101
|
Xie P, Guo F, Ma Y, Zhu H, Wang F, Xue B, Shi H, Yang J, Yu L. Intestinal Cgi-58 deficiency reduces postprandial lipid absorption. PLoS One 2014; 9:e91652. [PMID: 24618586 PMCID: PMC3950255 DOI: 10.1371/journal.pone.0091652] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 02/12/2014] [Indexed: 12/11/2022] Open
Abstract
Comparative Gene Identification-58 (CGI-58), a lipid droplet (LD)-associated protein, promotes intracellular triglyceride (TG) hydrolysis in vitro. Mutations in human CGI-58 cause TG accumulation in numerous tissues including intestine. Enterocytes are thought not to store TG-rich LDs, but a fatty meal does induce temporary cytosolic accumulation of LDs. Accumulated LDs are eventually cleared out, implying existence of TG hydrolytic machinery in enterocytes. However, identities of proteins responsible for LD-TG hydrolysis remain unknown. Here we report that intestine-specific inactivation of CGI-58 in mice significantly reduces postprandial plasma TG concentrations and intestinal TG hydrolase activity, which is associated with a 4-fold increase in intestinal TG content and large cytosolic LD accumulation in absorptive enterocytes during the fasting state. Intestine-specific CGI-58 knockout mice also display mild yet significant decreases in intestinal fatty acid absorption and oxidation. Surprisingly, inactivation of CGI-58 in intestine significantly raises plasma and intestinal cholesterol, and reduces hepatic cholesterol, without altering intestinal cholesterol absorption and fecal neutral sterol excretion. In conclusion, intestinal CGI-58 is required for efficient postprandial lipoprotein-TG secretion and for maintaining hepatic and plasma lipid homeostasis. Our animal model will serve as a valuable tool to further define how intestinal fat metabolism influences the pathogenesis of metabolic disorders, such as obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Ping Xie
- Department Of Biochemistry, Wake Forest University Health Sciences, Winston-Salem, North Carolina, United States of America
- Institute Of Medicinal Plant Development, Chinese Academy Of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Feng Guo
- Department Of Biochemistry, Wake Forest University Health Sciences, Winston-Salem, North Carolina, United States of America
| | - Yinyan Ma
- Department Of Biochemistry, Wake Forest University Health Sciences, Winston-Salem, North Carolina, United States of America
- Department Of Animal And Avian Sciences, University Of Maryland, College Park, Maryland, United States of America
| | - Hongling Zhu
- Department Of Animal And Avian Sciences, University Of Maryland, College Park, Maryland, United States of America
| | - Freddy Wang
- Department Of Biochemistry, Wake Forest University Health Sciences, Winston-Salem, North Carolina, United States of America
| | - Bingzhong Xue
- Department Of Biology, Georgia State University, Atlanta, Georgia, United States of America
| | - Hang Shi
- Department Of Biology, Georgia State University, Atlanta, Georgia, United States of America
| | - Jian Yang
- Department Of Physiology, University Of South Alabama College Of Medicine, Mobile, Alabama, United States of America
| | - Liqing Yu
- Department Of Biochemistry, Wake Forest University Health Sciences, Winston-Salem, North Carolina, United States of America
- Department Of Animal And Avian Sciences, University Of Maryland, College Park, Maryland, United States of America
- * E-mail:
| |
Collapse
|
102
|
Sun X, Dey SK. Synthetic cannabinoids and potential reproductive consequences. Life Sci 2014; 97:72-7. [PMID: 23827241 PMCID: PMC3823745 DOI: 10.1016/j.lfs.2013.06.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 06/13/2013] [Accepted: 06/18/2013] [Indexed: 11/18/2022]
Abstract
Increases in emergency room visits due to abuse of designer drugs, popularly known by the street names "K2" and "Spice," are a cause for social, judicial, and clinical concerns. The psychoactive components in these herbal drugs mainly consist of different synthetic cannabinoids, and users of these street drugs are primarily within the age group of 12 to 20years old. The abusive use of synthetic cannabinoids results in anxiety, nausea, vomiting, tachycardia, elevated blood pressure, tremors, seizures, hallucinations, and paranoid behavior, but the effects of maternal use of synthetic cannabinoids during pregnancy are ambiguous due to limited studies in humans and a relative short history of the drugs. In this review, we discuss the known and potential adverse effects of synthetic cannabinoids on human pregnancy using knowledge gathered from studies in mice and limited studies in humans. In mice, multiple sites and stages of pregnancy are potential targets of synthetic cannabinoids, including preimplantation embryo development, oviductal embryo transport, implantation, placentation, and parturition. It is anticipated that maternal use of synthetic cannabinoids would result in severely compromised female fertility and pregnancy outcome.
Collapse
Affiliation(s)
- Xiaofei Sun
- Division of Reproductive Sciences, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, USA
| | - Sudhansu K Dey
- Division of Reproductive Sciences, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, USA.
| |
Collapse
|
103
|
Chiou LC, Hu SSJ, Ho YC. Targeting the cannabinoid system for pain relief? ACTA ACUST UNITED AC 2013; 51:161-70. [PMID: 24529672 DOI: 10.1016/j.aat.2013.10.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 10/11/2013] [Indexed: 12/15/2022]
Abstract
Marijuana has been used to relieve pain for centuries, but its analgesic mechanism has only been understood during the past two decades. It is mainly mediated by its constituents, cannabinoids, through activating central cannabinoid 1 (CB1) receptors, as well as peripheral CB1 and CB2 receptors. CB2-selective agonists have the benefit of lacking CB1 receptor-mediated CNS side effects. Anandamide and 2-arachidonoylglycerol (2-AG) are two intensively studied endogenous lipid ligands of cannabinoid receptors, termed endocannabinoids, which are synthesized on demand and rapidly degraded. Thus, inhibitors of their degradation enzymes, fatty acid amide hydrolase and monoacylglycerol lipase (MAGL), respectively, may be superior to direct cannabinoid receptor ligands as a promising strategy for pain relief. In addition to the antinociceptive properties of exogenous cannabinoids and endocannabinoids, involving their biosynthesis and degradation processes, we also review recent studies that revealed a novel analgesic mechanism, involving 2-AG in the periaqueductal gray (PAG), a midbrain region for initiating descending pain inhibition. It is initiated by Gq-protein-coupled receptor (GqPCR) activation of the phospholipase C (PLC)-diacylglycerol lipase (DAGL) enzymatic cascade, generating 2-AG that produces inhibition of GABAergic transmission (disinhibition) in the PAG, thereby leading to analgesia. This GqPCR-PLC-DAGL-2-AG retrograde disinhibition mechanism in the PAG can be initiated by activating type 5 metabotropic glutamate receptor (mGluR5), muscarinic acetylcholine (M1/M3), and orexin (OX1) receptors. mGluR5-mediated disinhibition can be initiated by glutamate transporter inhibitors, or indirectly by substance P, neurotensin, cholecystokinin, capsaicin, and AM404, the bioactive metabolite of acetaminophen in the brain. The putative role of 2-AG generated after activating the above neurotransmitter receptors in stress-induced analgesia is also discussed.
Collapse
Affiliation(s)
- Lih-Chu Chiou
- Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Pharmacology, National Taiwan University, Taipei, Taiwan; Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan; Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan.
| | - Sherry Shu-Jung Hu
- Department of Psychology, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Cheng Ho
- Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
104
|
Gomes I, Fujita W, Chandrakala MV, Devi LA. Disease-specific heteromerization of G-protein-coupled receptors that target drugs of abuse. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 117:207-65. [PMID: 23663971 DOI: 10.1016/b978-0-12-386931-9.00009-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Drugs of abuse such as morphine or marijuana exert their effects through the activation of G-protein-coupled receptors (GPCRs), the opioid and cannabinoid receptors, respectively. Moreover, interactions between either of these receptors have been shown to be involved in the rewarding effects of drugs of abuse. Recent advances in the field, using a variety of approaches, have demonstrated that many GPCRs, including opioid, cannabinoid, and dopamine receptors, can form associations between different receptor subtypes or with other GPCRs to form heteromeric complexes. The formation of these complexes, in turn, leads to the modulation of the properties of individual protomers. The development of tools that can selectively disrupt GPCR heteromers as well as monoclonal antibodies that can selectively block signaling by specific heteromer pairs has indicated that heteromers involving opioid, cannabinoid, or dopamine receptors may play a role in various disease states. In this review, we describe evidence for opioid, cannabinoid, and dopamine receptor heteromerization and the potential role of GPCR heteromers in pathophysiological conditions.
