101
|
Sonnenberg A, Rojas AM, de Pereda JM. The structure of a tandem pair of spectrin repeats of plectin reveals a modular organization of the plakin domain. J Mol Biol 2007; 368:1379-91. [PMID: 17397861 DOI: 10.1016/j.jmb.2007.02.090] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2006] [Revised: 02/25/2007] [Accepted: 02/27/2007] [Indexed: 11/25/2022]
Abstract
Plectin is a large and versatile cytoskeletal linker and member of the plakin protein family. Plakins share a conserved region called the plakin domain located near their N terminus. We have determined the crystal structure of an N-terminal fragment of the plakin domain of plectin to 2.05 A resolution. This region is adjacent to the actin-binding domain and is required for efficient binding to the integrin alpha6beta4 in hemidesmosomes. The structure is formed by two spectrin repeats connected by an alpha-helix that spans these two repeats. While the first repeat is very similar to other known structures, the second repeat is structurally different with a hydrophobic core, narrower than that in canonical spectrin repeats. Sequence analysis of the plakin domain revealed the presence of up to nine consecutive spectrin repeats organized in an array of tandem modules, and a Src-homology 3 domain inserted in the central spectrin repeat. The structure of the plakin domain is reminiscent of the modular organization of members of the spectrin family. The architecture of the plakin domain suggests that it forms an elongated and flexible structure, and provides a novel molecular explanation for the contribution of plectin and other plakins to the elasticity and stability of tissues subjected to mechanical stress, such as the skin and striated muscle.
Collapse
Affiliation(s)
- Arnoud Sonnenberg
- Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | |
Collapse
|
102
|
Young KG, De Repentigny Y, Kothary R. Re: "A possible cellular mechanism of neuronal loss in the dorsal root ganglia of dystonia musculorum (dt) mice". J Neuropathol Exp Neurol 2007; 66:248-9; author reply 249. [PMID: 17356386 DOI: 10.1097/01.jnen.0000248560.60703.45] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
103
|
Goryunov D, Adebola A, Jefferson JJ, Leung CL, Messer A, Liem RKH. Molecular characterization of the genetic lesion in Dystonia musculorum (dt-Alb) mice. Brain Res 2007; 1140:179-87. [PMID: 16725123 DOI: 10.1016/j.brainres.2006.04.068] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2006] [Revised: 04/17/2006] [Accepted: 04/18/2006] [Indexed: 10/24/2022]
Abstract
Dystonia musculorum (dt) is an inherited autosomal recessive neuropathy in mice. Homozygous animals display primarily sensory neurodegeneration resulting in a severe loss of coordination. Several dt strains exist, including spontaneous mutants dt-Alb (Albany), dt-J (Jackson Labs), and dt-Frk (Frankel), and a transgene insertion mutant, Tg4. They contain mutations in the gene encoding Bullous Pemphigoid Antigen 1 (BPAG1), or dystonin. BPAG1 is a member of the plakin family of cytolinker proteins. BPAG1 is alternatively spliced to produce several isoforms, including the major brain-specific isoform, BPAG1a. The neurological phenotype observed in dt-Alb mice is thought to result from the absence of BPAG1a protein in the developing nervous system. The goal of this study was to determine the precise molecular nature of the dt-Alb mutation and examine residual BPAG1 expression in homozygous dt-Alb mice. A combination of molecular biological strategies revealed that the dt-Alb lesion is a deletion-insertion eliminating a large part of the coding region of BPAG1a. The molecular lesion in the dt-Alb BPAG1 allele is expected to render it completely non-functional. Although transcripts corresponding to BPAG1 segments still remaining in homozygous dt-Alb mice could be detected by RT-PCR, there was no positive signal for BPAG1 in the brain of dt-Alb mice by Northern blotting. Western blotting with polyclonal anti-BPAG1 antibodies confirmed the absence of functional BPAG1 protein (full-length or truncated) in the dt-Alb brain. Our identification of the 5' junction of the dt-Alb insertion makes it possible to genotype dt-Alb animals by standard PCR.
Collapse
Affiliation(s)
- Dmitry Goryunov
- Department of Pathology, Columbia University College of Physicians and Surgeons, P&S 15-421, New York, NY 10032, USA
| | | | | | | | | | | |
Collapse
|
104
|
Di Zenzo G, Marazza G, Borradori L. Bullous pemphigoid: physiopathology, clinical features and management. ADVANCES IN DERMATOLOGY 2007; 23:257-88. [PMID: 18159905 DOI: 10.1016/j.yadr.2007.07.013] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
There has been a considerable progress in the understanding of the physiopathology of BP during the past 2 decades. The insights into the humoral and cellular immune response against BP180 and BP230 have increased significantly. Nevertheless, the factors underlying the initiation of the disease leading to a disruption of self-tolerance remain unclear. Clinically, the disease shows protean presentations, and diagnostic delay is common. A practical, relevant, and unresolved question is how to identify patients suffering from BP at an early stage of the disease, when direct immunofluorescence microscopy findings still may be negative. The characterization of markers allowing the differentiation of BP from other pruritic eruptions occurring in the elderly population would be extremely helpful in daily practice. Finally, despite the knowledge that potent topical steroids are efficient in controlling the disease, management of BP sometimes remains difficult and requires systemic therapies. It is hoped that a better knowledge of the regulation of the autoimmune response in BP also will facilitate the design of novel immunomodulatory therapeutic approaches devoid of the severe side effects of current immunosuppressive treatments.
Collapse
Affiliation(s)
- Giovanni Di Zenzo
- Molecular and Cell Biology Laboratory, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Via Monti di Creta 104, 00167 Rome, Italy.
| | | | | |
Collapse
|
105
|
Jefferson JJ, Ciatto C, Shapiro L, Liem RKH. Structural analysis of the plakin domain of bullous pemphigoid antigen1 (BPAG1) suggests that plakins are members of the spectrin superfamily. J Mol Biol 2006; 366:244-57. [PMID: 17161423 PMCID: PMC1850962 DOI: 10.1016/j.jmb.2006.11.036] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Revised: 11/03/2006] [Indexed: 11/21/2022]
Abstract
Bullous pemphigoid antigen 1 (BPAG1) is a member of the plakin family of proteins. The plakins are multi-domain proteins that have been shown to interact with microtubules, actin filaments and intermediate filaments, as well as proteins found in cellular junctions. These interactions are mediated through different domains on the plakins. The interactions between plakins and components of specialized cell junctions such as desmosomes and hemidesmosomes are mediated through the so-called plakin domain, which is a common feature of the plakins. We report the crystal structure of a stable fragment from BPAG1, residues 226-448, defined by limited proteolysis of the whole plakin domain. The structure, determined by single-wavelength anomalous diffraction phasing from a selenomethionine-substituted crystal at 3.0 A resolution, reveals a tandem pair of triple helical bundles closely related to spectrin repeats. Based on this structure and analysis of sequence conservation, we propose that the architecture of plakin domains is defined by two pairs of spectrin repeats interrupted by a putative Src-Homology 3 (SH3) domain.
