101
|
Rong J, Xu X, Xiang Y, Yang G, Ming X, He S, Liang B, Zhang X, Zheng F. Thioredoxin-interacting protein promotes activation and inflammation of monocytes with DNA demethylation in coronary artery disease. J Cell Mol Med 2020; 24:3560-3571. [PMID: 32039564 PMCID: PMC7131938 DOI: 10.1111/jcmm.15045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/13/2020] [Accepted: 01/22/2020] [Indexed: 12/19/2022] Open
Abstract
Numerous studies have demonstrated that thioredoxin‐interacting protein (TXNIP) expression of peripheral blood leucocytes is increased in coronary artery disease (CAD). However, the molecular mechanism of this phenomenon remained unclear. DNA methylation plays important roles in the regulation of gene expression. Therefore, we speculated there might be a close association between the expression of TXNIP and methylation. In this study, we found that compared with controls, DNA methylation at cg19693031 was decreased in CAD, while mRNA expressions of TXNIP and inflammatory factors, NLRP3, IL‐1β, IL‐18, were increased. Methylation at cg19693031 was negatively associated with TXNIP expression in the cohort, THP‐1 and macrophages/foam cells. Furthermore, Transwell assay and co‐cultured adhesion assay were performed to investigate functions of TXNIP on the migration of THP‐1 or the adhesion of THP‐1 on the surface of endothelial cells, respectively. Notably, overexpressed TXNIP promoted the migration and adhesion of THP‐1 cells and expressions of NLRP3, IL‐18 and IL‐1β. Oppositely, knock‐down TXNIP inhibited the migration and adhesion of THP‐1 and expressions of NLRP3, IL‐18. In conclusion, increased TXNIP expression, related to cg19693031 demethylation orientates monocytes towards an inflammatory status through the NLRP3 inflammasome pathway involved in the development of CAD.
Collapse
Affiliation(s)
- Jialing Rong
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xianqun Xu
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yang Xiang
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Guohua Yang
- Demonstration Center for Experimental Basic Medicine Education of Wuhan University, Wuhan, China
| | - Xinliang Ming
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Siying He
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Bin Liang
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiaokang Zhang
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Fang Zheng
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
102
|
Wu WY, Ding XQ, Gu TT, Guo WJ, Jiao RQ, Song L, Sun Y, Pan Y, Kong LD. Pterostilbene Improves Hepatic Lipid Accumulation via the MiR-34a/Sirt1/SREBP-1 Pathway in Fructose-Fed Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1436-1446. [PMID: 31927917 DOI: 10.1021/acs.jafc.9b04259] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
High fructose intake promotes hepatic lipid accumulation. Pterostilbene, a natural analogue of resveratrol found in diet berries, exhibits a hepatoprotective property. Here, we studied the protection by pterostilbene against fructose-induced hepatic lipid accumulation and explored its possible mechanism. We observed a high expression of microRNA-34a (miR-34a, P < 0.05) and a low expression of its target, sirtuin1 (Sirt1, mRNA: P < 0.01; protein: P < 0.001), with the overactivation of downstream sterol regulatory element-binding protein-1 (SREBP-1) lipogenic pathway (nuclear SREBP-1 protein: P < 0.05; FAS and SCD1 mRNA: P < 0.01), in rat livers, as well as BRL-3A and HepG2 cells, stimulated by fructose. More interestingly, pterostilbene recovered the fructose-disturbed miR-34a expression (0.3-0.5-fold vs fructose control, P < 0.05), Sirt1 protein level (1.2- to 1.5-fold vs fructose control, P < 0.05), and SREBP-1 lipogenic pathway, resulting in significant amelioration of hepatocyte lipid accumulation in animal [hepatic triglyceride and total cholesterol (TG&TC) mg/g·wet tissue: 4.90 ± 0.19, 5.23 ± 0.16, 5.20 ± 0.29 vs fructose control 9.73 ± 1.06, P < 0.001; 3.18 ± 0.30, 3.31 ± 0.39, 3.37 ± 0.47 vs 5.67 ± 0.28, P < 0.001] and cell models (BRL-3A TG&TC mmol/g·protein: 0.123 ± 0.011 vs 0.177 ± 0.004, P < 0.001; 0.169 ± 0.011 vs 0.202 ± 0.008, P < 0.05; HepG2: 0.257 ± 0.005 vs 0.303 ± 0.016, P < 0.05; 0.143 ± 0.004 vs 0.201 ± 0.008, P < 0.001). These results provide the experimental evidence supporting the anti-lipogenic effect of pterostilbene against fructose-induced hepatic lipid accumulation via modulating the miR-34a/Sirt1/SREBP-1 pathway.
Collapse
Affiliation(s)
- Wen-Yuan Wu
- State Key Laboratory of Pharmaceutical Biotechnology , Nanjing University , Nanjing 210023 , Jiangsu Province , P. R. China
- School of Life Sciences , Nanjing University , Nanjing 210023 , Jiangsu Province , P. R. China
| | - Xiao-Qin Ding
- School of Life Sciences , Nanjing University , Nanjing 210023 , Jiangsu Province , P. R. China
| | - Ting-Ting Gu
- School of Life Sciences , Nanjing University , Nanjing 210023 , Jiangsu Province , P. R. China
| | - Wen-Jie Guo
- State Key Laboratory of Pharmaceutical Biotechnology , Nanjing University , Nanjing 210023 , Jiangsu Province , P. R. China
- School of Life Sciences , Nanjing University , Nanjing 210023 , Jiangsu Province , P. R. China
| | - Rui-Qing Jiao
- State Key Laboratory of Pharmaceutical Biotechnology , Nanjing University , Nanjing 210023 , Jiangsu Province , P. R. China
- School of Life Sciences , Nanjing University , Nanjing 210023 , Jiangsu Province , P. R. China
| | - Lin Song
- School of Life Sciences , Nanjing University , Nanjing 210023 , Jiangsu Province , P. R. China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology , Nanjing University , Nanjing 210023 , Jiangsu Province , P. R. China
- School of Life Sciences , Nanjing University , Nanjing 210023 , Jiangsu Province , P. R. China
| | - Ying Pan
- State Key Laboratory of Pharmaceutical Biotechnology , Nanjing University , Nanjing 210023 , Jiangsu Province , P. R. China
- School of Life Sciences , Nanjing University , Nanjing 210023 , Jiangsu Province , P. R. China
| | - Ling-Dong Kong
- State Key Laboratory of Pharmaceutical Biotechnology , Nanjing University , Nanjing 210023 , Jiangsu Province , P. R. China
- School of Life Sciences , Nanjing University , Nanjing 210023 , Jiangsu Province , P. R. China
| |
Collapse
|
103
|
Burton EM, Goldbach-Mansky R, Bhaduri-McIntosh S. A promiscuous inflammasome sparks replication of a common tumor virus. Proc Natl Acad Sci U S A 2020; 117:1722-1730. [PMID: 31919284 PMCID: PMC6983388 DOI: 10.1073/pnas.1919133117] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Viruses activate inflammasomes but then subvert resulting inflammatory responses to avoid elimination. We asked whether viruses could instead use such activated or primed inflammasomes to directly aid their propagation and spread. Since herpesviruses are experts at coopting cellular functions, we investigated whether Epstein-Barr virus (EBV), an oncoherpesvirus, exploits inflammasomes to activate its replicative or lytic phase. Indeed, our experiments reveal that EBV exploits several inflammasome sensors to actually activate its replicative phase from quiescence/latency. In particular, TXNIP, a key inflammasome intermediary, causes assembly of the NLRP3 inflammasome, resulting in caspase-1-mediated depletion of the heterochromatin-inducing epigenetic repressor KAP1/TRIM28 in a subpopulation of cells. As a result, only TXNIPhiKAP1lo cells, that is, in a primed/prolytic state, turn expression of the replication/lytic/reactivation switch protein on to enter the replicative phase. Our findings 1) demonstrate that EBV dovetails its escape strategy to a key cellular danger-sensing mechanism, 2) indicate that transcription may be regulated by KAP1 abundance aside from canonical regulation through its posttranslational modification, 3) mechanistically link diabetes, which frequently activates the NLRP3 inflammasome, to deregulation of a tumor virus, and 4) demonstrate that B lymphocytes from NOMID (neonatal onset multisystem inflammatory disease) patients who have NLRP3 mutations and suffer from hyperactive innate responses are defective in controlling a herpesvirus.
Collapse
Affiliation(s)
- Eric M Burton
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794
| | - Raphaela Goldbach-Mansky
- Translational Autoinflammatory Disease Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20852
| | - Sumita Bhaduri-McIntosh
- Division of Infectious Disease, Department of Pediatrics, University of Florida, Gainesville, FL 32610;
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610
| |
Collapse
|
104
|
Softic S, Stanhope KL, Boucher J, Divanovic S, Lanaspa MA, Johnson RJ, Kahn CR. Fructose and hepatic insulin resistance. Crit Rev Clin Lab Sci 2020; 57:308-322. [PMID: 31935149 DOI: 10.1080/10408363.2019.1711360] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Excessive caloric intake in a form of high-fat diet (HFD) was long thought to be the major risk factor for development of obesity and its complications, such as fatty liver disease and insulin resistance. Recently, there has been a paradigm shift and more attention is attributed to the effects of sugar-sweetened beverages (SSBs) as one of the culprits of the obesity epidemic. In this review, we present the data invoking fructose intake with development of hepatic insulin resistance in human studies and discuss the pathways by which fructose impairs hepatic insulin action in experimental animal models. First, we described well-characterized pathways by which fructose metabolism indirectly leads to hepatic insulin resistance. These include unequivocal effects of fructose to promote de novo lipogenesis (DNL), impair fatty acid oxidation (FAO), induce endoplasmic reticulum (ER) stress and trigger hepatic inflammation. Additionally, we entertained the hypothesis that fructose can directly impede insulin signaling in the liver. This appears to be mediated by reduced insulin receptor and insulin receptor substrate 2 (IRS2) expression, increased protein-tyrosine phosphatase 1B (PTP1b) activity, whereas knockdown of ketohexokinase (KHK), the rate-limiting enzyme of fructose metabolism, increased insulin sensitivity. In summary, dietary fructose intake strongly promotes hepatic insulin resistance via complex interplay of several metabolic pathways, at least some of which are independent of increased weight gain and caloric intake. The current evidence shows that the fructose, but not glucose, component of dietary sugar drives metabolic complications and contradicts the notion that fructose is merely a source of palatable calories that leads to increased weight gain and insulin resistance.
Collapse
Affiliation(s)
- Samir Softic
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Kentucky College of Medicine and Kentucky Children's Hospital, Lexington, KY, USA.,Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Boston, MA, USA
| | - Kimber L Stanhope
- Department of Molecular Biosciences, University of California, Davis, Davis, CA, USA
| | - Jeremie Boucher
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.,The Lundberg Laboratory for Diabetes Research, University of Gothenburg, Gothenburg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Senad Divanovic
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Miguel A Lanaspa
- Division of Renal Diseases and Hypertension, University of Colorado, Aurora, CO, USA
| | - Richard J Johnson
- Division of Renal Diseases and Hypertension, University of Colorado, Aurora, CO, USA
| | - C Ronald Kahn
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Boston, MA, USA
| |
Collapse
|
105
|
Yang Y, Liu PY, Bao W, Chen SJ, Wu FS, Zhu PY. Hydrogen inhibits endometrial cancer growth via a ROS/NLRP3/caspase-1/GSDMD-mediated pyroptotic pathway. BMC Cancer 2020; 20:28. [PMID: 31924176 PMCID: PMC6954594 DOI: 10.1186/s12885-019-6491-6] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 12/23/2019] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Pyroptosis belongs to a novel inflammatory programmed cell death pathway, with the possible prognosis of endometrial cancer related to the terminal protein GSDMD. Hydrogen exerts a biphasic effect on cancer by promoting tumor cell death and protecting normal cells, which might initiate GSDMD pathway-mediated pyroptosis. METHODS We performed immunohistochemical staining and western immunoblotting analysis to observe expression of NLRP3, caspase-1, and GSDMD in human and xenograft mice endometrial cancer tissue and cell lines. We investigated treatment with hydrogen could boost ROS accumulation in endometrial cancer cells by intracellular and mitochondrial sources. GSDMD shRNA lentivirus was used to transfect endometrial cancer cells to investigate the function of GSDMD protein in pyroptosis. Propidium iodide (PI) staining, TUNEL assay, measurement of lactate dehydrogenase (LDH) release and IL-1β ELISA were used to analysis pyroptosis between hydrogen-supplemented or normal culture medium. We conducted in vivo human endometrial tumor xenograft mice model to observe anti-tumor effect in hydrogen supplementation. RESULTS We observed overexpression of NLRP3, caspase-1, and GSDMD in human endometrial cancer and cell lines by IHC and western immunoblotting. Hydrogen pretreatment upregulated ROS and the expression of pyroptosis-related proteins, and increased the number of PI- and TUNEL-positive cells, as well as the release of LDH and IL-1β, however, GSDMD depletion reduced their release. We further demonstrated that hydrogen supplementation in mice was sufficient for the anti-tumor effect to inhibit xenograft volume and weight of endometrial tumors, as mice subjected to hydrogen-rich water displayed decreased radiance. Tumor tissue sections in the HRW groups presented moderate-to-strong positive expression of NLRP3, caspase-1 and GSDMD. Hydrogen attenuated tumor volume and weight in a xenograft mouse model though the pyroptotic pathway. CONCLUSIONS This study extended our original analysis of the ability of hydrogen to stimulate NLRP3 inflammasome/GSDMD activation in pyroptosis and revealed possible mechanism (s) for improvement of anti-tumor effects in the clinical management of endometrial cancer.