Collapse
Affiliation(s)
- Ivone Gomes
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, USA
| | | | | | | |
Collapse
|
105
|
Melford SE, Taylor AH, Konje JC. Of mice and (wo)men: factors influencing successful implantation including endocannabinoids. Hum Reprod Update 2013; 20:415-28. [DOI: 10.1093/humupd/dmt060] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
106
|
Zygmunt PM, Ermund A, Movahed P, Andersson DA, Simonsen C, Jönsson BAG, Blomgren A, Birnir B, Bevan S, Eschalier A, Mallet C, Gomis A, Högestätt ED. Monoacylglycerols activate TRPV1--a link between phospholipase C and TRPV1. PLoS One 2013; 8:e81618. [PMID: 24312564 PMCID: PMC3847081 DOI: 10.1371/journal.pone.0081618] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 10/25/2013] [Indexed: 01/17/2023] Open
Abstract
Phospholipase C-mediated hydrolysis of phosphatidylinositol 4,5-bisphosphate generates diacylglycerol, inositol 1,4,5-trisphosphate and protons, all of which can regulate TRPV1 activity via different mechanisms. Here we explored the possibility that the diacylglycerol metabolites 2-arachidonoylglycerol and 1-arachidonoylglycerol, and not metabolites of these monoacylglycerols, activate TRPV1 and contribute to this signaling cascade. 2-Arachidonoylglycerol and 1-arachidonoylglycerol activated native TRPV1 on vascular sensory nerve fibers and heterologously expressed TRPV1 in whole cells and inside-out membrane patches. The monoacylglycerol lipase inhibitors methylarachidonoyl-fluorophosphonate and JZL184 prevented the metabolism of deuterium-labeled 2-arachidonoylglycerol and deuterium-labeled 1-arachidonoylglycerol in arterial homogenates, and enhanced TRPV1-mediated vasodilator responses to both monoacylglycerols. In mesenteric arteries from TRPV1 knock-out mice, vasodilator responses to 2-arachidonoylglycerol were minor. Bradykinin and adenosine triphosphate, ligands of phospholipase C-coupled membrane receptors, increased the content of 2-arachidonoylglycerol in dorsal root ganglia. In HEK293 cells expressing the phospholipase C-coupled histamine H1 receptor, exposure to histamine stimulated the formation of 2-AG, and this effect was augmented in the presence of JZL184. These effects were prevented by the diacylglycerol lipase inhibitor tetrahydrolipstatin. Histamine induced large whole cell currents in HEK293 cells co-expressing TRPV1 and the histamine H1 receptor, and the TRPV1 antagonist capsazepine abolished these currents. JZL184 increased the histamine-induced currents and tetrahydrolipstatin prevented this effect. The calcineurin inhibitor ciclosporin and the endogenous "entourage" compound palmitoylethanolamide potentiated the vasodilator response to 2-arachidonoylglycerol, disclosing TRPV1 activation of this monoacylglycerol at nanomolar concentrations. Furthermore, intracerebroventricular injection of JZL184 produced TRPV1-dependent antinociception in the mouse formalin test. Our results show that intact 2-arachidonoylglycerol and 1-arachidonoylglycerol are endogenous TRPV1 activators, contributing to phospholipase C-dependent TRPV1 channel activation and TRPV1-mediated antinociceptive signaling in the brain.
Collapse
Affiliation(s)
- Peter M. Zygmunt
- Department of Laboratory Medicine, Lund University, Lund, Sweden
- Lund University Pain Research Centre, Lund University, Lund, Sweden
- * E-mail: (PMZ); (EDH)
| | - Anna Ermund
- Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Pouya Movahed
- Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - David A. Andersson
- Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| | | | - Bo A. G. Jönsson
- Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Anders Blomgren
- Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Bryndis Birnir
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Stuart Bevan
- Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| | - Alain Eschalier
- Clermont Université, Université d'Auvergne, Pharmacologie Fondamentale et Clinique de la Douleur, Laboratoire de Pharmacologie, Facultés de Médecine/Pharmacie, Clermont-Ferrand, France
- Inserm, U1107 Neuro-Dol, Clermont-Ferrand, France
- CHU Clermont-Ferrand, Service de Pharmacologie, Hôpital G. Montpied, Clermont-Ferrand, France
| | - Christophe Mallet
- Clermont Université, Université d'Auvergne, Pharmacologie Fondamentale et Clinique de la Douleur, Laboratoire de Pharmacologie, Facultés de Médecine/Pharmacie, Clermont-Ferrand, France
- Inserm, U1107 Neuro-Dol, Clermont-Ferrand, France
| | - Ana Gomis
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Sant Joan d'Alacant, Spain
| | - Edward D. Högestätt
- Department of Laboratory Medicine, Lund University, Lund, Sweden
- Lund University Pain Research Centre, Lund University, Lund, Sweden
- * E-mail: (PMZ); (EDH)
| |
Collapse
|
107
|
Abstract
The endocannabinoid (EC) system consists of two main receptors: cannabinoid type 1 receptor cannabinoid receptors are found in both the central nervous system (CNS) and periphery, whereas the cannabinoid type 2 receptor cannabinoid receptor is found principally in the immune system and to a lesser extent in the CNS. The EC family consists of two classes of well characterised ligands; the N-acyl ethanolamines, such as N-arachidonoyl ethanolamide or anandamide (AEA), and the monoacylglycerols, such as 2-arachidonoyl glycerol. The various synthetic and catabolic pathways for these enzymes have been (with the exception of AEA synthesis) elucidated. To date, much work has examined the role of EC in nociceptive processing and the potential of targeting the EC system to produce analgesia. Cannabinoid receptors and ligands are found at almost every level of the pain pathway from peripheral sites, such as peripheral nerves and immune cells, to central integration sites such as the spinal cord, and higher brain regions such as the periaqueductal grey and the rostral ventrolateral medulla associated with descending control of pain. EC have been shown to induce analgesia in preclinical models of acute nociception and chronic pain states. The purpose of this review is to critically evaluate the evidence for the role of EC in the pain pathway and the therapeutic potential of EC to produce analgesia. We also review the present clinical work conducted with EC, and examine whether targeting the EC system might offer a novel target for analgesics, and also potentially disease-modifying interventions for pathophysiological pain states.
Collapse
|
108
|
Adams MJ, Almaghrabi SY, Ahuja KDK, Geraghty DP. Vanilloid-Like Agents: Potential Therapeutic Targeting of Platelets? Drug Dev Res 2013. [DOI: 10.1002/ddr.21102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Murray J. Adams
- School of Human Life Sciences; University of Tasmania; Bag 1320 Launceston; Tasmania; 7250; Australia
| | - Safa Y. Almaghrabi
- School of Human Life Sciences; University of Tasmania; Bag 1320 Launceston; Tasmania; 7250; Australia
| | - Kiran D. K. Ahuja
- School of Human Life Sciences; University of Tasmania; Bag 1320 Launceston; Tasmania; 7250; Australia
| | - Dominic P. Geraghty
- School of Human Life Sciences; University of Tasmania; Bag 1320 Launceston; Tasmania; 7250; Australia
| |
Collapse
|
109
|
Thomas G, Betters JL, Lord CC, Brown AL, Marshall S, Ferguson D, Sawyer J, Davis MA, Melchior JT, Blume LC, Howlett AC, Ivanova PT, Milne SB, Myers DS, Mrak I, Leber V, Heier C, Taschler U, Blankman JL, Cravatt BF, Lee RG, Crooke RM, Graham MJ, Zimmermann R, Brown HA, Brown JM. The serine hydrolase ABHD6 Is a critical regulator of the metabolic syndrome. Cell Rep 2013; 5:508-20. [PMID: 24095738 DOI: 10.1016/j.celrep.2013.08.047] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 07/25/2013] [Accepted: 08/29/2013] [Indexed: 01/31/2023] Open
Abstract
The serine hydrolase α/β hydrolase domain 6 (ABHD6) has recently been implicated as a key lipase for the endocannabinoid 2-arachidonylglycerol (2-AG) in the brain. However, the biochemical and physiological function for ABHD6 outside of the central nervous system has not been established. To address this, we utilized targeted antisense oligonucleotides (ASOs) to selectively knock down ABHD6 in peripheral tissues in order to identify in vivo substrates and understand ABHD6's role in energy metabolism. Here, we show that selective knockdown of ABHD6 in metabolic tissues protects mice from high-fat-diet-induced obesity, hepatic steatosis, and systemic insulin resistance. Using combined in vivo lipidomic identification and in vitro enzymology approaches, we show that ABHD6 can hydrolyze several lipid substrates, positioning ABHD6 at the interface of glycerophospholipid metabolism and lipid signal transduction. Collectively, these data suggest that ABHD6 inhibitors may serve as therapeutics for obesity, nonalcoholic fatty liver disease, and type II diabetes.
Collapse
Affiliation(s)
- Gwynneth Thomas
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Jenna L Betters
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Caleb C Lord
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Amanda L Brown
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.,New Affiliation: Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland OH 44195, USA
| | - Stephanie Marshall
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.,New Affiliation: Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland OH 44195, USA
| | - Daniel Ferguson
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.,New Affiliation: Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland OH 44195, USA
| | - Janet Sawyer
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Matthew A Davis
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - John T Melchior
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Lawrence C Blume
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Allyn C Howlett
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Pavlina T Ivanova
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Stephen B Milne
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - David S Myers
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Irina Mrak
- Institute of Molecular Biosciences, University of Graz, A-8010 Graz, Austria
| | - Vera Leber
- Institute of Molecular Biosciences, University of Graz, A-8010 Graz, Austria
| | - Christoph Heier
- Institute of Molecular Biosciences, University of Graz, A-8010 Graz, Austria
| | - Ulrike Taschler
- Institute of Molecular Biosciences, University of Graz, A-8010 Graz, Austria
| | - Jacqueline L Blankman
- Deparment of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Benjamin F Cravatt
- Deparment of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Richard G Lee
- Cardiovascular Group, Antisense Drug Discovery, Isis Pharmaceuticals, Inc., Carlsbad, CA 92010 USA
| | - Rosanne M Crooke
- Cardiovascular Group, Antisense Drug Discovery, Isis Pharmaceuticals, Inc., Carlsbad, CA 92010 USA
| | - Mark J Graham
- Cardiovascular Group, Antisense Drug Discovery, Isis Pharmaceuticals, Inc., Carlsbad, CA 92010 USA
| | - Robert Zimmermann
- Institute of Molecular Biosciences, University of Graz, A-8010 Graz, Austria
| | - H Alex Brown
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - J Mark Brown
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.,New Affiliation: Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland OH 44195, USA
| |
Collapse
|
110
|
Galve-Roperh I, Chiurchiù V, Díaz-Alonso J, Bari M, Guzmán M, Maccarrone M. Cannabinoid receptor signaling in progenitor/stem cell proliferation and differentiation. Prog Lipid Res 2013; 52:633-50. [PMID: 24076098 DOI: 10.1016/j.plipres.2013.05.004] [Citation(s) in RCA: 206] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 05/28/2013] [Indexed: 12/11/2022]
Abstract
Cannabinoids, the active components of cannabis (Cannabis sativa) extracts, have attracted the attention of human civilizations for centuries, much earlier than the discovery and characterization of their substrate of action, the endocannabinoid system (ECS). The latter is an ensemble of endogenous lipids, their receptors [in particular type-1 (CB1) and type-2 (CB2) cannabinoid receptors] and metabolic enzymes. Cannabinoid signaling regulates cell proliferation, differentiation and survival, with different outcomes depending on the molecular targets and cellular context involved. Cannabinoid receptors are expressed and functional from the very early developmental stages, when they regulate embryonic and trophoblast stem cell survival and differentiation, and thus may affect the formation of manifold adult specialized tissues derived from the three different germ layers (ectoderm, mesoderm and endoderm). In the ectoderm-derived nervous system, both CB1 and CB2 receptors are present in neural progenitor/stem cells and control their self-renewal, proliferation and differentiation. CB1 and CB2 show opposite patterns of expression, the former increasing and the latter decreasing along neuronal differentiation. Recently, endocannabinoid (eCB) signaling has also been shown to regulate proliferation and differentiation of mesoderm-derived hematopoietic and mesenchymal stem cells, with a key role in determining the formation of several cell types in peripheral tissues, including blood cells, adipocytes, osteoblasts/osteoclasts and epithelial cells. Here, we will review these new findings, which unveil the involvement of eCB signaling in the regulation of progenitor/stem cell fate in the nervous system and in the periphery. The developmental regulation of cannabinoid receptor expression and cellular/subcellular localization, together with their role in progenitor/stem cell biology, may have important implications in human health and disease.
