101
|
Tang-Luo-Ning Improves Mitochondrial Antioxidase Activity in Dorsal Root Ganglia of Diabetic Rats: A Proteomics Study. BIOMED RESEARCH INTERNATIONAL 2017; 2017:8176089. [PMID: 28133612 PMCID: PMC5241458 DOI: 10.1155/2017/8176089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/20/2016] [Indexed: 12/13/2022]
Abstract
Tang-luo-ning (TLN) is a traditional Chinese herbal recipe for treating diabetic peripheral neuropathy (DPN). In this study, we investigated mitochondrial protein profiles in a diabetic rat model and explored the potential protective effect of TLN. Diabetic rats were established by injection of streptozocin (STZ) and divided into model, alpha lipoic acid (ALA), and TLN groups. Mitochondrial proteins were isolated from dorsal root ganglia and proteomic analysis was used to quantify the differentially expressed proteins. Tang-luo-ning mitigated STZ-induced diabetic symptoms and blood glucose level, including response time to cold or hot stimulation and nerve conductive velocity. As compared to the normal, there were 388 differentially expressed proteins in the TLN group, 445 in ALA group, and 451 in model group. As compared to the model group, there were 275 differential proteins in TLN group and 251 in ALA group. As compared to model group, mitochondrial complex III was significantly decreased, while glutathione peroxidase and peroxidase were increased in TLN group. When compared with ALA group, the mitochondrial complex III was increased, and mitochondrial complex IV was decreased in TLN group. Together, TLN should have a strong antioxidative activity, which appears to be modulated through regulation of respiratory complexes and antioxidases.
Collapse
|
102
|
Jing D, Zhang J, Xia Y, Kong L, OuYang F, Zhang S, Zhang H, Wang J. Proteomic analysis of stress-related proteins and metabolic pathways in Picea asperata somatic embryos during partial desiccation. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:27-38. [PMID: 27271942 PMCID: PMC5253475 DOI: 10.1111/pbi.12588] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 05/14/2016] [Accepted: 05/30/2016] [Indexed: 05/22/2023]
Abstract
Partial desiccation treatment (PDT) stimulates germination and enhances the conversion of conifer somatic embryos. To better understand the mechanisms underlying the responses of somatic embryos to PDT, we used proteomic and physiological analyses to investigate these responses during PDT in Picea asperata. Comparative proteomic analysis revealed that, during PDT, stress-related proteins were mainly involved in osmosis, endogenous hormones, antioxidative proteins, molecular chaperones and defence-related proteins. Compared with those in cotyledonary embryos before PDT, these stress-related proteins remained at high levels on days 7 (D7) and 14 (D14) of PDT. The proteins that differentially accumulated in the somatic embryos on D7 were mapped to stress and/or stimuli. They may also be involved in the glyoxylate cycle and the chitin metabolic process. The most significant difference in the differentially accumulated proteins occurred in the metabolic pathways of photosynthesis on D14. Furthermore, in accordance with the changes in stress-related proteins, analyses of changes in water content, abscisic acid, indoleacetic acid and H2 O2 levels in the embryos indicated that PDT is involved in water-deficit tolerance and affects endogenous hormones. Our results provide insight into the mechanisms responsible for the transition from morphologically mature to physiologically mature somatic embryos during the PDT process in P. asperata.
Collapse
Affiliation(s)
- Danlong Jing
- State Key Laboratory of Tree Genetics and BreedingKey Laboratory of Tree Breeding and Cultivation of State Forestry AdministrationResearch Institute of ForestryChinese Academy of ForestryBeijingChina
| | - Jianwei Zhang
- State Key Laboratory of Tree Genetics and BreedingKey Laboratory of Tree Breeding and Cultivation of State Forestry AdministrationResearch Institute of ForestryChinese Academy of ForestryBeijingChina
| | - Yan Xia
- State Key Laboratory of Tree Genetics and BreedingKey Laboratory of Tree Breeding and Cultivation of State Forestry AdministrationResearch Institute of ForestryChinese Academy of ForestryBeijingChina
| | - Lisheng Kong
- Department of BiologyCentre for Forest BiologyUniversity of VictoriaVictoriaBCCanada
| | - Fangqun OuYang
- State Key Laboratory of Tree Genetics and BreedingKey Laboratory of Tree Breeding and Cultivation of State Forestry AdministrationResearch Institute of ForestryChinese Academy of ForestryBeijingChina
| | - Shougong Zhang
- State Key Laboratory of Tree Genetics and BreedingKey Laboratory of Tree Breeding and Cultivation of State Forestry AdministrationResearch Institute of ForestryChinese Academy of ForestryBeijingChina
| | - Hanguo Zhang
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbinChina
| | - Junhui Wang
- State Key Laboratory of Tree Genetics and BreedingKey Laboratory of Tree Breeding and Cultivation of State Forestry AdministrationResearch Institute of ForestryChinese Academy of ForestryBeijingChina
| |
Collapse
|
103
|
Sawanobori A, Moriwaki K, Takamatsu S, Kamada Y, Miyoshi E. A glycoproteomic approach to identify novel glycomarkers for cancer stem cells. Proteomics 2016; 16:3073-3080. [PMID: 26949200 DOI: 10.1002/pmic.201500472] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 02/08/2016] [Accepted: 03/01/2016] [Indexed: 01/06/2023]
Abstract
Most cancers consist of heterogeneous populations of cells with substantial differences in tumorigenicity. Cells that possess self-renewal and tumor-initiating properties are often called cancer stem cells (CSCs). Since CSCs underlie tumor recurrence and metastasis and are resistant to current anti-cancer therapies, novel therapeutic strategies to efficiently target this subset of cells are needed. Aberrant glycosylation is one of the hallmarks of cancer. Many cancer-associated glycans have been reported to be involved in tumor progression and metastasis, and are used as tumor markers. Over the past several years, we have identified characteristic glycans on CSCs by utilizing recent advances in glycoproteomic technologies. In this review, we would like to summarize a series of our recent studies and discuss possible applications of glycomarkers for CSCs.
Collapse
Affiliation(s)
- Atsuko Sawanobori
- Department of Molecular Biochemistry & Clinical Investigation, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kenta Moriwaki
- Department of Molecular Biochemistry & Clinical Investigation, Osaka University Graduate School of Medicine, Suita, Japan
| | - Shinji Takamatsu
- Department of Molecular Biochemistry & Clinical Investigation, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yoshihiro Kamada
- Department of Molecular Biochemistry & Clinical Investigation, Osaka University Graduate School of Medicine, Suita, Japan
| | - Eiji Miyoshi
- Department of Molecular Biochemistry & Clinical Investigation, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
104
|
Liu JY, Chang MC, Meng JL, Feng CP, Liu YN. iTRAQ-Based Comparative Proteomics Analysis of the Fruiting Dikaryon and the Non-fruiting Monokaryon of Flammulina velutipes. Curr Microbiol 2016; 74:114-124. [DOI: 10.1007/s00284-016-1164-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 11/10/2016] [Indexed: 10/20/2022]
|
105
|
Mukherjee S, Bandyopadhyay A. Proteomics in India: the clinical aspect. Clin Proteomics 2016; 13:21. [PMID: 27822170 PMCID: PMC5097398 DOI: 10.1186/s12014-016-9122-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 08/12/2016] [Indexed: 02/07/2023] Open
Abstract
Proteomics has emerged as a highly promising bioanalytical technique in various aspects of applied biological research. In Indian academia, proteomics research has grown remarkably over the last decade. It is being extensively used for both basic as well as translation research in the areas of infectious and immune disorders, reproductive disorders, cardiovascular diseases, diabetes, eye disorders, human cancers and hematological disorders. Recently, some seminal works on clinical proteomics have been reported from several laboratories across India. This review aims to shed light on the increasing use of proteomics in India in a variety of biological conditions. It also highlights that India has the expertise and infrastructure needed for pursuing proteomics research in the country and to participate in global initiatives. Research in clinical proteomics is gradually picking up pace in India and its future seems very bright.
Collapse
Affiliation(s)
- Somaditya Mukherjee
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata, 700032 India
| | - Arun Bandyopadhyay
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata, 700032 India
| |
Collapse
|
106
|
Chen JY, Xiao HL, Gui YJ, Zhang DD, Li L, Bao YM, Dai XF. Characterization of the Verticillium dahliae Exoproteome Involves in Pathogenicity from Cotton-Containing Medium. Front Microbiol 2016; 7:1709. [PMID: 27840627 PMCID: PMC5083787 DOI: 10.3389/fmicb.2016.01709] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 10/12/2016] [Indexed: 12/31/2022] Open
Abstract
Verticillium wilt, caused by the Verticillium dahliae phytopathogen, is a devastating disease affecting many economically important crops. Previous studies have shown that the exoproteome of V. dahliae plays a significant role in this pathogenic process, but the components and mechanisms that underlie this remain unclear. In this study, the exoproteome of V. dahliae was induced in a cotton-containing C’zapek-Dox (CCD) medium and quantified using the high-throughput isobaric tag technique for relative and absolute quantification (iTRAQ). Results showed that the abundance of 271 secreted proteins was affected by the CCD medium, of which 172 contain typical signal peptides generally produced by the Golgi/endoplasmic reticulum (ER). These enhanced abundance proteins were predominantly enriched in carbohydrate hydrolases; 126 were classified as carbohydrate-active (CAZymes) and almost all were significantly up-regulated in the CCD medium. Results showed that CAZymes proteins 30 and 22 participate in pectin and cellulose degradation pathways, corresponding with the transcription levels of several genes encoded plant cell wall degradation enzyme activated significantly during cotton infection. In addition, targeted deletion of two pectin lyase genes (VdPL3.1 and VdPL3.3) impaired wilt virulence to cotton. This study demonstrates that the V. dahliae exoproteome plays a crucial role in the development of symptoms of wilting and necrosis, predominantly via the pathogenic mechanisms of plant cell wall degradation as part of host plant infection.
