101
|
Field B. Green magic: regulation of the chloroplast stress response by (p)ppGpp in plants and algae. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:2797-2807. [PMID: 29281108 DOI: 10.1093/jxb/erx485] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/14/2017] [Indexed: 06/07/2023]
Abstract
The hyperphosphorylated nucleotides guanosine pentaphosphate and tetraphosphate [together referred to as (p)ppGpp, or 'magic spot'] orchestrate a signalling cascade in bacteria that controls growth under optimal conditions and in response to environmental stress. (p)ppGpp is also found in the chloroplasts of plants and algae where it has also been shown to accumulate in response to abiotic stress. Recent studies suggest that (p)ppGpp is a potent inhibitor of chloroplast gene expression in vivo, and is a significant regulator of chloroplast function that can influence both the growth and the development of plants. However, little is currently known about how (p)ppGpp is wired into eukaryotic signalling pathways, or how it may act to enhance fitness when plants or algae are exposed to environmental stress. This review discusses our current understanding of (p)ppGpp metabolism and its extent in plants and algae, and how (p)ppGpp signalling may be an important factor that is capable of influencing growth and stress acclimation in this major group of organisms.
Collapse
Affiliation(s)
- Ben Field
- Aix Marseille Univ, CEA, CNRS, France
| |
Collapse
|
102
|
De Vriese K, Costa A, Beeckman T, Vanneste S. Pharmacological Strategies for Manipulating Plant Ca 2+ Signalling. Int J Mol Sci 2018; 19:E1506. [PMID: 29783646 PMCID: PMC5983822 DOI: 10.3390/ijms19051506] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/10/2018] [Accepted: 05/12/2018] [Indexed: 11/20/2022] Open
Abstract
Calcium is one of the most pleiotropic second messengers in all living organisms. However, signalling specificity is encoded via spatio-temporally regulated signatures that act with surgical precision to elicit highly specific cellular responses. How this is brought about remains a big challenge in the plant field, in part due to a lack of specific tools to manipulate/interrogate the plant Ca2+ toolkit. In many cases, researchers resort to tools that were optimized in animal cells. However, the obviously large evolutionary distance between plants and animals implies that there is a good chance observed effects may not be specific to the intended plant target. Here, we provide an overview of pharmacological strategies that are commonly used to activate or inhibit plant Ca2+ signalling. We focus on highlighting modes of action where possible, and warn for potential pitfalls. Together, this review aims at guiding plant researchers through the Ca2+ pharmacology swamp.
Collapse
Affiliation(s)
- Kjell De Vriese
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Ghent, Belgium.
- VIB Center for Plant Systems Biology, VIB, Technologiepark 927, 9052 Ghent, Belgium.
| | - Alex Costa
- Department of Biosciences, University of Milan, 20133 Milan, Italy.
- Instititute of Biophysics, Consiglio Nazionale delle Ricerche, 20133 Milan, Italy.
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Ghent, Belgium.
- VIB Center for Plant Systems Biology, VIB, Technologiepark 927, 9052 Ghent, Belgium.
| | - Steffen Vanneste
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Ghent, Belgium.
- VIB Center for Plant Systems Biology, VIB, Technologiepark 927, 9052 Ghent, Belgium.
- Lab of Plant Growth Analysis, Ghent University Global Campus, Songdomunhwa-Ro, 119, Yeonsu-gu, Incheon 21985, Korea.
| |
Collapse
|
103
|
Costa A, Navazio L, Szabo I. The contribution of organelles to plant intracellular Calcium signalling. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4996169. [PMID: 29767757 DOI: 10.1093/jxb/ery185] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Indexed: 05/18/2023]
Abstract
Calcium (Ca2+) is among the most important intracellular messengers in living organisms. Understanding of the players and dynamics of Ca2+ signalling pathways in plants may help to unravel the molecular basis of their exceptional flexibility to respond and to adapt to different stimuli. In the present review we focus on new tools that have recently revolutionized our view of organellar Ca2+ signalling as well as on the current knowledge regarding the pathways mediating Ca2+ fluxes across intracellular membranes. The contribution of organelles and cellular subcompartments to the orchestrated response via Ca2+ signalling within a cell is also discussed, underlining the fact that one of the greatest challenges in the field is the elucidation of how influx and efflux Ca2+ transporters/channels are regulated in a concerted manner to translate specific information into a Ca2+ signature.
Collapse
Affiliation(s)
- Alex Costa
- Department of Biosciences, University of Milan, Via G. Celoria, Milan, Italy
- Institute of Biophysics, Consiglio Nazionale delle Ricerche, Via G. Celoria, Milan, Italy
| | - Lorella Navazio
- Department of Biology, University of Padova, Via U. Bassi, Padova, Italy
- Botanical Garden, University of Padova, Via Orto Botanico, Padova, Italy
| | - Ildiko Szabo
- Department of Biology, University of Padova, Via U. Bassi, Padova, Italy
- Botanical Garden, University of Padova, Via Orto Botanico, Padova, Italy
- Institute of Neurosciences, Consiglio Nazionale delle Ricerche, Via U. Bassi, Padova, Italy
| |
Collapse
|
104
|
Sukhova E, Mudrilov M, Vodeneev V, Sukhov V. Influence of the variation potential on photosynthetic flows of light energy and electrons in pea. PHOTOSYNTHESIS RESEARCH 2018; 136:215-228. [PMID: 29086893 DOI: 10.1007/s11120-017-0460-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 10/23/2017] [Indexed: 05/17/2023]
Abstract
Local damage (mainly burning, heating, and mechanical wounding) induces propagation of electrical signals, namely, variation potentials, which are important signals during the life of plants that regulate different physiological processes, including photosynthesis. It is known that the variation potential decreases the rate of CO2 assimilation by the Calvin-Benson cycle; however, its influence on light reactions has been poorly investigated. The aim of our work was to investigate the influence of the variation potential on the light energy flow that is absorbed, trapped and dissipated per active reaction centre in photosystem II and on the flow of electrons through the chloroplast electron transport chain. We analysed chlorophyll fluorescence in pea leaves using JIP-test and PAM-fluorometry; we also investigated delayed fluorescence. The electrical signals were registered using extracellular electrodes. We showed that the burning-induced variation potential stimulated a nonphotochemical loss of energy in photosystem II under dark conditions. It was also shown that the variation potential gradually increased the flow of light energy absorbed, trapped and dissipated by photosystem II. These changes were likely caused by an increase in the fraction of absorbed light distributed to photosystem II. In addition, the variation potential induced a transient increase in electron flow through the photosynthetic electron transport chain. Some probable mechanisms for the influence of the variation potential on the light reactions of photosynthesis (including the potential role of intracellular pH decrease) are discussed in the work.
Collapse
Affiliation(s)
- Ekaterina Sukhova
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, Gagarin Avenue, 23, Nizhny Novgorod, Russia, 603950
| | - Maxim Mudrilov
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, Gagarin Avenue, 23, Nizhny Novgorod, Russia, 603950
| | - Vladimir Vodeneev
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, Gagarin Avenue, 23, Nizhny Novgorod, Russia, 603950
| | - Vladimir Sukhov
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, Gagarin Avenue, 23, Nizhny Novgorod, Russia, 603950.
| |
Collapse
|
105
|
Sello S, Moscatiello R, Mehlmer N, Leonardelli M, Carraretto L, Cortese E, Zanella FG, Baldan B, Szabò I, Vothknecht UC, Navazio L. Chloroplast Ca 2+ Fluxes into and across Thylakoids Revealed by Thylakoid-Targeted Aequorin Probes. PLANT PHYSIOLOGY 2018; 177:38-51. [PMID: 29559589 PMCID: PMC5933129 DOI: 10.1104/pp.18.00027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/05/2018] [Indexed: 05/18/2023]
Abstract
Chloroplasts require a fine-tuned control of their internal Ca2+ concentration, which is crucial for many aspects of photosynthesis and for other chloroplast-localized processes. Increasing evidence suggests that calcium regulation within chloroplasts also may influence Ca2+ signaling pathways in the cytosol. To investigate the involvement of thylakoids in Ca2+ homeostasis and in the modulation of chloroplast Ca2+ signals in vivo, we targeted the bioluminescent Ca2+ reporter aequorin as a YFP fusion to the lumen and the stromal surface of thylakoids in Arabidopsis (Arabidopsis thaliana). Thylakoid localization of aequorin-based probes in stably transformed lines was confirmed by confocal microscopy, immunogold labeling, and biochemical analyses. In resting conditions in the dark, free Ca2+ levels in the thylakoid lumen were maintained at about 0.5 μm, which was a 3- to 5-fold higher concentration than in the stroma. Monitoring of chloroplast Ca2+ dynamics in different intrachloroplast subcompartments (stroma, thylakoid membrane, and thylakoid lumen) revealed the occurrence of stimulus-specific Ca2+ signals, characterized by unique kinetic parameters. Oxidative and salt stresses initiated pronounced free Ca2+ changes in the thylakoid lumen. Localized Ca2+ increases also were observed on the thylakoid membrane surface, mirroring transient Ca2+ changes observed for the bulk stroma, but with specific Ca2+ dynamics. Moreover, evidence was obtained for dark-stimulated intrathylakoid Ca2+ changes, suggesting a new scenario for light-to-dark-induced Ca2+ fluxes inside chloroplasts. Hence, thylakoid-targeted aequorin reporters can provide new insights into chloroplast Ca2+ storage and signal transduction. These probes represent novel tools with which to investigate the role of thylakoids in Ca2+ signaling networks within chloroplasts and plant cells.
Collapse
Affiliation(s)
- Simone Sello
- Department of Biology, University of Padova, 35131 Padova, Italy
| | | | - Norbert Mehlmer
- Department of Biology I, Faculty of Biology, LMU Munich, D-82152 Munich, Germany
| | - Manuela Leonardelli
- Department of Biology, University of Padova, 35131 Padova, Italy
- Department of Biology I, Faculty of Biology, LMU Munich, D-82152 Munich, Germany
| | - Luca Carraretto
- Department of Biology, University of Padova, 35131 Padova, Italy
| | - Enrico Cortese
- Department of Biology, University of Padova, 35131 Padova, Italy
| | | | - Barbara Baldan
- Department of Biology, University of Padova, 35131 Padova, Italy
- Botanical Garden, University of Padova, 35123 Padova, Italy
| | - Ildikò Szabò
- Department of Biology, University of Padova, 35131 Padova, Italy
- Botanical Garden, University of Padova, 35123 Padova, Italy
| | - Ute C Vothknecht
- Department of Biology I, Faculty of Biology, LMU Munich, D-82152 Munich, Germany
- Plant Cell Biology, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, D-53115 Bonn, Germany
| | - Lorella Navazio
- Department of Biology, University of Padova, 35131 Padova, Italy
- Botanical Garden, University of Padova, 35123 Padova, Italy
| |
Collapse
|
106
|
Charpentier M. Calcium Signals in the Plant Nucleus: Origin and Function. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4986421. [PMID: 29718301 DOI: 10.1093/jxb/ery160] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Indexed: 06/08/2023]
Abstract
The universality of calcium as an intracellular messenger depends on the dynamics of its spatial and temporal release from calcium stores. Accumulating evidence over the past two decades supports an essential role for nuclear calcium signalling in the transduction of specific stimuli into cellular responses. This review focusses on mechanisms underpinning changes in nuclear calcium concentrations and discusses what is known so far, about the origin of the nuclear calcium signals identified, primarily in the context of microbial symbioses and abiotic stresses.
Collapse
Affiliation(s)
- Myriam Charpentier
- John Innes Centre, Department of Cell and developmental Biology, Colney Lane, Norwich, UK
| |
Collapse
|
107
|
González A, Sáez CA, Moenne A. Copper-induced activation of TRPs and VDCCs triggers a calcium signature response regulating gene expression in Ectocarpus siliculosus. PeerJ 2018; 6:e4556. [PMID: 29682409 PMCID: PMC5907779 DOI: 10.7717/peerj.4556] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/09/2018] [Indexed: 02/06/2023] Open
Abstract
In certain multicellular photoautotrophs, such as plants and green macroalgae, it has been demonstrated that calcium signaling importantly mediates tolerance to copper excess. However, there is no information in brown macroalgae, which are phylogenetically distant from green algae and plants. We have previously shown that chronic copper levels (2.5 μM) activate transient receptor potential (TRP) channels in the model brown macroalga Ectocarpus siliculosus, allowing extracellular calcium entry at 13, 29, 39 and 51 min. Here, we showed that intracellular calcium increases also occurred at 3 and 5 h of exposure; these increases were inhibited by antagonists of voltage-dependent calcium channels (VDCCs); a chelating agent of extracellular calcium; an antagonist of endoplasmic reticulum (ER) ATPase; and antagonists of cADPR-, NAADP- and IP3-dependent calcium channels. Thus, copper activates VDCCs allowing extracellular calcium entry and intracellular calcium release from the ER via cADPR-, IP3- and NAADP-dependent channels. Furthermore, the level of transcripts encoding a phytochelatin synthase (PS) and a metallothionein (MT) were analyzed in the alga exposed to 2.5 μM copper from 3 to 24 h. The level of ps and mt transcripts increased until 24 h and these increases were inhibited by antagonists of calmodulins (CaMs), calcineurin B-like proteins (CBLs) and calcium-dependent protein kinases (CDPKs). Finally, activation of VDCC was inhibited by a mixture of TRP antagonists and by inhibitors of protein kinases. Thus, copper-mediated activation of TRPs triggers VDCCs via protein kinases, allowing extracellular calcium entry and intracellular calcium release from ER that, in turn, activate CaMs, CBLs and CDPKs increasing expression of PS and MT encoding genes in E. siliculosus.
Collapse
Affiliation(s)
- Alberto González
- Laboratory of Marine Biotechnology, Faculty of Chemistry and Biology, Universidad de Santiago de Chile, Santiago, Región Metropolitana, Chile
| | - Claudio A Sáez
- Laboratory of Costal Environmental Research, Center of Advanced Studies, Universidad de Playa Ancha, Viña del Mar, Valparaíso, Chile
| | - Alejandra Moenne
- Laboratory of Marine Biotechnology, Faculty of Chemistry and Biology, Universidad de Santiago de Chile, Santiago, Región Metropolitana, Chile
| |
Collapse
|
108
|
Kudla J, Becker D, Grill E, Hedrich R, Hippler M, Kummer U, Parniske M, Romeis T, Schumacher K. Advances and current challenges in calcium signaling. THE NEW PHYTOLOGIST 2018; 218:414-431. [PMID: 29332310 DOI: 10.1111/nph.14966] [Citation(s) in RCA: 323] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 11/21/2017] [Indexed: 05/21/2023]
Abstract
Content Summary 414 I. Introduction 415 II. Ca2+ importer and exporter in plants 415 III. The Ca2+ decoding toolkit in plants 415 IV. Mechanisms of Ca2+ signal decoding 417 V. Immediate Ca2+ signaling in the regulation of ion transport 418 VI. Ca2+ signal integration into long-term ABA responses 419 VII Integration of Ca2+ and hormone signaling through dynamic complex modulation of the CCaMK/CYCLOPS complex 420 VIII Ca2+ signaling in mitochondria and chloroplasts 422 IX A view beyond recent advances in Ca2+ imaging 423 X Modeling approaches in Ca2+ signaling 424 XI Conclusions: Ca2+ signaling a still young blooming field of plant research 424 Acknowledgements 425 ORCID 425 References 425 SUMMARY: Temporally and spatially defined changes in Ca2+ concentration in distinct compartments of cells represent a universal information code in plants. Recently, it has become evident that Ca2+ signals not only govern intracellular regulation but also appear to contribute to long distance or even organismic signal propagation and physiological response regulation. Ca2+ signals are shaped by an intimate interplay of channels and transporters, and during past years important contributing individual components have been identified and characterized. Ca2+ signals are translated by an elaborate toolkit of Ca2+ -binding proteins, many of which function as Ca2+ sensors, into defined downstream responses. Intriguing progress has been achieved in identifying specific modules that interconnect Ca2+ decoding proteins and protein kinases with downstream target effectors, and in characterizing molecular details of these processes. In this review, we reflect on recent major advances in our understanding of Ca2+ signaling and cover emerging concepts and existing open questions that should be informative also for scientists that are currently entering this field of ever-increasing breath and impact.