Collapse
Affiliation(s)
- Julius J Jefferson
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | | | |
Collapse
|
106
|
Jefferson JJ, Leung CL, Liem RKH. Dissecting the sequence specific functions of alternative N-terminal isoforms of mouse bullous pemphigoid antigen 1. Exp Cell Res 2006; 312:2712-25. [PMID: 16797530 DOI: 10.1016/j.yexcr.2006.04.025] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2005] [Revised: 04/05/2006] [Accepted: 04/06/2006] [Indexed: 11/21/2022]
Abstract
Bullous pemphigoid antigen 1 (BPAG1) is a member of the plakin family of proteins that is involved in cross-linking the cytoskeletal elements and attaching them to cell junctions. BPAG1 null mice develop severe degeneration of sensory neurons that was attributed in part due to the absence of a splice variant called BPAG1a that harbors an actin-binding domain at the N-terminus. Additional alternative splicing also results in BPAG1a isoforms with different first exons, leading to three additional types of BPAG1a called isoforms 1, 2 and 3 (or BPAG1a1, BPAG1a2, and BPAG1a3). These unique N-terminal extensions of the BPAG1a isoforms are of variable length. In this study, we characterized these N-terminal isoforms and evaluated the influence of these unique N-terminal sequences to the actin-binding properties. The unique N-terminal region of isoform 1 is very short and was not expected to affect the property of the ABD that followed it. In contrast, transfection studies and mutagenesis analyses signified that the N-terminal sequences of isoform 2 had the ability to bundle actin filaments and the N-terminal region that contained isoform 3 showed cortical localization. Isoforms 1, 2 and 3 also displayed differential tissue expression profiles. Taken together, these data suggested that the unique N-terminal regions of these isoforms have different roles that may be tailored to meet tissue specific functions.
Collapse
Affiliation(s)
- Julius J Jefferson
- Department of Pathology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | |
Collapse
|
107
|
Tseng KW, Lu KS, Chien CL. A Possible Cellular Mechanism of Neuronal Loss in the Dorsal Root Ganglia of Dystonia musculorum (dt) Mice. J Neuropathol Exp Neurol 2006; 65:336-47. [PMID: 16691115 DOI: 10.1097/01.jnen.0000218448.39944.f1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Dystonia musculorum (dt) is a mutant mouse with hereditary sensory neuropathy. A defective bullous pemphigoid antigen 1 (BPAG1) gene is responsible for this mutation. In the present study, we examined the distribution of neuronal intermediate filament proteins in the central and peripheral processes of the dorsal root ganglia (DRG) in adult dt mice using different approaches. We found that not only BPAG1, but also alpha-internexin was absent in the DRG neurons in adult dt mice. To study the relationship between the absence of alpha-internexin and the progressive neuronal loss in the DRG of dt mice, we further cultured DRG neurons from embryonic dt mutants. Immunocytochemical assay of cultured DRG neurons from dt embryos revealed that alpha-internexin was aggregated in the proximal region of axons and juxtanuclear region of the cytoplasma, yet the other intermediate filament proteins were widely distributed in all processes. The active caspase-3 activity was observed in the dt neuron with massive accumulation of alpha-internexin. From our observations, we suggest that the interaction between BPAG1 and alpha-internexin may be one of the key factors involved in neuronal degeneration, and abnormal accumulation of alpha-internexin may impair the axonal transport and subsequently turns on the cascade of neuronal apoptosis in dt mice.
Collapse
Affiliation(s)
- Kuang-Wen Tseng
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | |
Collapse
|
108
|
Zupanc MM, Wellbrock UM, Zupanc GKH. Proteome analysis identifies novel protein candidates involved in regeneration of the cerebellum of teleost fish. Proteomics 2006; 6:677-96. [PMID: 16372261 DOI: 10.1002/pmic.200500167] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In contrast to mammals, adult teleost fish exhibit an enormous potential to regenerate neuronal tissue after injuries to the CNS. By combining a well-defined cerebellar lesion paradigm with differential proteome analysis at a post-lesion survival time of 3 days, we screened for protein candidates involved in repair of the fish brain. Out of nearly 900 protein spots detected on 2-D gels, spot intensity was significantly increased at least twofold in 30 spots and decreased to at least half the intensity of control tissue in 23 spots. The proteins associated with 24 of the spots were identified by PMF and MS/MS fragmentation. The cellular localization and the spatiotemporal patterns of two of these proteins, beta-actin and beta-tubulin, were further characterized through immunohistochemistry. Comparison of the observed changes in protein abundance with the previously characterized events underlying regeneration of the cerebellum suggests that the proteins identified are especially involved in cellular proliferation and survival, as well as axonal sprouting.
Collapse
Affiliation(s)
- Marianne M Zupanc
- School of Engineering and Science, International University Bremen, Bremen, Germany
| | | | | |
Collapse
|
109
|
Wilhelmsen K, Litjens SHM, Kuikman I, Tshimbalanga N, Janssen H, van den Bout I, Raymond K, Sonnenberg A. Nesprin-3, a novel outer nuclear membrane protein, associates with the cytoskeletal linker protein plectin. ACTA ACUST UNITED AC 2006; 171:799-810. [PMID: 16330710 PMCID: PMC2171291 DOI: 10.1083/jcb.200506083] [Citation(s) in RCA: 378] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Despite their importance in cell biology, the mechanisms that maintain the nucleus in its proper position in the cell are not well understood. This is primarily the result of an incomplete knowledge of the proteins in the outer nuclear membrane (ONM) that are able to associate with the different cytoskeletal systems. Two related ONM proteins, nuclear envelope spectrin repeat (nesprin)–1 and –2, are known to make direct connections with the actin cytoskeleton through their NH2-terminal actin-binding domain (ABD). We have now isolated a third member of the nesprin family that lacks an ABD and instead binds to the plakin family member plectin, which can associate with the intermediate filament (IF) system. Overexpression of nesprin-3 results in a dramatic recruitment of plectin to the nuclear perimeter, which is where these two molecules are colocalized with both keratin-6 and -14. Importantly, plectin binds to the integrin α6β4 at the cell surface and to nesprin-3 at the ONM in keratinocytes, suggesting that there is a continuous connection between the nucleus and the extracellular matrix through the IF cytoskeleton.
Collapse
Affiliation(s)
- Kevin Wilhelmsen
- Division of Cell Biology, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
110
|
Pool M, Rippstein P, McBride H, Kothary R. Trafficking of macromolecules and organelles in culturedDystonia musculorumsensory neurons is normal. J Comp Neurol 2006; 494:549-58. [PMID: 16374799 DOI: 10.1002/cne.20815] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Dystonia musculorum (dt) mice suffer from a recessive neuropathy characterized by the progressive loss of sensory axons. The gene responsible for this disorder, dystonin/Bpag1, encodes several alternatively spliced forms of a cytoskeletal linker protein. Neural isoforms of dystonin/Bpag1 are predicted to link actin filaments to microtubules. Consistent with this, previous observations have demonstrated that the cytoskeleton within sensory neurites of dt mice is perturbed. Also, recent results have indicated that a neural isoform of dystonin/Bpag1 interacts with the dynein motor complex. Because microtubule organization and dynein motor function are essential for trafficking, we hypothesized that this process would be perturbed in dt sensory neurons. Here, we demonstrate that cultured primary dorsal root ganglion (DRG) neurons express dystonin/Bpag1 and that loss of this expression causes an increase in apoptosis and a decrease in average neurite length. In contrast, detailed examination showed that the organization of microtubules is indistinguishable in DRG neuronal cultures from neonatal dt and wild-type mice. In addition, the steady-state distribution of several molecules and organelles is unchanged in these cultures. Furthermore, the speeds of mitochondrial movement in both anterograde and retrograde directions were comparable in dt and wild-type sensory neurons cultured from neonatal mice. Thus, dystonin/Bpag1 is not essential for microtubule network assembly since the microtubule network is intact in short-term cultures of sensory neurons from neonatal mice lacking this protein. In addition, dystonin/Bpag1 is not an essential part of the dynein motor complex for mitochondrial transport since mitochondrial trafficking is normal in cultured sensory neurons from dt mice.