Collapse
Affiliation(s)
- Jie-Yin Chen
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences Beijing, China
| | - Hong-Li Xiao
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences Beijing, China
| | - Yue-Jing Gui
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences Beijing, China
| | - Dan-Dan Zhang
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences Beijing, China
| | - Lei Li
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences Beijing, China
| | - Yu-Ming Bao
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences Beijing, China
| | - Xiao-Feng Dai
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences Beijing, China
| |
Collapse
|
107
|
Tailor A, Waddington JC, Meng X, Park BK. Mass Spectrometric and Functional Aspects of Drug–Protein Conjugation. Chem Res Toxicol 2016; 29:1912-1935. [DOI: 10.1021/acs.chemrestox.6b00147] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Arun Tailor
- MRC Center
for Drug Safety
Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Sherrington Building, Ashton Street, Liverpool L69 3GE, United Kingdom
| | - James C. Waddington
- MRC Center
for Drug Safety
Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Sherrington Building, Ashton Street, Liverpool L69 3GE, United Kingdom
| | - Xiaoli Meng
- MRC Center
for Drug Safety
Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Sherrington Building, Ashton Street, Liverpool L69 3GE, United Kingdom
| | - B. Kevin Park
- MRC Center
for Drug Safety
Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Sherrington Building, Ashton Street, Liverpool L69 3GE, United Kingdom
| |
Collapse
|
108
|
Isobaric Tags for Relative and Absolute Quantitation (iTRAQ)-Based Comparative Proteome Analysis of the Response of Ramie under Drought Stress. Int J Mol Sci 2016; 17:ijms17101607. [PMID: 27689998 PMCID: PMC5085640 DOI: 10.3390/ijms17101607] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 08/17/2016] [Accepted: 09/15/2016] [Indexed: 12/20/2022] Open
Abstract
In this study, we conducted the first isobaric tags for relative and absolute quantitation (isobaric tags for relative and absolute quantitation (iTRAQ))-based comparative proteomic analysis of ramie plantlets after 0 (minor drought stress), 24 (moderate drought stress), and 72 h (severe drought stress) of treatment with 15% (w/v) poly (ethylene glycol)6000 (PEG6000) to simulate drought stress. In our study, the association analysis of proteins and transcript expression revealed 1244 and 968 associated proteins identified in leaves and roots, respectively. L1, L2, and L3 are leaf samples which were harvested at 0, 24, and 72 h after being treated with 15% PEG6000, respectively. Among those treatment groups, a total of 118, 216, and 433 unique proteins were identified as differentially expressed during L1 vs. L2, L2 vs. L3, and L1 vs. L3, respectively. R1, R2, and R3 are root samples which were harvested at 0, 24, and 72 h after being treated with 15% PEG6000, respectively. Among those treatment groups,a total of 124, 27, and 240 unique proteins were identified as differentially expressed during R1 vs. R2, R2 vs. R3, and R1 vs. R3, respectively. Bioinformatics analysis indicated that glycolysis/gluconeogenesis was significantly upregulated in roots in response to drought stress. This enhancement may result in more glycolytically generated adenosine triphosphate (ATP) in roots to adapt to adverse environmental conditions. To obtain complementary information related to iTRAQ data, the mRNA levels of 12 proteins related to glycolysis/gluconeogenesis in leaves and 7 in roots were further analyzed by qPCR. Most of their expression levels were higher in R3 than R1 and R2, suggesting that these compounds may promote drought tolerance by modulating the production of available energy.
Collapse
|
109
|
Deng J, Wang L, Ni J, Beretov J, Wasinger V, Wu D, Duan W, Graham P, Li Y. Proteomics discovery of chemoresistant biomarkers for ovarian cancer therapy. Expert Rev Proteomics 2016; 13:905-915. [DOI: 10.1080/14789450.2016.1233065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Junli Deng
- Cancer Care Centre, St George Hospital, Kogarah, Australia
- St George and Sutherland Clinical School, University of New South Wales (UNSW), Kensington, Australia
- Department of Gynecological Oncology, Henan Cancer Hospital, Zhengzhou, China
- Zhengzhou University, Zhengzhou, China
| | - Li Wang
- Department of Gynecological Oncology, Henan Cancer Hospital, Zhengzhou, China
- Zhengzhou University, Zhengzhou, China
| | - Jie Ni
- Cancer Care Centre, St George Hospital, Kogarah, Australia
- St George and Sutherland Clinical School, University of New South Wales (UNSW), Kensington, Australia
| | - Julia Beretov
- Cancer Care Centre, St George Hospital, Kogarah, Australia
- St George and Sutherland Clinical School, University of New South Wales (UNSW), Kensington, Australia
| | - Valerie Wasinger
- Mark Wainwright Analytical Centre, Bioanalytical Mass Spectrometry Facility, University of New South Wales (UNSW), Kensington, Australia
- School of Medical Sciences, University of New South Wales (UNSW), Kensington, Australia
| | - Duojia Wu
- Cancer Care Centre, St George Hospital, Kogarah, Australia
- St George and Sutherland Clinical School, University of New South Wales (UNSW), Kensington, Australia
| | - Wei Duan
- School of Medicine, Deakin University, Waurn Ponds, Australia
| | - Peter Graham
- Cancer Care Centre, St George Hospital, Kogarah, Australia
- St George and Sutherland Clinical School, University of New South Wales (UNSW), Kensington, Australia
| | - Yong Li
- Cancer Care Centre, St George Hospital, Kogarah, Australia
- St George and Sutherland Clinical School, University of New South Wales (UNSW), Kensington, Australia
| |
Collapse
|
110
|
Identifying Virulence-Associated Genes Using Transcriptomic and Proteomic Association Analyses of the Plant Parasitic Nematode Bursaphelenchus mucronatus. Int J Mol Sci 2016; 17:ijms17091492. [PMID: 27618012 PMCID: PMC5037770 DOI: 10.3390/ijms17091492] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 08/05/2016] [Accepted: 08/23/2016] [Indexed: 01/05/2023] Open
Abstract
Bursaphelenchus mucronatus (B. mucronatus) isolates that originate from different regions may vary in their virulence, but their virulence-associated genes and proteins are poorly understood. Thus, we conducted an integrated study coupling RNA-Seq and isobaric tags for relative and absolute quantitation (iTRAQ) to analyse transcriptomic and proteomic data of highly and weakly virulent B. mucronatus isolates during the pathogenic processes. Approximately 40,000 annotated unigenes and 5000 proteins were gained from the isolates. When we matched all of the proteins with their detected transcripts, a low correlation coefficient of r = 0.138 was found, indicating probable post-transcriptional gene regulation involved in the pathogenic processes. A functional analysis showed that five differentially expressed proteins which were all highly expressed in the highly virulent isolate were involved in the pathogenic processes of nematodes. Peroxiredoxin, fatty acid- and retinol-binding protein, and glutathione peroxidase relate to resistance against plant defence responses, while β-1,4-endoglucanase and expansin are associated with the breakdown of plant cell walls. Thus, the pathogenesis of B. mucronatus depends on its successful survival in host plants. Our work adds to the understanding of B. mucronatus' pathogenesis, and will aid in controlling B. mucronatus and other pinewood nematode species complexes in the future.
Collapse
|
111
|
iTRAQ-based quantitative proteomic analysis reveals new metabolic pathways responding to chilling stress in maize seedlings. J Proteomics 2016; 146:14-24. [DOI: 10.1016/j.jprot.2016.06.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 05/30/2016] [Accepted: 06/10/2016] [Indexed: 12/23/2022]
|
112
|
Dong CJ, Cao N, Li L, Shang QM. Quantitative Proteomic Profiling of Early and Late Responses to Salicylic Acid in Cucumber Leaves. PLoS One 2016; 11:e0161395. [PMID: 27551830 PMCID: PMC4995040 DOI: 10.1371/journal.pone.0161395] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 08/04/2016] [Indexed: 11/18/2022] Open
Abstract
Salicylic acid (SA) is an important phytohormone that plays vital regulatory roles in plant growth, development, and stress responses. However, studies on the molecular mechanism of SA, especially during the early SA responses, are lagging behind. In this study, we initiated a comprehensive isobaric tag for relative and absolute quantitation (iTRAQ)-based proteomic analysis to explore the early and late SA-responsive proteins in leaves of cucumber (Cucumis sativus L.) seedlings. Upon SA application through the roots, endogenous SA accumulated in cucumber leaves. By assaying the changes in marker gene expression and photosynthetic rate, we collected samples at 12 h and 72 h post treatment (hpt) to profile the early and late SA responsiveness, respectively. The iTRAQ assay followed by tandem mass spectrometry revealed 135 differentially expressed proteins (DEPs) at 12 hpt and 301 DEPs at 72 hpt. The functional categories for these SA-responsive proteins included in a variety of biochemical processes, including photosynthesis, redox homeostasis, carbohydrate and energy metabolism, lipid metabolism, transport, protein folding and modification, proteolysis, cell wall organization, and the secondary phenylpropanoid pathway. Conclusively, based on the abundant changes of these DEPs, together with their putative functions, we proposed a possible SA-responsive protein network. It appears that SA could elicit reactive oxygen species (ROS) production via enhancing the photosynthetic electron transferring, and then confer some growth-promoting and stress-priming effects on cells during the late phase, including enhanced photosynthesis and ROS scavenging, altered carbon metabolic flux for the biosynthesis of amino acids and nucleotides, and cell wall reorganization. Overall, the present iTRAQ assay provides higher proteome coverage and deepened our understanding of the molecular basis of SA-responses.
Collapse
Affiliation(s)
- Chun-Juan Dong
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences,Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Ministry of Agriculture, Beijing, 100081, P.R.China
- * E-mail: (CJD); (QMS)
| | - Ning Cao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences,Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Ministry of Agriculture, Beijing, 100081, P.R.China
| | - Liang Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences,Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Ministry of Agriculture, Beijing, 100081, P.R.China
| | - Qing-Mao Shang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences,Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Ministry of Agriculture, Beijing, 100081, P.R.China
- * E-mail: (CJD); (QMS)
| |
Collapse
|
113
|
Yu Q, Shi X, Greer T, Lietz CB, Kent KC, Li L. Evaluation and Application of Dimethylated Amino Acids as Isobaric Tags for Quantitative Proteomics of the TGF-β/Smad3 Signaling Pathway. J Proteome Res 2016; 15:3420-31. [PMID: 27457343 DOI: 10.1021/acs.jproteome.6b00641] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Isobaric labeling has become a widespread tool for quantitative proteomic studies. Here, we report the development and evaluation of several dimethylated amino acids as novel isobaric tags for quantitative proteomics. Four-plex dimethylated alanine (DiAla), valine (DiVal), and leucine (DiLeu) have been synthesized, sharing common features of peptide tagging and reporter ion production. DiAla and DiLeu are shown to achieve complete labeling. These two tags' impacts on peptide fragmentation and quantitation are further evaluated using HEK293 cell lysate. DiAla labeling generates more abundant backbone fragmentation whereas DiLeu labeling produces more intense reporter ions. Nonetheless, both tags enable accurate quantitative analysis of HEK293 cell proteomes. DiAla and DiLeu tags are then applied to study the TGF-β/Smad3 pathway with four differentially treated mouse vascular smooth muscle (MOVAS) cells. Our MS data reveal proteome-wide changes of AdSmad3 as compared to the GFP control, consistent with previous findings of causing smooth muscle cell (SMC) dedifferentiation.1 Additionally, the other two novel mutations on the hub protein Smad3, Y226A, and D408H, show compromised TGF-β/Smad3-dependent gene transcription and reversed phenotypic switch. These results are further corroborated with Western blotting and demonstrate that the novel DiAla and DiLeu isobaric tagging reagents provide useful tools for multiplex quantitative proteomics.