Collapse
Affiliation(s)
- Jörg Kudla
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Schlossplatz 7/8, 48149, Münster, Germany
| | - Dirk Becker
- Department of Molecular Plant Physiology and Biophysics, University Würzburg, Julius-von-Sachs Platz 2, 97082, Würzburg, Germany
| | - Erwin Grill
- Lehrstuhl für Botanik, Technische Universität München, Am Hochanger 4, D-85354, Freising, Germany
| | - Rainer Hedrich
- Department of Molecular Plant Physiology and Biophysics, University Würzburg, Julius-von-Sachs Platz 2, 97082, Würzburg, Germany
| | - Michael Hippler
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Schlossplatz 7/8, 48149, Münster, Germany
| | - Ursula Kummer
- Department of Modeling of Biological Processes, COS Heidelberg/Bioquant, Heidelberg University, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany
| | - Martin Parniske
- Institute of Genetics, Biocenter University of Munich (LMU), Großhaderner Straße 4, 82152, Martinsried, Germany
| | - Tina Romeis
- Department of Plant Biochemistry, Dahlem Center of Plant Sciences, Freie Universität Berlin, 14195, Berlin, Germany
| | - Karin Schumacher
- Department of Developmental Biology, Centre for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| |
Collapse
|
109
|
Ca 2+-Induced Two-Component System CvsSR Regulates the Type III Secretion System and the Extracytoplasmic Function Sigma Factor AlgU in Pseudomonas syringae pv. tomato DC3000. J Bacteriol 2018; 200:JB.00538-17. [PMID: 29263098 DOI: 10.1128/jb.00538-17] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 12/12/2017] [Indexed: 11/20/2022] Open
Abstract
Two-component systems (TCSs) of bacteria regulate many different aspects of the bacterial life cycle, including pathogenesis. Most TCSs remain uncharacterized, with no information about the signal(s) or regulatory targets and/or role in bacterial pathogenesis. Here, we characterized a TCS in the plant-pathogenic bacterium Pseudomonas syringae pv. tomato DC3000 composed of the histidine kinase CvsS and the response regulator CvsR. CvsSR is necessary for virulence of P. syringae pv. tomato DC3000, since ΔcvsS and ΔcvsR strains produced fewer symptoms than the wild type (WT) and demonstrated reduced growth on multiple hosts. We discovered that expression of cvsSR is induced by Ca2+ concentrations found in leaf apoplastic fluid. Thus, Ca2+ can be added to the list of signals that promote pathogenesis of P. syringae pv. tomato DC3000 during host colonization. Through chromatin immunoprecipitation followed by next-generation sequencing (ChIP-seq) and global transcriptome analysis (RNA-seq), we discerned the CvsR regulon. CvsR directly activated expression of the type III secretion system regulators, hrpR and hrpS, that regulate P. syringae pv. tomato DC3000 virulence in a type III secretion system-dependent manner. CvsR also indirectly repressed transcription of the extracytoplasmic sigma factor algU and production of alginate. Phenotypic analysis determined that CvsSR inversely regulated biofilm formation, swarming motility, and cellulose production in a Ca2+-dependent manner. Overall, our results show that CvsSR is a key regulatory hub critical for interaction with host plants.IMPORTANCE Pathogenic bacteria must be able to react and respond to the surrounding environment, make use of available resources, and avert or counter host immune responses. Often, these abilities rely on two-component systems (TCSs) composed of interacting proteins that modulate gene expression. We identified a TCS in the plant-pathogenic bacterium Pseudomonas syringae that responds to the presence of calcium, which is an important signal during the plant defense response. We showed that when P. syringae is grown in the presence of calcium, this TCS regulates expression of factors contributing to disease. Overall, our results provide a better understanding of how bacterial pathogens respond to plant signals and control systems necessary for eliciting disease.
Collapse
|
110
|
Blamey FPC, McKenna BA, Li C, Cheng M, Tang C, Jiang H, Howard DL, Paterson DJ, Kappen P, Wang P, Menzies NW, Kopittke PM. Manganese distribution and speciation help to explain the effects of silicate and phosphate on manganese toxicity in four crop species. THE NEW PHYTOLOGIST 2018; 217:1146-1160. [PMID: 29091286 DOI: 10.1111/nph.14878] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 10/05/2017] [Indexed: 05/21/2023]
Abstract
Soil acidity and waterlogging increase manganese (Mn) in leaf tissues to potentially toxic concentrations, an effect reportedly alleviated by increased silicon (Si) and phosphorus (P) supply. Effects of Si and P on Mn toxicity were studied in four plant species using synchrotron-based micro X-ray fluorescence (μ-XRF) and nanoscale secondary ion mass spectrometry (NanoSIMS) to determine Mn distribution in leaf tissues and using synchrotron-based X-ray absorption spectroscopy (XAS) to measure Mn speciation in leaves, stems and roots. A concentration of 30 μM Mn in solution was toxic to cowpea and soybean, with 400 μM Mn toxic to sunflower but not white lupin. Unexpectedly, μ-XRF analysis revealed that 1.4 mM Si in solution decreased Mn toxicity symptoms through increased Mn localization in leaf tissues. NanoSIMS showed Mn and Si co-localized in the apoplast of soybean epidermal cells and basal cells of sunflower trichomes. Concomitantly, added Si decreased oxidation of Mn(II) to Mn(III) and Mn(IV). An increase from 5 to 50 μM P in solution changed some Mn toxicity symptoms but had little effect on Mn distribution or speciation. We conclude that Si increases localized apoplastic sorption of Mn in cowpea, soybean and sunflower leaves thereby decreasing free Mn2+ accumulation in the apoplast or cytoplasm.
Collapse
Affiliation(s)
- F Pax C Blamey
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Qld, 4072, Australia
| | - Brigid A McKenna
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Qld, 4072, Australia
| | - Cui Li
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Qld, 4072, Australia
| | - Miaomiao Cheng
- Centre for AgriBioscience, La Trobe University, Bundoora, Vic., 3086, Australia
| | - Caixian Tang
- Centre for AgriBioscience, La Trobe University, Bundoora, Vic., 3086, Australia
| | - Haibo Jiang
- Centre for Microscopy, Characterization and Analysis, University of Western Australia, Crawley, WA, 6009, Australia
| | | | | | - Peter Kappen
- Australian Synchrotron, Clayton, Vic., 3168, Australia
| | - Peng Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
- Centre for Soil and Environmental Research, School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Qld, 4072, Australia
| | - Neal W Menzies
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Qld, 4072, Australia
| | - Peter M Kopittke
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Qld, 4072, Australia
| |
Collapse
|
111
|
Corpas FJ, Barroso JB. Calmodulin antagonist affects peroxisomal functionality by disrupting both peroxisomal Ca 2+ and protein import. J Cell Sci 2018; 131:jcs.201467. [PMID: 28183730 DOI: 10.1242/jcs.201467] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 02/03/2017] [Indexed: 12/21/2022] Open
Abstract
Ca2+ is a second messenger in many physiological and phytopathological processes. Peroxisomes are subcellular compartments with an active oxidative and nitrosative metabolism. Previous studies have demonstrated that peroxisomal nitric oxide (NO) generation is dependent on Ca2+ and calmodulin (CaM). Here, we used Arabidopsis thaliana transgenic seedlings expressing cyan fluorescent protein (CFP) containing a type 1 peroxisomal-targeting signal motif (PTS1; CFP-PTS1), which enables peroxisomes to be visualized in vivo, and also used a cell-permeable fluorescent probe for Ca2+ Analysis by confocal laser-scanning microscopy (CLSM) enabled us to visualize the presence of endogenous Ca2+ in the peroxisomes of both roots and guard cells. The presence of Ca2+ in peroxisomes and the import of CFP-PTS1 are drastically disrupted by both CaM antagonist and glutathione (GSH). Furthermore, the activity of three peroxisomal enzymes (catalase, glycolate oxidase and hydroxypyruvate reductase) containing PTS1 was clearly affected in these conditions, with a decrease of between 41 and 51%. In summary, data show that Ca2+ and CaM are strictly necessary for protein import and normal functionality of peroxisomal enzymes, including antioxidant and photorespiratory enzymes, as well as for NO production.
Collapse
Affiliation(s)
- Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, C/Profesor Albareda 1, Granada E-18008, Spain
| | - Juan B Barroso
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Biochemistry and Molecular Biology, Campus 'Las Lagunillas', University of Jaén, Jaén E-23071, Spain
| |
Collapse
|
112
|
Komarova AV, Sukhov VS, Bulychev AA. Cyclosis-mediated long distance communications of chloroplasts in giant cells of Characeae. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:236-246. [PMID: 32291038 DOI: 10.1071/fp16283] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 02/21/2017] [Indexed: 06/11/2023]
Abstract
Long-distance communications in giant characean internodal cells involve cytoplasmic streaming as an effective means for transportation of regulatory substances. The local illumination of Chara corallina Klein ex C.L.Willdenow internodal cells with an intense 30s pulse of white light caused a transient increase of modulated chlorophyll fluorescence in cell regions positioned downstream the cytoplasmic flow after a delay whose duration increased with the axial distance from the light source. No changes in fluorescence were observed in cell regions residing upstream of the light spot. The transient increase in actual fluorescence F' in cell areas exposed to constant dim illumination at large distances from the brightly lit area indicates the transmission of photosynthetically active metabolite between chloroplasts separated by 1-5mm distances. The shapes of fluorescence transients were sensitive to retardation of cytoplasmic streaming by cytochalasin D and to variations in cyclosis velocity during gradual recovery of streaming after an instant arrest of cyclosis by elicitation of the action potential. Furthermore, the analysed fluorescence transients were skewed on the ascending or descending fronts depending on the position of light-modulated cytoplasmic package at the moment of streaming cessation with respect to the point of measurements. The observations are simulated in qualitative terms with a simplified streaming-diffusion model.
Collapse
Affiliation(s)
- Anna V Komarova
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Vladimir S Sukhov
- Department of Biophysics, Lobachevsky State University of Nizhny Novgorod, Gagarin Avenue 23, 603950 Nizhny Novgorod, Russia
| | - Alexander A Bulychev
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| |
Collapse
|
113
|
Kelner A, Leitão N, Chabaud M, Charpentier M, de Carvalho-Niebel F. Dual Color Sensors for Simultaneous Analysis of Calcium Signal Dynamics in the Nuclear and Cytoplasmic Compartments of Plant Cells. FRONTIERS IN PLANT SCIENCE 2018; 9:245. [PMID: 29535753 PMCID: PMC5835324 DOI: 10.3389/fpls.2018.00245] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 02/12/2018] [Indexed: 05/17/2023]
Abstract
Spatiotemporal changes in cellular calcium (Ca2+) concentrations are essential for signal transduction in a wide range of plant cellular processes. In legumes, nuclear and perinuclear-localized Ca2+ oscillations have emerged as key signatures preceding downstream symbiotic signaling responses. Förster resonance energy transfer (FRET) yellow-based Ca2+ cameleon probes have been successfully exploited to measure the spatiotemporal dynamics of symbiotic Ca2+ signaling in legumes. Although providing cellular resolution, these sensors were restricted to measuring Ca2+ changes in single subcellular compartments. In this study, we have explored the potential of single fluorescent protein-based Ca2+ sensors, the GECOs, for multicolor and simultaneous imaging of the spatiotemporal dynamics of cytoplasmic and nuclear Ca2+ signaling in root cells. Single and dual fluorescence nuclear and cytoplasmic-localized GECOs expressed in transgenic Medicago truncatula roots and Arabidopsis thaliana were used to successfully monitor Ca2+ responses to microbial biotic and abiotic elicitors. In M. truncatula, we demonstrate that GECOs detect symbiosis-related Ca2+ spiking variations with higher sensitivity than the yellow FRET-based sensors previously used. Additionally, in both M. truncatula and A. thaliana, the dual sensor is now able to resolve in a single root cell the coordinated spatiotemporal dynamics of nuclear and cytoplasmic Ca2+ signaling in vivo. The GECO-based sensors presented here therefore represent powerful tools to monitor Ca2+ signaling dynamics in vivo in response to different stimuli in multi-subcellular compartments of plant cells.
Collapse
Affiliation(s)
- Audrey Kelner
- Laboratory of Plant Microbe Interactions, Université de Toulouse, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Castanet-Tolosan, France
| | - Nuno Leitão
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
| | - Mireille Chabaud
- Laboratory of Plant Microbe Interactions, Université de Toulouse, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Castanet-Tolosan, France
| | - Myriam Charpentier
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
- *Correspondence: Myriam Charpentier
| | - Fernanda de Carvalho-Niebel
- Laboratory of Plant Microbe Interactions, Université de Toulouse, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Castanet-Tolosan, France
- Fernanda de Carvalho-Niebel
| |
Collapse
|
114
|
Himschoot E, Pleskot R, Van Damme D, Vanneste S. The ins and outs of Ca 2+ in plant endomembrane trafficking. CURRENT OPINION IN PLANT BIOLOGY 2017; 40:131-137. [PMID: 28965016 DOI: 10.1016/j.pbi.2017.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 09/01/2017] [Accepted: 09/06/2017] [Indexed: 06/07/2023]
Abstract
Trafficking of proteins and lipids within the plant endomembrane system is essential to support cellular functions and is subject to rigorous regulation. Despite this seemingly strict regulation, endomembrane trafficking needs to be dynamically adjusted to ever-changing internal and environmental stimuli, while maintaining cellular integrity. Although often overlooked, the versatile second messenger Ca2+ is intimately connected to several endomembrane-associated processes. Here, we discuss the impact of electrostatic interactions between Ca2+ and anionic phospholipids on endomembrane trafficking, and illustrate the direct role of Ca2+ sensing proteins in regulating endomembrane trafficking and membrane integrity preservation. Moreover, we discuss how Ca2+ can control protein sorting within the plant endomembrane system. We thus highlight Ca2+ signaling as a versatile mechanism by which numerous signals are integrated into plant endomembrane trafficking dynamics.
Collapse
Affiliation(s)
- Ellie Himschoot
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Roman Pleskot
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium; Institute of Experimental Botany, Czech Academy of Sciences, Rozvojova 263, 16502 Prague, Czech Republic
| | - Daniël Van Damme
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Steffen Vanneste
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium.
| |
Collapse
|
115
|
Liu JC, Parks RJ, Liu J, Stares J, Rovira II, Murphy E, Finkel T. The In Vivo Biology of the Mitochondrial Calcium Uniporter. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 982:49-63. [PMID: 28551781 DOI: 10.1007/978-3-319-55330-6_3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The identification of the molecular composition of the mitochondrial calcium uniporter has allowed for the genetic manipulation of its components and the creation of various in vivo genetic models. Here, we review the initial attempts to modulate the expression of components of the calcium uniporter in a range of organisms from plants to mammals. This analysis has confirmed the strict requirement for the uniporter for in vivo mitochondrial calcium uptake and for maintaining mitochondrial calcium homeostasis. We further discuss the physiological effects following genetic manipulation of the uniporter on tissue bioenergetics and the threshold for cell death. Finally, we analyze the limited information regarding the role of various uniporter components in human disease.