Collapse
Affiliation(s)
- Madeline Pool
- Molecular Medicine Program, Ottawa Health Research Institute, Ottawa, Ontario K1H 8L6, Canada
| | | | | | | |
Collapse
|
111
|
Pool M, Boudreau Larivière C, Bernier G, Young KG, Kothary R. Genetic alterations at the Bpag1 locus in dt mice and their impact on transcript expression. Mamm Genome 2005; 16:909-17. [PMID: 16341670 DOI: 10.1007/s00335-005-0073-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2005] [Accepted: 08/23/2005] [Indexed: 10/25/2022]
Abstract
The dystonin/Bpag1 gene encodes several tissue-specific alternatively spliced transcripts that encode cytoskeletal binding proteins. These various isoforms are necessary for maintaining the structural integrity of epithelial, neural, and muscle tissues. Mutations in the dystonin/Bpag1 gene cause dystonia musculorum (dt), a hereditary neuropathy of the mouse characterized by the progressive degeneration of sensory neurons. Several dt mutant alleles exist, most of which have arisen through spontaneous mutations. In this article we demonstrate that the dt locus encodes 107 exons spanning 400 kb. The high frequency of occurrence of spontaneous dt mutants may therefore be a result of the large size of the gene. Analysis of genomic DNA from several dt spontaneous mutant alleles, dt(24J), dt(27J), dt(Alb), and dt(Frk), shows a deletion of the central portion of the gene in dt(Alb) but no large rearrangements or deletions in the other alleles. These other alleles likely have small deletions or rearrangements, or point mutations. To determine the impact of the known and unknown mutations on transcript levels, RT-PCR was performed to detect various coding regions of the dystonin/Bpag1 transcripts in brain and muscle from multiple dt alleles: dt(Tg4), dt(Alb), dt(24J), dt(27J), and dt(Frk). With the exception of dt(Frk), reduced transcript levels were observed for all alleles tested. Such alterations likely result in reduced or absent dystonin/Bpag1 protein levels. Thus, distinct genetic defects lead to a common outcome of reduced transcript expression causing the same phenotype in multiple dt alleles.
Collapse
Affiliation(s)
- Madeline Pool
- Molecular Medicine Program, Ottawa Health Research Institute, Ottawa, Ontario, K1H 8L6, Canada
| | | | | | | | | |
Collapse
|
112
|
Steinboeck F, Kristufek D. Identification of the cytolinker protein plectin in neuronal cells - expression of a rodless isoform in neurons of the rat superior cervical ganglion. Cell Mol Neurobiol 2005; 25:1151-69. [PMID: 16392043 PMCID: PMC11529549 DOI: 10.1007/s10571-005-8503-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2004] [Accepted: 08/12/2004] [Indexed: 10/25/2022]
Abstract
Plectin, a large (> 500 kDa) dumbbell-shaped cytolinker protein plays an important role in the organization of the cytoskeletal network and the maintenance of cell integrity in a wide variety of tissues and cell types. Earlier experiments revealed the presence of plectin in the central nervous system, whereas the expression in the peripheral nervous system remained unclear. Our results obtained with reverse transcriptase-PCR (RT-PCR) provide evidence that plectin is expressed in structures of the rat peripheral nervous system. In addition to well-characterized plectin transcripts we were able to reveal novel splicing variants affecting the region coding for the central rod domain. Previous studies report a high, but tissue-specific variability of the N-terminal domain of plectin due to alternatively spliced first coding exons and the optionally spliced small exons 2 alpha and 3 alpha. We demonstrate for the first time, using single-cell RT-PCR and immunocytochemistry, that plectin is expressed in neurons of the rat superior cervical ganglion (SCG). Plectin transcripts of single SCG neurons, starting with exon 1c as the first coding exon, contain the optionally spliced exon 2 alpha but lack exon 31. These data therefore suggest that plectin is expressed in rat SCG neurons as a rodless isoform with the molecular mass of 390 kDa.
Collapse
Affiliation(s)
- Ferdinand Steinboeck
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria.
| | | |
Collapse
|
113
|
Lu L, Neff F, Alvarez-Fischer D, Henze C, Xie Y, Oertel WH, Schlegel J, Hartmann A. Gene expression profiling of Lewy body-bearing neurons in Parkinson's disease. Exp Neurol 2005; 195:27-39. [PMID: 15944136 DOI: 10.1016/j.expneurol.2005.04.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2004] [Revised: 04/02/2005] [Accepted: 04/20/2005] [Indexed: 12/21/2022]
Abstract
Lewy bodies (LB) are a pathological hallmark of Parkinson's disease (PD). Whether LBs are neuroprotective, cytotoxic, or an age-related epiphenomenon is still debated. In the present study, the genetic fingerprints of mesencephalic dopaminergic (DA) neurons containing LBs versus mesencephalic DA neurons not containing LBs were compared in five PD patients. Total RNA from single neurons of both neuronal subpopulations was obtained by immuno-laser capture microdissection. Subsequently, RNA arbitrarily primed PCR was employed to generate expression profiles from the extracted RNA. Differentially displayed polymorphic fragments were dissected from silver-stained polyacrylamide gels. Most of these expressed sequence tags (ESTs) were homologous to known human sequences (56/64, 87.5%). Based on the potential significance of individual ESTs in neurodegenerative disorders, 5 ESTs of interest were selected for further quantitative expression analysis by real-time quantitative reverse transcription PCR (rtq RT-PCR). DA neurons without LBs preferentially expressed molecules beneficial for cell survival, whereas genes preferentially expressed in DA neurons containing LBs may support a cytotoxic role of LBs. Thus, we favor the view that LB-positive DA neurons are sicker than their LB-negative counterparts, and that inhibition of LB formation may indeed represent a therapeutic strategy in PD.
Collapse
Affiliation(s)
- Lixia Lu
- Department of Neurology, Philipps-Universität Marburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
114
|
Laffitte E, Burkhard PR, Fontao L, Jaunin F, Saurat JH, Chofflon M, Borradori L. Bullous pemphigoid antigen 1 isoforms: potential new target autoantigens in multiple sclerosis? Br J Dermatol 2005; 152:537-40. [PMID: 15787824 DOI: 10.1111/j.1365-2133.2004.06338.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND The simultaneous occurrence of bullous pemphigoid (BP) and multiple sclerosis (MS), two autoimmune diseases involving the skin and the central nervous system (CNS), respectively, has been described. OBJECTIVES As the BPAG1 gene encodes the epithelial isoform of BP antigen 1 (BPAG1-e), a major autoantigen of BP, as well as additional variants expressed in the neurones of the CNS and peripheral nervous system and in Schwann cells, we tested the hypothesis that products of the BPAG1 gene act as shared autoantigens in both BP and MS. METHODS The reactivity of cerebrospinal fluid (CSF) obtained from 18 patients with MS, 10 patients with other inflammatory CNS diseases and 20 normal controls was assayed by immunoblotting against two recombinant fragments of BPAG1-e encompassing regions that are also found in the neuronal variants BPAG1-n and BPAG1-a. RESULTS The recombinant protein glutathione-S-transferase (GST)-BPAG1-e1-887 was recognized by five of 18 (27%) CSF samples obtained from patients with MS, two of 10 (20%) samples from patients with other inflammatory neurological diseases and five of 20 (25%) samples from normal controls. Furthermore, two of 18 (11%) CSF samples from patients with MS bound to GST-BPAG1-e1880-2649, whereas none of the samples obtained from patients with other inflammatory neurological diseases or from control subjects showed reactivity. CONCLUSIONS These results raise the possibility that a subset of patients with MS develops an autoantibody response to the neuronal variants of BPAG1. These findings potentially open the avenue of neuronal BPAG1 variants being novel targets of autoantibodies in neurological diseases.
