101
|
Ware AW, Rasulov SR, Cheung TT, Lott JS, McDonald FJ. Membrane trafficking pathways regulating the epithelial Na + channel. Am J Physiol Renal Physiol 2019; 318:F1-F13. [PMID: 31657249 DOI: 10.1152/ajprenal.00277.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Renal Na+ reabsorption, facilitated by the epithelial Na+ channel (ENaC), is subject to multiple forms of control to ensure optimal body blood volume and pressure through altering both the ENaC population and activity at the cell surface. Here, the focus is on regulating the number of ENaCs present in the apical membrane domain through pathways of ENaC synthesis and targeting to the apical membrane as well as ENaC removal, recycling, and degradation. Finally, the mechanisms by which ENaC trafficking pathways are regulated are summarized.
Collapse
Affiliation(s)
- Adam W Ware
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Sahib R Rasulov
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Tanya T Cheung
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - J Shaun Lott
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Fiona J McDonald
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
102
|
The Endolysosomal System and Proteostasis: From Development to Degeneration. J Neurosci 2019; 38:9364-9374. [PMID: 30381428 DOI: 10.1523/jneurosci.1665-18.2018] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/17/2018] [Accepted: 09/20/2018] [Indexed: 12/12/2022] Open
Abstract
How do neurons adapt their endolysosomal system to address the particular challenge of membrane transport across their elaborate cellular landscape and to maintain proteostasis for the lifetime of the organism? Here we review recent findings that address this central question. We discuss the cellular and molecular mechanisms of endolysosomal trafficking and the autophagy pathway in neurons, as well as their role in neuronal development and degeneration. These studies highlight the importance of understanding the basic cell biology of endolysosomal trafficking and autophagy and their roles in the maintenance of proteostasis within the context of neurons, which will be critical for developing effective therapies for various neurodevelopmental and neurodegenerative disorders.
Collapse
|
103
|
Stewart DJ, Short KK, Maniaci BN, Burkhead JL. COMMD1 and PtdIns(4,5)P 2 interaction maintain ATP7B copper transporter trafficking fidelity in HepG2 cells. J Cell Sci 2019; 132:jcs.231753. [PMID: 31515276 DOI: 10.1242/jcs.231753] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 09/02/2019] [Indexed: 12/29/2022] Open
Abstract
Copper-responsive intracellular ATP7B trafficking is crucial for maintaining the copper balance in mammalian hepatocytes and thus copper levels in organs. The copper metabolism domain-containing protein 1 (COMMD1) binds both the ATP7B copper transporter and phosphatidylinositol (4,5)-bisphosphate [PtdIns(4,5)P2], whereas COMMD1 loss causes hepatocyte copper accumulation. Although it is clear that COMMD1 is localized to endocytic trafficking complexes, a direct function for COMMD1 in ATP7B trafficking has not yet been defined. In this study, experiments using quantitative colocalization analysis reveal that COMMD1 modulates copper-responsive ATP7B trafficking through recruitment to PtdIns(4,5)P2 Decreased COMMD1 abundance results in loss of ATP7B from lysosomes and the trans-Golgi network (TGN) in high copper conditions, although excess expression of COMMD1 also disrupts ATP7B trafficking and TGN structure. Overexpression of COMMD1 mutated to inhibit PtdIns(4,5)P2 binding has little impact on ATP7B trafficking. A mechanistic PtdIns(4,5)P2-mediated function for COMMD1 is proposed that is consistent with decreased cellular copper export as a result of disruption of the ATP7B trafficking itinerary and early endosome accumulation when COMMD1 is depleted. PtdIns(4,5)P2 interaction with COMMD1 as well as COMMD1 abundance could both be important in maintenance of specific membrane protein trafficking pathways.
Collapse
Affiliation(s)
- Davis J Stewart
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, USA
| | - Kristopher K Short
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, USA
| | - Breanna N Maniaci
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, USA
| | - Jason L Burkhead
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, USA
| |
Collapse
|
104
|
Liebeskind BJ, Aldrich RW, Marcotte EM. Ancestral reconstruction of protein interaction networks. PLoS Comput Biol 2019; 15:e1007396. [PMID: 31658251 PMCID: PMC6837550 DOI: 10.1371/journal.pcbi.1007396] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/07/2019] [Accepted: 09/11/2019] [Indexed: 11/19/2022] Open
Abstract
The molecular and cellular basis of novelty is an active area of research in evolutionary biology. Until very recently, the vast majority of cellular phenomena were so difficult to sample that cross-species studies of biochemistry were rare and comparative analysis at the level of biochemical systems was almost impossible. Recent advances in systems biology are changing what is possible, however, and comparative phylogenetic methods that can handle this new data are wanted. Here, we introduce the term "phylogenetic latent variable models" (PLVMs, pronounced "plums") for a class of models that has recently been used to infer the evolution of cellular states from systems-level molecular data, and develop a new parameterization and fitting strategy that is useful for comparative inference of biochemical networks. We deploy this new framework to infer the ancestral states and evolutionary dynamics of protein-interaction networks by analyzing >16,000 predominantly metazoan co-fractionation and affinity-purification mass spectrometry experiments. Based on these data, we estimate ancestral interactions across unikonts, broadly recovering protein complexes involved in translation, transcription, proteostasis, transport, and membrane trafficking. Using these results, we predict an ancient core of the Commander complex made up of CCDC22, CCDC93, C16orf62, and DSCR3, with more recent additions of COMMD-containing proteins in tetrapods. We also use simulations to develop model fitting strategies and discuss future model developments.
Collapse
Affiliation(s)
- Benjamin J. Liebeskind
- Center for Systems and Synthetic Biology, Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, United States of America
- Department of Neuroscience, University of Texas at Austin, Austin, Texas, United States of America
| | - Richard W. Aldrich
- Department of Neuroscience, University of Texas at Austin, Austin, Texas, United States of America
| | - Edward M. Marcotte
- Center for Systems and Synthetic Biology, Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|
105
|
Molecular identification of a BAR domain-containing coat complex for endosomal recycling of transmembrane proteins. Nat Cell Biol 2019; 21:1219-1233. [PMID: 31576058 PMCID: PMC6778059 DOI: 10.1038/s41556-019-0393-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 08/19/2019] [Indexed: 12/13/2022]
Abstract
Protein trafficking requires coat complexes that couple recognition of sorting motifs in transmembrane cargos with biogenesis of transport carriers. The mechanisms of cargo transport through the endosomal network are poorly understood. Here, we identify a sorting motif for endosomal recycling of cargos including the cation-independent mannose-6-phosphate receptor and semaphorin 4C by the membrane tubulating BAR domain-containing sorting nexins SNX5 and SNX6. Crystal structures establish that this motif folds into a β-hairpin that binds a site in the SNX5/SNX6 phox homology domains. Over sixty cargos share this motif and require SNX5/SNX6 for their recycling. These include cargos involved in neuronal migration and a Drosophila snx6 mutant displays defects in axonal guidance. These studies identify a sorting motif and provide molecular insight into an evolutionary conserved coat complex, the ‘Endosomal SNX-BAR sorting complex for promoting exit 1’ (ESCPE-1), which couples sorting motif recognition to BAR domain-mediated biogenesis of cargo-enriched tubulo-vesicular transport carriers.
Collapse
|
106
|
Singla A, Fedoseienko A, Giridharan SSP, Overlee BL, Lopez A, Jia D, Song J, Huff-Hardy K, Weisman L, Burstein E, Billadeau DD. Endosomal PI(3)P regulation by the COMMD/CCDC22/CCDC93 (CCC) complex controls membrane protein recycling. Nat Commun 2019; 10:4271. [PMID: 31537807 PMCID: PMC6753146 DOI: 10.1038/s41467-019-12221-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 08/21/2019] [Indexed: 01/04/2023] Open
Abstract
Protein recycling through the endolysosomal system relies on molecular assemblies that interact with cargo proteins, membranes, and effector molecules. Among them, the COMMD/CCDC22/CCDC93 (CCC) complex plays a critical role in recycling events. While CCC is closely associated with retriever, a cargo recognition complex, its mechanism of action remains unexplained. Herein we show that CCC and retriever are closely linked through sharing a common subunit (VPS35L), yet the integrity of CCC, but not retriever, is required to maintain normal endosomal levels of phosphatidylinositol-3-phosphate (PI(3)P). CCC complex depletion leads to elevated PI(3)P levels, enhanced recruitment and activation of WASH (an actin nucleation promoting factor), excess endosomal F-actin and trapping of internalized receptors. Mechanistically, we find that CCC regulates the phosphorylation and endosomal recruitment of the PI(3)P phosphatase MTMR2. Taken together, we show that the regulation of PI(3)P levels by the CCC complex is critical to protein recycling in the endosomal compartment. Recycling of proteins that have entered the endosome is essential to homeostasis. The COMMD/CCDC22/CCDC93 (CCC) complex is regulator of recycling but the molecular mechanisms are unclear. Here, the authors report that the CCC complex regulates endosomal recycling by maintaining PI3P levels on endosomal membranes.
Collapse
Affiliation(s)
- Amika Singla
- Department of Internal Medicine, and Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Alina Fedoseienko
- Division of Oncology Research and Department of Biochemistry and Molecular Biology, College of Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Sai S P Giridharan
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Brittany L Overlee
- Division of Oncology Research and Department of Biochemistry and Molecular Biology, College of Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Adam Lopez
- Department of Internal Medicine, and Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, Division of Neurology, West China Second University Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Jie Song
- Department of Internal Medicine, and Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Kayci Huff-Hardy
- Department of Internal Medicine, and Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Lois Weisman
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ezra Burstein
- Department of Internal Medicine, and Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Daniel D Billadeau
- Division of Oncology Research and Department of Biochemistry and Molecular Biology, College of Medicine, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
107
|
Polishchuk RS, Polishchuk EV. From and to the Golgi - defining the Wilson disease protein road map. FEBS Lett 2019; 593:2341-2350. [PMID: 31408533 DOI: 10.1002/1873-3468.13575] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/01/2019] [Accepted: 08/08/2019] [Indexed: 11/05/2022]
Abstract
Recent studies highlight the continued growth in the identification of a variety of cellular functions that involve the Golgi apparatus. Apart from well-known membrane sorting/trafficking and glycosylation machineries, the Golgi harbors molecular platforms operating in intracellular signaling, cytoskeleton organization, and protein quality control mechanisms. One of new emerging Golgi functions consists in the regulation of copper homeostasis by coordinating the relocation and activity of copper transporters. Of these, the Cu-transporting ATPase ATP7B (known as Wilson disease protein) plays a key role in the maintenance of the Cu balance in the body via the supply of essential Cu to the systemic circulation and via elimination of excess Cu into the bile. These activities require tightly regulated shuttling of ATP7B between the Golgi and different post-Golgi compartments. Despite significant progress over recent years, a number of issues regarding ATP7B trafficking remain to be clarified. This review summarizes current views on ATP7B trafficking pathways from and to the Golgi and underscores the challenges that should be addressed to define the ATP7B trafficking routes and mechanisms in health and disease.