Collapse
Affiliation(s)
- Julia C Liu
- Center for Molecular Medicine, National Heart Lung and Blood Institute, Bethesda, MD, 20892, USA
| | - Randi J Parks
- Systems Biology Center, National Heart Lung and Blood Institute, Bethesda, MD, 20892, USA
| | - Jie Liu
- Center for Molecular Medicine, National Heart Lung and Blood Institute, Bethesda, MD, 20892, USA
| | - Justin Stares
- Center for Molecular Medicine, National Heart Lung and Blood Institute, Bethesda, MD, 20892, USA
| | - Ilsa I Rovira
- Center for Molecular Medicine, National Heart Lung and Blood Institute, Bethesda, MD, 20892, USA
| | - Elizabeth Murphy
- Systems Biology Center, National Heart Lung and Blood Institute, Bethesda, MD, 20892, USA
| | - Toren Finkel
- Center for Molecular Medicine, National Heart Lung and Blood Institute, Bethesda, MD, 20892, USA. .,NIH, Bldg 10/CRC 5-3330, Bethesda, MD, 20892, USA.
| |
Collapse
|
116
|
Monné M, Daddabbo L, Giannossa LC, Nicolardi MC, Palmieri L, Miniero DV, Mangone A, Palmieri F. Mitochondrial ATP-Mg/phosphate carriers transport divalent inorganic cations in complex with ATP. J Bioenerg Biomembr 2017; 49:369-380. [PMID: 28695448 DOI: 10.1007/s10863-017-9721-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 06/22/2017] [Indexed: 12/16/2022]
Abstract
The ATP-Mg/phosphate carriers (APCs) modulate the intramitochondrial adenine nucleotide pool size. In this study the concentration-dependent effects of Mg2+ and other divalent cations (Me2+) on the transport of [3H]ATP in liposomes reconstituted with purified human and Arabidopsis APCs (hAPCs and AtAPCs, respectively, including some lacking their N-terminal domains) have been investigated. The transport of Me2+ mediated by these proteins was also measured. In the presence of a low external concentration of [3H]ATP (12 μM) and increasing concentrations of Me2+, Mg2+ stimulated the activity (measured as initial transport rate of [3H]ATP) of hAPCs and decreased that of AtAPCs; Fe2+ and Zn2+ stimulated markedly hAPCs and moderately AtAPCs; Ca2+ and Mn2+ markedly AtAPCs and moderately hAPCs; and Cu2+ decreased the activity of both hAPCs and AtAPCs. All the Me2+-dependent effects correlated well with the amount of ATP-Me complex present. The transport of [14C]AMP, which has a much lower ability of complexation than ATP, was not affected by the presence of the Me2+ tested, except Cu2+. Furthermore, the transport of [3H]ATP catalyzed by the ATP/ADP carrier, which is known to transport only free ATP and ADP, was inhibited by all the Me2+ tested in an inverse relationship with the formation of the ATP-Me complex. Finally, direct measurements of Mg2+, Mn2+, Fe2+, Zn2+ and Cu2+ showed that they are cotransported with ATP by both hAPCs and AtAPCs. It is likely that in vivo APCs transport free ATP and ATP-Mg complex to different degrees, and probably trace amounts of other Me2+ in complex with ATP.
Collapse
Affiliation(s)
- Magnus Monné
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via E. Orabona 4, 70125, Bari, Italy.,Department of Sciences, University of Basilicata, Via Ateneo Lucano 10, 85100, Potenza, Italy
| | - Lucia Daddabbo
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via E. Orabona 4, 70125, Bari, Italy
| | | | - Maria Cristina Nicolardi
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via E. Orabona 4, 70125, Bari, Italy
| | - Luigi Palmieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via E. Orabona 4, 70125, Bari, Italy.,Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, 70126, Bari, Italy
| | - Daniela Valeria Miniero
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via E. Orabona 4, 70125, Bari, Italy
| | - Annarosa Mangone
- Department of Chemistry, University of Bari, Via E. Orabona 4, 70126, Bari, Italy
| | - Ferdinando Palmieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via E. Orabona 4, 70125, Bari, Italy. .,Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, 70126, Bari, Italy.
| |
Collapse
|
117
|
Novikova EM, Vodeneev VA, Sukhov VS. Mathematical model of action potential in higher plants with account for the involvement of vacuole in the electrical signal generation. BIOCHEMISTRY MOSCOW SUPPLEMENT SERIES A-MEMBRANE AND CELL BIOLOGY 2017. [DOI: 10.1134/s1990747817010068] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
118
|
Szabò I, Spetea C. Impact of the ion transportome of chloroplasts on the optimization of photosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3115-3128. [PMID: 28338935 DOI: 10.1093/jxb/erx063] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Ions play fundamental roles in all living cells, and their gradients are often essential to fuel transport, regulate enzyme activities, and transduce energy within cells. Regulation of their homeostasis is essential for cell metabolism. Recent results indicate that modulation of ion fluxes might also represent a useful strategy to regulate one of the most important physiological processes taking place in chloroplasts, photosynthesis. Photosynthesis is highly regulated, due to its unique role as a cellular engine for growth in the light. Controlling the balance between ATP and NADPH synthesis is a critical task, and availability of these molecules can limit the overall photosynthetic yield. Photosynthetic organisms optimize photosynthesis in low light, where excitation energy limits CO2 fixation, and minimize photo-oxidative damage in high light by dissipating excess photons. Despite extensive studies of these phenomena, the mechanism governing light utilization in plants is still poorly understood. In this review, we provide an update of the recently identified chloroplast-located ion channels and transporters whose function impacts photosynthetic efficiency in plants.
Collapse
Affiliation(s)
- Ildikò Szabò
- Department of Biology, University of Padova, Italy; CNR Institute of Neuroscience, Padova, Italy
| | - Cornelia Spetea
- Department of Biological and Environmental Sciences, University of Gothenburg, 40530 Gothenburg, Sweden
| |
Collapse
|
119
|
Convergence of mitochondrial and chloroplastic ANAC017/PAP-dependent retrograde signalling pathways and suppression of programmed cell death. Cell Death Differ 2017; 24:955-960. [PMID: 28498364 DOI: 10.1038/cdd.2017.68] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 03/04/2017] [Accepted: 04/03/2017] [Indexed: 12/23/2022] Open
Abstract
The energy-converting organelles mitochondria and chloroplasts are tightly embedded in cellular metabolism and stress response. To appropriately control organelle function, extensive regulatory mechanisms are at play that involve two-way exchange between the nucleus and mitochondria/chloroplasts. In recent years, our understanding of how mitochondria and chloroplasts provide 'retrograde' feedback to the nucleus, resulting in targeted transcriptional changes, has greatly increased. Nevertheless, mitochondrial and chloroplast retrograde signalling have largely been studied independently, and only few points of interaction have been found or proposed. Through reassessment of recent publications, this perspective proposes that two of the most well-studied retrograde signalling pathways in plants, those mediated by ANAC017 and those mediated by phosphoadenosine phosphate (PAP), are most likely convergent and can direct overlapping genes. Furthermore, at least part of this common retrograde response appears targeted towards suppression of programmed cell death (PCD) triggered by organellar defects. The identified target genes are discussed in light of their roles in PCD suppression and amplifying the signalling cascade via positive-feedback loops. Finally, a mechanism is proposed that may explain why the convergence of PAP/ANAC017-dependent signalling appears capable of suppressing some types of PCD lesions, but not others, based on the subcellular location of the initial PCD-inducing dysfunction.
Collapse
|
120
|
Fu S, Li L, Kang H, Yang X, Men S, Shen Y. Chronic mitochondrial calcium elevation suppresses leaf senescence. Biochem Biophys Res Commun 2017; 487:672-677. [PMID: 28442347 DOI: 10.1016/j.bbrc.2017.04.113] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 04/20/2017] [Indexed: 12/24/2022]
Abstract
Mitochondria Ca2+ overload has long been recognized as a cell death trigger. Unexpectedly, we demonstrated a signaling complex composed of Calmodulin (CaM), Arabidopsis thaliana Bcl-2-associated athanogene 5 (AtBAG5) and Heat-shock cognate 70 protein (Hsc70) within Arabidopsis thaliana mitochondria which transduces mitochondria Ca2+ elevations to suppress leaf senescence. Gain- and loss-of-function AtBAG5 mutant plants revealed that, mitochondria Ca2+ elevation significantly increase chlorophyll retention and decrease H2O2 level in dark-induced leaf senescence assay. Based on our findings, we proposed a molecular mechanism in which chronic mitochondria Ca2+ elevation reduced ROS levels and thus inhibits leaf senescence.
Collapse
Affiliation(s)
- Shijuan Fu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, 94 Weijin Road, Tianjin 300071, China; College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Luhua Li
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, 94 Weijin Road, Tianjin 300071, China; College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Huimin Kang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, 94 Weijin Road, Tianjin 300071, China; College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Xue Yang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, 94 Weijin Road, Tianjin 300071, China.
| | - Shuzhen Men
- College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China.
| | - Yuequan Shen
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, 94 Weijin Road, Tianjin 300071, China; College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China; Synergetic Innovation Center of Chemical Science and Engineering, 94 Weijin Road, Tianjin 300071, China.
| |
Collapse
|
121
|
Konopka-Postupolska D, Clark G. Annexins as Overlooked Regulators of Membrane Trafficking in Plant Cells. Int J Mol Sci 2017; 18:E863. [PMID: 28422051 PMCID: PMC5412444 DOI: 10.3390/ijms18040863] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 04/03/2017] [Accepted: 04/06/2017] [Indexed: 12/11/2022] Open
Abstract
Annexins are an evolutionary conserved superfamily of proteins able to bind membrane phospholipids in a calcium-dependent manner. Their physiological roles are still being intensively examined and it seems that, despite their general structural similarity, individual proteins are specialized toward specific functions. However, due to their general ability to coordinate membranes in a calcium-sensitive fashion they are thought to participate in membrane flow. In this review, we present a summary of the current understanding of cellular transport in plant cells and consider the possible roles of annexins in different stages of vesicular transport.
Collapse
Affiliation(s)
- Dorota Konopka-Postupolska
- Plant Biochemistry Department, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland.
| | - Greg Clark
- Molecular, Cell, and Developmental Biology, University of Texas, Austin, TX 78712, USA.
| |
Collapse
|
122
|
Senkler J, Senkler M, Eubel H, Hildebrandt T, Lengwenus C, Schertl P, Schwarzländer M, Wagner S, Wittig I, Braun HP. The mitochondrial complexome of Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:1079-1092. [PMID: 27943495 DOI: 10.1111/tpj.13448] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 11/25/2016] [Accepted: 12/02/2016] [Indexed: 05/19/2023]
Abstract
Mitochondria are central to cellular metabolism and energy conversion. In plants they also enable photosynthesis through additional components and functional flexibility. A majority of those processes relies on the assembly of individual proteins to larger protein complexes, some of which operate as large molecular machines. There has been a strong interest in the makeup and function of mitochondrial protein complexes and protein-protein interactions in plants, but the experimental approaches used typically suffer from selectivity or bias. Here, we present a complexome profiling analysis for leaf mitochondria of the model plant Arabidopsis thaliana for the systematic characterization of protein assemblies. Purified organelle extracts were separated by 1D Blue native (BN) PAGE, a resulting gel lane was dissected into 70 slices (complexome fractions) and proteins in each slice were identified by label free quantitative shot-gun proteomics. Overall, 1359 unique proteins were identified, which were, on average, present in 17 complexome fractions each. Quantitative profiles of proteins along the BN gel lane were aligned by similarity, allowing us to visualize protein assemblies. The data allow re-annotating the subunit compositions of OXPHOS complexes, identifying assembly intermediates of OXPHOS complexes and assemblies of alternative respiratory oxidoreductases. Several protein complexes were discovered that have not yet been reported in plants, such as a 530 kDa Tat complex, 460 and 1000 kDa SAM complexes, a calcium ion uniporter complex (150 kDa) and several PPR protein complexes. We have set up a tailored online resource (https://complexomemap.de/at_mito_leaves) to deposit the data and to allow straightforward access and custom data analyses.
Collapse
Affiliation(s)
- Jennifer Senkler
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Herrenhäuser Str. 2, Hannover, 30419, Germany
| | - Michael Senkler
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Herrenhäuser Str. 2, Hannover, 30419, Germany
| | - Holger Eubel
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Herrenhäuser Str. 2, Hannover, 30419, Germany
| | - Tatjana Hildebrandt
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Herrenhäuser Str. 2, Hannover, 30419, Germany
| | - Christian Lengwenus
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Herrenhäuser Str. 2, Hannover, 30419, Germany
| | - Peter Schertl
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Herrenhäuser Str. 2, Hannover, 30419, Germany
| | - Markus Schwarzländer
- Plant Energy Biology Lab, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, Bonn, 53113, Germany
| | - Stephan Wagner
- Plant Energy Biology Lab, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, Bonn, 53113, Germany
| | - Ilka Wittig
- Functional Proteomics, School of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, Frankfurt, 60590, Germany
| | - Hans-Peter Braun
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Herrenhäuser Str. 2, Hannover, 30419, Germany
| |
Collapse
|
123
|
Palmeros-Suárez PA, Massange-Sánchez JA, Sánchez-Segura L, Martínez-Gallardo NA, Espitia Rangel E, Gómez-Leyva JF, Délano-Frier JP. AhDGR2, an amaranth abiotic stress-induced DUF642 protein gene, modifies cell wall structure and composition and causes salt and ABA hyper-sensibility in transgenic Arabidopsis. PLANTA 2017; 245:623-640. [PMID: 27988887 DOI: 10.1007/s00425-016-2635-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 12/02/2016] [Indexed: 05/26/2023]
Abstract
An amaranth DGR gene, induced under abiotic stress, modifies cell wall structure and causes hypersensitivity to ABA and salt when overexpressed in Arabidopsis. DUF642 is a highly conserved plant-specific family of unknown cell wall-associated proteins. The AhDGR2 gene, coding for a DUF642 protein, was significantly induced in grain amaranth (Amaranthus hypochondriacus) plants subjected to water-deficit and salinity stress, thereby suggesting its participation in abiotic stress tolerance in this plant. A role in development was also inferred from the higher AhDGR2 expression rates detected in young tissues. Subsequent overexpression of AhDGR2 in transgenic Arabidopsis plants (OE-AhDGR2) supported its possible role in development processes. Thus, OE-AhDGR2 plants generated significantly longer roots when grown in normal MS medium. However, they showed a hypersensitivity to increasing concentrations of abscisic acid or NaCl in the medium, as manifested by shorter root length, smaller and slightly chlorotic rosettes, as well as highly reduced germination rates. Contrary to expectations, OE-AhDGR2 plants were intolerant to abiotic stress. Moreover, cell walls in transgenic plants were thinner, in leaves, and more disorganized, in roots, and had significantly modified pectin levels. Lower pectin methylesterase activity detected in leaves of OE-AhDGR2 plants, but not in roots, was contrary to previous reports associating DUF642 proteins and decreased pectin esterification levels in cell walls. Nonetheless, microarray data identified candidate genes whose expression levels explained the phenotypes observed in leaves of OE-AhDGR2 plants, including several involved in cell wall integrity and extension, growth and development, and resistance to abiotic stress. These results support the role of DUF642 proteins in cell wall-related processes and offer novel insights into their possible role(s) in plants.