Collapse
Affiliation(s)
- E Laffitte
- Department of Dermatology, University Hospital, Geneva, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
115
|
Claudepierre T, Manglapus MK, Marengi N, Radner S, Champliaud MF, Tasanen K, Bruckner-Tuderman L, Hunter DD, Brunken WJ. Collagen XVII and BPAG1 expression in the retina: evidence for an anchoring complex in the central nervous system. J Comp Neurol 2005; 487:190-203. [PMID: 15880472 PMCID: PMC2925832 DOI: 10.1002/cne.20549] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The ectoderm gives rise not only to the skin but also to the entire CNS. This common embryonic lineage suggests that some molecular isoforms might serve analogous functions in both tissues. Indeed, not only are laminins important components of dermal adhesion mechanisms, but they also regulate some aspects of synaptic development in both the CNS and the PNS. In the skin, laminins are part of a hemidesmosome complex essential for basal keratinocyte adhesion that includes collagen XVII (BP180) and BPAG1 (dystonin/BP230). Here, we show that CNS neurons also express collagen XVII and BPAG1 and that these molecules are expressed in the adult and developing retina. In the retina, isoforms of collagen XVII and BPAG1 are colocalized with laminins at photoreceptor synapses and around photoreceptor outer segments; both molecules are expressed by rods, whereas cones express collagen XVII but not BPAG1. Moreover, biochemical data demonstrate that collagen XVII complexes with retinal laminins. We propose that collagen XVII and BPAG1 isoforms may help to anchor elements of the rod photoreceptor cytomatrix to the extracellular matrix.
Collapse
Affiliation(s)
- Thomas Claudepierre
- Department of Anatomy and Cellular Biology, Tufts University School of Medicine, and the Tufts Center for Vision Research, Boston, Massachusetts 02111
| | - Mary K. Manglapus
- Department of Anatomy and Cellular Biology, Tufts University School of Medicine, and the Tufts Center for Vision Research, Boston, Massachusetts 02111
| | - Nathan Marengi
- Department of Anatomy and Cellular Biology, Tufts University School of Medicine, and the Tufts Center for Vision Research, Boston, Massachusetts 02111
| | - Stephanie Radner
- Department of Neuroscience, Tufts University School of Medicine, and the Tufts Center for Vision Research, Boston, Massachusetts 02111
| | - Marie-France Champliaud
- Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, Massachusetts 02129
| | - Kaisa Tasanen
- Department of Dermatology, University of Oulu, FIN-90230 Oulu, Finland
| | | | - Dale D. Hunter
- Department of Anatomy and Cellular Biology, Tufts University School of Medicine, and the Tufts Center for Vision Research, Boston, Massachusetts 02111
- Department of Neuroscience, Tufts University School of Medicine, and the Tufts Center for Vision Research, Boston, Massachusetts 02111
- Department of Ophthalmology, Tufts University School of Medicine; the Tufts Center for Vision Research, Boston, Massachusetts 02111
| | - William J. Brunken
- Department of Anatomy and Cellular Biology, Tufts University School of Medicine, and the Tufts Center for Vision Research, Boston, Massachusetts 02111
- Department of Neuroscience, Tufts University School of Medicine, and the Tufts Center for Vision Research, Boston, Massachusetts 02111
- Department of Ophthalmology, Tufts University School of Medicine; the Tufts Center for Vision Research, Boston, Massachusetts 02111
| |
Collapse
|
116
|
Scully C, Bagan JV, Black M, Carrozzo M, Eisen D, Escudier M, Farthing P, Kuffer R, Lo Muzio L, Mignogna M, Porter SR. Number 1Epithelial biology. Oral Dis 2005; 11:58-71. [PMID: 15752078 DOI: 10.1111/j.1601-0825.2004.01078.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The oral mucous membrane has features similar to skin but also differs in several ways. This paper reviews the aspects of epithelial biology necessary for an understanding of the vesiculoerosive disorders.
Collapse
Affiliation(s)
- C Scully
- Eastman Dental Institute, University College London, 256 Grays Inn Road, London WC1X, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Goryunov D, Leung CL, Liem RKH. Studying cytolinker proteins. Methods Cell Biol 2005; 78:787-816. [PMID: 15646639 DOI: 10.1016/s0091-679x(04)78027-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Affiliation(s)
- Dmitry Goryunov
- Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | |
Collapse
|
118
|
Green KJ, Böhringer M, Gocken T, Jones JCR. Intermediate filament associated proteins. ADVANCES IN PROTEIN CHEMISTRY 2005; 70:143-202. [PMID: 15837516 DOI: 10.1016/s0065-3233(05)70006-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Intermediate filament associated proteins (IFAPs) coordinate interactions between intermediate filaments (IFs) and other cytoskeletal elements and organelles, including membrane-associated junctions such as desmosomes and hemidesmosomes in epithelial cells, costameres in striated muscle, and intercalated discs in cardiac muscle. IFAPs thus serve as critical connecting links in the IF scaffolding that organizes the cytoplasm and confers mechanical stability to cells and tissues. However, in recent years it has become apparent that IFAPs are not limited to structural crosslinkers and bundlers but also include chaperones, enzymes, adapters, and receptors. IF networks can therefore be considered scaffolding upon which associated proteins are organized and regulated to control metabolic activities and maintain cell homeostasis.
Collapse
Affiliation(s)
- Kathleen J Green
- Departments of Pathology and Dermatology and R.H. Lurie Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | |
Collapse
|
119
|
Kalinin AE, Kalinin AE, Aho M, Uitto J, Aho S. Breaking the Connection: Caspase 6 Disconnects Intermediate Filament-Binding Domain of Periplakin from its Actin-Binding N-Terminal Region. J Invest Dermatol 2005; 124:46-55. [PMID: 15654952 DOI: 10.1111/j.0022-202x.2004.23507.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Periplakin is a member of the plakin family of cytolinkers that connect cytoskeletal networks to each other as well as to the cell junctional complexes. Here, we demonstrate a direct molecular interaction between actin and periplakin. Furthermore, the oligomerization state of periplakin was shown to determine specificity of its binding to intermediate filaments (IF) in vitro. Both the filament association and the cell membrane localization of periplakin were confirmed in the cells overexpressing human periplakin. Double labeling of the N- and C-terminally tagged periplakin revealed unexpected lack of co-localization of periplakin ends in a confluent culture, and separation of the periplakin ends was even more pronounced in apoptotic cells. Western analysis revealed that after induction of apoptosis, periplakin becomes cleaved close to its C-terminal tail. Only the distinct cleavage products, but not the full-length periplakin, were present in the cells detached from the solid support during the apoptotic process. We show that caspase 6 cleaves periplakin at an unconventional recognition site, amino acid sequence TVAD. Thus, the separation of periplakin ends disconnects the actin-binding head-rod domain from the IF-binding C-terminal domain. We show that specific cleavage products co-exist with the full-length periplakin in cells, suggesting physiological consequences due to their altered binding specificities.
Collapse
Affiliation(s)
- Andrey E Kalinin
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | |
Collapse
|
120
|
Yung CK, Halperin VL, Tomaselli GF, Winslow RL. Gene expression profiles in end-stage human idiopathic dilated cardiomyopathy: altered expression of apoptotic and cytoskeletal genes. Genomics 2004; 83:281-97. [PMID: 14706457 DOI: 10.1016/j.ygeno.2003.08.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dilated cardiomyopathy is now the leading cause of cardiovascular morbidity and mortality. While the molecular basis of this disease remains uncertain, evidence is emerging that gene expression profiles of left ventricular myocardium isolated from failing versus nonfailing patients differ dramatically. In this study, we use high-density oligonucleotide microarrays with approximately 22000 probes to characterize differences in the expression profiles further. To facilitate interpretation of experimental data, we evaluate algorithms for normalization of hybridization data and for computation of gene expression indices using a control spike-in data set. We then use these methods to identify statistically significant changes in the expression levels of genes not previously implicated in the molecular phenotype of heart failure. These regulated genes take part in diverse cellular processes, including transcription, apoptosis, sarcomeric and cytoskeletal function, remodeling of the extracellular matrix, membrane transport, and metabolism.