Collapse
Affiliation(s)
- Ismael Galve-Roperh
- Department of Biochemistry and Molecular Biology I, School of Biology, Complutense University, IUIN, CIBERNED and IRYCIS, 28040 Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
111
|
Figueroa JD, Cordero K, Serrano-Illan M, Almeyda A, Baldeosingh K, Almaguel FG, De Leon M. Metabolomics uncovers dietary omega-3 fatty acid-derived metabolites implicated in anti-nociceptive responses after experimental spinal cord injury. Neuroscience 2013; 255:1-18. [PMID: 24042033 DOI: 10.1016/j.neuroscience.2013.09.012] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 09/03/2013] [Accepted: 09/04/2013] [Indexed: 01/23/2023]
Abstract
Chronic neuropathic pain is a frequent comorbidity following spinal cord injury (SCI) and often fails to respond to conventional pain management strategies. Preventive administration of docosahexaenoic acid (DHA) or the consumption of a diet rich in omega-3 polyunsaturated fatty acids (O3PUFAs) confers potent prophylaxis against SCI and improves functional recovery. The present study examines whether this novel dietary strategy provides significant antinociceptive benefits in rats experiencing SCI-induced pain. Rats were fed control chow or chow enriched with O3PUFAs for 8weeks before being subjected to sham or cord contusion surgeries, continuing the same diets after surgery for another 8 more weeks. The paw sensitivity to noxious heat was quantified for at least 8weeks post-SCI using the Hargreaves test. We found that SCI rats consuming the preventive O3PUFA-enriched diet exhibited a significant reduction in thermal hyperalgesia compared to those consuming the normal diet. Functional neurometabolomic profiling revealed a distinctive deregulation in the metabolism of endocannabinoids (eCB) and related N-acyl ethanolamines (NAEs) at 8weeks post-SCI. We found that O3PUFAs consumption led to a robust accumulation of novel NAE precursors, including the glycerophospho-containing docosahexaenoyl ethanolamine (DHEA), docosapentaenoyl ethanolamine (DPEA), and eicosapentaenoyl ethanolamine (EPEA). The tissue levels of these metabolites were significantly correlated with the antihyperalgesic phenotype. In addition, rats consuming the O3PUFA-rich diet showed reduced sprouting of nociceptive fibers containing CGRP and dorsal horn neuron p38 mitogen-activated protein kinase (MAPK) expression, well-established biomarkers of pain. The spinal cord levels of inositols were positively correlated with thermal hyperalgesia, supporting their role as biomarkers of chronic neuropathic pain. Notably, the O3PUFA-rich dietary intervention reduced the levels of these metabolites. Collectively, these results demonstrate the prophylactic value of dietary O3PUFA against SCI-mediated chronic pain.
Collapse
Affiliation(s)
- J D Figueroa
- Center for Health Disparities and Molecular Medicine, Loma Linda University, Loma Linda, CA, United States; Department of Basic Sciences, Loma Linda University, Loma Linda, CA, United States; Department of Pathology and Human Anatomy, Loma Linda University, Loma Linda, CA, United States
| | | | | | | | | | | | | |
Collapse
|
112
|
Abstract
Following on from the discovery of cannabinoid receptors, of their endogenous agonists (endocannabinoids) and of the biosynthetic and metabolic enzymes of the endocannabinoids, significant progress has been made towards the understanding of the role of the endocannabinoid system in both physiological and pathological conditions. Endocannabinoids are mainly n-6 long-chain PUFA (LCPUFA) derivatives that are synthesised by neuronal cells and inactivated via a two-step process that begins with their transport from the extracellular to the intracellular space and culminates in their intracellular degradation by hydrolysis or oxidation. Although the enzymes responsible for the biosynthesis and metabolism of endocannabinoids have been well characterised, the processes involved in their cellular uptake are still a subject of debate. Moreover, little is yet known about the roles of endocannabinoids derived from n-3 LCPUFA such as EPA and DHA. Here, I provide an overview of what is currently known about the mechanisms for the biosynthesis and inactivation of endocannabinoids, together with a brief analysis of the involvement of the endocannabinoids in both food intake and obesity. Owing to limited space, recent reviews will be often cited instead of original papers.
Collapse
|
113
|
Piomelli D. More surprises lying ahead. The endocannabinoids keep us guessing. Neuropharmacology 2013; 76 Pt B:228-34. [PMID: 23954677 DOI: 10.1016/j.neuropharm.2013.07.026] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 07/22/2013] [Indexed: 02/02/2023]
Abstract
The objective of this review is to point out some important facts that we don't know about endogenous cannabinoids - lipid-derived signaling molecules that activate CB1 cannabinoid receptors and play key roles in motivation, emotion and energy balance. The first endocannabinoid substance to be discovered, anandamide, was isolated from brain tissue in 1992. Research has shown that this molecule is a bona fide brain neurotransmitter involved in the regulation of stress responses and pain, but the molecular mechanisms that govern its formation and the neural pathways in which it is employed are still unknown. There is a general consensus that enzyme-mediated cleavage, catalyzed by fatty acid amide hydrolase (FAAH), terminates the biological actions of anandamide, but there are many reasons to believe that other as-yet-unidentified proteins are also involved in this process. We have made significant headway in understanding the second arrived in the endocannabinoid family, 2-arachidonoyl-sn-glycerol (2-AG), which was discovered three years after anandamide. Researchers have established some of the key molecular players involved in 2-AG formation and deactivation, localized them to specific synaptic components, and showed that their assembly into a multi-molecular protein complex (termed the '2-AG signalosome') allows 2-AG to act as a retrograde messenger at excitatory synapses of the brain. Basic questions that remain to be answered pertain to the exact molecular composition of the 2-AG signalosome, its regulation by neural activity and its potential role in the actions of drugs of abuse such as Δ(9)-THC and cocaine. This article is part of a Special Issue entitled 'NIDA 40th Anniversary Issue'.
Collapse
Affiliation(s)
- Daniele Piomelli
- Department of Anatomy and Neurobiology, University of California, Irvine, CA 92697-1275, USA; Department of Pharmacology, University of California, Irvine, CA 92697-1275, USA; Department of Drug Discovery and Development, Istituto Italiano di Tecnologia, Genoa 16163, Italy; Department of Biological Chemistry, University of California, Irvine, CA 92697-1275, USA.
| |
Collapse
|
114
|
Fonteh AN, Chiang J, Cipolla M, Hale J, Diallo F, Chirino A, Arakaki X, Harrington MG. Alterations in cerebrospinal fluid glycerophospholipids and phospholipase A2 activity in Alzheimer's disease. J Lipid Res 2013; 54:2884-97. [PMID: 23868911 DOI: 10.1194/jlr.m037622] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Our aim is to study selected cerebrospinal fluid (CSF) glycerophospholipids (GP) that are important in brain pathophysiology. We recruited cognitively healthy (CH), minimally cognitively impaired (MCI), and late onset Alzheimer's disease (LOAD) study participants and collected their CSF. After fractionation into nanometer particles (NP) and supernatant fluids (SF), we studied the lipid composition of these compartments. LC-MS/MS studies reveal that both CSF fractions from CH subjects have N-acyl phosphatidylethanolamine, 1-radyl-2-acyl-sn-glycerophosphoethanolamine (PE), 1-radyl-2-acyl-sn-glycerophosphocholine (PC), 1,2-diacyl-sn-glycerophosphoserine (PS), platelet-activating factor-like lipids, and lysophosphatidylcholine (LPC). In the NP fraction, GPs are enriched with a mixture of saturated, monounsaturated, and polyunsaturated fatty acid species, while PE and PS in the SF fractions are enriched with PUFA-containing molecular species. PC, PE, and PS levels in CSF fractions decrease progressively in participants from CH to MCI, and then to LOAD. Whereas most PC species decrease equally in LOAD, plasmalogen species account for most of the decrease in PE. A significant increase in the LPC-to-PC ratio and PLA2 activity accompanies the GP decrease in LOAD. These studies reveal that CSF supernatant fluid and nanometer particles have different GP composition, and that PLA2 activity accounts for altered GPs in these fractions as neurodegeneration progresses.