Collapse
Affiliation(s)
- Qing Yu
- School of Pharmacy, University of Wisconsin , Madison, Wisconsin 53705, United States
| | - Xudong Shi
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin , Madison, Wisconsin 53705, United States
| | - Tyler Greer
- Department of Chemistry, University of Wisconsin , Madison, Wisconsin 53706, United States
| | - Christopher B Lietz
- Department of Chemistry, University of Wisconsin , Madison, Wisconsin 53706, United States
| | - K Craig Kent
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin , Madison, Wisconsin 53705, United States
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin , Madison, Wisconsin 53705, United States.,Department of Chemistry, University of Wisconsin , Madison, Wisconsin 53706, United States
| |
Collapse
|
114
|
Fang B, Zhang M, Fan X, Ren F. The targeted proteins in tumor cells treated with the α-lactalbumin–oleic acid complex examined by descriptive and quantitative liquid chromatography–tandem mass spectrometry. J Dairy Sci 2016; 99:5991-6004. [DOI: 10.3168/jds.2016-10971] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/14/2016] [Indexed: 01/26/2023]
|
115
|
Comparative proteomic analysis of the shoot apical meristem in maize between a ZmCCT-associated near-isogenic line and its recurrent parent. Sci Rep 2016; 6:30641. [PMID: 27468931 PMCID: PMC4965789 DOI: 10.1038/srep30641] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 07/07/2016] [Indexed: 11/27/2022] Open
Abstract
The ZmCCT, one of the most important genes affecting photoperiod response, delays flowering under long-day conditions in maize (Zea mays). In this study we used the isobaric tags for relative and absolute quantification (iTRAQ) technique-based proteomics approach to identify differentially expressed proteins between a near-isogenic line (NIL) and its recurrent parent, contrasting in alleles of ZmCCT. A total of 5,259 distinct proteins were identified. Among them, 386 proteins were differentially expressed between NIL-cml line (ZmCCT-positive) and H4 line (ZmCCT-negative). Functional categorization showed that the differentially proteins were mainly involved in energy production, photosynthesis, signal transduction, and cell organization and biogenesis. Our results showed that during shoot apical meristem (SAM) development cell division proteins, carbohydrate metabolism–related proteins, and flower inhibition-related proteins were more abundant in the ZmCCT-positive line than the ZmCCT-negative line. These results, taken together with morphological observations, showed that the effect of ZmCCT on flowering might be caused by its effect on one or all of these biological processes. Although the exact roles of these putative related proteins remain to be examined, our results obtained using the proteomics approach lead to a better understanding of the photoperiodicity mechanism in maize plants.
Collapse
|
116
|
Rai V, Karthikaichamy A, Das D, Noronha S, Wangikar PP, Srivastava S. Multi-omics Frontiers in Algal Research: Techniques and Progress to Explore Biofuels in the Postgenomics World. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2016; 20:387-99. [DOI: 10.1089/omi.2016.0065] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Vineeta Rai
- Department of Biosciences and Bioengineering, Proteomics Laboratory, Indian Institute of Technology Bombay, Mumbai, India
| | | | - Debasish Das
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, India
- DBT PAN IIT Centre for Bioenergy, Indian Institute of Technology, Bombay, Mumbai, India
| | - Santosh Noronha
- DBT PAN IIT Centre for Bioenergy, Indian Institute of Technology, Bombay, Mumbai, India
- Wadhwani Research Center for Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Pramod P. Wangikar
- DBT PAN IIT Centre for Bioenergy, Indian Institute of Technology, Bombay, Mumbai, India
- Wadhwani Research Center for Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Proteomics Laboratory, Indian Institute of Technology Bombay, Mumbai, India
- DBT PAN IIT Centre for Bioenergy, Indian Institute of Technology, Bombay, Mumbai, India
- Wadhwani Research Center for Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
117
|
Abstract
UNLABELLED Although it is becoming clear that many microbial primary producers can also play a role as organic consumers, we know very little about the metabolic regulation of photoautotroph organic matter consumption. Cyanobacteria in phototrophic biofilms can reuse extracellular organic carbon, but the metabolic drivers of extracellular processes are surprisingly complex. We investigated the metabolic foundations of organic matter reuse by comparing exoproteome composition and incorporation of (13)C-labeled and (15)N-labeled cyanobacterial extracellular organic matter (EOM) in a unicyanobacterial biofilm incubated using different light regimes. In the light and the dark, cyanobacterial direct organic C assimilation accounted for 32% and 43%, respectively, of all organic C assimilation in the community. Under photosynthesis conditions, we measured increased excretion of extracellular polymeric substances (EPS) and proteins involved in micronutrient transport, suggesting that requirements for micronutrients may drive EOM assimilation during daylight hours. This interpretation was supported by photosynthesis inhibition experiments, in which cyanobacteria incorporated N-rich EOM-derived material. In contrast, under dark, C-starved conditions, cyanobacteria incorporated C-rich EOM-derived organic matter, decreased excretion of EPS, and showed an increased abundance of degradative exoproteins, demonstrating the use of the extracellular domain for C storage. Sequence-structure modeling of one of these exoproteins predicted a specific hydrolytic activity that was subsequently detected, confirming increased EOM degradation in the dark. Associated heterotrophic bacteria increased in abundance and upregulated transport proteins under dark relative to light conditions. Taken together, our results indicate that biofilm cyanobacteria are successful competitors for organic C and N and that cyanobacterial nutrient and energy requirements control the use of EOM. IMPORTANCE Cyanobacteria are globally distributed primary producers, and the fate of their fixed C influences microbial biogeochemical cycling. This fate is complicated by cyanobacterial degradation and assimilation of organic matter, but because cyanobacteria are assumed to be poor competitors for organic matter consumption, regulation of this process is not well tested. In mats and biofilms, this is especially relevant because cyanobacteria produce an extensive organic extracellular matrix, providing the community with a rich source of nutrients. Light is a well-known regulator of cyanobacterial metabolism, so we characterized the effects of light availability on the incorporation of organic matter. Using stable isotope tracing at the single-cell level, we quantified photoautotroph assimilation under different metabolic conditions and integrated the results with proteomics to elucidate metabolic status. We found that cyanobacteria effectively compete for organic matter in the light and the dark and that nutrient requirements and community interactions contribute to cycling of extracellular organic matter.
Collapse
|
118
|
Comprehensive and Quantitative Proteomic Analysis of Metamorphosis-Related Proteins in the Veined Rapa Whelk, Rapana venosa. Int J Mol Sci 2016; 17:ijms17060924. [PMID: 27314339 PMCID: PMC4926457 DOI: 10.3390/ijms17060924] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 05/31/2016] [Accepted: 06/06/2016] [Indexed: 12/14/2022] Open
Abstract
Larval metamorphosis of the veined rapa whelk (Rapana venosa) is a pelagic to benthic transition that involves considerable structural and physiological changes. Because metamorphosis plays a pivotal role in R. venosa commercial breeding and natural populations, the endogenous proteins that drive this transition attract considerable interest. This study is the first to perform a comprehensive and quantitative proteomic analysis related to metamorphosis in a marine gastropod. We analyzed the proteomes of competent R. venosa larvae and post-larvae, resulting in the identification of 5312 proteins, including 470 that were downregulated and 668 that were upregulated after metamorphosis. The differentially expressed proteins reflected multiple processes involved in metamorphosis, including cytoskeleton and cell adhesion, ingestion and digestion, stress response and immunity, as well as specific tissue development. Our data improve understanding of the physiological traits controlling R. venosa metamorphosis and provide a solid basis for further study.
Collapse
|
119
|
Sethi S, Chourasia D, Parhar IS. Approaches for targeted proteomics and its potential applications in neuroscience. J Biosci 2016; 40:607-27. [PMID: 26333406 DOI: 10.1007/s12038-015-9537-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
An extensive guide on practicable and significant quantitative proteomic approaches in neuroscience research is important not only because of the existing overwhelming limitations but also for gaining valuable understanding into brain function and deciphering proteomics from the workbench to the bedside. Early methodologies to understand the functioning of biological systems are now improving with high-throughput technologies, which allow analysis of various samples concurrently, or of thousand of analytes in a particular sample. Quantitative proteomic approaches include both gel-based and non-gel-based methods that can be further divided into different labelling approaches. This review will emphasize the role of existing technologies, their advantages and disadvantages, as well as their applications in neuroscience. This review will also discuss advanced approaches for targeted proteomics using isotope-coded affinity tag (ICAT) coupled with laser capture microdissection (LCM) followed by liquid chromatography tandem mass spectrometric (LC-MS/MS) analysis. This technology can further be extended to single cell proteomics in other areas of biological sciences and can be combined with other 'omics' approaches to reveal the mechanism of a cellular alterations. This approach may lead to further investigation in basic biology, disease analysis and surveillance, as well as drug discovery. Although numerous challenges still exist, we are confident that this approach will increase the understanding of pathological mechanisms involved in neuroendocrinology, neuropsychiatric and neurodegenerative disorders by delivering protein biomarker signatures for brain dysfunction.
Collapse
Affiliation(s)
- Sumit Sethi
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, MONASH University, Selangor Darul Ehsan, Malaysia,
| | | | | |
Collapse
|
120
|
Target identification of natural and traditional medicines with quantitative chemical proteomics approaches. Pharmacol Ther 2016; 162:10-22. [DOI: 10.1016/j.pharmthera.2016.01.010] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
121
|
Integrative transcriptome, proteome, phosphoproteome and genetic mapping reveals new aspects in a fiberless mutant of cotton. Sci Rep 2016; 6:24485. [PMID: 27075604 PMCID: PMC4830928 DOI: 10.1038/srep24485] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 03/30/2016] [Indexed: 11/30/2022] Open
Abstract
To investigate the molecular mechanisms of fiber initiation in cotton (Gossypium spp.), an integrated approach combining transcriptome, iTRAQ-based proteome and genetic mapping was taken to compare the ovules of the Xuzhou 142 wild type (WT) with its fuzzless-lintless (fl) mutant at −3 and 0 day post-anthesis. A total of 1,953 mRNAs, 187 proteins, and 131 phosphoproteins were differentially expressed (DE) between WT and fl, and the levels of transcripts and their encoded proteins and phosphoproteins were highly congruent. A functional analysis suggested that the abundance of proteins were mainly involved in amino sugar, nucleotide sugar and fatty acid metabolism, one carbon pool for folate metabolism and flavonoid biosynthesis. qRT-PCR, Western blotting, and enzymatic assays were performed to confirm the regulation of these transcripts and proteins. A molecular mapping located the lintless gene li3 in the fl mutant on chromosome 26 for the first time. A further in-silico physical mapping of DE genes with sequence variations between fl and WT identified one and four candidate genes in the li3 and n2 regions, respectively. Taken together, the transcript abundance, phosphorylation status of proteins at the fiber initiation stage and candidate genes have provided insights into regulatory processes underlying cotton fiber initiation.