Collapse
Affiliation(s)
- Christina K Yung
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine & Whiting School of Engineering, Baltimore, MD 21218, USA.
| | | | | | | |
Collapse
|
121
|
Jefferson JJ, Leung CL, Liem RKH. Plakins: goliaths that link cell junctions and the cytoskeleton. Nat Rev Mol Cell Biol 2004; 5:542-53. [PMID: 15232572 DOI: 10.1038/nrm1425] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Julius J Jefferson
- Department of Pathology, Columbia University College of Physicians & Surgeons, 630 West 168th Street, New York 10032, USA
| | | | | |
Collapse
|
122
|
Koster J, Borradori L, Sonnenberg A. Hemidesmosomes: molecular organization and their importance for cell adhesion and disease. Handb Exp Pharmacol 2004:243-280. [PMID: 20455096 DOI: 10.1007/978-3-540-68170-0_9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
In the skin, basal epithelial cells constantly divide to renew the epidermis. The newly formed epithelial cells then differentiate in a process called keratinization, ultimately leading to the death of these cells and a pile-up of cell material containing vast amounts of keratins. The basal keratinocytes in skin are attached to their underlying basement membrane via specialized adhesion complexes termed hemidesmosomes (HDs). These complexes ascertain stable adhesion of the epidermis to the dermis, and mutations in components of these complexes often result in tissue fragility and blistering of the skin. In this review, we will describe the various hemidesmosomal proteins in detail as well as, briefly, the protein families to which they belong. Specifically, we will report the protein-protein interactions involved in the assembly of hemidesmosomes and their molecular organization. Some signaling pathways involving primarily the alpha6beta4 integrin will be discussed, since they appear to profoundly modulate the assembly and function of hemidesmosomes. Furthermore, the importance of these hemidesmosomal components for the maintenance of tissue homeostasis and their involvement in various clinical disorders will be emphasized. Finally, we will present a model for the assembly of HDs, based on our present knowledge.
Collapse
Affiliation(s)
- J Koster
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | | | | |
Collapse
|
123
|
Koster J, van Wilpe S, Kuikman I, Litjens SHM, Sonnenberg A. Role of binding of plectin to the integrin beta4 subunit in the assembly of hemidesmosomes. Mol Biol Cell 2003; 15:1211-23. [PMID: 14668477 PMCID: PMC363110 DOI: 10.1091/mbc.e03-09-0697] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We have previously shown that plectin is recruited into hemidesmosomes through association of its actin-binding domain (ABD) with the first pair of fibronectin type III (FNIII) repeats and a small part of the connecting segment (residues 1328-1355) of the integrin beta4 subunit. Here, we show that two proline residues (P1330 and P1333) in this region of the connecting segment are critical for supporting beta4-mediated recruitment of plectin. Additional binding sites for the plakin domain of plectin on beta4 were identified in biochemical and yeast two-hybrid assays. These sites are located at the end of the connecting segment (residues 1383-1436) and in the region containing the fourth FNIII repeat and the C-tail (residues 1570-1752). However, in cells, these additional binding sites cannot induce the assembly of hemidesmosomes without the interaction of the plectin-ABD with beta4. Because the additional plectin binding sites overlap with sequences that mediate an intramolecular association of the beta4 cytoplasmic domain, we propose that they are not accessible for binding and need to become exposed as the result of the binding of the plectin-ABD to beta4. Furthermore, these additional binding sites might be necessary to position the beta4 cytoplasmic domain for an optimal interaction with other hemidesmosomal components, thereby increasing the efficiency of hemidesmosome assembly.
Collapse
Affiliation(s)
- J Koster
- The Netherlands Cancer Institute, Division of Cell Biology, 1066 CX Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
124
|
Young KG, Pool M, Kothary R. Bpag1 localization to actin filaments and to the nucleus is regulated by its N-terminus. J Cell Sci 2003; 116:4543-55. [PMID: 14576348 DOI: 10.1242/jcs.00764] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Plakins are a family of giant cytoskeleton binding proteins. One member of this group is bullous pemphigoid antigen 1 (Bpag1)/dystonin, which has neuronal and muscle isoforms that consist of actin-binding and microtubule-binding domains at either end separated by a plakin domain and several spectrin repeats. The better-characterized epithelial isoform has only the plakin domain in common with the neuronal and muscle isoforms. Here, we have analyzed the localization of muscle/neuronal (Bpag1a/b) isoforms and the epithelial (Bpag1e) isoform within C2C12 myoblast cells. Although an antibody specific to Bpag1a/b isoform 2 detected protein co-aligning actin stress fibers, this same antibody and two Bpag1e antibodies predominantly detected protein in the nuclei. A Bpag1a/b isoform 2 N-terminal fusion protein containing the plakin domain also localized to actin stress fibers and to nuclei. Within the plakin domain, we characterized a functional nuclear localization signal, which was responsible for localization of the fusion protein to the nucleus. Bpag1a/b isoform 1 N-terminal fusion proteins differed in their interaction with the actin cytoskeleton and with their ability to localize to the nucleus, suggesting that Bpag1 isoforms with different N-termini have differing roles. These results show the importance of N-terminal domains in dictating the localization and function of Bpag1 isoforms. We provide the first indication that Bpag1 is not strictly a cytoplasmic/membrane protein but that it can also localize to the nucleus.
Collapse
Affiliation(s)
- Kevin G Young
- Ottawa Health Research Institute, 501 Smyth Road, Ottawa, Ontario, Canada K1H 8L6, and Center for Neuromuscular Disease, and Departments of Cellular and Molecular Medicine, and Medicine, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
| | | | | |
Collapse
|
125
|
Röper K, Brown NH. Maintaining epithelial integrity: a function for gigantic spectraplakin isoforms in adherens junctions. ACTA ACUST UNITED AC 2003; 162:1305-15. [PMID: 14517208 PMCID: PMC2173965 DOI: 10.1083/jcb.200307089] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The Short stop (Shot/Kakapo) spectraplakin is a giant cytoskeletal protein, which exists in multiple isoforms with characteristics of both spectrin and plakin superfamilies. Previously characterized Shot isoforms are similar to spectrin and dystrophin, with an actin-binding domain followed by spectrin repeats. We describe a new large exon within the shot locus, which encodes a series of plakin repeats similar to the COOH terminus of plakins such as plectin and BPAG1e. We find that the plakin repeats are inserted between the actin-binding domain and spectrin repeats, generating isoforms as large as 8,846 residues, which could span 400 nm. These novel isoforms localized to adherens junctions of embryonic and follicular epithelia. Loss of Shot within the follicle epithelium leads to double layering and accumulation of actin and ZO-1 in between, and a reduction of Armadillo and Discs lost within, mutant cells, indicative of a disruption of adherens junction integrity. Thus, we identify a new role for spectraplakins in mediating cell–cell adhesion.
Collapse
Affiliation(s)
- Katja Röper
- Wellcome Trust/Cancer Research UK Institute, University of Cambridge, Cambridge, CB2 1QR UK
| | | |
Collapse
|
126
|
Liu JJ, Ding J, Kowal AS, Nardine T, Allen E, Delcroix JD, Wu C, Mobley W, Fuchs E, Yang Y. BPAG1n4 is essential for retrograde axonal transport in sensory neurons. J Cell Biol 2003; 163:223-9. [PMID: 14581450 PMCID: PMC2173519 DOI: 10.1083/jcb.200306075] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2003] [Accepted: 09/15/2003] [Indexed: 11/22/2022] Open
Abstract
Disruption of the BPAG1 (bullous pemphigoid antigen 1) gene results in progressive deterioration in motor function and devastating sensory neurodegeneration in the null mice. We have previously demonstrated that BPAG1n1 and BPAG1n3 play important roles in organizing cytoskeletal networks in vivo. Here, we characterize functions of a novel BPAG1 neuronal isoform, BPAG1n4. Results obtained from yeast two-hybrid screening, blot overlay binding assays, and coimmunoprecipitations demonstrate that BPAG1n4 interacts directly with dynactin p150Glued through its unique ezrin/radixin/moesin domain. Studies using double immunofluorescent microscopy and ultrastructural analysis reveal physiological colocalization of BPAG1n4 with dynactin/dynein. Disruption of the interaction between BPAG1n4 and dynactin results in severe defects in retrograde axonal transport. We conclude that BPAG1n4 plays an essential role in retrograde axonal transport in sensory neurons. These findings might advance our understanding of pathogenesis of axonal degeneration and neuronal death.