Collapse
Affiliation(s)
- Alfred N Fonteh
- Molecular Neurology Program, Huntington Medical Research Institutes, Pasadena, CA 91101-1830
| | | | | | | | | | | | | | | |
Collapse
|
115
|
Guo F, Ma Y, Kadegowda AKG, Betters JL, Xie P, Liu G, Liu X, Miao H, Ou J, Su X, Zheng Z, Xue B, Shi H, Yu L. Deficiency of liver Comparative Gene Identification-58 causes steatohepatitis and fibrosis in mice. J Lipid Res 2013; 54:2109-2120. [PMID: 23733885 DOI: 10.1194/jlr.m035519] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Triglyceride (TG) accumulation in hepatocytes (hepatic steatosis) preludes the development of advanced nonalcoholic fatty liver diseases (NAFLDs) such as steatohepatitis, fibrosis, and cirrhosis. Mutations in human Comparative Gene Identification-58 (CGI-58) cause cytosolic TG-rich lipid droplets to accumulate in almost all cell types including hepatocytes. However, it is unclear if CGI-58 mutation causes hepatic steatosis locally or via altering lipid metabolism in other tissues. To directly address this question, we created liver-specific CGI-58 knockout (LivKO) mice. LivKO mice on standard chow diet displayed microvesicular and macrovesicular panlobular steatosis, and progressed to advanced NAFLD stages over time, including lobular inflammation and centrilobular fibrosis. Compared with CGI-58 floxed control littermates, LivKO mice showed 8-fold and 52-fold increases in hepatic TG content, which was associated with 40% and 58% decreases in hepatic TG hydrolase activity at 16 and 42 weeks, respectively. Hepatic cholesterol also increased significantly in LivKO mice. At 42 weeks, LivKO mice showed increased hepatic oxidative stress, plasma aminotransferases, and hepatic mRNAs for genes involved in fibrosis and inflammation, such as α-smooth muscle actin, collagen type 1 α1, tumor necrosis factor α, and interleukin-1β. In conclusion, CGI-58 deficiency in the liver directly causes not only hepatic steatosis but also steatohepatitis and fibrosis.
Collapse
Affiliation(s)
- Feng Guo
- Departments of Biochemistry and Wake Forest University School of Medicine, Winston-Salem, NC
| | - Yinyan Ma
- Departments of Biochemistry and Wake Forest University School of Medicine, Winston-Salem, NC; Department of Animal and Avian Sciences, University of Maryland, College Park, MD
| | - Anil K G Kadegowda
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD
| | - Jenna L Betters
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Ping Xie
- Departments of Biochemistry and Wake Forest University School of Medicine, Winston-Salem, NC
| | - George Liu
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University Health Science Center, Beijing, China
| | - Xiuli Liu
- Department of Anatomic Pathology, Cleveland Clinic, Cleveland, OH
| | - Hongming Miao
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD
| | - Juanjuan Ou
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD
| | - Xiong Su
- Nutritional Sciences and Departments of Medicine, Cell Biology, and Physiology, Washington University School of Medicine, St. Louis, MO
| | - Zhenlin Zheng
- Plastic Surgery, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Bingzhong Xue
- Department of Biology, Georgia State University, Atlanta, GA; and
| | - Hang Shi
- Department of Biology, Georgia State University, Atlanta, GA; and
| | - Liqing Yu
- Departments of Biochemistry and Wake Forest University School of Medicine, Winston-Salem, NC; Department of Animal and Avian Sciences, University of Maryland, College Park, MD.
| |
Collapse
|
116
|
Amoako AA, Marczylo TH, Marczylo EL, Elson J, Willets JM, Taylor AH, Konje JC. Anandamide modulates human sperm motility: implications for men with asthenozoospermia and oligoasthenoteratozoospermia. Hum Reprod 2013; 28:2058-66. [DOI: 10.1093/humrep/det232] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
117
|
Endogenous cannabinoids revisited: A biochemistry perspective. Prostaglandins Other Lipid Mediat 2013; 102-103:13-30. [DOI: 10.1016/j.prostaglandins.2013.02.002] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 02/20/2013] [Accepted: 02/21/2013] [Indexed: 12/13/2022]
|
118
|
Muldoon PP, Lichtman AH, Parsons LH, Damaj MI. The role of fatty acid amide hydrolase inhibition in nicotine reward and dependence. Life Sci 2013; 92:458-62. [PMID: 22705310 PMCID: PMC3477273 DOI: 10.1016/j.lfs.2012.05.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 05/03/2012] [Accepted: 05/16/2012] [Indexed: 11/23/2022]
Abstract
The endogenous cannabinoid anandamide (AEA) exerts the majority of its effects at CB1 and CB2 receptors and is degraded by fatty acid amide hydrolase (FAAH). FAAH KO mice and animals treated with FAAH inhibitors are impaired in their ability to hydrolyze AEA and other non-cannabinoid lipid signaling molecules, such as oleoylethanolamide (OEA) and palmitoylethanolamide (PEA). AEA and these other substrates activate non-cannabinoid receptor systems, including TRPV1 and PPAR-α receptors. In this mini review, we describe the functional consequences of FAAH inhibition on nicotine reward and dependence as well as the underlying endocannabinoid and non-cannabinoid receptor systems mediating these effects. Interestingly, FAAH inhibition seems to mediate nicotine dependence differently in mice and rats. Indeed, pharmacological and genetic FAAH disruption in mice enhances nicotine reward and withdrawal. However, in rats, pharmacological blockade of FAAH significantly inhibits nicotine reward and has no effect in nicotine withdrawal. Studies suggest that non-cannabinoid mechanisms may play a role in these species differences.
Collapse
Affiliation(s)
- Pretal P Muldoon
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, 1217 E Marshall St, Richmond, VA 23298, USA.
| | | | | | | |
Collapse
|
119
|
Abstract
The endocannabinoid signaling system regulates diverse physiologic processes and has attracted considerable attention as a potential pharmaceutical target for treating diseases, such as pain, anxiety/depression, and metabolic disorders. The principal ligands of the endocannabinoid system are the lipid transmitters N-arachidonoylethanolamine (anandamide) and 2-arachidonoylglycerol (2-AG), which activate the two major cannabinoid receptors, CB1 and CB2. Anandamide and 2-AG signaling pathways in the nervous system are terminated by enzymatic hydrolysis mediated primarily by the serine hydrolases fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), respectively. In this review, we will discuss the development of FAAH and MAGL inhibitors and their pharmacological application to investigate the function of anandamide and 2-AG signaling pathways in preclinical models of neurobehavioral processes, such as pain, anxiety, and addiction. We will place emphasis on how these studies are beginning to discern the different roles played by anandamide and 2-AG in the nervous system and the resulting implications for advancing endocannabinoid hydrolase inhibitors as next-generation therapeutics.
Collapse
Affiliation(s)
- Jacqueline L Blankman
- Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, USA.
| | | |
Collapse
|
120
|
Wellner N, Diep TA, Janfelt C, Hansen HS. N-acylation of phosphatidylethanolamine and its biological functions in mammals. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:652-62. [DOI: 10.1016/j.bbalip.2012.08.019] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 08/30/2012] [Accepted: 08/31/2012] [Indexed: 12/22/2022]
|
121
|
Ueda N, Tsuboi K, Uyama T. Metabolism of endocannabinoids and related N-acylethanolamines: canonical and alternative pathways. FEBS J 2013; 280:1874-94. [PMID: 23425575 DOI: 10.1111/febs.12152] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 01/14/2013] [Accepted: 01/23/2013] [Indexed: 12/31/2022]
Abstract
Endocannabinoids are endogenous ligands of the cannabinoid receptors CB1 and CB2. Two arachidonic acid derivatives, arachidonoylethanolamide (anandamide) and 2-arachidonoylglycerol, are considered to be physiologically important endocannabinoids. In the known metabolic pathway in mammals, anandamide and other bioactive N-acylethanolamines, such as palmitoylethanolamide and oleoylethanolamide, are biosynthesized from glycerophospholipids by a combination of Ca(2+)-dependent N-acyltransferase and N-acyl-phosphatidylethanolamine-hydrolyzing phospholipase D, and are degraded by fatty acid amide hydrolase. However, recent studies have shown the involvement of other enzymes and pathways, which include the members of the tumor suppressor HRASLS family (the phospholipase A/acyltransferase family) functioning as Ca(2+)-independent N-acyltransferases, N-acyl-phosphatidylethanolamine-hydrolyzing phospholipaseD-independent multistep pathways via N-acylated lysophospholipid, and N-acylethanolamine-hydrolyzing acid amidase, a lysosomal enzyme that preferentially hydrolyzes palmitoylethanolamide. Although their physiological significance is poorly understood, these new enzymes/pathways may serve as novel targets for the development of therapeutic drugs. For example, selective N-acylethanolamine-hydrolyzing acid amidase inhibitors are expected to be new anti-inflammatory and analgesic drugs. In this minireview, we focus on advances in the understanding of these enzymes/pathways. In addition, recent findings on 2-arachidonoylglycerol metabolism are described.
Collapse
Affiliation(s)
- Natsuo Ueda
- Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan.
| | | | | |
Collapse
|
122
|
Abstract
Endocannabinoids are endogenous ligands of cannabinoid, vanilloid and peroxisome proliferator-activated receptors that activate multiple signal transduction pathways. Together with their receptor and the enzymes responsible for their synthesis and degradation, these compounds constitute the endocannabinoid system that has been recently shown to play, in humans, an important role in modulating several central and peripheral functions including reproduction. Given the relevance of the system, drugs that are able to interfere with the activity of endocannabinoids are currently considered as candidates for the treatment of various diseases. In this review, we will summarise the current knowledge regarding the effects of endocannabinoids in female reproductive organs. In particular, we will focus on some newly reported mechanisms that can affect endometrial plasticity both in physiological and in pathological conditions.