Collapse
Affiliation(s)
- Paola A Palmeros-Suárez
- Laboratorio de Biología Molecular, Instituto Tecnológico de Tlajomulco, Jalisco, km 10 Carretera a San Miguel Cuyutlán, CP 45640, Tlajomulco de Zúñiga, Jalisco, Mexico
| | - Julio A Massange-Sánchez
- Biotechnology and Biochemistry Department, Centro de Investigación y de Estudios Avanzados del I. P. N., Unidad Irapuato, Km 9.6 del Libramiento Norte Carretera Irapuato-León, CP 36821, Irapuato, GTO., Mexico
| | - Lino Sánchez-Segura
- Biotechnology and Biochemistry Department, Centro de Investigación y de Estudios Avanzados del I. P. N., Unidad Irapuato, Km 9.6 del Libramiento Norte Carretera Irapuato-León, CP 36821, Irapuato, GTO., Mexico
| | - Norma A Martínez-Gallardo
- Biotechnology and Biochemistry Department, Centro de Investigación y de Estudios Avanzados del I. P. N., Unidad Irapuato, Km 9.6 del Libramiento Norte Carretera Irapuato-León, CP 36821, Irapuato, GTO., Mexico
| | - Eduardo Espitia Rangel
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Km 13.5 Carrretera Los Reyes-Texcoco, CP 56250, Coatlinchán Texcoco, Estado de México, Mexico
| | - Juan F Gómez-Leyva
- Laboratorio de Biología Molecular, Instituto Tecnológico de Tlajomulco, Jalisco, km 10 Carretera a San Miguel Cuyutlán, CP 45640, Tlajomulco de Zúñiga, Jalisco, Mexico
| | - John P Délano-Frier
- Biotechnology and Biochemistry Department, Centro de Investigación y de Estudios Avanzados del I. P. N., Unidad Irapuato, Km 9.6 del Libramiento Norte Carretera Irapuato-León, CP 36821, Irapuato, GTO., Mexico.
| |
Collapse
|
124
|
Teardo E, Carraretto L, Wagner S, Formentin E, Behera S, De Bortoli S, Larosa V, Fuchs P, Lo Schiavo F, Raffaello A, Rizzuto R, Costa A, Schwarzländer M, Szabò I. Physiological Characterization of a Plant Mitochondrial Calcium Uniporter in Vitro and in Vivo. PLANT PHYSIOLOGY 2017; 173:1355-1370. [PMID: 28031475 PMCID: PMC5291028 DOI: 10.1104/pp.16.01359] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 12/21/2016] [Indexed: 05/19/2023]
Abstract
Over the recent years, several proteins that make up the mitochondrial calcium uniporter complex (MCUC) mediating Ca2+uptake into the mitochondrial matrix have been identified in mammals, including the channel-forming protein MCU. Although six MCU gene homologs are conserved in the model plant Arabidopsis (Arabidopsis thaliana) in which mitochondria can accumulate Ca2+, a functional characterization of plant MCU homologs has been lacking. Using electrophysiology, we show that one isoform, AtMCU1, gives rise to a Ca2+-permeable channel activity that can be observed even in the absence of accessory proteins implicated in the formation of the active mammalian channel. Furthermore, we provide direct evidence that AtMCU1 activity is sensitive to the mitochondrial calcium uniporter inhibitors Ruthenium Red and Gd3+, as well as to the Arabidopsis protein MICU, a regulatory MCUC component. AtMCU1 is prevalently expressed in roots, localizes to mitochondria, and its absence causes mild changes in Ca2+ dynamics as assessed by in vivo measurements in Arabidopsis root tips. Plants either lacking or overexpressing AtMCU1 display root mitochondria with altered ultrastructure and show shorter primary roots under restrictive growth conditions. In summary, our work adds evolutionary depth to the investigation of mitochondrial Ca2+ transport, indicates that AtMCU1, together with MICU as a regulator, represents a functional configuration of the plant mitochondrial Ca2+ uptake complex with differences to the mammalian MCUC, and identifies a new player of the intracellular Ca2+ regulation network in plants.
Collapse
Affiliation(s)
- Enrico Teardo
- Department of Biology (E.T., L.C., E.F., S.D.B., V.L., F.L.S., I.S.) and Department of Biomedical Sciences (A.R., R.R.), University of Padova, 35121 Padova, Italy;
- CNR Institute of Neuroscience, Padova, Italy, Department of Biomedical Sciences, University of Padua, 35121 Padova, Italy (E.T., I.S.);
- Plant Energy Biology Lab, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, 53113 Bonn, Germany (S.W., P.F., M.S.);
- Department of Biosciences, University of Milan, 20133 Milan, Italy (S.B., A.C.); and
- Institute of Biophysics, Consiglio Nazionale delle Ricerche, 20133 Milan, Italy (A.C.)
| | - Luca Carraretto
- Department of Biology (E.T., L.C., E.F., S.D.B., V.L., F.L.S., I.S.) and Department of Biomedical Sciences (A.R., R.R.), University of Padova, 35121 Padova, Italy
- CNR Institute of Neuroscience, Padova, Italy, Department of Biomedical Sciences, University of Padua, 35121 Padova, Italy (E.T., I.S.)
- Plant Energy Biology Lab, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, 53113 Bonn, Germany (S.W., P.F., M.S.)
- Department of Biosciences, University of Milan, 20133 Milan, Italy (S.B., A.C.); and
- Institute of Biophysics, Consiglio Nazionale delle Ricerche, 20133 Milan, Italy (A.C.)
| | - Stephan Wagner
- Department of Biology (E.T., L.C., E.F., S.D.B., V.L., F.L.S., I.S.) and Department of Biomedical Sciences (A.R., R.R.), University of Padova, 35121 Padova, Italy
- CNR Institute of Neuroscience, Padova, Italy, Department of Biomedical Sciences, University of Padua, 35121 Padova, Italy (E.T., I.S.)
- Plant Energy Biology Lab, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, 53113 Bonn, Germany (S.W., P.F., M.S.)
- Department of Biosciences, University of Milan, 20133 Milan, Italy (S.B., A.C.); and
- Institute of Biophysics, Consiglio Nazionale delle Ricerche, 20133 Milan, Italy (A.C.)
| | - Elide Formentin
- Department of Biology (E.T., L.C., E.F., S.D.B., V.L., F.L.S., I.S.) and Department of Biomedical Sciences (A.R., R.R.), University of Padova, 35121 Padova, Italy
- CNR Institute of Neuroscience, Padova, Italy, Department of Biomedical Sciences, University of Padua, 35121 Padova, Italy (E.T., I.S.)
- Plant Energy Biology Lab, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, 53113 Bonn, Germany (S.W., P.F., M.S.)
- Department of Biosciences, University of Milan, 20133 Milan, Italy (S.B., A.C.); and
- Institute of Biophysics, Consiglio Nazionale delle Ricerche, 20133 Milan, Italy (A.C.)
| | - Smrutisanjita Behera
- Department of Biology (E.T., L.C., E.F., S.D.B., V.L., F.L.S., I.S.) and Department of Biomedical Sciences (A.R., R.R.), University of Padova, 35121 Padova, Italy
- CNR Institute of Neuroscience, Padova, Italy, Department of Biomedical Sciences, University of Padua, 35121 Padova, Italy (E.T., I.S.)
- Plant Energy Biology Lab, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, 53113 Bonn, Germany (S.W., P.F., M.S.)
- Department of Biosciences, University of Milan, 20133 Milan, Italy (S.B., A.C.); and
- Institute of Biophysics, Consiglio Nazionale delle Ricerche, 20133 Milan, Italy (A.C.)
| | - Sara De Bortoli
- Department of Biology (E.T., L.C., E.F., S.D.B., V.L., F.L.S., I.S.) and Department of Biomedical Sciences (A.R., R.R.), University of Padova, 35121 Padova, Italy
- CNR Institute of Neuroscience, Padova, Italy, Department of Biomedical Sciences, University of Padua, 35121 Padova, Italy (E.T., I.S.)
- Plant Energy Biology Lab, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, 53113 Bonn, Germany (S.W., P.F., M.S.)
- Department of Biosciences, University of Milan, 20133 Milan, Italy (S.B., A.C.); and
- Institute of Biophysics, Consiglio Nazionale delle Ricerche, 20133 Milan, Italy (A.C.)
| | - Véronique Larosa
- Department of Biology (E.T., L.C., E.F., S.D.B., V.L., F.L.S., I.S.) and Department of Biomedical Sciences (A.R., R.R.), University of Padova, 35121 Padova, Italy
- CNR Institute of Neuroscience, Padova, Italy, Department of Biomedical Sciences, University of Padua, 35121 Padova, Italy (E.T., I.S.)
- Plant Energy Biology Lab, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, 53113 Bonn, Germany (S.W., P.F., M.S.)
- Department of Biosciences, University of Milan, 20133 Milan, Italy (S.B., A.C.); and
- Institute of Biophysics, Consiglio Nazionale delle Ricerche, 20133 Milan, Italy (A.C.)
| | - Philippe Fuchs
- Department of Biology (E.T., L.C., E.F., S.D.B., V.L., F.L.S., I.S.) and Department of Biomedical Sciences (A.R., R.R.), University of Padova, 35121 Padova, Italy
- CNR Institute of Neuroscience, Padova, Italy, Department of Biomedical Sciences, University of Padua, 35121 Padova, Italy (E.T., I.S.)
- Plant Energy Biology Lab, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, 53113 Bonn, Germany (S.W., P.F., M.S.)
- Department of Biosciences, University of Milan, 20133 Milan, Italy (S.B., A.C.); and
- Institute of Biophysics, Consiglio Nazionale delle Ricerche, 20133 Milan, Italy (A.C.)
| | - Fiorella Lo Schiavo
- Department of Biology (E.T., L.C., E.F., S.D.B., V.L., F.L.S., I.S.) and Department of Biomedical Sciences (A.R., R.R.), University of Padova, 35121 Padova, Italy
- CNR Institute of Neuroscience, Padova, Italy, Department of Biomedical Sciences, University of Padua, 35121 Padova, Italy (E.T., I.S.)
- Plant Energy Biology Lab, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, 53113 Bonn, Germany (S.W., P.F., M.S.)
- Department of Biosciences, University of Milan, 20133 Milan, Italy (S.B., A.C.); and
- Institute of Biophysics, Consiglio Nazionale delle Ricerche, 20133 Milan, Italy (A.C.)
| | - Anna Raffaello
- Department of Biology (E.T., L.C., E.F., S.D.B., V.L., F.L.S., I.S.) and Department of Biomedical Sciences (A.R., R.R.), University of Padova, 35121 Padova, Italy
- CNR Institute of Neuroscience, Padova, Italy, Department of Biomedical Sciences, University of Padua, 35121 Padova, Italy (E.T., I.S.)
- Plant Energy Biology Lab, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, 53113 Bonn, Germany (S.W., P.F., M.S.)
- Department of Biosciences, University of Milan, 20133 Milan, Italy (S.B., A.C.); and
- Institute of Biophysics, Consiglio Nazionale delle Ricerche, 20133 Milan, Italy (A.C.)
| | - Rosario Rizzuto
- Department of Biology (E.T., L.C., E.F., S.D.B., V.L., F.L.S., I.S.) and Department of Biomedical Sciences (A.R., R.R.), University of Padova, 35121 Padova, Italy
- CNR Institute of Neuroscience, Padova, Italy, Department of Biomedical Sciences, University of Padua, 35121 Padova, Italy (E.T., I.S.)
- Plant Energy Biology Lab, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, 53113 Bonn, Germany (S.W., P.F., M.S.)
- Department of Biosciences, University of Milan, 20133 Milan, Italy (S.B., A.C.); and
- Institute of Biophysics, Consiglio Nazionale delle Ricerche, 20133 Milan, Italy (A.C.)
| | - Alex Costa
- Department of Biology (E.T., L.C., E.F., S.D.B., V.L., F.L.S., I.S.) and Department of Biomedical Sciences (A.R., R.R.), University of Padova, 35121 Padova, Italy
- CNR Institute of Neuroscience, Padova, Italy, Department of Biomedical Sciences, University of Padua, 35121 Padova, Italy (E.T., I.S.)
- Plant Energy Biology Lab, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, 53113 Bonn, Germany (S.W., P.F., M.S.)
- Department of Biosciences, University of Milan, 20133 Milan, Italy (S.B., A.C.); and
- Institute of Biophysics, Consiglio Nazionale delle Ricerche, 20133 Milan, Italy (A.C.)
| | - Markus Schwarzländer
- Department of Biology (E.T., L.C., E.F., S.D.B., V.L., F.L.S., I.S.) and Department of Biomedical Sciences (A.R., R.R.), University of Padova, 35121 Padova, Italy
- CNR Institute of Neuroscience, Padova, Italy, Department of Biomedical Sciences, University of Padua, 35121 Padova, Italy (E.T., I.S.)
- Plant Energy Biology Lab, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, 53113 Bonn, Germany (S.W., P.F., M.S.)
- Department of Biosciences, University of Milan, 20133 Milan, Italy (S.B., A.C.); and
- Institute of Biophysics, Consiglio Nazionale delle Ricerche, 20133 Milan, Italy (A.C.)
| | - Ildiko Szabò
- Department of Biology (E.T., L.C., E.F., S.D.B., V.L., F.L.S., I.S.) and Department of Biomedical Sciences (A.R., R.R.), University of Padova, 35121 Padova, Italy;
- CNR Institute of Neuroscience, Padova, Italy, Department of Biomedical Sciences, University of Padua, 35121 Padova, Italy (E.T., I.S.);
- Plant Energy Biology Lab, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, 53113 Bonn, Germany (S.W., P.F., M.S.);
- Department of Biosciences, University of Milan, 20133 Milan, Italy (S.B., A.C.); and
- Institute of Biophysics, Consiglio Nazionale delle Ricerche, 20133 Milan, Italy (A.C.)
| |
Collapse
|
125
|
Zheng Y, Liao C, Zhao S, Wang C, Guo Y. The Glycosyltransferase QUA1 Regulates Chloroplast-Associated Calcium Signaling During Salt and Drought Stress in Arabidopsis. PLANT & CELL PHYSIOLOGY 2017; 58:329-341. [PMID: 28007965 DOI: 10.1093/pcp/pcw192] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 11/06/2016] [Indexed: 05/18/2023]
Abstract
Cytoplasmic Ca2+ ([Ca2+]cyt) elevation induced by various signals is responsible for appropriate downstream responses. Through a genetic screen of Arabidopsis thaliana mutants defective in stress-induced [Ca2+]cyt elevation, the glycosyltransferase QUASIMODO1 (QUA1) was identified as a regulator of [Ca2+]cyt in response to salt stress. Compared with the wild type, the qua1-4 mutant exhibited a dramatically greater increase in [Ca2+]cyt under NaCl treatment. Functional analysis showed that QUA1 is a novel chloroplast protein that regulates cytoplasmic Ca2+ signaling. QUA1 was detected in chloroplast thylakoids, and the qua1-4 mutant exhibited irregularly stacked grana. The observed greater increase in [Ca2+]cyt was inhibited upon recovery of chloroplast function in the qua1-4 mutant. Further analysis showed that CAS, a thylakoid-localized calcium sensor, also displayed irregularly stacked grana, and the chloroplasts of the qua1-4 cas-1 double mutant were similar to those of cas-1 plants. In QUA1-overexpressing plants, the protein level of CAS was decreased, and CAS was readily degraded under osmotic stress. When CAS was silenced in the qua1-4 mutant, the large [Ca2+]cyt increase was blocked, and the higher expression of PLC3 and PLC4 was suppressed. Under osmotic stress, the qua1-4 mutant showed an even greater elevation in [Ca2+]cyt and was hypersensitive to drought stress. However, this sensitivity was inhibited when the increase in [Ca2+]cyt was repressed in the qua1-4 mutant. Collectively, our data indicate that QUA1 may function in chloroplast-dependent calcium signaling under salt and drought stresses. Additionally, CAS may function downstream of QUA1 to mediate these processes.
