not mediated through high density lipoprotein. J Lipid Res 2012; 53:2017-2023. [PMID: 22802462 DOI: 10.1194/jlr.m022194] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transintestinal cholesterol efflux (TICE) provides an attractive target to increase body cholesterol excretion. At present, the cholesterol donor responsible for direct delivery of plasma cholesterol to the intestine is unknown. In this study, we investigated the role of HDL in TICE. ATP-binding cassette protein A1 deficient (Abca1(-/-)) mice that lack HDL and wild-type (WT) mice were intravenously injected with chylomicron-like emulsion particles that contained radiolabeled cholesterol that is liberated in the liver and partly reenters the circulation. Both groups secreted radiolabeled cholesterol from plasma into intestinal lumen and TICE was unaltered between the two mouse models. To further investigate the role of HDL, we injected HDL with radiolabeled cholesterol in WT mice and Abca1(-/-)×Sr-b1(-/-) mice that lack HDL and are also unable to clear HDL via the liver. The intestines of both mice were unable to take up and secrete radiolabeled cholesterol from HDL via TICE. Although a generally accepted major player in the hepatobiliary route-based cholesterol excretion, HDL plays no significant role in TICE in mice.
Collapse
Affiliation(s)
- Carlos L J Vrins
- Department of Medical Biochemistry, Amsterdam, The Netherlands; AMC Tytgat Institute, Academic Medical Center, Amsterdam, The Netherlands
| | | | | | - Dirk R de Waart
- AMC Tytgat Institute, Academic Medical Center, Amsterdam, The Netherlands
| | - J Kar Kruyt
- Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Ying Zhao
- Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Theo J C van Berkel
- Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Louis M Havekes
- Department of General Internal Medicine, Endocrinology and Metabolic Diseases, Leiden University Medical Center, Leiden, The Netherlands; and
| | | | - Miranda van Eck
- Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Patrick C N Rensen
- Department of General Internal Medicine, Endocrinology and Metabolic Diseases, Leiden University Medical Center, Leiden, The Netherlands; and
| | - Albert K Groen
- Department of Pediatrics/Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
135
|
Pharmacological LXR activation reduces presence of SR-B1 in liver membranes contributing to LXR-mediated induction of HDL-cholesterol. Atherosclerosis 2012; 222:382-9. [DOI: 10.1016/j.atherosclerosis.2012.02.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 02/02/2012] [Accepted: 02/10/2012] [Indexed: 11/18/2022]
|
136
|
De Smet E, Mensink RP, Plat J. Effects of plant sterols and stanols on intestinal cholesterol metabolism: suggested mechanisms from past to present. Mol Nutr Food Res 2012; 56:1058-72. [PMID: 22623436 DOI: 10.1002/mnfr.201100722] [Citation(s) in RCA: 178] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 02/27/2012] [Accepted: 04/03/2012] [Indexed: 11/07/2022]
Abstract
Plant sterols and stanols are natural food ingredients found in plants. It was already shown in 1950 that they lower serum low-density lipoprotein cholesterol (LDL-C) concentrations. Meta-analysis has reported that a daily intake of 2.5 g plant sterols/stanols reduced serum LDL-C concentrations up to 10%. Despite many studies, the underlying mechanism remains to be elucidated. Therefore, the proposed mechanisms that have been presented over the past decades will be described and discussed in the context of the current knowledge. In the early days, it was suggested that plant sterols/stanols compete with intestinal cholesterol for incorporation into mixed micelles as well as into chylomicrons. Next, the focus shifted toward cellular processes. In particular, a role for sterol transporters localized in the membranes of enterocytes was suggested. All these processes ultimately lowered intestinal cholesterol absorption. More recently, the existence of a direct secretion of cholesterol from the circulation into the intestinal lumen was described. First results in animal studies suggested that plant sterols/stanols activate this pathway, which also explains the increased fecal neutral sterol content and as such could explain the cholesterol-lowering activity of plant sterols/stanols.