Collapse
Affiliation(s)
- Ye Yang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85 Wujin Road, Hongkou, Shanghai, 200080, People's Republic of China
| | - Ping Yin Liu
- Department of Obstetrics and Gynecology, Shanghai General Hospital of Nanjing Medical University, 85 Wujin Road, Hongkou, Shanghai, 200080, People's Republic of China
| | - Wei Bao
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85 Wujin Road, Hongkou, Shanghai, 200080, People's Republic of China
| | - Song Jun Chen
- Department of Systems Biomedicine, Shanghai Jiaotong University, 800 Dongchuan Road, Biomedical Research Institute Building, Minhang, 200241, Shanghai, People's Republic of China
| | - Fang Su Wu
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85 Wujin Road, Hongkou, Shanghai, 200080, People's Republic of China.
| | - Ping Ya Zhu
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85 Wujin Road, Hongkou, Shanghai, 200080, People's Republic of China.
| |
Collapse
|
106
|
Chen Z, Zhong H, Wei J, Lin S, Zong Z, Gong F, Huang X, Sun J, Li P, Lin H, Wei B, Chu J. Inhibition of Nrf2/HO-1 signaling leads to increased activation of the NLRP3 inflammasome in osteoarthritis. Arthritis Res Ther 2019; 21:300. [PMID: 31870428 PMCID: PMC6929452 DOI: 10.1186/s13075-019-2085-6] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 12/06/2019] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Osteoarthritis (OA) is an inflammatory disease of the joints that causes progressive disability in the elderly. Reactive oxygen species (ROS) play an important role in OA development; they may activate the NLRP3 inflammasome, thereby inducing the secretion of proinflammatory IL-1β and IL-18, leading to the aggravation of the downstream inflammatory response. Nrf2 is a key transcription factor that regulates the expression of antioxidant enzymes that protect against oxidative stress and tissue damage. We aimed to explore the underlying mechanism of OA development by investigating NLRP3, ASC, Nrf2, and HO-1 expression in synovia and their regulatory networks in OA. METHODS Human total knee replacement samples were subjected to histology and micro-CT analysis to determine the pathological changes in the cartilage and subchondral bone and to assess the expression of inflammation-related markers in the synovial tissue by immunohistochemistry (IHC), qRT-PCR, and Western blot. To investigate these pathological changes in an OA animal model, adult Sprague-Dawley rats were subjected to anterior cruciate ligament transection and medial meniscectomy. Articular cartilage and subchondral bone changes and synovial tissue were also determined by the same methods used for the human samples. Finally, SW982 cells were stimulated with lipopolysaccharide (LPS) as an in vitro inflammatory cell model. The correlation between NLRP3 and Nrf2 expression was confirmed by knocking down NLRP3 or Nrf2. RESULTS Cartilage destruction and subchondral bone sclerosis were found in the OA patients and OA model rats. Significantly increased expression levels of NLRP3, ASC, Nrf2, and HO-1 were found in the synovial tissue from OA patients. NLRP3, ASC, Nrf2, and HO-1 expression in the synovium was also upregulated in the OA group compared with the sham group. Furthermore, the NLRP3, Nrf2, HO-1, IL-1β, and IL-18 expression in LPS-treated SW982 cells was increased in a dose-dependent manner. As expected, the expression of NLRP3 was upregulated, and the expression of IL-1β and IL-18 was downregulated after Nrf2 silencing. However, knocking down NLRP3 did not affect the expression of Nrf2. CONCLUSIONS ROS-induced oxidative stress may be the main cause of NLRP3 inflammasome activation and subsequent release of downstream factors during OA development. Nrf2/HO-1 signaling could be a key pathway for the activation of the NLRP3 inflammasome, which may contribute to the progression of OA. Herein, we discovered a novel role of Nrf2/HO-1 signaling in the production of NLRP3, which may facilitate the prevention and treatment of OA.
Collapse
Affiliation(s)
- Zhuming Chen
- Orthopedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Huan Zhong
- Orthopedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Jinsong Wei
- Orthopedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Sien Lin
- Orthopedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Zhixian Zong
- Orthopedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Fan Gong
- Orthopedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Xinqia Huang
- Orthopedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Jinhui Sun
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Peng Li
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Hao Lin
- Orthopedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Bo Wei
- Orthopedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Jiaqi Chu
- Orthopedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| |
Collapse
|
107
|
Pterostilbene Attenuates Fructose-Induced Myocardial Fibrosis by Inhibiting ROS-Driven Pitx2c/miR-15b Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1243215. [PMID: 31871537 PMCID: PMC6913258 DOI: 10.1155/2019/1243215] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 11/04/2019] [Indexed: 12/26/2022]
Abstract
Excessive fructose consumption induces oxidative stress and myocardial fibrosis. Antioxidant compound pterostilbene has cardioprotective effect in experimental animals. This study is aimed at investigating how fructose drove fibrotic responses via oxidative stress in cardiomyocytes and explored the attenuation mechanisms of pterostilbene. We observed fructose-induced myocardial hypertrophy and fibrosis with ROS overproduction in rats. Paired-like homeodomain 2 (Pitx2c) increase, microRNA-15b (miR-15b) low expression, and p53 phosphorylation (p-p53) upregulation, as well as activation of transforming growth factor-β1 (TGF-β1)/drosophila mothers against DPP homolog (Smads) signaling and connective tissue growth factor (CTGF) induction, were also detected in fructose-fed rat hearts and fructose-exposed rat myocardial cell line H9c2 cells. The results from p53 siRNA or TGF-β1 siRNA transfection showed that TGF-β1-induced upregulation of CTGF expression and p-p53 activated TGF-β1/Smads signaling in fructose-exposed H9c2 cells. Of note, Pitx2c negatively modulated miR-15b expression via binding to the upstream of the miR-15b genetic loci by chromatin immunoprecipitation and transfection analysis with pEX1-Pitx2c plasmid and Pitx2c siRNA, respectively. In H9c2 cells pretreated with ROS scavenger N-acetylcysteine, or transfected with miR-15b mimic and inhibitor, fructose-induced cardiac ROS overload could drive Pitx2c-mediated miR-15b low expression, then cause p-p53-activated TGF-β1/Smads signaling and CTGF induction in myocardial fibrosis. We also found that pterostilbene significantly improved myocardial hypertrophy and fibrosis in fructose-fed rats and fructose-exposed H9c2 cells. Pterostilbene reduced cardiac ROS to block Pitx2c-mediated miR-15b low expression and p-p53-dependent TGF-β1/Smads signaling activation and CTGF induction in high fructose-induced myocardial fibrosis. These results firstly demonstrated that the ROS-driven Pitx2c/miR-15b pathway was required for p-p53-dependent TGF-β1/Smads signaling activation in fructose-induced myocardial fibrosis. Pterostilbene protected against high fructose-induced myocardial fibrosis through the inhibition of Pitx2c/miR-15b pathway to suppress p-p53-activated TGF-β1/Smads signaling, warranting the consideration of Pitx2c/miR-15b pathway as a therapeutic target in myocardial fibrosis.
Collapse
|
108
|
Aflatoxin B1 enhances pyroptosis of hepatocytes and activation of Kupffer cells to promote liver inflammatory injury via dephosphorylation of cyclooxygenase-2: an in vitro, ex vivo and in vivo study. Arch Toxicol 2019; 93:3305-3320. [PMID: 31612242 DOI: 10.1007/s00204-019-02572-w] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/17/2019] [Indexed: 12/15/2022]
Abstract
Aflatoxin B1 (AFB1), a food contaminant derived from Aspergillus fungi, has been reported to cause hepatic immunotoxicity via inflammatory infiltration and cytokines release. As a pro-inflammatory factor, cyclooxygenase-2 (COX-2) is widely involved in liver inflammation induced by xenobiotics. However, the mechanism by which AFB1-induced COX-2 regulates liver inflammatory injury via hepatocytes-Kupffer cells (KCs) crosstalk remains unclear and requires further elucidation. Here, we established a COX-2 upregulated model with AFB1 treatment in vivo (C57BL/6 mice, 1 mg/kg body weight, i.g, 4 weeks) and in vitro (human liver HepaRG cells, 1 μM for 24 h). In vivo, AFB1-treated mice exhibited NLRP3 inflammasome activation, inflammatory infiltration, and increased recruitment of KCs. In vitro, dephosphorylated COX-2 by protein phosphatase 2A (PP2A)-B55δ promoted NLRP3 inflammasome activation, including mitochondrial translocation of NLRP3, caspase 1 cleavage, and IL-1β release. Moreover, phosphorylated COX-2 at serine 601 (p-COX-2Ser601) underwent endoplasmic reticulum (ER) retention for proteasome degradation. Furthermore, pyroptosis and inflammatory response induced by AFB1 were relieved with COX-2 genetic (siPTGS2) intervention or pharmaceutic (celecoxib, 30 mg/kg body weight, i.g, 4 weeks) inhibition of COX-2 via NLRP3 inflammasome suppression in vivo and in vitro. Ex vivo, in a co-culture system with murine primary hepatocytes and KCs, activated KCs induced by damaged signals from pyroptotic hepatocytes, formed a feedback loop to amplify NLRP3-dependent pyroptosis of hepatocytes via pro-inflammatory signaling, leading to liver inflammatory injury. Taken together, our data suggest a novel mechanism that protein quality control of COX-2 determines the intracellular distribution and activation of NLRP3 inflammasome, which promotes liver inflammatory injury via hepatocytes-KCs crosstalk.
Collapse
|
109
|
Zhao XJ, Chen L, Zhao Y, Pan Y, Yang YZ, Sun Y, Jiao RQ, Kong LD. Polygonum cuspidatum extract attenuates fructose-induced liver lipid accumulation through inhibiting Keap1 and activating Nrf2 antioxidant pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 63:152986. [PMID: 31310912 DOI: 10.1016/j.phymed.2019.152986] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 06/04/2019] [Accepted: 06/08/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Polygonum cuspidatum has been used in traditional Chinese medicine to treat liver disorders associated with oxidative stress, inflammation and lipid accumulation for centuries in patients. PURPOSE The aim of this study was to examine whether P. cuspidatum extract (PCE) prevented against fructose-induced liver lipid accumulation via regulating Kelch-like ECH-associated protein 1 (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. METHOD PCE was administered orally to male Sprague-Dawley rats given 10% fructose drinking water for 6 weeks at 80 and 160 mg/kg once daily for 11 weeks. RESULTS PCE significantly alleviated liver lipid accumulation in fructose-fed rats with metabolic syndrome. It also inhibited Keap1, activated Nrf2 antioxidant pathway, resulting in the suppression of oxidative stress, evidenced by reducing hydrogen peroxide (H2O2), malondialdehyde (MDA) and hydroxy radical (OH•) levels, and increasing glutathione (GSH)/oxidized glutathione (GSSG) ratio as well as superoxidase dismutase (SOD) and catalase (CAT) activity in the liver of fructose-fed rats. Additionally, PCE up-regulated peroxisome proliferator activated receptor-α (PPAR-α), and down-regulated sterol regulatory element binging protein 1 (SREBP-1), fatty acid synthetase (FAS) and stearoyl-CoA desaturase-1 (SCD-1) in this animal model, being consistent with its reduction of triglyceride (TG) levels. CONCLUSION These results demonstrate that PCE reduces oxidative stress, and prevent lipid accumulation in the liver of fructose-fed rats possibly by targeting the Keap1/Nrf2 pathway. PCE may be a promising therapeutic strategy for fructose-associated liver lipid accumulation.
Collapse
Affiliation(s)
- Xiao-Juan Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, PR China
| | - Li Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, PR China
| | - Yue Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, PR China
| | - Ying Pan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, PR China
| | - Yan-Zi Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, PR China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, PR China
| | - Rui-Qing Jiao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, PR China
| | - Ling-Dong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
110
|
Softic S, Meyer JG, Wang GX, Gupta MK, Batista TM, Lauritzen HPMM, Fujisaka S, Serra D, Herrero L, Willoughby J, Fitzgerald K, Ilkayeva O, Newgard CB, Gibson BW, Schilling B, Cohen DE, Kahn CR. Dietary Sugars Alter Hepatic Fatty Acid Oxidation via Transcriptional and Post-translational Modifications of Mitochondrial Proteins. Cell Metab 2019; 30:735-753.e4. [PMID: 31577934 PMCID: PMC7816129 DOI: 10.1016/j.cmet.2019.09.003] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/06/2019] [Accepted: 09/05/2019] [Indexed: 01/25/2023]
Abstract
Dietary sugars, fructose and glucose, promote hepatic de novo lipogenesis and modify the effects of a high-fat diet (HFD) on the development of insulin resistance. Here, we show that fructose and glucose supplementation of an HFD exert divergent effects on hepatic mitochondrial function and fatty acid oxidation. This is mediated via three different nodes of regulation, including differential effects on malonyl-CoA levels, effects on mitochondrial size/protein abundance, and acetylation of mitochondrial proteins. HFD- and HFD plus fructose-fed mice have decreased CTP1a activity, the rate-limiting enzyme of fatty acid oxidation, whereas knockdown of fructose metabolism increases CPT1a and its acylcarnitine products. Furthermore, fructose-supplemented HFD leads to increased acetylation of ACADL and CPT1a, which is associated with decreased fat metabolism. In summary, dietary fructose, but not glucose, supplementation of HFD impairs mitochondrial size, function, and protein acetylation, resulting in decreased fatty acid oxidation and development of metabolic dysregulation.
Collapse
Affiliation(s)
- Samir Softic
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA 02115, USA; Division of Gastroenterology, Hepatology, Nutrition, Department of Pediatrics, University of Kentucky College of Medicine and Kentucky Children's Hospital, Lexington, KY 40506, USA.
| | - Jesse G Meyer
- Chemistry & Mass Spectrometry, Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Guo-Xiao Wang
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Manoj K Gupta
- Islet Cell and Regenerative Medicine, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Thiago M Batista
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Hans P M M Lauritzen
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Shiho Fujisaka
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; First Department of Internal Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Dolors Serra
- School of Pharmacy, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona 08028, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Laura Herrero
- School of Pharmacy, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona 08028, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid 28029, Spain
| | | | | | - Olga Ilkayeva
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Departments of Pharmacology & Cancer Biology and Medicine, Duke University Medical Center, Durham, NC 27701, USA
| | - Christopher B Newgard
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Departments of Pharmacology & Cancer Biology and Medicine, Duke University Medical Center, Durham, NC 27701, USA
| | - Bradford W Gibson
- Chemistry & Mass Spectrometry, Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Birgit Schilling
- Chemistry & Mass Spectrometry, Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - David E Cohen
- Division of Gastroenterology and Hepatology, Weill Cornell Medical College New York, New York, NY 10021, USA
| | - C Ronald Kahn
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
111
|
Ge CX, Xu MX, Qin YT, Gu TT, Lou DS, Li Q, Hu LF, Wang BC, Tan J. Endoplasmic reticulum stress-induced iRhom2 up-regulation promotes macrophage-regulated cardiac inflammation and lipid deposition in high fat diet (HFD)-challenged mice: Intervention of fisetin and metformin. Free Radic Biol Med 2019; 141:67-83. [PMID: 31153974 DOI: 10.1016/j.freeradbiomed.2019.05.031] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/04/2019] [Accepted: 05/29/2019] [Indexed: 12/15/2022]
Abstract
Endoplasmic reticulum stress (ERS) has been implicated in obesity-associated cardiac remodeling and dysfunction. Inactive rhomboid protein 2 (iRhom2), also known as Rhbdf2, is an inactive member of the rhomboid intramembrane proteinase family, playing an essential role in regulating inflammation. Nevertheless, the role of ERS-meditated iRhom2 pathway in metabolic stress-induced cardiomyopathy remains unknown. In the study, we showed that 4-PBA, as an essential ERS inhibitor, significantly alleviated high fat diet (HFD)-induced metabolic disorder and cardiac dysfunction in mice. Additionally, lipid deposition in heart tissues was prevented by 4-PBA in HFD-challenged mice. Moreover, 4-PBA blunted the expression of iRhom2, TACE, TNFR2 and phosphorylated NF-κB to prevent HFD-induced expression of inflammatory factors. Further, 4-PBA restrained HFD-triggered oxidative stress by promoting Nrf-2 signaling. Importantly, 4-PBA markedly suppressed cardiac ERS in HFD mice. The anti-inflammation, anti-ERS and anti-oxidant effects of 4-PBA were verified in palmitate (PAL)-incubated macrophages and cardiomyocytes. In addition, promoting ERS could obviously enhance iRhom2 signaling in vitro. Intriguingly, our data demonstrated that PAL-induced iRhom2 up-regulation apparently promoted macrophage to generate inflammatory factors that could promote cardiomyocyte inflammation and lipid accumulation. Finally, interventions by adding fisetin or metformin significantly abrogated metabolic stress-induced cardiomyopathy through the mechanisms mentioned above. In conclusion, this study provided a novel mechanism for metabolic stress-induced cardiomyopathy pathogenesis. Therapeutic strategy to restrain ROS/ERS/iRhom2 signaling pathway could be developed to prevent myocardial inflammation and lipid deposition, consequently alleviating obesity-induced cardiomyopathy.