Collapse
Affiliation(s)
- Yuan Zheng
- School of Agricultural Engineering, Nanyang Normal University, China
| | - Chancan Liao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, China
| | - Shuangshuang Zhao
- Key Laboratory of Plant Stress, Life Science College, Shandong Normal University, China
| | | | - Yan Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, China
| |
Collapse
|
126
|
Huang F, Luo J, Ning T, Cao W, Jin X, Zhao H, Wang Y, Han S. Cytosolic and Nucleosolic Calcium Signaling in Response to Osmotic and Salt Stresses Are Independent of Each Other in Roots of Arabidopsis Seedlings. FRONTIERS IN PLANT SCIENCE 2017; 8:1648. [PMID: 28983313 PMCID: PMC5613247 DOI: 10.3389/fpls.2017.01648] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/07/2017] [Indexed: 05/02/2023]
Abstract
Calcium acts as a universal second messenger in both developmental processes and responses to environmental stresses. Previous research has shown that a number of stimuli can induce [Ca2+] increases in both the cytoplasm and nucleus in plants. However, the relationship between cytosolic and nucleosolic calcium signaling remains obscure. Here, we generated transgenic plants containing a fusion protein, comprising rat parvalbumin (PV) with either a nuclear export sequence (PV-NES) or a nuclear localization sequence (NLS-PV), to selectively buffer the cytosolic or nucleosolic calcium. Firstly, we found that the osmotic stress-induced cytosolic [Ca2+] increase (OICIcyt) and the salt stress-induced cytosolic [Ca2+] increase (SICIcyt) were impaired in the PV-NES lines compared with the Arabidopsis wildtype (WT). Similarly, the osmotic stress-induced nucleosolic [Ca2+] increase (OICInuc) and salt stress-induced nucleosolic [Ca2+] increase (SICInuc) were also disrupted in the NLS-PV lines. These results indicate that PV can effectively buffer the increase of [Ca2+] in response to various stimuli in Arabidopsis. However, the OICIcyt and SICIcyt in the NLS-PV plants were similar to those in the WT, and the OICInuc and SICInuc in the PV-NES plants were also same as those in the WT, suggesting that the cytosolic and nucleosolic calcium dynamics are mutually independent. Furthermore, we found that osmotic stress- and salt stress-inhibited root growth was reduced dramatically in the PV-NES and NLS-PV lines, while the osmotic stress-induced increase of the lateral root primordia was higher in the PV-NES plants than either the WT or NLS-PV plants. In addition, several stress-responsive genes, namely CML37, DREB2A, MYB2, RD29A, and RD29B, displayed diverse expression patterns in response to osmotic and salt stress in the PV-NES and NLS-PV lines when compared with the WT. Together, these results imply that the cytosolic and nucleosolic calcium signaling coexist to play the pivotal roles in the growth and development of plants and their responses to environment stresses.
Collapse
|
127
|
Cao XQ, Jiang ZH, Yi YY, Yang Y, Ke LP, Pei ZM, Zhu S. Biotic and Abiotic Stresses Activate Different Ca 2+ Permeable Channels in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2017; 8:83. [PMID: 28197161 PMCID: PMC5281638 DOI: 10.3389/fpls.2017.00083] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 01/16/2017] [Indexed: 05/23/2023]
Abstract
To survive, plants must respond rapidly and effectively to various stress factors, including biotic and abiotic stresses. Salinity stress triggers the increase of cytosolic free Ca2+ concentration ([Ca2+]i) via Ca2+ influx across the plasma membrane, as well as bacterial flg22 and plant endogenous peptide Pep1. However, the interaction between abiotic stress-induced [Ca2+]i increases and biotic stress-induced [Ca2+]i increases is still not clear. Employing an aequorin-based Ca2+ imaging assay, in this work, we investigated the [Ca2+]i changes in response to flg22, Pep1, and NaCl treatments in Arabidopsis thaliana. We observed an additive effect on the [Ca2+]i increase which induced by flg22, Pep1, and NaCl. Our results indicate that biotic and abiotic stresses may activate different Ca2+ permeable channels. Further, calcium signal induced by biotic and abiotic stresses was independent in terms of spatial and temporal patterning.
Collapse
Affiliation(s)
- Xiao-Qiang Cao
- College of Life and Environmental Sciences, Hangzhou Normal UniversityHangzhou, China
| | - Zhong-Hao Jiang
- College of Life and Environmental Sciences, Hangzhou Normal UniversityHangzhou, China
- Department of Biology, Duke University, DurhamNC, USA
| | - Yan-Yan Yi
- College of Life and Environmental Sciences, Hangzhou Normal UniversityHangzhou, China
| | - Yi Yang
- College of Life and Environmental Sciences, Hangzhou Normal UniversityHangzhou, China
| | - Li-Ping Ke
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences, Zhejiang Sci-Tech UniversityHangzhou, China
| | - Zhen-Ming Pei
- College of Life and Environmental Sciences, Hangzhou Normal UniversityHangzhou, China
- Department of Biology, Duke University, DurhamNC, USA
| | - Shan Zhu
- College of Life and Environmental Sciences, Hangzhou Normal UniversityHangzhou, China
- *Correspondence: Shan Zhu,
| |
Collapse
|
128
|
Winship LJ, Rounds C, Hepler PK. Perturbation Analysis of Calcium, Alkalinity and Secretion during Growth of Lily Pollen Tubes. PLANTS 2016; 6:plants6010003. [PMID: 28042810 PMCID: PMC5371762 DOI: 10.3390/plants6010003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/24/2016] [Accepted: 12/26/2016] [Indexed: 01/07/2023]
Abstract
Pollen tubes grow by spatially and temporally regulated expansion of new material secreted into the cell wall at the tip of the tube. A complex web of interactions among cellular components, ions and small molecule provides dynamic control of localized expansion and secretion. Cross-correlation studies on oscillating lily (Lilium formosanum Wallace) pollen tubes showed that an increase in intracellular calcium follows an increase in growth, whereas the increase in the alkaline band and in secretion both anticipate the increase in growth rate. Calcium, as a follower, is unlikely to be a stimulator of growth, whereas the alkaline band, as a leader, may be an activator. To gain further insight herein we reversibly inhibited growth with potassium cyanide (KCN) and followed the re-establishment of calcium, pH and secretion patterns as growth resumed. While KCN markedly slows growth and causes the associated gradients of calcium and pH to sharply decline, its removal allows growth and vital processes to fully recover. The calcium gradient reappears before growth restarts; however, it is preceded by both the alkaline band and secretion, in which the alkaline band is slightly advanced over secretion. Thus the pH gradient, rather than the tip-focused calcium gradient, may regulate pollen tube growth.
Collapse
Affiliation(s)
| | - Caleb Rounds
- Biology Department, University of Massachusetts, Amherst, MA 01003, USA.
| | - Peter K Hepler
- Biology Department, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
129
|
Massange-Sánchez JA, Palmeros-Suárez PA, Espitia-Rangel E, Rodríguez-Arévalo I, Sánchez-Segura L, Martínez-Gallardo NA, Alatorre-Cobos F, Tiessen A, Délano-Frier JP. Overexpression of Grain Amaranth (Amaranthus hypochondriacus) AhERF or AhDOF Transcription Factors in Arabidopsis thaliana Increases Water Deficit- and Salt-Stress Tolerance, Respectively, via Contrasting Stress-Amelioration Mechanisms. PLoS One 2016; 11:e0164280. [PMID: 27749893 PMCID: PMC5066980 DOI: 10.1371/journal.pone.0164280] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 09/22/2016] [Indexed: 11/19/2022] Open
Abstract
Two grain amaranth transcription factor (TF) genes were overexpressed in Arabidopsis plants. The first, coding for a group VII ethylene response factor TF (i.e., AhERF-VII) conferred tolerance to water-deficit stress (WS) in transgenic Arabidopsis without affecting vegetative or reproductive growth. A significantly lower water-loss rate in detached leaves coupled to a reduced stomatal opening in leaves of plants subjected to WS was associated with this trait. WS tolerance was also associated with an increased antioxidant enzyme activity and the accumulation of putative stress-related secondary metabolites. However, microarray and GO data did not indicate an obvious correlation between WS tolerance, stomatal closure, and abscisic acid (ABA)-related signaling. This scenario suggested that stomatal closure during WS in these plants involved ABA-independent mechanisms, possibly involving reactive oxygen species (ROS). WS tolerance may have also involved other protective processes, such as those employed for methyl glyoxal detoxification. The second, coding for a class A and cluster I DNA binding with one finger TF (i.e., AhDof-AI) provided salt-stress (SS) tolerance with no evident fitness penalties. The lack of an obvious development-related phenotype contrasted with microarray and GO data showing an enrichment of categories and genes related to developmental processes, particularly flowering. SS tolerance also correlated with increased superoxide dismutase activity but not with augmented stomatal closure. Additionally, microarray and GO data indicated that, contrary to AhERF-VII, SS tolerance conferred by AhDof-AI in Arabidopsis involved ABA-dependent and ABA-independent stress amelioration mechanisms.
Collapse
Affiliation(s)
- Julio A. Massange-Sánchez
- Centro de Investigación y de Estudios Avanzados del I. P. N., Unidad Irapuato, Km 9.6 del Libramiento Norte Carretera Irapuato-León, C.P. 36821, Irapuato, Gto., México
| | - Paola A. Palmeros-Suárez
- Laboratorio de Biología Molecular, Instituto Tecnológico de Tlajomulco, Jalisco, km 10 Carretera a San Miguel Cuyutlán, CP 45640 Tlajomulco de Zúñiga, Jalisco, Mexico
| | - Eduardo Espitia-Rangel
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Km 13.5 Carrretera Los Reyes-Texcoco, C.P. 56250, Coatlinchán Texcoco, Estado de México, México
| | - Isaac Rodríguez-Arévalo
- Laboratorio Nacional de Genómica para la Biodiversidad, Cinvestav Irapuato, Km 9.6 del Libramiento Norte Carretera Irapuato-León, CP 36821, Irapuato, Gto., Mexico
| | - Lino Sánchez-Segura
- Centro de Investigación y de Estudios Avanzados del I. P. N., Unidad Irapuato, Km 9.6 del Libramiento Norte Carretera Irapuato-León, C.P. 36821, Irapuato, Gto., México
| | - Norma A. Martínez-Gallardo
- Centro de Investigación y de Estudios Avanzados del I. P. N., Unidad Irapuato, Km 9.6 del Libramiento Norte Carretera Irapuato-León, C.P. 36821, Irapuato, Gto., México
| | - Fulgencio Alatorre-Cobos
- Conacyt Research Fellow-Colegio de Postgraduados, Campus Campeche. Carretera Haltunchen-Edzna Km 17.5, Sihochac, Champoton, 24450, Campeche, México
| | - Axel Tiessen
- Centro de Investigación y de Estudios Avanzados del I. P. N., Unidad Irapuato, Km 9.6 del Libramiento Norte Carretera Irapuato-León, C.P. 36821, Irapuato, Gto., México
| | - John P. Délano-Frier
- Centro de Investigación y de Estudios Avanzados del I. P. N., Unidad Irapuato, Km 9.6 del Libramiento Norte Carretera Irapuato-León, C.P. 36821, Irapuato, Gto., México
| |
Collapse
|
130
|
Wilkins KA, Matthus E, Swarbreck SM, Davies JM. Calcium-Mediated Abiotic Stress Signaling in Roots. FRONTIERS IN PLANT SCIENCE 2016; 7:1296. [PMID: 27621742 PMCID: PMC5002411 DOI: 10.3389/fpls.2016.01296] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 08/12/2016] [Indexed: 05/20/2023]
Abstract
Roots are subjected to a range of abiotic stresses as they forage for water and nutrients. Cytosolic free calcium is a common second messenger in the signaling of abiotic stress. In addition, roots take up calcium both as a nutrient and to stimulate exocytosis in growth. For calcium to fulfill its multiple roles must require strict spatio-temporal regulation of its uptake and efflux across the plasma membrane, its buffering in the cytosol and its sequestration or release from internal stores. This prompts the question of how specificity of signaling output can be achieved against the background of calcium's other uses. Threats to agriculture such as salinity, water availability and hypoxia are signaled through calcium. Nutrient deficiency is also emerging as a stress that is signaled through cytosolic free calcium, with progress in potassium, nitrate and boron deficiency signaling now being made. Heavy metals have the capacity to trigger or modulate root calcium signaling depending on their dose and their capacity to catalyze production of hydroxyl radicals. Mechanical stress and cold stress can both trigger an increase in root cytosolic free calcium, with the possibility of membrane deformation playing a part in initiating the calcium signal. This review addresses progress in identifying the calcium transporting proteins (particularly channels such as annexins and cyclic nucleotide-gated channels) that effect stress-induced calcium increases in roots and explores links to reactive oxygen species, lipid signaling, and the unfolded protein response.
Collapse
Affiliation(s)
| | | | | | - Julia M. Davies
- Department of Plant Sciences, University of CambridgeCambridge, UK
| |
Collapse
|
131
|
Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters. Proc Natl Acad Sci U S A 2016; 113:E5242-9. [PMID: 27528686 DOI: 10.1073/pnas.1519555113] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Plants experience hyperosmotic stress when faced with saline soils and possibly with drought stress, but it is currently unclear how plant roots perceive this stress in an environment of dynamic water availabilities. Hyperosmotic stress induces a rapid rise in intracellular Ca(2+) concentrations ([Ca(2+)]i) in plants, and this Ca(2+) response may reflect the activities of osmo-sensory components. Here, we find in the reference plant Arabidopsis thaliana that the rapid hyperosmotic-induced Ca(2+) response exhibited enhanced response magnitudes after preexposure to an intermediate hyperosmotic stress. We term this phenomenon "osmo-sensory potentiation." The initial sensing and potentiation occurred in intact plants as well as in roots. Having established a quantitative understanding of wild-type responses, we investigated effects of pharmacological inhibitors and candidate channel/transporter mutants. Quintuple mechano-sensitive channels of small conductance-like (MSL) plasma membrane-targeted channel mutants as well as double mid1-complementing activity (MCA) channel mutants did not affect the response. Interestingly, however, double mutations in the plastid K(+) exchange antiporter (KEA) transporters kea1kea2 and a single mutation that does not visibly affect chloroplast structure, kea3, impaired the rapid hyperosmotic-induced Ca(2+) responses. These mutations did not significantly affect sensory potentiation of the response. These findings suggest that plastids may play an important role in early steps mediating the response to hyperosmotic stimuli. Together, these findings demonstrate that the plant osmo-sensory components necessary to generate rapid osmotic-induced Ca(2+) responses remain responsive under varying osmolarities, endowing plants with the ability to perceive the dynamic intensities of water limitation imposed by osmotic stress.
Collapse
|
132
|
De Bortoli S, Teardo E, Szabò I, Morosinotto T, Alboresi A. Evolutionary insight into the ionotropic glutamate receptor superfamily of photosynthetic organisms. Biophys Chem 2016; 218:14-26. [PMID: 27586818 DOI: 10.1016/j.bpc.2016.07.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 07/20/2016] [Accepted: 07/20/2016] [Indexed: 01/14/2023]
Abstract
Photosynthetic eukaryotes have a complex evolutionary history shaped by multiple endosymbiosis events that required a tight coordination between the organelles and the rest of the cell. Plant ionotropic glutamate receptors (iGLRs) form a large superfamily of proteins with a predicted or proven non-selective cation channel activity regulated by a broad range of amino acids. They are involved in different physiological processes such as C/N sensing, resistance against fungal infection, root and pollen tube growth and response to wounding and pathogens. Most of the present knowledge is limited to iGLRs located in plasma membranes. However, recent studies localized different iGLR isoforms to mitochondria and/or chloroplasts, suggesting the possibility that they play a specific role in bioenergetic processes. In this work, we performed a comparative analysis of GLR sequences from bacteria and various photosynthetic eukaryotes. In particular, novel types of selectivity filters of bacteria are reported adding new examples of the great diversity of the GLR superfamily. The highest variability in GLR sequences was found among the algal sequences (cryptophytes, diatoms, brown and green algae). GLRs of land plants are not closely related to the GLRs of green algae analyzed in this work. The GLR family underwent a great expansion in vascular plants. Among plant GLRs, Clade III includes sequences from Physcomitrella patens, Marchantia polymorpha and gymnosperms and can be considered the most ancient, while other clades likely emerged later. In silico analysis allowed the identification of sequences with a putative target to organelles. Sequences with a predicted localization to mitochondria and chloroplasts are randomly distributed among different type of GLRs, suggesting that no compartment-related specific function has been maintained across the species.