Collapse
Affiliation(s)
- Anna Maria Di Blasio
- Molecular Biology Laboratory, Istituto Auxologico Italiano, Via Zucchi 18, 20095 Cusano Milanino, Milano, Italy.
| | | | | |
Collapse
|
123
|
Lord CC, Thomas G, Brown JM. Mammalian alpha beta hydrolase domain (ABHD) proteins: Lipid metabolizing enzymes at the interface of cell signaling and energy metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:792-802. [PMID: 23328280 DOI: 10.1016/j.bbalip.2013.01.002] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 12/07/2012] [Accepted: 01/02/2013] [Indexed: 11/16/2022]
Abstract
Dysregulation of lipid metabolism underlies many chronic diseases such as obesity, diabetes, cardiovascular disease, and cancer. Therefore, understanding enzymatic mechanisms controlling lipid synthesis and degradation is imperative for successful drug discovery for these human diseases. Genes encoding α/β hydrolase fold domain (ABHD) proteins are present in virtually all reported genomes, and conserved structural motifs shared by these proteins predict common roles in lipid synthesis and degradation. However, the physiological substrates and products for these lipid metabolizing enzymes and their broader role in metabolic pathways remain largely uncharacterized. Recently, mutations in several members of the ABHD protein family have been implicated in inherited inborn errors of lipid metabolism. Furthermore, studies in cell and animal models have revealed important roles for ABHD proteins in lipid metabolism, lipid signal transduction, and metabolic disease. The purpose of this review is to provide a comprehensive summary surrounding the current state of knowledge regarding mammalian ABHD protein family members. In particular, we will discuss how ABHD proteins are ideally suited to act at the interface of lipid metabolism and signal transduction. Although, the current state of knowledge regarding mammalian ABHD proteins is still in its infancy, this review highlights the potential for the ABHD enzymes as being attractive targets for novel therapies targeting metabolic disease.
Collapse
Affiliation(s)
- Caleb C Lord
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Gwynneth Thomas
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - J Mark Brown
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
124
|
Brown I, Cascio MG, Rotondo D, Pertwee RG, Heys SD, Wahle KW. Cannabinoids and omega-3/6 endocannabinoids as cell death and anticancer modulators. Prog Lipid Res 2013; 52:80-109. [DOI: 10.1016/j.plipres.2012.10.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 10/05/2012] [Indexed: 01/18/2023]
|
125
|
Elphick MR. The evolution and comparative neurobiology of endocannabinoid signalling. Philos Trans R Soc Lond B Biol Sci 2012; 367:3201-15. [PMID: 23108540 PMCID: PMC3481536 DOI: 10.1098/rstb.2011.0394] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
CB(1)- and CB(2)-type cannabinoid receptors mediate effects of the endocannabinoids 2-arachidonoylglycerol (2-AG) and anandamide in mammals. In canonical endocannabinoid-mediated synaptic plasticity, 2-AG is generated postsynaptically by diacylglycerol lipase alpha and acts via presynaptic CB(1)-type cannabinoid receptors to inhibit neurotransmitter release. Electrophysiological studies on lampreys indicate that this retrograde signalling mechanism occurs throughout the vertebrates, whereas system-level studies point to conserved roles for endocannabinoid signalling in neural mechanisms of learning and control of locomotor activity and feeding. CB(1)/CB(2)-type receptors originated in a common ancestor of extant chordates, and in the sea squirt Ciona intestinalis a CB(1)/CB(2)-type receptor is targeted to axons, indicative of an ancient role for cannabinoid receptors as axonal regulators of neuronal signalling. Although CB(1)/CB(2)-type receptors are unique to chordates, enzymes involved in biosynthesis/inactivation of endocannabinoids occur throughout the animal kingdom. Accordingly, non-CB(1)/CB(2)-mediated mechanisms of endocannabinoid signalling have been postulated. For example, there is evidence that 2-AG mediates retrograde signalling at synapses in the nervous system of the leech Hirudo medicinalis by activating presynaptic transient receptor potential vanilloid-type ion channels. Thus, postsynaptic synthesis of 2-AG or anandamide may be a phylogenetically widespread phenomenon, and a variety of proteins may have evolved as presynaptic (or postsynaptic) receptors for endocannabinoids.
Collapse
Affiliation(s)
- Maurice R Elphick
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK.
| |
Collapse
|
126
|
Idris AI, Ralston SH. Role of cannabinoids in the regulation of bone remodeling. Front Endocrinol (Lausanne) 2012; 3:136. [PMID: 23181053 PMCID: PMC3499879 DOI: 10.3389/fendo.2012.00136] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 10/25/2012] [Indexed: 12/22/2022] Open
Abstract
The endocannabinoid system plays a key role in regulating a variety of physiological processes such as appetite control and energy balance, pain perception, and immune responses. Recent studies have implicated the endocannabinoid system in the regulation of bone cell activity and bone remodeling. These studies showed that endogenous cannabinoid ligands, cannabinoid receptors, and the enzymes responsible for ligand synthesis and breakdown all play important roles in bone mass and in the regulation of bone disease. These findings suggest that the endocannabinoid pathway could be of value as a therapeutic target for the prevention and treatment of bone diseases. Here, we review the role of the skeletal endocannabinoid system in the regulation of bone remodeling in health and disease.
Collapse
Affiliation(s)
- Aymen I. Idris
- Bone and Cancer Group, Edinburgh Cancer Research Centre, The University of EdinburghEdinburgh, UK
| | - Stuart H. Ralston
- Rheumatic Disease Unit, The Centre for Molecular Medicine, The University of EdinburghEdinburgh, UK
| |
Collapse
|
127
|
Xie H, Sun X, Piao Y, Jegga AG, Handwerger S, Ko MSH, Dey SK. Silencing or amplification of endocannabinoid signaling in blastocysts via CB1 compromises trophoblast cell migration. J Biol Chem 2012; 287:32288-97. [PMID: 22833670 DOI: 10.1074/jbc.m112.381145] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Endocannabinoid signaling plays key roles in multiple female reproductive events. Previous studies have shown an interesting phenomenon, that mice with either silenced or elevated endocannabinoid signaling via Cnr1 encoding CB(1) show similar defects in several pregnancy events, including preimplantation embryo development. To unravel the downstream signaling of this phenomenon, microarray studies were performed using RNAs collected from WT, Cnr1(-/-), and Faah(-/-) mouse blastocysts on day 4 of pregnancy. The results indicate that about 100 genes show unidirectional changes under either silenced or elevated anandamide signaling via CB(1). Functional enrichment analysis of the microarray data predicted that multiple biological functions and pathways are affected under aberrant endocannabinoid signaling. Among them, genes enriched in cell migration are suppressed in Cnr1(-/-) or Faah(-/-) blastocysts. Cell migration assays validated the prediction of functional enrichment analysis that cell mobility and spreading of either Cnr1(-/-) or Faah(-/-) trophoblast stem cells are compromised. Either silenced or elevated endocannabinoid signaling via CB(1) causes similar changes in downstream targets in preimplantation embryos and trophoblast stem cells. This study provides evidence that a tightly regulated endocannabinoid signaling is critical to normal preimplantation embryo development and migration of trophoblast stem cells.
Collapse
Affiliation(s)
- Huirong Xie
- Division of Reproductive Sciences, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | | | | | | | | | | | | |
Collapse
|
128
|
Uyama T, Ikematsu N, Inoue M, Shinohara N, Jin XH, Tsuboi K, Tonai T, Tokumura A, Ueda N. Generation of N-acylphosphatidylethanolamine by members of the phospholipase A/acyltransferase (PLA/AT) family. J Biol Chem 2012; 287:31905-19. [PMID: 22825852 DOI: 10.1074/jbc.m112.368712] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Bioactive N-acylethanolamines (NAEs), including N-palmitoylethanolamine, N-oleoylethanolamine, and N-arachidonoylethanolamine (anandamide), are formed from membrane glycerophospholipids in animal tissues. The pathway is initiated by N-acylation of phosphatidylethanolamine to form N-acylphosphatidylethanolamine (NAPE). Despite the physiological importance of this reaction, the enzyme responsible, N-acyltransferase, remains molecularly uncharacterized. We recently demonstrated that all five members of the HRAS-like suppressor tumor family are phospholipid-metabolizing enzymes with N-acyltransferase activity and are renamed HRASLS1-5 as phospholipase A/acyltransferase (PLA/AT)-1-5. However, it was poorly understood whether these proteins were involved in the formation of NAPE in living cells. In the present studies, we first show that COS-7 cells transiently expressing recombinant PLA/AT-1, -2, -4, or -5, and HEK293 cells stably expressing PLA/AT-2 generated significant amounts of [(14)C]NAPE and [(14)C]NAE when cells were metabolically labeled with [(14)C]ethanolamine. Second, as analyzed by liquid chromatography-tandem mass spectrometry, the stable expression of PLA/AT-2 in cells remarkably increased endogenous levels of NAPEs and NAEs with various N-acyl species. Third, when NAPE-hydrolyzing phospholipase D was additionally expressed in PLA/AT-2-expressing cells, accumulating NAPE was efficiently converted to NAE. We also found that PLA/AT-2 was partly responsible for NAPE formation in HeLa cells that endogenously express PLA/AT-2. These results suggest that PLA/AT family proteins may produce NAPEs serving as precursors of bioactive NAEs in vivo.
Collapse
Affiliation(s)
- Toru Uyama
- Department of Biochemistry, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
129
|
New insights on endocannabinoid transmission in psychomotor disorders. Prog Neuropsychopharmacol Biol Psychiatry 2012; 38:51-8. [PMID: 22521335 PMCID: PMC3389227 DOI: 10.1016/j.pnpbp.2012.04.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 03/26/2012] [Accepted: 04/01/2012] [Indexed: 11/21/2022]
Abstract
The endocannabinoids are lipid signaling molecules that bind to cannabinoid CB(1) and CB(2) receptors and other metabotropic and ionotropic receptors. Anandamide and 2-arachidonoyl glycerol, the two best-characterized examples, are released on demand in a stimulus-dependent manner by cleavage of membrane phospholipid precursors. Together with their receptors and metabolic enzymes, the endocannabinoids play a key role in modulating neurotransmission and synaptic plasticity in the basal ganglia and other brain areas involved in the control of motor functions and motivational aspects of behavior. This mini-review provides an update on the contribution of the endocannabinoid system to the regulation of psychomotor behaviors and its possible involvement in the pathophysiology of Parkinson's disease and schizophrenia.
