101
|
Lee S, Park HR, Lee JY, Cho JH, Song HM, Kim AH, Lee W, Lee Y, Chang SC, Kim HS, Lee J. Learning, memory deficits, and impaired neuronal maturation attributed to acrylamide. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2018; 81:254-265. [PMID: 29473799 DOI: 10.1080/15287394.2018.1440184] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Acrylamide (ACR) is a neurotoxin known to produce neurotoxicity characterized by ataxia, skeletal muscle weakness, cognitive impairment, and numbness of the extremities. Previously, investigators reported that high-dose (50 mg/kg) ACR impaired hippocampal neurogenesis and increased neural progenitor cell death; however, the influence of subchronic environmentally relevant low dose-(2, 20, or 200 μg/kg) ACRs have not been examined in adult neurogenesis or cognitive function in mice. Accordingly, the aim of the present study was to investigate whether low-dose ACR adversely affected mouse hippocampal neurogenesis and neurocognitive functions. Male C57BL/6 mice were orally administered vehicle or ACR at 2, 20, or 200 μg/kg/day for 4 weeks. ACR did not significantly alter the number of newly generated cells or produce neuroinflammation or neuronal loss in hippocampi. However, behavioral studies revealed that 200 μg/kg ACR produced learning and memory impairment. Furthermore, incubation of ACR with primary cultured neurons during the developmental stage was found to delay neuronal maturation without affecting cell viability indicating the presence of developmental neurotoxicity. These findings indicate that although exposure to in vivo low-dose ACR daily for 4 weeks exerted no apparent marked effect on hippocampal neurogenesis, in vitro observations in primary cultured neurons noted adverse effects on learning and memory impairment suggestive of neurotoxic actions.
Collapse
Affiliation(s)
- Seulah Lee
- a Department of Pharmacy, College of Pharmacy, Molecular Inflammation Research Center for Aging Intervention , Pusan National University , Busan , Republic of Korea
| | - Hee Ra Park
- a Department of Pharmacy, College of Pharmacy, Molecular Inflammation Research Center for Aging Intervention , Pusan National University , Busan , Republic of Korea
| | - Joo Yeon Lee
- a Department of Pharmacy, College of Pharmacy, Molecular Inflammation Research Center for Aging Intervention , Pusan National University , Busan , Republic of Korea
| | - Jung-Hyun Cho
- a Department of Pharmacy, College of Pharmacy, Molecular Inflammation Research Center for Aging Intervention , Pusan National University , Busan , Republic of Korea
| | - Hye Min Song
- a Department of Pharmacy, College of Pharmacy, Molecular Inflammation Research Center for Aging Intervention , Pusan National University , Busan , Republic of Korea
| | - Ah Hyun Kim
- a Department of Pharmacy, College of Pharmacy, Molecular Inflammation Research Center for Aging Intervention , Pusan National University , Busan , Republic of Korea
| | - Wonjong Lee
- a Department of Pharmacy, College of Pharmacy, Molecular Inflammation Research Center for Aging Intervention , Pusan National University , Busan , Republic of Korea
| | - Yujeong Lee
- a Department of Pharmacy, College of Pharmacy, Molecular Inflammation Research Center for Aging Intervention , Pusan National University , Busan , Republic of Korea
| | - Seung-Cheol Chang
- b Institute of BioPhysio Sensor Technology , Pusan National University , Busan , Republic of Korea
| | - Hyung Sik Kim
- c School of Pharmacy , Sungkyunkwan University , Suwon , Republic of Korea
| | - Jaewon Lee
- a Department of Pharmacy, College of Pharmacy, Molecular Inflammation Research Center for Aging Intervention , Pusan National University , Busan , Republic of Korea
| |
Collapse
|
102
|
Ramkumar A, Jong BY, Ori-McKenney KM. ReMAPping the microtubule landscape: How phosphorylation dictates the activities of microtubule-associated proteins. Dev Dyn 2017; 247:138-155. [PMID: 28980356 DOI: 10.1002/dvdy.24599] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 09/11/2017] [Accepted: 09/19/2017] [Indexed: 12/12/2022] Open
Abstract
Classical microtubule-associated proteins (MAPs) were originally identified based on their co-purification with microtubules assembled from mammalian brain lysate. They have since been found to perform a range of functions involved in regulating the dynamics of the microtubule cytoskeleton. Most of these MAPs play integral roles in microtubule organization during neuronal development, microtubule remodeling during neuronal activity, and microtubule stabilization during neuronal maintenance. As a result, mutations in MAPs contribute to neurodevelopmental disorders, psychiatric conditions, and neurodegenerative diseases. MAPs are post-translationally regulated by phosphorylation depending on developmental time point and cellular context. Phosphorylation can affect the microtubule affinity, cellular localization, or overall function of a particular MAP and can thus have profound implications for neuronal health. Here we review MAP1, MAP2, MAP4, MAP6, MAP7, MAP9, tau, and DCX, and how each is regulated by phosphorylation in neuronal physiology and disease. Developmental Dynamics 247:138-155, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Amrita Ramkumar
- Department of Molecular and Cellular Biology, University of California, Davis, CA
| | - Brigette Y Jong
- Department of Molecular and Cellular Biology, University of California, Davis, CA
| | | |
Collapse
|
103
|
Chen J, Wang Z, Zheng Z, Chen Y, Khor S, Shi K, He Z, Wang Q, Zhao Y, Zhang H, Li X, Li J, Yin J, Wang X, Xiao J. Neuron and microglia/macrophage-derived FGF10 activate neuronal FGFR2/PI3K/Akt signaling and inhibit microglia/macrophages TLR4/NF-κB-dependent neuroinflammation to improve functional recovery after spinal cord injury. Cell Death Dis 2017; 8:e3090. [PMID: 28981091 PMCID: PMC5682656 DOI: 10.1038/cddis.2017.490] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 08/07/2017] [Accepted: 08/28/2017] [Indexed: 01/09/2023]
Abstract
Therapeutics used to treat central nervous system (CNS) injury were designed to repair neurites and inhibit cell apoptosis. Previous studies have shown that neuron-derived FGF10 exerts potential neuroprotective effects after cerebral ischemia injury. However, little is known about the role of endogenous FGF10 in the recovery process after spinal cord injury (SCI). In this study, we found that FGF10 is mainly produced by neuron and microglia/macrophages, and its expression is increased after SCI. Exogenous treatment of FGF10 improved functional recovery after injury by reducing apoptosis, as well as repairing neurites via FGFR2/PI3K/Akt pathway. On another hand, inhibiting the PI3K/Akt pathway with LY294002 partially reversed the therapeutic effects of FGF10. In addition, small interfering RNA knockdown of FGFR2 suppressed PI3K/Akt pathway activation by FGF10 and abolished its anti-apoptotic and neurite repair effects in vitro. Furthermore, FGF10 treatment inhibited the activation and proliferation of microglia/macrophages through regulation of TLR4/NF-κB pathway, and attenuated the release of pro-inflammatory cytokines after SCI. Thus, the increased expression of FGF10 after acute SCI is an endogenous self-protective response, suggesting that FGF10 could be a potential treatment for CNS injury.
Collapse
Affiliation(s)
- Jian Chen
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhouguang Wang
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - ZengMing Zheng
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yu Chen
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Sinan Khor
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - KeSi Shi
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - ZiLi He
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qingqing Wang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yingzheng Zhao
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Hongyu Zhang
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiaokun Li
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jiawei Li
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiayu Yin
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiangyang Wang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jian Xiao
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
104
|
Jo HR, Wang SE, Kim YS, Lee CH, Son H. Oleanolic Acid Promotes Neuronal Differentiation and Histone Deacetylase 5 Phosphorylation in Rat Hippocampal Neurons. Mol Cells 2017; 40:485-494. [PMID: 28681592 PMCID: PMC5547218 DOI: 10.14348/molcells.2017.0034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 05/10/2017] [Accepted: 05/12/2017] [Indexed: 12/13/2022] Open
Abstract
Oleanolic acid (OA) has neurotrophic effects on neurons, although its use as a neurological drug requires further research. In the present study, we investigated the effects of OA and OA derivatives on the neuronal differentiation of rat hippocampal neural progenitor cells. In addition, we investigated whether the class II histone deacetylase (HDAC) 5 mediates the gene expression induced by OA. We found that OA and OA derivatives induced the formation of neurite spines and the expression of synapse-related molecules. OA and OA derivatives stimulated HDAC5 phosphorylation, and concurrently the nuclear export of HDCA5 and the expression of HDAC5 target genes, indicating that OA and OA derivatives induce neural differentiation and synapse formation via a pathway that involves HDAC5 phosphorylation.
Collapse
Affiliation(s)
- Hye-Ryeong Jo
- Department of Biomedical Sciences, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763,
Korea
- Department of Pharmacology, Hanyang University, Seoul 04763,
Korea
| | - Sung Eun Wang
- Department of Biomedical Sciences, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763,
Korea
| | - Yong-Seok Kim
- Department of Biomedical Sciences, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763,
Korea
- Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, Seoul 04763,
Korea
| | - Chang Ho Lee
- Department of Pharmacology, Hanyang University, Seoul 04763,
Korea
| | - Hyeon Son
- Department of Biomedical Sciences, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763,
Korea
- Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, Seoul 04763,
Korea
| |
Collapse
|
105
|
Thomas KT, Anderson BR, Shah N, Zimmer SE, Hawkins D, Valdez AN, Gu Q, Bassell GJ. Inhibition of the Schizophrenia-Associated MicroRNA miR-137 Disrupts Nrg1α Neurodevelopmental Signal Transduction. Cell Rep 2017; 20:1-12. [PMID: 28683304 PMCID: PMC5745041 DOI: 10.1016/j.celrep.2017.06.038] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 04/28/2017] [Accepted: 06/13/2017] [Indexed: 12/14/2022] Open
Abstract
Genomic studies have repeatedly associated variants in the gene encoding the microRNA miR-137 with increased schizophrenia risk. Bioinformatic predictions suggest that miR-137 regulates schizophrenia-associated signaling pathways critical to neural development, but these predictions remain largely unvalidated. In the present study, we demonstrate that miR-137 regulates neuronal levels of p55γ, PTEN, Akt2, GSK3β, mTOR, and rictor. All are key proteins within the PI3K-Akt-mTOR pathway and act downstream of neuregulin (Nrg)/ErbB and BDNF signaling. Inhibition of miR-137 ablates Nrg1α-induced increases in dendritic protein synthesis, phosphorylated S6, AMPA receptor subunits, and outgrowth. Inhibition of miR-137 also blocks mTORC1-dependent responses to BDNF, including increased mRNA translation and dendritic outgrowth, while leaving mTORC1-independent S6 phosphorylation intact. We conclude that miR-137 regulates neuronal responses to Nrg1α and BDNF through convergent mechanisms, which might contribute to schizophrenia risk by altering neural development.
Collapse
Affiliation(s)
- Kristen Therese Thomas
- Department of Cell Biology, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, USA
| | - Bart Russell Anderson
- Department of Cell Biology, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, USA
| | - Niraj Shah
- Department of Cell Biology, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, USA
| | - Stephanie Elaine Zimmer
- Department of Cell Biology, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, USA
| | - Daniel Hawkins
- Department of Cell Biology, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, USA
| | - Arielle Nicole Valdez
- Department of Cell Biology, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, USA
| | - Qiaochu Gu
- Department of Cell Biology, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, USA
| | - Gary Jonathan Bassell
- Department of Cell Biology, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, USA; Department of Neurology, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, USA.
| |
Collapse
|
106
|
Das Banerjee T, Dagda RY, Dagda M, Chu CT, Rice M, Vazquez-Mayorga E, Dagda RK. PINK1 regulates mitochondrial trafficking in dendrites of cortical neurons through mitochondrial PKA. J Neurochem 2017; 142:545-559. [PMID: 28556983 DOI: 10.1111/jnc.14083] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 05/22/2017] [Accepted: 05/23/2017] [Indexed: 12/12/2022]
Abstract
Mitochondrial Protein Kinase A (PKA) and PTEN-induced kinase 1 (PINK1), which is linked to Parkinson's disease, are two neuroprotective serine/threonine kinases that regulate dendrite remodeling and mitochondrial function. We have previously shown that PINK1 regulates dendrite morphology by enhancing PKA activity. Here, we show the molecular mechanisms by which PINK1 and PKA in the mitochondrion interact to regulate dendrite remodeling, mitochondrial morphology, content, and trafficking in dendrites. PINK1-deficient cortical neurons exhibit impaired mitochondrial trafficking, reduced mitochondrial content, fragmented mitochondria, and a reduction in dendrite outgrowth compared to wild-type neurons. Transient expression of wild-type, but not a PKA-binding-deficient mutant of the PKA-mitochondrial scaffold dual-specificity A Kinase Anchoring Protein 1 (D-AKAP1), restores mitochondrial trafficking, morphology, and content in dendrites of PINK1-deficient cortical neurons suggesting that recruiting PKA to the mitochondrion reverses mitochondrial pathology in dendrites induced by loss of PINK1. Mechanistically, full-length and cleaved forms of PINK1 increase the binding of the regulatory subunit β of PKA (PKA/RIIβ) to D-AKAP1 to enhance the autocatalytic-mediated phosphorylation of PKA/RIIβ and PKA activity. D-AKAP1/PKA governs mitochondrial trafficking in dendrites via the Miro-2/TRAK2 complex and by increasing the phosphorylation of Miro-2. Our study identifies a new role of D-AKAP1 in regulating mitochondrial trafficking through Miro-2, and supports a model in which PINK1 and mitochondrial PKA participate in a similar neuroprotective signaling pathway to maintain dendrite connectivity.