Collapse
Affiliation(s)
| | - Enrico Teardo
- Department of Biology, University of Padova, Italy; CNR Institute of Neuroscience, Padova, Italy
| | - Ildikò Szabò
- Department of Biology, University of Padova, Italy; CNR Institute of Neuroscience, Padova, Italy
| | | | | |
Collapse
|
133
|
Loro G, Wagner S, Doccula FG, Behera S, Weinl S, Kudla J, Schwarzländer M, Costa A, Zottini M. Chloroplast-Specific in Vivo Ca2+ Imaging Using Yellow Cameleon Fluorescent Protein Sensors Reveals Organelle-Autonomous Ca2+ Signatures in the Stroma. PLANT PHYSIOLOGY 2016; 171:2317-30. [PMID: 27252306 PMCID: PMC4972287 DOI: 10.1104/pp.16.00652] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 05/31/2016] [Indexed: 05/18/2023]
Abstract
In eukaryotes, subcellular compartments such as mitochondria, the endoplasmic reticulum, lysosomes, and vacuoles have the capacity for Ca(2+) transport across their membranes to modulate the activity of compartmentalized enzymes or to convey specific cellular signaling events. In plants, it has been suggested that chloroplasts also display Ca(2+) regulation. So far, monitoring of stromal Ca(2+) dynamics in vivo has exclusively relied on using the luminescent Ca(2+) probe aequorin. However, this technique is limited in resolution and can only provide a readout averaged over chloroplast populations from different cells and tissues. Here, we present a toolkit of Arabidopsis (Arabidopsis thaliana) Ca(2+) sensor lines expressing plastid-targeted FRET-based Yellow Cameleon (YC) sensors. We demonstrate that the probes reliably report in vivo Ca(2+) dynamics in the stroma of root plastids in response to extracellular ATP and of leaf mesophyll and guard cell chloroplasts during light-to-low-intensity blue light illumination transition. Applying YC sensing of stromal Ca(2+) dynamics to single chloroplasts, we confirm findings of gradual, sustained stromal Ca(2+) increases at the tissue level after light-to-low-intensity blue light illumination transitions, but monitor transient Ca(2+) spiking as a distinct and previously unknown component of stromal Ca(2+) signatures. Spiking was dependent on the availability of cytosolic Ca(2+) but not synchronized between the chloroplasts of a cell. In contrast, the gradual sustained Ca(2+) increase occurred independent of cytosolic Ca(2+), suggesting intraorganellar Ca(2+) release. We demonstrate the capacity of the YC sensor toolkit to identify novel, fundamental facets of chloroplast Ca(2+) dynamics and to refine the understanding of plastidial Ca(2+) regulation.
Collapse
Affiliation(s)
- Giovanna Loro
- Department of Biosciences, University of Milan, 20133 Milan, Italy (G.L., F.G.D., S.B., A.C.);Department of Biology, University of Padua, Italy, 35131 Padua, Italy (G.L., M.Z.);Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, 48149 Münster, Germany (S.We., J.K.);Plant Energy Biology Lab, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, 53113 Bonn, Germany (S.Wa., M.S.); andInstitute of Biophysics, Consiglio Nazionale delle Ricerche, 20133 Milan, Italy (A.C.)
| | - Stephan Wagner
- Department of Biosciences, University of Milan, 20133 Milan, Italy (G.L., F.G.D., S.B., A.C.);Department of Biology, University of Padua, Italy, 35131 Padua, Italy (G.L., M.Z.);Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, 48149 Münster, Germany (S.We., J.K.);Plant Energy Biology Lab, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, 53113 Bonn, Germany (S.Wa., M.S.); andInstitute of Biophysics, Consiglio Nazionale delle Ricerche, 20133 Milan, Italy (A.C.)
| | - Fabrizio Gandolfo Doccula
- Department of Biosciences, University of Milan, 20133 Milan, Italy (G.L., F.G.D., S.B., A.C.);Department of Biology, University of Padua, Italy, 35131 Padua, Italy (G.L., M.Z.);Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, 48149 Münster, Germany (S.We., J.K.);Plant Energy Biology Lab, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, 53113 Bonn, Germany (S.Wa., M.S.); andInstitute of Biophysics, Consiglio Nazionale delle Ricerche, 20133 Milan, Italy (A.C.)
| | - Smrutisanjita Behera
- Department of Biosciences, University of Milan, 20133 Milan, Italy (G.L., F.G.D., S.B., A.C.);Department of Biology, University of Padua, Italy, 35131 Padua, Italy (G.L., M.Z.);Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, 48149 Münster, Germany (S.We., J.K.);Plant Energy Biology Lab, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, 53113 Bonn, Germany (S.Wa., M.S.); andInstitute of Biophysics, Consiglio Nazionale delle Ricerche, 20133 Milan, Italy (A.C.)
| | - Stefan Weinl
- Department of Biosciences, University of Milan, 20133 Milan, Italy (G.L., F.G.D., S.B., A.C.);Department of Biology, University of Padua, Italy, 35131 Padua, Italy (G.L., M.Z.);Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, 48149 Münster, Germany (S.We., J.K.);Plant Energy Biology Lab, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, 53113 Bonn, Germany (S.Wa., M.S.); andInstitute of Biophysics, Consiglio Nazionale delle Ricerche, 20133 Milan, Italy (A.C.)
| | - Joerg Kudla
- Department of Biosciences, University of Milan, 20133 Milan, Italy (G.L., F.G.D., S.B., A.C.);Department of Biology, University of Padua, Italy, 35131 Padua, Italy (G.L., M.Z.);Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, 48149 Münster, Germany (S.We., J.K.);Plant Energy Biology Lab, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, 53113 Bonn, Germany (S.Wa., M.S.); andInstitute of Biophysics, Consiglio Nazionale delle Ricerche, 20133 Milan, Italy (A.C.)
| | - Markus Schwarzländer
- Department of Biosciences, University of Milan, 20133 Milan, Italy (G.L., F.G.D., S.B., A.C.);Department of Biology, University of Padua, Italy, 35131 Padua, Italy (G.L., M.Z.);Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, 48149 Münster, Germany (S.We., J.K.);Plant Energy Biology Lab, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, 53113 Bonn, Germany (S.Wa., M.S.); andInstitute of Biophysics, Consiglio Nazionale delle Ricerche, 20133 Milan, Italy (A.C.)
| | - Alex Costa
- Department of Biosciences, University of Milan, 20133 Milan, Italy (G.L., F.G.D., S.B., A.C.);Department of Biology, University of Padua, Italy, 35131 Padua, Italy (G.L., M.Z.);Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, 48149 Münster, Germany (S.We., J.K.);Plant Energy Biology Lab, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, 53113 Bonn, Germany (S.Wa., M.S.); andInstitute of Biophysics, Consiglio Nazionale delle Ricerche, 20133 Milan, Italy (A.C.)
| | - Michela Zottini
- Department of Biosciences, University of Milan, 20133 Milan, Italy (G.L., F.G.D., S.B., A.C.);Department of Biology, University of Padua, Italy, 35131 Padua, Italy (G.L., M.Z.);Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, 48149 Münster, Germany (S.We., J.K.);Plant Energy Biology Lab, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, 53113 Bonn, Germany (S.Wa., M.S.); andInstitute of Biophysics, Consiglio Nazionale delle Ricerche, 20133 Milan, Italy (A.C.)
| |
Collapse
|
134
|
No plastidial calmodulin-like proteins detected by two targeted mass-spectrometry approaches and GFP fusion proteins. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.neps.2016.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
135
|
Abstract
Deciphering the folding pathways and predicting the structures of complex three-dimensional biomolecules is central to elucidating biological function. RNA is single-stranded, which gives it the freedom to fold into complex secondary and tertiary structures. These structures endow RNA with the ability to perform complex chemistries and functions ranging from enzymatic activity to gene regulation. Given that RNA is involved in many essential cellular processes, it is critical to understand how it folds and functions in vivo. Within the last few years, methods have been developed to probe RNA structures in vivo and genome-wide. These studies reveal that RNA often adopts very different structures in vivo and in vitro, and provide profound insights into RNA biology. Nonetheless, both in vitro and in vivo approaches have limitations: studies in the complex and uncontrolled cellular environment make it difficult to obtain insight into RNA folding pathways and thermodynamics, and studies in vitro often lack direct cellular relevance, leaving a gap in our knowledge of RNA folding in vivo. This gap is being bridged by biophysical and mechanistic studies of RNA structure and function under conditions that mimic the cellular environment. To date, most artificial cytoplasms have used various polymers as molecular crowding agents and a series of small molecules as cosolutes. Studies under such in vivo-like conditions are yielding fresh insights, such as cooperative folding of functional RNAs and increased activity of ribozymes. These observations are accounted for in part by molecular crowding effects and interactions with other molecules. In this review, we report milestones in RNA folding in vitro and in vivo and discuss ongoing experimental and computational efforts to bridge the gap between these two conditions in order to understand how RNA folds in the cell.
Collapse
|
136
|
Hochmal AK, Zinzius K, Charoenwattanasatien R, Gäbelein P, Mutoh R, Tanaka H, Schulze S, Liu G, Scholz M, Nordhues A, Offenborn JN, Petroutsos D, Finazzi G, Fufezan C, Huang K, Kurisu G, Hippler M. Calredoxin represents a novel type of calcium-dependent sensor-responder connected to redox regulation in the chloroplast. Nat Commun 2016; 7:11847. [PMID: 27297041 PMCID: PMC4911631 DOI: 10.1038/ncomms11847] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 05/05/2016] [Indexed: 11/30/2022] Open
Abstract
Calcium (Ca(2+)) and redox signalling play important roles in acclimation processes from archaea to eukaryotic organisms. Herein we characterized a unique protein from Chlamydomonas reinhardtii that has the competence to integrate Ca(2+)- and redox-related signalling. This protein, designated as calredoxin (CRX), combines four Ca(2+)-binding EF-hands and a thioredoxin (TRX) domain. A crystal structure of CRX, at 1.6 Å resolution, revealed an unusual calmodulin-fold of the Ca(2+)-binding EF-hands, which is functionally linked via an inter-domain communication path with the enzymatically active TRX domain. CRX is chloroplast-localized and interacted with a chloroplast 2-Cys peroxiredoxin (PRX1). Ca(2+)-binding to CRX is critical for its TRX activity and for efficient binding and reduction of PRX1. Thereby, CRX represents a new class of Ca(2+)-dependent 'sensor-responder' proteins. Genetically engineered Chlamydomonas strains with strongly diminished amounts of CRX revealed altered photosynthetic electron transfer and were affected in oxidative stress response underpinning a function of CRX in stress acclimation.
Collapse
Affiliation(s)
- Ana Karina Hochmal
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Münster, Germany
| | - Karen Zinzius
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Münster, Germany
| | | | - Philipp Gäbelein
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Münster, Germany
| | - Risa Mutoh
- Institute for Protein Research, Osaka University, Suita Osaka 565-0871, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Saitama 332-0012, Japan
| | - Hideaki Tanaka
- Institute for Protein Research, Osaka University, Suita Osaka 565-0871, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Saitama 332-0012, Japan
| | - Stefan Schulze
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Münster, Germany
| | - Gai Liu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Martin Scholz
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Münster, Germany
| | - André Nordhues
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Münster, Germany
| | - Jan Niklas Offenborn
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Münster, Germany
| | - Dimitris Petroutsos
- Centre National Recherche Scientifique, Unité Mixte Recherche 5168, Laboratoire Physiologie Cellulaire et Végétale, F-38054 Grenoble, France
- Commissariat à l'Energie Atomique et Energies Alternatives, l'Institut de Recherches en Technologies et Sciences pour le Vivant, F-38054 Grenoble, France
- Université Grenoble 1, F-38041 Grenoble, France
- Institut National Recherche Agronomique, UMR1200, F-38054 Grenoble, France
| | - Giovanni Finazzi
- Centre National Recherche Scientifique, Unité Mixte Recherche 5168, Laboratoire Physiologie Cellulaire et Végétale, F-38054 Grenoble, France
- Commissariat à l'Energie Atomique et Energies Alternatives, l'Institut de Recherches en Technologies et Sciences pour le Vivant, F-38054 Grenoble, France
- Université Grenoble 1, F-38041 Grenoble, France
- Institut National Recherche Agronomique, UMR1200, F-38054 Grenoble, France
| | - Christian Fufezan
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Münster, Germany
| | - Kaiyao Huang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Genji Kurisu
- Institute for Protein Research, Osaka University, Suita Osaka 565-0871, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Saitama 332-0012, Japan
| | - Michael Hippler
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Münster, Germany
| |
Collapse
|
137
|
Grieco M, Jain A, Ebersberger I, Teige M. An evolutionary view on thylakoid protein phosphorylation uncovers novel phosphorylation hotspots with potential functional implications. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3883-96. [PMID: 27117338 DOI: 10.1093/jxb/erw164] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The regulation of photosynthetic light reactions by reversible protein phosphorylation is well established today, but functional studies have so far mostly been restricted to processes affecting light-harvesting complex II and the core proteins of photosystem II. Virtually no functional data are available on regulatory effects at the other photosynthetic complexes despite the identification of multiple phosphorylation sites. Therefore we summarize the available data from 50 published phospho-proteomics studies covering the main complexes involved in photosynthetic light reactions in the 'green lineage' (i.e. green algae and land plants) as well as its cyanobacterial counterparts. In addition, we performed an extensive orthologue search for the major photosynthetic thylakoid proteins in 41 sequenced genomes and generated sequence alignments to survey the phylogenetic distribution of phosphorylation sites and their evolutionary conservation from green algae to higher plants. We observed a number of uncharacterized phosphorylation hotspots at photosystem I and the ATP synthase with potential functional relevance as well as an unexpected divergence of phosphosites. Although technical limitations might account for a number of those differences, we think that many of these phosphosites have important functions. This is particularly important for mono- and dicot plants, where these sites might be involved in regulatory processes such as stress acclimation.
Collapse
Affiliation(s)
- Michele Grieco
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstr. 14, A-1090 Vienna, Austria
| | - Arpit Jain
- Department for Applied Bioinformatics, Institute for Cell Biology and Neuroscience, Goethe University, Max-von-Laue Str. 13, D-60438 Frankfurt, Germany
| | - Ingo Ebersberger
- Department for Applied Bioinformatics, Institute for Cell Biology and Neuroscience, Goethe University, Max-von-Laue Str. 13, D-60438 Frankfurt, Germany Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberg Anlage 25, D-60325 Frankfurt, Germany
| | - Markus Teige
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstr. 14, A-1090 Vienna, Austria
| |
Collapse
|
138
|
Wagner S, De Bortoli S, Schwarzländer M, Szabò I. Regulation of mitochondrial calcium in plants versus animals. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3809-29. [PMID: 27001920 DOI: 10.1093/jxb/erw100] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Ca(2+) acts as an important cellular second messenger in eukaryotes. In both plants and animals, a wide variety of environmental and developmental stimuli trigger Ca(2+) transients of a specific signature that can modulate gene expression and metabolism. In animals, mitochondrial energy metabolism has long been considered a hotspot of Ca(2+) regulation, with a range of pathophysiology linked to altered Ca(2+) control. Recently, several molecular players involved in mitochondrial Ca(2+) signalling have been identified, including those of the mitochondrial Ca(2+) uniporter. Despite strong evidence for sophisticated Ca(2+) regulation in plant mitochondria, the picture has remained much less clear. This is currently changing aided by live imaging and genetic approaches which allow dissection of subcellular Ca(2+) dynamics and identification of the proteins involved. We provide an update on our current understanding in the regulation of mitochondrial Ca(2+) and signalling by comparing work in plants and animals. The significance of mitochondrial Ca(2+) control is discussed in the light of the specific metabolic and energetic needs of plant and animal cells.