Collapse
|
122
|
Li J, Ding X, Han S, He T, Zhang H, Yang L, Yang S, Gai J. Differential proteomics analysis to identify proteins and pathways associated with male sterility of soybean using iTRAQ-based strategy. J Proteomics 2016; 138:72-82. [PMID: 26921830 DOI: 10.1016/j.jprot.2016.02.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 01/27/2016] [Accepted: 02/19/2016] [Indexed: 12/11/2022]
Abstract
To further elucidate the molecular mechanism of cytoplasmic male sterility (CMS) in soybean, a differential proteomic analysis was completed between the CMS line NJCMS1A and its maintainer NJCMS1B using iTRAQ-based strategy. As a result, 180 differential abundance proteins (DAPs) were identified, of which, 60 were down-regulated and 120 were up-regulated in NJCMS1A compared with NJCMS1B. Bioinformatic analysis showed that 167 DAPs were annotated in 41 Gene Ontology functional groups, 106 DAPs were classified into 20 clusters of orthologous groups of protein categories, and 128 DAPs were enrichment in 53 KEGG pathways. Fifteen differential level proteins/genes with the same expression pattern were identified in the further conjoint analysis of DAPs and the previously reported differential expression genes. Moreover, multiple reaction monitoring test, qRT-PCR analysis and enzyme activity assay validated that the iTRAQ results were reliable. Based on functional analysis of DAPs, we concluded that male sterility in NJCMS1A might be related to insufficiencies in energy supply, unbalance of protein synthesis and degradation, disruption of flavonoid synthesis, programmed cell death, abnormalities of substance metabolism, etc. These results might facilitate our understanding of the molecular mechanisms behind CMS in soybean. BIOLOGICAL SIGNIFICANCE Soybean is an important global crop that provides protein and oil. Heterosis is a significantly potential approach to increase the yield of soybean. Cytoplasmic male sterility (CMS) plays a vital role in the production of hybrid seeds. However, the genetic and molecular mechanisms of male sterility in soybean still need to be further elucidated. In the present paper, a differential proteomic analysis was carried out and the results showed that several key proteins involved in key pathways were associated with male sterility in soybean. This work provides a new insight to understand the genetic and molecular mechanisms underlying CMS in soybean.
Collapse
Affiliation(s)
- Jiajia Li
- Soybean Research Institute, National Center for Soybean Improvement, MOA Key Laboratory of Biology and Genetic Improvement of Soybean (General), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| | - Xianlong Ding
- Soybean Research Institute, National Center for Soybean Improvement, MOA Key Laboratory of Biology and Genetic Improvement of Soybean (General), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| | - Shaohuai Han
- Soybean Research Institute, National Center for Soybean Improvement, MOA Key Laboratory of Biology and Genetic Improvement of Soybean (General), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| | - Tingting He
- Soybean Research Institute, National Center for Soybean Improvement, MOA Key Laboratory of Biology and Genetic Improvement of Soybean (General), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| | - Hao Zhang
- Soybean Research Institute, National Center for Soybean Improvement, MOA Key Laboratory of Biology and Genetic Improvement of Soybean (General), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| | - Longshu Yang
- Soybean Research Institute, National Center for Soybean Improvement, MOA Key Laboratory of Biology and Genetic Improvement of Soybean (General), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| | - Shouping Yang
- Soybean Research Institute, National Center for Soybean Improvement, MOA Key Laboratory of Biology and Genetic Improvement of Soybean (General), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| | - Junyi Gai
- Soybean Research Institute, National Center for Soybean Improvement, MOA Key Laboratory of Biology and Genetic Improvement of Soybean (General), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
123
|
Li Z, Zhang Y, Xu Y, Zhang X, Peng Y, Ma X, Huang L, Yan Y. Physiological and iTRAQ-Based Proteomic Analyses Reveal the Function of Spermidine on Improving Drought Tolerance in White Clover. J Proteome Res 2016; 15:1563-79. [PMID: 27030016 DOI: 10.1021/acs.jproteome.6b00027] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Endogenous spermidine interacting with phytohormones may be involved in the regulation of differentially expressed proteins (DEPs) associated with drought tolerance in white clover. Plants treated with or without spermidine (50 μM) were subjected to 20% PEG 6000 nutrient solution to induce drought stress (50% leaf-relative water content). The results showed that increased endogenous spermidine induced by exogenous spermidine altered endogenous phytohormones in association with improved drought tolerance, as demonstrated by the delay in water-deficit development, improved photosynthesis and water use efficiency, and lower oxidative damage. As compared to untreated plants, Spd-treated plants maintained a higher abundance of DEPs under drought stress involved in (1) protein biosynthesis (ribosomal and chaperone proteins); (2) amino acids synthesis; (3) the carbon and energy metabolism; (4) antioxidant and stress defense (ascorbate peroxidase, glutathione peroxidase, and dehydrins); and (5) GA and ABA signaling pathways (gibberellin receptor GID1, ABA-responsive protein 17, and ABA stress ripening protein). Thus, the findings of proteome could explain the Spd-induced physiological effects associated with drought tolerance. The analysis of functional protein-protein networks further proved that the alteration of endogenous spermidine and phytohormones induced the interaction among ribosome, photosynthesis, carbon metabolism, and amino acid biosynthesis. These differences could contribute to improved drought tolerance.
Collapse
Affiliation(s)
- Zhou Li
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University , Chengdu 611130, China
| | - Yan Zhang
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University , Chengdu 611130, China
| | - Yi Xu
- Department of Plant Biology and Pathology, Rutgers University , 59 Dudley Road, New Brunswick, New Jersey 08901, United States
| | - Xinquan Zhang
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University , Chengdu 611130, China
| | - Yan Peng
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University , Chengdu 611130, China
| | - Xiao Ma
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University , Chengdu 611130, China
| | - Linkai Huang
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University , Chengdu 611130, China
| | - Yanhong Yan
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University , Chengdu 611130, China
| |
Collapse
|
124
|
Dong Y, Ye W, Yang J, Han P, Wang Y, Ye C, Weng D, Zhang F, Xu Z, Lei Y. DDX21 translocates from nucleus to cytoplasm and stimulates the innate immune response due to dengue virus infection. Biochem Biophys Res Commun 2016; 473:648-53. [PMID: 27033607 DOI: 10.1016/j.bbrc.2016.03.120] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 03/25/2016] [Indexed: 11/29/2022]
Abstract
Successful DENV infection relies on its ability to evade the host innate immune system. By using iTRAQ labeling followed by LC-MS/MS analysis, DDX21 was identified as a new host RNA helicase involved in the DENV life cycle. In DENV infected cells, DDX21 translocates from nucleus to cytoplasm to active the innate immune response and thus inhibits DENV replication in the early stages of infection. DDX21 is then degraded by the viral NS2B-NS3 protease complex and the innate immunity is thus subverted to facilitate DENV replication. The results reveal a new mechanism in which DENV subverts the host innate immune system to facilitate its replication in host cells.
Collapse
Affiliation(s)
- Yangchao Dong
- The Department of Microbiology, Faculty of Preclinical Medicine, The Fourth Military Medical University, Xian, Shaanxi, 710032, China
| | - Wei Ye
- The Department of Microbiology, Faculty of Preclinical Medicine, The Fourth Military Medical University, Xian, Shaanxi, 710032, China
| | - Jing Yang
- The Department of Microbiology, Faculty of Preclinical Medicine, The Fourth Military Medical University, Xian, Shaanxi, 710032, China
| | - Peijun Han
- The Department of Microbiology, Faculty of Preclinical Medicine, The Fourth Military Medical University, Xian, Shaanxi, 710032, China
| | - Yuan Wang
- The Department of Microbiology, Faculty of Preclinical Medicine, The Fourth Military Medical University, Xian, Shaanxi, 710032, China
| | - Chuantao Ye
- The Department of Microbiology, Faculty of Preclinical Medicine, The Fourth Military Medical University, Xian, Shaanxi, 710032, China
| | - Daihui Weng
- The Department of Microbiology, Faculty of Preclinical Medicine, The Fourth Military Medical University, Xian, Shaanxi, 710032, China
| | - Fanglin Zhang
- The Department of Microbiology, Faculty of Preclinical Medicine, The Fourth Military Medical University, Xian, Shaanxi, 710032, China
| | - Zhikai Xu
- The Department of Microbiology, Faculty of Preclinical Medicine, The Fourth Military Medical University, Xian, Shaanxi, 710032, China.
| | - Yingfeng Lei
- The Department of Microbiology, Faculty of Preclinical Medicine, The Fourth Military Medical University, Xian, Shaanxi, 710032, China.
| |
Collapse
|
125
|
MaxReport: An Enhanced Proteomic Result Reporting Tool for MaxQuant. PLoS One 2016; 11:e0152067. [PMID: 27003708 PMCID: PMC4803341 DOI: 10.1371/journal.pone.0152067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 03/08/2016] [Indexed: 12/31/2022] Open
Abstract
MaxQuant is a proteomic software widely used for large-scale tandem mass spectrometry data. We have designed and developed an enhanced result reporting tool for MaxQuant, named as MaxReport. This tool can optimize the results of MaxQuant and provide additional functions for result interpretation. MaxReport can generate report tables for protein N-terminal modifications. It also supports isobaric labelling based relative quantification at the protein, peptide or site level. To obtain an overview of the results, MaxReport performs general descriptive statistical analyses for both identification and quantification results. The output results of MaxReport are well organized and therefore helpful for proteomic users to better understand and share their data. The script of MaxReport, which is freely available at http://websdoor.net/bioinfo/maxreport/, is developed using Python code and is compatible across multiple systems including Windows and Linux.