Collapse
Affiliation(s)
- Chen-Xu Ge
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing, 400067, PR China
| | - Min-Xuan Xu
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing, 400067, PR China.
| | - Yu-Ting Qin
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266100, PR China
| | - Ting-Ting Gu
- College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, PR China
| | - De-Shuai Lou
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing, 400067, PR China
| | - Qiang Li
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing, 400067, PR China
| | - Lin-Feng Hu
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing, 400067, PR China
| | - Bo-Chu Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China.
| | - Jun Tan
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing, 400067, PR China.
| |
Collapse
|
112
|
Ameliorative effect of Magnesium Isoglycyrrhizinate on hepatic encephalopathy by Epirubicin. Int Immunopharmacol 2019; 75:105774. [PMID: 31351363 DOI: 10.1016/j.intimp.2019.105774] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 06/27/2019] [Accepted: 07/18/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND The purpose of the present study was to evaluate the protective effect of Magnesium Isoglycyrrhizinate (MI) on Epirubicin (EPI)-induced hepatic encephalopathy (HE) and explore its underlying mechanism. METHODS Mice were divided randomly into groups for treatments as follows: control group, EPI group (Model group), EPI + MI (25, 50 mg/kg) group. Morris water maze test were conducted to evaluate the spatial learning and memory ability. The serum and hippocampus levels of oxidative stress or inflammation were uncovered with the detection of superoxide dismutase (SOD), malondialdehyde (MDA), and pro-inflammatory cytokines (IL-1β, IL-6, TNF-α). RESULTS As a result, treatment with MI effectively ameliorated the EPI-induced decline in the ability of spatial learning and memory. MI also significantly relieved the severity of oxidative stress or inflammation in serum and hippocampus, which was accompanied with regulating liver functional parameters. Western blot data demonstrated that administration of MI could regulate the redox-related expressions of Txnip, Trx, Nrf2, HO-1, p-IκB-α, p-NF-κB, Caspase-3, Caspase-9, Bax and Bcl-2 in EPI-stimulated hepatic encephalopathy (HE). And the potency of MI treatments on Nrf2, NF-κB expression was also confirmed with immunohistochemical analysis. CONCLUSIONS Taken together, the protective effect of Magnesium Isoglycyrrhizinate on EPI-induced hepatic encephalopathy might be mediated via the Txnip/Nrf2/NF-κB signaling pathway.
Collapse
|
113
|
Laing BB, Lim AG, Ferguson LR. A Personalised Dietary Approach-A Way Forward to Manage Nutrient Deficiency, Effects of the Western Diet, and Food Intolerances in Inflammatory Bowel Disease. Nutrients 2019; 11:nu11071532. [PMID: 31284450 PMCID: PMC6683058 DOI: 10.3390/nu11071532] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/29/2019] [Accepted: 07/02/2019] [Indexed: 12/12/2022] Open
Abstract
This review discusses the personalised dietary approach with respect to inflammatory bowel disease (IBD). It identifies gene–nutrient interactions associated with the nutritional deficiencies that people with IBD commonly experience, and the role of the Western diet in influencing these. It also discusses food intolerances and how particular genotypes can affect these. It is well established that with respect to food there is no “one size fits all” diet for those with IBD. Gene–nutrient interactions may help explain this variability in response to food that is associated with IBD. Nutrigenomic research, which examines the effects of food and its constituents on gene expression, shows that—like a number of pharmaceutical products—food can have beneficial effects or have adverse (side) effects depending on a person’s genotype. Pharmacogenetic research is identifying gene variants with adverse reactions to drugs, and this is modifying clinical practice and allowing individualised treatment. Nutrigenomic research could enable individualised treatment in persons with IBD and enable more accurate tailoring of food intake, to avoid exacerbating malnutrition and to counter some of the adverse effects of the Western diet. It may also help to establish the dietary pattern that is most protective against IBD.
Collapse
Affiliation(s)
- Bobbi B Laing
- Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
- Nutrition Society of New Zealand, Palmerston North 4444, New Zealand
| | - Anecita Gigi Lim
- Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Lynnette R Ferguson
- Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand.
| |
Collapse
|
114
|
Zhou X, Wu Y, Ye L, Wang Y, Zhang K, Wang L, Huang Y, Wang L, Xian S, Zhang Y, Chen Y. Aspirin alleviates endothelial gap junction dysfunction through inhibition of NLRP3 inflammasome activation in LPS-induced vascular injury. Acta Pharm Sin B 2019; 9:711-723. [PMID: 31384532 PMCID: PMC6664043 DOI: 10.1016/j.apsb.2019.02.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/04/2019] [Accepted: 01/11/2019] [Indexed: 12/22/2022] Open
Abstract
The loss of endothelial connective integrity and endothelial barrier dysfunction can lead to increased vascular injury, which is related to the activation of endothelial inflammasomes. There are evidences that low concentrations of aspirin can effectively prevent cardiovascular diseases. We hypothesized that low-dose aspirin could ameliorate endothelial injury by inhibiting the activation of NLRP3 inflammasomes and ultimately prevent cardiovascular diseases. Microvascular endothelial cells were stimulated by lipopolysaccharide (2 μg/mL) and administrated by 0.1–2 mmol/L aspirin. The wild type mice were stimulated with LPS (100 μg/kg/day), and 1 h later treated with aspirin (12.5, 62.5, or 125 mg/kg/day) and dexamethasone (0.0182 mg/kg/day) for 7 days. Plasma and heart were harvested for measurement of ELISA and immunofluorescence analyses. We found that aspirin could inhibit NLRP3 inflammasome formation and activation in vitro in dose-dependent manner and has correlation between the NLRP3 inflammasome and the ROS/TXNIP pathway. We also found that low-concentration aspirin could inhibit the formation and activation of NLRP3 inflammasome and restore the expression of the endothelial tight junction protein zonula occludens-1/2 (ZO1/2). We assume that aspirin can ameliorate the endothelial layer dysfunction by suppressing the activation of NLRP3 inflammasome.
Collapse
Affiliation(s)
- Xing Zhou
- School of Pharmaceutical, Guangzhou University of Chinese Medicine, Guangzhou 510000, China
| | - Yanjiao Wu
- School of Pharmaceutical, Guangzhou University of Chinese Medicine, Guangzhou 510000, China
| | - Lifeng Ye
- School of Pharmaceutical, Guangzhou University of Chinese Medicine, Guangzhou 510000, China
| | - Yunting Wang
- School of Pharmaceutical, Guangzhou University of Chinese Medicine, Guangzhou 510000, China
| | - Kaimin Zhang
- School of Pharmaceutical, Guangzhou University of Chinese Medicine, Guangzhou 510000, China
| | - Lingjun Wang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510407, China
| | - Yi Huang
- Department of Stomatology, The First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Lei Wang
- School of Pharmaceutical, Guangzhou University of Chinese Medicine, Guangzhou 510000, China
| | - Shaoxiang Xian
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510407, China
| | - Yang Zhang
- Department of Pharmacological & Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204-5037, USA
- Corresponding author. Tel.: +1 713 743 7710.
| | - Yang Chen
- School of Pharmaceutical, Guangzhou University of Chinese Medicine, Guangzhou 510000, China
- Corresponding author. Tel.: +86 20 39357276.
| |
Collapse
|
115
|
Xu H, Hong S, Yan Z, Zhao Q, Shi Y, Song N, Xie J, Jiang X. RAP-8 ameliorates liver fibrosis by modulating cell cycle and oxidative stress. Life Sci 2019; 229:200-209. [DOI: 10.1016/j.lfs.2019.04.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/11/2019] [Accepted: 04/15/2019] [Indexed: 12/17/2022]
|
116
|
Lv Y, Gao X, Luo Y, Fan W, Shen T, Ding C, Yao M, Song S, Yan L. Apigenin ameliorates HFD-induced NAFLD through regulation of the XO/NLRP3 pathways. J Nutr Biochem 2019; 71:110-121. [PMID: 31325892 DOI: 10.1016/j.jnutbio.2019.05.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 05/21/2019] [Accepted: 05/21/2019] [Indexed: 12/25/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common cause of liver-related morbidity and mortality disease in the world. However, no effective pharmacological treatment for NAFLD has been found. In this study, we used a high fat diet (HFD)-induced NAFLD model to investigate hepatoprotective effect of apigenin (API) against NAFLD and further explored its potential mechanism. Our results demonstrated that gavage administration of API could mitigate HFD-induced liver injury, enhance insulin sensitivity and markedly reduce lipid accumulation in HFD-fed mice livers. In addition, histological analysis showed that hepatic steatosis and macrophages recruitment in the API treatment group were recovered compared with mice fed with HFD alone. Importantly, API could reverse the HFD-induced activation of the NLRP3 inflammasome, further reduced inflammatory cytokines IL-1β and IL-18 release, accompanied with the inhibition of xanthine oxidase (XO) activity and the reduction of uric acid and reactive oxygen species (ROS) production. The pharmacological role of API was further confirmed using free fatty acid (FFA) induced cell NAFLD model. Taking together, our results demonstrated that API could protect against HFD-induced NAFLD by ameliorating hepatic lipid accumulation and inflammation. These protective effects may be partially attributed to the regulation of XO by API, which further modulated NLRP3 inflammasome activation and inflammatory cytokines IL-1β and IL-18 release. Therefore API is a potential therapeutic agent for the prevention of NAFLD.
Collapse
Affiliation(s)
- Yanan Lv
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Xiaona Gao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Yan Luo
- Administration for Market Regulation of GuangDong Province Key Laboratory of Supervision for Edible Agricultural Products, Shenzhen Centre of Inspection and Testing for Agricultural Products, Shenzhen 518000, GuangDong Province, China
| | - Wentao Fan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Tongtong Shen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Chenchen Ding
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Ming Yao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Suquan Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.
| | - Liping Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.
| |
Collapse
|
117
|
Hernández-Díazcouder A, Romero-Nava R, Carbó R, Sánchez-Lozada LG, Sánchez-Muñoz F. High Fructose Intake and Adipogenesis. Int J Mol Sci 2019; 20:E2787. [PMID: 31181590 PMCID: PMC6600229 DOI: 10.3390/ijms20112787] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 02/06/2023] Open
Abstract
In modern societies, high fructose intake from sugar-sweetened beverages has contributed to obesity development. In the diet, sucrose and high fructose corn syrup are the main sources of fructose and can be metabolized in the intestine and transported into the systemic circulation. The liver can metabolize around 70% of fructose intake, while the remaining is metabolized by other tissues. Several tissues including adipose tissue express the main fructose transporter GLUT5. In vivo, chronic fructose intake promotes white adipose tissue accumulation through activating adipogenesis. In vitro experiments have also demonstrated that fructose alone induces adipogenesis by several mechanisms, including (1) triglycerides and very-low-density lipoprotein (VLDL) production by fructose metabolism, (2) the stimulation of glucocorticoid activation by increasing 11β-HSD1 activity, and (3) the promotion of reactive oxygen species (ROS) production through uric acid, NOX and XOR expression, mTORC1 signaling and Ang II induction. Moreover, it has been observed that fructose induces adipogenesis through increased ACE2 expression, which promotes high Ang-(1-7) levels, and through the inhibition of the thermogenic program by regulating Sirt1 and UCP1. Finally, microRNAs may also be involved in regulating adipogenesis in high fructose intake conditions. In this paper, we propose further directions for research in fructose participation in adipogenesis.
Collapse
Affiliation(s)
- Adrián Hernández-Díazcouder
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico city 14080, Mexico.
- Departamento de Ciencias de la Salud, Área de Investigación Médica, Universidad Autónoma Metropolitana Iztapalapa, Mexico city 09340, Mexico.
| | - Rodrigo Romero-Nava
- Departamento de Ciencias de la Salud, Área de Investigación Médica, Universidad Autónoma Metropolitana Iztapalapa, Mexico city 09340, Mexico.
- Laboratorio de investigación en Farmacología, Hospital Infantil de México Federico Gómez, Mexico city 06720, Mexico.
- Sección de Postgraduados, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico city 11340, Mexico.
| | - Roxana Carbó
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Mexico city 14080, Mexico.
| | - L Gabriela Sánchez-Lozada
- Laboratorio de Fisiopatología Renal, Departamento de Nefrología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico city 14080, Mexico.
| | - Fausto Sánchez-Muñoz
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico city 14080, Mexico.
- Sección de Postgraduados, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico city 11340, Mexico.
| |
Collapse
|
118
|
Akhtar-Schäfer I, Wang L, Krohne TU, Xu H, Langmann T. Modulation of three key innate immune pathways for the most common retinal degenerative diseases. EMBO Mol Med 2019; 10:emmm.201708259. [PMID: 30224384 PMCID: PMC6180304 DOI: 10.15252/emmm.201708259] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
This review highlights the role of three key immune pathways in the pathophysiology of major retinal degenerative diseases including diabetic retinopathy, age‐related macular degeneration, and rare retinal dystrophies. We first discuss the mechanisms how loss of retinal homeostasis evokes an unbalanced retinal immune reaction involving responses of local microglia and recruited macrophages, activity of the alternative complement system, and inflammasome assembly in the retinal pigment epithelium. Presenting these key mechanisms as complementary targets, we specifically emphasize the concept of immunomodulation as potential treatment strategy to prevent or delay vision loss. Promising molecules are ligands for phagocyte receptors, specific inhibitors of complement activation products, and inflammasome inhibitors. We comprehensively summarize the scientific evidence for this strategy from preclinical animal models, human ocular tissue analyses, and clinical trials evolving in the last few years.
Collapse
Affiliation(s)
- Isha Akhtar-Schäfer
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Cologne, Germany
| | - Luping Wang
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| | - Tim U Krohne
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| | - Heping Xu
- Centre for Experimental Medicine, The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Thomas Langmann
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Cologne, Germany .,Center for Molecular Medicine, University of Cologne, Cologne, Germany
| |
Collapse
|
119
|
Lu Y, Lin Y, Huang X, Wu S, Wei J, Yang C. Oxaliplatin aggravates hepatic oxidative stress, inflammation and fibrosis in a non‑alcoholic fatty liver disease mouse model. Int J Mol Med 2019; 43:2398-2408. [PMID: 30942432 PMCID: PMC6488186 DOI: 10.3892/ijmm.2019.4154] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 03/27/2019] [Indexed: 02/06/2023] Open
Abstract
Oxaliplatin (OXA)-based chemotherapy is widely used in the treatment of gastrointestinal tumors; however, it is associated with chemotherapy-associated liver injury. Whether OXA induces liver injury and aggravates the already existing hepatic oxidative stress, inflammation and fibrosis in non-alcoholic fatty liver disease (NAFLD), and whether these effects can be alleviated by reduced glutathione (GSH) treatment, remains unclear. In the present study, OXA induced acute liver injury in NAFLD mice. Moreover, OXA increased the levels of reactive oxygen species (ROS) and malondialdehyde (MDA) and decreased the levels of superoxide dismutase and GSH peroxidase in the livers of NAFLD mice. OXA also induced the upregulation of hepatic inflammatory cytokines, such as tumor necrosis factor (TNF)-α, interferon (IFN)-γ and interleukin (IL)-17, in NAFLD mice. Furthermore, collagen fiber deposition in liver tissues was increased and the expression of transforming growth factor (TGF)-β, α-smooth muscle actin (SMA) and tissue inhibitor of metallopeptidase (TIMP)-1 was upregulated in the livers of OXA-treated NAFLD mice. Treatment with exogenous GSH alleviated OXA-induced acute liver injury in NAFLD mice, and significantly reduced the levels of ROS, MDA and TNF-α. However, GSH treatment did not inhibit collagen fiber deposition, although it reduced the levels of IFN-γ, IL-17, TGF-β, α-SMA and TIMP-1 in the livers of OXA-treated NAFLD mice. In conclusion, OXA chemotherapy may induce acute liver injury and aggravate the existing hepatic oxidative stress, inflammation and fibrosis in NAFLD. Treatment of NAFLD mice with exogenous GSH alleviated OXA-induced liver injury, possibly by ameliorating OXA-aggravated hepatic oxidative stress and inflammation; it did not, however, attenuate OXA-aggravated liver fibrosis.