Collapse
Affiliation(s)
- Roman S Polishchuk
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
| | - Elena V Polishchuk
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy.,ITMO University, St. Petersburg, Russia
| |
Collapse
|
108
|
Gilleron J, Gerdes JM, Zeigerer A. Metabolic regulation through the endosomal system. Traffic 2019; 20:552-570. [PMID: 31177593 PMCID: PMC6771607 DOI: 10.1111/tra.12670] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/05/2019] [Accepted: 06/05/2019] [Indexed: 12/13/2022]
Abstract
The endosomal system plays an essential role in cell homeostasis by controlling cellular signaling, nutrient sensing, cell polarity and cell migration. However, its place in the regulation of tissue, organ and whole body physiology is less well understood. Recent studies have revealed an important role for the endosomal system in regulating glucose and lipid homeostasis, with implications for metabolic disorders such as type 2 diabetes, hypercholesterolemia and non-alcoholic fatty liver disease. By taking insights from in vitro studies of endocytosis and exploring their effects on metabolism, we can begin to connect the fields of endosomal transport and metabolic homeostasis. In this review, we explore current understanding of how the endosomal system influences the systemic regulation of glucose and lipid metabolism in mice and humans. We highlight exciting new insights that help translate findings from single cells to a wider physiological level and open up new directions for endosomal research.
Collapse
Affiliation(s)
- Jerome Gilleron
- Université Côte d'Azur, Institut National de la Santé et de la Recherche Médicale (INSERM), Mediterranean Center of Molecular Medicine (C3M)NiceFrance
| | - Jantje M. Gerdes
- Institute for Diabetes and RegenerationHelmholtz Center MunichNeuherbergGermany
- German Center for Diabetes Research (DZD)NeuherbergGermany
| | - Anja Zeigerer
- German Center for Diabetes Research (DZD)NeuherbergGermany
- Institute for Diabetes and CancerHelmholtz Center MunichNeuherbergGermany
- Joint Heidelberg‐IDC Translational Diabetes ProgramHeidelberg University HospitalHeidelbergGermany
| |
Collapse
|
109
|
Mallam AL, Marcotte EM. Systems-wide Studies Uncover Commander, a Multiprotein Complex Essential to Human Development. Cell Syst 2019; 4:483-494. [PMID: 28544880 DOI: 10.1016/j.cels.2017.04.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/25/2017] [Accepted: 03/23/2017] [Indexed: 11/27/2022]
Abstract
Recent mass spectrometry maps of the human interactome independently support the existence of a large multiprotein complex, dubbed "Commander." Broadly conserved across animals and ubiquitously expressed in nearly every human cell type examined thus far, Commander likely plays a fundamental cellular function, akin to other ubiquitous machines involved in expression, proteostasis, and trafficking. Experiments on individual subunits support roles in endosomal protein sorting, including the trafficking of Notch proteins, copper transporters, and lipoprotein receptors. Commander is critical for vertebrate embryogenesis, and defects in the complex and its interaction partners disrupt craniofacial, brain, and heart development. Here, we review the synergy between large-scale proteomic efforts and focused studies in the discovery of Commander, describe its composition, structure, and function, and discuss how it illustrates the power of systems biology. Based on 3D modeling and biochemical data, we draw strong parallels between Commander and the retromer cargo-recognition complex, laying a foundation for future research into Commander's role in human developmental disorders.
Collapse
Affiliation(s)
- Anna L Mallam
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX 78712, USA.
| | - Edward M Marcotte
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
110
|
Chen K, Healy MD, Collins BM. Towards a molecular understanding of endosomal trafficking by Retromer and Retriever. Traffic 2019; 20:465-478. [DOI: 10.1111/tra.12649] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/15/2019] [Accepted: 04/15/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Kai‐En Chen
- Institute for Molecular Bioscience University of Queensland St. Lucia Queensland Australia
| | - Michael D. Healy
- Institute for Molecular Bioscience University of Queensland St. Lucia Queensland Australia
| | - Brett M. Collins
- Institute for Molecular Bioscience University of Queensland St. Lucia Queensland Australia
| |
Collapse
|
111
|
Wijers M, Zanoni P, Liv N, Vos DY, Jäckstein MY, Smit M, Wilbrink S, Wolters JC, van der Veen YT, Huijkman N, Dekker D, Kloosterhuis N, van Dijk TH, Billadeau DD, Kuipers F, Klumperman J, von Eckardstein A, Kuivenhoven JA, van de Sluis B. The hepatic WASH complex is required for efficient plasma LDL and HDL cholesterol clearance. JCI Insight 2019; 4:126462. [PMID: 31167970 DOI: 10.1172/jci.insight.126462] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 04/17/2019] [Indexed: 12/21/2022] Open
Abstract
The evolutionary conserved Wiskott-Aldrich syndrome protein and SCAR homolog (WASH) complex is one of the crucial multiprotein complexes that facilitates endosomal recycling of transmembrane proteins. Defects in WASH components have been associated with inherited developmental and neurological disorders in humans. Here, we show that hepatic ablation of the WASH component Washc1 in chow-fed mice increases plasma concentrations of cholesterol in both LDLs and HDLs, without affecting hepatic cholesterol content, hepatic cholesterol synthesis, biliary cholesterol excretion, or hepatic bile acid metabolism. Elevated plasma LDL cholesterol was related to reduced hepatocytic surface levels of the LDL receptor (LDLR) and the LDLR-related protein LRP1. Hepatic WASH ablation also reduced the surface levels of scavenger receptor class B type I and, concomitantly, selective uptake of HDL cholesterol into the liver. Furthermore, we found that WASHC1 deficiency increases LDLR proteolysis by the inducible degrader of LDLR, but does not affect proprotein convertase subtilisin/kexin type 9-mediated LDLR degradation. Remarkably, however, loss of hepatic WASHC1 may sensitize LDLR for proprotein convertase subtilisin/kexin type 9-induced degradation. Altogether, these findings identify the WASH complex as a regulator of LDL as well as HDL metabolism and provide in vivo evidence for endosomal trafficking of scavenger receptor class B type I in hepatocytes.
Collapse
Affiliation(s)
- Melinde Wijers
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Paolo Zanoni
- Institute for Clinical Chemistry, University Hospital Zurich, Zurich, Switzerland; Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Nalan Liv
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Dyonne Y Vos
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Michelle Y Jäckstein
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Marieke Smit
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Sanne Wilbrink
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Justina C Wolters
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Ydwine T van der Veen
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Nicolette Huijkman
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Daphne Dekker
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Niels Kloosterhuis
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Theo H van Dijk
- Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Daniel D Billadeau
- Department of Immunology and Biochemistry, Division of Oncology Research, Mayo Clinic, Rochester, New York, USA
| | - Folkert Kuipers
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands.,Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Judith Klumperman
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Arnold von Eckardstein
- Institute for Clinical Chemistry, University Hospital Zurich, Zurich, Switzerland; Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Jan Albert Kuivenhoven
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Bart van de Sluis
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
112
|
Nakai A, Fujimoto J, Miyata H, Stumm R, Narazaki M, Schulz S, Baba Y, Kumanogoh A, Suzuki K. The COMMD3/8 complex determines GRK6 specificity for chemoattractant receptors. J Exp Med 2019; 216:1630-1647. [PMID: 31088898 PMCID: PMC6605747 DOI: 10.1084/jem.20181494] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 09/08/2018] [Accepted: 04/22/2019] [Indexed: 12/22/2022] Open
Abstract
Nakai et al. show that the COMMD3/8 complex functions as an adaptor that selectively recruits GRK6 to chemoattractant receptors and promotes B cell migration and humoral immune responses. Lymphocyte migration is mediated by G protein–coupled receptors (GPCRs) that respond to chemoattractive molecules. After their activation, GPCRs are phosphorylated by different GPCR kinases (GRKs), which produces distinct functional outcomes through β-arrestins. However, the molecular machinery that targets individual GRKs to activated GPCRs remains elusive. Here, we identified a protein complex consisting of copper metabolism MURR1 domain–containing (COMMD) 3 and COMMD8 (COMMD3/8 complex) as an adaptor that selectively recruits a specific GRK to chemoattractant receptors and promotes lymphocyte chemotaxis. COMMD8, whose stability depended on COMMD3, was recruited to multiple chemoattractant receptors. Deficiency of COMMD8 or COMMD3 impaired B cell migration and humoral immune responses. Using CXC-chemokine receptor 4 (CXCR4) as a model, we demonstrated that the COMMD3/8 complex selectively recruited GRK6 and induced GRK6-mediated phosphorylation of the receptor and activation of β-arrestin–mediated signaling. Thus, the COMMD3/8 complex is a specificity determinant of GRK targeting to GPCRs and represents a point of regulation for immune responses.
Collapse
Affiliation(s)
- Akiko Nakai
- Laboratory of Immune Response Dynamics, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Jun Fujimoto
- Laboratory of Immune Response Dynamics, Immunology Frontier Research Center, Osaka University, Osaka, Japan.,Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Haruhiko Miyata
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Ralf Stumm
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Masashi Narazaki
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Stefan Schulz
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Yoshihiro Baba
- Division of Immunology and Genome Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Kazuhiro Suzuki
- Laboratory of Immune Response Dynamics, Immunology Frontier Research Center, Osaka University, Osaka, Japan .,Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| |
Collapse
|
113
|
Baños-Mateos S, Rojas AL, Hierro A. VPS29, a tweak tool of endosomal recycling. Curr Opin Cell Biol 2019; 59:81-87. [PMID: 31051431 DOI: 10.1016/j.ceb.2019.03.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/09/2019] [Accepted: 03/19/2019] [Indexed: 10/26/2022]
Abstract
The endolysosomal system is a highly dynamic network of membranes for degradation and recycling. During endosomal maturation, cargo molecules destined for lysosomal degradation are progressively concentrated through continuous rounds of fusion and fission reactions concomitant with inbound and outbound membrane fluxes. Of the cargo molecules delivered to endosomes, about two-thirds are rescued from degradation and recycled for reuse. This balance between degradation and recycling is essential to preserve the proteostatic plasticity of the cell under variable physiological demands. Cargo retrieval from endosomes involves several sorting complexes with stable core compositions that associate with multidomain regulatory proteins, consequently displaying complex interaction networks. The vacuolar protein sorting 29 (VPS29) has emerged as a central scaffold that coordinates the physical assembly of retrieval complexes with regulatory components in what appears to be an elegant solution for regulating distinct retrieval stations. This review summarizes the VPS29-binding partners and its integration into retrieval complexes for endosomal sorting and trafficking.
Collapse
Affiliation(s)
| | | | - Aitor Hierro
- CIC bioGUNE, Bizkaia Technology Park, Derio, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
114
|
Furlan C, Dirks RAM, Thomas PC, Jones RC, Wang J, Lynch M, Marks H, Vermeulen M. Miniaturised interaction proteomics on a microfluidic platform with ultra-low input requirements. Nat Commun 2019; 10:1525. [PMID: 30948724 PMCID: PMC6449397 DOI: 10.1038/s41467-019-09533-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 03/15/2019] [Indexed: 01/17/2023] Open
Abstract
Essentially all cellular processes are orchestrated by protein-protein interactions (PPIs). In recent years, affinity purification coupled to mass spectrometry (AP-MS) has been the preferred method to identify cellular PPIs. Here we present a microfluidic-based AP-MS workflow, called on-chip AP-MS, to identify PPIs using minute amounts of input material. By using this automated platform we purify the human Cohesin, CCC and Mediator complexes from as little as 4 micrograms of input lysate, representing a 50─100-fold downscaling compared to regular microcentrifuge tube-based protocols. We show that our platform can be used to affinity purify tagged baits as well as native cellular proteins and their interaction partners. As such, our method holds great promise for future biological and clinical AP-MS applications in which sample amounts are limited.