Collapse
|
130
|
Tai T, Tsuboi K, Uyama T, Masuda K, Cravatt BF, Houchi H, Ueda N. Endogenous molecules stimulating N-acylethanolamine-hydrolyzing acid amidase (NAAA). ACS Chem Neurosci 2012; 3:379-85. [PMID: 22860206 DOI: 10.1021/cn300007s] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 01/26/2012] [Accepted: 01/27/2012] [Indexed: 01/03/2023] Open
Abstract
Fatty acid amide hydrolase (FAAH) plays the central role in the degradation of bioactive N-acylethanolamines such as the endocannabinoid arachidonoylethanolamide (anandamide) in brain and peripheral tissues. A lysosomal enzyme referred to as N-acylethanolamine-hydrolyzing acid amidase (NAAA) catalyzes the same reaction with preference to palmitoylethanolamide, an endogenous analgesic and neuroprotective substance, and is therefore expected as a potential target of therapeutic drugs. In the in vitro assays thus far performed, the maximal activity of NAAA was achieved in the presence of both nonionic detergent (Triton X-100 or Nonidet P-40) and the SH reagent dithiothreitol. However, endogenous molecules that might substitute for these synthetic compounds remain poorly understood. Here, we examined stimulatory effects of endogenous phospholipids and thiol compounds on recombinant NAAA. Among different phospholipids tested, choline- or ethanolamine-containing phospholipids showed potent effects, and 1 mM phosphatidylcholine increased NAAA activity by 6.6-fold. Concerning endogenous thiol compounds, dihydrolipoic acid at 0.1-1 mM was the most active, causing 8.5-9.0-fold stimulation. These results suggest that endogenous phospholipids and dihydrolipoic acid may contribute in keeping NAAA active in lysosomes. Even in the presence of phosphatidylcholine and dihydrolipoic acid, however, the preferential hydrolysis of palmitoylethanolamide was unaltered. We also investigated a possible compensatory induction of NAAA mRNA in brain and other tissues of FAAH-deficient mice. However, NAAA expression levels in all the tissues examined were not significantly altered from those in wild-type mice.
Collapse
Affiliation(s)
- Tatsuya Tai
- Department
of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa
761-0793, Japan
- Department
of Pharmacy, Kagawa University Hospital, Miki, Kagawa 761-0793,
Japan
| | - Kazuhito Tsuboi
- Department
of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa
761-0793, Japan
| | - Toru Uyama
- Department
of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa
761-0793, Japan
| | - Kim Masuda
- Department of Chemical
Physiology, The Scripps Research Institute, La Jolla, California
92037, United States
| | - Benjamin F. Cravatt
- Department of Chemical
Physiology, The Scripps Research Institute, La Jolla, California
92037, United States
| | - Hitoshi Houchi
- Department
of Pharmacy, Kagawa University Hospital, Miki, Kagawa 761-0793,
Japan
| | - Natsuo Ueda
- Department
of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa
761-0793, Japan
| |
Collapse
|
131
|
Sun X, Dey SK. Endocannabinoid signaling in female reproduction. ACS Chem Neurosci 2012; 3:349-55. [PMID: 22860202 DOI: 10.1021/cn300014e] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 03/03/2012] [Indexed: 11/29/2022] Open
Abstract
Marijuana is a preparation of the flower, as well as the leaves and seeds, of the plant Cannabis sativa. Marijuana has been used for medicinal and recreational purposes for thousands of years due to its psychoactive effects including euphoria, sedation, and analgesia. Although it has been suspected for decades that marijuana has adverse effects on female fertility, the underlying molecular mechanism was not clear. The discovery of cannabinoid receptors and endocannabinoids has advanced studies if cannabinoid signaling. Since then, numerous studies have been published on cannabinoid signaling in female reproductive events, including preimplantation embryo development, oviductal embryo transport, embryo implantation, placentation, and parturition. This review focuses on various aspects of endocannabinoid signaling in female fertility.
Collapse
Affiliation(s)
- Xiaofei Sun
- Division of Reproductive Sciences, Perinatal Institute,
Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati,
Ohio 45229, United States
| | - Sudhansu K. Dey
- Division of Reproductive Sciences, Perinatal Institute,
Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati,
Ohio 45229, United States
| |
Collapse
|
132
|
Battista N, Meccariello R, Cobellis G, Fasano S, Di Tommaso M, Pirazzi V, Konje JC, Pierantoni R, Maccarrone M. The role of endocannabinoids in gonadal function and fertility along the evolutionary axis. Mol Cell Endocrinol 2012; 355:1-14. [PMID: 22305972 DOI: 10.1016/j.mce.2012.01.014] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 12/05/2011] [Accepted: 01/16/2012] [Indexed: 02/07/2023]
Abstract
Endocannabinoids are natural lipids able to bind to cannabinoid and vanilloid receptors. Their biological actions at the central and peripheral level are under the tight control of the proteins responsible for their synthesis, transport and degradation. In the last few years, several reports have pointed out these lipid mediators as critical signals, together with sex hormones and cytokines, in various aspects of animal and human reproduction. The identification of anandamide (AEA) and 2-arachidonoylglycerol (2-AG) in reproductive cells and tissues of invertebrates, vertebrates and mammals highlights the key role played by these endogenous compounds along the evolutionary axis. Here, we review the main actions of endocannabinoids on female and male reproductive events, and discuss the interplay between them, steroid hormones and cytokines in regulating fertility. In addition, we discuss the involvement of endocannabinoid signalling in ensuring a correct chromatin remodeling, and hence a good DNA quality, in sperm cells.
Collapse
Affiliation(s)
- Natalia Battista
- Dipartimento di Scienze Biomediche Comparate, Università di Teramo, 64100 Teramo, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Hegyi Z, Holló K, Kis G, Mackie K, Antal M. Differential distribution of diacylglycerol lipase-alpha and N-acylphosphatidylethanolamine-specific phospholipase d immunoreactivity in the superficial spinal dorsal horn of rats. Glia 2012; 60:1316-29. [PMID: 22573306 DOI: 10.1002/glia.22351] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 04/20/2012] [Indexed: 11/05/2022]
Abstract
It is generally accepted that the endocannabinoid system plays important roles in spinal pain processing. Although it is documented that cannabinoid-1 receptors are strongly expressed in the superficial spinal dorsal horn, the cellular distribution of enzymes that can synthesize endocannabinoid ligands is less well studied. Thus, using immunocytochemical methods at the light and electron microscopic levels, we investigated the distribution of diacylglycerol lipase-alpha (DGL-α) and N-acylphosphatidylethanolamine-specific phospholipase D (NAPE-PLD), enzymes synthesizing the endocannabinoid ligands, 2-arachidonoylglycerol (2-AG) and anandamide, respectively. Positive labeling was revealed only occasionally in axon terminals, but dendrites displayed strong immunoreactivity for both enzymes. However, the dendritic localization of DGL-α and NAPE-PLD showed a remarkably different distribution. DGL-α immunolabeling in dentrites was always revealed at membrane compartments in close vicinity to synapses. In contrast to this, dendritic NAPE-PLD labeling was never observed in association with synaptic contacts. In addition to dendrites, a substantial proportion of astrocytic (immunoreactive for GFAP) and microglial (immunoreactive for CD11b) profiles were also immunolabeled for both DGL-α and NAPE-PLD. Glial processes immunostained for DGL-α were frequently found near to synapses in which the postsynaptic dendrite was immunoreactive for DGL-α, whereas NAPE-PLD immunoreactivity on glial profiles at the vicinity of synapses was only occasionally observed. Our results suggest that both neurons and glial cells can synthesize and release 2-AG and anandamide in the superficial spinal dorsal horn. The 2-AG can primarily be released by postsynaptic dendrites and glial processes adjacent to synapses, whereas anandamide can predominantly be released from nonsynaptic dendritic and glial compartments.
Collapse
Affiliation(s)
- Zoltán Hegyi
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | | | | | | | | |
Collapse
|
134
|
Gyombolai P, Pap D, Turu G, Catt KJ, Bagdy G, Hunyady L. Regulation of endocannabinoid release by G proteins: a paracrine mechanism of G protein-coupled receptor action. Mol Cell Endocrinol 2012; 353:29-36. [PMID: 22075205 PMCID: PMC4169275 DOI: 10.1016/j.mce.2011.10.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 10/12/2011] [Accepted: 10/12/2011] [Indexed: 02/06/2023]
Abstract
In the past years, the relationship between the endocannabinoid system (ECS) and other hormonal and neuromodulatory systems has been intensively studied. G protein-coupled receptors (GPCRs) can stimulate endocannabinoid (eCB) production via activation of G(q/11) proteins and, in some cases, G(s) proteins. In this review, we summarize the pathways through which GPCR activation can trigger eCB release, as well as the best known examples of this process throughout the body tissues. Angiotensin II-induced activation of AT(1) receptors, similar to other G(q/11)-coupled receptors, can lead to the formation of 2-arachidonoylglycerol (2-AG), an important eCB. The importance of eCB formation in angiotensin II action is supported by the finding that the hypertensive effect of angiotensin II, injected directly into the hypothalamic paraventricular nucleus of anaesthetized rats, can be abolished by AM251, an inverse agonist of CB(1) cannabinoid receptors (CB(1)Rs). We conclude that activation of the ECS should be considered as a general consequence of the stimulation of G(q/11)-coupled receptors, and may mediate some of the physiological effects of GPCRs.