Collapse
Affiliation(s)
- Yulei Lu
- Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Youzhi Lin
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xiaoqing Huang
- Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Shengming Wu
- Department of Pathology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jian Wei
- Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Chun Yang
- Department of Experimental Pathology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
120
|
Gaballah HH, El‐Horany HE, Helal DS. Mitigative effects of the bioactive flavonol fisetin on high‐fat/high‐sucrose induced nonalcoholic fatty liver disease in rats. J Cell Biochem 2019; 120:12762-12774. [DOI: 10.1002/jcb.28544] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 01/16/2019] [Accepted: 01/24/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Hanaa H. Gaballah
- Department of Medical Biochemistry Faculty of Medicine, Tanta University Tanta Egypt
| | - Hemat E. El‐Horany
- Department of Medical Biochemistry Faculty of Medicine, Tanta University Tanta Egypt
| | - Duaa S. Helal
- Department of Histopathology Faculty of Medicine, Tanta University Tanta Egypt
| |
Collapse
|
121
|
Pirozhkov SV, Terebilina NN, Litvitskiy PF. [A role of inflammasomes in the pathogenesis of neurological and mental diseases]. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 118:81-91. [PMID: 30698567 DOI: 10.17116/jnevro201811812181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Inflammasomes are macromolecular complexes that contain many copies of receptors recognizing molecular patterns of pathogenic agents (PAMP) and damage-associated structures (DAMP), and also include molecules of adapter protein ASC and procaspase-1. Activation of inflammasomes leads to the formation of active caspase-1 that, in turn, provides the maturation of pro-IL-1β and pro-IL-18 to IL-1β and IL-18. The latter cytokines play an important role in control of neuroinlfammation in the central nervous system contributing to the pathogenesis of a series of neurological, neurodegenerative and mental disorders. The review discusses the involvement of NLRP3 inflammasome and other their types in the development of the traumatic brain injury, ischemic and hemorrhagic stroke, brain tumors, CNS infections, Alzheimer's and Parkinson's diseases, epilepsy, amyotrophic lateral sclerosis, depressiver, and consequences of alcohol abuse. The elucidation of molecular mechanisms and signaling pathways controlled by inflammasomes will allow the development of new therapeutic measures for diseases, in which neuroinflammation plays a leading pathogenetic role.
Collapse
Affiliation(s)
- S V Pirozhkov
- Sechenov First Moscow State Medical University of the MH, Moscow, Russia
| | - N N Terebilina
- Serbsky National Medical Research Centre for Psychiatry and Narcology, Moscow, Russia
| | - P F Litvitskiy
- Sechenov First Moscow State Medical University of the MH, Moscow, Russia
| |
Collapse
|
122
|
Cheng Z, Wen Y, Liang B, Chen S, Liu Y, Wang Z, Cheng J, Tang X, Xin H, Deng L. Gene expression profile-based drug screen identifies SAHA as a novel treatment for NAFLD. Mol Omics 2019; 15:50-58. [DOI: 10.1039/c8mo00214b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide.
Collapse
Affiliation(s)
- Zhujun Cheng
- Institute of Translational Medicine, Nanchang University
- Nanchang
- P. R. China
| | - Yusong Wen
- Institute of Translational Medicine, Nanchang University
- Nanchang
- P. R. China
| | - Bowen Liang
- School of Public Health, Nanchang University
- Nanchang
- P. R. China
| | - Siyang Chen
- School of Public Health, Nanchang University
- Nanchang
- P. R. China
| | - Yujun Liu
- Queen Mary School, Medical College, Nanchang University
- Nanchang
- P. R. China
| | - Zang Wang
- School of Public Health, Nanchang University
- Nanchang
- P. R. China
| | - Jiayu Cheng
- The Fourth Clinical Medical College, Nanchang University
- Nanchang
- P. R. China
| | - Xiaoli Tang
- College of Basic Medical Science, Nanchang University
- Nanchang
- P. R. China
| | - Hongbo Xin
- Institute of Translational Medicine, Nanchang University
- Nanchang
- P. R. China
| | - Libin Deng
- Institute of Translational Medicine, Nanchang University
- Nanchang
- P. R. China
- College of Basic Medical Science, Nanchang University
- Nanchang
| |
Collapse
|
123
|
Ogawa M, Kanda T, Higuchi T, Takahashi H, Kaneko T, Matsumoto N, Nirei K, Yamagami H, Matsuoka S, Kuroda K, Moriyama M. Possible association of arrestin domain-containing protein 3 and progression of non-alcoholic fatty liver disease. Int J Med Sci 2019; 16:909-921. [PMID: 31341404 PMCID: PMC6643132 DOI: 10.7150/ijms.34245] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 05/03/2019] [Indexed: 12/22/2022] Open
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) is increasing worldwide. Several effective drugs for these diseases are now in development and under clinical trials. It is important to reveal the mechanism of the development of NAFLD and NASH. We investigated the role of arrestin domain-containing protein 3 (ARRDC3), which is linked to obesity in men and regulates body mass, adiposity and energy expenditure, in the progression of NAFLD and NASH. We performed knockdown of endogenous ARRDC3 in human hepatocytes and examined the inflammasome-associated gene expression by real-time PCR-based array. We also examined the effect of conditioned medium from endogenous ARRDC3-knockdown-hepatocytes on the apoptosis of hepatic stellate cells. We observed that free acids enhanced the expression of ARRDC3 in hepatocytes. Knockdown of ARRDC3 could lead to the inhibition of inflammasome-associated gene expression in hepatocytes. We also observed that conditioned medium from endogenous ARRDC3-knockdown-hepatocytes enhances the apoptosis of hepatic stellate cells. ARRDC3 has a role in the progression of NAFLD and NASH and is one of the targets for the development of the effective treatment of NAFLD and NASH.
Collapse
Affiliation(s)
- Masahiro Ogawa
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan
| | - Tatsuo Kanda
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan
| | - Teruhisa Higuchi
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan
| | - Hiroshi Takahashi
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan
| | - Tomohiro Kaneko
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan
| | - Naoki Matsumoto
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan
| | - Kazushige Nirei
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan
| | - Hiroaki Yamagami
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan
| | - Shunichi Matsuoka
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan
| | - Kazumichi Kuroda
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan
| | - Mitsuhiko Moriyama
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan
| |
Collapse
|
124
|
Zeng H, Guo X, Zhou F, Xiao L, Liu J, Jiang C, Xing M, Yao P. Quercetin alleviates ethanol-induced liver steatosis associated with improvement of lipophagy. Food Chem Toxicol 2018; 125:21-28. [PMID: 30580029 DOI: 10.1016/j.fct.2018.12.028] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/06/2018] [Accepted: 12/18/2018] [Indexed: 02/07/2023]
Abstract
Although emerging evidence demonstrated that quercetin could be explored as a potential candidate for the early intervention of alcoholic liver disease (ALD), the exact mechanisms against ethanol-induced hepatic steatosis haven't been fully elucidated. Herein, we investigated the effect of quercetin on liver steatosis caused by chronic-plus-single-binge ethanol feeding, focusing on lipophagy. Adult male mice were pair-fed with liquid diets containing ethanol (28% of total calories) and treated with quercetin for 12 weeks. Chronic-plus-binge ethanol consumption led to lipid droplets accumulation and liver damage as evidenced by histopathological changes, the increased content of triglyceride in serum and liver, and the elevated of serum ALT and AST level, which were greatly attenuated by quercetin. Moreover, quercetin blocked autophagy suppression by chronic-binge ethanol intake as manifested by the morphological improvement of mitochondrial characteristics, the increased number of autolysosome and restoration of autophagy-related protein expression. Furthermore, quercetin promoted lipophagy confirmed by the decreased perilipin 2 (PLIN2) level, activated AMPK activity and increased co-localization of liver LC3II and PLIN2 proteins. Collectively, these findings suggest that regular consumption of dietary quercetin has a role in preventing hepatic steatosis induced by chronic-plus-binge ethanol feeding, which mechanism may associate with the evident regulatory effect of quercetin on lipophagy.
Collapse
Affiliation(s)
- Hongmei Zeng
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaoping Guo
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Feng Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lin Xiao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jingjing Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chunjie Jiang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Mingyou Xing
- Department of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Ping Yao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
125
|
Wu M, Han W, Song S, Du Y, Liu C, Chen N, Wu H, Shi Y, Duan H. NLRP3 deficiency ameliorates renal inflammation and fibrosis in diabetic mice. Mol Cell Endocrinol 2018; 478:115-125. [PMID: 30098377 DOI: 10.1016/j.mce.2018.08.002] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/26/2018] [Accepted: 08/07/2018] [Indexed: 12/16/2022]
Abstract
Diabetic nephropathy (DN) is the leading cause of end-stage renal disease. Activation of the nucleotide binding and oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome has been reported in diabetic kidney, yet the potential role of NLRP3 inflammasome in DN is not well known. In this study, we explored the role of NLRP3 inflammasome on inflammation and fibrosis in diabetic kidney using NLRP3 knockout mice. Renal expression of NLRP3, caspase-1 p10, interleukin-18 (IL-18) and cleaved IL-1β was increased in diabetic wild-type (WT) mice at 24 weeks. NLRP3 knockout (KO) improved renal function, attenuated glomerular hypertrophy, glomerulosclerosis, mesangial expansion, interstitial fibrosis, inflammation and expression of TGF-β1 and connective tissue growth factor (CTGF), as well as the activation of Smad3 in kidneys of STZ-induced diabetic mice. In addition, NLRP3 KO inhibited expression of thioredoxin-interacting protein (TXNIP) and NADPH oxidase 4 (Nox4) and superoxide production in diabetic kidneys. The diabetes-induced increase in urinary level of 8-hydroxydeoxyguanosine (8-OHdG) was attenuated in NLRP3 KO mice. In vitro experiments, using HK-2 cells, revealed that high glucose (HG)-mediated expression of TXNIP and Nox4 was inhibited by transfection with NLRP3 shRNA plasmid or antioxidant tempol treatment. Silencing of the NLRP3 resulted in reduced generation of reactive oxygen species (ROS) in HK-2 cells under HG conditions. Furthermore, we also found exposure of IL-1β to HK-2 cells induced ROS generation and expression of TXNIP and Nox4. Taken together, inhibition of NLRP3 inflammasome activation inhibits renal inflammation and fibrosis at least in part via suppression of oxidative stress in diabetic nephropathy.
Collapse
Affiliation(s)
- Ming Wu
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Weixia Han
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Shan Song
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Yunxia Du
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Hebei Key Laboratory of Kidney Disease, Shijiazhuang, China
| | - Chao Liu
- Hebei Key Laboratory of Animal Science, Shijiazhuang, China
| | - Nan Chen
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Haijiang Wu
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Hebei Key Laboratory of Kidney Disease, Shijiazhuang, China
| | - Yonghong Shi
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Hebei Key Laboratory of Kidney Disease, Shijiazhuang, China.
| | - Huijun Duan
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Hebei Key Laboratory of Kidney Disease, Shijiazhuang, China
| |
Collapse
|
126
|
Ding X, Jian T, Wu Y, Zuo Y, Li J, Lv H, Ma L, Ren B, Zhao L, Li W, Chen J. Ellagic acid ameliorates oxidative stress and insulin resistance in high glucose-treated HepG2 cells via miR-223/keap1-Nrf2 pathway. Biomed Pharmacother 2018; 110:85-94. [PMID: 30466006 DOI: 10.1016/j.biopha.2018.11.018] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/30/2018] [Accepted: 11/06/2018] [Indexed: 12/27/2022] Open
Abstract
As a promising new target, miR-233 may regulate oxidative stress by targeting keap1-Nrf2 system to affect the pathological process of liver injury in T2DM. Ellagic acid (EA) is versatile for protecting oxidative stress damage and metabolic disorders. In the present study, we investigated the effect of EA on oxidative stress and insulin resistance in high glucose-induced T2DM HepG2 cells and examined the role of miR-223/keap1-Nrf2 pathway in system. HepG2 cells were incubated in 30 mM of glucose, with or without EA (15 and 30 μM) or metformin (Met, 150 μM) for 12 h. Glucose consumption, phosphorylation of IRS1, Akt and ERK under insulin stimulation, ROS and O2- production, MDA level, SOD activity and miR-223 expression, as well as protein levels of keap1, Nrf2, HO-1, SOD1 and SOD2 were analyzed. Furthermore, dual luciferase reporter assay, miR-223 mimic and inhibitor were implemented in cellular studies to explore the possible mechanism. EA upregulated glucose consumption, IRS1, Akt and ERK phosphorylation under insulin stimulation, reduced ROS and O2- production and MDA level, and increased SOD activity in high glucose-exposed HepG2 cells. In addition, EA elevated miR-223 expression level, downregulated mRNA and protein levels of keap1, and upregulated Nrf2, HO-1, SOD1 and SOD2 protein levels in this cell model. What's more, dual luciferase reporter assay, miR-223 mimic and inhibitor transfection confirmed that EA activated keap1-Nrf2 system via elevating miR-223. The miR-223, a negative regulator of keap1, represents an attractive therapeutic target in hepatic injury in T2DM. EA ameliorates oxidative stress and insulin resistance via miR-223-mediated keap1-Nrf2 activation in high glucose-induced T2DM HepG2 cells.