Collapse
|
126
|
|
127
|
Zhou L, Wang K, Li Q, Nice EC, Zhang H, Huang C. Clinical proteomics-driven precision medicine for targeted cancer therapy: current overview and future perspectives. Expert Rev Proteomics 2016; 13:367-81. [PMID: 26923776 DOI: 10.1586/14789450.2016.1159959] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cancer is a common disease that is a leading cause of death worldwide. Currently, early detection and novel therapeutic strategies are urgently needed for more effective management of cancer. Importantly, protein profiling using clinical proteomic strategies, with spectacular sensitivity and precision, offer excellent promise for the identification of potential biomarkers that would direct the development of targeted therapeutic anticancer drugs for precision medicine. In particular, clinical sample sources, including tumor tissues and body fluids (blood, feces, urine and saliva), have been widely investigated using modern high-throughput mass spectrometry-based proteomic approaches combined with bioinformatic analysis, to pursue the possibilities of precision medicine for targeted cancer therapy. Discussed in this review are the current advantages and limitations of clinical proteomics, the available strategies of clinical proteomics for the management of precision medicine, as well as the challenges and future perspectives of clinical proteomics-driven precision medicine for targeted cancer therapy.
Collapse
Affiliation(s)
- Li Zhou
- a State Key Laboratory of Biotherapy and Cancer Center, West China Hospital , Sichuan University, and Collaborative Innovation Center for Biotherapy , Chengdu , P.R. China.,b Department of Neurology , The Affiliated Hospital of Hainan Medical College , Haikou , Hainan , P.R. China
| | - Kui Wang
- a State Key Laboratory of Biotherapy and Cancer Center, West China Hospital , Sichuan University, and Collaborative Innovation Center for Biotherapy , Chengdu , P.R. China
| | - Qifu Li
- b Department of Neurology , The Affiliated Hospital of Hainan Medical College , Haikou , Hainan , P.R. China
| | - Edouard C Nice
- a State Key Laboratory of Biotherapy and Cancer Center, West China Hospital , Sichuan University, and Collaborative Innovation Center for Biotherapy , Chengdu , P.R. China.,c Department of Biochemistry and Molecular Biology , Monash University , Clayton , Australia
| | - Haiyuan Zhang
- b Department of Neurology , The Affiliated Hospital of Hainan Medical College , Haikou , Hainan , P.R. China
| | - Canhua Huang
- a State Key Laboratory of Biotherapy and Cancer Center, West China Hospital , Sichuan University, and Collaborative Innovation Center for Biotherapy , Chengdu , P.R. China.,b Department of Neurology , The Affiliated Hospital of Hainan Medical College , Haikou , Hainan , P.R. China
| |
Collapse
|
128
|
Goncalves EC, Koh J, Zhu N, Yoo MJ, Chen S, Matsuo T, Johnson JV, Rathinasabapathi B. Nitrogen starvation-induced accumulation of triacylglycerol in the green algae: evidence for a role for ROC40, a transcription factor involved in circadian rhythm. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 85:743-57. [PMID: 26920093 DOI: 10.1111/tpj.13144] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 02/05/2016] [Accepted: 02/15/2016] [Indexed: 05/24/2023]
Abstract
Microalgal triacylglycerol (TAG), a promising source of biofuel, is induced upon nitrogen starvation (-N), but the proteins and genes involved in this process are poorly known. We performed isobaric tagging for relative and absolute quantification (iTRAQ)-based quantitative proteomics to identify Chlorella proteins with modulated expression under short-term -N. Out of 1736 soluble proteins and 2187 membrane-associated proteins identified, 288 and 56, respectively, were differentially expressed under -N. Gene expression analysis on select genes confirmed the same direction of mRNA modulation for most proteins. The MYB-related transcription factor ROC40 was the most induced protein, with a 9.6-fold increase upon -N. In a previously generated Chlamydomonas mutant, gravimetric measurements of crude total lipids revealed that roc40 was impaired in its ability to increase the accumulation of TAG upon -N, and this phenotype was complemented when wild-type Roc40 was expressed. Results from radiotracer experiments were consistent with the roc40 mutant being comparable to the wild type in recycling membrane lipids to TAG but being impaired in additional de novo synthesis of TAG during -N stress. In this study we provide evidence to support the hypothesis that transcription factor ROC40 has a role in -N-induced lipid accumulation, and uncover multiple previously unknown proteins modulated by short-term -N in green algae.
Collapse
Affiliation(s)
- Elton C Goncalves
- Plant Molecular and Cellular Biology Program, Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611-0690, USA
| | - Jin Koh
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, 32610, USA
| | - Ning Zhu
- Department of Biology, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida, Gainesville, FL, 32611, USA
| | - Mi-Jeong Yoo
- Department of Biology, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida, Gainesville, FL, 32611, USA
| | - Sixue Chen
- Plant Molecular and Cellular Biology Program, Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611-0690, USA
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, 32610, USA
- Department of Biology, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida, Gainesville, FL, 32611, USA
| | - Takuya Matsuo
- Center for Gene Research, Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
| | - Jodie V Johnson
- Chemistry Department, University of Florida, Gainesville, FL, 32611, USA
| | - Bala Rathinasabapathi
- Plant Molecular and Cellular Biology Program, Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611-0690, USA
| |
Collapse
|
129
|
Bakalarski CE, Kirkpatrick DS. A Biologist's Field Guide to Multiplexed Quantitative Proteomics. Mol Cell Proteomics 2016; 15:1489-97. [PMID: 26873251 DOI: 10.1074/mcp.o115.056986] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Indexed: 12/22/2022] Open
Abstract
High-throughput genomic and proteomic studies have generated near-comprehensive catalogs of biological constituents within many model systems. Nevertheless, static catalogs are often insufficient to fully describe the dynamic processes that drive biology. Quantitative proteomic techniques address this need by providing insight into closely related biological states such as the stages of a therapeutic response or cellular differentiation. The maturation of quantitative proteomics in recent years has brought about a variety of technologies, each with their own strengths and weaknesses. It can be difficult for those unfamiliar with this evolving landscape to match the experiment at hand with the best tool for the job. Here, we outline quantitative methods for proteomic mass spectrometry and discuss their benefits and weaknesses from the perspective of the biologist aiming to generate meaningful data and address mechanistic questions.
Collapse
Affiliation(s)
- Corey E Bakalarski
- From the Departments of ‡Protein Chemistry and §Bioinformatics and Computational Biology, Genentech, Inc., South San Francisco, California 94080
| | | |
Collapse
|
130
|
Understanding the Heat Shock Response in the Sea Cucumber Apostichopus japonicus, Using iTRAQ-Based Proteomics. Int J Mol Sci 2016; 17:150. [PMID: 26861288 PMCID: PMC4783884 DOI: 10.3390/ijms17020150] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 01/13/2016] [Accepted: 01/20/2016] [Indexed: 12/22/2022] Open
Abstract
The sea cucumber Apostichopus japonicus is exploited as a commercial species owing to their high nutritive and medicinal value. Recent high summer temperatures have caused high mortality rates in A. japonicus. In this study, we applied the isobaric tag for relative and absolute quantitation (iTRAQ) technique to investigate the global protein expression profile under an acute short-term (48 h) heat stress. In total, 3432 proteins were identified, and 127 proteins showed significant heat stress responses, with 61 upregulated proteins and 66 downregulated proteins. Our results suggest that heat stress influenced the expression of proteins involved in various biological processes, such as tissue protection and detoxification, lipid and amino acid metabolism, energy production and usage, transcription and translation, cell apoptosis, and cell proliferation. These findings provide a better understanding about the response and thermo-tolerance mechanisms of A. japonicus under heat stress.
Collapse
|
131
|
Ma R, Sun L, Chen X, Mei B, Chang G, Wang M, Zhao D. Proteomic Analyses Provide Novel Insights into Plant Growth and Ginsenoside Biosynthesis in Forest Cultivated Panax ginseng (F. Ginseng). FRONTIERS IN PLANT SCIENCE 2016; 7:1. [PMID: 26858731 PMCID: PMC4726751 DOI: 10.3389/fpls.2016.00001] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 01/05/2016] [Indexed: 05/18/2023]
Abstract
F. Ginseng (Panax ginseng) is planted in the forest to enhance the natural ginseng resources, which have an immense medicinal and economic value. The morphology of the cultivated plants becomes similar to that of wild growing ginseng (W. Ginseng) over the years. So far, there have been no studies highlighting the physiological or functional changes in F. Ginseng and its wild counterparts. In the present study, we used proteomic technologies (2DE and iTRAQ) coupled to mass spectrometry to compare W. Ginseng and F. Ginseng at various growth stages. Hierarchical cluster analysis based on protein abundance revealed that the protein expression profile of 25-year-old F. Ginseng was more like W. Ginseng than less 20-year-old F. Ginseng. We identified 192 differentially expressed protein spots in F. Ginseng. These protein spots increased with increase in growth years of F. Ginseng and were associated with proteins involved in energy metabolism, ginsenosides biosynthesis, and stress response. The mRNA, physiological, and metabolic analysis showed that the external morphology, protein expression profile, and ginsenoside synthesis ability of the F. Ginseng increased just like that of W. Ginseng with the increase in age. Our study represents the first characterization of the proteome of F. Ginseng during development and provides new insights into the metabolism and accumulation of ginsenosides.
Collapse
Affiliation(s)
- Rui Ma
- Jilin Technology Innovation Center for Chinese Medicine Biotechnology, College of Chemistry and Biology, Beihua UniversityJilin, China
- Ginseng Research Center, Changchun University of Chinese MedicineChangchun, China
| | - Liwei Sun
- Jilin Technology Innovation Center for Chinese Medicine Biotechnology, College of Chemistry and Biology, Beihua UniversityJilin, China
- *Correspondence: Liwei Sun
| | - Xuenan Chen
- Ginseng Research Center, Changchun University of Chinese MedicineChangchun, China
- The first affiliated hospital to Changchun University of Chinese MedicineChangchun, China
| | - Bing Mei
- Ginseng Research Center, Changchun University of Chinese MedicineChangchun, China
| | - Guijuan Chang
- Ginseng Research Center, Changchun University of Chinese MedicineChangchun, China
| | - Manying Wang
- Jilin Technology Innovation Center for Chinese Medicine Biotechnology, College of Chemistry and Biology, Beihua UniversityJilin, China
| | - Daqing Zhao
- Ginseng Research Center, Changchun University of Chinese MedicineChangchun, China
- Daqing Zhao
| |
Collapse
|
132
|
Computational Methods in Mass Spectrometry-Based Proteomics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 939:63-89. [PMID: 27807744 DOI: 10.1007/978-981-10-1503-8_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This chapter introduces computational methods used in mass spectrometry-based proteomics, including those for addressing the critical problems such as peptide identification and protein inference, peptide and protein quantification, characterization of posttranslational modifications (PTMs), and data-independent acquisitions (DIA). The chapter concludes with emerging applications of proteomic techniques, such as metaproteomics, glycoproteomics, and proteogenomics.