Collapse
Affiliation(s)
- Els De Smet
- Department of Human Biology, School for Nutrition, Toxicology and Metabolism, Maastricht University, Maastricht, The Netherlands
| | | | | |
Collapse
|
137
|
Xie Y, Kennedy S, Sidhu R, Luo J, Ory DS, Davidson NO. Liver X receptor agonist modulation of cholesterol efflux in mice with intestine-specific deletion of microsomal triglyceride transfer protein. Arterioscler Thromb Vasc Biol 2012; 32:1624-31. [PMID: 22580900 DOI: 10.1161/atvbaha.112.246066] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Previous work demonstrated that intestinal cholesterol absorption and regulated expression of intestinal Niemann-Pick C1-like 1 and ATP-binding cassette protein A1 are required for liver X receptor (LXR) agonist-mediated increases in high-density lipoprotein biogenesis. We re-examined those conclusions in mice with intestine-specific deletion of the microsomal triglyceride transfer protein (MTTP-IKO), where chylomicron formation is eliminated. METHODS AND RESULTS MTTP-IKO mice demonstrated sustained ≈90% reduction in cholesterol absorption and >80% reduction in Niemann-Pick C1-like 1 expression, yet LXR agonist treatment increased serum high-density lipoprotein and upregulated intestinal ATP-binding cassette protein A1 expression. Hepatic lipogenesis and triglyceride content increased with LXR agonist treatment in both genotypes. Biliary cholesterol secretion was increased in MTTP-IKO mice without further increase upon LXR agonist administration. LXR agonist treatment caused a paradoxical increase in cholesterol absorption in MTTP-IKO mice and decreased fecal neutral sterol excretion, but to levels that still exceeded fecal neutral sterol excretion in LXR agonist-treated control mice. Finally, MTTP-IKO mice demonstrated indistinguishable patterns of increased cholesterol turnover and efflux after intravenous radiolabeled cholesterol administration, with or without LXR agonist treatment. CONCLUSIONS Both intestinal and hepatic cholesterol efflux pathways are basally upregulated in MTTP-IKO mice. Moreover, LXR-dependent pathways modulate intestinal cholesterol absorption, transport, efflux, and high-density lipoprotein production independent of chylomicron assembly and secretion.
Collapse
Affiliation(s)
- Yan Xie
- Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
138
|
Zhang Y, Breevoort SR, Angdisen J, Fu M, Schmidt DR, Holmstrom SR, Kliewer SA, Mangelsdorf DJ, Schulman IG. Liver LXRα expression is crucial for whole body cholesterol homeostasis and reverse cholesterol transport in mice. J Clin Invest 2012; 122:1688-99. [PMID: 22484817 DOI: 10.1172/jci59817] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 02/22/2012] [Indexed: 12/15/2022] Open
Abstract
Liver X receptors (LXRα and LXRβ) are important regulators of cholesterol and lipid metabolism, and their activation has been shown to inhibit cardiovascular disease and reduce atherosclerosis in animal models. Small molecule agonists of LXR activity are therefore of great therapeutic interest. However, the finding that such agonists also promote hepatic lipogenesis has led to the idea that hepatic LXR activity is undesirable from a therapeutic perspective. To investigate whether this might be true, we performed gene targeting to selectively delete LXRα in hepatocytes. Liver-specific deletion of LXRα in mice substantially decreased reverse cholesterol transport, cholesterol catabolism, and cholesterol excretion, revealing the essential importance of hepatic LXRα for whole body cholesterol homeostasis. Additionally, in a pro-atherogenic background, liver-specific deletion of LXRα increased atherosclerosis, uncovering an important function for hepatic LXR activity in limiting cardiovascular disease. Nevertheless, synthetic LXR agonists still elicited anti-atherogenic activity in the absence of hepatic LXRα, indicating that the ability of agonists to reduce cardiovascular disease did not require an increase in cholesterol excretion. Furthermore, when non-atherogenic mice were treated with synthetic LXR agonists, liver-specific deletion of LXRα eliminated the detrimental effect of increased plasma triglycerides, while the beneficial effect of increased plasma HDL was unaltered. In sum, these observations suggest that therapeutic strategies that bypass the liver or limit the activation of hepatic LXRs should still be beneficial for the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