Collapse
Affiliation(s)
- Xiaoqin Ding
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Tunyu Jian
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Yuexian Wu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Yuanyuan Zuo
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Jiawei Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Han Lv
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Li Ma
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Bingru Ren
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Lei Zhao
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Weilin Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; Nanjing Forestry University, Nanjing 210037, China.
| | - Jian Chen
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| |
Collapse
|
127
|
Curcumin and allopurinol ameliorate fructose-induced hepatic inflammation in rats via miR-200a-mediated TXNIP/NLRP3 inflammasome inhibition. Pharmacol Res 2018; 137:64-75. [DOI: 10.1016/j.phrs.2018.09.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/01/2018] [Accepted: 09/20/2018] [Indexed: 12/17/2022]
|
128
|
Bai RX, Xu YY, Qin G, Chen YM, Wang HF, Wang M, Du SY. Repression of TXNIP-NLRP3 axis restores intestinal barrier function via inhibition of myeloperoxidase activity and oxidative stress in nonalcoholic steatohepatitis. J Cell Physiol 2018; 234:7524-7538. [PMID: 30387131 DOI: 10.1002/jcp.27513] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 09/10/2018] [Indexed: 12/13/2022]
Abstract
Dysfunction of the intestinal barrier function occurs in hepatic injury, but the specific mechanisms responsible are largely unknown. Recently, NOD-like receptor 3 (NLRP3) inflammasome functions in impairing endothelial barrier function. In this study, we test the hypothesis that TXNIP-NLRP3 axis repression prevents against intestinal barrier function disruption in nonalcoholic steatohepatitis (NASH). First, lipopolysaccharide (LPS)-induced alterations in expression of ZO-1 and occludin, myeloperoxidase (MPO) activity, reactive oxygen species (ROS) level, and transepithelial electric resistance (TEER) in intestinal epithelial cells (IECs) isolated from C57BL/6 wild-type (WT) and TXNIP-/- mice were evaluated. The underlying regulatory mechanisms of TXNIP knockout in vivo were investigated with the detection of expressions of TXNIP, NLRP3 and ZO-1, and occludin, the interaction of TXNIP-NLRP3, MPO activity, ROS level, permeability of intestinal mucosa, levels of inflammatory factors in serum, and LPS concentration. We identified that TXNIP knockout promoted ZO-1 and occludin expression, yet reduced MPO activity, ROS level, and cell permeability in IECs, indicating restored the intestinal barrier function. However, LPS upregulated TXNIP and NLRP3 expression, as well as contributed to the interaction between TXNIP and NLRP3 in vitro. Furthermore, TXNIP was significantly upregulated in the intestinal mucosa of NASH mice and its knockout repaired the intestinal barrier disrupt, inhibited expression of inflammatory factors, and reduced LPS concentration as well as hepatic injury in vivo. Taken together, our findings demonstrated that inhibited the activation of the TXNIP-NLRP3 axis reduced MPO activity and oxidative stress and thus restoring the intestinal barrier function in NASH. TXNIP-NLRP3 axis may be a promising therapeutic strategy for the NASH treatment.
Collapse
Affiliation(s)
- Ru-Xue Bai
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, China
| | - Ying-Ying Xu
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, China
| | - Geng Qin
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, China
| | - Yan-Ming Chen
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, China
| | - Hui-Fen Wang
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, China
| | - Miao Wang
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, China
| | - Shi-Yu Du
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
129
|
Near-infrared photobiomodulation combined with coenzyme Q 10 for depression in a mouse model of restraint stress: reduction in oxidative stress, neuroinflammation, and apoptosis. Brain Res Bull 2018; 144:213-222. [PMID: 30385146 DOI: 10.1016/j.brainresbull.2018.10.010] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/18/2018] [Accepted: 10/25/2018] [Indexed: 12/19/2022]
Abstract
This study was aimed to evaluate the effects of near-infrared (NIR) photobiomodulation (PBM) combined with coenzyme Q10 (CoQ10) on depressive-like behavior, cerebral oxidative stress, inflammation, and apoptosis markers in mice. To induce a depressive-like model, mice were subjected to sub-chronic restraint stress for 5 consecutive days. NIR PBM (810 nm laser, 33.3 J/cm2) and/or CoQ10 (500 mg/kg/day, gavage) were administered for five days concomitantly with immobilization. Behavior was evaluated by the forced swim test (FST), tail suspension test (TST), and open field test (OFT). Mitochondrial membrane potential as well as oxidative stress, neuroinflammatory, and markers of apoptosis were evaluated in the prefrontal cortex (PFC) and hippocampus (HIP). The serum levels of pro-inflammatory cytokines, cortisol, and corticosterone were also measured. PBM or CoQ10, or the combination, ameliorated depressive-like behaviors induced by restraint stress as indicated by decreased immobility time in both the FST and TST. PBM and/or CoQ10 treatments decreased lipid peroxidation and enhanced total antioxidant capacity (TAC), GSH levels, GPx and SOD activities in both brain areas. The neuroinflammatory response in the HIP and PFC was suppressed, as indicated by decreased NF-kB, p38, and JNK levels in PBM and/or CoQ10 groups. Intrinsic apoptosis biomarkers, BAX, Bcl-2, cytochrome c release, and caspase-3 and -9, were also significantly down-regulated by both treatments. Furthermore, both treatments decreased the elevated serum levels of cortisol, corticosterone, TNF-α, and IL-6 induced by restraint stress. Transcranial NIR PBM and CoQ10 therapies may be effective antidepressant strategies for the prevention of psychopathological and behavioral symptoms induced by stress.
Collapse
|
130
|
Zhang J, Wang Y, Fu L, Wang B, Ji YL, Wang H, Xu DX. Chronic cadmium exposure induced hepatic cellular stress and inflammation in aged female mice. J Appl Toxicol 2018; 39:498-509. [PMID: 30375035 DOI: 10.1002/jat.3742] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/11/2018] [Accepted: 09/25/2018] [Indexed: 01/04/2023]
Abstract
Previous studies have revealed that acute cadmium (Cd) exposure led to inflammation in different organs through an oxidative stress mechanism. However, whether chronic Cd exposure induces inflammation in liver and the mechanistic link between inflammation and cell stress remains unclear. In the present study, we investigated the effects of chronic Cd exposure on hepatic cellular stress and inflammatory responses. Female CD1 mice were administrated with CdCl2 (10 and 100 mg/L) in drinking water for 57 weeks. Our results showed that the mRNA levels of Inos and the protein content of HO-1, markers of oxidative stress, were markedly increased in Cd-treated mice. In addition, the protein level of GRP78, the chaperone of endoplasmic reticulum (ER) stress, was significantly increased in Cd-treated mice. The expression of the proteins CHOP and peIF2α, two proteins downstream of ER stress, was also upregulated in the Cd-100 mg/L and Cd-10 mg/L group, respectively. Moreover, there were increased inflammatory cells existing in liver after Cd administration. Besides, there was a significant elevation in the mRNA level of Mip-2, Il-10 and Il-12 in the Cd-100 mg/L group. The mRNA level of Tgf-β was also upregulated in Cd-treated mice. Moreover, we also found that the number of Ki67-positive hepatic cells was increased in the Cd-10 mg/L group. Hence, our results indicated that chronic Cd exposure induced oxidative stress, ER stress, inflammatory responses and proliferation in the liver of aged female mice.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China.,Anhui Provincial Key Laboratory of Population Health & Aristogenics, Anhui Medical University, Hefei, China.,Laboratory of Environmental Toxicology, Anhui Medical University, Hefei, China
| | - Yan Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China.,Laboratory of Environmental Toxicology, Anhui Medical University, Hefei, China
| | - Lin Fu
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China.,Anhui Provincial Key Laboratory of Population Health & Aristogenics, Anhui Medical University, Hefei, China.,Laboratory of Environmental Toxicology, Anhui Medical University, Hefei, China
| | - Bo Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China.,Laboratory of Environmental Toxicology, Anhui Medical University, Hefei, China
| | - Yan-Li Ji
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China.,Anhui Provincial Key Laboratory of Population Health & Aristogenics, Anhui Medical University, Hefei, China.,Laboratory of Environmental Toxicology, Anhui Medical University, Hefei, China
| | - Hua Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China.,Anhui Provincial Key Laboratory of Population Health & Aristogenics, Anhui Medical University, Hefei, China.,Laboratory of Environmental Toxicology, Anhui Medical University, Hefei, China
| | - De-Xiang Xu
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China.,Anhui Provincial Key Laboratory of Population Health & Aristogenics, Anhui Medical University, Hefei, China.,Laboratory of Environmental Toxicology, Anhui Medical University, Hefei, China
| |
Collapse
|
131
|
Sho T, Xu J. Role and mechanism of ROS scavengers in alleviating NLRP3-mediated inflammation. Biotechnol Appl Biochem 2018; 66:4-13. [PMID: 30315709 DOI: 10.1002/bab.1700] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/09/2018] [Indexed: 01/20/2023]
Abstract
Inflammation, as a common immune response to various infections or injuries, can cause many dangerous and complicated diseases. Inflammasome is a protein complex playing a vital role in an inflammation process, and the nucleotide-binding oligomerization domain (NOD)-like receptor containing pyrin domain 3 (NLRP3) inflammasome has been the most-widely studied one. Recent evidence suggests the reactive oxygen species (ROS)-NLRP3 signaling pathway to be a possible NLRP3 inflammasome regulation model. Numerous recent preclinical reports indicate that application of antioxidants could scavenge excessive ROS and attenuate inflammatory responses through suppressing NLRP3 inflammasome activation. This article, at first, briefly overviews how ROS may mediate the regulation of NLRP3 inflammasome activation. Then, preclinical researches of various ROS scavengers for treating NLRP3 inflammasome-associated diseases are focused on and critically analyzed. Finally, the potential of antioxidant treatment as a therapy for inflammation is to be discussed, and perspectives on future research directions will be shared.
Collapse
Affiliation(s)
- Takami Sho
- Shanghai Key Laboratory for Veterinary and Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - JianXiong Xu
- Shanghai Key Laboratory for Veterinary and Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
132
|
Zhao XJ, Yu HW, Yang YZ, Wu WY, Chen TY, Jia KK, Kang LL, Jiao RQ, Kong LD. Polydatin prevents fructose-induced liver inflammation and lipid deposition through increasing miR-200a to regulate Keap1/Nrf2 pathway. Redox Biol 2018; 18:124-137. [PMID: 30014902 PMCID: PMC6068203 DOI: 10.1016/j.redox.2018.07.002] [Citation(s) in RCA: 182] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 07/01/2018] [Accepted: 07/04/2018] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress is a critical factor in nonalcoholic fatty liver disease pathogenesis. MicroRNA-200a (miR-200a) is reported to target Kelch-like ECH-associated protein 1 (Keap1), which regulates nuclear factor erythroid 2-related factor 2 (Nrf2) anti-oxidant pathway. Polydatin (3,4',5-trihydroxy-stilbene-3-β-D-glucoside), a polyphenol found in the rhizome of Polygonum cuspidatum, have anti-oxidative, anti-inflammatory and anti-hyperlipidemic effects. However, whether miR-200a controls Keap1/Nrf2 pathway in fructose-induced liver inflammation and lipid deposition and the blockade of polydatin are still not clear. Here, we detected miR-200a down-regulation, Keap1 up-regulation, Nrf2 antioxidant pathway inactivation, ROS-driven thioredoxin-interacting protein (TXNIP) over-expression, NOD-like receptor (NLR) family, pyrin domain containing 3 (NLRP3) inflammasome activation and dysregulation of peroxisome proliferator activated receptor-α (PPAR-α), carnitine palmitoyl transferase-1 (CPT-1), sterol regulatory element binging protein 1 (SREBP-1) and stearoyl-CoA desaturase-1 (SCD-1) in rat livers, BRL-3A and HepG2 cells under high fructose induction. Furthermore, the data from the treatment or transfection of miR-200a minic, Keap1 and TXNIP siRNA, Nrf2 activator and ROS inhibitor demonstrated that fructose-induced miR-200a low-expression increased Keap1 to block Nrf2 antioxidant pathway, and then enhanced ROS-driven TXNIP to activate NLRP3 inflammasome and disturb lipid metabolism-related proteins, causing inflammation and lipid deposition in BRL-3A cells. We also found that polydatin up-regulated miR-200a to inhibit Keap1 and activate Nrf2 antioxidant pathway, resulting in attenuation of these disturbances in these animal and cell models. These findings provide a novel pathological mechanism of fructose-induced redox status imbalance and suggest that the enhancement of miR-200a to control Keap1/Nrf2 pathway by polydatin is a therapeutic strategy for fructose-associated liver inflammation and lipid deposition.
Collapse
Affiliation(s)
- Xiao-Juan Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, PR China
| | - Han-Wen Yu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, PR China
| | - Yan-Zi Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, PR China
| | - Wen-Yuan Wu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, PR China
| | - Tian-Yu Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, PR China
| | - Ke-Ke Jia
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, PR China
| | - Lin-Lin Kang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, PR China
| | - Rui-Qing Jiao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, PR China
| | - Ling-Dong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
133
|
Ramli NZ, Chin KY, Zarkasi KA, Ahmad F. A Review on the Protective Effects of Honey against Metabolic Syndrome. Nutrients 2018; 10:E1009. [PMID: 30072671 PMCID: PMC6115915 DOI: 10.3390/nu10081009] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 07/27/2018] [Accepted: 07/31/2018] [Indexed: 12/15/2022] Open
Abstract
Metabolic syndrome (MetS) is a cluster of diseases comprising of obesity, diabetes mellitus, dyslipidemia, and hypertension. There are numerous pre-clinical as well as human studies reporting the protective effects of honey against MetS. Honey is a nutritional food low in glycemic index. Honey intake reduces blood sugar levels and prevents excessive weight gain. It also improves lipid metabolism by reducing total cholesterol (TC), triglyceride (TG), low-density lipoprotein (LDL) and increasing high-density lipoprotein (HDL), which leads to decreased risk of atherogenesis. In addition, honey enhances insulin sensitivity that further stabilizes blood glucose levels and protects the pancreas from overstimulation brought on by insulin resistance. Furthermore, antioxidative properties of honey help in reducing oxidative stress, which is one of the central mechanisms in MetS. Lastly, honey protects the vasculature from endothelial dysfunction and remodelling. Therefore, there is a strong potential for honey supplementation to be integrated into the management of MetS, both as preventive as well as adjunct therapeutic agents.
Collapse
Affiliation(s)
- Nur Zuliani Ramli
- Department of Anatomy, Faculty of Medicine, UKM Medical Centre, Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur, Malaysia.
- Department of Biomedical Sciences and Therapeutics, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia.
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, UKM Medical Centre, Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur, Malaysia.
| | - Khairul Anwar Zarkasi
- Department of Biomedical Sciences and Therapeutics, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia.
- Department of Biochemistry, Faculty of Medicine, UKM Medical Centre, Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur, Malaysia.
| | - Fairus Ahmad
- Department of Anatomy, Faculty of Medicine, UKM Medical Centre, Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur, Malaysia.
| |
Collapse
|
134
|
Yi YS. Regulatory Roles of Flavonoids on Inflammasome Activation during Inflammatory Responses. Mol Nutr Food Res 2018; 62:e1800147. [PMID: 29774640 DOI: 10.1002/mnfr.201800147] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/24/2018] [Indexed: 12/20/2022]
Abstract
Inflammation is an innate immune response to noxious stimuli to protect the body from pathogens. Inflammatory responses consist of two main steps: priming and triggering. In priming, inflammatory cells increase expressions of inflammatory molecules, while in triggering, inflammasomes are activated, resulting in cell death and pro-inflammatory cytokine secretion. Inflammasomes are protein complexes comprising intracellular pattern recognition receptors (PRRs) (e.g., nucleotide-binding oligomerization domain-like receptors (NLRs), absent in melanoma 2 (AIM2), and caspases-4/5/11) and pro-caspase-1 with or without a bipartite adaptor molecule ASC. Inflammasome activation induces pyroptosis, inflammatory cell death, and stimulates caspase-1-mediated secretion of interleukin (IL)-1b and IL-18. Flavonoids are secondary metabolites found in various plants and are considered as critical ingredients promoting health and ameliorating various disease symptoms. Anti-inflammatory activity of flavonoids and underlying mechanisms have been widely studied. This review introduces current knowledge on different types of inflammasomes and their activation during inflammatory responses and discusses recent studies regarding anti-inflammatory roles of flavonoids as suppressors of inflammasomes in inflammatory conditions. Understanding the regulatory effects of flavonoids on inflammasome activation will increase our knowledge of flavonoid-mediated anti-inflammatory activity and provide new insights into the development of flavonoid preparations to prevent and treat human inflammatory diseases.