Collapse
Affiliation(s)
- Cristina Furlan
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, 6525 GA, The Netherlands
| | - René A M Dirks
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, 6525 GA, The Netherlands
| | - Peter C Thomas
- Fluidigm Corporation, South San Francisco, CA, 94080, USA
| | - Robert C Jones
- Fluidigm Corporation, South San Francisco, CA, 94080, USA
| | - Jing Wang
- Fluidigm Corporation, South San Francisco, CA, 94080, USA
| | - Mark Lynch
- Fluidigm Corporation, South San Francisco, CA, 94080, USA
| | - Hendrik Marks
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, 6525 GA, The Netherlands.
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, 6525 GA, The Netherlands.
| |
Collapse
|
115
|
Trafficking mechanisms of P-type ATPase copper transporters. Curr Opin Cell Biol 2019; 59:24-33. [PMID: 30928671 DOI: 10.1016/j.ceb.2019.02.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/13/2019] [Accepted: 02/26/2019] [Indexed: 12/13/2022]
Abstract
Copper is an essential micronutrient required for oxygen-dependent enzymes, yet excess of the metal is a toxicant. The tug-of-war between these copper activities is balanced by chaperones and membrane transporters, which control copper distribution and availability. The P-type ATPase transporters, ATP7A and ATP7B, regulate cytoplasmic copper by pumping copper out of cells or into the endomembrane system. Mutations in ATP7A and ATP7B cause diseases that share neuropsychiatric phenotypes, which are similar to phenotypes observed in mutations affecting cytoplasmic trafficking complexes required for ATP7A/B dynamics. Here, we discuss evidence indicating that phenotypes associated to genetic defects in trafficking complexes, such as retromer and the adaptor complex AP-1, result in part from copper dyshomeostasis due to mislocalized ATP7A and ATP7B.
Collapse
|
116
|
Ben Shlomo S, Mouhadeb O, Cohen K, Varol C, Gluck N. COMMD10-Guided Phagolysosomal Maturation Promotes Clearance of Staphylococcus aureus in Macrophages. iScience 2019; 14:147-163. [PMID: 30959277 PMCID: PMC6453835 DOI: 10.1016/j.isci.2019.03.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/28/2019] [Accepted: 03/21/2019] [Indexed: 12/13/2022] Open
Abstract
Staphylococcus aureus is a major cause of infectious disease. Liver Kupffer cells (KCs) are responsible for sequestering and destroying S. aureus through the phagolysosomal pathway. Proteins belonging to the COMMD family emerge as key intracellular regulators of protein trafficking, but the role of COMMD10 in macrophage-mediated S. aureus eradication is unknown. Here we report that COMMD10 in macrophages was necessary for its timely elimination, as demonstrated with two different S. aureus subspecies. In vivo, COMMD10-deficient liver KCs exhibited impaired clearance of systemic S. aureus infection. S. aureus-infected COMMD10-deficient macrophages exhibited impaired activation of the transcription factor EB, resulting in reduced lysosomal biogenesis. Moreover, S. aureus-initiated phagolysosomal maturation and function were significantly attenuated in COMMD10-deficient macrophages. Finally, expression of COMMD/CCDC22/CCDC93 complex, linked to phagolysosomal maturation, was reduced by COMMD10 deficiency. Collectively, these results support an important role for COMMD10 in instructing macrophage phagolysosomal biogenesis and maturation during S. aureus infection.
Collapse
Affiliation(s)
- Shani Ben Shlomo
- The Research Center for Digestive Tract and Liver Diseases, Tel-Aviv Sourasky Medical Center and Sackler School of Medicine, Tel-Aviv University, 6 Weizmann St, Tel-Aviv 64239, Israel
| | - Odelia Mouhadeb
- The Research Center for Digestive Tract and Liver Diseases, Tel-Aviv Sourasky Medical Center and Sackler School of Medicine, Tel-Aviv University, 6 Weizmann St, Tel-Aviv 64239, Israel; Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Keren Cohen
- The Research Center for Digestive Tract and Liver Diseases, Tel-Aviv Sourasky Medical Center and Sackler School of Medicine, Tel-Aviv University, 6 Weizmann St, Tel-Aviv 64239, Israel; Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Chen Varol
- The Research Center for Digestive Tract and Liver Diseases, Tel-Aviv Sourasky Medical Center and Sackler School of Medicine, Tel-Aviv University, 6 Weizmann St, Tel-Aviv 64239, Israel; Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel.
| | - Nathan Gluck
- The Research Center for Digestive Tract and Liver Diseases, Tel-Aviv Sourasky Medical Center and Sackler School of Medicine, Tel-Aviv University, 6 Weizmann St, Tel-Aviv 64239, Israel.
| |
Collapse
|
117
|
Yamashita Y, Nishikawa A, Iwahashi Y, Fujimoto M, Sasaki I, Mishima H, Kinoshita A, Hemmi H, Kanazawa N, Ohshima K, Imadome KI, Murata SI, Yoshiura KI, Kaisho T, Sonoki T, Tamura S. Identification of a novel CCDC22 mutation in a patient with severe Epstein-Barr virus-associated hemophagocytic lymphohistiocytosis and aggressive natural killer cell leukemia. Int J Hematol 2019; 109:744-750. [PMID: 30706328 DOI: 10.1007/s12185-019-02595-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/27/2018] [Accepted: 01/16/2019] [Indexed: 01/16/2023]
Abstract
Aggressive natural killer cell leukemia (ANKL) is a rare neoplasm characterized by the systemic infiltration of Epstein-Barr virus (EBV)-associated NK cells, and rapidly progressive clinical course. We report the case of a 45-year-old man with intellectual disability who developed ANKL, and describe the identification of a novel genetic mutation of coiled-coil domain-containing 22 (CCDC22). He presented with persistent fever, severe pancytopenia, and hepatosplenomegary. Following bone marrow aspiration, numerous hemophagocytes were identified. High EBV viral load was detected in NK cells fractionation by qPCR. The initial diagnosis was EBV-related hemophagocytic lymphohistiocytosis (EBV-HLH). A combination of immunosuppressive drugs and chemotherapy was administered, but was unsuccessful in controlling the disease. Therefore, he was treated with HLA-matched related allogeneic hematopoietic stem cell transplantation. However, his condition deteriorated within 30 days, resulting in fatal outcome. Autopsy revealed many EBV-infected NK cells infiltrating major organs, consistent with ANKL. Furthermore, whole-exome sequencing identified a novel missense mutation of the CCDC22 gene (c.112G>A, p.V38M), responsible for X-linked intellectual disability (XLID). CCDC22 has been shown to play a role in NF-κB activation. Our case suggests that CCDC22 mutation might be implicated in pathogenesis of EBV-HLH and NK-cell neoplasms as well as XLID via possibly affecting NF-κB signaling.
Collapse
Affiliation(s)
- Yusuke Yamashita
- Department of Hematology/Oncology, Wakayama Medical University, Wakayama, Japan
| | - Akinori Nishikawa
- Department of Hematology/Oncology, Wakayama Medical University, Wakayama, Japan
| | - Yoshifumi Iwahashi
- Department of Diagnostic Pathology, Wakayama Medical University, Wakayama, Japan
| | - Masakazu Fujimoto
- Department of Diagnostic Pathology, Wakayama Medical University, Wakayama, Japan
| | - Izumi Sasaki
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Hiroyuki Mishima
- Department of Human Genetics, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Akira Kinoshita
- Department of Human Genetics, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Hiroaki Hemmi
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Nobuo Kanazawa
- Department of Dermatology, Wakayama Medical University, Wakayama, Japan
| | - Kouichi Ohshima
- Department of Pathology, Kurume University School of Medicine, Fukuoka, Japan
| | - Ken-Ichi Imadome
- Department of Advanced Medicine for Infections, National Center for Child Health and Development, Tokyo, Japan
| | - Shin-Ichi Murata
- Department of Diagnostic Pathology, Wakayama Medical University, Wakayama, Japan
| | - Koh-Ichiro Yoshiura
- Department of Human Genetics, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Tsuneyasu Kaisho
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Takashi Sonoki
- Department of Hematology/Oncology, Wakayama Medical University, Wakayama, Japan
| | - Shinobu Tamura
- Department of Hematology/Oncology, Wakayama Medical University, Wakayama, Japan.
| |
Collapse
|
118
|
Mouhadeb O, Ben Shlomo S, Cohen K, Farkash I, Gruber S, Maharshak N, Halpern Z, Burstein E, Gluck N, Varol C. Impaired COMMD10-Mediated Regulation of Ly6C hi Monocyte-Driven Inflammation Disrupts Gut Barrier Function. Front Immunol 2018; 9:2623. [PMID: 30487795 PMCID: PMC6246736 DOI: 10.3389/fimmu.2018.02623] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/25/2018] [Indexed: 12/20/2022] Open
Abstract
Ly6Chi monocyte tissue infiltrates play important roles in mediating local inflammation, bacterial elimination and resolution during sepsis and inflammatory bowel disease (IBD). Yet, the immunoregulatory pathways dictating their activity remain poorly understood. COMMD family proteins are emerging as key regulators of signaling and protein trafficking events during inflammation, but the specific role of COMMD10 in governing Ly6Chi monocyte-driven inflammation is unknown. Here we report that COMMD10 curbs canonical and non-canonical inflammasome activity in Ly6Chi monocytes in a model of LPS-induced systemic inflammation. Accordingly, its deficiency in myeloid cells, but not in tissue resident macrophages, resulted in increased Ly6Chi monocyte liver and colonic infiltrates, elevated systemic cytokine storm, increased activation of caspase-1 and-11 in the liver and colon, and augmented IL-1β production systemically and specifically in LPS-challenged circulating Ly6Chi monocytes. These inflammatory manifestations were accompanied by impaired intestinal barrier function with ensuing bacterial dissemination to the mesenteric lymph nodes and liver leading to increased mortality. The increased inflammasome activity and intestinal barrier leakage were ameliorated by the inducible ablation of COMMD10-deficient Ly6Chi monocytes. In consistence with these results, COMMD10-deficiency in Ly6Chi monocytes, but not in intestinal-resident lamina propria macrophages, led to increased IL-1β production and aggravated colonic inflammation in a model of DSS-induced colitis. Finally, COMMD10 expression was reduced in Ly6Chi monocytes and their corresponding human CD14hi monocytes sorted from mice subjected to DSS-induced colitis or from IBD patients, respectively. Collectively, these results highlight COMMD10 as a negative regulator of Ly6Chi monocyte inflammasome activity during systemic inflammation and IBD.