Collapse
Affiliation(s)
- Tania Das Banerjee
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Raul Y Dagda
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Marisela Dagda
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Charleen T Chu
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Monica Rice
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Emmanuel Vazquez-Mayorga
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA.,Department of Biomedical Sciences, Universidad Autonoma de Ciudad Juarez, Cd. Juarez, Mexico
| | - Ruben K Dagda
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| |
Collapse
|
107
|
Gibson GE, Thakkar A. Mitochondria/metabolic reprogramming in the formation of neurons from peripheral cells: Cause or consequence and the implications to their utility. Neurochem Int 2017. [PMID: 28627365 DOI: 10.1016/j.neuint.2017.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The induction of pluripotent stem cells (iPSC) from differentiated cells such as fibroblasts and their subsequent conversion to neural progenitor cells (NPC) and finally to neurons is intriguing scientifically, and its potential to medicine is nearly infinite, but unrealized. A better understanding of the changes at each step of the transformation will enable investigators to better model neurological disease. Each step of conversion from a differentiated cell to an iPSC to a NPC to neurons requires large changes in glycolysis including aerobic glycolysis, the pentose shunt, the tricarboxylic acid cycle, the electron transport chain and in the production of reactive oxygen species (ROS). These mitochondrial/metabolic changes are required and their manipulation modifies conversions. These same mitochondrial/metabolic processes are altered in common neurological diseases so that factors related to the disease may alter the cellular transformation at each step including the final phenotype. A lack of understanding of these interactions could compromise the validity of the disease comparisons in iPSC derived neurons. Both the complexity and potential of iPSC derived cells for understanding and treating disease remain great.
Collapse
Affiliation(s)
- Gary E Gibson
- Weil Cornell Medicine, Brain and Mind Research Institute, Burke Medical Research, White Plains, NY 10605, United States.
| | - Ankita Thakkar
- Weil Cornell Medicine, Brain and Mind Research Institute, Burke Medical Research, White Plains, NY 10605, United States
| |
Collapse
|
108
|
Xia Z, Wang F, Zhou S, Zhang R, Wang F, Huang JH, Wu E, Zhang Y, Hu Y. Catalpol protects synaptic proteins from beta-amyloid induced neuron injury and improves cognitive functions in aged rats. Oncotarget 2017; 8:69303-69315. [PMID: 29050205 PMCID: PMC5642480 DOI: 10.18632/oncotarget.17951] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 03/30/2017] [Indexed: 12/11/2022] Open
Abstract
Synapse loss is one of the common factors contributing to cognitive disorders, such as Alzheimer’s disease (AD), which is manifested by the impairment of basic cognitive functions including memory processing, perception, problem solving, and language. The current therapies for patients with cognitive disorders are mainly palliative; thus, regimens preventing and/or delaying dementia progression are urgently needed. In this study, we evaluated the effects of catalpol, isolated from traditional Chinese medicine Rehmannia glutinosa, on synaptic plasticity in aged rat models. We found that catalpol markedly improved the cognitive function of aged male Sprague-Dawley rats and simultaneously increased the expression of synaptic proteins (dynamin 1, PSD-95, and synaptophysin) in the cerebral cortex and hippocampus, respectively. In beta-amyloid (Aβ) injured primary rat’s cortical neuron, catalpol did not increase the viability of neuron but extended the length of microtubule-associated protein 2 (MAP-2) positive neurites and reversed the suppressive effects on expression of synaptic proteins induced by Aβ. Additionally, the effects of catalpol on stimulating the growth of MAP-2 positive neurites and the expression of synaptic proteins were diminished by a PKC inhibitor, bisindolylmaleimide I, suggesting that PKC may be implicated in catalpol’s function of preventing the neurodegeneration induced by Aβ. Altogether, our study indicates that catalpol could be a potential disease-modifying drug for cognitive disorders such as AD.
Collapse
Affiliation(s)
- Zhiming Xia
- Research Laboratory of Cell Regulation, School of Medicine, Shanghai Jiaotong University, Shanghai 200025, China.,Current address: Department of Nuclear Medicine, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China
| | - Fengfei Wang
- Department of Neurosurgery, Baylor Scott & White Health, Temple, Texas 76508, USA.,Department of Neurology, Baylor Scott & White Health, Temple, Texas 78508, USA.,Department of Surgery, Texas A & M University College of Medicine, Temple, Texas 76504, USA
| | - Shuang Zhou
- Department of Neurosurgery, Baylor Scott & White Health, Temple, Texas 76508, USA
| | - Rui Zhang
- Research Laboratory of Cell Regulation, School of Medicine, Shanghai Jiaotong University, Shanghai 200025, China
| | - Fushun Wang
- Department of Neurosurgery, Baylor Scott & White Health, Temple, Texas 76508, USA.,Department of Psychology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Jason H Huang
- Department of Neurosurgery, Baylor Scott & White Health, Temple, Texas 76508, USA.,Department of Surgery, Texas A & M University College of Medicine, Temple, Texas 76504, USA
| | - Erxi Wu
- Department of Neurosurgery, Baylor Scott & White Health, Temple, Texas 76508, USA.,Department of Surgery, Texas A & M University College of Medicine, Temple, Texas 76504, USA.,Department of Pharmaceutical Sciences, Texas A & M University College of Pharmacy, College Station, Texas 77843, USA
| | - Yongfang Zhang
- Research Laboratory of Cell Regulation, School of Medicine, Shanghai Jiaotong University, Shanghai 200025, China
| | - Yaer Hu
- Research Laboratory of Cell Regulation, School of Medicine, Shanghai Jiaotong University, Shanghai 200025, China
| |
Collapse
|
109
|
Brandt R, Bakota L. Microtubule dynamics and the neurodegenerative triad of Alzheimer's disease: The hidden connection. J Neurochem 2017; 143:409-417. [PMID: 28267200 DOI: 10.1111/jnc.14011] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 01/03/2017] [Accepted: 02/17/2017] [Indexed: 02/03/2023]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder and is, on a histopathological level, characterized by the presence of extracellular amyloid plaques composed of the protein fragment Aβ, and intracellular neurofibrillary tangles, which contain the microtubule-associated protein tau in a hyperphosphorylated state. In AD defects in microtubule (MT) assembly and organization have also been reported; however, it is unclear whether MT abnormalities have a causal and early role in the disease process or represent a common end point downstream of the neurodegenerative cascade. Recent evidence indicates that microtubule-stabilizing drugs prevent axonopathy in animal models of tauopathies and reverse Aβ-induced loss of synaptic connectivity in an ex vivo model of amyloidosis. This could suggest that MT dysfunction connects some of the degenerative events and provides a useful target to simultaneously prevent several neurodegenerative processes in AD. Here, we describe how changes in the structure and dynamics of MTs are involved in the different aspects of the neurodegenerative triad of AD. We discuss evidence that MTs are affected both by tau-dependent and tau-independent mechanisms but appear to be regulated in a distinct way in different neuronal compartments. We argue that modulation of MT dynamics could be of potential benefit but needs to be precisely controlled in a cell and compartment-specific manner to avoid harmful side effects. This article is part of the series "Beyond Amyloid".
Collapse
Affiliation(s)
- Roland Brandt
- Department of Neurobiology, University of Osnabrück, Osnabrück, Germany
| | - Lidia Bakota
- Department of Neurobiology, University of Osnabrück, Osnabrück, Germany
| |
Collapse
|
110
|
Local inhibition of microtubule dynamics by dynein is required for neuronal cargo distribution. Nat Commun 2017; 8:15063. [PMID: 28406181 PMCID: PMC5399302 DOI: 10.1038/ncomms15063] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 02/24/2017] [Indexed: 12/31/2022] Open
Abstract
Abnormal axonal transport is associated with neuronal disease. We identified a role for DHC-1, the C. elegans dynein heavy chain, in maintaining neuronal cargo distribution. Surprisingly, this does not involve dynein's role as a retrograde motor in cargo transport, hinging instead on its ability to inhibit microtubule (MT) dynamics. Neuronal MTs are highly static, yet the mechanisms and functional significance of this property are not well understood. In disease-mimicking dhc-1 alleles, excessive MT growth and collapse occur at the dendrite tip, resulting in the formation of aberrant MT loops. These unstable MTs act as cargo traps, leading to ectopic accumulations of cargo and reduced availability of cargo at normal locations. Our data suggest that an anchored dynein pool interacts with plus-end-out MTs to stabilize MTs and allow efficient retrograde transport. These results identify functional significance for neuronal MT stability and suggest a mechanism for cellular dysfunction in dynein-linked disease.
Collapse
|
111
|
Muñoz-Llancao P, de Gregorio C, Las Heras M, Meinohl C, Noorman K, Boddeke E, Cheng X, Lezoualc'h F, Schmidt M, Gonzalez-Billault C. Microtubule-regulating proteins and cAMP-dependent signaling in neuroblastoma differentiation. Cytoskeleton (Hoboken) 2017; 74:143-158. [PMID: 28164467 DOI: 10.1002/cm.21355] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 01/26/2017] [Accepted: 01/31/2017] [Indexed: 01/15/2023]
Abstract
Neurons are highly differentiated cells responsible for the conduction and transmission of information in the nervous system. The proper function of a neuron relies on the compartmentalization of their intracellular domains. Differentiated neuroblastoma cells have been extensively used to study and understand the physiology and cell biology of neuronal cells. Here, we show that differentiation of N1E-115 neuroblastoma cells is more pronounced upon exposure of a chemical analog of cyclic AMP (cAMP), db-cAMP. We next analysed the expression of key microtubule-regulating proteins in differentiated cells and the expression and activation of key cAMP players such as EPAC, PKA and AKAP79/150. Most of the microtubule-promoting factors were up regulated during differentiation of N1E-115 cells, while microtubule-destabilizing proteins were down regulated. We observed an increase in tubulin post-translational modifications related to microtubule stability. As expected, db-cAMP increased PKA- and EPAC-dependent signalling. Consistently, pharmacological modulation of EPAC activity instructed cell differentiation, number of neurites, and neurite length in N1E-115 cells. Moreover, disruption of the PKA-AKAP interaction reduced these morphometric parameters. Interestingly, PKA and EPAC act synergistically to induce neuronal differentiation in N1E-115. Altogether these results show that the changes observed in the differentiation of N1E-115 cells proceed by regulating several microtubule-stabilizing factors, and the acquisition of a neuronal phenotype is a process involving concerted although independent functions of EPAC and PKA.
Collapse
Affiliation(s)
- Pablo Muñoz-Llancao
- Laboratory of Cell and Neuronal Dynamics, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile.,Department of Molecular Pharmacology, University of Groningen, The Netherlands
| | - Cristian de Gregorio
- Laboratory of Cell and Neuronal Dynamics, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Macarena Las Heras
- Laboratory of Cell and Neuronal Dynamics, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile.,Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
| | - Christopher Meinohl
- Department of Molecular Pharmacology, University of Groningen, The Netherlands
| | - Kevin Noorman
- Department of Molecular Pharmacology, University of Groningen, The Netherlands
| | - Erik Boddeke
- Department of Medical Physiology, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Xiaodong Cheng
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center, Houston, USA
| | - Frank Lezoualc'h
- Inserm UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France.,Université de Toulouse III, Paul Sabatier, Toulouse, France
| | - Martina Schmidt
- Department of Molecular Pharmacology, University of Groningen, The Netherlands
| | - Christian Gonzalez-Billault
- Laboratory of Cell and Neuronal Dynamics, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile.,Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile.,The Buck Institute for Research on Aging, Novato, USA
| |
Collapse
|
112
|
Effects of adolescent methamphetamine and nicotine exposure on behavioral performance and MAP-2 immunoreactivity in the nucleus accumbens of adolescent mice. Behav Brain Res 2017; 323:78-85. [PMID: 28089854 DOI: 10.1016/j.bbr.2017.01.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/05/2017] [Accepted: 01/06/2017] [Indexed: 02/07/2023]
Abstract
The neurotoxic effects of methamphetamine (MA) exposure in the developing and adult brain can lead to behavioral alterations and cognitive deficits in adults. Previous increases in the rates of adolescent MA use necessitate that we understand the behavioral and cognitive effects of MA exposure during adolescence on the adolescent brain. Adolescents using MA exhibit high rates of nicotine (NIC) use, but the effects of concurrent MA and NIC in the adolescent brain have not been examined, and it is unknown if NIC mediates any of the effects of MA in the adolescent. In this study, the long-term effects of a neurotoxic dose of MA with or without NIC exposure during early adolescence (postnatal day 30-31) were examined later in adolescence (postnatal day 41-50) in male C57BL/6J mice. Effects on behavioral performance in the open field, Porsolt forced swim test, and conditioned place preference test, and cognitive performance in the novel object recognition test and Morris water maze were assessed. Additionally, the effects of MA and/or NIC on levels of microtubule associated-2 (MAP-2) protein in the nucleus accumbens and plasma corticosterone were examined. MA and NIC exposure during early adolescence separately decreased anxiety-like behavior in the open field test, which was not seen following co-administration of MA/NIC. There was no significant effect of early adolescent MA and/or NIC exposure on the intensity of MAP-2 immunoreactivity in the nucleus accumbens or on plasma corticosterone levels. These results show that early adolescent MA and NIC exposure separately decrease anxiety-like behavior in the open field, and that concurrent MA and NIC exposure does not induce the same behavioral change as either drug alone.