139
|
Abstract
PURPOSE OF REVIEW The process of reverse cholesterol transport (RCT) is critical for disposal of excess cholesterol from the body. Although it is generally accepted that RCT requires biliary secretion, recent studies show that RCT persists in genetic or surgical models of biliary insufficiency. Discovery of this nonbiliary pathway has opened new possibilities of targeting the intestine as an inducible cholesterol excretory organ. In this review we highlight the relative contribution and therapeutic potential for both biliary and nonbiliary components of RCT. RECENT FINDINGS Recently, the proximal small intestine has gained attention for its underappreciated ability to secrete cholesterol in a process called transintestinal cholesterol efflux (TICE). Although this intestinal pathway for RCT is quantitatively less important than the biliary route under normal physiological conditions, TICE is highly inducible, providing a novel therapeutic opportunity for treatment of atherosclerotic cardiovascular disease (ASCVD). In fact, recent studies show that intestine-specific activation of RCT protects against ASCVD in mice. SUMMARY It is well known that the small intestine plays a gatekeeper role in the maintenance of cholesterol balance. Through integrated regulation of cholesterol absorption and TICE, the small intestine is a key target for new therapies against ASCVD.
Collapse
Affiliation(s)
- Ryan E. Temel
- Department of Pathology-Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina, 27157, USA
| | - J. Mark Brown
- Department of Pathology-Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina, 27157, USA
| |
Collapse
|
140
|
Briand F, Thiéblemont Q, Muzotte E, Sulpice T. High-fat and fructose intake induces insulin resistance, dyslipidemia, and liver steatosis and alters in vivo macrophage-to-feces reverse cholesterol transport in hamsters. J Nutr 2012; 142:704-9. [PMID: 22357742 DOI: 10.3945/jn.111.153197] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Reverse cholesterol transport (RCT) promotes the egress of cholesterol from peripheral tissues to the liver for biliary and fecal excretion. Although not demonstrated in vivo, RCT is thought to be impaired in patients with metabolic syndrome, in which liver steatosis prevalence is relatively high. Golden Syrian hamsters were fed a nonpurified (CON) diet and normal drinking water or a high-fat (HF) diet containing 27% fat, 0.5% cholesterol, and 0.25% deoxycholate as well as 10% fructose in drinking water for 4 wk. Compared to CON, the HF diet induced insulin resistance and dyslipidemia, with significantly higher plasma non-HDL-cholesterol concentrations and cholesteryl ester transfer protein activity. The HF diet induced severe liver steatosis, with significantly higher cholesterol and TG levels compared to CON. In vivo RCT was assessed by i.p. injecting ³H-cholesterol labeled macrophages. Compared to CON, HF hamsters had significantly greater ³H-tracer recoveries in plasma, but not HDL. After 72 h, ³H-tracer recovery in HF hamsters was 318% higher in liver and 75% lower in bile (P < 0.01), indicating that the HF diet impaired hepatic cholesterol fluxes. However, macrophage-derived cholesterol fecal excretion was 45% higher in HF hamsters than in CON hamsters. This effect was not related to intestinal cholesterol absorption, which was 89% higher in HF hamsters (P < 0.05), suggesting a possible upregulation of transintestinal cholesterol excretion. Our data indicate a significant increase in macrophage-derived cholesterol fecal excretion in a hamster model of metabolic syndrome, which may not compensate for the diet-induced dyslipidemia and liver steatosis.