Collapse
Affiliation(s)
- Stephan Wagner
- Plant Energy Biology Lab, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113 Bonn, Germany
| | - Sara De Bortoli
- Department of Biology and CNR Institute of Neurosciences, University of Padova, Viale G. Colombo 3, 35121 Padova, Italy
| | - Markus Schwarzländer
- Plant Energy Biology Lab, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113 Bonn, Germany
| | - Ildikò Szabò
- Department of Biology and CNR Institute of Neurosciences, University of Padova, Viale G. Colombo 3, 35121 Padova, Italy
| |
Collapse
|
139
|
Serrano I, Audran C, Rivas S. Chloroplasts at work during plant innate immunity. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3845-54. [PMID: 26994477 DOI: 10.1093/jxb/erw088] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The major role played by chloroplasts during light harvesting, energy production, redox homeostasis, and retrograde signalling processes has been extensively characterized. Beyond the obvious link between chloroplast functions in primary metabolism and as providers of photosynthesis-derived carbon sources and energy, a growing body of evidence supports a central role for chloroplasts as integrators of environmental signals and, more particularly, as key defence organelles. Here, we review the importance of these organelles as primary sites for the biosynthesis and transmission of pro-defence signals during plant immune responses. In addition, we highlight interorganellar communication as a crucial process for amplification of the immune response. Finally, molecular strategies used by microbes to manipulate, directly or indirectly, the production/function of defence-related signalling molecules and subvert chloroplast-based defences are also discussed.
Collapse
Affiliation(s)
- Irene Serrano
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Corinne Audran
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Susana Rivas
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| |
Collapse
|
140
|
Łabuz J, Samardakiewicz S, Hermanowicz P, Wyroba E, Pilarska M, Gabryś H. Blue light-dependent changes in loosely bound calcium in Arabidopsis mesophyll cells: an X-ray microanalysis study. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3953-64. [PMID: 26957564 PMCID: PMC4915525 DOI: 10.1093/jxb/erw089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Calcium is involved in the signal transduction pathway from phototropins, the blue light photoreceptor kinases which mediate chloroplast movements. The chloroplast accumulation response in low light is controlled by both phot1 and phot2, while only phot2 is involved in avoidance movement induced by strong light. Phototropins elevate cytosolic Ca(2+) after activation by blue light. In higher plants, both types of chloroplast responses depend on Ca(2+), and internal calcium stores seem to be crucial for these processes. Yet, the calcium signatures generated after the perception of blue light by phototropins are not well understood. To characterize the localization of calcium in Arabidopsis mesophyll cells, loosely bound (exchangeable) Ca(2+) was precipitated with potassium pyroantimonate and analyzed by transmission electron microscopy followed by energy-dispersive X-ray microanalysis. In dark-adapted wild-type Arabidopsis leaves, calcium precipitates were observed at the cell wall, where they formed spherical structures. After strong blue light irradiation, calcium at the apoplast prevailed, and bigger, multilayer precipitates were found. Spherical calcium precipitates were also detected at the tonoplast. After red light treatment as a control, the precipitates at the cell wall were smaller and less numerous. In the phot2 and phot1phot2 mutants, calcium patterns were different from those of wild-type plants. In both mutants, no elevation of calcium after blue light treatment was observed at the cell periphery (including the cell wall and a fragment of cytoplasm). This result confirms the involvement of phototropin2 in the regulation of Ca(2+) homeostasis in mesophyll cells.
Collapse
Affiliation(s)
- Justyna Łabuz
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Sławomir Samardakiewicz
- Laboratory of Electron and Confocal Microscopy, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Paweł Hermanowicz
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Elżbieta Wyroba
- Laboratory of Electron Microscopy, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Maria Pilarska
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Halina Gabryś
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
141
|
Sello S, Perotto J, Carraretto L, Szabò I, Vothknecht UC, Navazio L. Dissecting stimulus-specific Ca2+ signals in amyloplasts and chloroplasts of Arabidopsis thaliana cell suspension cultures. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3965-74. [PMID: 26893493 PMCID: PMC4915524 DOI: 10.1093/jxb/erw038] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Calcium is used by plants as an intracellular messenger in the detection of and response to a plethora of environmental stimuli and contributes to a fine-tuned internal regulation. Interest in the role of different subcellular compartments in Ca(2+) homeostasis and signalling has been growing in recent years. This work has evaluated the potential participation of non-green plastids and chloroplasts in the plant Ca(2+) signalling network using heterotrophic and autotrophic cell suspension cultures from Arabidopsis thaliana plant lines stably expressing the bioluminescent Ca(2+) reporter aequorin targeted to the plastid stroma. Our results indicate that both amyloplasts and chloroplasts are involved in transient Ca(2+) increases in the plastid stroma induced by several environmental stimuli, suggesting that these two functional types of plastids are endowed with similar mechanisms for handling Ca(2+) A comparison of the Ca(2+) trace kinetics recorded in parallel in the plastid stroma, the surface of the outer membrane of the plastid envelope, and the cytosol indicated that plastids play an essential role in switching off different cytosolic Ca(2+) signals. Interestingly, a transient stromal Ca(2+) signal in response to the light-to-dark transition was observed in chloroplasts, but not amyloplasts. Moreover, significant differences in the amplitude of specific plastidial Ca(2+) changes emerged when the photosynthetic metabolism of chloroplasts was reactivated by light. In summary, our work highlights differences between non-green plastids and chloroplasts in terms of Ca(2+) dynamics in response to environmental stimuli.
Collapse
Affiliation(s)
- Simone Sello
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy
| | - Jennifer Perotto
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy
| | - Luca Carraretto
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy
| | - Ildikò Szabò
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy
| | - Ute C Vothknecht
- Department of Biology I, Faculty of Biology, LMU Munich, Großhaderner Str. 2-4, D-82152 Munich, Germany
| | - Lorella Navazio
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy
| |
Collapse
|
142
|
Walter J, Lynch F, Battchikova N, Aro EM, Gollan PJ. Calcium impacts carbon and nitrogen balance in the filamentous cyanobacterium Anabaena sp. PCC 7120. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3997-4008. [PMID: 27012282 PMCID: PMC4915528 DOI: 10.1093/jxb/erw112] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Calcium is integral to the perception, communication and adjustment of cellular responses to environmental changes. However, the role of Ca(2+) in fine-tuning cellular responses of wild-type cyanobacteria under favourable growth conditions has not been examined. In this study, extracellular Ca(2+) has been altered, and changes in the whole transcriptome of Anabaena sp. PCC 7120 have been evaluated under conditions replete of carbon and combined nitrogen. Ca(2+) induced differential expression of many genes driving primary cellular metabolism, with transcriptional regulation of carbon- and nitrogen-related processes responding with opposing trends. However, physiological effects of these transcriptional responses on biomass accumulation, biomass composition, and photosynthetic activity over the 24h period following Ca(2+) adjustment were found to be minor. It is well known that intracellular carbon:nitrogen balance is integral to optimal cell growth and that Ca(2+) plays an important role in the response of heterocystous cyanobacteria to combined-nitrogen deprivation. This work adds to the current knowledge by demonstrating a signalling role of Ca(2+) for making sensitive transcriptional adjustments required for optimal growth under non-limiting conditions.
Collapse
Affiliation(s)
- Julia Walter
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland
| | - Fiona Lynch
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland
| | - Natalia Battchikova
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland
| | - Eva-Mari Aro
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland
| | - Peter J Gollan
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland
| |
Collapse
|
143
|
Kmiecik P, Leonardelli M, Teige M. Novel connections in plant organellar signalling link different stress responses and signalling pathways. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3793-807. [PMID: 27053718 DOI: 10.1093/jxb/erw136] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
To coordinate growth, development and responses to environmental stimuli, plant cells need to communicate the metabolic state between different sub-compartments of the cell. This requires signalling pathways, including protein kinases, secondary messengers such as Ca(2+) ions or reactive oxygen species (ROS) as well as metabolites and plant hormones. The signalling networks involved have been intensively studied over recent decades and have been elaborated more or less in detail. However, it has become evident that these signalling networks are also tightly interconnected and often merge at common targets such as a distinct group of transcription factors, most prominently ABI4, which are amenable to regulation by phosphorylation, potentially also in a Ca(2+)- or ROS-dependent fashion. Moreover, the signalling pathways connect several organelles or subcellular compartments, not only in functional but also in physical terms, linking for example chloroplasts to the nucleus or peroxisomes to chloroplasts thereby enabling physical routes for signalling by metabolite exchange or even protein translocation. Here we briefly discuss these novel findings and try to connect them in order to point out the remaining questions and emerging developments in plant organellar signalling.
Collapse
Affiliation(s)
- Przemyslaw Kmiecik
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Manuela Leonardelli
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Markus Teige
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| |
Collapse
|
144
|
Carraretto L, Checchetto V, De Bortoli S, Formentin E, Costa A, Szabó I, Teardo E. Calcium Flux across Plant Mitochondrial Membranes: Possible Molecular Players. FRONTIERS IN PLANT SCIENCE 2016; 7:354. [PMID: 27065186 PMCID: PMC4814809 DOI: 10.3389/fpls.2016.00354] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 03/07/2016] [Indexed: 05/24/2023]
Abstract
Plants, being sessile organisms, have evolved the ability to integrate external stimuli into metabolic and developmental signals. A wide variety of signals, including abiotic, biotic, and developmental stimuli, were observed to evoke specific spatio-temporal Ca(2+) transients which are further transduced by Ca(2+) sensor proteins into a transcriptional and metabolic response. Most of the research on Ca(2+) signaling in plants has been focused on the transport mechanisms for Ca(2+) across the plasma- and the vacuolar membranes as well as on the components involved in decoding of cytoplasmic Ca(2+) signals, but how intracellular organelles such as mitochondria are involved in the process of Ca(2+) signaling is just emerging. The combination of the molecular players and the elicitors of Ca(2+) signaling in mitochondria together with newly generated detection systems for measuring organellar Ca(2+) concentrations in plants has started to provide fruitful grounds for further discoveries. In the present review we give an updated overview of the currently identified/hypothesized pathways, such as voltage-dependent anion channels, homologs of the mammalian mitochondrial uniporter (MCU), LETM1, a plant glutamate receptor family member, adenine nucleotide/phosphate carriers and the permeability transition pore (PTP), that may contribute to the transport of Ca(2+) across the outer and inner mitochondrial membranes in plants. We briefly discuss the relevance of the mitochondrial Ca(2+) homeostasis for ensuring optimal bioenergetic performance of this organelle.
Collapse
Affiliation(s)
| | - Vanessa Checchetto
- Department of Biology, University of PadovaPadova, Italy
- Department of Biomedical Sciences, University of PadovaPadova, Italy
| | | | - Elide Formentin
- Department of Biology, University of PadovaPadova, Italy
- Department of Life Science and Biotechnology, University of FerraraFerrara, Italy
| | - Alex Costa
- Department of Biosciences, University of MilanMilan, Italy
- CNR, Institute of Biophysics, Consiglio Nazionale delle RicercheMilan, Italy
| | - Ildikó Szabó
- Department of Biology, University of PadovaPadova, Italy
- CNR, Institute of NeurosciencesPadova, Italy
| | - Enrico Teardo
- Department of Biology, University of PadovaPadova, Italy
- CNR, Institute of NeurosciencesPadova, Italy
| |
Collapse
|
145
|
Carraretto L, Teardo E, Checchetto V, Finazzi G, Uozumi N, Szabo I. Ion Channels in Plant Bioenergetic Organelles, Chloroplasts and Mitochondria: From Molecular Identification to Function. MOLECULAR PLANT 2016; 9:371-395. [PMID: 26751960 DOI: 10.1016/j.molp.2015.12.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 11/22/2015] [Accepted: 12/01/2015] [Indexed: 06/05/2023]
Abstract
Recent technical advances in electrophysiological measurements, organelle-targeted fluorescence imaging, and organelle proteomics have pushed the research of ion transport a step forward in the case of the plant bioenergetic organelles, chloroplasts and mitochondria, leading to the molecular identification and functional characterization of several ion transport systems in recent years. Here we focus on channels that mediate relatively high-rate ion and water flux and summarize the current knowledge in this field, focusing on targeting mechanisms, proteomics, electrophysiology, and physiological function. In addition, since chloroplasts evolved from a cyanobacterial ancestor, we give an overview of the information available about cyanobacterial ion channels and discuss the evolutionary origin of chloroplast channels. The recent molecular identification of some of these ion channels allowed their physiological functions to be studied using genetically modified Arabidopsis plants and cyanobacteria. The view is emerging that alteration of chloroplast and mitochondrial ion homeostasis leads to organelle dysfunction, which in turn significantly affects the energy metabolism of the whole organism. Clear-cut identification of genes encoding for channels in these organelles, however, remains a major challenge in this rapidly developing field. Multiple strategies including bioinformatics, cell biology, electrophysiology, use of organelle-targeted ion-sensitive probes, genetics, and identification of signals eliciting specific ion fluxes across organelle membranes should provide a better understanding of the physiological role of organellar channels and their contribution to signaling pathways in plants in the future.
Collapse
Affiliation(s)
- Luca Carraretto
- Department of Biology, University of Padova, Padova 35121, Italy
| | - Enrico Teardo
- Department of Biology, University of Padova, Padova 35121, Italy; CNR Institute of Neuroscience, University of Padova, Padova 35121, Italy
| | | | - Giovanni Finazzi
- UMR 5168 Laboratoire de Physiologie Cellulaire Végétale (LPCV) CNRS/ UJF / INRA / CEA, Institut de Recherches en Technologies et Sciences pour le Vivant (iRTSV), CEA Grenoble, 38054 Grenoble, France.
| | - Nobuyuki Uozumi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-07, Sendai 980-8579, Japan.
| | - Ildiko Szabo
- Department of Biology, University of Padova, Padova 35121, Italy; CNR Institute of Neuroscience, University of Padova, Padova 35121, Italy.
| |
Collapse
|
146
|
Künzl F, Früholz S, Fäßler F, Li B, Pimpl P. Receptor-mediated sorting of soluble vacuolar proteins ends at the trans-Golgi network/early endosome. NATURE PLANTS 2016; 2:16017. [PMID: 27249560 DOI: 10.1038/nplants.2016.17] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 02/01/2016] [Indexed: 05/03/2023]
Abstract
The sorting of soluble proteins for degradation in the vacuole is of vital importance in plant cells, and relies on the activity of vacuolar sorting receptors (VSRs). In the plant endomembrane system, VSRs bind vacuole-targeted proteins and facilitate their transport to the vacuole. Where exactly these interactions take place has remained controversial, however. Here, we examine the potential for VSR-ligand interactions in all compartments of the vacuolar transport system in tobacco mesophyll protoplasts. To do this, we developed compartment-specific VSR sensors that assemble as a result of a nanobody-epitope interaction, and monitored the degree of ligand binding by analysing Förster resonance energy transfer using fluorescence lifetime imaging microscopy (FRET-FLIM). We show that VSRs bind ligands in the endoplasmic reticulum (ER) and in the Golgi, but not in the trans-Golgi network/early endosome (TGN/EE) or multivesicular late endosomes, suggesting that the post-TGN/EE trafficking of ligands towards the vacuole is VSR independent. We verify this by showing that non-VSR-ligands are also delivered to the vacuole from the TGN/EE after endocytic uptake. We conclude that VSRs are required for the transport of ligands from the ER and the Golgi to the TGN/EE, and suggest that the onward transport to the vacuole occurs by default.