Collapse
Affiliation(s)
- Odelia Mouhadeb
- The Research Center for Digestive Tract and Liver Diseases, Tel-Aviv Sourasky Medical Center and Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel.,Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Shani Ben Shlomo
- The Research Center for Digestive Tract and Liver Diseases, Tel-Aviv Sourasky Medical Center and Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Keren Cohen
- The Research Center for Digestive Tract and Liver Diseases, Tel-Aviv Sourasky Medical Center and Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel.,Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Inbal Farkash
- The Research Center for Digestive Tract and Liver Diseases, Tel-Aviv Sourasky Medical Center and Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Shlomo Gruber
- The Research Center for Digestive Tract and Liver Diseases, Tel-Aviv Sourasky Medical Center and Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Nitsan Maharshak
- The Research Center for Digestive Tract and Liver Diseases, Tel-Aviv Sourasky Medical Center and Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Zamir Halpern
- The Research Center for Digestive Tract and Liver Diseases, Tel-Aviv Sourasky Medical Center and Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Ezra Burstein
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States.,Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Nathan Gluck
- The Research Center for Digestive Tract and Liver Diseases, Tel-Aviv Sourasky Medical Center and Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Chen Varol
- The Research Center for Digestive Tract and Liver Diseases, Tel-Aviv Sourasky Medical Center and Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel.,Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| |
Collapse
|
119
|
Shakya S, Sharma P, Bhatt AM, Jani RA, Delevoye C, Setty SR. Rab22A recruits BLOC-1 and BLOC-2 to promote the biogenesis of recycling endosomes. EMBO Rep 2018; 19:embr.201845918. [PMID: 30404817 PMCID: PMC6280653 DOI: 10.15252/embr.201845918] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 10/01/2018] [Accepted: 10/05/2018] [Indexed: 12/02/2022] Open
Abstract
Recycling endosomes (REs) are transient endosomal tubular intermediates of early/sorting endosomes (E/SEs) that function in cargo recycling to the cell surface and deliver the cell type‐specific cargo to lysosome‐related organelles such as melanosomes in melanocytes. However, the mechanism of RE biogenesis is largely unknown. In this study, by using an endosomal Rab‐specific RNAi screen, we identified Rab22A as a critical player during RE biogenesis. Rab22A‐knockdown results in reduced RE dynamics and concurrent cargo accumulation in the E/SEs or lysosomes. Rab22A forms a complex with BLOC‐1, BLOC‐2 and the kinesin‐3 family motor KIF13A on endosomes. Consistently, the RE‐dependent transport defects observed in Rab22A‐depleted cells phenocopy those in BLOC‐1‐/BLOC‐2‐deficient cells. Further, Rab22A depletion reduced the membrane association of BLOC‐1/BLOC‐2. Taken together, these findings suggest that Rab22A promotes the assembly of a BLOC‐1‐BLOC‐2‐KIF13A complex on E/SEs to generate REs that maintain cellular and organelle homeostasis.
Collapse
Affiliation(s)
- Saurabh Shakya
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Prerna Sharma
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Anshul Milap Bhatt
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Riddhi Atul Jani
- Structure and Membrane Compartments, CNRS, UMR 144, Institut Curie, PSL Research University, Paris, France
| | - Cédric Delevoye
- Structure and Membrane Compartments, CNRS, UMR 144, Institut Curie, PSL Research University, Paris, France.,Cell and Tissue Imaging Facility (PICT-IBiSA), CNRS, UMR 144, Institut Curie, PSL Research University, Paris, France
| | - Subba Rao Setty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| |
Collapse
|
120
|
Cullen PJ, Steinberg F. To degrade or not to degrade: mechanisms and significance of endocytic recycling. Nat Rev Mol Cell Biol 2018; 19:679-696. [PMID: 30194414 DOI: 10.1038/s41580-018-0053-7] [Citation(s) in RCA: 334] [Impact Index Per Article: 55.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Newly endocytosed integral cell surface proteins are typically either directed for degradation or subjected to recycling back to the plasma membrane. The sorting of integral cell surface proteins, including signalling receptors, nutrient transporters, ion channels, adhesion molecules and polarity markers, within the endolysosomal network for recycling is increasingly recognized as an essential feature in regulating the complexities of physiology at the cell, tissue and organism levels. Historically, endocytic recycling has been regarded as a relatively passive process, where the majority of internalized integral proteins are recycled via a nonspecific sequence-independent 'bulk membrane flow' pathway. Recent work has increasingly challenged this view. The discovery of sequence-specific sorting motifs and the identification of cargo adaptors and associated coat complexes have begun to uncover the highly orchestrated nature of endosomal cargo recycling, thereby providing new insight into the function and (patho)physiology of this process.
Collapse
Affiliation(s)
- Peter J Cullen
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol, UK.
| | - Florian Steinberg
- Center for Biological Systems Analysis, Albert Ludwigs Universitaet Freiburg, Freiburg im Breisgau, Germany.
| |
Collapse
|
121
|
Simonetti B, Cullen PJ. Actin-dependent endosomal receptor recycling. Curr Opin Cell Biol 2018; 56:22-33. [PMID: 30227382 DOI: 10.1016/j.ceb.2018.08.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/20/2018] [Accepted: 08/27/2018] [Indexed: 12/18/2022]
Abstract
Endosomes constitute major sorting compartments within the cell. There, a myriad of transmembrane proteins (cargoes) are delivered to the lysosome for degradation or retrieved from this fate and recycled through tubulo-vesicular transport carriers to different cellular destinations. Retrieval and recycling are orchestrated by multi-protein assemblies that include retromer and retriever, sorting nexins, and the Arp2/3 activating WASH complex. Fine-tuned control of actin polymerization on endosomes is fundamental for the retrieval and recycling of cargoes. Recent advances in the field have highlighted several roles that actin plays in this process including the binding to cargoes, stabilization of endosomal subdomains, generation of the remodeling forces required for the biogenesis of cargo-enriched transport carriers and short-range motility of the transport carriers.
Collapse
Affiliation(s)
- Boris Simonetti
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Peter J Cullen
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK.
| |
Collapse
|
122
|
Healy MD, Hospenthal MK, Hall RJ, Chandra M, Chilton M, Tillu V, Chen KE, Celligoi DJ, McDonald FJ, Cullen PJ, Lott JS, Collins BM, Ghai R. Structural insights into the architecture and membrane interactions of the conserved COMMD proteins. eLife 2018; 7:e35898. [PMID: 30067224 PMCID: PMC6089597 DOI: 10.7554/elife.35898] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 07/31/2018] [Indexed: 12/31/2022] Open
Abstract
The COMMD proteins are a conserved family of proteins with central roles in intracellular membrane trafficking and transcription. They form oligomeric complexes with each other and act as components of a larger assembly called the CCC complex, which is localized to endosomal compartments and mediates the transport of several transmembrane cargos. How these complexes are formed however is completely unknown. Here, we have systematically characterised the interactions between human COMMD proteins, and determined structures of COMMD proteins using X-ray crystallography and X-ray scattering to provide insights into the underlying mechanisms of homo- and heteromeric assembly. All COMMD proteins possess an α-helical N-terminal domain, and a highly conserved C-terminal domain that forms a tightly interlocked dimeric structure responsible for COMMD-COMMD interactions. The COMM domains also bind directly to components of CCC and mediate non-specific membrane association. Overall these studies show that COMMD proteins function as obligatory dimers with conserved domain architectures.
Collapse
Affiliation(s)
- Michael D Healy
- Institute for Molecular BioscienceThe University of QueenslandSt. LuciaAustralia
| | | | - Ryan J Hall
- Institute for Molecular BioscienceThe University of QueenslandSt. LuciaAustralia
| | - Mintu Chandra
- Institute for Molecular BioscienceThe University of QueenslandSt. LuciaAustralia
| | - Molly Chilton
- School of Biochemistry, Biomedical Sciences BuildingUniversity of BristolBristolUnited Kingdom
| | - Vikas Tillu
- Institute for Molecular BioscienceThe University of QueenslandSt. LuciaAustralia
| | - Kai-En Chen
- Institute for Molecular BioscienceThe University of QueenslandSt. LuciaAustralia
| | - Dion J Celligoi
- School of Biological SciencesThe University of AucklandAucklandNew Zealand
| | | | - Peter J Cullen
- School of Biochemistry, Biomedical Sciences BuildingUniversity of BristolBristolUnited Kingdom
| | - J Shaun Lott
- School of Biological SciencesThe University of AucklandAucklandNew Zealand
| | - Brett M Collins
- Institute for Molecular BioscienceThe University of QueenslandSt. LuciaAustralia
| | - Rajesh Ghai
- Institute for Molecular BioscienceThe University of QueenslandSt. LuciaAustralia
| |
Collapse
|
123
|
Wang J, Fedoseienko A, Chen B, Burstein E, Jia D, Billadeau DD. Endosomal receptor trafficking: Retromer and beyond. Traffic 2018; 19:578-590. [PMID: 29667289 PMCID: PMC6043395 DOI: 10.1111/tra.12574] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/11/2018] [Accepted: 04/13/2018] [Indexed: 12/17/2022]
Abstract
The tubular endolysosomal network is a quality control system that ensures the proper delivery of internalized receptors to specific subcellular destinations in order to maintain cellular homeostasis. Although retromer was originally described in yeast as a regulator of endosome-to-Golgi receptor recycling, mammalian retromer has emerged as a central player in endosome-to-plasma membrane recycling of a variety of receptors. Over the past decade, information regarding the mechanism by which retromer facilitates receptor trafficking has emerged, as has the identification of numerous retromer-associated molecules including the WASH complex, sorting nexins (SNXs) and TBC1d5. Moreover, the recent demonstration that several SNXs can directly interact with retromer cargo to facilitate endosome-to-Golgi retrieval has provided new insight into how these receptors are trafficked in cells. The mechanism by which SNX17 cargoes are recycled out of the endosomal system was demonstrated to involve a retromer-like complex termed the retriever, which is recruited to WASH positive endosomes through an interaction with the COMMD/CCDC22/CCDC93 (CCC) complex. Lastly, the mechanisms by which bacterial and viral pathogens highjack this complex sorting machinery in order to escape the endolysosomal system or remain hidden within the cells are beginning to emerge. In this review, we will highlight recent studies that have begun to unravel the intricacies by which the retromer and associated molecules contribute to receptor trafficking and how deregulation at this sorting domain can contribute to disease or facilitate pathogen infection.
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, Division of Neurology, West China Second University Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Alina Fedoseienko
- Division of Oncology Research, Department of Biochemistry and Molecular Biology, and Department of Immunology, College of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Bayou Chen
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Ezra Burstein
- Department of Internal Medicine, and Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, Division of Neurology, West China Second University Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Daniel D. Billadeau
- Division of Oncology Research, Department of Biochemistry and Molecular Biology, and Department of Immunology, College of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
124
|
Farmer T, Naslavsky N, Caplan S. Tying trafficking to fusion and fission at the mighty mitochondria. Traffic 2018; 19:569-577. [PMID: 29663589 PMCID: PMC6043374 DOI: 10.1111/tra.12573] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/11/2018] [Accepted: 04/11/2018] [Indexed: 01/03/2023]
Abstract
The mitochondrion is a unique organelle that serves as the main site of ATP generation needed for energy in the cell. However, mitochondria also play essential roles in cell death through apoptosis and necrosis, as well as a variety of crucial functions related to stress regulation, autophagy, lipid synthesis and calcium storage. There is a growing appreciation that mitochondrial function is regulated by the dynamics of its membrane fusion and fission; longer, fused mitochondria are optimal for ATP generation, whereas fission of mitochondria facilitates mitophagy and cell division. Despite the significance of mitochondrial homeostasis for such crucial cellular events, the intricate regulation of mitochondrial fusion and fission is only partially understood. Until very recently, only a single mitochondrial fission protein had been identified. Moreover, only now have researchers turned to address the upstream machinery that regulates mitochondrial fusion and fission proteins. Herein, we review the known GTPases involved in mitochondrial fusion and fission, but also highlight recent studies that address the mechanisms by which these GTPases are regulated. In particular, we draw attention to a substantial new body of literature linking endocytic regulatory proteins, such as the retromer VPS35 cargo selection complex subunit, to mitochondrial homeostasis. These recent studies suggest that relationships and cross-regulation between endocytic and mitochondrial pathways may be more widespread than previously assumed.