Collapse
Affiliation(s)
- Pál Gyombolai
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Dorottya Pap
- Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - Gábor Turu
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Kevin J. Catt
- Section on Hormonal Regulation, Program in Developmental Endocrinology and Genetics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - György Bagdy
- Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
- Group of Neuropsychopharmacology and Neurochemistry, Semmelweis University and Hungarian Academy of Sciences, Budapest, Hungary
| | - László Hunyady
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Laboratory of Neurobiochemistry and Molecular Physiology, Semmelweis University and Hungarian Academy of Sciences, Budapest, Hungary
- Corresponding author at: Department of Physiology, Faculty of Medicine, Semmelweis University, H-1444 Budapest, P.O. Box 259, Hungary. Tel: +36 1 266 9180; fax: +36 1 266 6504
| |
Collapse
|
135
|
Abstract
Despite being regarded as a hippie science for decades, cannabinoid research has finally found its well-deserved position in mainstream neuroscience. A series of groundbreaking discoveries revealed that endocannabinoid molecules are as widespread and important as conventional neurotransmitters such as glutamate or GABA, yet they act in profoundly unconventional ways. We aim to illustrate how uncovering the molecular, anatomical, and physiological characteristics of endocannabinoid signaling has revealed new mechanistic insights into several fundamental phenomena in synaptic physiology. First, we summarize unexpected advances in the molecular complexity of biogenesis and inactivation of the two endocannabinoids, anandamide and 2-arachidonoylglycerol. Then, we show how these new metabolic routes are integrated into well-known intracellular signaling pathways. These endocannabinoid-producing signalosomes operate in phasic and tonic modes, thereby differentially governing homeostatic, short-term, and long-term synaptic plasticity throughout the brain. Finally, we discuss how cell type- and synapse-specific refinement of endocannabinoid signaling may explain the characteristic behavioral effects of cannabinoids.
Collapse
Affiliation(s)
- István Katona
- Institute of Experimental Medicine, Hungarian Academy of Sciences, 1051 Budapest, Hungary.
| | | |
Collapse
|
136
|
A genome wide shRNA screen identifies α/β hydrolase domain containing 4 (ABHD4) as a novel regulator of anoikis resistance. Apoptosis 2012; 17:666-78. [DOI: 10.1007/s10495-012-0723-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
137
|
Iwamura A, Fukami T, Higuchi R, Nakajima M, Yokoi T. Human α/β hydrolase domain containing 10 (ABHD10) is responsible enzyme for deglucuronidation of mycophenolic acid acyl-glucuronide in liver. J Biol Chem 2012; 287:9240-9. [PMID: 22294686 PMCID: PMC3308823 DOI: 10.1074/jbc.m111.271288] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 01/19/2012] [Indexed: 11/06/2022] Open
Abstract
Mycophenolic acid (MPA), the active metabolite of the immunosuppressant mycophenolate mofetil (MMF), is primarily metabolized by glucuronidation to a phenolic glucuronide (MPAG) and an acyl glucuronide (AcMPAG). It is known that AcMPAG, which may be an immunotoxic metabolite, is deglucuronidated in human liver. However, it has been reported that recombinant β-glucuronidase does not catalyze this reaction. AcMPAG deglucuronidation activity was detected in both human liver cytosol (HLC) and microsomes (HLM). In this study, the enzyme responsible for AcMPAG deglucuronidation was identified by purification from HLC with column chromatographic purification steps. The purified enzyme was identified as α/β hydrolase domain containing 10 (ABHD10) by amino acid sequence analysis. Recombinant ABHD10 expressed in Sf9 cells efficiently deglucuronidated AcMPAG with a K(m) value of 100.7 ± 10.2 μM, which was similar to those in HLM, HLC, and human liver homogenates (HLH). Immunoblot analysis revealed ABHD10 protein expression in both HLC and HLM. The AcMPAG deglucuronidation by recombinant ABHD10, HLC, and HLH were potently inhibited by AgNO(3), CdCl(2), CuCl(2), PMSF, bis-p-nitrophenylphosphate, and DTNB. The CL(int) value of AcMPAG formation from MPA, which was catalyzed by human UGT2B7, in HLH was increased by 1.8-fold in the presence of PMSF. Thus, human ABHD10 would affect the formation of AcMPAG, the immunotoxic metabolite.
Collapse
Affiliation(s)
- Atsushi Iwamura
- From the Department of Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Tatsuki Fukami
- From the Department of Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Ryota Higuchi
- From the Department of Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Miki Nakajima
- From the Department of Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Tsuyoshi Yokoi
- From the Department of Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
138
|
The biology that underpins the therapeutic potential of cannabis-based medicines for the control of spasticity in multiple sclerosis. Mult Scler Relat Disord 2012; 1:64-75. [PMID: 25876933 DOI: 10.1016/j.msard.2011.11.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 11/17/2011] [Indexed: 12/14/2022]
Abstract
Cannabis-based medicines have recently been approved for the treatment of pain and spasticity in multiple sclerosis (MS). This supports the original perceptions of people with MS, who were using illegal street cannabis for symptom control and pre-clinical testing in animal models of MS. This activity is supported both by the biology of the disease and the biology of the cannabis plant and the endocannabinoid system. MS results from disease that impairs neurotransmission and this is controlled by cannabinoid receptors and endogenous cannabinoid ligands. This can limit spasticity and may also influence the processes that drive the accumulation of progressive disability.
Collapse
|
139
|
Howlett AC, Reggio PH, Childers SR, Hampson RE, Ulloa NM, Deutsch DG. Endocannabinoid tone versus constitutive activity of cannabinoid receptors. Br J Pharmacol 2012; 163:1329-43. [PMID: 21545414 DOI: 10.1111/j.1476-5381.2011.01364.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
This review evaluates the cellular mechanisms of constitutive activity of the cannabinoid (CB) receptors, its reversal by inverse agonists, and discusses the pitfalls and problems in the interpretation of the research data. The notion is presented that endogenously produced anandamide (AEA) and 2-arachidonoylglycerol (2-AG) serve as autocrine or paracrine stimulators of the CB receptors, giving the appearance of constitutive activity. It is proposed that one cannot interpret inverse agonist studies without inference to the receptors' environment vis-à-vis the endocannabinoid agonists which themselves are highly lipophilic compounds with a preference for membranes. The endocannabinoid tone is governed by a combination of synthetic pathways and inactivation involving transport and degradation. The synthesis and degradation of 2-AG is well characterized, and 2-AG has been strongly implicated in retrograde signalling in neurons. Data implicating endocannabinoids in paracrine regulation have been described. Endocannabinoid ligands can traverse the cell's interior and potentially be stored on fatty acid-binding proteins (FABPs). Molecular modelling predicts that the endocannabinoids derived from membrane phospholipids can laterally diffuse to enter the CB receptor from the lipid bilayer. Considering that endocannabinoid signalling to CB receptors is a much more likely scenario than is receptor activation in the absence of agonist ligands, researchers are advised to refrain from assuming constitutive activity except for experimental models known to be devoid of endocannabinoid ligands.
Collapse
Affiliation(s)
- Allyn C Howlett
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA.
| | | | | | | | | | | |
Collapse
|
140
|
Coulon D, Faure L, Salmon M, Wattelet V, Bessoule JJ. Occurrence, biosynthesis and functions of N-acylphosphatidylethanolamines (NAPE): Not just precursors of N-acylethanolamines (NAE). Biochimie 2012; 94:75-85. [DOI: 10.1016/j.biochi.2011.04.023] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 04/29/2011] [Indexed: 01/19/2023]
|
141
|
Abstract
Cannabis sativa has been used since antiquity to treat many ailments, including eating disorders. The primary psychoactive constituent of this plant, Δ(9) -tetrahydrocannabinol (THC) is an FDA approved medication to treat nausea and emesis caused by cancer chemotherapeutic agents as well as to stimulate appetite in AIDS patients suffering from cachexia. The effects of THC are mediated through the endocannabinoid system (ECS), which promotes a positive energy balance through stimulation of appetite as well as shifting homeostatic mechanisms toward energy storage. Here we discuss the physiological function of the ECS in energy balance and the therapeutic potential of targeting this system.
Collapse
Affiliation(s)
| | - Aron H. Lichtman
- Correspondence to: Aron H. Lichtman, PhD, Department of Pharmacology and Toxicology, Virginia Commonwealth University, PO Box 980613, Richmond, VA 23298.
| |
Collapse
|
142
|
Hill MN, Tasker JG. Endocannabinoid signaling, glucocorticoid-mediated negative feedback, and regulation of the hypothalamic-pituitary-adrenal axis. Neuroscience 2011; 204:5-16. [PMID: 22214537 DOI: 10.1016/j.neuroscience.2011.12.030] [Citation(s) in RCA: 235] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 12/13/2011] [Accepted: 12/15/2011] [Indexed: 12/20/2022]
Abstract
The hypothalamic-pituitary-adrenal (HPA) axis regulates the outflow of glucocorticoid hormones under basal conditions and in response to stress. Within the last decade, a large body of evidence has mounted indicating that the endocannabinoid system is involved in the central regulation of the stress response; however, the specific role endocannabinoid signaling plays in phases of HPA axis regulation, and the neural sites of action mediating this regulation, were not mapped out until recently. This review aims to collapse the current state of knowledge regarding the role of the endocannabinoid system in the regulation of the HPA axis to put together a working model of how and where endocannabinoids act within the brain to regulate outflow of the HPA axis. Specifically, we discuss the role of the endocannabinoid system in the regulation of the HPA axis under basal conditions, activation in response to acute stress, and glucocorticoid-mediated negative feedback. Interestingly, there appears to be some anatomical specificity to the role of the endocannabinoid system in each phase of HPA axis regulation, as well as distinct roles of both anandamide and 2-arachidonoylglycerol in these phases. Overall, the current level of information indicates that endocannabinoid signaling acts to suppress HPA axis activity through concerted actions within the prefrontal cortex, amygdala, and hypothalamus.