Collapse
|
113
|
Jan A, Jansonius B, Delaidelli A, Somasekharan SP, Bhanshali F, Vandal M, Negri GL, Moerman D, MacKenzie I, Calon F, Hayden MR, Taubert S, Sorensen PH. eEF2K inhibition blocks Aβ42 neurotoxicity by promoting an NRF2 antioxidant response. Acta Neuropathol 2017; 133:101-119. [PMID: 27752775 DOI: 10.1007/s00401-016-1634-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 10/11/2016] [Accepted: 10/11/2016] [Indexed: 01/01/2023]
Abstract
Soluble oligomers of amyloid-β (Aβ) impair synaptic plasticity, perturb neuronal energy homeostasis, and are implicated in Alzheimer's disease (AD) pathogenesis. Therefore, significant efforts in AD drug discovery research aim to prevent the formation of Aβ oligomers or block their neurotoxicity. The eukaryotic elongation factor-2 kinase (eEF2K) plays a critical role in synaptic plasticity, and couples neurotransmission to local dendritic mRNA translation. Recent evidence indicates that Aβ oligomers activate neuronal eEF2K, suggesting a potential link to Aβ induced synaptic dysfunction. However, a detailed understanding of the role of eEF2K in AD pathogenesis, and therapeutic potential of eEF2K inhibition in AD, remain to be determined. Here, we show that eEF2K activity is increased in postmortem AD patient cortex and hippocampus, and in the hippocampus of aged transgenic AD mice. Furthermore, eEF2K inhibition using pharmacological or genetic approaches prevented the toxic effects of Aβ42 oligomers on neuronal viability and dendrite formation in vitro. We also report that eEF2K inhibition promotes the nuclear factor erythroid 2-related factor (NRF2) antioxidant response in neuronal cells, which was crucial for the beneficial effects of eEF2K inhibition in neurons exposed to Aβ42 oligomers. Accordingly, NRF2 knockdown or overexpression of the NRF2 inhibitor, Kelch-Like ECH-Associated Protein-1 (Keap1), significantly attenuated the neuroprotection associated with eEF2K inhibition. Finally, genetic deletion of the eEF2K ortholog efk-1 reduced oxidative stress, and improved chemotaxis and serotonin sensitivity in C. elegans expressing human Aβ42 in neurons. Taken together, these findings highlight the potential utility of eEF2K inhibition to reduce Aβ-mediated oxidative stress in AD.
Collapse
Affiliation(s)
- Asad Jan
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
- British Columbia Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | - Brandon Jansonius
- British Columbia Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | - Alberto Delaidelli
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
- British Columbia Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | | | - Forum Bhanshali
- Department of Medical Genetics, Child and Family Research Institute, University of British Columbia, Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada
| | - Milène Vandal
- Faculté de Pharmacie, Université Laval, Pavillon Ferdinand-Vandry 1050, Avenue de la Médecine, Quebec, QC, G1V 0A6, Canada
| | - Gian Luca Negri
- British Columbia Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | - Don Moerman
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Ian MacKenzie
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Frédéric Calon
- Faculté de Pharmacie, Université Laval, Pavillon Ferdinand-Vandry 1050, Avenue de la Médecine, Quebec, QC, G1V 0A6, Canada
| | - Michael R Hayden
- Department of Medical Genetics, Child and Family Research Institute, University of British Columbia, Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada
| | - Stefan Taubert
- Department of Medical Genetics, Child and Family Research Institute, University of British Columbia, Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada
| | - Poul H Sorensen
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.
- British Columbia Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada.
| |
Collapse
|
114
|
Lynn SA, Keeling E, Munday R, Gabha G, Griffiths H, Lotery AJ, Ratnayaka JA. The complexities underlying age-related macular degeneration: could amyloid beta play an important role? Neural Regen Res 2017; 12:538-548. [PMID: 28553324 PMCID: PMC5436342 DOI: 10.4103/1673-5374.205083] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Age-related macular degeneration (AMD) causes irreversible loss of central vision for which there is no effective treatment. Incipient pathology is thought to occur in the retina for many years before AMD manifests from midlife onwards to affect a large proportion of the elderly. Although genetic as well as non-genetic/environmental risks are recognized, its complex aetiology makes it difficult to identify susceptibility, or indeed what type of AMD develops or how quickly it progresses in different individuals. Here we summarize the literature describing how the Alzheimer's-linked amyloid beta (Aβ) group of misfolding proteins accumulate in the retina. The discovery of this key driver of Alzheimer's disease in the senescent retina was unexpected and surprising, enabling an altogether different perspective of AMD. We argue that Aβ fundamentally differs from other substances which accumulate in the ageing retina, and discuss our latest findings from a mouse model in which physiological amounts of Aβ were subretinally-injected to recapitulate salient features of early AMD within a short period. Our discoveries as well as those of others suggest the pattern of Aβ accumulation and pathology in donor aged/AMD tissues are closely reproduced in mice, including late-stage AMD phenotypes, which makes them highly attractive to study dynamic aspects of Aβ-mediated retinopathy. Furthermore, we discuss our findings revealing how Aβ behaves at single-cell resolution, and consider the long-term implications for neuroretinal function. We propose Aβ as a key element in switching to a diseased retinal phenotype, which is now being used as a biomarker for late-stage AMD.
Collapse
Affiliation(s)
- Savannah A Lynn
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Eloise Keeling
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Rosie Munday
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Gagandeep Gabha
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Helen Griffiths
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Andrew J Lotery
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,Eye Unit, University Southampton NHS Trust, Southampton, United Kingdom
| | - J Arjuna Ratnayaka
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
115
|
Taylor-Walker G, Lynn SA, Keeling E, Munday R, Johnston DA, Page A, Scott JA, Goverdhan S, Lotery AJ, Ratnayaka JA. The Alzheimer's-related amyloid beta peptide is internalised by R28 neuroretinal cells and disrupts the microtubule associated protein 2 (MAP-2). Exp Eye Res 2016; 153:110-121. [PMID: 27751744 PMCID: PMC5131630 DOI: 10.1016/j.exer.2016.10.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 09/12/2016] [Accepted: 10/11/2016] [Indexed: 11/15/2022]
Abstract
Age-related Macular Degeneration (AMD) is a common, irreversible blinding condition that leads to the loss of central vision. AMD has a complex aetiology with both genetic as well as environmental risks factors, and share many similarities with Alzheimer's disease. Recent findings have contributed significantly to unravelling its genetic architecture that is yet to be matched by molecular insights. Studies are made more challenging by observations that aged and AMD retinas accumulate the highly pathogenic Alzheimer's-related Amyloid beta (Aβ) group of peptides, for which there appears to be no clear genetic basis. Analyses of human donor and animal eyes have identified retinal Aβ aggregates in retinal ganglion cells (RGC), the inner nuclear layer, photoreceptors as well as the retinal pigment epithelium. Aβ is also a major drusen constituent; found correlated with elevated drusen-load and age, with a propensity to aggregate in retinas of advanced AMD. Despite this evidence, how such a potent driver of neurodegeneration might impair the neuroretina remains incompletely understood, and studies into this important aspect of retinopathy remains limited. In order to address this we exploited R28 rat retinal cells which due to its heterogeneous nature, offers diverse neuroretinal cell-types in which to study the molecular pathology of Aβ. R28 cells are also unaffected by problems associated with the commonly used RGC-5 immortalised cell-line, thus providing a well-established model in which to study dynamic Aβ effects at single-cell resolution. Our findings show that R28 cells express key neuronal markers calbindin, protein kinase C and the microtubule associated protein-2 (MAP-2) by confocal immunofluorescence which has not been shown before, but also calretinin which has not been reported previously. For the first time, we reveal that retinal neurons rapidly internalised Aβ1-42, the most cytotoxic and aggregate-prone amongst the Aβ family. Furthermore, exposure to physiological amounts of Aβ1-42 for 24 h correlated with impairment to neuronal MAP-2, a cytoskeletal protein which regulates microtubule dynamics in axons and dendrites. Disruption to MAP-2 was transient, and had recovered by 48 h, although internalised Aβ persisted as discrete puncta for as long as 72 h. To assess whether Aβ could realistically localise to living retinas to mediate such effects, we subretinally injected nanomolar levels of oligomeric Aβ1-42 into wildtype mice. Confocal microscopy revealed the presence of focal Aβ deposits in RGC, the inner nuclear and the outer plexiform layers 8 days later, recapitulating naturally-occurring patterns of Aβ aggregation in aged retinas. Our novel findings describe how retinal neurons internalise Aβ to transiently impair MAP-2 in a hitherto unreported manner. MAP-2 dysfunction is reported in AMD retinas, and is thought to be involved in remodelling and plasticity of post-mitotic neurons. Our insights suggest a molecular pathway by which this could occur in the senescent eye leading to complex diseases such as AMD. Molecular basis of complex retinopathies such as AMD is incompletely understood. The Alzheimer's-related Aβ peptides are rapidly internalised by retinal neurons. Internalised Aβ is retained within neurons and transiently impairs MAP-2. Subretinally injected Aβ mimics its naturally-occurring distribution in aged retinas.
Collapse
Affiliation(s)
- George Taylor-Walker
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, SGH, MP806, Tremona Road, Southampton, SO16 6YD, United Kingdom
| | - Savannah A Lynn
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, SGH, MP806, Tremona Road, Southampton, SO16 6YD, United Kingdom
| | - Eloise Keeling
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, SGH, MP806, Tremona Road, Southampton, SO16 6YD, United Kingdom
| | - Rosie Munday
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, SGH, MP806, Tremona Road, Southampton, SO16 6YD, United Kingdom
| | - David A Johnston
- Biomedical Imaging Unit, University of Southampton, SGH, MP12, Tremona Road, Southampton, SO16 6YD, United Kingdom
| | - Anton Page
- Biomedical Imaging Unit, University of Southampton, SGH, MP12, Tremona Road, Southampton, SO16 6YD, United Kingdom
| | - Jennifer A Scott
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, SGH, MP806, Tremona Road, Southampton, SO16 6YD, United Kingdom
| | - Srini Goverdhan
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, SGH, MP806, Tremona Road, Southampton, SO16 6YD, United Kingdom
| | - Andrew J Lotery
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, SGH, MP806, Tremona Road, Southampton, SO16 6YD, United Kingdom; Eye Unit, University Southampton NHS Trust, Southampton, SO16 6YD, United Kingdom
| | - J Arjuna Ratnayaka
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, SGH, MP806, Tremona Road, Southampton, SO16 6YD, United Kingdom.
| |
Collapse
|
116
|
Effects of ionizing radiation on the mammalian brain. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 770:219-230. [DOI: 10.1016/j.mrrev.2016.08.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/11/2016] [Accepted: 08/12/2016] [Indexed: 11/21/2022]
|
117
|
Thiere M, Kliche S, Müller B, Teuber J, Nold I, Stork O. Integrin Activation Through the Hematopoietic Adapter Molecule ADAP Regulates Dendritic Development of Hippocampal Neurons. Front Mol Neurosci 2016; 9:91. [PMID: 27746719 PMCID: PMC5044701 DOI: 10.3389/fnmol.2016.00091] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 09/13/2016] [Indexed: 11/13/2022] Open
Abstract
Integrin-mediated cell adhesion and signaling is of critical importance for neuronal differentiation. Recent evidence suggests that an “inside-out” activation of β1-integrin, similar to that observed in hematopoietic cells, contributes to the growth and branching of dendrites. In this study, we investigated the role of the hematopoietic adaptor protein adhesion and degranulation promoting adapter protein (ADAP) in these processes. We demonstrate the expression of ADAP in the developing and adult nervous hippocampus, and in outgrowing dendrites of primary hippocampal neurons. We further show that ADAP occurs in a complex with another adaptor protein signal-transducing kinase-associated phosphoprotein-homolog (SKAP-HOM), with the Rap1 effector protein RAPL and the Hippo kinase macrophage-stimulating 1 (MST1), resembling an ADAP/SKAP module that has been previously described in T-cells and is critically involved in “inside-out” activation of integrins. Knock down of ADAP resulted in reduced expression of activated β1-integrin on dendrites. It furthermore reduced the differentiation of developing neurons, as indicated by reduced dendrite growth and decreased expression of the dendritic marker microtubule-associated protein 2 (MAP2). Our data suggest that an ADAP-dependent integrin-activation similar to that described in hematopoietic cells contributes to the differentiation of neuronal cells.
Collapse
Affiliation(s)
- Marlen Thiere
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University Magdeburg, Germany
| | - Stefanie Kliche
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke-University Magdeburg, Germany
| | - Bettina Müller
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University Magdeburg, Germany
| | - Jan Teuber
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University Magdeburg, Germany
| | - Isabell Nold
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University Magdeburg, Germany
| | - Oliver Stork
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-UniversityMagdeburg, Germany; Center for Behavioral Brain SciencesMagdeburg, Germany
| |
Collapse
|
118
|
Marchisella F, Coffey ET, Hollos P. Microtubule and microtubule associated protein anomalies in psychiatric disease. Cytoskeleton (Hoboken) 2016; 73:596-611. [DOI: 10.1002/cm.21300] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 04/03/2016] [Accepted: 04/13/2016] [Indexed: 12/24/2022]
Affiliation(s)
- Francesca Marchisella
- Turku Centre for Biotechnology; Åbo Akademi University and University of Turku; Finland
| | - Eleanor T. Coffey
- Turku Centre for Biotechnology; Åbo Akademi University and University of Turku; Finland
| | - Patrik Hollos
- Turku Centre for Biotechnology; Åbo Akademi University and University of Turku; Finland
| |
Collapse
|
119
|
Schartz ND, Herr SA, Madsen L, Butts SJ, Torres C, Mendez LB, Brewster AL. Spatiotemporal profile of Map2 and microglial changes in the hippocampal CA1 region following pilocarpine-induced status epilepticus. Sci Rep 2016; 6:24988. [PMID: 27143585 PMCID: PMC4855223 DOI: 10.1038/srep24988] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 04/06/2016] [Indexed: 01/01/2023] Open
Abstract
Status epilepticus (SE) triggers pathological changes to hippocampal dendrites that may promote epileptogenesis. The microtubule associated protein 2 (Map2) helps stabilize microtubules of the dendritic cytoskeleton. Recently, we reported a substantial decline in Map2 that coincided with robust microglia accumulation in the CA1 hippocampal region after an episode of SE. A spatial correlation between Map2 loss and reactive microglia was also reported in human cortex from refractory epilepsy. New evidence supports that microglia modulate dendritic structures. Thus, to identify a potential association between SE-induced Map2 and microglial changes, a spatiotemporal profile of these events is necessary. We used immunohistochemistry to determine the distribution of Map2 and the microglia marker IBA1 in the hippocampus after pilocarpine-induced SE from 4 hrs to 35 days. We found a decline in Map2 immunoreactivity in the CA1 area that reached minimal levels at 14 days post-SE and partially increased thereafter. In contrast, maximal microglia accumulation occurred in the CA1 area at 14 days post-SE. Our data indicate that SE-induced Map2 and microglial changes parallel each other’s spatiotemporal profiles. These findings may lay the foundation for future mechanistic studies to help identify potential roles for microglia in the dendritic pathology associated with SE and epilepsy.