Collapse
Affiliation(s)
- Trey Farmer
- The Department of Biochemistry and Molecular Biology, The University of Nebraska Medical Center, Omaha, Nebraska
| | - Naava Naslavsky
- The Department of Biochemistry and Molecular Biology, The University of Nebraska Medical Center, Omaha, Nebraska
| | - Steve Caplan
- The Department of Biochemistry and Molecular Biology, The University of Nebraska Medical Center, Omaha, Nebraska
- The Fred and Pamela Buffett Cancer Center, The University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
125
|
Endosomal Retrieval of Cargo: Retromer Is Not Alone. Trends Cell Biol 2018; 28:807-822. [PMID: 30072228 DOI: 10.1016/j.tcb.2018.06.005] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/15/2018] [Accepted: 06/22/2018] [Indexed: 11/20/2022]
Abstract
Endosomes are major protein sorting stations in cells. Endosomally localised multi-protein complexes sort integral proteins, including signaling receptors, nutrient transporters, adhesion molecules, and lysosomal hydrolase receptors, for lysosomal degradation or conversely for retrieval and subsequent recycling to various membrane compartments. Correct endosomal sorting of these proteins is essential for maintaining cellular homeostasis, with defects in endosomal sorting implicated in various human pathologies including neurodegenerative disorders. Retromer, an ancient multi-protein complex, is essential for the retrieval and recycling of hundreds of transmembrane proteins. While retromer is a major player in endosomal retrieval and recycling, several studies have recently identified retrieval mechanisms that are independent of retromer. Here, we review endosomal retrieval complexes, with a focus on recently discovered retromer-independent mechanisms.
Collapse
|
126
|
Naslavsky N, Caplan S. The enigmatic endosome - sorting the ins and outs of endocytic trafficking. J Cell Sci 2018; 131:131/13/jcs216499. [PMID: 29980602 DOI: 10.1242/jcs.216499] [Citation(s) in RCA: 202] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The early endosome (EE), also known as the sorting endosome (SE) is a crucial station for the sorting of cargoes, such as receptors and lipids, through the endocytic pathways. The term endosome relates to the receptacle-like nature of this organelle, to which endocytosed cargoes are funneled upon internalization from the plasma membrane. Having been delivered by the fusion of internalized vesicles with the EE or SE, cargo molecules are then sorted to a variety of endocytic pathways, including the endo-lysosomal pathway for degradation, direct or rapid recycling to the plasma membrane, and to a slower recycling pathway that involves a specialized form of endosome known as a recycling endosome (RE), often localized to the perinuclear endocytic recycling compartment (ERC). It is striking that 'the endosome', which plays such essential cellular roles, has managed to avoid a precise description, and its characteristics remain ambiguous and heterogeneous. Moreover, despite the rapid advances in scientific methodologies, including breakthroughs in light microscopy, overall, the endosome remains poorly defined. This Review will attempt to collate key characteristics of the different types of endosomes and provide a platform for discussion of this unique and fascinating collection of organelles. Moreover, under-developed, poorly understood and important open questions will be discussed.
Collapse
Affiliation(s)
- Naava Naslavsky
- The Department of Biochemistry and Molecular Biology, The University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Steve Caplan
- The Department of Biochemistry and Molecular Biology, The University of Nebraska Medical Center, Omaha, NE 68198, USA .,The Fred and Pamela Buffett Cancer Center, The University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
127
|
MacDonald E, Brown L, Selvais A, Liu H, Waring T, Newman D, Bithell J, Grimes D, Urbé S, Clague MJ, Zech T. HRS-WASH axis governs actin-mediated endosomal recycling and cell invasion. J Cell Biol 2018; 217:2549-2564. [PMID: 29891722 PMCID: PMC6028553 DOI: 10.1083/jcb.201710051] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 03/29/2018] [Accepted: 04/26/2018] [Indexed: 12/31/2022] Open
Abstract
Transmembrane proteins in the sorting endosome are either recycled to their point of origin or destined for lysosomal degradation. Lysosomal sorting is mediated by interaction of ubiquitylated transmembrane proteins with the endosomal sorting complex required for transport (ESCRT) machinery. In this study, we uncover an alternative role for the ESCRT-0 component hepatocyte growth factor-regulated tyrosine kinase substrate (HRS) in promoting the constitutive recycling of transmembrane proteins. We find that endosomal localization of the actin nucleating factor Wiscott-Aldrich syndrome protein and SCAR homologue (WASH) requires HRS, which occupies adjacent endosomal subdomains. Depletion of HRS results in defective constitutive recycling of epidermal growth factor receptor and the matrix metalloproteinase MT1-MMP, leading to their accumulation in internal compartments. We show that direct interactions with endosomal actin are required for efficient recycling and use a model system of chimeric transferrin receptor trafficking to show that an actin-binding motif can counteract an ubiquitin signal for lysosomal sorting. Directed receptor recycling is used by cancer cells to achieve invasive migration. Accordingly, abrogating HRS- and actin-dependent MT1-MMP recycling results in defective matrix degradation and invasion of triple-negative breast cancer cells.
Collapse
Affiliation(s)
- Ewan MacDonald
- Institute of Translational Medicine, Cellular and Molecular Physiology, University of Liverpool, Liverpool, England, UK
| | - Louise Brown
- Institute of Translational Medicine, Cellular and Molecular Physiology, University of Liverpool, Liverpool, England, UK
| | - Arnaud Selvais
- Institute of Translational Medicine, Cellular and Molecular Physiology, University of Liverpool, Liverpool, England, UK
| | - Han Liu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Thomas Waring
- Institute of Translational Medicine, Cellular and Molecular Physiology, University of Liverpool, Liverpool, England, UK
| | - Daniel Newman
- Institute of Translational Medicine, Cellular and Molecular Physiology, University of Liverpool, Liverpool, England, UK
| | - Jessica Bithell
- Institute of Translational Medicine, Cellular and Molecular Physiology, University of Liverpool, Liverpool, England, UK
| | - Douglas Grimes
- Institute of Translational Medicine, Cellular and Molecular Physiology, University of Liverpool, Liverpool, England, UK
| | - Sylvie Urbé
- Institute of Translational Medicine, Cellular and Molecular Physiology, University of Liverpool, Liverpool, England, UK
| | - Michael J Clague
- Institute of Translational Medicine, Cellular and Molecular Physiology, University of Liverpool, Liverpool, England, UK
| | - Tobias Zech
- Institute of Translational Medicine, Cellular and Molecular Physiology, University of Liverpool, Liverpool, England, UK
| |
Collapse
|
128
|
Campion CG, Zaoui K, Verissimo T, Cossette S, Matsuda H, Solban N, Hamet P, Tremblay J. COMMD5/HCaRG Hooks Endosomes on Cytoskeleton and Coordinates EGFR Trafficking. Cell Rep 2018; 24:670-684.e7. [DOI: 10.1016/j.celrep.2018.06.056] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 05/16/2018] [Accepted: 06/13/2018] [Indexed: 12/25/2022] Open
|
129
|
Ware AW, Cheung TT, Rasulov S, Burstein E, McDonald FJ. Epithelial Na + Channel: Reciprocal Control by COMMD10 and Nedd4-2. Front Physiol 2018; 9:793. [PMID: 29997525 PMCID: PMC6028986 DOI: 10.3389/fphys.2018.00793] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 06/06/2018] [Indexed: 11/25/2022] Open
Abstract
Optimal function of the epithelial sodium channel (ENaC) in the distal nephron is key to the kidney’s long-term control of salt homeostasis and blood pressure. Multiple pathways alter ENaC cell surface populations, including correct processing and trafficking in the secretory pathway to the cell surface, and retrieval from the cell surface through ubiquitination by the ubiquitin ligase Nedd4-2, clathrin-mediated endocytosis, and sorting in the endosomal system. Members of the Copper Metabolism Murr1 Domain containing (COMMD) family of 10 proteins are known to interact with ENaC. COMMD1, 3 and 9 have been shown to down-regulate ENaC, most likely through Nedd4-2, however, the other COMMD family members remain uncharacterized. To investigate the effects of the COMMD10 protein on ENaC trafficking and function, the interaction of ENaC and COMMD10 was confirmed. Stable COMMD10 knockdown in Fischer rat thyroid epithelia decreased ENaC current and this decreased current was associated with increased Nedd4-2 protein, a known negative regulator of ENaC. However, inhibition of Nedd4-2’s ubiquitination of ENaC was only able to partially rescue the observed reduction in current. Stable COMMD10 knockdown results in defects both in endocytosis and recycling of transferrin suggesting COMMD10 likely interacts with multiple pathways to regulate ENaC and therefore could be involved in the long-term control of blood pressure.
Collapse
Affiliation(s)
- Adam W Ware
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Tanya T Cheung
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Sahib Rasulov
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Ezra Burstein
- Department of Internal Medicine and Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Fiona J McDonald
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
130
|
Keating MF, Calkin AC. The CCC Complex COMManDs Control of LDL Cholesterol Levels. Circ Res 2018; 122:1629-1631. [PMID: 29880494 DOI: 10.1161/circresaha.118.313074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Michael F Keating
- From the Lipid Metabolism and Cardiometabolic Disease Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia (M.F.K., A.C.C.)
- Central Clinical School, Monash University, Melbourne, Australia (M.F.K., A.C.C.)
| | - Anna C Calkin
- From the Lipid Metabolism and Cardiometabolic Disease Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia (M.F.K., A.C.C.)
- Central Clinical School, Monash University, Melbourne, Australia (M.F.K., A.C.C.)
| |
Collapse
|
131
|
Marakalala MJ, Martinez FO, Plüddemann A, Gordon S. Macrophage Heterogeneity in the Immunopathogenesis of Tuberculosis. Front Microbiol 2018; 9:1028. [PMID: 29875747 PMCID: PMC5974223 DOI: 10.3389/fmicb.2018.01028] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/01/2018] [Indexed: 12/13/2022] Open
Abstract
Macrophages play a central role in tuberculosis, as the site of primary infection, inducers and effectors of inflammation, innate and adaptive immunity, as well as mediators of tissue destruction and repair. Early descriptions by pathologists have emphasized their morphological heterogeneity in granulomas, followed by delineation of T lymphocyte-dependent activation of anti-mycobacterial resistance. More recently, powerful genetic and molecular tools have become available to describe macrophage cellular properties and their role in host-pathogen interactions. In this review we discuss aspects of macrophage heterogeneity relevant to the pathogenesis of tuberculosis and, conversely, lessons that can be learnt from mycobacterial infection, with regard to the immunobiological functions of macrophages in homeostasis and disease.