Collapse
Affiliation(s)
- Jia-Jia Liu
- Department of Neurology, Stanford University School of Medicine, Stanford, CA 94305-5489, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Litjens SHM, Koster J, Kuikman I, van Wilpe S, de Pereda JM, Sonnenberg A. Specificity of binding of the plectin actin-binding domain to beta4 integrin. Mol Biol Cell 2003; 14:4039-50. [PMID: 14517317 PMCID: PMC206998 DOI: 10.1091/mbc.e03-05-0268] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2003] [Revised: 06/24/2003] [Accepted: 06/24/2003] [Indexed: 11/11/2022] Open
Abstract
Plectin is a major component of the cytoskeleton and links the intermediate filament system to hemidesmosomes by binding to the integrin beta4 subunit. Previously, a binding site for beta4 was mapped on the actin-binding domain (ABD) of plectin and binding of beta4 and F-actin to plectin was shown to be mutually exclusive. Here we show that only the ABDs of plectin and dystonin bind to beta4, whereas those of other actin-binding proteins do not. Mutations of the ABD of plectin-1C show that Q131, R138, and N149 are critical for tight binding of the ABD to beta4. These residues form a small cavity, occupied by a well-ordered water molecule in the crystal structure. The beta4 binding pocket partly overlaps with the actin-binding sequence 2 (ABS2), previously shown to be essential for actin binding. Therefore, steric interference may render binding of beta4 and F-actin to plectin mutually exclusive. Finally, we provide evidence indicating that the residues preceding the ABD in plectin-1A and -1C, although unable to mediate binding to beta4 themselves, modulate the binding activity of the ABD for beta4. These studies demonstrate the unique property of the plectin-ABD to bind to both F-actin and beta4, and explain why several other ABD-containing proteins that are expressed in basal keratinocytes are not recruited into hemidesmosomes.
Collapse
Affiliation(s)
- Sandy H M Litjens
- The Netherlands Cancer Institute, Division of Cell Biology, 1066 CX Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
128
|
De Repentigny Y, Deschênes-Furry J, Jasmin BJ, Kothary R. Impaired fast axonal transport in neurons of the sciatic nerves from dystonia musculorum mice. J Neurochem 2003; 86:564-71. [PMID: 12859670 DOI: 10.1046/j.1471-4159.2003.01861.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Dystonia musculorum (dt) mice suffer from a severe sensory neuropathy caused by mutations in the gene encoding the cytoskeletal cross-linker protein dystonin/bullous pemphigoid antigen 1 (Bpag1). Loss of function of dystonin/Bpag1 within neurons leads to a loss in the maintenance of cytoskeletal organization and to the development of focal axonal swellings prior to death of the neuron. In the present study, we demonstrate that neurons within the sciatic nerves of dt27J mice undergo axonal degeneration as has been previously reported for the dorsal roots. Furthermore, ultrastructural studies reveal a perturbed organization of the neurofilament and microtubule networks within the axons of sciatic nerves in dt27J mice. The disrupted cytoskeletal organization suggested that axonal transport is affected in dt mice. To address this, we assessed fast axonal transport by measuring the rate of accumulation of acetylcholinesterase (AChE) proximal and distal to a surgically introduced ligature on the sciatic nerves of normal and dt27J mice. Our findings demonstrate that axonal transport of AChE in both orthograde and retrograde directions is markedly affected, and allow us to conclude that axonal transport defects do exist in the sciatic nerves of dt27J mice.
Collapse
|
129
|
Fontao L, Favre B, Riou S, Geerts D, Jaunin F, Saurat JH, Green KJ, Sonnenberg A, Borradori L. Interaction of the bullous pemphigoid antigen 1 (BP230) and desmoplakin with intermediate filaments is mediated by distinct sequences within their COOH terminus. Mol Biol Cell 2003; 14:1978-92. [PMID: 12802069 PMCID: PMC165091 DOI: 10.1091/mbc.e02-08-0548] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2002] [Revised: 12/11/2002] [Accepted: 12/27/2002] [Indexed: 01/06/2023] Open
Abstract
The bullous pemphigoid antigen 1 (BP230) and desmoplakin (DP) are members of the plakin protein family of cytolinkers. Despite their homology, their COOH termini selectively bind distinct intermediate filaments (IFs). We studied sequences within their COOH termini required for their interaction with the epidermal keratins K5/K14, the simple epithelial keratins K8/K18, and type III IF vimentin by yeast three-hybrid, cell transfection, and overlay assays. The results indicate that BP230 interacts with K5/K14 but not with K8/K18 or vimentin via a region encompassing both the B and C subdomains and the COOH extremity, including a COOH-terminal eight-amino-acid stretch. In contrast, the C subdomain with the COOH-terminal extremity of DP interacts with K5/K14 and K8/K18, and its linker region is able to associate with K8/K18 and vimentin. Furthermore, the potential of DP to interact with IF proteins in yeast seems to be regulated by phosphorylation of Ser 2849 within its COOH terminus. Strikingly, BP230 and DP interacted with cytokeratins only when both type I and type II keratins were present. The head and tail domains of K5/K14 keratins were dispensable for their interaction with BP230 or DP. On the basis of our findings, we postulate that (1) the binding specificity of plakins for various IF proteins depends on their linker region between the highly homologous B and C subdomains and their COOH extremity and (2) the association of DP and BP230 with both epidermal and simple keratins is critically affected by the tertiary structure induced by heterodimerization and involves recognition sites located primarily in the rod domain of these keratins.
Collapse
Affiliation(s)
- Lionel Fontao
- Department of Dermatology, University Hospital, Geneva, Switzerland CH-1211
| | | | | | | | | | | | | | | | | |
Collapse
|
130
|
McMillan JR, Akiyama M, Shimizu H. Epidermal basement membrane zone components: ultrastructural distribution and molecular interactions. J Dermatol Sci 2003; 31:169-77. [PMID: 12727020 DOI: 10.1016/s0923-1811(03)00045-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The epidermal basement membrane zone (BMZ) comprises a multiprotein complex that aids the attachment of epidermal keratinocytes to the underlying dermis. In the last 5 years, our understanding of epidermal BMZ morphology, structure and function has dramatically improved. A complex network of molecular interactions has recently been identified that strengthen dermal-epidermal adhesion. Special attention will be paid to the recently identified network of interactions between BMZ components, including alpha6beta4 integrin interactions, the extracellular hook domain of collagen XVII and the looping structure of collagen VII molecules. We summarize some of the recent advances in the understanding of the biology and interactions of BMZ components from an ultrastructural and molecular perspective.
Collapse
Affiliation(s)
- James R McMillan
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Kita-ku, Sapporo 060-8638, Japan.
| | | | | |
Collapse
|
131
|
Goriounov D, Leung CL, Liem RKH. Protein products of human Gas2-related genes on chromosomes 17 and 22 (hGAR17 and hGAR22) associate with both microfilaments and microtubules. J Cell Sci 2003; 116:1045-58. [PMID: 12584248 DOI: 10.1242/jcs.00272] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The human Gas2-related gene on chromosome 22 (hGAR22) encodes two alternatively spliced mRNA species. The longer mRNA encodes a protein with a deduced molecular mass of 36.3 kDa (GAR22alpha), whereas the shorter mRNA encodes a larger protein with a deduced molecular mass of 72.6 kDa (GAR22beta). We show that both hGAR22 proteins contain a calponin homology actin-binding domain and a Gas2-related microtubule-binding domain. Using rapid amplification of cDNA ends, we have cloned the mouse orthologue of hGAR22, mGAR22, and found its protein products to be extremely well conserved. We also report the cDNA cloning of a human Gas2-related gene on chromosome 17 (hGAR17). hGAR17 also encodes two protein isoforms. The overall cytoskeletal binding properties of the hGAR17 and hGAR22 proteins are remarkably similar. hGAR17 mRNA expression is limited to skeletal muscle. Although hGAR22 and mGAR22 mRNAs are expressed nearly ubiquitously, mGAR22 protein can only be detected in testis and brain. Furthermore, only the beta isoform is present in these tissues. GAR22beta expression is induced in a variety of cultured cells by growth arrest. The absolute amounts of GAR22beta protein expressed are low. The beta isoforms of hGAR17 and hGAR22 appear to be able to crosslink microtubules and microfilaments in transfected cells. This finding suggests that the physiological functions of these proteins may involve integration of these two components of the cytoskeleton.