Collapse
Affiliation(s)
- M N Hill
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB T2N 4N1, Canada.
| | | |
Collapse
|
143
|
Serrano A, Rivera P, Pavon FJ, Decara J, Suárez J, Rodriguez de Fonseca F, Parsons LH. Differential effects of single versus repeated alcohol withdrawal on the expression of endocannabinoid system-related genes in the rat amygdala. Alcohol Clin Exp Res 2011; 36:984-94. [PMID: 22141465 DOI: 10.1111/j.1530-0277.2011.01686.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Endogenous cannabinoids such as anandamide and 2-arachidonoylglycerol (2-AG) exert important regulatory influences on neuronal signaling, participate in short- and long-term forms of neuroplasticity, and modulate stress responses and affective behavior in part through the modulation of neurotransmission in the amygdala. Alcohol consumption alters brain endocannabinoid levels, and alcohol dependence is associated with dysregulated amygdalar function, stress responsivity, and affective control. METHODS The consequence of long-term alcohol consumption on the expression of genes related to endocannabinoid signaling was investigated using quantitative RT-PCR analyses of amygdala tissue. Two groups of ethanol (EtOH)-exposed rats were generated by maintenance on an EtOH liquid diet (10%): the first group received continuous access to EtOH for 15 days, whereas the second group was given intermittent access to the EtOH diet (5 d/wk for 3 weeks). Control subjects were maintained on an isocaloric EtOH-free liquid diet. To provide an initial profile of acute withdrawal, amygdala tissue was harvested following either 6 or 24 hours of EtOH withdrawal. RESULTS Acute EtOH withdrawal was associated with significant changes in mRNA expression for various components of the endogenous cannabinoid system in the amygdala. Specifically, reductions in mRNA expression for the primary clearance routes for anandamide and 2-AG (fatty acid amide hydrolase [FAAH] and monoacylglycerol lipase [MAGL], respectively) were evident, as were reductions in mRNA expression for CB(1) , CB(2) , and GPR55 receptors. Although similar alterations in FAAH mRNA were evident following either continuous or intermittent EtOH exposure, alterations in MAGL and cannabinoid receptor-related mRNA (e.g., CB(1) , CB(2) , GPR55) were more pronounced following intermittent exposure. In general, greater withdrawal-associated deficits in mRNA expression were evident following 24 versus 6 hours of withdrawal. No significant changes in mRNA expression for enzymes involved in 2-AG biosynthesis (e.g., diacylglicerol lipase-α/β) were found in any condition. CONCLUSIONS These findings suggest that EtOH dependence and withdrawal are associated with dysregulated endocannabinoid signaling in the amygdala. These alterations may contribute to withdrawal-related dysregulation of amygdalar neurotransmission.
Collapse
Affiliation(s)
- Antonia Serrano
- Laboratorio de Medicina Regenerativa, Hospital Regional Universitario Carlos Haya, Fundacion IMABIS, 29010 Malaga, Spain
| | | | | | | | | | | | | |
Collapse
|
144
|
Tsuboi K, Okamoto Y, Ikematsu N, Inoue M, Shimizu Y, Uyama T, Wang J, Deutsch DG, Burns MP, Ulloa NM, Tokumura A, Ueda N. Enzymatic formation of N-acylethanolamines from N-acylethanolamine plasmalogen through N-acylphosphatidylethanolamine-hydrolyzing phospholipase D-dependent and -independent pathways. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1811:565-77. [DOI: 10.1016/j.bbalip.2011.07.009] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 06/28/2011] [Accepted: 07/14/2011] [Indexed: 10/18/2022]
|
145
|
Wellner N, Tsuboi K, Madsen AN, Holst B, Diep TA, Nakao M, Tokumura A, Burns MP, Deutsch DG, Ueda N, Hansen HS. Studies on the anorectic effect of N-acylphosphatidylethanolamine and phosphatidylethanolamine in mice. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1811:508-12. [DOI: 10.1016/j.bbalip.2011.06.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 05/28/2011] [Accepted: 06/16/2011] [Indexed: 12/13/2022]
|
146
|
Putative role of endocannabinoid signaling in the etiology of depression and actions of antidepressants. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:1575-85. [PMID: 21111017 DOI: 10.1016/j.pnpbp.2010.11.021] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 11/15/2010] [Accepted: 11/15/2010] [Indexed: 11/23/2022]
Abstract
In the last few years, there have been several advances in the determination of the role of the endocannabinoid system in the etiology of depression and the functional actions of antidepressant drugs. Specifically, a deficiency in endocannabinoid signaling is sufficient to produce a "depressive-like" phenotype at the preclinical level (including changes in rewarding, emotional and cognitive behavior and biological changes such as increased HPA axis activity, impaired stress adaptation, reduced neurogenesis and altered serotonin negative feedback), and capable of inducing symptoms of depression in humans at a clinical level. In line with these findings, clinical populations diagnosed with depression are found to have reduced levels of circulating endocannabinoids and preclinical models of depression reveal a deficit in central endocannabinoid signaling. Moreover, facilitation of endocannabinoid signaling is sufficient to produce all of the behavioral and biochemical effects of conventional antidepressant treatments. Further, many forms of antidepressant treatments significantly alter endocannabinoid signaling, and in some of these cases this recruitment of endocannabinoid signaling is involved in the neuroadaptive effects of these treatments. Ultimately, these data present a compelling picture of the putative role of the endocannabinoid system in the processes subserving both the development and treatment of depression.
Collapse
|
147
|
Serrano A, Parsons LH. Endocannabinoid influence in drug reinforcement, dependence and addiction-related behaviors. Pharmacol Ther 2011; 132:215-41. [PMID: 21798285 DOI: 10.1016/j.pharmthera.2011.06.005] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 06/17/2011] [Indexed: 12/12/2022]
Abstract
The endogenous cannabinoid system is an important regulatory system involved in physiological homeostasis. Endocannabinoid signaling is known to modulate neural development, immune function, metabolism, synaptic plasticity and emotional state. Accumulating evidence also implicates brain endocannabinoid signaling in the etiology of drug addiction which is characterized by compulsive drug seeking, loss of control in limiting drug intake, emergence of a negative emotional state in the absence of drug use and a persistent vulnerability toward relapse to drug use during protracted abstinence. In this review we discuss the effects of drug intake on brain endocannabinoid signaling, evidence implicating the endocannabinoid system in the motivation for drug consumption, and drug-induced alterations in endocannabinoid function that may contribute to various aspects of addiction including dysregulated synaptic plasticity, increased stress responsivity, negative affective states, drug craving and relapse to drug taking. Current knowledge of genetic variants in endocannabinoid signaling associated with addiction is also discussed.
Collapse
Affiliation(s)
- Antonia Serrano
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
148
|
Wu CS, Jew CP, Lu HC. Lasting impacts of prenatal cannabis exposure and the role of endogenous cannabinoids in the developing brain. FUTURE NEUROLOGY 2011; 6:459-480. [PMID: 22229018 PMCID: PMC3252200 DOI: 10.2217/fnl.11.27] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cannabis is the most commonly used illicit substance among pregnant women. Human epidemiological and animal studies have found that prenatal cannabis exposure influences brain development and can have long-lasting impacts on cognitive functions. Exploration of the therapeutic potential of cannabis-based medicines and synthetic cannabinoid compounds has given us much insight into the physiological roles of endogenous ligands (endocannabinoids) and their receptors. In this article, we examine human longitudinal cohort studies that document the long-term influence of prenatal exposure to cannabis, followed by an overview of the molecular composition of the endocannabinoid system and the temporal and spatial changes in their expression during brain development. How endocannabinoid signaling modulates fundamental developmental processes such as cell proliferation, neurogenesis, migration and axonal pathfinding are also summarized.
Collapse
Affiliation(s)
- Chia-Shan Wu
- The Cain Foundation Laboratories, Jan & Dan Duncan Neurological Research Institute at Texas Children's Hospital, 1250 Moursund St Suite 1225, Houston, TX 77030, USA
| | - Christopher P Jew
- The Cain Foundation Laboratories, Jan & Dan Duncan Neurological Research Institute at Texas Children's Hospital, 1250 Moursund St Suite 1225, Houston, TX 77030, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hui-Chen Lu
- The Cain Foundation Laboratories, Jan & Dan Duncan Neurological Research Institute at Texas Children's Hospital, 1250 Moursund St Suite 1225, Houston, TX 77030, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
149
|
Long JZ, Cravatt BF. The metabolic serine hydrolases and their functions in mammalian physiology and disease. Chem Rev 2011; 111:6022-63. [PMID: 21696217 DOI: 10.1021/cr200075y] [Citation(s) in RCA: 314] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jonathan Z Long
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.
| | | |
Collapse
|
150
|
Sidhpura N, Parsons LH. Endocannabinoid-mediated synaptic plasticity and addiction-related behavior. Neuropharmacology 2011; 61:1070-87. [PMID: 21669214 DOI: 10.1016/j.neuropharm.2011.05.034] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 05/26/2011] [Accepted: 05/29/2011] [Indexed: 01/20/2023]
Abstract
Endogenous cannabinoids (eCBs) are retrograde messengers that provide feedback inhibition of both excitatory and inhibitory transmission in brain through the activation of presynaptic CB₁ receptors. Substantial evidence indicates that eCBs mediate various forms of short- and long-term plasticity in brain regions involved in the etiology of addiction. The present review provides an overview of the mechanisms through which eCBs mediate various forms of synaptic plasticity and discusses evidence that eCB-mediated plasticity is disrupted following exposure to a variety of abused substances that differ substantially in pharmacodynamic mechanism including alcohol, psychostimulants and cannabinoids. The possible involvement of dysregulated eCB signaling in maladaptive behaviors that evolve over long-term drug exposure is also discussed, with a particular focus on altered behavioral responses to drug exposure, deficient extinction of drug-related memories, increased drug craving and relapse, heightened stress sensitivity and persistent affective disruption (anxiety and depression).
Collapse
Affiliation(s)
- Nimish Sidhpura
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|