Collapse
|
133
|
Purać J, Kojić D, Petri E, Popović ŽD, Grubor-Lajšić G, Blagojević DP. Cold Adaptation Responses in Insects and Other Arthropods: An “Omics” Approach. SHORT VIEWS ON INSECT GENOMICS AND PROTEOMICS 2016. [DOI: 10.1007/978-3-319-24244-6_4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
134
|
Wang H, Shi T, Qian WJ, Liu T, Kagan J, Srivastava S, Smith RD, Rodland KD, Camp DG. The clinical impact of recent advances in LC-MS for cancer biomarker discovery and verification. Expert Rev Proteomics 2015; 13:99-114. [PMID: 26581546 DOI: 10.1586/14789450.2016.1122529] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mass spectrometry (MS) -based proteomics has become an indispensable tool with broad applications in systems biology and biomedical research. With recent advances in liquid chromatography (LC) and MS instrumentation, LC-MS is making increasingly significant contributions to clinical applications, especially in the area of cancer biomarker discovery and verification. To overcome challenges associated with analyses of clinical samples (for example, a wide dynamic range of protein concentrations in bodily fluids and the need to perform high throughput and accurate quantification of candidate biomarker proteins), significant efforts have been devoted to improve the overall performance of LC-MS-based clinical proteomics platforms. Reviewed here are the recent advances in LC-MS and its applications in cancer biomarker discovery and quantification, along with the potentials, limitations and future perspectives.
Collapse
Affiliation(s)
- Hui Wang
- a Biological Sciences Division , Pacific Northwest National Laboratory , Richland , WA , USA
| | - Tujin Shi
- a Biological Sciences Division , Pacific Northwest National Laboratory , Richland , WA , USA
| | - Wei-Jun Qian
- a Biological Sciences Division , Pacific Northwest National Laboratory , Richland , WA , USA
| | - Tao Liu
- a Biological Sciences Division , Pacific Northwest National Laboratory , Richland , WA , USA
| | - Jacob Kagan
- b Division of Cancer Prevention , National Cancer Institute (NCI) , Rockville , MD , USA
| | - Sudhir Srivastava
- b Division of Cancer Prevention , National Cancer Institute (NCI) , Rockville , MD , USA
| | - Richard D Smith
- a Biological Sciences Division , Pacific Northwest National Laboratory , Richland , WA , USA
| | - Karin D Rodland
- a Biological Sciences Division , Pacific Northwest National Laboratory , Richland , WA , USA
| | - David G Camp
- a Biological Sciences Division , Pacific Northwest National Laboratory , Richland , WA , USA
| |
Collapse
|
135
|
Zhou L, Li Q, Wang J, Huang C, Nice EC. Oncoproteomics: Trials and tribulations. Proteomics Clin Appl 2015; 10:516-31. [PMID: 26518147 DOI: 10.1002/prca.201500081] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 09/19/2015] [Accepted: 10/27/2015] [Indexed: 02/05/2023]
Affiliation(s)
- Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital; Sichuan University, and Collaborative Innovation Center for Biotherapy; Chengdu P. R. China
- Department of Neurology; The Affiliated Hospital of Hainan Medical College; Haikou Hainan P. R. China
| | - Qifu Li
- Department of Neurology; The Affiliated Hospital of Hainan Medical College; Haikou Hainan P. R. China
| | - Jiandong Wang
- Department of Biomedical; Chengdu Medical College; Chengdu Sichuan Province P. R. China
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital; Sichuan University, and Collaborative Innovation Center for Biotherapy; Chengdu P. R. China
| | - Edouard C. Nice
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital; Sichuan University, and Collaborative Innovation Center for Biotherapy; Chengdu P. R. China
- Department of Biochemistry and Molecular Biology; Monash University; Clayton Australia
| |
Collapse
|
136
|
Kohn YY, Symonds JE, Kleffmann T, Nakagawa S, Lagisz M, Lokman PM. Proteomic analysis of early-stage embryos: implications for egg quality in hapuku (Polyprion oxygeneios). FISH PHYSIOLOGY AND BIOCHEMISTRY 2015; 41:1403-1417. [PMID: 26183261 DOI: 10.1007/s10695-015-0095-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 07/06/2015] [Indexed: 06/04/2023]
Abstract
In order to develop biomarkers that may help predict the egg quality of captive hapuku (Polyprion oxygeneios) and provide potential avenues for its manipulation, the present study (1) sequenced the proteome of early-stage embryos using isobaric tag for relative and absolute quantification analysis, and (2) aimed to establish the predictive value of the abundance of identified proteins with regard to egg quality through regression analysis. Egg quality was determined for eight different egg batches by blastomere symmetry scores. In total, 121 proteins were identified and assigned to one of nine major groups according to their function/pathway. A mixed-effects model analysis revealed a decrease in relative protein abundance that correlated with (decreasing) egg quality in one major group (heat-shock proteins). No differences were found in the other protein groups. Linear regression analysis, performed for each identified protein separately, revealed seven proteins that showed a significant decrease in relative abundance with reduced blastomere symmetry: two correlates that have been named in other studies (vitellogenin, heat-shock protein-70) and a further five new candidate proteins (78 kDa glucose-regulated protein, elongation factor-2, GTP-binding nuclear protein Ran, iduronate 2-sulfatase and 6-phosphogluconate dehydrogenase). Notwithstanding issues associated with multiple statistical testing, we conclude that these proteins, and especially iduronate 2-sulfatase and the generic heat-shock protein group, could serve as biomarkers of egg quality in hapuku.
Collapse
Affiliation(s)
- Yair Y Kohn
- Department of Zoology, University of Otago, PO Box 56, 340 Great King St., Dunedin, 9016, New Zealand
- Bream Bay Aquaculture Park, NIWA, PO Box 147, Ruakaka, 0151, New Zealand
- Arava Research and Development Station, Hatzeva, Israel
| | - Jane E Symonds
- Bream Bay Aquaculture Park, NIWA, PO Box 147, Ruakaka, 0151, New Zealand
| | - Torsten Kleffmann
- Centre for Protein Research, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Shinichi Nakagawa
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Malgorzata Lagisz
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - P Mark Lokman
- Department of Zoology, University of Otago, PO Box 56, 340 Great King St., Dunedin, 9016, New Zealand.
| |
Collapse
|
137
|
Proteomics discovery of radioresistant cancer biomarkers for radiotherapy. Cancer Lett 2015; 369:289-97. [DOI: 10.1016/j.canlet.2015.09.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 09/08/2015] [Accepted: 09/23/2015] [Indexed: 12/28/2022]
|
138
|
Zhao D, Gong S, Hao Z, Meng J, Tao J. Quantitative Proteomics Analysis of Herbaceous Peony in Response to Paclobutrazol Inhibition of Lateral Branching. Int J Mol Sci 2015; 16:24332-52. [PMID: 26473855 PMCID: PMC4632753 DOI: 10.3390/ijms161024332] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 09/24/2015] [Accepted: 10/05/2015] [Indexed: 12/21/2022] Open
Abstract
Herbaceous peony (Paeonia lactiflora Pall.) is an emerging high-grade cut flower worldwide, which is usually used in wedding bouquets and known as the “wedding flower”. However, abundant lateral branches appear frequently in some excellent cultivars, and a lack of a method to remove Paeonia lactiflora lateral branches other than inefficient artificial methods is an obstacle for improving the quality of its cut flowers. In this study, paclobutrazol (PBZ) application was found to inhibit the growth of lateral branches in Paeonia lactiflora for the first time, including 96.82% decreased lateral bud number per branch, 77.79% and 42.31% decreased length and diameter of lateral branches, respectively, declined cell wall materials and changed microstructures. Subsequently, isobaric tag for relative and absolute quantitation (iTRAQ) technology was used for quantitative proteomics analysis of lateral branches under PBZ application and control. The results indicated that 178 differentially expressed proteins (DEPs) successfully obtained, 98 DEPs were up-regulated and 80 DEPs were down-regulated. Thereafter, 34 candidate DEPs associated with the inhibited growth of lateral branches were screened according to their function and classification. These PBZ-stress responsive candidate DEPs were involved in eight biological processes, which played a very important role in the growth and development of lateral branches together with the response to PBZ stress. These results provide a better understanding of the molecular theoretical basis for removing Paeonia lactiflora lateral branches using PBZ application.
Collapse
Affiliation(s)
- Daqiu Zhao
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China.
| | - Saijie Gong
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China.
| | - Zhaojun Hao
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China.
| | - Jiasong Meng
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China.
| | - Jun Tao
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
139
|
Yan SK, Liu RH, Jin HZ, Liu XR, Ye J, Shan L, Zhang WD. "Omics" in pharmaceutical research: overview, applications, challenges, and future perspectives. Chin J Nat Med 2015; 13:3-21. [PMID: 25660284 DOI: 10.1016/s1875-5364(15)60002-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Indexed: 12/18/2022]
Abstract
In the post-genomic era, biological studies are characterized by the rapid development and wide application of a series of "omics" technologies, including genomics, proteomics, metabolomics, transcriptomics, lipidomics, cytomics, metallomics, ionomics, interactomics, and phenomics. These "omics" are often based on global analyses of biological samples using high through-put analytical approaches and bioinformatics and may provide new insights into biological phenomena. In this paper, the development and advances in these omics made in the past decades are reviewed, especially genomics, transcriptomics, proteomics and metabolomics; the applications of omics technologies in pharmaceutical research are then summarized in the fields of drug target discovery, toxicity evaluation, personalized medicine, and traditional Chinese medicine; and finally, the limitations of omics are discussed, along with the future challenges associated with the multi-omics data processing, dynamics omics analysis, and analytical approaches, as well as amenable solutions and future prospects.