Collapse
Affiliation(s)
- Nicole D Schartz
- Department of Psychological Sciences, West Lafayette, IN 47907, USA
| | - Seth A Herr
- Department of Psychological Sciences, West Lafayette, IN 47907, USA
| | - Lauren Madsen
- Department of Psychological Sciences, West Lafayette, IN 47907, USA
| | - Sarah J Butts
- Department of Psychological Sciences, West Lafayette, IN 47907, USA
| | - Ceidy Torres
- School of Science and Technology, Universidad del Este, Carolina, PR 00984, Puerto Rico
| | - Loyda B Mendez
- School of Science and Technology, Universidad del Este, Carolina, PR 00984, Puerto Rico
| | - Amy L Brewster
- Department of Psychological Sciences, West Lafayette, IN 47907, USA.,Weldon School of Biomedical Engineering, West Lafayette, IN 47907, USA
| |
Collapse
|
120
|
Defects in Synaptic Plasticity, Reduced NMDA-Receptor Transport, and Instability of Postsynaptic Density Proteins in Mice Lacking Microtubule-Associated Protein 1A. J Neurosci 2016; 35:15539-54. [PMID: 26609151 DOI: 10.1523/jneurosci.2671-15.2015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
UNLABELLED Microtubule-associated protein 1A (MAP1A) is a member of the major non-motor microtubule-binding proteins. It has been suggested that MAP1A tethers NMDA receptors (NRs) to the cytoskeleton by binding with proteins postsynaptic density (PSD)-93 and PSD-95, although the function of MAP1A in vivo remains elusive. The present study demonstrates that mouse MAP1A plays an essential role in maintaining synaptic plasticity through an analysis of MAP1A knock-out mice. The mice exhibited learning disabilities, which correlated with decreased long-term potentiation and long-term depression in the hippocampal neurons, as well as a concomitant reduction in the extent of NR-dependent EPSCs. Surface expression of NR2A and NR2B subunits also decreased. Enhanced activity-dependent degradation of PSD-93 and reduced transport of NR2A/2B in dendrites was likely responsible for altered receptor function in neurons lacking MAP1A. These data suggest that tethering of NR2A/2B with the cytoskeleton through MAP1A is fundamental for synaptic function. SIGNIFICANCE STATEMENT This work is the first report showing the significance of non-motor microtubule-associated protein in maintaining synaptic plasticity thorough a novel mechanism: anchoring of NMDA receptors to cytoskeleton supports transport of NMDA receptors and stabilizes postsynaptic density scaffolds binding to NMDA receptors. Newly generated mutant mice lacking MAP1A exhibited learning disabilities and reduced synaptic plasticity attributable to disruptions of the anchoring machinery.
Collapse
|
121
|
Ichinose S, Ogawa T, Hirokawa N. Mechanism of Activity-Dependent Cargo Loading via the Phosphorylation of KIF3A by PKA and CaMKIIa. Neuron 2015; 87:1022-35. [PMID: 26335646 DOI: 10.1016/j.neuron.2015.08.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 06/30/2015] [Accepted: 07/31/2015] [Indexed: 12/14/2022]
Abstract
A regulated mechanism of cargo loading is crucial for intracellular transport. N-cadherin, a synaptic adhesion molecule that is critical for neuronal function, must be precisely transported to dendritic spines in response to synaptic activity and plasticity. However, the mechanism of activity-dependent cargo loading remains unclear. To elucidate this mechanism, we investigated the activity-dependent transport of N-cadherin via its transporter, KIF3A. First, by comparing KIF3A-bound cargo vesicles with unbound KIF3A, we identified critical KIF3A phosphorylation sites and specific kinases, PKA and CaMKIIa, using quantitative phosphoanalyses. Next, mutagenesis and kinase inhibitor experiments revealed that N-cadherin transport was enhanced via phosphorylation of the KIF3A C terminus, thereby increasing cargo-loading activity. Furthermore, N-cadherin transport was enhanced during homeostatic upregulation of synaptic strength, triggered by chronic inactivation by TTX. We propose the first model of activity-dependent cargo loading, in which phosphorylation of the KIF3A C terminus upregulates the loading and transport of N-cadherin in homeostatic synaptic plasticity.
Collapse
Affiliation(s)
- Sotaro Ichinose
- Department of Cell Biology and Anatomy, Graduate School of Medicine, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tadayuki Ogawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Nobutaka Hirokawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Center of Excellence in Genome Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
122
|
Penazzi L, Bakota L, Brandt R. Microtubule Dynamics in Neuronal Development, Plasticity, and Neurodegeneration. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 321:89-169. [PMID: 26811287 DOI: 10.1016/bs.ircmb.2015.09.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neurons are the basic information-processing units of the nervous system. In fulfilling their task, they establish a structural polarity with an axon that can be over a meter long and dendrites with a complex arbor, which can harbor ten-thousands of spines. Microtubules and their associated proteins play important roles during the development of neuronal morphology, the plasticity of neurons, and neurodegenerative processes. They are dynamic structures, which can quickly adapt to changes in the environment and establish a structural scaffold with high local variations in composition and stability. This review presents a comprehensive overview about the role of microtubules and their dynamic behavior during the formation and maturation of processes and spines in the healthy brain, during aging and under neurodegenerative conditions. The review ends with a discussion of microtubule-targeted therapies as a perspective for the supportive treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Lorène Penazzi
- Department of Neurobiology, University of Osnabrück, Osnabrück, Germany
| | - Lidia Bakota
- Department of Neurobiology, University of Osnabrück, Osnabrück, Germany
| | - Roland Brandt
- Department of Neurobiology, University of Osnabrück, Osnabrück, Germany
| |
Collapse
|
123
|
Dagda RK, Das Banerjee T. Role of protein kinase A in regulating mitochondrial function and neuronal development: implications to neurodegenerative diseases. Rev Neurosci 2015; 26:359-70. [PMID: 25741943 DOI: 10.1515/revneuro-2014-0085] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 01/08/2015] [Indexed: 11/15/2022]
Abstract
In neurons, enhanced protein kinase A (PKA) signaling elevates synaptic plasticity, promotes neuronal development, and increases dopamine synthesis. By contrast, a decline in PKA signaling contributes to the etiology of several brain degenerative diseases, including Alzheimer's disease and Parkinson's disease, suggesting that PKA predominantly plays a neuroprotective role. A-kinase anchoring proteins (AKAPs) are large multidomain scaffold proteins that target PKA and other signaling molecules to distinct subcellular sites to strategically localize PKA signaling at dendrites, dendritic spines, cytosol, and axons. PKA can be recruited to the outer mitochondrial membrane by associating with three different AKAPs to regulate mitochondrial dynamics, structure, mitochondrial respiration, trafficking, dendrite morphology, and neuronal survival. In this review, we survey the myriad of essential neuronal functions modulated by PKA but place a special emphasis on mitochondrially localized PKA. Finally, we offer an updated overview of how loss of PKA signaling contributes to the etiology of several brain degenerative diseases.
Collapse
|
124
|
Regulation of fear extinction versus other affective behaviors by discrete cortical scaffolding complexes associated with NR2B and PKA signaling. Transl Psychiatry 2015; 5:e657. [PMID: 26460481 PMCID: PMC4930127 DOI: 10.1038/tp.2015.150] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 08/13/2015] [Accepted: 08/19/2015] [Indexed: 02/07/2023] Open
Abstract
In patients suffering from post-traumatic stress disorder (PTSD), fear evoked by trauma-related memories lasts long past the traumatic event and it is often complicated by general anxiety and depressed mood. This poses a treatment challenge, as drugs beneficial for some symptoms might exacerbate others. For example, in preclinical studies, antagonists of the NR2B subunit of N-methyl-d-aspartate receptors and activators of cAMP-dependent protein kinase (PKA) act as potent antidepressants and anxiolytics, but they block fear extinction. Using mice, we attempted to overcome this problem by interfering with individual NR2B and PKA signaling complexes organized by scaffolding proteins. We infused cell-permeable Tat peptides that displaced either NR2B from receptor for activated C kinase 1 (RACK1), or PKA from A-kinase anchor proteins (AKAPs) or microtubule-associated proteins (MAPs). The infusions were targeted to the retrosplenial cortex, an area involved in both fear extinction of remotely acquired memories and in mood regulation. Tat-RACK1 and Tat-AKAP enhanced fear extinction, all peptides reduced anxiety and none affected baseline depression-like behavior. However, disruption of PKA complexes distinctively interfered with the rapid antidepressant actions of the N-methyl-D-aspartate receptors antagonist MK-801 in that Tat-MAP2 blocked, whereas Tat-AKAP completely inverted the effect of MK-801 from antidepressant to depressant. These effects were unrelated to the MK-801-induced changes of brain-derived neurotrophic factor messenger RNA levels. Together, the findings suggest that NR2B-RACK1 complexes specifically contribute to fear extinction, and may provide a target for the treatment of PTSD. AKAP-PKA, on the other hand, appears to modulate fear extinction and antidepressant responses in opposite directions.
Collapse
|
125
|
Díaz D, Murias AR, Ávila-Zarza CA, Muñoz-Castañeda R, Aijón J, Alonso JR, Weruaga E. Striatal NOS1 has dimorphic expression and activity under stress and nicotine sensitization. Eur Neuropsychopharmacol 2015; 25:1683-94. [PMID: 26235957 DOI: 10.1016/j.euroneuro.2015.07.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 05/12/2015] [Accepted: 07/14/2015] [Indexed: 02/04/2023]
Abstract
Nicotine exerts its addictive influence through the meso-cortico-limbic reward system, where the striatum is essential. Nicotine addiction involves different neurotransmitters, nitric oxide (NO) being especially important, since it triggers the release of the others by positive feedback. In the nervous system, NO is mainly produced by nitric oxide synthase 1 (NOS1). However, other subtypes of synthases can also synthesize NO, and little is known about the specific role of each isoform in the process of addiction. In parallel, NOS activity and nicotine addiction are also affected by stress and sexual dimorphism. To determine the specific role of this enzyme, we analyzed both NOS expression and NO synthesis in the striatum of wild-type and NOS1-knocked out (KO) mice of both sexes in situations of nicotine sensitization and stress. Our results demonstrated differences between the caudate-putamen (CP) and nucleus accumbens (NA). With respect to NOS1 expression, the CP is a dimorphic region (27.5% lower cell density in males), but with a stable production of NO, exclusively due to this isoform. Thus, the nitrergic system of CP may not be involved in stress or nicotine addiction. Conversely, the NA is much more variable and strongly involved in both situations: its NO synthesis displays dimorphic variations at both basal (68.5% reduction in females) and stress levels (65.9% reduction in males), which disappear when nicotine is infused. Thus, the KO animals showed an increase in NO production (21.7%) in the NA, probably by NOS3, in an attempt to compensate the lack of NOS1.
Collapse
Affiliation(s)
- David Díaz
- Institute for Neuroscience of Castilla y León (INCyL), Universidad de Salamanca, Salamanca, Spain; Institute of Biomedical Research of Salamanca, IBSAL, Salamanca, Spain
| | - Azucena Rodrigo Murias
- Institute for Neuroscience of Castilla y León (INCyL), Universidad de Salamanca, Salamanca, Spain
| | | | - Rodrigo Muñoz-Castañeda
- Institute for Neuroscience of Castilla y León (INCyL), Universidad de Salamanca, Salamanca, Spain; Institute of Biomedical Research of Salamanca, IBSAL, Salamanca, Spain
| | - José Aijón
- Institute for Neuroscience of Castilla y León (INCyL), Universidad de Salamanca, Salamanca, Spain; Institute of Biomedical Research of Salamanca, IBSAL, Salamanca, Spain
| | - José Ramón Alonso
- Institute for Neuroscience of Castilla y León (INCyL), Universidad de Salamanca, Salamanca, Spain; Institute of Biomedical Research of Salamanca, IBSAL, Salamanca, Spain; Instituto de Alta Investigación, Universidad de Tarapacá, Arica, Chile
| | - Eduardo Weruaga
- Institute for Neuroscience of Castilla y León (INCyL), Universidad de Salamanca, Salamanca, Spain; Institute of Biomedical Research of Salamanca, IBSAL, Salamanca, Spain.
| |
Collapse
|
126
|
Lin Y, Dong J, Yan T, He X, Zheng X, Liang H, Sui M. Involuntary, forced and voluntary exercises are equally capable of inducing hippocampal plasticity and the recovery of cognitive function after stroke. Neurol Res 2015; 37:893-901. [DOI: 10.1179/1743132815y.0000000074] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
127
|
Mutations in the microtubule-associated protein 1A (Map1a) gene cause Purkinje cell degeneration. J Neurosci 2015; 35:4587-98. [PMID: 25788676 DOI: 10.1523/jneurosci.2757-14.2015] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The structural microtubule-associated proteins (MAPs) are critical for the organization of neuronal microtubules (MTs). Microtubule-associated protein 1A (MAP1A) is one of the most abundantly expressed MAPs in the mammalian brain. However, its in vivo function remains largely unknown. Here we describe a spontaneous mouse mutation, nm2719, which causes tremors, ataxia, and loss of cerebellar Purkinje neurons in aged homozygous mice. The nm2719 mutation disrupts the Map1a gene. We show that targeted deletion of mouse Map1a gene leads to similar neurodegenerative defects. Before neuron death, Map1a mutant Purkinje cells exhibited abnormal focal swellings of dendritic shafts and disruptions in axon initial segment (AIS) morphology. Furthermore, the MT network was reduced in the somatodendritic and AIS compartments, and both the heavy and light chains of MAP1B, another brain-enriched MAP, was aberrantly distributed in the soma and dendrites of mutant Purkinje cells. MAP1A has been reported to bind to the membrane-associated guanylate kinase (MAGUK) scaffolding proteins, as well as to MTs. Indeed, PSD-93, the MAGUK specifically enriched in Purkinje cells, was reduced in Map1a(-/-) Purkinje cells. These results demonstrate that MAP1A functions to maintain both the neuronal MT network and the level of PSD-93 in neurons of the mammalian brain.