Collapse
Affiliation(s)
- François Briand
- Physiogenex SAS, Prologue Biotech, Rue Pierre et Marie Curie, Labège-Innopole, France.
| | | | | | | |
Collapse
|
141
|
Regulation of reverse cholesterol transport - a comprehensive appraisal of available animal studies. Nutr Metab (Lond) 2012; 9:25. [PMID: 22458435 PMCID: PMC3366910 DOI: 10.1186/1743-7075-9-25] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 03/29/2012] [Indexed: 12/31/2022] Open
Abstract
Plasma levels of high density lipoprotein (HDL) cholesterol are strongly inversely correlated to the risk of atherosclerotic cardiovascular disease. A major recognized functional property of HDL particles is to elicit cholesterol efflux and consequently mediate reverse cholesterol transport (RCT). The recent introduction of a surrogate method aiming at determining specifically RCT from the macrophage compartment has facilitated research on the different components and pathways relevant for RCT. The current review provides a comprehensive overview of studies carried out on macrophage-specific RCT including a quick reference guide of available data. Knowledge and insights gained on the regulation of the RCT pathway are summarized. A discussion of methodological issues as well as of the respective relevance of specific pathways for RCT is also included.
Collapse
|
142
|
Transcriptional integration of metabolism by the nuclear sterol-activated receptors LXR and FXR. Nat Rev Mol Cell Biol 2012; 13:213-24. [PMID: 22414897 DOI: 10.1038/nrm3312] [Citation(s) in RCA: 565] [Impact Index Per Article: 47.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nuclear receptors are integrators of hormonal and nutritional signals, mediating changes to metabolic pathways within the body. Given that modulation of lipid and glucose metabolism has been linked to diseases including type 2 diabetes, obesity and atherosclerosis, a greater understanding of pathways that regulate metabolism in physiology and disease is crucial. The liver X receptors (LXRs) and the farnesoid X receptors (FXRs) are activated by oxysterols and bile acids, respectively. Mounting evidence indicates that these nuclear receptors have essential roles, not only in the regulation of cholesterol and bile acid metabolism but also in the integration of sterol, fatty acid and glucose metabolism.
Collapse
|
143
|
Desmarchelier C, Dahlhoff C, Keller S, Sailer M, Jahreis G, Daniel H. C57Bl/6 N mice on a western diet display reduced intestinal and hepatic cholesterol levels despite a plasma hypercholesterolemia. BMC Genomics 2012; 13:84. [PMID: 22394543 PMCID: PMC3319424 DOI: 10.1186/1471-2164-13-84] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 03/06/2012] [Indexed: 01/10/2023] Open
Abstract
Background Small intestine and liver greatly contribute to whole body lipid, cholesterol and phospholipid metabolism but to which extent cholesterol and phospholipid handling in these tissues is affected by high fat Western-style obesogenic diets remains to be determined. Methods We therefore measured cholesterol and phospholipid concentration in intestine and liver and quantified fecal neutral sterol and bile acid excretion in C57Bl/6 N mice fed for 12 weeks either a cholesterol-free high carbohydrate control diet or a high fat Western diet containing 0.03% (w/w) cholesterol. To identify the underlying mechanisms of dietary adaptations in intestine and liver, changes in gene expression were assessed by microarray and qPCR profiling, respectively. Results Mice on Western diet showed increased plasma cholesterol levels, associated with the higher dietary cholesterol supply, yet, significantly reduced cholesterol levels were found in intestine and liver. Transcript profiling revealed evidence that expression of numerous genes involved in cholesterol synthesis and uptake via LDL, but also in phospholipid metabolism, underwent compensatory regulations in both tissues. Alterations in glycerophospholipid metabolism were confirmed at the metabolite level by phospolipid profiling via mass spectrometry. Conclusions Our findings suggest that intestine and liver react to a high dietary fat intake by an activation of de novo cholesterol synthesis and other cholesterol-saving mechanisms, as well as with major changes in phospholipid metabolism, to accommodate to the fat load.