Collapse
Affiliation(s)
- Mohlopheni J. Marakalala
- Division of Immunology, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Fernando O. Martinez
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
- Botnar Research Centre, NDORMS, University of Oxford, Oxford, United Kingdom
| | - Annette Plüddemann
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, United Kingdom
| | - Siamon Gordon
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
132
|
Proteomic and Biochemical Comparison of the Cellular Interaction Partners of Human VPS33A and VPS33B. J Mol Biol 2018; 430:2153-2163. [PMID: 29778605 PMCID: PMC6005816 DOI: 10.1016/j.jmb.2018.05.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 04/21/2018] [Accepted: 05/11/2018] [Indexed: 01/18/2023]
Abstract
Multi-subunit tethering complexes control membrane fusion events in eukaryotic cells. Class C core vacuole/endosome tethering (CORVET) and homotypic fusion and vacuole protein sorting (HOPS) are two such complexes, both containing the Sec1/Munc18 protein subunit VPS33A. Metazoans additionally possess VPS33B, which has considerable sequence similarity to VPS33A but does not integrate into CORVET or HOPS complexes and instead stably interacts with VIPAR. It has been recently suggested that VPS33B and VIPAR comprise two subunits of a novel multi-subunit tethering complex (named “CHEVI”), perhaps analogous in configuration to CORVET and HOPS. We utilized the BioID proximity biotinylation assay to compare and contrast the interactomes of VPS33A and VPS33B. Overall, few proteins were identified as associating with both VPS33A and VPS33B, suggesting that these proteins have distinct sub-cellular localizations. Consistent with previous reports, we observed that VPS33A was co-localized with many components of class III phosphatidylinositol 3-kinase (PI3KC3) complexes: PIK3C3, PIK3R4, NRBF2, UVRAG and RUBICON. Although VPS33A clearly co-localized with several subunits of CORVET and HOPS in this assay, no proteins with the canonical CORVET/HOPS domain architecture were found to co-localize with VPS33B. Instead, we identified that VPS33B interacts directly with CCDC22, a member of the CCC complex. CCDC22 does not co-fractionate with VPS33B and VIPAR in gel filtration of human cell lysates, suggesting that CCDC22 interacts transiently with VPS33B/VIPAR rather than forming a stable complex with these proteins in cells. We also observed that the protein complex containing VPS33B and VIPAR is considerably smaller than CORVET/HOPS, suggesting that the CHEVI complex comprises just VPS33B and VIPAR. VPS33A and VPS33B co-localize with distinct sets of cellular proteins. VPS33A co-localizes with PI3KC3 complex members. VPS33B interacts directly with CCDC22, a member of the CCC complex. VPS33B and VIPAR do not assemble into a larger stable multi-subunit tethering complex.
Collapse
|
133
|
Pan J, Meyers RM, Michel BC, Mashtalir N, Sizemore AE, Wells JN, Cassel SH, Vazquez F, Weir BA, Hahn WC, Marsh JA, Tsherniak A, Kadoch C. Interrogation of Mammalian Protein Complex Structure, Function, and Membership Using Genome-Scale Fitness Screens. Cell Syst 2018; 6:555-568.e7. [PMID: 29778836 DOI: 10.1016/j.cels.2018.04.011] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/03/2018] [Accepted: 04/24/2018] [Indexed: 11/15/2022]
Abstract
Protein complexes are assemblies of subunits that have co-evolved to execute one or many coordinated functions in the cellular environment. Functional annotation of mammalian protein complexes is critical to understanding biological processes, as well as disease mechanisms. Here, we used genetic co-essentiality derived from genome-scale RNAi- and CRISPR-Cas9-based fitness screens performed across hundreds of human cancer cell lines to assign measures of functional similarity. From these measures, we systematically built and characterized functional similarity networks that recapitulate known structural and functional features of well-studied protein complexes and resolve novel functional modules within complexes lacking structural resolution, such as the mammalian SWI/SNF complex. Finally, by integrating functional networks with large protein-protein interaction networks, we discovered novel protein complexes involving recently evolved genes of unknown function. Taken together, these findings demonstrate the utility of genetic perturbation screens alone, and in combination with large-scale biophysical data, to enhance our understanding of mammalian protein complexes in normal and disease states.
Collapse
Affiliation(s)
- Joshua Pan
- Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, MA 02142, USA; Biomedical and Biological Sciences Program, Harvard Medical School, Boston, MA 02115, USA
| | - Robin M Meyers
- Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, MA 02142, USA
| | - Brittany C Michel
- Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, MA 02142, USA; Biomedical and Biological Sciences Program, Harvard Medical School, Boston, MA 02115, USA
| | - Nazar Mashtalir
- Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, MA 02142, USA
| | - Ann E Sizemore
- Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, MA 02142, USA
| | - Jonathan N Wells
- MRC Human Genetics Unit, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Seth H Cassel
- Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, MA 02142, USA; Biomedical and Biological Sciences Program, Harvard Medical School, Boston, MA 02115, USA; Medical Scientist Training Program, Harvard Medical School, Boston, MA 02115, USA
| | - Francisca Vazquez
- Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, MA 02142, USA
| | - Barbara A Weir
- Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, MA 02142, USA
| | - William C Hahn
- Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, MA 02142, USA; Harvard Medical School, Boston, MA 02115, USA; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Joseph A Marsh
- MRC Human Genetics Unit, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Aviad Tsherniak
- Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, MA 02142, USA
| | - Cigall Kadoch
- Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, MA 02142, USA; Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
134
|
Fedoseienko A, Wijers M, Wolters JC, Dekker D, Smit M, Huijkman N, Kloosterhuis N, Klug H, Schepers A, Willems van Dijk K, Levels JHM, Billadeau DD, Hofker MH, van Deursen J, Westerterp M, Burstein E, Kuivenhoven JA, van de Sluis B. The COMMD Family Regulates Plasma LDL Levels and Attenuates Atherosclerosis Through Stabilizing the CCC Complex in Endosomal LDLR Trafficking. Circ Res 2018; 122:1648-1660. [PMID: 29545368 DOI: 10.1161/circresaha.117.312004] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 03/03/2018] [Accepted: 03/13/2018] [Indexed: 12/31/2022]
Abstract
RATIONALE COMMD (copper metabolism MURR1 domain)-containing proteins are a part of the CCC (COMMD-CCDC22 [coiled-coil domain containing 22]-CCDC93 [coiled-coil domain containing 93]) complex facilitating endosomal trafficking of cell surface receptors. Hepatic COMMD1 inactivation decreases CCDC22 and CCDC93 protein levels, impairs the recycling of the LDLR (low-density lipoprotein receptor), and increases plasma low-density lipoprotein cholesterol levels in mice. However, whether any of the other COMMD members function similarly as COMMD1 and whether perturbation in the CCC complex promotes atherogenesis remain unclear. OBJECTIVE The main aim of this study is to unravel the contribution of evolutionarily conserved COMMD proteins to plasma lipoprotein levels and atherogenesis. METHODS AND RESULTS Using liver-specific Commd1, Commd6, or Commd9 knockout mice, we investigated the relation between the COMMD proteins in the regulation of plasma cholesterol levels. Combining biochemical and quantitative targeted proteomic approaches, we found that hepatic COMMD1, COMMD6, or COMMD9 deficiency resulted in massive reduction in the protein levels of all 10 COMMDs. This decrease in COMMD protein levels coincided with destabilizing of the core (CCDC22, CCDC93, and chromosome 16 open reading frame 62 [C16orf62]) of the CCC complex, reduced cell surface levels of LDLR and LRP1 (LDLR-related protein 1), followed by increased plasma low-density lipoprotein cholesterol levels. To assess the direct contribution of the CCC core in the regulation of plasma cholesterol levels, Ccdc22 was deleted in mouse livers via CRISPR/Cas9-mediated somatic gene editing. CCDC22 deficiency also destabilized the complete CCC complex and resulted in elevated plasma low-density lipoprotein cholesterol levels. Finally, we found that hepatic disruption of the CCC complex exacerbates dyslipidemia and atherosclerosis in ApoE3*Leiden mice. CONCLUSIONS Collectively, these findings demonstrate a strong interrelationship between COMMD proteins and the core of the CCC complex in endosomal LDLR trafficking. Hepatic disruption of either of these CCC components causes hypercholesterolemia and exacerbates atherosclerosis. Our results indicate that not only COMMD1 but all other COMMDs and CCC components may be potential targets for modulating plasma lipid levels in humans.
Collapse
Affiliation(s)
- Alina Fedoseienko
- From the Molecular Genetics Section, Department of Pediatrics (A.F., M. Wijers, J.C.W., D.D., M.S., N.H., N.K., M.H.H., M. Westerterp, J.A.K., B.v.d.S)
| | - Melinde Wijers
- From the Molecular Genetics Section, Department of Pediatrics (A.F., M. Wijers, J.C.W., D.D., M.S., N.H., N.K., M.H.H., M. Westerterp, J.A.K., B.v.d.S)
| | - Justina C Wolters
- From the Molecular Genetics Section, Department of Pediatrics (A.F., M. Wijers, J.C.W., D.D., M.S., N.H., N.K., M.H.H., M. Westerterp, J.A.K., B.v.d.S)
| | - Daphne Dekker
- From the Molecular Genetics Section, Department of Pediatrics (A.F., M. Wijers, J.C.W., D.D., M.S., N.H., N.K., M.H.H., M. Westerterp, J.A.K., B.v.d.S)
| | - Marieke Smit
- From the Molecular Genetics Section, Department of Pediatrics (A.F., M. Wijers, J.C.W., D.D., M.S., N.H., N.K., M.H.H., M. Westerterp, J.A.K., B.v.d.S)
| | - Nicolette Huijkman
- From the Molecular Genetics Section, Department of Pediatrics (A.F., M. Wijers, J.C.W., D.D., M.S., N.H., N.K., M.H.H., M. Westerterp, J.A.K., B.v.d.S)
| | - Niels Kloosterhuis
- From the Molecular Genetics Section, Department of Pediatrics (A.F., M. Wijers, J.C.W., D.D., M.S., N.H., N.K., M.H.H., M. Westerterp, J.A.K., B.v.d.S)
| | - Helene Klug
- University Medical Center Groningen, University of Groningen, The Netherlands; PolyQuant GmbH, Bad Abbach, Germany (H.K.)
| | - Aloys Schepers
- Monoclonal Antibody Core Facility and Research Group, Institute for Diabetes and Obesity, Helmholtz Zentrum, München, Germany (A.S.)
| | - Ko Willems van Dijk
- Department of Human Genetics (K.W.v.D.) and Department of Medicine (K.W.v.D.)
| | - Johannes H M Levels
- Division of Endocrinology, Leiden University Medical Center, The Netherlands; Department of Vascular and Experimental Vascular Medicine, Academic Medical Center, University of Amsterdam, The Netherlands (J.H.M.L.)
| | - Daniel D Billadeau
- Division of Oncology Research, Department of Immunology and Biochemistry (D.D.B.)
| | - Marten H Hofker
- From the Molecular Genetics Section, Department of Pediatrics (A.F., M. Wijers, J.C.W., D.D., M.S., N.H., N.K., M.H.H., M. Westerterp, J.A.K., B.v.d.S)
| | - Jan van Deursen
- Department of Pediatrics and Adolescent Medicine, Mayo Clinic College of Medicine (J.v.D.).,Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine (J.v.D.)
| | - Marit Westerterp
- From the Molecular Genetics Section, Department of Pediatrics (A.F., M. Wijers, J.C.W., D.D., M.S., N.H., N.K., M.H.H., M. Westerterp, J.A.K., B.v.d.S)
| | - Ezra Burstein
- Mayo Clinic, Rochester, MN; and University of Texas Southwestern Medical Center, Dallas (E.B.)
| | - Jan Albert Kuivenhoven
- From the Molecular Genetics Section, Department of Pediatrics (A.F., M. Wijers, J.C.W., D.D., M.S., N.H., N.K., M.H.H., M. Westerterp, J.A.K., B.v.d.S)
| | - Bart van de Sluis
- From the Molecular Genetics Section, Department of Pediatrics (A.F., M. Wijers, J.C.W., D.D., M.S., N.H., N.K., M.H.H., M. Westerterp, J.A.K., B.v.d.S) .,iPSC/CRISPR Center Groningen (B.v.d.S.)
| |
Collapse
|
135
|
Gupta A, Das S, Ray K. A glimpse into the regulation of the Wilson disease protein, ATP7B, sheds light on the complexity of mammalian apical trafficking pathways. Metallomics 2018; 10:378-387. [PMID: 29473088 DOI: 10.1039/c7mt00314e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Wilson disease (WD), a Mendelian disorder of copper metabolism caused by mutations in the ATP7B gene, manifests a large spectrum of phenotypic variability. This phenomenon of extensive symptom variation is not frequently associated with a monogenic disorder. We hypothesize that the phenotypic variability in WD is primarily driven by the variations in interacting proteins that regulate the ATP7B function and localization in the cell. Based on existing literature, we delineated a potential molecular mechanism for ATP7B mediated copper transport in the milieu of its interactome, its dysfunction in WD and the resulting variability in the phenotypic manifestation. Understanding the copper-induced apical trafficking of ATP7B also significantly contributes to the appreciation of the complexities of the ligand-induced transport pathway. We believe that this holistic view of WD will pave the way for a better opportunity for rational drug design and therapeutics.