Collapse
|
128
|
Zhou Y, Wu S, Liang C, Lin Y, Zou Y, Li K, Lu B, Shu M, Huang Y, Zhu W, Kang Z, Xu D, Hu J, Yan G. Transcriptional upregulation of microtubule-associated protein 2 is involved in the protein kinase A-induced decrease in the invasiveness of glioma cells. Neuro Oncol 2015; 17:1578-88. [PMID: 26014048 DOI: 10.1093/neuonc/nov060] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 03/14/2015] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Malignant glioma is the most lethal primary tumor of the central nervous system, with notable cell invasion causing significant recurrence. Suppression of glioma invasion is very important for improving clinical outcomes. Drugs that directly disrupt the cytoskeleton have been developed for this purpose; however, drug resistance and unsatisfactory selectivity have limited their clinical use. Previously, we reported that protein kinase A (PKA, also known as cyclic-AMP dependent protein kinase) activation induced the differentiation of glioma cells. METHODS We used several small molecular inhibitors and RNA interference, combined with wound healing assays, Matrigel transwell assay, and microscopic observation, to determine whether activation of the PKA pathway could inhibit the invasion of human glioma cells. RESULTS Activation of PKA decreased the invasion of glioma cells. The mechanism operated via transcriptional upregulation of microtubule-associated protein 2 (MAP2), which was activated by the PKA pathway and led to ossification of microtubule dynamics via polymerization of tubulin. This resulted in morphological changes and a reduction in glioma cell invasion. Furthermore, chromosome immunoprecipitation and quantitative real-time polymerase chain reaction showed that signal transducer and activator of transcription 3 (STAT3) is involved in the transcriptional upregulation of MAP2. CONCLUSION Our findings suggested that PKA may represent a potential target for anti-invasion glioma therapy and that the downstream modulators (eg, STAT3/MAP2) partially mediate the effects of PKA.
Collapse
Affiliation(s)
- Yuxi Zhou
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (Y.Z., S.W., Y.L., K.L., B.L., M.S., Y.H., W.Z., D.X., J.H., G.Y.); Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (C.L.); Department of Imaging, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (Y.Z., Z.K.); Department of Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (J.H.)
| | - Sihan Wu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (Y.Z., S.W., Y.L., K.L., B.L., M.S., Y.H., W.Z., D.X., J.H., G.Y.); Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (C.L.); Department of Imaging, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (Y.Z., Z.K.); Department of Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (J.H.)
| | - Chaofeng Liang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (Y.Z., S.W., Y.L., K.L., B.L., M.S., Y.H., W.Z., D.X., J.H., G.Y.); Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (C.L.); Department of Imaging, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (Y.Z., Z.K.); Department of Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (J.H.)
| | - Yuan Lin
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (Y.Z., S.W., Y.L., K.L., B.L., M.S., Y.H., W.Z., D.X., J.H., G.Y.); Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (C.L.); Department of Imaging, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (Y.Z., Z.K.); Department of Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (J.H.)
| | - Yan Zou
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (Y.Z., S.W., Y.L., K.L., B.L., M.S., Y.H., W.Z., D.X., J.H., G.Y.); Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (C.L.); Department of Imaging, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (Y.Z., Z.K.); Department of Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (J.H.)
| | - Kai Li
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (Y.Z., S.W., Y.L., K.L., B.L., M.S., Y.H., W.Z., D.X., J.H., G.Y.); Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (C.L.); Department of Imaging, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (Y.Z., Z.K.); Department of Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (J.H.)
| | - Bingzheng Lu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (Y.Z., S.W., Y.L., K.L., B.L., M.S., Y.H., W.Z., D.X., J.H., G.Y.); Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (C.L.); Department of Imaging, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (Y.Z., Z.K.); Department of Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (J.H.)
| | - Minfeng Shu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (Y.Z., S.W., Y.L., K.L., B.L., M.S., Y.H., W.Z., D.X., J.H., G.Y.); Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (C.L.); Department of Imaging, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (Y.Z., Z.K.); Department of Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (J.H.)
| | - Yijun Huang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (Y.Z., S.W., Y.L., K.L., B.L., M.S., Y.H., W.Z., D.X., J.H., G.Y.); Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (C.L.); Department of Imaging, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (Y.Z., Z.K.); Department of Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (J.H.)
| | - Wenbo Zhu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (Y.Z., S.W., Y.L., K.L., B.L., M.S., Y.H., W.Z., D.X., J.H., G.Y.); Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (C.L.); Department of Imaging, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (Y.Z., Z.K.); Department of Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (J.H.)
| | - Zhuang Kang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (Y.Z., S.W., Y.L., K.L., B.L., M.S., Y.H., W.Z., D.X., J.H., G.Y.); Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (C.L.); Department of Imaging, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (Y.Z., Z.K.); Department of Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (J.H.)
| | - Dong Xu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (Y.Z., S.W., Y.L., K.L., B.L., M.S., Y.H., W.Z., D.X., J.H., G.Y.); Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (C.L.); Department of Imaging, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (Y.Z., Z.K.); Department of Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (J.H.)
| | - Jun Hu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (Y.Z., S.W., Y.L., K.L., B.L., M.S., Y.H., W.Z., D.X., J.H., G.Y.); Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (C.L.); Department of Imaging, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (Y.Z., Z.K.); Department of Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (J.H.)
| | - Guangmei Yan
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (Y.Z., S.W., Y.L., K.L., B.L., M.S., Y.H., W.Z., D.X., J.H., G.Y.); Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (C.L.); Department of Imaging, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (Y.Z., Z.K.); Department of Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (J.H.)
| |
Collapse
|
129
|
Kim BJ, Lee YA, Kim KJ, Kim YH, Jung MS, Ha SJ, Kang HG, Jung SE, Kim BG, Choi YR, Do JT, Ryu BY. Effects of paracrine factors on CD24 expression and neural differentiation of male germline stem cells. Int J Mol Med 2015; 36:255-62. [PMID: 25976705 DOI: 10.3892/ijmm.2015.2208] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 04/27/2015] [Indexed: 11/05/2022] Open
Abstract
Spermatogonial stem cells (SSCs) are adult male germ cells that develop after birth. Throughout the lifetime of an organism, SSCs sustain spermatogenesis through self-renewal and produce daughter cells that differentiate into spermatozoa. Several studies have demonstrated that SSCs can acquire pluripotency under appropriate culture conditions, thus becoming multipotent germline stem cells (mGSCs) that express markers of pluripotency in culture and form teratomas following transplantation into immunodeficient mice. In the present study, we generated neural precursor cells expressing CD24, a neural precursor marker, from pluripotent stem cell lines and demonstrated that these cells effectively differentiated along a neural lineage in vitro. In addition, we found that paracrine factors promoted CD24 expression during the neural differentiation of mGSCs. Our results indicated that the expression of CD24, enhanced by a combination of retinoic acid (RA), noggin and fibroblast growth factor 8 (FGF8) under serum-free conditions promoted neural precursor differentiation. Using a simple cell sorting method, we were able to collect neural precursor cells with the potential to differentiate from mGSCs into mature neurons and astrocytes in vitro.
Collapse
Affiliation(s)
- Bang-Jin Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Yong-An Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Ki-Jung Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Yong-Hee Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Mi-Seon Jung
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Seung-Jung Ha
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Hyun-Gu Kang
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Sang-Eun Jung
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Byung-Gak Kim
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, East Lansing, MI, USA
| | - Yu-Ri Choi
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Jeong Tae Do
- Department of Animal Biotechnology, College of Animal Bioscience and Technology, Konkuk University, Seoul, Republic of Korea
| | - Buom-Yong Ryu
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| |
Collapse
|
130
|
Schlögel MJ, Mendola A, Fastré E, Vasudevan P, Devriendt K, de Ravel TJL, Van Esch H, Casteels I, Arroyo Carrera I, Cristofoli F, Fieggen K, Jones K, Lipson M, Balikova I, Singer A, Soller M, Mercedes Villanueva M, Revencu N, Boon LM, Brouillard P, Vikkula M. No evidence of locus heterogeneity in familial microcephaly with or without chorioretinopathy, lymphedema, or mental retardation syndrome. Orphanet J Rare Dis 2015; 10:52. [PMID: 25934493 PMCID: PMC4464120 DOI: 10.1186/s13023-015-0271-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 04/20/2015] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Microcephaly with or without chorioretinopathy, lymphedema, or mental retardation syndrome (MCLMR) is a rare autosomal dominant disorder with variable expressivity. It is characterized by mild-to-severe microcephaly, often associated with intellectual disability, ocular defects and lymphedema. It can be sporadic or inherited. Eighty-seven patients have been described to carry a mutation in KIF11, which encodes a homotetrameric motor kinesin, EG5. METHODS We tested 23 unreported MCLMR index patients for KIF11. We also reviewed the clinical phenotypes of all our patients as well as of those described in previously published studies. RESULTS We identified 14 mutations, 12 of which are novel. We detected mutations in 12 affected individuals, from 6 out of 6 familial cases, and in 8 out of 17 sporadic patients. Phenotypic evaluation of patients (our 26 + 61 earlier published = 87) revealed microcephaly in 91%, eye anomalies in 72%, intellectual disability in 67% and lymphedema in 47% of the patients. Unaffected carriers were rare (4 out of 87: 5%). Family history is not a requisite for diagnosis; 31% (16 out of 52) were de novo cases. CONCLUSIONS All inherited cases, and 50% of sporadic cases of MCLMR are due to germline KIF11 mutations. It is possible that mosaic KIF11 mutations cause the remainder of sporadic cases, which the methods employed here were not designed to detect. On the other hand, some of them might have another mimicking disorder and genetic defect, as microcephaly is highly heterogeneous. In aggregate, KIF11 mutations likely cause the majority, if not all, of MCLMR.
Collapse
Affiliation(s)
- Matthieu J Schlögel
- Laboratory of Human Molecular Genetics, de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 74, bte B1.74.06, B-1200, Brussels, Belgium.
| | - Antonella Mendola
- Laboratory of Human Molecular Genetics, de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 74, bte B1.74.06, B-1200, Brussels, Belgium.
| | - Elodie Fastré
- Laboratory of Human Molecular Genetics, de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 74, bte B1.74.06, B-1200, Brussels, Belgium.
| | - Pradeep Vasudevan
- Department of Clinical Genetics, University Hospitals of Leicester, Leicester Royal Infirmary, Leicester, LE1 5WW, UK.
| | - Koen Devriendt
- Center for Human Genetics, University Hospitals Leuven, KU Leuven, 3000, Leuven, Belgium.
| | - Thomy J L de Ravel
- Center for Human Genetics, University Hospitals Leuven, KU Leuven, 3000, Leuven, Belgium.
| | - Hilde Van Esch
- Center for Human Genetics, University Hospitals Leuven, KU Leuven, 3000, Leuven, Belgium.
| | - Ingele Casteels
- Department of Ophthalmology, St Rafael University Hospitals, 3000, Leuven, Belgium.
| | | | - Francesca Cristofoli
- Center for Human Genetics, University Hospitals Leuven, KU Leuven, 3000, Leuven, Belgium.
| | - Karen Fieggen
- Division of Human Genetics, University of Cape Town, 7700, Cape Town, South Africa.
| | - Katheryn Jones
- Medical Genetics, Kaiser Permanente, Sacramento, CA, 95815, USA.
| | - Mark Lipson
- Medical Genetics, Kaiser Permanente, Sacramento, CA, 95815, USA.
| | - Irina Balikova
- Department of Ophthalmology, Queen Fabiola Children's University Hospital (HUDERF), 1020, Brussels, Belgium.
| | - Ami Singer
- Pediatrics and Medical Genetics, Barzilai Medical Center, 78306, Ashkelon, Israel.
| | - Maria Soller
- Department of Clinical Genetics, Lund University Hospital, 221 85, Lund, Sweden.
| | - María Mercedes Villanueva
- General Hospital of Florencio Varela, Children's Hospital Dr. Pedro Elizalde and Foundation for Neurological Diseases of Childhood (FLENI), C1270AAN, Buenos Aires, Capital Federal, Argentina.
| | - Nicole Revencu
- Laboratory of Human Molecular Genetics, de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 74, bte B1.74.06, B-1200, Brussels, Belgium. .,Center for Human Genetics, Cliniques universitaires Saint-Luc, Université catholique de Louvain, 1200, Brussels, Belgium.
| | - Laurence M Boon
- Laboratory of Human Molecular Genetics, de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 74, bte B1.74.06, B-1200, Brussels, Belgium. .,Center for Vascular Anomalies, Cliniques universitaires Saint-Luc, Université catholique de Louvain, 1200, Brussels, Belgium.
| | - Pascal Brouillard
- Laboratory of Human Molecular Genetics, de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 74, bte B1.74.06, B-1200, Brussels, Belgium.