Collapse
Affiliation(s)
- Charles Desmarchelier
- Molecular Nutrition Unit, Technische Universität München, Molecular Nutrition Unit, Gregor-Mendel-Strasse 2, 85350 Freising Weihenstephan, Germany.
| | | | | | | | | | | |
Collapse
|
144
|
Sieber MH, Thummel CS. Coordination of triacylglycerol and cholesterol homeostasis by DHR96 and the Drosophila LipA homolog magro. Cell Metab 2012; 15:122-7. [PMID: 22197324 PMCID: PMC3253980 DOI: 10.1016/j.cmet.2011.11.011] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 10/04/2011] [Accepted: 11/29/2011] [Indexed: 12/13/2022]
Abstract
Although transintestinal cholesterol efflux has been identified as an important means of clearing excess sterols, the mechanisms that underlie this process remain poorly understood. Here, we show that magro, a direct target of the Drosophila DHR96 nuclear receptor, is required in the intestine to maintain cholesterol homeostasis. magro encodes a LipA homolog that is secreted from the anterior gut into the intestinal lumen to digest dietary triacylglycerol. Expression of magro in intestinal cells is required to hydrolyze cholesterol esters and promote cholesterol clearance. Restoring magro expression in the intestine of DHR96 mutants rescues their defects in triacylglycerol and cholesterol metabolism. These studies show that the central role of the intestine in cholesterol efflux has been conserved through evolution, that the ancestral function of LipA is to coordinate triacylglycerol and cholesterol metabolism, and that the region-specific activities of magro correspond to the metabolic functions of its upstream regulator, DHR96.
Collapse
Affiliation(s)
- Matthew H Sieber
- Department of Human Genetics, University of Utah School of Medicine, 15 N 2030 E, Room 2100, Salt Lake City, UT 84112-5330 USA
| | | |
Collapse
|
145
|
Freark de Boer J, Annema W, Schreurs M, van der Veen JN, van der Giet M, Nijstad N, Kuipers F, Tietge UJF. Type I diabetes mellitus decreases in vivo macrophage-to-feces reverse cholesterol transport despite increased biliary sterol secretion in mice. J Lipid Res 2011; 53:348-357. [PMID: 22180634 DOI: 10.1194/jlr.m018671] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Type I diabetes mellitus (T1DM) increases atherosclerotic cardiovascular disease; however, the underlying pathophysiology is still incompletely understood. We investigated whether experimental T1DM impacts HDL-mediated reverse cholesterol transport (RCT). C57BL/6J mice with alloxan-induced T1DM had higher plasma cholesterol levels (P < 0.05), particularly within HDL, and increased hepatic cholesterol content (P < 0.001). T1DM resulted in increased bile flow (2.1-fold; P < 0.05) and biliary secretion of bile acids (BA, 10.5-fold; P < 0.001), phospholipids (4.5-fold; P < 0.001), and cholesterol (5.5-fold; P < 0.05). Hepatic cholesterol synthesis was unaltered, whereas BA synthesis was increased in T1DM (P < 0.001). Mass fecal BA output was significantly higher in T1DM mice (1.5-fold; P < 0.05), fecal neutral sterol excretion did not change due to increased intestinal cholesterol absorption (2.1-fold; P < 0.05). Overall in vivo macrophage-to-feces RCT, using [(3)H]cholesterol-loaded primary mouse macrophage foam cells, was 20% lower in T1DM (P < 0.05), mainly due to reduced tracer excretion within BA (P < 0.05). In vitro experiments revealed unchanged cholesterol efflux toward T1DM HDL, whereas scavenger receptor class BI-mediated selective uptake from T1DM HDL was lower in vitro and in vivo (HDL kinetic experiments) (P < 0.05), conceivably due to increased glycation of HDL-associated proteins (+65%, P < 0.01). In summary, despite higher mass biliary sterol secretion T1DM impairs macrophage-to-feces RCT, mainly by decreasing hepatic selective uptake, a mechanism conceivably contributing to increased cardiovascular disease in T1DM.