Collapse
Affiliation(s)
- Young-Su Yi
- Department of Pharmaceutical Engineering, Cheongju University, Cheongju, 28503, Korea
| |
Collapse
|
135
|
He W, Ye S, Zeng C, Xue S, Hu X, Zhang X, Gao S, Xiong Y, He X, Vivalda S, Li L, Wang Y, Ye Q. Hypothermic oxygenated perfusion (HOPE) attenuates ischemia/reperfusion injury in the liver through inhibition of the TXNIP/NLRP3 inflammasome pathway in a rat model of donation after cardiac death. FASEB J 2018; 32:fj201800028RR. [PMID: 29870680 DOI: 10.1096/fj.201800028rr] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Hypothermic oxygenated perfusion (HOPE) is a relatively new dynamic preservation procedure that has not been widely implemented in liver transplantation despite its advantages. Improved graft protection is one such advantage offered by HOPE and has been attributed to multiple mechanisms, one of which may be the modulation of the thioredoxin-interacting protein (TXNIP)/NOD-like receptor protein 3 (NLRP3) inflammasome pathway. The TXNIP/NLRP3 inflammasome pathway plays a critical role in sterile inflammation under oxidative stress as a result of ischemia/reperfusion injury (IRI). In the current study, we aimed to investigate the graft protection offered by HOPE and its impact on the TXNIP/NLRP3 inflammasome pathway. To simulate conditions of donation after cardiac death (DCD) liver transplantation, rat livers were exposed to 30 min of warm ischemia after cardiac arrest. Livers were then preserved under cold storage (CS) or with HOPE for 3 h. Livers were then subjected to 1 h of isolated reperfusion. Liver injuries were assessed on the isolated perfusion rat liver model system before and after reperfusion. Compared with the CS group, the HOPE group had a significant reduction in liver injury and improvement in liver function. Our findings also revealed that reperfusion injury induced liver damage and activated the TXNIP/NLRP3 inflammasome pathway in DCD rat livers. Pretreatment of DCD rat livers with HOPE inhibited the TXNIP/NLRP3 inflammasome pathway and attenuated liver IRI. Attenuation of oxidative stress as a result of HOPE led to the down-regulation of the TXNIP/NLRP3 inflammasome pathway and thus offered superior protection compared with the traditional CS method of organ preservation.-He, W., Ye, S., Zeng, C., Xue, S., Hu, X., Zhang, X., Gao, S., Xiong, Y., He, X., Vivalda, S., Li, L., Wang, Y., Ye, Q. Hypothermic oxygenated perfusion (HOPE) attenuates ischemia/reperfusion injury in the liver through inhibition of the TXNIP/NLRP3 inflammasome pathway in a rat model of donation after cardiac death.
Collapse
Affiliation(s)
- Weiyang He
- Institute of Hepatobiliary Diseases, Transplant Center, Hubei Key Laboratory of Medical Technology on Transplantation, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Shaojun Ye
- Institute of Hepatobiliary Diseases, Transplant Center, Hubei Key Laboratory of Medical Technology on Transplantation, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Cheng Zeng
- Institute of Hepatobiliary Diseases, Transplant Center, Hubei Key Laboratory of Medical Technology on Transplantation, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Shuai Xue
- Institute of Hepatobiliary Diseases, Transplant Center, Hubei Key Laboratory of Medical Technology on Transplantation, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Xiaoyan Hu
- Institute of Hepatobiliary Diseases, Transplant Center, Hubei Key Laboratory of Medical Technology on Transplantation, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Xingjian Zhang
- Institute of Hepatobiliary Diseases, Transplant Center, Hubei Key Laboratory of Medical Technology on Transplantation, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Siqi Gao
- Institute of Hepatobiliary Diseases, Transplant Center, Hubei Key Laboratory of Medical Technology on Transplantation, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Yan Xiong
- Institute of Hepatobiliary Diseases, Transplant Center, Hubei Key Laboratory of Medical Technology on Transplantation, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Xueyu He
- Institute of Hepatobiliary Diseases, Transplant Center, Hubei Key Laboratory of Medical Technology on Transplantation, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Soatina Vivalda
- Institute of Hepatobiliary Diseases, Transplant Center, Hubei Key Laboratory of Medical Technology on Transplantation, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Ling Li
- Institute of Hepatobiliary Diseases, Transplant Center, Hubei Key Laboratory of Medical Technology on Transplantation, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Yanfeng Wang
- Institute of Hepatobiliary Diseases, Transplant Center, Hubei Key Laboratory of Medical Technology on Transplantation, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Qifa Ye
- Institute of Hepatobiliary Diseases, Transplant Center, Hubei Key Laboratory of Medical Technology on Transplantation, Zhongnan Hospital, Wuhan University, Wuhan, China
- Transplantation Medicine Engineering and Technology Research Center, National Health Commission, The 3rd Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
136
|
Modulation of hepatic inflammation and energy-sensing pathways in the rat liver by high-fructose diet and chronic stress. Eur J Nutr 2018; 58:1829-1845. [PMID: 29845385 DOI: 10.1007/s00394-018-1730-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 05/22/2018] [Indexed: 12/29/2022]
Abstract
PURPOSE High-fructose consumption and chronic stress are both associated with metabolic inflammation and insulin resistance. Recently, disturbed activity of energy sensor AMP-activated protein kinase (AMPK) was recognized as mediator between nutrient-induced stress and inflammation. Thus, we analyzed the effects of high-fructose diet, alone or in combination with chronic stress, on glucose homeostasis, inflammation and expression of energy sensing proteins in the rat liver. METHODS In male Wistar rats exposed to 9-week 20% fructose diet and/or 4-week chronic unpredictable stress we measured plasma and hepatic corticosterone level, indicators of glucose homeostasis and lipid metabolism, hepatic inflammation (pro- and anti-inflammatory cytokine levels, Toll-like receptor 4, NLRP3, activation of NFκB, JNK and ERK pathways) and levels of energy-sensing proteins AMPK, SIRT1 and peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α). RESULTS High-fructose diet led to glucose intolerance, activation of NFκB and JNK pathways and increased intrahepatic IL-1β, TNFα and inhibitory phosphorylation of insulin receptor substrate 1 on Ser307. It also decreased phospho-AMPK/AMPK ratio and increased SIRT1 expression. Stress alone increased plasma and hepatic corticosterone but did not influence glucose tolerance, nor hepatic inflammatory or energy-sensing proteins. After the combined treatment, hepatic corticosterone was increased, glucose tolerance remained preserved, while hepatic inflammation was partially prevented despite decreased AMPK activity. CONCLUSION High-fructose diet resulted in glucose intolerance, hepatic inflammation, decreased AMPK activity and reduced insulin sensitivity. Chronic stress alone did not exert such effects, but when applied together with high-fructose diet it could partially prevent fructose-induced inflammation, presumably due to increased hepatic glucocorticoids.
Collapse
|
137
|
Varghese JF, Patel R, Yadav UCS. Novel Insights in the Metabolic Syndrome-induced Oxidative Stress and Inflammation-mediated Atherosclerosis. Curr Cardiol Rev 2018; 14:4-14. [PMID: 28990536 PMCID: PMC5872260 DOI: 10.2174/1573403x13666171009112250] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/09/2017] [Accepted: 09/28/2017] [Indexed: 02/06/2023] Open
Abstract
Context: Atherosclerosis is a progressive pathological process and a leading cause of mor-tality worldwide. Clinical research and epidemiological studies state that atherosclerosis is caused by an amalgamation of metabolic and inflammatory deregulation involving three important pathological events including Endothelial Dysfunction (ED), Foam Cell Formation (FCF), and Vascular Smooth Muscle Cells (VSMCs) proliferation and migration. Objectives: Research in recent years has identified Metabolic Syndrome (MS), which involves factors such as obesity, insulin resistance, dyslipidemia and diabetes, to be responsible for the pathophysiol-ogy of atherosclerosis. These factors elevate oxidative stress and inflammation-induced key signalling molecules and various microRNAs (miRs). In present study, we have reviewed recently identified molecular targets in the pathophysiology of atherosclerosis. Methods: Scientific literature obtained from databases such as university library, PubMed and Google along with evidences from published experimental work in relevant journals has been sum-marized in this review article. Results: The molecular events and cell signalling implicated in atherogenic processes of ED, FCF and VSMCs hyperplasia are sequential and progressive, and involve cross talks at many levels. Specific molecules such as transcription factors, inflammatory cytokines and chemokines and miRs have been identified playing crucial role in most of the events leading to atherosclerosis. Conclusion: Studies associated with MS induced oxidative stress- and inflammation- mediated sig-nalling pathways along with critical miRs help in better understanding of the pathophysiology of ath-erosclerosis. Several key molecules discussed in this review could be potent target for the prevention and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Johnna F Varghese
- School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat - 382030, India
| | - Rohit Patel
- School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat - 382030, India
| | - Umesh C S Yadav
- School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat - 382030, India
| |
Collapse
|
138
|
Hamano M, Haraguchi Y, Sayano T, Zyao C, Arimoto Y, Kawano Y, Moriyasu K, Udono M, Katakura Y, Ogawa T, Kato H, Furuya S. Enhanced vulnerability to oxidative stress and induction of inflammatory gene expression in 3-phosphoglycerate dehydrogenase-deficient fibroblasts. FEBS Open Bio 2018; 8:914-922. [PMID: 29928571 PMCID: PMC5986034 DOI: 10.1002/2211-5463.12429] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 03/04/2018] [Accepted: 04/03/2018] [Indexed: 02/02/2023] Open
Abstract
l‐Serine (l‐Ser) is a necessary precursor for the synthesis of proteins, lipids, glycine, cysteine, d‐serine, and tetrahydrofolate metabolites. Low l‐Ser availability activates stress responses and cell death; however, the underlying molecular mechanisms remain unclear. l‐Ser is synthesized de novo from 3‐phosphoglycerate with 3‐phosphoglycerate dehydrogenase (Phgdh) catalyzing the first reaction step. Here, we show that l‐Ser depletion raises intracellular H2O2 levels and enhances vulnerability to oxidative stress in Phgdh‐deficient mouse embryonic fibroblasts. These changes were associated with reduced total glutathione levels. Moreover, levels of the inflammatory markers thioredoxin‐interacting protein and prostaglandin‐endoperoxide synthase 2 were upregulated under l‐Ser‐depleted conditions; this was suppressed by the addition of N‐acetyl‐l‐cysteine. Thus, intracellular l‐Ser deficiency triggers an inflammatory response via increased oxidative stress, and de novo l‐Ser synthesis suppresses oxidative stress damage and inflammation when the external l‐Ser supply is restricted.
Collapse
Affiliation(s)
- Momoko Hamano
- Laboratory of Functional Genomics and Metabolism Department of Innovative Science and Technology for Bio-industry Kyushu University Fukuoka Japan.,International College of Arts and Sciences Fukuoka Women's University Fukuoka Japan
| | - Yurina Haraguchi
- Department of Bioscience and Biotechnology Kyushu University Fukuoka Japan
| | - Tomoko Sayano
- Laboratory of Functional Genomics and Metabolism Department of Innovative Science and Technology for Bio-industry Kyushu University Fukuoka Japan.,Laboratory for Molecular Membrane Neuroscience RIKEN Brain Science Institute Wako, Saitama Japan
| | - Chong Zyao
- Department of Genetic Resources Technology Graduate School of Bioresource and Bioenvironmental Sciences Kyushu University Fukuoka Japan
| | - Yashiho Arimoto
- Department of Genetic Resources Technology Graduate School of Bioresource and Bioenvironmental Sciences Kyushu University Fukuoka Japan
| | - Yui Kawano
- Department of Bioscience and Biotechnology Kyushu University Fukuoka Japan
| | - Kazuki Moriyasu
- Department of Bioscience and Biotechnology Kyushu University Fukuoka Japan
| | - Miyako Udono
- Department of Genetic Resources Technology Graduate School of Bioresource and Bioenvironmental Sciences Kyushu University Fukuoka Japan
| | - Yoshinori Katakura
- Department of Bioscience and Biotechnology Kyushu University Fukuoka Japan.,Department of Genetic Resources Technology Graduate School of Bioresource and Bioenvironmental Sciences Kyushu University Fukuoka Japan
| | - Takuya Ogawa
- School of Pharmacy International University of Health and Welfare Tochigi Japan
| | - Hisanori Kato
- Corporate Sponsored Research Program "Food for Life", Organization for Interdisciplinary Research Projects The University of Tokyo Japan
| | - Shigeki Furuya
- Laboratory of Functional Genomics and Metabolism Department of Innovative Science and Technology for Bio-industry Kyushu University Fukuoka Japan.,Department of Bioscience and Biotechnology Kyushu University Fukuoka Japan.,Department of Genetic Resources Technology Graduate School of Bioresource and Bioenvironmental Sciences Kyushu University Fukuoka Japan
| |
Collapse
|
139
|
Increased Tim-3 expression alleviates liver injury by regulating macrophage activation in MCD-induced NASH mice. Cell Mol Immunol 2018; 16:878-886. [PMID: 29735977 DOI: 10.1038/s41423-018-0032-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 04/03/2018] [Accepted: 04/03/2018] [Indexed: 02/07/2023] Open
Abstract
As an immune checkpoint, Tim-3 plays roles in the regulation of both adaptive and innate immune cells including macrophages and is greatly involved in chronic liver diseases. However, the precise roles of Tim-3 in nonalcoholic steatohepatitis (NASH) remain unstated. In the current study, we analyzed Tim-3 expression on different subpopulations of liver macrophages and further investigated the potential roles of Tim-3 on hepatic macrophages in methionine and choline-deficient diet (MCD)-induced NASH mice. The results of flow cytometry demonstrated the significantly increased expression of Tim-3 on all detected liver macrophage subsets in MCD mice, including F4/80+CD11b+, F4/80+CD68+, and F4/80+CD169+ macrophages. Remarkably, Tim-3 knockout (KO) significantly accelerated MCD-induced liver steatosis, displaying higher serum ALT, larger hepatic vacuolation, more liver lipid deposition, and more severe liver fibrosis. Moreover, compared with wild-type C57BL/6 mice, Tim-3 KO MCD mice demonstrated an enhanced expression of NOX2, NLRP3, and caspase-1 p20 together with increased generation of IL-1β and IL-18 in livers. In vitro studies demonstrated that Tim-3 negatively regulated the production of reactive oxygen species (ROS) and related downstream pro-inflammatory cytokine secretion of IL-1β and IL-18 in macrophages. Exogenous administration of N-Acetyl-L-cysteine (NAC), a small molecular inhibitor of ROS, remarkably suppressed caspase-1 p20 expression and IL-1β and IL-18 production in livers of Tim-3 KO mice, thus significantly reducing the severity of steatohepatitis induced by MCD. In conclusion, Tim-3 is a promising protector in MCD-induced steatohepatitis by controlling ROS and the associated pro-inflammatory cytokine production in macrophages.