| | - Miikka Vikkula
- Laboratory of Human Molecular Genetics, de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 74, bte B1.74.06, B-1200, Brussels, Belgium. .,Center for Vascular Anomalies, Cliniques universitaires Saint-Luc, Université catholique de Louvain, 1200, Brussels, Belgium. .,Walloon Excellence in Lifesciences and Biotechnology (WELBIO), Université catholique de Louvain, 1200, Brussels, Belgium.
| |
Collapse
|
131
|
Bele MS, Gajare KA, Deshmukh AA. Caloric restriction mimetic 2-deoxyglucose maintains cytoarchitecture and reduces tau phosphorylation in primary culture of mouse hippocampal pyramidal neurons. In Vitro Cell Dev Biol Anim 2015; 51:546-55. [PMID: 25678460 DOI: 10.1007/s11626-015-9867-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 01/01/2015] [Indexed: 12/26/2022]
Abstract
Typical form of neurons is crucially important for their functions. This is maintained by microtubules and associated proteins like tau. Hyperphosphorylation of tau is a major concern in neurodegenerative diseases. Glycogen synthase kinase3β (GSK3β) and cyclin-dependent protein kinase 5 (Cdk5) are the enzymes that govern tau phosphorylation. Currently, efforts are being made to target GSK3β and Cdk5 as possible therapeutic avenues to control tau phosphorylation and treat neurodegenerative diseases related to taupathies. In a number of studies, caloric restriction mimetic 2-deoxyglucose (C6H12O5) was found to be beneficial in improving the brain functions. However, no reports are available on the effect of 2-deoxyglucose 2-DG on tau phosphorylation. In the present study, hippocampal pyramidal neurons from E17 mouse embryos were isolated and cultured on poly-L-lysine-coated coverslips. Neurons from the experimental group were treated with 10 mM 2-deoxyglucose. The treatment of 2-DG resulted in healthier neuronal morphology in terms of significantly lower number of cytoplasmic vacuoles, little or no membrane blebbings, maintained axon hillock and intact neurites. There were decreased immunofluorescence signals for GSK3β, pTau at Ser262, Cdk5 and pTau at Ser235 suggesting decreased tau phosphorylation, which was further confirmed by Western blotting. The results indicate the beneficial effects of 2-DG in controlling the tau phosphorylation and maintaining the healthy neuronal cytoarchitecture.
Collapse
Affiliation(s)
- M S Bele
- Cellular stress response laboratory, Cell Biology Division, Department of Zoology, Shivaji University, Kolhapur, India
| | | | | |
Collapse
|
132
|
Wang Y, Wang Y, Dong J, Wei W, Song B, Min H, Teng W, Chen J. Developmental hypothyroxinaemia and hypothyroidism limit dendritic growth of cerebellar Purkinje cells in rat offspring: involvement of microtubule-associated protein 2 (MAP2) and stathmin. Neuropathol Appl Neurobiol 2015; 40:398-415. [PMID: 23841869 DOI: 10.1111/nan.12074] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 07/04/2013] [Indexed: 11/28/2022]
Abstract
AIMS Iodine is essential for the synthesis of thyroid hormone. Iodine deficiency (ID)-induced hypothyroxinaemia and hypothyroidism during developmental period contribute to impairments of function in the brain, such as psychomotor and motor alterations. However, the mechanisms are still unclear. Therefore, the present research is to study the effects of developmental hypothyroxinaemia caused by mild ID and developmental hypothyroidism caused by severe ID or methimazole (MMZ) on dendritic growth in filial cerebellar Purkinje cells (PCs) and the underlying mechanisms. METHODS A maternal hypothyroxinaemia model was established in Wistar rats using a mild ID diet, and two maternal hypothyroidism models were developed with either severe ID diet or MMZ water. We examined the total dendritic length using immunofluorescence, and Western blot analysis was conducted to investigate the activity of microtubule-associated protein 2 (MAP2), stathmin and calcium/calmodulin-dependent protein kinase II (CaMKII). RESULTS Hypothyroxinaemia and hypothyroidism reduced the total dendritic length of cerebellar PCs, decreased MAP2 and its phosphorylation, increased stathmin but reduced its phosphorylation and down-regulated the activity of CaMKII and its phosphorylation in cerebellar PCs on postnatal day (PN) 7, PN14 and PN21. CONCLUSION Developmental hypothyroxinaemia induced by mild ID and hypothyroidism induced by severe ID or MMZ limit PCs dendritic growth, which may involve in the disturbance of MAP2 and stathmin in a CaMKII-dependent manner. It suggests a potential mechanism of motor coordination impairments caused by developmental hypothyroxinaemia and hypothyroidism.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | | | | | | | | | | | | | | |
Collapse
|
133
|
Hansberg-Pastor V, González-Arenas A, Piña-Medina AG, Camacho-Arroyo I. Sex Hormones Regulate Cytoskeletal Proteins Involved in Brain Plasticity. Front Psychiatry 2015; 6:165. [PMID: 26635640 PMCID: PMC4653291 DOI: 10.3389/fpsyt.2015.00165] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 11/02/2015] [Indexed: 01/22/2023] Open
Abstract
In the brain of female mammals, including humans, a number of physiological and behavioral changes occur as a result of sex hormone exposure. Estradiol and progesterone regulate several brain functions, including learning and memory. Sex hormones contribute to shape the central nervous system by modulating the formation and turnover of the interconnections between neurons as well as controlling the function of glial cells. The dynamics of neuron and glial cells morphology depends on the cytoskeleton and its associated proteins. Cytoskeletal proteins are necessary to form neuronal dendrites and dendritic spines, as well as to regulate the diverse functions in astrocytes. The expression pattern of proteins, such as actin, microtubule-associated protein 2, Tau, and glial fibrillary acidic protein, changes in a tissue-specific manner in the brain, particularly when variations in sex hormone levels occur during the estrous or menstrual cycles or pregnancy. Here, we review the changes in structure and organization of neurons and glial cells that require the participation of cytoskeletal proteins whose expression and activity are regulated by estradiol and progesterone.
Collapse
Affiliation(s)
- Valeria Hansberg-Pastor
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México , Mexico City , Mexico
| | - Aliesha González-Arenas
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México , Mexico City , Mexico
| | - Ana Gabriela Piña-Medina
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México , Mexico City , Mexico
| | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México , Mexico City , Mexico
| |
Collapse
|
134
|
Kempf SJ, Casciati A, Buratovic S, Janik D, von Toerne C, Ueffing M, Neff F, Moertl S, Stenerlöw B, Saran A, Atkinson MJ, Eriksson P, Pazzaglia S, Tapio S. The cognitive defects of neonatally irradiated mice are accompanied by changed synaptic plasticity, adult neurogenesis and neuroinflammation. Mol Neurodegener 2014; 9:57. [PMID: 25515237 PMCID: PMC4280038 DOI: 10.1186/1750-1326-9-57] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 12/12/2014] [Indexed: 02/07/2023] Open
Abstract
Background/purpose of the study Epidemiological evidence suggests that low doses of ionising radiation (≤1.0 Gy) produce persistent alterations in cognition if the exposure occurs at a young age. The mechanisms underlying such alterations are unknown. We investigated the long-term effects of low doses of total body gamma radiation on neonatally exposed NMRI mice on the molecular and cellular level to elucidate neurodegeneration. Results Significant alterations in spontaneous behaviour were observed at 2 and 4 months following a single 0.5 or 1.0 Gy exposure. Alterations in the brain proteome, transcriptome, and several miRNAs were analysed 6–7 months post-irradiation in the hippocampus, dentate gyrus (DG) and cortex. Signalling pathways related to synaptic actin remodelling such as the Rac1-Cofilin pathway were altered in the cortex and hippocampus. Further, synaptic proteins MAP-2 and PSD-95 were increased in the DG and hippocampus (1.0 Gy). The expression of synaptic plasticity genes Arc, c-Fos and CREB was persistently reduced at 1.0 Gy in the hippocampus and cortex. These changes were coupled to epigenetic modulation via increased levels of microRNAs (miR-132/miR-212, miR-134). Astrogliosis, activation of insulin-growth factor/insulin signalling and increased level of microglial cytokine TNFα indicated radiation-induced neuroinflammation. In addition, adult neurogenesis within the DG was persistently negatively affected after irradiation, particularly at 1.0 Gy. Conclusion These data suggest that neurocognitive disorders may be induced in adults when exposed at a young age to low and moderate cranial doses of radiation. This raises concerns about radiation safety standards and regulatory practices. Electronic supplementary material The online version of this article (doi:10.1186/1750-1326-9-57) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Soile Tapio
- Institute of Radiation Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany.
| |
Collapse
|
135
|
Deng SS, Wu LY, Wang YC, Cao PR, Xu L, Li QR, Liu M, Zhang L, Jiang YJ, Yang XY, Sun SN, Tan MJ, Qian M, Zang Y, Feng L, Li J. Protein kinase A rescues microtubule affinity-regulating kinase 2-induced microtubule instability and neurite disruption by phosphorylating serine 409. J Biol Chem 2014; 290:3149-60. [PMID: 25512381 DOI: 10.1074/jbc.m114.629873] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Microtubule affinity-regulating kinase 2 (MARK2)/PAR-1b and protein kinase A (PKA) are both involved in the regulation of microtubule stability and neurite outgrowth, but whether a direct cross-talk exists between them remains unclear. Here, we found the disruption of microtubule and neurite outgrowth induced by MARK2 overexpression was blocked by active PKA. The interaction between PKA and MARK2 was confirmed by coimmunoprecipitation and immunocytochemistry both in vitro and in vivo. PKA was found to inhibit MARK2 kinase activity by phosphorylating a novel site, serine 409. PKA could not reverse the microtubule disruption effect induced by a serine 409 to alanine (Ala) mutant of MARK2 (MARK2 S409A). In contrast, mutation of MARK2 serine 409 to glutamic acid (Glu) (MARK2 S409E) did not affect microtubule stability and neurite outgrowth. We propose that PKA functions as an upstream inhibitor of MARK2 in regulating microtubule stability and neurite outgrowth by directly interacting and phosphorylating MARK2.
Collapse
Affiliation(s)
- Si-Si Deng
- From the National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shoujing Road, Shanghai 201203, China
| | - Le-Yu Wu
- Department of Neuropharmacology, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Ya-Chao Wang
- School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Peng-Rong Cao
- From the National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shoujing Road, Shanghai 201203, China
| | - Lei Xu
- From the National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shoujing Road, Shanghai 201203, China
| | - Qian-Ru Li
- From the National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shoujing Road, Shanghai 201203, China
| | - Meng Liu
- From the National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shoujing Road, Shanghai 201203, China
| | - Lun Zhang
- From the National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shoujing Road, Shanghai 201203, China
| | - Yue-Jing Jiang
- From the National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shoujing Road, Shanghai 201203, China
| | - Xiao-Yu Yang
- Department of Neuropharmacology, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Sheng-Nan Sun
- The Chemical Proteomics Center and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China, and
| | - Min-jia Tan
- The Chemical Proteomics Center and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China, and
| | - Min Qian
- School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Yi Zang
- From the National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shoujing Road, Shanghai 201203, China,
| | - Linyin Feng
- Department of Neuropharmacology, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China,
| | - Jia Li
- From the National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shoujing Road, Shanghai 201203, China, School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| |
Collapse
|
136
|
Moyer CE, Shelton MA, Sweet RA. Dendritic spine alterations in schizophrenia. Neurosci Lett 2014; 601:46-53. [PMID: 25478958 DOI: 10.1016/j.neulet.2014.11.042] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/20/2014] [Accepted: 11/25/2014] [Indexed: 12/19/2022]
Abstract
Schizophrenia is a chronic illness affecting approximately 0.5-1% of the world's population. The etiology of schizophrenia is complex, including multiple genes, and contributing environmental effects that adversely impact neurodevelopment. Nevertheless, a final common result, present in many subjects with schizophrenia, is impairment of pyramidal neuron dendritic morphology in multiple regions of the cerebral cortex. In this review, we summarize the evidence of reduced dendritic spine density and other dendritic abnormalities in schizophrenia, evaluate current data that informs the neurodevelopment timing of these impairments, and discuss what is known about possible upstream sources of dendritic spine loss in this illness.
Collapse
Affiliation(s)
- Caitlin E Moyer
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Micah A Shelton
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Robert A Sweet
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; VISN 4 Mental Illness Research, Education and Clinical Center (MIRECC), VA Pittsburgh Healthcare System, Pittsburgh, PA 15206, USA.
| |
Collapse
|
137
|
Niwa S. Kinesin superfamily proteins and the regulation of microtubule dynamics in morphogenesis. Anat Sci Int 2014; 90:1-6. [PMID: 25347970 DOI: 10.1007/s12565-014-0259-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 10/08/2014] [Indexed: 11/29/2022]
Abstract
Kinesin superfamily proteins (KIFs) are microtubule-dependent molecular motors that serve as sources of force for intracellular transport and cell division. Recent studies have revealed new roles of KIFs as microtubule stabilizers and depolymerizers, and these activities are fundamental to cellular morphogenesis and mammalian development. KIF2A and KIF19A have microtubule-depolymerizing activities and regulate the neuronal morphology and cilia length, respectively. KIF21A and KIF26A work as microtubule stabilizers that regulate axonal morphology. Morphological defects that are similar to human diseases are observed in mice in which these KIF genes have been deleted. Actually, KIF2A and KIF21A have been identified as causes of human neuronal diseases. In this review, the functions of these atypical KIFs that regulate microtubule dynamics are discussed. Moreover, some interesting unanswered questions and hypothetical answers to them are discussed.