Collapse
Affiliation(s)
- Shi-Kai Yan
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Run-Hui Liu
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Hui-Zi Jin
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xin-Ru Liu
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Ji Ye
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Lei Shan
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Wei-Dong Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; School of Pharmacy, Second Military Medical University, Shanghai 200433, China; Shanghai Institute of Pharmaceutical Industry, Shanghai 200040, China.
| |
Collapse
|
140
|
Yang X, Li H, Zhang C, Lin Z, Zhang X, Zhang Y, Yu Y, Liu K, Li M, Zhang Y, Lv W, Xie Y, Lu Z, Wu C, Teng R, Lu S, He M, Mo Z. Serum quantitative proteomic analysis reveals potential zinc-associated biomarkers for nonbacterial prostatitis. Prostate 2015; 75:1538-55. [PMID: 26010976 DOI: 10.1002/pros.23028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 05/05/2015] [Indexed: 02/01/2023]
Abstract
BACKGROUND Prostatitis is one of the most common urological problems afflicting adult men. The etiology and pathogenesis of nonbacterial prostatitis, which accounts for 90-95% of cases, is largely unknown. As serum proteins often indicate the overall pathologic status of patients, we hypothesized that protein biomarkers of prostatitis might be identified by comparing the serum proteomes of patients with and without nonbacterial prostatitis. METHODS All untreated samples were collected from subjects attending the Fangchenggang Area Male Health and Examination Survey (FAMHES). We profiled pooled serum samples from four carefully selected groups of patients (n = 10/group) representing the various categories of nonbacterial prostatitis (IIIa, IIIb, and IV) and matched healthy controls using a mass spectrometry-based 4-plex iTRAQ proteomic approach. More than 160 samples were validated by ELISA. RESULTS Overall, 69 proteins were identified. Among them, 42, 52, and 37 proteins were identified with differential expression in Category IIIa, IIIb, and IV prostatitis, respectively. The 19 common proteins were related to immunity and defense, ion binding, transport, and proteolysis. Two zinc-binding proteins, superoxide dismutase 3 (SOD3), and carbonic anhydrase I (CA1), were significantly higher in all types of prostatitis than in the control. A receiver operating characteristic curve estimated sensitivities of 50.4 and 68.1% and specificities of 92.1 and 83.8% for CA1 and SOD3, respectively, in detecting nonbacterial prostatitis. The serum CA1 concentration was inversely correlated to the zinc concentration in expressed-prostatic secretions. CONCLUSIONS Our findings suggest that SOD3 and CA1 are potential diagnostic markers of nonbacterial prostatitis, although further large-scale studies are required. The molecular profiles of nonbacterial prostatitis pathogenesis may lay a foundation for discovery of new therapies.
Collapse
Affiliation(s)
- Xiaoli Yang
- Medical Scientific Research Center, Guangxi Medical University, Nanning, Guangxi, China
| | - Hongtao Li
- Medical Scientific Research Center, Guangxi Medical University, Nanning, Guangxi, China
| | - Chengdong Zhang
- Medical Scientific Research Center, Guangxi Medical University, Nanning, Guangxi, China
| | - Zhidi Lin
- Medical Scientific Research Center, Guangxi Medical University, Nanning, Guangxi, China
| | - Xinhua Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Youjie Zhang
- Institute of Urology and Nephrology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yanbao Yu
- J Craig Venter Institute, Rockville, Maryland
| | - Kun Liu
- Medical Scientific Research Center, Guangxi Medical University, Nanning, Guangxi, China
| | - Muyan Li
- Medical Scientific Research Center, Guangxi Medical University, Nanning, Guangxi, China
| | - Yuening Zhang
- Medical Scientific Research Center, Guangxi Medical University, Nanning, Guangxi, China
| | - Wenxin Lv
- Institute of Urology and Nephrology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Department of Urology, Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, China
| | - Yuanliang Xie
- Institute of Urology and Nephrology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Zheng Lu
- Institute of Urology and Nephrology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Chunlei Wu
- Institute of Urology and Nephrology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Ruobing Teng
- Center for Reproductive Medicine, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Shaoming Lu
- Institute of Urology and Nephrology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Center for Reproductive Medicine, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Min He
- Public Health of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China
| | - Zengnan Mo
- Institute of Urology and Nephrology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
141
|
Jiang HY, Zhao N, Zhang QL, Gao JM, Liu LL, Wu TF, Wang Y, Huang QH, Gou Q, Chen W, Gong PT, Li JH, Gao YJ, Liu B, Zhang XC. Intestinal microbes influence the survival, reproduction and protein profile of Trichinella spiralis in vitro. Int J Parasitol 2015; 46:51-8. [PMID: 26432293 DOI: 10.1016/j.ijpara.2015.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 08/21/2015] [Accepted: 08/24/2015] [Indexed: 12/21/2022]
Abstract
The interactions between intestinal microbes and parasitic worms play an essential role in the development of the host immune system. However, the effects of gut microbes on Trichinella spiralis are unknown. The aim of this work was to explore microbe-induced alterations in the survival and reproduction of T. spiralis in vitro. To further identify the proteins and genes involved in the response of nematodes to microbes, quantitative proteomic analysis of T. spiralis was conducted by iTRAQ-coupled LCMS/MS technology and quantitative real-time-PCR was used to measure changes in mRNA expression. The results showed Lactobacillus acidophilus, and especially Lactobacillus bulgaricus, significantly enhanced the survival and reproductive rates of nematodes. Salmonella enterica, and especially Escherichia coli O157:H7 (EHEC), had opposite effects. Genetic responses were activated mainly by EHEC. A total of 514 proteins were identified and quantified, and carbohydrate metabolism-related proteins existed in a higher proportion. These findings indicated that some gut bacteria are friendly or harmful to humans and in addition they may have similar beneficial or detrimental effects on parasites. This may be due to the regulation of expression of specific genes and proteins. Our studies provide a basis for developing therapies against parasitic infections from knowledge generated by studying the gut microbes of mammals.
Collapse
Affiliation(s)
- Hai-yan Jiang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Na Zhao
- Laboratory Animal Center, North China University of Science and Technology, Tangshan, China
| | - Qiao-ling Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jiang-ming Gao
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Li-li Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Teng-Fei Wu
- Laboratory Animal Center, China Medical University, Shenyang, China
| | - Ying Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Qing-hua Huang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Qiang Gou
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Wei Chen
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Peng-tao Gong
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jian-hua Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ying-jie Gao
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Bo Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China; Institute of Zoonosis, Jilin University, Changchun, China.
| | - Xi-chen Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China.
| |
Collapse
|
142
|
Bergman N, Bergquist J. Recent developments in proteomic methods and disease biomarkers. Analyst 2015; 139:3836-51. [PMID: 24975697 DOI: 10.1039/c4an00627e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Proteomic methodologies for identification and analysis of biomarkers have gained more attention during recent years and have evolved rapidly. Identification and detection of disease biomarkers are important to foresee outbreaks of certain diseases thereby avoiding surgery and other invasive and expensive medical treatments for patients. Thus, more research into discovering new biomarkers and new methods for faster and more accurate detection is needed. It is often difficult to detect and measure biomarkers because of their low concentrations and the complexity of their respective matrices. Therefore it is hard to find and validate methods for accurate screening methods suitable for clinical use. The most recent developments during the last three years and also some historical considerations of proteomic methodologies for identification and validation of disease biomarkers are presented in this review.
Collapse
Affiliation(s)
- Nina Bergman
- Analytical Chemistry, BMC, Department of Chemistry, Uppsala University, Sweden.
| | | |
Collapse
|
143
|
Gunawardana CG, Mehrabian M, Wang X, Mueller I, Lubambo IB, Jonkman JEN, Wang H, Schmitt-Ulms G. The Human Tau Interactome: Binding to the Ribonucleoproteome, and Impaired Binding of the Proline-to-Leucine Mutant at Position 301 (P301L) to Chaperones and the Proteasome. Mol Cell Proteomics 2015; 14:3000-14. [PMID: 26269332 DOI: 10.1074/mcp.m115.050724] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Indexed: 01/15/2023] Open
Abstract
The tau protein is central to the etiology of several neurodegenerative diseases, including Alzheimer's disease, a subset of frontotemporal dementias, progressive supranuclear palsy and dementia following traumatic brain injury, yet the proteins it interacts with have not been studied using a systematic discovery approach. Here we employed mild in vivo crosslinking, isobaric labeling, and tandem mass spectrometry to characterize molecular interactions of human tau in a neuroblastoma cell model. The study revealed a robust association of tau with the ribonucleoproteome, including major protein complexes involved in RNA processing and translation, and documented binding of tau to several heat shock proteins, the proteasome and microtubule-associated proteins. Follow-up experiments determined the relative contribution of cellular RNA to the tau interactome and mapped interactions to N- or C-terminal tau domains. We further document that expression of P301L mutant tau disrupts interactions of the C-terminal half of tau with heat shock proteins and the proteasome. The data are consistent with a model whereby a higher propensity of P301L mutant tau to aggregate may reflect a perturbation of its chaperone-assisted stabilization and proteasome-dependent degradation. Finally, using a global proteomics approach, we show that heterologous expression of a tau construct that lacks the C-terminal domain, including the microtubule binding domain, does not cause a discernible shift of the proteome except for a significant direct correlation of steady-state levels of tau and cystatin B.
Collapse
Affiliation(s)
- C Geeth Gunawardana
- From the ‡Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Ontario M5T2S8, Canada
| | - Mohadeseh Mehrabian
- From the ‡Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Ontario M5T2S8, Canada; §Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S1A8, Canada
| | - Xinzhu Wang
- From the ‡Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Ontario M5T2S8, Canada; §Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S1A8, Canada
| | - Iris Mueller
- From the ‡Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Ontario M5T2S8, Canada
| | - Isabela B Lubambo
- From the ‡Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Ontario M5T2S8, Canada
| | - James E N Jonkman
- ¶Advanced Optical Microscopy Facility, University Health Network, Toronto, Ontario, M5G 1L7, Canada
| | - Hansen Wang
- From the ‡Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Ontario M5T2S8, Canada
| | - Gerold Schmitt-Ulms
- From the ‡Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Ontario M5T2S8, Canada; §Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S1A8, Canada;
| |
Collapse
|
144
|
Deutsch EW, Mendoza L, Shteynberg D, Slagel J, Sun Z, Moritz RL. Trans-Proteomic Pipeline, a standardized data processing pipeline for large-scale reproducible proteomics informatics. Proteomics Clin Appl 2015; 9:745-54. [PMID: 25631240 PMCID: PMC4506239 DOI: 10.1002/prca.201400164] [Citation(s) in RCA: 266] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 12/19/2014] [Accepted: 01/27/2015] [Indexed: 11/11/2022]
Abstract
Democratization of genomics technologies has enabled the rapid determination of genotypes. More recently the democratization of comprehensive proteomics technologies is enabling the determination of the cellular phenotype and the molecular events that define its dynamic state. Core proteomic technologies include MS to define protein sequence, protein:protein interactions, and protein PTMs. Key enabling technologies for proteomics are bioinformatic pipelines to identify, quantitate, and summarize these events. The Trans-Proteomics Pipeline (TPP) is a robust open-source standardized data processing pipeline for large-scale reproducible quantitative MS proteomics. It supports all major operating systems and instrument vendors via open data formats. Here, we provide a review of the overall proteomics workflow supported by the TPP, its major tools, and how it can be used in its various modes from desktop to cloud computing. We describe new features for the TPP, including data visualization functionality. We conclude by describing some common perils that affect the analysis of MS/MS datasets, as well as some major upcoming features.