Collapse
Affiliation(s)
- Dmitri Goriounov
- Integrated Program in Cellular, Molecular, and Biophysical Studies, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | |
Collapse
|
132
|
Röper K, Gregory SL, Brown NH. The 'spectraplakins': cytoskeletal giants with characteristics of both spectrin and plakin families. J Cell Sci 2002; 115:4215-25. [PMID: 12376554 DOI: 10.1242/jcs.00157] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent studies have characterised a family of giant cytoskeletal crosslinkers encoded by the short stop gene in Drosophila and the dystonin/BPAG1 and MACF1 genes in mammals. We refer to the products of these genes as spectraplakins to highlight the fact that they share features with both the spectrin and plakin superfamilies. These genes produce a variety of large proteins, up to almost 9000 residues long, which can potentially extend 0.4 micro m across a cell. Spectraplakins can interact with all three elements of the cytoskeleton: actin, microtubules and intermediate filaments. The analysis of mutant phenotypes in BPAG1 in mouse and short stop in Drosophila demonstrates that spectraplakins have diverse roles. These include linking the plasma membrane and the cytoskeleton, linking together different elements of the cytoskeleton and organising membrane domains.
Collapse
Affiliation(s)
- Katja Röper
- Wellcome Trust/Cancer Research UK Institute and Dept of Anatomy, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, UK
| | | | | |
Collapse
|
133
|
Leonova EV, Lomax MI. Expression of the mouse Macf2 gene during inner ear development. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2002; 105:67-78. [PMID: 12399109 DOI: 10.1016/s0169-328x(02)00394-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Plakins, a family of linker proteins that connect cytoskeletal elements to cellular junctions and the extracellular matrix, are primarily responsible for the mechanical properties of cells and tissues. They include desmoplakin, envoplakin, plectin, dystonin/BPAG1, and Kakapo. Mutations in plakins cause several skin, muscular and neurological disorders. Macrophins are a recently discovered subfamily of plakins with binding domains for actin, intermediate filaments and microtubules. Characteristic features of macrophins include variable actin binding domains, a central rod domain containing both plectin and spectrin repeats, and a C-terminus containing EF hands and GAS2/GAR22 domain. We have examined expression of mouse Macf2, encoding macrophin-2, in adult tissues and in the developing, neonatal, and mature inner ear by in situ hybridization. Northern blot analysis identified three large tissue-specific Macf2 transcripts: a 16-kb mRNA in skeletal muscle and heart, a 15-kb mRNA in brain, and a 9-kb mRNA in RNA from ovary plus uterus. In situ hybridization of the developing mouse inner ear indicated that Macf2 is expressed in the otocyst at day 12.5, in the sensory epithelium by embryonic day 16.5, and in both inner and outer hair cells by day 16.5. Macf2 is expressed in the bodies of both sensory and motor neurons in the central and peripheral nervous system, including the auditory pathway. The Macf2 protein could be involved in the regulation of cytoskeletal connections to cellular junctions and play an important structural role in organs, such as the inner ear, that are subjected to strong mechanical forces.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Cell Adhesion/genetics
- Central Nervous System/embryology
- Central Nervous System/growth & development
- Central Nervous System/metabolism
- Cytoskeleton/genetics
- Cytoskeleton/metabolism
- Ear, Inner/embryology
- Ear, Inner/growth & development
- Ear, Inner/metabolism
- Female
- Fetus
- Ganglia/embryology
- Ganglia/growth & development
- Ganglia/metabolism
- Gene Expression Regulation, Developmental/genetics
- Hair Cells, Auditory, Inner/embryology
- Hair Cells, Auditory, Inner/growth & development
- Hair Cells, Auditory, Inner/metabolism
- Hair Cells, Auditory, Outer/embryology
- Hair Cells, Auditory, Outer/growth & development
- Hair Cells, Auditory, Outer/metabolism
- Humans
- Intercellular Junctions/genetics
- Intercellular Junctions/metabolism
- Mice
- Mice, Inbred C57BL
- Microfilament Proteins
- Neurons/cytology
- Neurons/metabolism
- Pregnancy
- RNA, Messenger/metabolism
- Spectrin/genetics
Collapse
Affiliation(s)
- Elena V Leonova
- Department of Otolaryngology/Head-Neck Surgery, Kresge Hearing Research Institute, The University of Michigan, 1150 W Medical Center Dr 9301E MSRB III, Box 0648, Ann Arbor, MI 48109-0648, USA
| | | |
Collapse
|
134
|
Rao MV, Garcia ML, Miyazaki Y, Gotow T, Yuan A, Mattina S, Ward CM, Calcutt NA, Uchiyama Y, Nixon RA, Cleveland DW. Gene replacement in mice reveals that the heavily phosphorylated tail of neurofilament heavy subunit does not affect axonal caliber or the transit of cargoes in slow axonal transport. J Cell Biol 2002; 158:681-93. [PMID: 12186852 PMCID: PMC2174004 DOI: 10.1083/jcb.200202037] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2002] [Revised: 06/24/2002] [Accepted: 06/25/2002] [Indexed: 11/22/2022] Open
Abstract
The COOH-terminal tail of mammalian neurofilament heavy subunit (NF-H), the largest neurofilament subunit, contains 44-51 lysine-serine-proline repeats that are nearly stoichiometrically phosphorylated after assembly into neurofilaments in axons. Phosphorylation of these repeats has been implicated in promotion of radial growth of axons, control of nearest neighbor distances between neurofilaments or from neurofilaments to other structural components in axons, and as a determinant of slow axonal transport. These roles have now been tested through analysis of mice in which the NF-H gene was replaced by one deleted in the NF-H tail. Loss of the NF-H tail and all of its phosphorylation sites does not affect the number of neurofilaments, alter the ratios of the three neurofilament subunits, or affect the number of microtubules in axons. Additionally, it does not reduce interfilament spacing of most neurofilaments, the speed of action potential propagation, or mature cross-sectional areas of large motor or sensory axons, although its absence slows the speed of acquisition of normal diameters. Most surprisingly, at least in optic nerve axons, loss of the NF-H tail does not affect the rate of transport of neurofilament subunits.
Collapse
Affiliation(s)
- Mala V Rao
- Nathan Kline Institute, New York University School of Medicine, Orangeburg, NY 10962, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Zhen YY, Libotte T, Munck M, Noegel AA, Korenbaum E. NUANCE, a giant protein connecting the nucleus and actin cytoskeleton. J Cell Sci 2002; 115:3207-22. [PMID: 12118075 DOI: 10.1242/jcs.115.15.3207] [Citation(s) in RCA: 221] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
NUANCE (NUcleus and ActiN Connecting Element) was identified as a novel protein with an α-actinin-like actin-binding domain. A human 21.8 kb cDNA of NUANCE spreads over 373 kb on chromosome 14q22.1-q22.3. The cDNA sequence predicts a 796 kDa protein with an N-terminal actin-binding domain, a central coiled-coil rod domain and a predicted C-terminal transmembrane domain. High levels of NUANCE mRNA were detected in the kidney, liver,stomach, placenta, spleen, lymphatic nodes and peripheral blood lymphocytes. At the subcellular level NUANCE is present predominantly at the outer nuclear membrane and in the nucleoplasm. Domain analysis shows that the actin-binding domain binds to Factin in vitro and colocalizes with the actin cytoskeleton in vivo as a GFP-fusion protein. The C-terminal transmembrane domain is responsible for the targeting the nuclear envelope. Thus, NUANCE is the firstα-actinin-related protein that has the potential to link the microfilament system with the nucleus.