Collapse
Affiliation(s)
- Arnab Gupta
- Department of Biological Sciences, Indian Institute of Science Education and Research - Kolkata (IISER K), Mohanpur 741246, West Bengal, India.
| | - Santanu Das
- Department of Biological Sciences, Indian Institute of Science Education and Research - Kolkata (IISER K), Mohanpur 741246, West Bengal, India.
| | - Kunal Ray
- Academy of Scientific & Innovative Research (AcSIR), CSIR - HRDC Campus, Ghaziabad, Uttar Pradesh - 201002, India
| |
Collapse
|
136
|
de Boer JF, Kuipers F, Groen AK. Cholesterol Transport Revisited: A New Turbo Mechanism to Drive Cholesterol Excretion. Trends Endocrinol Metab 2018; 29:123-133. [PMID: 29276134 DOI: 10.1016/j.tem.2017.11.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 11/26/2017] [Accepted: 11/29/2017] [Indexed: 12/31/2022]
Abstract
A fine-tuned balance between cholesterol uptake and excretion by the body is pivotal to maintain health and to remain free from the deleterious consequences of cholesterol accumulation such as cardiovascular disease. The pathways involved in intracellular and extracellular cholesterol transport are a subject of intense investigation and are being unraveled in increasing detail. In addition, insight into the complex interactions between cholesterol and bile acid metabolism has increased considerably in the last couple of years. This review provides an overview of the mechanisms involved in cholesterol uptake and excretion, with a particular emphasis on the most recent progress in this field. Special attention is given to the transintestinal cholesterol excretion (TICE) pathway, which was recently demonstrated to have a remarkably high transport capacity and to be sensitive to pharmacological modulation.
Collapse
Affiliation(s)
- Jan Freark de Boer
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Folkert Kuipers
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Albert K Groen
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Vascular Medicine, University of Amsterdam Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
137
|
Okamoto CT. Regulation of Transporters and Channels by Membrane-Trafficking Complexes in Epithelial Cells. Cold Spring Harb Perspect Biol 2017; 9:a027839. [PMID: 28246186 PMCID: PMC5666629 DOI: 10.1101/cshperspect.a027839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The vectorial secretion and absorption of fluid and solutes by epithelial cells is dependent on the polarized expression of membrane solute transporters and channels at the apical and basolateral membranes. The establishment and maintenance of this polarized expression of transporters and channels are affected by divers protein-trafficking complexes. Moreover, regulation of the magnitude of transport is often under control of physiological stimuli, again through the interaction of transporters and channels with protein-trafficking complexes. This review highlights the value in utilizing transporters and channels as cargo to characterize core trafficking machinery by which epithelial cells establish and maintain their polarized expression, and how this machinery regulates fluid and solute transport in response to physiological stimuli.
Collapse
Affiliation(s)
- Curtis T Okamoto
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089-9121
| |
Collapse
|
138
|
Gershlick DC, Lucas M. Endosomal Trafficking: Retromer and Retriever Are Relatives in Recycling. Curr Biol 2017; 27:R1233-R1236. [DOI: 10.1016/j.cub.2017.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
139
|
McNally KE, Faulkner R, Steinberg F, Gallon M, Ghai R, Pim D, Langton P, Pearson N, Danson CM, Nägele H, Morris LL, Singla A, Overlee BL, Heesom KJ, Sessions R, Banks L, Collins BM, Berger I, Billadeau DD, Burstein E, Cullen PJ. Retriever is a multiprotein complex for retromer-independent endosomal cargo recycling. Nat Cell Biol 2017; 19:1214-1225. [PMID: 28892079 PMCID: PMC5790113 DOI: 10.1038/ncb3610] [Citation(s) in RCA: 220] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 08/10/2017] [Indexed: 02/08/2023]
Abstract
Following endocytosis into the endosomal network, integral membrane proteins undergo sorting for lysosomal degradation or are retrieved and recycled back to the cell surface. Here we describe the discovery of an ancient and conserved multiprotein complex that orchestrates cargo retrieval and recycling and, importantly, is biochemically and functionally distinct from the established retromer pathway. We have called this complex 'retriever'; it is a heterotrimer composed of DSCR3, C16orf62 and VPS29, and bears striking similarity to retromer. We establish that retriever associates with the cargo adaptor sorting nexin 17 (SNX17) and couples to CCC (CCDC93, CCDC22, COMMD) and WASH complexes to prevent lysosomal degradation and promote cell surface recycling of α5β1 integrin. Through quantitative proteomic analysis, we identify over 120 cell surface proteins, including numerous integrins, signalling receptors and solute transporters, that require SNX17-retriever to maintain their surface levels. Our identification of retriever establishes a major endosomal retrieval and recycling pathway.
Collapse
Affiliation(s)
- Kerrie E McNally
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Rebecca Faulkner
- Department of Internal Medicine and Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Florian Steinberg
- Center for Biological Systems Analysis, Albert Ludwigs Universitaet Freiburg, 79104 Freiburg, Germany
| | - Matthew Gallon
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Rajesh Ghai
- Institute for Molecular Bioscience, the University of Queensland, St. Lucia, Queensland 4072, Australia
| | - David Pim
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, I-34149 Trieste, Italy
| | - Paul Langton
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Neil Pearson
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Chris M Danson
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Heike Nägele
- Center for Biological Systems Analysis, Albert Ludwigs Universitaet Freiburg, 79104 Freiburg, Germany
| | - Lindsey L Morris
- Department of Internal Medicine and Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Amika Singla
- Department of Internal Medicine and Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Brittany L Overlee
- Department of Biochemistry and Molecular Biology, and Department of Immunology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Kate J Heesom
- Proteomics Facility, School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Richard Sessions
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Lawrence Banks
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, I-34149 Trieste, Italy
| | - Brett M Collins
- Institute for Molecular Bioscience, the University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Imre Berger
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Daniel D Billadeau
- Department of Biochemistry and Molecular Biology, and Department of Immunology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Ezra Burstein
- Department of Internal Medicine and Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Peter J Cullen
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
140
|
Bembenek JN, Meshik X, Tsarouhas V. Meeting report - Cellular dynamics: membrane-cytoskeleton interface. J Cell Sci 2017; 130:2775-2779. [PMID: 29360626 DOI: 10.1242/jcs.208660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The first ever 'Cellular Dynamics' meeting on the membrane-cytoskeleton interface took place in Southbridge, MA on May 21-24, 2017 and was co-organized by Michael Way, Elizabeth Chen, Margaret Gardel and Jennifer Lippincott-Schwarz. Investigators from around the world studying a broad range of related topics shared their insights into the function and regulation of the cytoskeleton and membrane compartments. This provided great opportunities to learn about key questions in various cellular processes, from the basic organization and operation of the cell to higher-order interactions in adhesion, migration, metastasis, division and immune cell interactions in different model organisms. This unique and diverse mix of research interests created a stimulating and educational meeting that will hopefully continue to be a successful meeting for years to come.
Collapse
Affiliation(s)
- Joshua N Bembenek
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Xenia Meshik
- Department of Anesthesiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Vasilios Tsarouhas
- Department of Molecular Biosciences, Stockholm University, Stockholm, Sweden
| |
Collapse
|
141
|
Riera‐Romo M. COMMD1: A Multifunctional Regulatory Protein. J Cell Biochem 2017; 119:34-51. [DOI: 10.1002/jcb.26151] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 05/19/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Mario Riera‐Romo
- Department of PharmacologyInstitute of Marine SciencesHavanaCuba
| |
Collapse
|
142
|
Mu P, Akashi T, Lu F, Kishida S, Kadomatsu K. A novel nuclear complex of DRR1, F-actin and COMMD1 involved in NF-κB degradation and cell growth suppression in neuroblastoma. Oncogene 2017; 36:5745-5756. [DOI: 10.1038/onc.2017.181] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 04/25/2017] [Accepted: 05/08/2017] [Indexed: 12/11/2022]
|
143
|
van de Sluis B, Wijers M, Herz J. News on the molecular regulation and function of hepatic low-density lipoprotein receptor and LDLR-related protein 1. Curr Opin Lipidol 2017; 28:241-247. [PMID: 28301372 PMCID: PMC5482905 DOI: 10.1097/mol.0000000000000411] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW Clearing of atherogenic lipoprotein particles by the liver requires hepatic low-density lipoprotein receptor (LDLR) and LDLR-related protein 1 (LRP1). This review highlights recent studies that have expanded our understanding of the molecular regulation and metabolic functions of LDLR and LRP1 in the liver. RECENT FINDINGS Various proteins orchestrate the intracellular trafficking of LDLR and LRP1. After internalization, the receptors are redirected via recycling endosomes to the cell surface. Several new endocytic proteins that facilitate the endosomal trafficking of LDLR and consequently the clearance of circulating LDL cholesterol have recently been reported. Mutations in some of these proteins cause hypercholesterolemia in human. In addition, LRP1 controls cellular cholesterol efflux by modulating the expression of ABCA1 and ABCG1, and hepatic LRP1 protects against diet-induced hepatic insulin resistance and steatosis through the regulation of insulin receptor trafficking. SUMMARY LDLR and LRP1 have prominent roles in cellular and organismal cholesterol homeostasis. Their functioning, including their trafficking in the cell, is controlled by numerous proteins. Comprehensive studies into the molecular regulation of LDLR and LRP1 trafficking have advanced our fundamental understanding of cholesterol homeostasis, and these insights may lead to novel therapeutic strategies for atherosclerosis, hyperlipidemia and insulin resistance in the future.
Collapse
Affiliation(s)
- Bart van de Sluis
- Section of Molecular Genetics, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen
| | - Melinde Wijers
- Section of Molecular Genetics, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen
| | - Joachim Herz
- Departments of Molecular Genetics, Neuroscience, Neurology and Neurotherapeutics, Center for Translational Neurodegeneration Research, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
144
|
Abstract
PURPOSE OF REVIEW To highlight very recent studies identifying novel regulatory molecules and mechanisms in plasma lipid metabolism. RECENT FINDINGS Two novel regulatory mechanisms of LDL receptor (LDLR) intracellular trafficking have been described. The "COMMD/CCDC22/CCDC93" and "Wiskott-Aldrich syndrome protein and SCAR homologue" complexes were found to be involved in LDLR endosomal sorting and recycling, whereas the GRP94 was shown to protect LDLR from early degradation within the hepatocyte secretory pathway. Additionally, the transcription factors PHD1 and Bmal1 were identified to regulate LDL-C levels in mice by modulating cholesterol excretion. Important advances are reported on the relevance of two Genome Wide Association Studies hits: Reassessment of GALNT2 showed, in contrast to previous reports, that loss of GALNT2 reduces HDL-cholesterol in humans and other mammalian species, while phospholipid transfer protein was identified as an additional target of GALNT2. Tetratricopeptide repeat domain protein 39B was found to promote ubiquitination and degradation of Liver X receptor, and its deficiency increased HDL-cholesterol and cholesterol removal while also inhibiting lipogenesis in mice. SUMMARY The unraveling of mechanisms how new factors modulate plasma lipid levels keep providing interesting opportunities to rationally design novel therapies to treat cardiovascular disease but also metabolic disorders.