Collapse
Affiliation(s)
- Jan Freark de Boer
- Department of Pediatrics, Center for Liver, Digestive, and Metabolic Diseases, University Medical Center Groningen, Groningen, The Netherlands
| | - Wijtske Annema
- Department of Pediatrics, Center for Liver, Digestive, and Metabolic Diseases, University Medical Center Groningen, Groningen, The Netherlands; Top Institute Food and Nutrition, Wageningen, The Netherlands
| | - Marijke Schreurs
- Department of Pediatrics, Center for Liver, Digestive, and Metabolic Diseases, University Medical Center Groningen, Groningen, The Netherlands; Department of Pathology and Medical Biology, Medical Biology Section, Molecular Genetics, University Medical Center Groningen, Groningen, The Netherlands
| | - Jelske N van der Veen
- Department of Pediatrics, Center for Liver, Digestive, and Metabolic Diseases, University Medical Center Groningen, Groningen, The Netherlands
| | - Markus van der Giet
- Medizinische Klinik IV-Nephrology, Charite-Campus Benjamin Franklin, Berlin, Germany
| | - Niels Nijstad
- Department of Pediatrics, Center for Liver, Digestive, and Metabolic Diseases, University Medical Center Groningen, Groningen, The Netherlands
| | - Folkert Kuipers
- Department of Pediatrics, Center for Liver, Digestive, and Metabolic Diseases, University Medical Center Groningen, Groningen, The Netherlands; Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands;, University Medical Center Groningen, Groningen, The Netherlands
| | - Uwe J F Tietge
- Department of Pediatrics, Center for Liver, Digestive, and Metabolic Diseases, University Medical Center Groningen, Groningen, The Netherlands; Top Institute Food and Nutrition, Wageningen, The Netherlands.
| |
Collapse
|
146
|
Brufau G, Groen AK. Characterization of Whole Body Cholesterol Fluxes in the Mouse. ACTA ACUST UNITED AC 2011; 1:413-27. [DOI: 10.1002/9780470942390.mo110118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Gemma Brufau
- Department of Pediatrics, Center for Liver, Digestive, and Metabolic Diseases, University Medical Center Groningen, University of Groningen Groningen The Netherlands
| | - Albert K. Groen
- Department of Pediatrics, Center for Liver, Digestive, and Metabolic Diseases, University Medical Center Groningen, University of Groningen Groningen The Netherlands
- Department of Laboratory Medicine, Center for Liver, Digestive, and Metabolic Diseases, University Medical Center Groningen, University of Groningen Groningen The Netherlands
| |
Collapse
|
147
|
Lin X, Racette SB, Lefevre M, Ma L, Spearie CA, Steger-May K, Ostlund RE. Combined effects of ezetimibe and phytosterols on cholesterol metabolism: a randomized, controlled feeding study in humans. Circulation 2011; 124:596-601. [PMID: 21768544 PMCID: PMC3304455 DOI: 10.1161/circulationaha.110.006692] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Accepted: 05/09/2011] [Indexed: 11/16/2022]
Abstract
BACKGROUND Both ezetimibe and phytosterols inhibit cholesterol absorption. We tested the hypothesis that the combination of ezetimibe and phytosterols is more effective than ezetimibe alone in altering cholesterol metabolism. METHODS AND RESULTS Twenty-one mildly hypercholesterolemic subjects completed a randomized, double-blind, placebo-controlled, triple-crossover study. Each subject received a phytosterol-controlled diet plus (1) ezetimibe placebo+phytosterol placebo, (2) 10 mg/d ezetimibe+phytosterol placebo, and (3) 10 mg/d ezetimibe+2.5 g phytosterols for 3 weeks each. All meals were prepared in a metabolic kitchen. Primary outcomes were intestinal cholesterol absorption, fecal cholesterol excretion, and low-density lipoprotein cholesterol levels. The combined treatment resulted in significantly lower intestinal cholesterol absorption (598 mg/d; 95% confidence interval [CI], 368 to 828) relative to control (2161 mg/d; 95% CI, 1112 to 3209) and ezetimibe alone (1054 mg/d; 95% CI, 546 to 1561; both P<0.0001). Fecal cholesterol excretion was significantly greater (P<0.0001) with combined treatment (962 mg/d; 95% CI, 757 to 1168) relative to control (505 mg/d; 95% CI, 386 to 625) and ezetimibe alone (794 mg/d; 95% CI, 615 to 973). Plasma low-density lipoprotein cholesterol values during treatment with control, ezetimibe alone, and ezetimibe+phytosterols averaged 129 mg/dL (95% CI, 116 to 142), 108 mg/dL (95% CI, 97 to 119), and 101 mg/dL (95% CI, 90 to 112; (P<0.0001 relative to control). CONCLUSION The addition of phytosterols to ezetimibe significantly enhanced the effects of ezetimibe on whole-body cholesterol metabolism and plasma low-density lipoprotein cholesterol. The large cumulative action of combined dietary and pharmacological treatment on cholesterol metabolism emphasizes the potential importance of dietary phytosterols as adjunctive therapy for the treatment of hypercholesterolemia. CLINICAL TRIAL REGISTRATION URL: http://www.clinicaltrials.gov. Unique identifier: NCT00863265.