Collapse
Affiliation(s)
- Shinsuke Niwa
- Department of Biological Sciences, Stanford University, 385 Serra Mall, Herrin Lab 144, Stanford, CA, 94305, USA,
| |
Collapse
|
138
|
Strong Reduction of Low-Density Lipoprotein Receptor/Apolipoprotein E Expressions by Telmisartan in Cerebral Cortex and Hippocampus of Stroke Resistant Spontaneously Hypertensive Rats. J Stroke Cerebrovasc Dis 2014; 23:2350-61. [DOI: 10.1016/j.jstrokecerebrovasdis.2014.05.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/30/2014] [Accepted: 05/07/2014] [Indexed: 12/23/2022] Open
|
139
|
Lei M, Dong D, Mu S, Pan YH, Zhang S. Comparison of brain transcriptome of the greater horseshoe bats (Rhinolophus ferrumequinum) in active and torpid episodes. PLoS One 2014; 9:e107746. [PMID: 25251558 PMCID: PMC4174523 DOI: 10.1371/journal.pone.0107746] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Accepted: 08/21/2014] [Indexed: 01/03/2023] Open
Abstract
Hibernation is an energy-saving strategy which is widely adopted by heterothermic mammals to survive in the harsh environment. The greater horseshoe bat (Rhinolophus ferrumequinum) can hibernate for a long period in the hibernation season. However, the global gene expression changes between hibernation and non-hibernation season in the greater horseshoe bat remain largely unknown. We herein reported a comprehensive survey of differential gene expression in the brain between winter hibernating and summer active greater horseshoe bats using next-generation sequencing technology. A total of 90,314,174 reads were generated and we identified 1,573 differentially expressed genes between active and torpid states. Interestingly, we found that differentially expressed genes are over-represented in some GO categories (such as metabolic suppression, cellular stress responses and oxidative stress), which suggests neuroprotective strategies might play an important role in hibernation control mechanisms. Our results determined to what extent the brain tissue of the greater horseshoe bats differ in gene expression between summer active and winter hibernating states and provided comprehensive insights into the adaptive mechanisms of bat hibernation.
Collapse
Affiliation(s)
- Ming Lei
- Institute of Molecular Ecology and Evolution, SKLEC & IECR, East China Normal University, Shanghai, China
| | - Dong Dong
- Institute of Molecular Ecology and Evolution, SKLEC & IECR, East China Normal University, Shanghai, China
- * E-mail: (DD); (SZ)
| | - Shuo Mu
- Institute of Molecular Ecology and Evolution, SKLEC & IECR, East China Normal University, Shanghai, China
| | - Yi-Hsuan Pan
- Institute of Molecular Ecology and Evolution, SKLEC & IECR, East China Normal University, Shanghai, China
| | - Shuyi Zhang
- Institute of Molecular Ecology and Evolution, SKLEC & IECR, East China Normal University, Shanghai, China
- * E-mail: (DD); (SZ)
| |
Collapse
|
140
|
Komulainen E, Zdrojewska J, Freemantle E, Mohammad H, Kulesskaya N, Deshpande P, Marchisella F, Mysore R, Hollos P, Michelsen KA, Mågard M, Rauvala H, James P, Coffey ET. JNK1 controls dendritic field size in L2/3 and L5 of the motor cortex, constrains soma size, and influences fine motor coordination. Front Cell Neurosci 2014; 8:272. [PMID: 25309320 PMCID: PMC4162472 DOI: 10.3389/fncel.2014.00272] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 08/20/2014] [Indexed: 11/23/2022] Open
Abstract
Genetic anomalies on the JNK pathway confer susceptibility to autism spectrum disorders, schizophrenia, and intellectual disability. The mechanism whereby a gain or loss of function in JNK signaling predisposes to these prevalent dendrite disorders, with associated motor dysfunction, remains unclear. Here we find that JNK1 regulates the dendritic field of L2/3 and L5 pyramidal neurons of the mouse motor cortex (M1), the main excitatory pathway controlling voluntary movement. In Jnk1-/- mice, basal dendrite branching of L5 pyramidal neurons is increased in M1, as is cell soma size, whereas in L2/3, dendritic arborization is decreased. We show that JNK1 phosphorylates rat HMW-MAP2 on T1619, T1622, and T1625 (Uniprot P15146) corresponding to mouse T1617, T1620, T1623, to create a binding motif, that is critical for MAP2 interaction with and stabilization of microtubules, and dendrite growth control. Targeted expression in M1 of GFP-HMW-MAP2 that is pseudo-phosphorylated on T1619, T1622, and T1625 increases dendrite complexity in L2/3 indicating that JNK1 phosphorylation of HMW-MAP2 regulates the dendritic field. Consistent with the morphological changes observed in L2/3 and L5, Jnk1-/- mice exhibit deficits in limb placement and motor coordination, while stride length is reduced in older animals. In summary, JNK1 phosphorylates HMW-MAP2 to increase its stabilization of microtubules while at the same time controlling dendritic fields in the main excitatory pathway of M1. Moreover, JNK1 contributes to normal functioning of fine motor coordination. We report for the first time, a quantitative Sholl analysis of dendrite architecture, and of motor behavior in Jnk1-/- mice. Our results illustrate the molecular and behavioral consequences of interrupted JNK1 signaling and provide new ground for mechanistic understanding of those prevalent neuropyschiatric disorders where genetic disruption of the JNK pathway is central.
Collapse
Affiliation(s)
- Emilia Komulainen
- Turku Centre for Biotechnology, Åbo Akademi University and University of Turku Turku, Finland
| | - Justyna Zdrojewska
- Turku Centre for Biotechnology, Åbo Akademi University and University of Turku Turku, Finland
| | - Erika Freemantle
- Turku Centre for Biotechnology, Åbo Akademi University and University of Turku Turku, Finland
| | - Hasan Mohammad
- Turku Centre for Biotechnology, Åbo Akademi University and University of Turku Turku, Finland
| | | | - Prasannakumar Deshpande
- Turku Centre for Biotechnology, Åbo Akademi University and University of Turku Turku, Finland
| | - Francesca Marchisella
- Turku Centre for Biotechnology, Åbo Akademi University and University of Turku Turku, Finland
| | - Raghavendra Mysore
- Turku Centre for Biotechnology, Åbo Akademi University and University of Turku Turku, Finland
| | - Patrik Hollos
- Turku Centre for Biotechnology, Åbo Akademi University and University of Turku Turku, Finland
| | | | - Mats Mågard
- Institute for Immune Technology, Medicon Village, University of Lund Lund, Sweden
| | - Heikki Rauvala
- Neuroscience Center, University of Helsinki Helsinki, Finland
| | - Peter James
- Institute for Immune Technology, Medicon Village, University of Lund Lund, Sweden
| | - Eleanor T Coffey
- Turku Centre for Biotechnology, Åbo Akademi University and University of Turku Turku, Finland
| |
Collapse
|
141
|
Olsen RHJ, Marzulla T, Raber J. Impairment in extinction of contextual and cued fear following post-training whole-body irradiation. Front Behav Neurosci 2014; 8:231. [PMID: 25071488 PMCID: PMC4078460 DOI: 10.3389/fnbeh.2014.00231] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 06/07/2014] [Indexed: 12/30/2022] Open
Abstract
Because of the use of radiation in cancer therapy, the risk of nuclear contamination from power plants, military conflicts, and terrorism, there is a compelling scientific and public health interest in the effects of environmental radiation exposure on brain function, in particular hippocampal function and learning and memory. Previous studies have emphasized changes in learning and memory following radiation exposure. These approaches have ignored the question of how radiation exposure might impact recently acquired memories, which might be acquired under traumatic circumstances (cancer treatment, nuclear disaster, etc.). To address the question of how radiation exposure might affect the processing and recall of recently acquired memories, we employed a fear conditioning paradigm wherein animals were trained, and subsequently irradiated (whole-body X-ray irradiation) 24 h later. Animals were given 2 weeks to recover, and were tested for retention and extinction of hippocampus-dependent contextual fear conditioning or hippocampus-independent cued fear conditioning. Exposure to irradiation following training was associated with reduced daily increases in body weights over the 22-days of the study and resulted in greater freezing levels and aberrant extinction 2 weeks later. This was also observed when the intensity of the training protocol was increased. Cued freezing levels and measures of anxiety 2 weeks after training were also higher in irradiated than sham-irradiated mice. In contrast to contextual freezing levels, cued freezing levels were even higher in irradiated mice receiving 5 shocks during training than sham-irradiated mice receiving 10 shocks during training. In addition, the effects of radiation on extinction of contextual fear were more profound than those on the extinction of cued fear. Thus, whole-body irradiation elevates contextual and cued fear memory recall.
Collapse
Affiliation(s)
- Reid H J Olsen
- Department of Behavioral Neuroscience, Oregon Health and Science University , Portland, OR , USA
| | - Tessa Marzulla
- Department of Behavioral Neuroscience, Oregon Health and Science University , Portland, OR , USA
| | - Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health and Science University , Portland, OR , USA ; Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University , Portland, OR , USA ; Department of Neurology, Oregon Health and Science University , Portland, OR , USA ; Department of Radiation Medicine, Oregon Health and Science University , Portland, OR , USA
| |
Collapse
|
142
|
Grosso H, Woo JM, Lee KW, Im JY, Masliah E, Junn E, Mouradian MM. Transglutaminase 2 exacerbates α-synuclein toxicity in mice and yeast. FASEB J 2014; 28:4280-91. [PMID: 24970392 DOI: 10.1096/fj.14-251413] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
α-Synuclein is a key pathogenic protein that aggregates in hallmark lesions in Parkinson's disease and other α-synucleinopathies. Prior in vitro studies demonstrated that it is a substrate for cross-linking by transglutaminase 2 (TG2) into higher-order species. Here we investigated whether this increased aggregation occurs in vivo and whether TG2 exacerbates α-synuclein toxicity in Mus musculus and Saccharomyces cerevisiae. Compared with α-synuclein transgenic (Syn(Tg)) mice, animals double transgenic for human α-synuclein and TG2 (TG2(Tg)/Syn(Tg)) manifested greater high-molecular-weight insoluble species of α-synuclein in brain lysates and developed α-synuclein aggregates in the synaptic vesicle fraction. In addition, larger proteinase K-resistant aggregates developed, along with increased thioflavin-S-positive amyloid fibrils. This correlated with an exaggerated neuroinflammatory response, as seen with more astrocytes and microglia. Further neuronal damage was suggested by greater morphological disruption of nerve fibers and a trend toward decreased c-Fos immunoreactive neurons. Finally, the performance of TG2(Tg)/Syn(Tg) animals on motor behavioral tasks was worse relative to Syn(Tg) mice. Greater toxicity of α-synuclein was also demonstrated in yeast cells coexpressing TG2. Our findings demonstrate that TG2 promotes the aggregation of α-synuclein in vivo and that this is associated with aggravated toxicity of α-synuclein and its downstream neuropathologic consequences.
Collapse
Affiliation(s)
- Hilary Grosso
- Center for Neurodegenerative and Neuroimmunologic Diseases, Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey, USA; and
| | - Jong-Min Woo
- Center for Neurodegenerative and Neuroimmunologic Diseases, Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey, USA; and
| | - Kang-Woo Lee
- Center for Neurodegenerative and Neuroimmunologic Diseases, Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey, USA; and
| | - Joo-Young Im
- Center for Neurodegenerative and Neuroimmunologic Diseases, Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey, USA; and
| | - Eliezer Masliah
- Department of Neurosciences, School of Medicine, University of California-San Diego, La Jolla, California, USA
| | - Eunsung Junn
- Center for Neurodegenerative and Neuroimmunologic Diseases, Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey, USA; and
| | - M Maral Mouradian
- Center for Neurodegenerative and Neuroimmunologic Diseases, Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey, USA; and
| |
Collapse
|
143
|
Park AJ, Havekes R, Choi JH, Luczak V, Nie T, Huang T, Abel T. A presynaptic role for PKA in synaptic tagging and memory. Neurobiol Learn Mem 2014; 114:101-112. [PMID: 24882624 DOI: 10.1016/j.nlm.2014.05.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 05/01/2014] [Accepted: 05/04/2014] [Indexed: 12/14/2022]
Abstract
Protein kinase A (PKA) and other signaling molecules are spatially restricted within neurons by A-kinase anchoring proteins (AKAPs). Although studies on compartmentalized PKA signaling have focused on postsynaptic mechanisms, presynaptically anchored PKA may contribute to synaptic plasticity and memory because PKA also regulates presynaptic transmitter release. Here, we examine this issue using genetic and pharmacological application of Ht31, a PKA anchoring disrupting peptide. At the hippocampal Schaffer collateral CA3-CA1 synapse, Ht31 treatment elicits a rapid decay of synaptic responses to repetitive stimuli, indicating a fast depletion of the readily releasable pool of synaptic vesicles. The interaction between PKA and proteins involved in producing this pool of synaptic vesicles is supported by biochemical assays showing that synaptic vesicle protein 2 (SV2), Rim1, and SNAP25 are components of a complex that interacts with cAMP. Moreover, acute treatment with Ht31 reduces the levels of SV2. Finally, experiments with transgenic mouse lines, which express Ht31 in excitatory neurons at the Schaffer collateral CA3-CA1 synapse, highlight a requirement for presynaptically anchored PKA in pathway-specific synaptic tagging and long-term contextual fear memory. These results suggest that a presynaptically compartmentalized PKA is critical for synaptic plasticity and memory by regulating the readily releasable pool of synaptic vesicles.