Collapse
Affiliation(s)
- Natalia Loaiza
- University of Groningen, University Medical Center Groningen, Department of Pediatrics, Section of Molecular Genetics, Groningen, The Netherlands
| | | | | |
Collapse
|
145
|
McMillan KJ, Gallon M, Jellett AP, Clairfeuille T, Tilley FC, McGough I, Danson CM, Heesom KJ, Wilkinson KA, Collins BM, Cullen PJ. Atypical parkinsonism-associated retromer mutant alters endosomal sorting of specific cargo proteins. J Cell Biol 2017; 214:389-99. [PMID: 27528657 PMCID: PMC4987296 DOI: 10.1083/jcb.201604057] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 07/22/2016] [Indexed: 01/12/2023] Open
Abstract
Mutations in the retromer complex, which is involved in sorting integral membrane proteins from endosomes to cellular compartments, are associated with atypical parkinsonism, but how these mutations affect retromer function remains unclear. Through a quantitative proteomic analysis of the retromer interactome, McMillan et al. reveal a new mechanism for perturbed endosomal sorting in parkinsonism. The retromer complex acts as a scaffold for endosomal protein complexes that sort integral membrane proteins to various cellular destinations. The retromer complex is a heterotrimer of VPS29, VPS35, and VPS26. Two of these paralogues, VPS26A and VPS26B, are expressed in humans. Retromer dysfunction is associated with neurodegenerative disease, and recently, three VPS26A mutations (p.K93E, p.M112V, and p.K297X) were discovered to be associated with atypical parkinsonism. Here, we apply quantitative proteomics to provide a detailed description of the retromer interactome. By establishing a comparative proteomic methodology, we identify how this interactome is perturbed in atypical parkinsonism-associated VPS26A mutants. In particular, we describe a selective defect in the association of VPS26A (p.K297X) with the SNX27 cargo adaptor. By showing how a retromer mutant leads to altered endosomal sorting of specific PDZ ligand–containing cargo proteins, we reveal a new mechanism for perturbed endosomal cargo sorting in atypical parkinsonism.
Collapse
Affiliation(s)
- Kirsty J McMillan
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, England, UK
| | - Matthew Gallon
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, England, UK
| | - Adam P Jellett
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, England, UK
| | - Thomas Clairfeuille
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Frances C Tilley
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, England, UK
| | - Ian McGough
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, England, UK
| | - Chris M Danson
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, England, UK
| | - Kate J Heesom
- Proteomics Facility, School of Biochemistry, University of Bristol, Bristol BS8 1TD, England, UK
| | - Kevin A Wilkinson
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, England, UK
| | - Brett M Collins
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Peter J Cullen
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, England, UK
| |
Collapse
|
146
|
Blockhuys S, Wittung-Stafshede P. Roles of Copper-Binding Proteins in Breast Cancer. Int J Mol Sci 2017; 18:ijms18040871. [PMID: 28425924 PMCID: PMC5412452 DOI: 10.3390/ijms18040871] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 04/11/2017] [Accepted: 04/18/2017] [Indexed: 12/17/2022] Open
Abstract
Copper ions are needed in several steps of cancer progression. However, the underlying mechanisms, and involved copper-binding proteins, are mainly elusive. Since most copper ions in the body (in and outside cells) are protein-bound, it is important to investigate what copper-binding proteins participate and, for these, how they are loaded with copper by copper transport proteins. Mechanistic information for how some copper-binding proteins, such as extracellular lysyl oxidase (LOX), play roles in cancer have been elucidated but there is still much to learn from a biophysical molecular viewpoint. Here we provide a summary of copper-binding proteins and discuss ones reported to have roles in cancer. We specifically focus on how copper-binding proteins such as mediator of cell motility 1 (MEMO1), LOX, LOX-like proteins, and secreted protein acidic and rich in cysteine (SPARC) modulate breast cancer from molecular and clinical aspects. Because of the importance of copper for invasion/migration processes, which are key components of cancer metastasis, further insights into the actions of copper-binding proteins may provide new targets to combat cancer.
Collapse
Affiliation(s)
- Stéphanie Blockhuys
- Department Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden.
| | - Pernilla Wittung-Stafshede
- Department Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden.
| |
Collapse
|
147
|
Comstra HS, McArthy J, Rudin-Rush S, Hartwig C, Gokhale A, Zlatic SA, Blackburn JB, Werner E, Petris M, D'Souza P, Panuwet P, Barr DB, Lupashin V, Vrailas-Mortimer A, Faundez V. The interactome of the copper transporter ATP7A belongs to a network of neurodevelopmental and neurodegeneration factors. eLife 2017; 6. [PMID: 28355134 PMCID: PMC5400511 DOI: 10.7554/elife.24722] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 03/28/2017] [Indexed: 02/04/2023] Open
Abstract
Genetic and environmental factors, such as metals, interact to determine neurological traits. We reasoned that interactomes of molecules handling metals in neurons should include novel metal homeostasis pathways. We focused on copper and its transporter ATP7A because ATP7A null mutations cause neurodegeneration. We performed ATP7A immunoaffinity chromatography and identified 541 proteins co-isolating with ATP7A. The ATP7A interactome concentrated gene products implicated in neurodegeneration and neurodevelopmental disorders, including subunits of the Golgi-localized conserved oligomeric Golgi (COG) complex. COG null cells possess altered content and subcellular localization of ATP7A and CTR1 (SLC31A1), the transporter required for copper uptake, as well as decreased total cellular copper, and impaired copper-dependent metabolic responses. Changes in the expression of ATP7A and COG subunits in Drosophila neurons altered synapse development in larvae and copper-induced mortality of adult flies. We conclude that the ATP7A interactome encompasses a novel COG-dependent mechanism to specify neuronal development and survival.
Collapse
Affiliation(s)
- Heather S Comstra
- Departments of Cell Biology, Emory University, Atlanta, United States
| | - Jacob McArthy
- School of Biological Sciences, Illinois State University, Normal, United States
| | | | - Cortnie Hartwig
- Department of Chemistry, Agnes Scott College, Decatur, Georgia
| | - Avanti Gokhale
- Departments of Cell Biology, Emory University, Atlanta, United States
| | | | - Jessica B Blackburn
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, United States
| | - Erica Werner
- Department of Biochemistry, Emory University, Atlanta, United States
| | - Michael Petris
- Department of Biochemistry, University of Missouri, Columbia, United States
| | - Priya D'Souza
- Rollins School of Public Health, Emory University, Atlanta, United States
| | - Parinya Panuwet
- Rollins School of Public Health, Emory University, Atlanta, United States
| | - Dana Boyd Barr
- Rollins School of Public Health, Emory University, Atlanta, United States
| | - Vladimir Lupashin
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, United States
| | | | - Victor Faundez
- Departments of Cell Biology, Emory University, Atlanta, United States
| |
Collapse
|
148
|
Kvainickas A, Orgaz AJ, Nägele H, Diedrich B, Heesom KJ, Dengjel J, Cullen PJ, Steinberg F. Retromer- and WASH-dependent sorting of nutrient transporters requires a multivalent interaction network with ANKRD50. J Cell Sci 2017; 130:382-395. [PMID: 27909246 PMCID: PMC5278674 DOI: 10.1242/jcs.196758] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 11/18/2016] [Indexed: 01/16/2023] Open
Abstract
Retromer and the associated actin-polymerizing WASH complex are essential for the endocytic recycling of a wide range of integral membrane proteins. A hereditary Parkinson's-disease-causing point mutation (D620N) in the retromer subunit VPS35 perturbs retromer's association with the WASH complex and also with the uncharacterized protein ankyrin-repeat-domain-containing protein 50 (ANKRD50). Here, we firmly establish ANKRD50 as a new and essential component of the SNX27-retromer-WASH super complex. Depletion of ANKRD50 in HeLa or U2OS cells phenocopied the loss of endosome-to-cell-surface recycling of multiple transmembrane proteins seen upon suppression of SNX27, retromer or WASH-complex components. Mass-spectrometry-based quantification of the cell surface proteome of ANKRD50-depleted cells identified amino acid transporters of the SLC1A family, among them SLC1A4, as additional cargo molecules that depend on ANKRD50 and retromer for their endocytic recycling. Mechanistically, we show that ANKRD50 simultaneously engages multiple parts of the SNX27-retromer-WASH complex machinery in a direct and co-operative interaction network that is needed to efficiently recycle the nutrient transporters GLUT1 (also known as SLC2A1) and SLC1A4, and potentially many other surface proteins.
Collapse
Affiliation(s)
- Arunas Kvainickas
- Center for Biological Systems Analysis (ZBSA), Albert Ludwigs Universitaet Freiburg, Habsburgerstrasse 49, Freiburg 79104, Germany
- Faculty of Biology, Schaenzlestrasse 1, D-79104, Freiburg, Germany
| | - Ana Jimenez Orgaz
- Center for Biological Systems Analysis (ZBSA), Albert Ludwigs Universitaet Freiburg, Habsburgerstrasse 49, Freiburg 79104, Germany
- Faculty of Biology, Schaenzlestrasse 1, D-79104, Freiburg, Germany
| | - Heike Nägele
- Center for Biological Systems Analysis (ZBSA), Albert Ludwigs Universitaet Freiburg, Habsburgerstrasse 49, Freiburg 79104, Germany
- Faculty of Biology, Schaenzlestrasse 1, D-79104, Freiburg, Germany
| | - Britta Diedrich
- Center for Biological Systems Analysis (ZBSA), Albert Ludwigs Universitaet Freiburg, Habsburgerstrasse 49, Freiburg 79104, Germany
- Faculty of Biology, Schaenzlestrasse 1, D-79104, Freiburg, Germany
| | - Kate J Heesom
- School of Biochemistry, Bristol University, University Walk, Bristol BS81TD, UK
| | - Jörn Dengjel
- Department of Biology, Fribourg University, Chemin du Musee 10, Fribourg CH-1700, Switzerland
| | - Peter J Cullen
- School of Biochemistry, Bristol University, University Walk, Bristol BS81TD, UK
| | - Florian Steinberg
- Center for Biological Systems Analysis (ZBSA), Albert Ludwigs Universitaet Freiburg, Habsburgerstrasse 49, Freiburg 79104, Germany
- Faculty of Biology, Schaenzlestrasse 1, D-79104, Freiburg, Germany
| |
Collapse
|
149
|
Blockhuys S, Celauro E, Hildesjö C, Feizi A, Stål O, Fierro-González JC, Wittung-Stafshede P. Defining the human copper proteome and analysis of its expression variation in cancers. Metallomics 2017; 9:112-123. [DOI: 10.1039/c6mt00202a] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
150
|
COMMD9 promotes TFDP1/E2F1 transcriptional activity via interaction with TFDP1 in non-small cell lung cancer. Cell Signal 2017; 30:59-66. [DOI: 10.1016/j.cellsig.2016.11.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/07/2016] [Accepted: 11/17/2016] [Indexed: 12/15/2022]
|