Collapse
|
140
|
Liver metabolism in adult male mice offspring: consequences of a maternal, paternal or both maternal and paternal high-fructose diet. J Dev Orig Health Dis 2018; 9:450-459. [DOI: 10.1017/s2040174418000235] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
AbstractThe study aimed to evaluate the consequences of the consumption of a high-fructose diet (HFR; fructose was responsible for 45% of the energy from carbohydrates) by the mother, the father, or both on C57BL/6 adult male offspring. Non-consanguineous parents received the diet (HFR or control, C) from 8 weeks before mating until weaning (n=10 fathers and n=10 mothers on each diet). After weaning, only the C diet was offered to offspring. The groups were formed by one male randomly taken from each litter. The offspring groups were identified according to the mother’s diet (the first letter), then the father’s diet (the second letter), that is, C/C, C/HFR, HFR/C, HFR/HFR (n=10 per group). The parents exhibited the following characteristics: compared with those of the C group, the HFR parents had higher blood pressure (BP), enlarged liver, increased hepatic triacylglycerol content, hypercholesterolemia, hypertriglyceridemia, high plasma leptin and low adiponectin. The offspring exhibited the following characteristics: compared with the C/C group, the HFR/HFR group had high BP. The C/HFR, HFR/C and HFR/HFR showed elevated uric acid and leptin levels and diminished adiponectin. The HFR/HFR group showed liver inflammation (increased NFκB, SOCS3, JNK, TNF-α, IL1-β and IL6 levels). Likewise, SREBP-1c and FAS were upregulated. In conclusion, the consumption of a HFR by the mother and/or father is associated with adverse effects on liver metabolism in adult male offspring. When both mother and father are fed a HFR, the adverse effects on the offspring are more severe.
Collapse
|
141
|
Mohamed IN, Sarhan NR, Eladl MA, El-Remessy AB, El-Sherbiny M. Deletion of Thioredoxin-interacting protein ameliorates high fat diet-induced non-alcoholic steatohepatitis through modulation of Toll-like receptor 2-NLRP3-inflammasome axis: Histological and immunohistochemical study. Acta Histochem 2018; 120:242-254. [PMID: 29482933 DOI: 10.1016/j.acthis.2018.02.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/03/2018] [Accepted: 02/15/2018] [Indexed: 12/20/2022]
Abstract
Endemic prevalence of obesity is associated with alarming increases in non-alcoholic steatohepatitis (NASH) with limited available therapeutics. Toll-like receptor2 (TLR2) and Nod-like receptor protein 3 (NLRP3) Inflammasome are implicated in hepatic steatosis, inflammation and fibrosis; the histological landmark stages of NASH. TXNIP, a member of α-arrestin family activates NLRP3 in response to various danger stimuli. The aim of current work was to investigate the effect of TXNIP genetic deletion on histological manifestations of high fat diet-induced steatohepatitis and activation of TLR2-NLRP3-inflammasome axis. Wild-type mice (WT) and TXNIP knock out (TKO) littermates were randomized to normal diet (WT-ND and TKO-ND) or high fat diet (HFD, 60% fat) (WT-HFD and TKO-HFD). After 8-weeks, liver samples from all groups were evaluated by histological, immunohistochemical and western blot analysis. HFD resulted in significant induction of micro and macrovesicular hepatic steatosis, that was associated with increased inflammatory immune cell infiltration in WT-HFD compared with WT-ND and TKO-ND controls, but not in TKO-HFD group. In parallel, WT-HFD group showed significant fibrosis and α-SMA expression; a marker of pro-fibrotic stellate-cell activation, in areas surrounding the central vein and portal circulation, versus all other groups. Western blot revealed increased activation of TLR2-NLRP3 inflammasome pathway and downstream IL-1β and TNFα in WT-HFD group, but not in TKO-HFD group. IL-1β expression coincided within the same areas of steatosis, inflammatory cell infiltration, collagen deposition and α-SMA expression in WT-HFD mice, that was significantly reduced in TKO-HFD mice. In conclusion, TXNIP deletion ameliorates the HFD-induced steatosis, inflammatory and fibrotic response via modulation of TLR2-NLRP3 inflammasome axis. Targeting TXNIP-TLR2-NLRP3 pathway may provide potential therapeutic modalities for NASH treatment.
Collapse
Affiliation(s)
- Islam N Mohamed
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, California Northstate University, Elk Grove, CA, USA; Augusta Biomedical Research Corporation, Charlie Norwood VA Medical Center, Augusta, GA, USA.
| | - Nahla Reda Sarhan
- Department of Histology & Cell Biology, Faculty of Medicine, Mansoura University, Egypt.
| | - Mohamed Ahmed Eladl
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, United Arab Emirates; Department of Anatomy & Embryology, Faculty of Medicine, Mansoura University, Egypt.
| | - Azza B El-Remessy
- Augusta Biomedical Research Corporation, Charlie Norwood VA Medical Center, Augusta, GA, USA.
| | - Mohamed El-Sherbiny
- Department of Medicine, Al-Maarefa College, Riyadh, Saudi Arabia; Department of Anatomy & Embryology, Faculty of Medicine, Mansoura University, Egypt.
| |
Collapse
|
142
|
Du X, Jiang S, Zeng X, Zhang J, Pan K, Zhou J, Xie Y, Kan H, Song W, Sun Q, Zhao J. Air pollution is associated with the development of atherosclerosis via the cooperation of CD36 and NLRP3 inflammasome in ApoE -/- mice. Toxicol Lett 2018; 290:123-132. [PMID: 29571893 DOI: 10.1016/j.toxlet.2018.03.022] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/13/2018] [Accepted: 03/19/2018] [Indexed: 12/22/2022]
Abstract
Previous studies have indicated that the main air pollutant fine particulate matter (≤2.5 μm; PM2.5) exposure is associated with the development of atherosclerosis. Although the mechanism is not fully illustrated, the inflammatory responses play an important role. The present study aimed to explore whether PM2.5-exacerbated atherosclerosis was mediated by the cooperation of cluster of differentiation 36 (CD36) and nucleotide-binding oligomerization domain-like receptor protein (NLRP3) inflammasome in apolipoprotein E-/- (ApoE-/-) mice. Thirty-two ApoE-/- mice were randomly divided into two groups. One group was fed with high fat chow (HFC) for 10 weeks to establish atherosclerotic model, and the other was fed with normal chow (NC). From week 11, the mice were exposed to concentrated PM2.5 (PM) or filtered air (FA) using Shanghai Meteorological and Environmental Animal Exposure System for 16 weeks. In both NC and HFC groups, PM2.5 exposure induced the formation of atherosclerosis plaque. Similarly, PM mice appeared higher lipid content in the aortic root than that in the FA mice. Compared with the FA mice, PM mice appeared a decrease in high density lipoprotein-cholesterol (HDL-C) and apolipoprotein A1 along with an increase in apolipoprotein B, low density lipoprotein-cholesterol (LDL-C) and oxidized low-density lipoprotein (ox-LDL). Moreover, PM2.5 exposure induced increase of CD36 in serum and aorta. In both NC and HFC groups, NLRP3 inflammasome activation-related indicators were activated or increased in the aorta of the PM mice when compared with the FA mice. The cooperation of CD36 and NLRP3 inflammasome activation may be the potential mechanisms linkixposed to concentrated PM2.5 (PM) or filtered air (FA) using Shanghai Meteorological and Environmental Animal Exposure System for 16 weeks. In both NC and HFC groups, PM2.5 exposure induced the formation of atherosclerosis plaque. Similarly, PM mice appeared higher lipid content in the aortic root than that in the FA mice. Compared with the FA mice, PM mice appeared a decrease in high density lipoprotein-cholesterol (HDL-C) and apolipoprotein A1 along with an increase in apolipoprotein B, low density lipoprotein-cholesterol (LDL-C) and oxidized low-density lipoprotein (ox-LDL). Moreover, PM2.5 exposure induced increase of CD36 in serum and aorta. In both NC and HFC groups, NLRP3 inflammasome activation-related indicators were activated or increased in the aorta of the PM mice when compared with the FA mice. The cooperation of CD36 and NLRP3 inflammasome activation may be the potential mechanisms linking air pollution and HFC-induced atherosclerosis even in the mice with NC intake.
Collapse
Affiliation(s)
- Xihao Du
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China
| | - Shuo Jiang
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China
| | - Xuejiao Zeng
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China
| | - Jia Zhang
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China
| | - Kun Pan
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China
| | - Ji Zhou
- Shanghai Key Laboratory of Meteorology and Health, Shanghai, China
| | - Yuquan Xie
- Department of Cardiology, Xinhua Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200092, China
| | - Haidong Kan
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China
| | - Weimin Song
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China
| | - Qinghua Sun
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH, USA
| | - Jinzhuo Zhao
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China; Shanghai Key Laboratory of Meteorology and Health, Shanghai, China.
| |
Collapse
|
143
|
He K, Zhu X, Liu Y, Miao C, Wang T, Li P, Zhao L, Chen Y, Gong J, Cai C, Li J, Li S, Ruan XZ, Gong J. Inhibition of NLRP3 inflammasome by thioredoxin-interacting protein in mouse Kupffer cells as a regulatory mechanism for non-alcoholic fatty liver disease development. Oncotarget 2018; 8:37657-37672. [PMID: 28499273 PMCID: PMC5514938 DOI: 10.18632/oncotarget.17489] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 04/17/2017] [Indexed: 01/08/2023] Open
Abstract
NOD-like receptor (NLR) NLRP3 inflammasome activation has been implicated in the progression of non-alcoholic fatty liver disease (NAFLD) from non-alcoholic fatty liver (NAFL) to non-alcoholic steatohepatitis (NASH). It has been also shown that palmitic acid (PA) activates NLRP3 inflammasome and promotes interleukin-1β (IL-1β) secretion in Kupffer cells (KCs). However, the specific mechanism of the NLRP3 inflammasome activation is unclear. We studies the molecular mechanisms by investigating the roles of Thioredoxin-interacting protein (TXNIP) and NLRP3 on NAFLD development in patients, high-fat diet (HFD)-induced NAFL and methionine choline deficient (MCD) diet-induced NASH in wild type (WT), TXNIP−/− (thioredoxin-interacting protein) and NLRP3−/− mice, and isolated KCs. We found that the expressions of NLRP3 and TXNIP in human liver tissues were higher in NASH group than in NAFL group. Furthermore, co-immunoprecipitation analyses show that activation of the TXNIP-NLRP3 inflammasome protein complex occurred in KCs of NASH WT mice rather than NAFL WT mice, thus suggesting that the formation and activation of this protein complex is mainly involved in the development of NASH. NLRP3−/− mice exhibited less severe NASH than WT mice in MCD diet model, whereas TXNIP deficiency enhanced NLRP3 inflammasome activation and exacerbated liver injury. PA triggered the activation and co-localization of the NLRP3 inflammasome protein complex in KCs isolated from WT and TXNIP−/− but not NLRP3−/− mice, and most of the complex co-localized with mitochondria of KCs following PA stimulation. Taken together, our novel findings indicate that TXNIP plays a protective and anti-inflammatory role in the development of NAFLD through binding and suppressing NLRP3.
Collapse
Affiliation(s)
- Kun He
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiwen Zhu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yan Liu
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chunmu Miao
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tao Wang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Peizhi Li
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lei Zhao
- Centre for Lipid Research, Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yaxi Chen
- Centre for Lipid Research, Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Junhua Gong
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Can Cai
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jinzheng Li
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shengwei Li
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiong Z Ruan
- Centre for Lipid Research, Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Centre for Nephrology, University College London (UCL) Medical School, Royal Free Campus, London, NW3 2PF, UK
| | - Jianping Gong
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
144
|
Choe JY, Kim SK. Quercetin and Ascorbic Acid Suppress Fructose-Induced NLRP3 Inflammasome Activation by Blocking Intracellular Shuttling of TXNIP in Human Macrophage Cell Lines. Inflammation 2018; 40:980-994. [PMID: 28326454 DOI: 10.1007/s10753-017-0542-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The aim of this study was to identify the role of thioredoxin-interacting protein (TXNIP) and its interaction with antioxidants in the activation of the fructose-induced NOD-like receptor protein 3 (NLRP3) inflammasome in human macrophages. The study was performed with U937 and THP-1 macrophage cell lines. Total reactive oxygen species (ROS) were measured by flow cytometry. Interleukin-1β (IL-1β), IL-18, NLRP3, TXNIP, and caspase-1 protein expression was detected using western blotting. Quantitative real-time polymerase chain reaction was used to detect IL-1β, IL-18, and caspase-1 gene expression. Intracellular shuttling of TXNIP was assessed by immunofluorescent staining with MitoTracker Red. Increased production of ROS and expression of IL-1β, IL-18, and caspase-1 genes and proteins were observed in U937 and THP-1 cells incubated with fructose and were effectively inhibited by quercetin and ascorbic acid. Intracellular shuttling of TXNIP from the nucleus into the mitochondria was detected under stimulation with fructose, which was also attenuated by antioxidants quercetin and ascorbic acid but not butylated hydroxyanisole. Treatment of macrophages with fructose promoted the association between TXNIP and NLRP3 in the cytosol, sequentially resulting in the activation of the NLRP3 inflammasome. This study revealed that intracellular TXNIP protein is a critical regulator of activation of the fructose-induced NLRP3 inflammasome, which can be effectively blocked by the antioxidants quercetin and ascorbic acid.