Collapse
Affiliation(s)
- Alan Jung Park
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104-6018, USA
| | - Robbert Havekes
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104-6018, USA
| | - Jennifer Hk Choi
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104-6018, USA
| | - Vince Luczak
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104-6018, USA
| | - Ting Nie
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104-6018, USA.,Department of Pediatrics, Emory University, VAMC, 1670 Clairmont Rd Atlanta, GA 30033, USA
| | - Ted Huang
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104-6018, USA
| | - Ted Abel
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104-6018, USA
| |
Collapse
|
144
|
Matenia D, Mandelkow EM. Emerging modes of PINK1 signaling: another task for MARK2. Front Mol Neurosci 2014; 7:37. [PMID: 24847206 PMCID: PMC4021145 DOI: 10.3389/fnmol.2014.00037] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 04/19/2014] [Indexed: 11/26/2022] Open
Abstract
PTEN-induced kinase 1 (PINK1) acts at multiple levels to promote mitochondrial health, including regulatory influence on ATP-synthesis, protein quality control, apoptosis, mitochondrial transport, and destiny. PINK1 mutations are linked to Parkinson disease (PD) and mostly result in loss of kinase activity. But the molecular events responsible for neuronal death as well as the physiological targets and regulators of PINK1 are still a matter of debate. This review highlights the recent progress evolving the cellular functions of the cytosolic pool of PINK1 in mitochondrial trafficking and neuronal differentiation. Regulation of PINK1 signaling occurs by mitochondrial processing to truncated forms of PINK1, differentially targeted to several subcellular compartments. The first identified activating kinase of PINK1 is MAP/microtubule affinity regulating kinase 2 (MARK2), which phosphorylates T313, a frequent mutation site linked to PD. Kinases of the MARK2 family perform diverse functions in neuronal polarity, transport, migration, and neurodegeneration such as Alzheimer disease (AD). This new protein kinase signaling axis might provide a link between neurodegenerative processes in AD and PD diseases and opens novel possibilities in targeting pathological signaling processes.
Collapse
Affiliation(s)
- Dorthe Matenia
- Max-Planck-Institute for Neurological Research Hamburg, Germany
| | - Eva M Mandelkow
- Max-Planck-Institute for Neurological Research Hamburg, Germany ; German Center for Neurodegenerative Diseases-Center of Advanced European Studies and Research Bonn, Germany
| |
Collapse
|
145
|
LRRK2 regulates synaptogenesis and dopamine receptor activation through modulation of PKA activity. Nat Neurosci 2014; 17:367-76. [PMID: 24464040 DOI: 10.1038/nn.3636] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 12/24/2013] [Indexed: 11/08/2022]
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is enriched in the striatal projection neurons (SPNs). We found that LRRK2 negatively regulates protein kinase A (PKA) activity in the SPNs during synaptogenesis and in response to dopamine receptor Drd1 activation. LRRK2 interacted with PKA regulatory subunit IIβ (PKARIIβ). A lack of LRRK2 promoted the synaptic translocation of PKA and increased PKA-mediated phosphorylation of actin-disassembling enzyme cofilin and glutamate receptor GluR1, resulting in abnormal synaptogenesis and transmission in the developing SPNs. Furthermore, PKA-dependent phosphorylation of GluR1 was also aberrantly enhanced in the striatum of young and aged Lrrk2(-/-) mice after treatment with a Drd1 agonist. Notably, a Parkinson's disease-related Lrrk2 R1441C missense mutation that impaired the interaction of LRRK2 with PKARIIβ also induced excessive PKA activity in the SPNs. Our findings reveal a previously unknown regulatory role for LRRK2 in PKA signaling and suggest a pathogenic mechanism of SPN dysfunction in Parkinson's disease.
Collapse
|
146
|
Bowling H, Zhang G, Bhattacharya A, Pérez-Cuesta LM, Deinhardt K, Hoeffer CA, Neubert TA, Gan WB, Klann E, Chao MV. Antipsychotics activate mTORC1-dependent translation to enhance neuronal morphological complexity. Sci Signal 2014; 7:ra4. [PMID: 24425786 PMCID: PMC4063438 DOI: 10.1126/scisignal.2004331] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Although antipsychotic drugs can reduce psychotic behavior within a few hours, full efficacy is not achieved for several weeks, implying that there may be rapid, short-term changes in neuronal function, which are consolidated into long-lasting changes. We showed that the antipsychotic drug haloperidol, a dopamine receptor type 2 (D₂R) antagonist, stimulated the kinase Akt to activate the mRNA translation pathway mediated by the mammalian target of rapamycin complex 1 (mTORC1). In primary striatal D₂R-positive neurons, haloperidol-mediated activation of mTORC1 resulted in increased phosphorylation of ribosomal protein S6 (S6) and eukaryotic translation initiation factor 4E-binding protein (4E-BP). Proteomic mass spectrometry revealed marked changes in the pattern of protein synthesis after acute exposure of cultured striatal neurons to haloperidol, including increased abundance of cytoskeletal proteins and proteins associated with translation machinery. These proteomic changes coincided with increased morphological complexity of neurons that was diminished by inhibition of downstream effectors of mTORC1, suggesting that mTORC1-dependent translation enhances neuronal complexity in response to haloperidol. In vivo, we observed rapid morphological changes with a concomitant increase in the abundance of cytoskeletal proteins in cortical neurons of haloperidol-injected mice. These results suggest a mechanism for both the acute and long-term actions of antipsychotics.
Collapse
Affiliation(s)
- Heather Bowling
- Departments of Cell Biology, Physiology and Neuroscience, Psychiatry
- Department of Neuroscience and Physiology and Neuroscience, NYU Neuroscience Institute, NYU Langone Medical Center, New York, New York 10016
| | - Guoan Zhang
- Biochemistry and Molecular Pharmacology, Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, New York University Langone School of Medicine, New York, New York 10016
| | - Aditi Bhattacharya
- Center for Neural Science, New York University, New York, New York 10003
| | | | - Katrin Deinhardt
- Departments of Cell Biology, Physiology and Neuroscience, Psychiatry
| | - Charles A. Hoeffer
- Department of Neuroscience and Physiology and Neuroscience, NYU Neuroscience Institute, NYU Langone Medical Center, New York, New York 10016
| | - Thomas A. Neubert
- Biochemistry and Molecular Pharmacology, Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, New York University Langone School of Medicine, New York, New York 10016
| | - Wen-biao Gan
- Departments of Cell Biology, Physiology and Neuroscience, Psychiatry
- Department of Neuroscience and Physiology and Neuroscience, NYU Neuroscience Institute, NYU Langone Medical Center, New York, New York 10016
| | - Eric Klann
- Center for Neural Science, New York University, New York, New York 10003
| | - Moses V. Chao
- Departments of Cell Biology, Physiology and Neuroscience, Psychiatry
| |
Collapse
|
147
|
Havránek T, Bačová Z, Štrbák V, Lešťanová Z, Bakoš J. Prolactin increases expression of cytoskeletal proteins in SK-N-SH cells. Folia Biol (Praha) 2014; 60:281-5. [PMID: 25629269 DOI: 10.14712/fb2014060060281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Although many studies have demonstrated the role of prolactin in the central nervous system, there is a considerable lack of known effects of prolactin on the parameters of neurogenesis and neuronal differentiation. The aim of the present study was to test whether prolactin changes gene expression and protein levels of nestin and microtubule-associated protein 2 (MAP2) in neuroblastoma (SK-N-SH) and glioblastoma (U-87MG) cells. Nestin and MAP2 represent cytoskeletal proteins associated with neuronal differentiation and they contribute to radial growth of the axons, dendrites and glial processes. SK-N-SH and U-87MG cells were exposed to prolactin (10 nM) for 48 h. Total mRNA was extracted. After reverse transcription, qPCR with specific primers for nestin and MAP2 was performed. The levels of proteins were measured by the In-Cell Western assay. Mitochondrial activity test was used to evaluate the viability of cells under the influence of prolactin. Incubation with 10 nM prolactin did not change the viability, either in SK-N-SH or in U-87MG cells. Prolactin significantly increased the gene expression and protein levels of both nestin and MAP2 in SK-N-SH cells, while no significant changes were observed in U-87MG cells. The presented data suggest that prolactin is linked to the regulation of cytoskeletal proteins in the neuronal type of cells and might be important for their differentiation.
Collapse
Affiliation(s)
- T Havránek
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Z Bačová
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - V Štrbák
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Z Lešťanová
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - J Bakoš
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
148
|
Dagda RK, Pien I, Wang R, Zhu J, Wang KZQ, Callio J, Banerjee TD, Dagda RY, Chu CT. Beyond the mitochondrion: cytosolic PINK1 remodels dendrites through protein kinase A. J Neurochem 2013; 128:864-77. [PMID: 24151868 DOI: 10.1111/jnc.12494] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Revised: 10/01/2013] [Accepted: 10/04/2013] [Indexed: 11/27/2022]
Abstract
The subcellular compartmentalization of kinase activity allows for regulation of distinct cellular processes involved in cell differentiation or survival. The PTEN-induced kinase 1 (PINK1), which is linked to Parkinson's disease, is a neuroprotective kinase localized to cytosolic and mitochondrial compartments. While mitochondrial targeting of PINK1 is important for its activities regulating mitochondrial homeostasis, the physiological role of the cytosolic pool of PINK1 remains unknown. Here, we demonstrate a novel role for cytosolic PINK1 in neuronal differentiation/neurite maintenance. Over-expression of wild-type PINK1, but not a catalytically inactive form of PINK1(K219M), promoted neurite outgrowth in SH-SY5Y cells and increased dendritic lengths in primary cortical and midbrain dopaminergic neurons. To identify the subcellular pools of PINK1 involved in promoting neurite outgrowth, we transiently transfected cells with PINK1 constructs designed to target PINK1 to the outer mitochondrial membrane (OMM-PINK1) or restrict PINK1 to the cytosol (ΔN111-PINK1). Both constructs blocked cell death associated with loss of endogenous PINK1. However, transient expression of ΔN111-PINK1, but not of OMM-PINK1 or ΔN111-PINK1(K219M), promoted dendrite outgrowth in primary neurons, and rescued the decreased dendritic arborization of PINK1-deficient neurons. Mechanistically, the cytosolic pool of PINK1 regulated neurite morphology through enhanced anterograde transport of dendritic mitochondria and amplification of protein kinase A-related signaling pathways. Our data support a novel role for PINK1 in regulating dendritic morphogenesis.
Collapse
Affiliation(s)
- Ruben K Dagda
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Huang YA, Kao JW, Tseng DTH, Chen WS, Chiang MH, Hwang E. Microtubule-associated type II protein kinase A is important for neurite elongation. PLoS One 2013; 8:e73890. [PMID: 23967353 PMCID: PMC3742546 DOI: 10.1371/journal.pone.0073890] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 07/23/2013] [Indexed: 11/20/2022] Open
Abstract
Neuritogenesis is a process through which neurons generate their widespread axon and dendrites. The microtubule cytoskeleton plays crucial roles throughout neuritogenesis. Our previous study indicated that the amount of type II protein kinase A (PKA) on microtubules significantly increased upon neuronal differentiation and neuritogenesis. While the overall pool of PKA has been shown to participate in various neuronal processes, the function of microtubule-associated PKA during neuritogenesis remains largely unknown. First, we showed that PKA localized to microtubule-based region in different neurons. Since PKA is essential for various cellular functions, globally inhibiting PKA activity will causes a wide variety of phenotypes in neurons. To examine the function of microtubule-associated PKA without changing the total PKA level, we utilized the neuron-specific PKA anchoring protein MAP2. Overexpressing the dominant negative MAP2 construct that binds to type II PKA but cannot bind to the microtubule cytoskeleton in dissociated hippocampal neurons removed PKA from microtubules and resulted in compromised neurite elongation. In addition, we demonstrated that the association of PKA with microtubules can also enhance cell protrusion using the non-neuronal P19 cells. Overexpressing a MAP2 deletion construct which does not target PKA to the microtubule cytoskeleton caused non-neuronal cells to generate shorter cell protrusions than control cells overexpressing wild-type MAP2 that anchors PKA to microtubules. Finally, we demonstrated that the ability of microtubule-associated PKA to promote protrusion elongation was independent of MAP2 phosphorylation. This suggests other proteins in close proximity to the microtubule cytoskeleton are involved in this process.
Collapse
Affiliation(s)
- Yung-An Huang
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Jun-Wei Kao
- Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu, Taiwan
| | - Dion Tzu-Huan Tseng
- Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu, Taiwan
| | - Wen-Shin Chen
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
- Center for Bioinformatics Research, National Chiao Tung University, Hsinchu, Taiwan
| | - Ming-Han Chiang
- Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu, Taiwan
| | - Eric Hwang
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
- Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu, Taiwan
- Center for Bioinformatics Research, National Chiao Tung University, Hsinchu, Taiwan
- * E-mail:
| |
Collapse
|
150
|
Mandelkow EM, Mandelkow E. Biochemistry and cell biology of tau protein in neurofibrillary degeneration. Cold Spring Harb Perspect Med 2013; 2:a006247. [PMID: 22762014 DOI: 10.1101/cshperspect.a006247] [Citation(s) in RCA: 572] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Tau represents the subunit protein of one of the major hallmarks of Alzheimer disease (AD), the neurofibrillary tangles, and is therefore of major interest as an indicator of disease mechanisms. Many of the unusual properties of Tau can be explained by its nature as a natively unfolded protein. Examples are the large number of structural conformations and biochemical modifications (phosphorylation, proteolysis, glycosylation, and others), the multitude of interaction partners (mainly microtubules, but also other cytoskeletal proteins, kinases, and phosphatases, motor proteins, chaperones, and membrane proteins). The pathological aggregation of Tau is counterintuitive, given its high solubility, but can be rationalized by short hydrophobic motifs forming β structures. The aggregation of Tau is toxic in cell and animal models, but can be reversed by suppressing expression or by aggregation inhibitors. This review summarizes some of the structural, biochemical, and cell biological properties of Tau and Tau fibers. Further aspects of Tau as a diagnostic marker and therapeutic target, its involvement in other Tau-based diseases, and its histopathology are covered by other chapters in this volume.
Collapse
Affiliation(s)
- Eva-Maria Mandelkow
- Max-Planck Unit for Structural Molecular Biology, c/o DESY, 22607 Hamburg, Germany; DZNE, German Center for Neurodegenerative Diseases, and CAESAR Research Center, 53175 Bonn, Germany.
| | | |
Collapse
|