Collapse
Affiliation(s)
- Xiaobo Lin
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Susan B. Racette
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO
| | - Michael Lefevre
- Center for Advanced Nutrition, Utah State University, Logan, UT
| | - Lina Ma
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | | | - Karen Steger-May
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO
| | - Richard E. Ostlund
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
148
|
Brufau G, Kuipers F, Lin Y, Trautwein EA, Groen AK. A reappraisal of the mechanism by which plant sterols promote neutral sterol loss in mice. PLoS One 2011; 6:e21576. [PMID: 21738715 PMCID: PMC3128081 DOI: 10.1371/journal.pone.0021576] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 06/03/2011] [Indexed: 11/23/2022] Open
Abstract
Dietary plant sterols (PS) reduce serum total and LDL-cholesterol in hyperlipidemic animal models and in humans. This hypocholesterolemic effect is generally ascribed to inhibition of cholesterol absorption. However, whether this effect fully explains the reported strong induction of neutral sterol excretion upon plant sterol feeding is not known. Recent data demonstrate that the intestine directly mediates plasma cholesterol excretion into feces, i.e., without involvement of the hepato-biliary route.
Collapse
Affiliation(s)
- Gemma Brufau
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | | | | | | | | |
Collapse
|
149
|
Tailleux A, Staels B. Overview of the Measurement of Lipids and Lipoproteins in Mice. ACTA ACUST UNITED AC 2011; 1:265-77. [DOI: 10.1002/9780470942390.mo110001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Anne Tailleux
- Université Lille Nord de France Lille France
- Inserm, U1011 Lille France
- UDSL Lille France
- Institut Pasteur de Lille Lille France
| | - Bart Staels
- Université Lille Nord de France Lille France
- Inserm, U1011 Lille France
- UDSL Lille France
- Institut Pasteur de Lille Lille France
| |
Collapse
|
150
|
Brufau G, Groen AK, Kuipers F. Reverse cholesterol transport revisited: contribution of biliary versus intestinal cholesterol excretion. Arterioscler Thromb Vasc Biol 2011; 31:1726-33. [PMID: 21571685 DOI: 10.1161/atvbaha.108.181206] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Reverse cholesterol transport (RCT) is usually defined as high-density lipoprotein-mediated transport of excess cholesterol from peripheral tissues, including cholesterol-laden macrophages in vessel walls, to the liver. From the liver, cholesterol can then be removed from the body via secretion into the bile for eventual disposal via the feces. According to this paradigm, high plasma high-density lipoprotein levels accelerate RCT and hence are atheroprotective. New insights in individual steps of the RCT pathway, in part derived from innovative mouse models, indicate that the classical concept of RCT may require modification.
Collapse
Affiliation(s)
- Gemma Brufau
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, The Netherlands
| | | | | |
Collapse
|