Collapse
Affiliation(s)
- Jung-Yoon Choe
- Division of Rheumatology, Department of Internal Medicine, Catholic University of Daegu School of Medicine, 33, Duryugongwon-ro 17-gil, Nam-gu, Daegu, 42472, Republic of Korea.,Arthritis and Autoimmunity Research Center, Catholic University of Daegu, Daegu, Republic of Korea
| | - Seong-Kyu Kim
- Division of Rheumatology, Department of Internal Medicine, Catholic University of Daegu School of Medicine, 33, Duryugongwon-ro 17-gil, Nam-gu, Daegu, 42472, Republic of Korea. .,Arthritis and Autoimmunity Research Center, Catholic University of Daegu, Daegu, Republic of Korea.
| |
Collapse
|
145
|
Thioredoxin-Interacting Protein (TXNIP) in Cerebrovascular and Neurodegenerative Diseases: Regulation and Implication. Mol Neurobiol 2018; 55:7900-7920. [PMID: 29488135 DOI: 10.1007/s12035-018-0917-z] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 01/21/2018] [Indexed: 02/07/2023]
Abstract
Neurological diseases, including acute attacks (e.g., ischemic stroke) and chronic neurodegenerative diseases (e.g., Alzheimer's disease), have always been one of the leading cause of morbidity and mortality worldwide. These debilitating diseases represent an enormous disease burden, not only in terms of health suffering but also in economic costs. Although the clinical presentations differ for these diseases, a growing body of evidence suggests that oxidative stress and inflammatory responses in brain tissue significantly contribute to their pathology. However, therapies attempting to prevent oxidative damage or inhibiting inflammation have shown little success. Identification and targeting endogenous "upstream" mediators that normalize such processes will lead to improve therapeutic strategy of these diseases. Thioredoxin-interacting protein (TXNIP) is an endogenous inhibitor of the thioredoxin (TRX) system, a major cellular thiol-reducing and antioxidant system. TXNIP regulating redox/glucose-induced stress and inflammation, now is known to get upregulated in stroke and other brain diseases, and represents a promising therapeutic target. In particular, there is growing evidence that glucose strongly induces TXNIP in multiple cell types, suggesting possible physiological roles of TXNIP in glucose metabolism. Recently, a significant body of literature has supported an essential role of TXNIP in the activation of the NOD-like receptor protein (NLRP3)-inflammasome, a well-established multi-molecular protein complex and a pivotal mediator of sterile inflammation. Accordingly, TXNIP has been postulated to reside centrally in detecting cellular damage and mediating inflammatory responses to tissue injury. The majority of recent studies have shown that pharmacological inhibition or genetic deletion of TXNIP is neuroprotective and able to reduce detrimental aspects of pathology following cerebrovascular and neurodegenerative diseases. Conspicuously, the mainstream of the emerging evidences is highlighting TXNIP link to damaging signals in endothelial cells. Thereby, here, we keep the trend to present the accumulative data on CNS diseases dealing with vascular integrity. This review aims to summarize evidence supporting the significant contribution of regulatory mechanisms of TXNIP with the development of brain diseases, explore pharmacological strategies of targeting TXNIP, and outline obstacles to be considered for efficient clinical translation.
Collapse
|
146
|
High fructose diet-induced metabolic syndrome: Pathophysiological mechanism and treatment by traditional Chinese medicine. Pharmacol Res 2018; 130:438-450. [PMID: 29471102 DOI: 10.1016/j.phrs.2018.02.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/09/2018] [Accepted: 02/14/2018] [Indexed: 02/08/2023]
Abstract
Fructose is a natural monosaccharide broadly used in modern society. Over the past few decades, epidemiological studies have demonstrated that high fructose intake is an etiological factor of metabolic syndrome (MetS). This review highlights research advances on fructose-induced MetS, especially the underlying pathophysiological mechanism as well as pharmacotherapy by traditional Chinese medicine (TCM), using the PubMed, Web of science, China National Knowledge Infrastructure, China Science and Technology Journal and Wanfang Data. This review focuses on de novo lipogenesis (DNL) and uric acid (UA) production, two unique features of fructolysis different from glucose glycolysis. High level of DNL and UA production can result in insulin resistance, the key pathological event in developing MetS, mostly through oxidative stress and inflammation. Some other pathologies like the disturbance in brain and gut microbiota in the development of fructose-induced MetS in the past years, are also discussed. In management of MetS, TCM is an excellent representative in alternative and complementary medicine with a complete theory system and substantial herbal remedies. TCMs against MetS or MetS components, including Chinese patent medicines, TCM compound formulas, single TCM herbs and active compounds of TCM herbs, are reviewed on their effects and molecular mechanisms. TCMs with hypouricemic activity, which specially target fructose-induced MetS, are highlighted. And new technologies and strategies (such as high-throughput assay and systems biology) in this field are further discussed. In summary, fructose-induced MetS is a multifactorial disorder with the underlying complex mechanisms. Current clinical and pre-clinical evidence supports the potential of TCMs in management of MetS. Additionally, TCMs may show some advantages against complex MetS as their holistic feature through multiple target actions. However, further work is needed to confirm the effectivity and safety of TCMs by high-standard clinical trials, clarify the molecular mechanisms, and develop new anti-MetS drugs by development and application of optimized and feasible strategies and methods.
Collapse
|
147
|
Szpigel A, Hainault I, Carlier A, Venteclef N, Batto AF, Hajduch E, Bernard C, Ktorza A, Gautier JF, Ferré P, Bourron O, Foufelle F. Lipid environment induces ER stress, TXNIP expression and inflammation in immune cells of individuals with type 2 diabetes. Diabetologia 2018; 61:399-412. [PMID: 28988346 DOI: 10.1007/s00125-017-4462-5] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 08/24/2017] [Indexed: 02/04/2023]
Abstract
AIMS/HYPOTHESIS Obesity and type 2 diabetes are concomitant with low-grade inflammation affecting insulin sensitivity and insulin secretion. Recently, the thioredoxin interacting protein (TXNIP) has been implicated in the activation process of the NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome. In this study, we aim to determine whether the expression of TXNIP is altered in the circulating immune cells of individuals with type 2 vs type 1 diabetes and whether this can be related to specific causes and consequences of inflammation. METHODS The expression of TXNIP, inflammatory markers, markers of the unfolded protein response (UPR) to endoplasmic reticulum (ER) stress and enzymes involved in sphingolipid metabolism was quantified by quantitative reverse transcription real-time PCR (qRT-PCR) in peripheral blood mononuclear cells (PBMCs) of 13 non-diabetic individuals, 23 individuals with type 1 diabetes and 81 with type 2 diabetes. A lipidomic analysis on the plasma of 13 non-diabetic individuals, 35 individuals with type 1 diabetes and 94 with type 2 diabetes was performed. The effects of ER stress or of specific lipids on TXNIP and inflammatory marker expression were analysed in human monocyte-derived macrophages (HMDMs) and THP-1 cells. RESULTS The expression of TXNIP and inflammatory and UPR markers was increased in the PBMCs of individuals with type 2 diabetes when compared with non-diabetic individuals or individuals with type 1 diabetes. TXNIP expression was significantly correlated with plasma fasting glucose, plasma triacylglycerol concentrations and specific UPR markers. Induction of ER stress in THP-1 cells or cultured HMDMs led to increased expression of UPR markers, TXNIP, NLRP3 and IL-1β. Conversely, a chemical chaperone reduced the expression of UPR markers and TXNIP in PBMCs of individuals with type 2 diabetes. The lipidomic plasma analysis revealed an increased concentration of saturated dihydroceramide and sphingomyelin in individuals with type 2 diabetes when compared with non-diabetic individuals and individuals with type 1 diabetes. In addition, the expression of specific enzymes of sphingolipid metabolism, dihydroceramide desaturase 1 and sphingomyelin synthase 1, was increased in the PBMCs of individuals with type 2 diabetes. Palmitate or C2 ceramide induced ER stress in macrophages as well as increased expression of TXNIP, NLRP3 and IL-1β. CONCLUSIONS/INTERPRETATION In individuals with type 2 diabetes, circulating immune cells display an inflammatory phenotype that can be linked to ER stress and TXNIP expression. Immune cell ER stress can in turn be linked to the specific exogenous and endogenous lipid environment found in type 2 diabetes.
Collapse
Affiliation(s)
- Anaïs Szpigel
- Inserm, UMRS 1138, Sorbonne Universités, UPMC Univ Paris 06; Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot; Centre de Recherche des Cordeliers, 15 rue de l'école de médicine, 75006, Paris, France
- Institut de Recherches Servier, Suresnes, France
| | - Isabelle Hainault
- Inserm, UMRS 1138, Sorbonne Universités, UPMC Univ Paris 06; Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot; Centre de Recherche des Cordeliers, 15 rue de l'école de médicine, 75006, Paris, France
| | - Aurélie Carlier
- Department of Endocrinology, Nutrition, and Diabetes, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Nicolas Venteclef
- Inserm, UMRS 1138, Sorbonne Universités, UPMC Univ Paris 06; Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot; Centre de Recherche des Cordeliers, 15 rue de l'école de médicine, 75006, Paris, France
| | - Anne-Françoise Batto
- Inserm, UMRS 1138, Sorbonne Universités, UPMC Univ Paris 06; Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot; Centre de Recherche des Cordeliers, 15 rue de l'école de médicine, 75006, Paris, France
| | - Eric Hajduch
- Inserm, UMRS 1138, Sorbonne Universités, UPMC Univ Paris 06; Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot; Centre de Recherche des Cordeliers, 15 rue de l'école de médicine, 75006, Paris, France
| | | | - Alain Ktorza
- Institut de Recherches Servier, Suresnes, France
| | - Jean-François Gautier
- Inserm, UMRS 1138, Sorbonne Universités, UPMC Univ Paris 06; Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot; Centre de Recherche des Cordeliers, 15 rue de l'école de médicine, 75006, Paris, France
- Department of Diabetes and Endocrinology, Lariboisière Hospital, DHU FIRE, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Pascal Ferré
- Inserm, UMRS 1138, Sorbonne Universités, UPMC Univ Paris 06; Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot; Centre de Recherche des Cordeliers, 15 rue de l'école de médicine, 75006, Paris, France
- Department of Oncology and Endocrine Biochemistry, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Olivier Bourron
- Inserm, UMRS 1138, Sorbonne Universités, UPMC Univ Paris 06; Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot; Centre de Recherche des Cordeliers, 15 rue de l'école de médicine, 75006, Paris, France
- Department of Endocrinology, Nutrition, and Diabetes, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Fabienne Foufelle
- Inserm, UMRS 1138, Sorbonne Universités, UPMC Univ Paris 06; Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot; Centre de Recherche des Cordeliers, 15 rue de l'école de médicine, 75006, Paris, France.
| |
Collapse
|
148
|
Zhou F, Zhang Y, Chen J, Hu Y, Xu Y. Verapamil Ameliorates Hepatic Metaflammation by Inhibiting Thioredoxin-Interacting Protein/NLRP3 Pathways. Front Endocrinol (Lausanne) 2018; 9:640. [PMID: 30429827 PMCID: PMC6220071 DOI: 10.3389/fendo.2018.00640] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 10/09/2018] [Indexed: 12/12/2022] Open
Abstract
Activation of thioredoxin-interacting protein (TXNIP)/nod-like receptor protein 3 (NLRP3) inflammasome plays a critical role in pathogenesis of non-alcoholic fatty liver disease. This study investigated the protective effects of verapamil on hepatic metaflammation in a rodent model of high-fat (HF) diet-induced obesity (DIO). DIO was induced in a subset of mice provided with HF diet (45% kcal fat). After 10 weeks of HF diet, verapamil was administered by intraperitoneal injection. The experimental groups included the following: (1) normal diet group, (2) normal diet + treatment with verapamil (VER) group, (3) HF control group, (4) HF+VER (25 mg/kg/day) group. After 1 week of each treatment, blood and liver tissues were collected, and glucose control, serum triglyceride (TG) level, inflammation, and TXNIP/NLRP3 inflammasome were analyzed. Verapamil administration caused no alteration in food intake. HF diet impaired glucose control and increased body weight and serum TG levels. Hepatic inflammation was aggravated in HF-fed mice, as demonstrated by increased levels of pro-inflammatory markers interleukin-1β (IL-1β) and IL-18 in the liver. On the other hand, verapamil administration significantly improved glucose control, body weight, and serum TG levels. Verapamil treatment also reduced pro-inflammatory marker levels. These improvements were accompanied by alterations in activation of TXNIP/NLRP3 inflammasome. The observed results demonstrate that verapamil ameliorates hepatic metaflammation by inhibiting TXNIP/NLRP3 pathways.
Collapse
Affiliation(s)
- Feng Zhou
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Endocrinology, Puren Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Ying Zhang
- Department of Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Jing Chen
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yimeng Hu
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yancheng Xu
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, China
- *Correspondence: Yancheng Xu
| |
Collapse
|
149
|
Guo CH, Chen WL, Liao CH, Huang K, Chen PY, Yang CP. Effects of Chinese Medicinal Formula BNG-1 on Phosphodiesterase 3B Expression, Hepatic Steatosis, and Insulin Resistance in High Fat Diet-induced NAFLD Mice. Int J Med Sci 2018; 15:1194-1202. [PMID: 30123057 PMCID: PMC6097264 DOI: 10.7150/ijms.26941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 06/30/2018] [Indexed: 11/05/2022] Open
Abstract
Background: Chinese medicinal formula BNG-1, a non-specific inhibitor of phospho-diesterases (PDEs), can be considered as a potential anti-inflammatory agent. The present study was aimed at determining the effects of BNG-1 on the development of non-alcoholic fatty liver disease (NAFLD) in mice. Design and Methods: Male CD1 mice were randomly divided into seven groups, the control Con (4) and Con (8)+saline groups were fed a standard control diet for four or eight weeks; the experimental HFD (4) and HFD (8)+saline groups were fed a high fat diet for four or eight weeks; the HFD (8)+LBNG, HFD (8)+MBNG, and HFD (8)+HBNG groups received a high fat diet along with low, moderate or high doses of BNG-1 (0.026, 0.035, and 0.052g/30g body weight) which was administered for the last four weeks of an eight-week experimental period. After the end of experiment, blood and tissue samples were taken and analyzed. Results: Mice in the HFD (4) group had higher levels of alanine aminotransferase (ALT), plasma and hepatic triglyceride and cholesterol, and homeostasis model assessment-estimated insulin resistance (HOMA-IR) compared with mice in the Con (4) group. Mice receiving the high fat diet along with the BNG-1 supplement had decreased body weight gains and lower visceral fat weights compared with the HFD (8)+saline group. They had also significantly reduced levels of abnormal ALT and HOMA-IR, and improved blood lipid profile. BNG-1-treated mice exhibited reduced hepatic lipid accumulation, lower oxidative stress, and decreased expression of pro-inflammatory cytokines (TNF-α and IL-1β). Furthermore, BNG-1 treatment resulted in down-regulation of hepatic cyclic-AMP dependent PDE3B and up-regulation of PDE3B expression in epididymis adipose tissue. Conclusions: BNG-1 mediated changes in PDE3B expression along with reduction in oxidative stress and inflammation. BNG-1 may ameliorate insulin resistance and hepatic steatosis in the NAFLD mouse model.
Collapse
Affiliation(s)
- Chih-Hung Guo
- Institute of Biomedical Nutrition, Hung-Kuang University, Taichung 433, Taiwan, ROC.,Department of Medical Research, China Medical University Hospital, Taichung 404, Taiwan, ROC
| | - Wen-Long Chen
- Brain Genesis Biotechnology Co., Ltd., Taipei 112, Taiwan, ROC
| | - Chung-Huei Liao
- Brain Genesis Biotechnology Co., Ltd., Taipei 112, Taiwan, ROC
| | - Karin Huang
- Brain Genesis Biotechnology Co., Ltd., Taipei 112, Taiwan, ROC
| | - Pei-Yin Chen
- Department of Recreation and Holistic Wellness, Ming-Dao University, Changhua 523, Taiwan, ROC
| | - Chun-Pai Yang
- Institute of Biomedical Nutrition, Hung-Kuang University, Taichung 433, Taiwan, ROC.,Department of Neurology, Kuang Tien General Hospital, Taichung 433, Taiwan, ROC
| |
Collapse
|
150
|
Zhang J, Zhang H, Deng X, Zhang Y, Xu K. Baicalin protects AML-12 cells from lipotoxicity via the suppression of ER stress and TXNIP/NLRP3 inflammasome activation. Chem Biol Interact 2017; 278:189-196. [DOI: 10.1016/j.cbi.2017.10.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/28/2017] [Accepted: 10/09/2017] [Indexed: 02/08/2023]
|