Collapse
Affiliation(s)
- Yen-Yi Zhen
- Institute for Biochemistry, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | | | | | | | | |
Collapse
|
136
|
Boudreau-Larivière C, Kothary R. Differentiation potential of primary myogenic cells derived from skeletal muscle of dystonia musculorum mice. Differentiation 2002; 70:247-56. [PMID: 12190986 DOI: 10.1046/j.1432-0436.2002.700603.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The dystonia musculorum (dt) mouse has a mutation in the gene encoding the cytoskeletal crosslinker protein bullous pemphigoid antigen 1 (Bpag1). These mice have perturbations in the cytoarchitecture of skeletal muscle. Bpag1 has been hypothesized to be involved in the maintenance rather than the establishment of the muscle cell architecture given that cytoskeletal disruptions are observed in the muscle tissue of post-natal dt mice. Not known is whether Bpag1-deficiency affects the proliferative and differentiation potential of myogenic cells. In the present investigation, we show that the growth rate of cultured primary myogenic cells derived from dt mice, as assessed by BrdU incorporation, is similar to that of myogenic cells derived from wild-type littermates. The myogenic differentiation potential of dt versus wild-type cells was monitored by examining the expression of myosin heavy chain by immunofluorescence, and by analyzing the expression profiles of myogenic regulatory factors and myogenic differentiation markers by RT-PCR. In all instances, both dt and wild-type myogenic cells displayed a similar differentiation profile. Furthermore, the absence of any observable differences in the proliferation and differentiation rates of dt and wild-type cells was not due to an overexpression of plectin, another crosslinker protein, in dt cells. Together, these findings demonstrate that the early phases of myogenic differentiation occur independently of Bpag1.
Collapse
|
137
|
Saulnier R, De Repentigny Y, Yong VW, Kothary R. Alterations in myelination in the central nervous system of dystonia musculorum mice. J Neurosci Res 2002; 69:233-42. [PMID: 12111805 DOI: 10.1002/jnr.10289] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Dystonia musculorum (dt) is an autosomal recessive sensory neuropathy in mice resulting from a mutation in the gene encoding the cytoskeletal linker protein Bpag1. In addition to neurodegeneration, dt mice display myelination abnormalities in the peripheral nervous system. In this report we investigated whether myelination abnormalities are also present in the central nervous system of dt(Tg4) mice. Transcripts for both neural isoforms of Bpag1 (a1 and a2) were detected in optic nerves and spinal cords of wild-type mice. Light microscopy of resin-embedded thin sections revealed a reduction in myelinated axons in both optic nerves and spinal cords in dt(Tg4) mice. As well, hypermyelinated axons were detected in these tissues. Ultrastructural analysis of optic nerves and spinal cords from dt(Tg4) mice revealed an increase in the number of amyelinated axons, the presence of hypo- and hypermyelinated axons, and redundant myelin that course away from axons. Changes in the level of myelin proteins accompanied the morphological alterations. Myelin-associated glycoprotein levels were reduced in optic nerves of dt(Tg4) mice, and myelin basic protein levels were altered in optic nerves, sciatic nerves, and spinal cords of affected mice. Short-term cultures of oligodendrocytes derived from dt(Tg4) mice did not show morphological alterations.
Collapse
Affiliation(s)
- Ron Saulnier
- Ottawa Health Research Institute and The University of Ottawa Center for Neuromuscular Disease, Ottawa, Ontario, Canada
| | | | | | | |
Collapse
|
138
|
Kumar S, Yin X, Trapp BD, Paulaitis ME, Hoh JH. Role of long-range repulsive forces in organizing axonal neurofilament distributions: evidence from mice deficient in myelin-associated glycoprotein. J Neurosci Res 2002; 68:681-90. [PMID: 12111829 DOI: 10.1002/jnr.10249] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
When the axon of a motor neuron is sectioned and visualized by electron microscopy, a two-dimensional distribution of neurofilaments (NFs) with nonrandom spacing is revealed; this ordered arrangement implies the presence of physical interactions between the NFs. To gain insight into the molecular basis of this organization, we characterized NF distributions from mouse sciatic nerve cross sections using two statistical mechanical measures: radial distribution functions and occupancy probability distributions. Our analysis shows that NF organization may be described in terms of effective pairwise interactions. In addition, we show that these statistical mechanical measures can detect differences in NF architecture between wild-type and myelin-associated glycoprotein null mutant mice. These differences are age dependent, with marked contrast between the NF distributions by 9 months of age. Finally, using Monte Carlo simulations, we compare the experimental results with predictions for models in which adjacent NFs interact through rigid cross bridges, deformable cross bridges, and long-range repulsive forces. Among the models tested, a model in which the filaments interact through a long-range repulsive force is most consistent with the results of our analysis.
Collapse
Affiliation(s)
- Sanjay Kumar
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | |
Collapse
|
139
|
Okumura M, Yamakawa H, Ohara O, Owaribe K. Novel alternative splicings of BPAG1 (bullous pemphigoid antigen 1) including the domain structure closely related to MACF (microtubule actin cross-linking factor). J Biol Chem 2002; 277:6682-7. [PMID: 11751855 DOI: 10.1074/jbc.m109209200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BPAG1 (bullous pemphigoid antigen 1) was originally identified as a 230-kDa hemidesmosomal protein and belongs to the plakin family, because it consists of a plakin domain, a coiled-coil rod domain and a COOH-terminal intermediate filament binding domain. To date, alternatively spliced products of BPAG1, BPAG1e, and BPAG1n are known. BPAG1e is expressed in epithelial tissues and localized to hemidesmosomes, on the other hand, BPAG1n is expressed in neural tissues and muscles and has an actin binding domain at the NH(2)-terminal of BPAG1e. BPAG1 is also known as a gene responsible for Dystonia musculorum (dt) neurodegeneration syndrome of the mouse. Another plakin family protein MACF (microtubule actin cross-linking factor) has also an actin binding domain and the plakin domain at the NH(2)-terminal. However, in contrast to its high homology with BPAG1 at the NH(2)-terminal, the COOH-terminal structure of MACF, including a microtubule binding domain, resembles dystrophin rather than plakins. Here, we investigated RNAs and proteins expressed from the BPAG1 locus and suggest novel alternative splicing variants, which include one consisting of the COOH-terminal domain structure homologous to MACF. The results indicate that BPAG1 has three kinds of cytoskeletal binding domains and seems to play an important role in linking the different types of cytoskeletons.
Collapse
Affiliation(s)
- Masayo Okumura
- Unit of Biosystems, Graduate School of Human Informatics, Nagoya University, Nagoya 464-8601, Japan.
| | | | | | | |
Collapse
|
140
|
Abstract
By connecting cytoskeletal elements to each other and to junctional complexes, the plakin family of cytolinkers plays a crucial role in orchestrating cellular development and maintaining tissue integrity. Plakins are built from combinations of interacting domains that bind to microfilaments, microtubules, intermediate filaments, cell-adhesion molecules and members of the armadillo family. Plakins are involved in both inherited and autoimmune diseases that affect the skin, neuronal tissue, and cardiac and skeletal muscle. Here, we describe the members of the plakin family and their interaction partners, and give examples of the cellular defects that result from their dysfunction.
Collapse
Affiliation(s)
- Conrad L Leung
- Dept of Pathology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | |
Collapse
|