Collapse
Affiliation(s)
| | | | | | | | - Zhi Sun
- Institute for Systems Biology, Seattle, WA, USA
| | | |
Collapse
|
145
|
Yan DK, Hu M, Tang YX, Fan JQ. Proteomic Analysis Reveals Resistance Mechanism Against Chlorpyrifos in Frankliniella occidentalis (Thysanoptera: Thripidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2015; 108:2000-2008. [PMID: 26470346 DOI: 10.1093/jee/tov139] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 03/07/2015] [Indexed: 06/05/2023]
Abstract
The western flower thrips is an economically important worldwide pest of many crops, and chlorpyrifos has been used to control western flower thrips for many years. To develop a better resistance-management strategy, a chlorpyrifos-resistant strain of western flower thrips (WFT-chl) was selected in the laboratory. More than 39-fold resistance was achieved after selected by chlorpyrifos for 19 generations in comparison with the susceptible strain (WFT-S). Proteome of western flower thrips (WFT-S and WFT-chl) was investigated using a quantitative proteomics approach with isobaric tag for relative and absolute quantification technique and liquid chromatography-tandem mass spectrometry technologies. According to the functional analysis, 773 proteins identified were grouped into 10 categories of molecular functions and 706 proteins were presented in 213 kinds of pathways. Comparing the proteome of WFT-chl with that of WFT-S, a total of eight proteins were found up-regulated and three down-regulated. The results from functional annotation and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses indicated that the differentially expressed protein functions in binding, catalyzing, transporting, and enzyme regulation were most important in resistance development. A list of proteins functioning in biological processes of metabolism, biological regulation, and response to stimulus was found in WFT-chl, suggesting that they are possibly the major components of the resistance mechanism to chlorpyrifos in western flower thrips. Notably, several novel potential resistance-related proteins were identified such as ribosomal protein, Vg (vitellogenin), and MACT (muscle actin), which can be used to improve our understanding of the resistance mechanisms in western flower thrips. This study provided the first comprehensive view of the complicated resistance mechanism employed by WFT-S and WFT-chl through the isobaric tag for relative and absolute quantification coupled with liquid chromatography-tandem mass spectrometry technologies.
Collapse
Affiliation(s)
- Dan-Kan Yan
- College of Plant Protection, Nanjing Agricultural University and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China. College of Plant Protection, Nanjing Agricultural University and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China. Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Min Hu
- College of Plant Protection, Nanjing Agricultural University and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China. Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Yun-Xia Tang
- College of Plant Protection, Nanjing Agricultural University and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Jia-Qin Fan
- College of Plant Protection, Nanjing Agricultural University and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China.
| |
Collapse
|
146
|
Isobaric Tags for Relative and Absolute Quantitation–Based Proteomic Analysis of Patent and Constricted Ductus Arteriosus Tissues Confirms the Systemic Regulation of Ductus Arteriosus Closure. J Cardiovasc Pharmacol 2015; 66:204-13. [DOI: 10.1097/fjc.0000000000000266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
147
|
Escobedo-Villarreal MM, Mercado-Moreira AB, Muñoz-Espinosa LE, Gamboa-Esparza M, Pérez-Rodríguez E, Cordero-Pérez P. [Urinary protein detection by iTRAQ® associated with renal transplant complications and its modification with therapy]. CIR CIR 2015; 83:393-401. [PMID: 26148981 DOI: 10.1016/j.circir.2015.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 03/23/2015] [Indexed: 11/30/2022]
Abstract
BACKGROUND After renal transplant, surgical, infection complications, as well as graft rejection may occur; early detection through non-invasive markers is the key to change therapy and avoid biopsy. OBJECTIVE The aime of the study is to determine urine protein profiles in patients undergoing renal transplant with complications and detect its variation when therapy is modified. MATERIAL AND METHODS Urine samples were collected from patients prior the transplant and various postoperative stages. Urinary protein profiles were obtained by peptide labeling using isobaric isotopes for relative quantification (iTRAQ(®)). RESULTS A total of 22 patients were included, of whom 12 developed post-transplant complication: 2 with graft rejection (one male and one female) and 10 (6 males and 4 females) in the group of post-transplant infections. Using iTRAQ(®) 15/345 and 28/113 proteins were identified and fulfilled the acceptance criteria, in graft rejection and post-transplant infections group, respectively. CONCLUSIONS Albumin was the only protein found in both groups, the remaining proteins were different. The 5 proteins with higher scores in graft rejection were: alpha-1-microglobulin, 5'-nucleotidase cytosolic III, retinol-binding protein 4, membrane protein palmitoylated 4, and serine carboxypeptidase, while post-transplant infections were: mitochondrial acetyl-coenzyme A synthetase, putative adenosyl homocysteinase 2, zinc finger protein GLIS1, putative protein FAM157B, and zinc finger protein 615. It remains to elucidate the involvement of each of these in patients with renal transplantation.
Collapse
Affiliation(s)
- Miguel Mariano Escobedo-Villarreal
- Servicio de Trasplantes, Departamento de Cirugía, Hospital Universitario Dr. José Eleuterio González, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México
| | - Amanda Berenice Mercado-Moreira
- Unidad de Hígado, Departamento de Medicina Interna, Hospital Universitario Dr. José Eleuterio González, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México
| | - Linda Elsa Muñoz-Espinosa
- Unidad de Hígado, Departamento de Medicina Interna, Hospital Universitario Dr. José Eleuterio González, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México
| | - Mariana Gamboa-Esparza
- Unidad de Hígado, Departamento de Medicina Interna, Hospital Universitario Dr. José Eleuterio González, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México
| | - Edelmiro Pérez-Rodríguez
- Servicio de Trasplantes, Departamento de Cirugía, Hospital Universitario Dr. José Eleuterio González, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México
| | - Paula Cordero-Pérez
- Unidad de Hígado, Departamento de Medicina Interna, Hospital Universitario Dr. José Eleuterio González, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México.
| |
Collapse
|
148
|
Liu Q, Zhu Y, Yong WK, Sze NSK, Tan NS, Ding JL. Cutting Edge: Synchronization of IRF1, JunB, and C/EBPβ Activities during TLR3-TLR7 Cross-Talk Orchestrates Timely Cytokine Synergy in the Proinflammatory Response. THE JOURNAL OF IMMUNOLOGY 2015; 195:801-5. [PMID: 26109639 DOI: 10.4049/jimmunol.1402358] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 05/24/2015] [Indexed: 12/17/2022]
Abstract
Multiple pathogen-associated molecular pattern-induced TLR pathway cross-talk provokes proinflammatory cytokine synergy in macrophages, which is important for pathogen resistance and immune homeostasis. However, the detailed mechanisms are unclear. In this article, we demonstrate viral RNA analog-induced transcription synergy of Il6 and Il12b via IFN regulatory factor (IRF)1 (TLR3-TIR domain-containing adaptor inducing IFN-β [TRIF] responsive), C/EBPβ (TLR7-MyD88 responsive), and JunB (all responsive). Coactivation of the TLR3 and TLR7 pathways synchronizes the interaction of IRF1, JunB, and C/EBPβ with the Il6 and Il12b promoters, facilitating maximal gene expression. MyD88 pathway activation suppresses TRIF-induced IRF1 in a delayed manner, controlling the magnitude and timing of cytokine expression. Our findings provide novel mechanisms of cooperation of different TLR pathways to achieve optimal immune responses, with the potential for immunomodulatory strategies.
Collapse
Affiliation(s)
- Qian Liu
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543; and
| | - Yong Zhu
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543; and
| | - Wai Khang Yong
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543; and
| | - Newman Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, Singapore 637511
| | - Nguan Soon Tan
- School of Biological Sciences, Nanyang Technological University, Singapore 637511
| | - Jeak Ling Ding
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543; and
| |
Collapse
|
149
|
Koniev O, Wagner A. Developments and recent advancements in the field of endogenous amino acid selective bond forming reactions for bioconjugation. Chem Soc Rev 2015; 44:5495-551. [PMID: 26000775 DOI: 10.1039/c5cs00048c] [Citation(s) in RCA: 416] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Bioconjugation methodologies have proven to play a central enabling role in the recent development of biotherapeutics and chemical biology approaches. Recent endeavours in these fields shed light on unprecedented chemical challenges to attain bioselectivity, biocompatibility, and biostability required by modern applications. In this review the current developments in various techniques of selective bond forming reactions of proteins and peptides were highlighted. The utility of each endogenous amino acid-selective conjugation methodology in the fields of biology and protein science has been surveyed with emphasis on the most relevant among reported transformations; selectivity and practical use have been discussed.
Collapse
Affiliation(s)
- Oleksandr Koniev
- Laboratory of Functional Chemo-Systems (UMR 7199), Labex Medalis, University of Strasbourg, 74 Route du Rhin, 67401 Illkirch-Graffenstaden, France.
| | | |
Collapse
|
150
|
Xu H, Wei Y, Zhu Y, Lian L, Xie H, Cai Q, Chen Q, Lin Z, Wang Z, Xie H, Zhang J. Antisense suppression of LOX3 gene expression in rice endosperm enhances seed longevity. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:526-39. [PMID: 25545811 DOI: 10.1111/pbi.12277] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 09/04/2014] [Accepted: 09/10/2014] [Indexed: 05/20/2023]
Abstract
Lipid peroxidation plays a major role in seed longevity and viability. In rice grains, lipid peroxidation is catalyzed by the enzyme lipoxygenase 3 (LOX3). Previous reports showed that grain from the rice variety DawDam in which the LOX3 gene was deleted had less stale flavour after grain storage than normal rice. The molecular mechanism by which LOX3 expression is regulated during endosperm development remains unclear. In this study, we expressed a LOX3 antisense construct in transgenic rice (Oryza sativa L.) plants to down-regulate LOX3 expression in rice endosperm. The transgenic plants exhibited a marked decrease in LOX mRNA levels, normal phenotypes and a normal life cycle. We showed that LOX3 activity and its ability to produce 9-hydroperoxyoctadecadienoic acid (9-HPOD) from linoleic acid were significantly lower in transgenic seeds than in wild-type seeds by measuring the ultraviolet absorption of 9-HPOD at 234 nm and by high-performance liquid chromatography. The suppression of LOX3 expression in rice endosperm increased grain storability. The germination rate of TS-91 (antisense LOX3 transgenic line) was much higher than the WT (29% higher after artificial ageing for 21 days, and 40% higher after natural ageing for 12 months). To our knowledge, this is the first report to demonstrate that decreased LOX3 expression can preserve rice grain quality during storage with no impact on grain yield, suggesting potential applications in agricultural production.
Collapse
Affiliation(s)
- Huibin Xu
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China; Incubator of National Key Laboratory of Fujian Crop Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology, Fuzhou, China; Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture, Fuzhou, China; South-China Base of National Key Laboratory of Hybrid Rice of China, Fuzhou, China; National Engineering Laboratory of Rice, Fuzhou, Fujian, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|