Collapse
Affiliation(s)
- Fabian Künzl
- Centre for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, D-72076 Tübingen, Germany
| | - Simone Früholz
- Centre for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, D-72076 Tübingen, Germany
| | - Florian Fäßler
- Centre for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, D-72076 Tübingen, Germany
| | - Beibei Li
- Centre for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, D-72076 Tübingen, Germany
| | - Peter Pimpl
- Centre for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, D-72076 Tübingen, Germany
| |
Collapse
|
147
|
Sewelam N, Kazan K, Schenk PM. Global Plant Stress Signaling: Reactive Oxygen Species at the Cross-Road. FRONTIERS IN PLANT SCIENCE 2016; 7:187. [PMID: 26941757 PMCID: PMC4763064 DOI: 10.3389/fpls.2016.00187] [Citation(s) in RCA: 258] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 02/04/2016] [Indexed: 05/18/2023]
Abstract
Current technologies have changed biology into a data-intensive field and significantly increased our understanding of signal transduction pathways in plants. However, global defense signaling networks in plants have not been established yet. Considering the apparent intricate nature of signaling mechanisms in plants (due to their sessile nature), studying the points at which different signaling pathways converge, rather than the branches, represents a good start to unravel global plant signaling networks. In this regard, growing evidence shows that the generation of reactive oxygen species (ROS) is one of the most common plant responses to different stresses, representing a point at which various signaling pathways come together. In this review, the complex nature of plant stress signaling networks will be discussed. An emphasis on different signaling players with a specific attention to ROS as the primary source of the signaling battery in plants will be presented. The interactions between ROS and other signaling components, e.g., calcium, redox homeostasis, membranes, G-proteins, MAPKs, plant hormones, and transcription factors will be assessed. A better understanding of the vital roles ROS are playing in plant signaling would help innovate new strategies to improve plant productivity under the circumstances of the increasing severity of environmental conditions and the high demand of food and energy worldwide.
Collapse
Affiliation(s)
- Nasser Sewelam
- Botany Department, Faculty of Science, Tanta UniversityTanta, Egypt
| | - Kemal Kazan
- Commonwealth Scientific and Industrial Research Organization Agriculture, Queensland Bioscience Precinct, St LuciaQLD, Australia
- Queensland Alliance for Agriculture & Food Innovation, The University of Queensland, BrisbaneQLD, Australia
| | - Peer M. Schenk
- Plant-Microbe Interactions Laboratory, School of Agriculture and Food Sciences, The University of Queensland, BrisbaneQLD, Australia
| |
Collapse
|
148
|
Niedojadło K, Lenartowski R, Lenartowska M, Bednarska-Kozakiewicz E. Late progamic phase and fertilization affect calreticulin expression in the Hyacinthus orientalis female gametophyte. PLANT CELL REPORTS 2015; 34:2201-15. [PMID: 26354004 PMCID: PMC4636998 DOI: 10.1007/s00299-015-1863-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 08/27/2015] [Accepted: 09/01/2015] [Indexed: 05/11/2023]
Abstract
Calreticulin expression is upregulated during sexual reproduction of Hyacinthus orientalis, and the protein is localized both in the cytoplasm and a highly specialized cell wall within the female gametophyte. Several evidences indicate calreticulin (CRT) as an important calcium (Ca(2+))-binding protein that is involved in the generative reproduction of higher plants, including both pre-fertilization and post-fertilization events. Because CRT is able to bind and sequester exchangeable Ca(2+), it can serve as a mobile intracellular store of easily releasable Ca(2+) and control its local cytosolic concentrations in the embryo sac. This phenomenon seems to be essential during the late progamic phase, gamete fusion, and early embryogenesis. In this report, we demonstrate the differential expression of CRT within Hyacinthus female gametophyte cells before and during anthesis, during the late progamic phase when the pollen tube enters the embryo sac, and at the moment of fertilization and zygote/early endosperm activation. CRT mRNA and the protein localize mainly to the endoplasmic reticulum (ER) and Golgi compartments of the cells, which are involved in sexual reproduction events, such as those in sister synergids, the egg cell, the central cell, zygote and the developing endosperm. Additionally, immunogold research demonstrates selective CRT distribution in the filiform apparatus (FA), a highly specific component of the synergid cell wall. In the light of our previous data showing the total transcriptional activity of the Hyacinthus female gametophyte and the results presented here, we discuss the possible functions of CRT with respect to the critical role of Ca(2+) homeostasis during key events of sexual plant reproduction. Moreover, we propose that the elevated expression of CRT within the female gametophyte is a universal phenomenon in the cells involved in double fertilization in higher plants.
Collapse
Affiliation(s)
- Katarzyna Niedojadło
- Department of Cell Biology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University in Toruń, Toruń, Poland.
| | - Robert Lenartowski
- Laboratory of Isotope and Instrumental Analysis, Faculty of Biology and Environment Protection, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Marta Lenartowska
- Laboratory of Developmental Biology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Elżbieta Bednarska-Kozakiewicz
- Department of Cell Biology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University in Toruń, Toruń, Poland
| |
Collapse
|
149
|
Blamey FPC, Hernandez-Soriano MC, Cheng M, Tang C, Paterson DJ, Lombi E, Wang WH, Scheckel KG, Kopittke PM. Synchrotron-Based Techniques Shed Light on Mechanisms of Plant Sensitivity and Tolerance to High Manganese in the Root Environment. PLANT PHYSIOLOGY 2015; 169:2006-20. [PMID: 26395840 PMCID: PMC4634059 DOI: 10.1104/pp.15.00726] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 09/21/2015] [Indexed: 05/04/2023]
Abstract
Plant species differ in response to high available manganese (Mn), but the mechanisms of sensitivity and tolerance are poorly understood. In solution culture, greater than or equal to 30 µm Mn decreased the growth of soybean (Glycine max), but white lupin (Lupinus albus), narrow-leafed lupin (Lupin angustifolius), and sunflower (Helianthus annuus) grew well at 100 µm Mn. Differences in species' tolerance to high Mn could not be explained simply by differences in root, stem, or leaf Mn status, being 8.6, 17.1, 6.8, and 9.5 mmol kg(-1) leaf fresh mass at 100 µm Mn. Furthermore, x-ray absorption near edge structure analyses identified the predominance of Mn(II), bound mostly to malate or citrate, in roots and stems of all four species. Rather, differences in tolerance were due to variations in Mn distribution and speciation within leaves. In Mn-sensitive soybean, in situ analysis of fresh leaves using x-ray fluorescence microscopy combined with x-ray absorption near edge structure showed high Mn in the veins, and manganite [Mn(III)] accumulated in necrotic lesions apparently through low Mn sequestration in vacuoles or other vesicles. In the two lupin species, most Mn accumulated in vacuoles as either soluble Mn(II) malate or citrate. In sunflower, Mn was sequestered as manganite at the base of nonglandular trichomes. Hence, tolerance to high Mn was ascribed to effective sinks for Mn in leaves, as Mn(II) within vacuoles or through oxidation of Mn(II) to Mn(III) in trichomes. These two mechanisms prevented Mn accumulation in the cytoplasm and apoplast, thereby ensuring tolerance to high Mn in the root environment.
Collapse
Affiliation(s)
- F Pax C Blamey
- School of Agriculture and Food Sciences, The University of Queensland, St. Lucia, Queensland 4072, Australia (F.P.C.B., M.C.H.-S., P.M.K.);Centre for AgriBioscience, La Trobe University, Bundoora, Victoria 3086, Australia (M.C., C.T.);Australian Synchrotron, Clayton, Victoria 3168, Australia (D.J.P.);Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, South Australia 5095, Australia (E.L., W.H.W.); andNational Risk Management Research Laboratory, United States Environmental Protection Agency, Cincinnati, Ohio 45224 (K.G.S.)
| | - Maria C Hernandez-Soriano
- School of Agriculture and Food Sciences, The University of Queensland, St. Lucia, Queensland 4072, Australia (F.P.C.B., M.C.H.-S., P.M.K.);Centre for AgriBioscience, La Trobe University, Bundoora, Victoria 3086, Australia (M.C., C.T.);Australian Synchrotron, Clayton, Victoria 3168, Australia (D.J.P.);Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, South Australia 5095, Australia (E.L., W.H.W.); andNational Risk Management Research Laboratory, United States Environmental Protection Agency, Cincinnati, Ohio 45224 (K.G.S.)
| | - Miaomiao Cheng
- School of Agriculture and Food Sciences, The University of Queensland, St. Lucia, Queensland 4072, Australia (F.P.C.B., M.C.H.-S., P.M.K.);Centre for AgriBioscience, La Trobe University, Bundoora, Victoria 3086, Australia (M.C., C.T.);Australian Synchrotron, Clayton, Victoria 3168, Australia (D.J.P.);Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, South Australia 5095, Australia (E.L., W.H.W.); andNational Risk Management Research Laboratory, United States Environmental Protection Agency, Cincinnati, Ohio 45224 (K.G.S.)
| | - Caixian Tang
- School of Agriculture and Food Sciences, The University of Queensland, St. Lucia, Queensland 4072, Australia (F.P.C.B., M.C.H.-S., P.M.K.);Centre for AgriBioscience, La Trobe University, Bundoora, Victoria 3086, Australia (M.C., C.T.);Australian Synchrotron, Clayton, Victoria 3168, Australia (D.J.P.);Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, South Australia 5095, Australia (E.L., W.H.W.); andNational Risk Management Research Laboratory, United States Environmental Protection Agency, Cincinnati, Ohio 45224 (K.G.S.)
| | - David J Paterson
- School of Agriculture and Food Sciences, The University of Queensland, St. Lucia, Queensland 4072, Australia (F.P.C.B., M.C.H.-S., P.M.K.);Centre for AgriBioscience, La Trobe University, Bundoora, Victoria 3086, Australia (M.C., C.T.);Australian Synchrotron, Clayton, Victoria 3168, Australia (D.J.P.);Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, South Australia 5095, Australia (E.L., W.H.W.); andNational Risk Management Research Laboratory, United States Environmental Protection Agency, Cincinnati, Ohio 45224 (K.G.S.)
| | - Enzo Lombi
- School of Agriculture and Food Sciences, The University of Queensland, St. Lucia, Queensland 4072, Australia (F.P.C.B., M.C.H.-S., P.M.K.);Centre for AgriBioscience, La Trobe University, Bundoora, Victoria 3086, Australia (M.C., C.T.);Australian Synchrotron, Clayton, Victoria 3168, Australia (D.J.P.);Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, South Australia 5095, Australia (E.L., W.H.W.); andNational Risk Management Research Laboratory, United States Environmental Protection Agency, Cincinnati, Ohio 45224 (K.G.S.)
| | - Wei Hong Wang
- School of Agriculture and Food Sciences, The University of Queensland, St. Lucia, Queensland 4072, Australia (F.P.C.B., M.C.H.-S., P.M.K.);Centre for AgriBioscience, La Trobe University, Bundoora, Victoria 3086, Australia (M.C., C.T.);Australian Synchrotron, Clayton, Victoria 3168, Australia (D.J.P.);Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, South Australia 5095, Australia (E.L., W.H.W.); andNational Risk Management Research Laboratory, United States Environmental Protection Agency, Cincinnati, Ohio 45224 (K.G.S.)
| | - Kirk G Scheckel
- School of Agriculture and Food Sciences, The University of Queensland, St. Lucia, Queensland 4072, Australia (F.P.C.B., M.C.H.-S., P.M.K.);Centre for AgriBioscience, La Trobe University, Bundoora, Victoria 3086, Australia (M.C., C.T.);Australian Synchrotron, Clayton, Victoria 3168, Australia (D.J.P.);Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, South Australia 5095, Australia (E.L., W.H.W.); andNational Risk Management Research Laboratory, United States Environmental Protection Agency, Cincinnati, Ohio 45224 (K.G.S.)
| | - Peter M Kopittke
- School of Agriculture and Food Sciences, The University of Queensland, St. Lucia, Queensland 4072, Australia (F.P.C.B., M.C.H.-S., P.M.K.);Centre for AgriBioscience, La Trobe University, Bundoora, Victoria 3086, Australia (M.C., C.T.);Australian Synchrotron, Clayton, Victoria 3168, Australia (D.J.P.);Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, South Australia 5095, Australia (E.L., W.H.W.); andNational Risk Management Research Laboratory, United States Environmental Protection Agency, Cincinnati, Ohio 45224 (K.G.S.)
| |
Collapse
|
150
|
Wagner S, Behera S, De Bortoli S, Logan DC, Fuchs P, Carraretto L, Teardo E, Cendron L, Nietzel T, Füßl M, Doccula FG, Navazio L, Fricker MD, Van Aken O, Finkemeier I, Meyer AJ, Szabò I, Costa A, Schwarzländer M. The EF-Hand Ca2+ Binding Protein MICU Choreographs Mitochondrial Ca2+ Dynamics in Arabidopsis. THE PLANT CELL 2015; 27:3190-212. [PMID: 26530087 PMCID: PMC4682298 DOI: 10.1105/tpc.15.00509] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 09/25/2015] [Accepted: 10/15/2015] [Indexed: 05/18/2023]
Abstract
Plant organelle function must constantly adjust to environmental conditions, which requires dynamic coordination. Ca(2+) signaling may play a central role in this process. Free Ca(2+) dynamics are tightly regulated and differ markedly between the cytosol, plastid stroma, and mitochondrial matrix. The mechanistic basis of compartment-specific Ca(2+) dynamics is poorly understood. Here, we studied the function of At-MICU, an EF-hand protein of Arabidopsis thaliana with homology to constituents of the mitochondrial Ca(2+) uniporter machinery in mammals. MICU binds Ca(2+) and localizes to the mitochondria in Arabidopsis. In vivo imaging of roots expressing a genetically encoded Ca(2+) sensor in the mitochondrial matrix revealed that lack of MICU increased resting concentrations of free Ca(2+) in the matrix. Furthermore, Ca(2+) elevations triggered by auxin and extracellular ATP occurred more rapidly and reached higher maximal concentrations in the mitochondria of micu mutants, whereas cytosolic Ca(2+) signatures remained unchanged. These findings support the idea that a conserved uniporter system, with composition and regulation distinct from the mammalian machinery, mediates mitochondrial Ca(2+) uptake in plants under in vivo conditions. They further suggest that MICU acts as a throttle that controls Ca(2+) uptake by moderating influx, thereby shaping Ca(2+) signatures in the matrix and preserving mitochondrial homeostasis. Our results open the door to genetic dissection of mitochondrial Ca(2+) signaling in plants.
Collapse
Affiliation(s)
- Stephan Wagner
- Plant Energy Biology Lab, Institute of Crop Science and Resource Conservation, University of Bonn, 53113 Bonn, Germany
| | | | - Sara De Bortoli
- Department of Biology, University of Padova, 35121 Padova, Italy
| | - David C Logan
- Université d'Angers, INRA, Agrocampus Ouest, UMR 1345 Institut de Recherche en Horticulture et Semences, F-49045 Angers, France
| | - Philippe Fuchs
- Plant Energy Biology Lab, Institute of Crop Science and Resource Conservation, University of Bonn, 53113 Bonn, Germany
| | - Luca Carraretto
- Department of Biology, University of Padova, 35121 Padova, Italy
| | - Enrico Teardo
- Department of Biology, University of Padova, 35121 Padova, Italy
| | - Laura Cendron
- Department of Biology, University of Padova, 35121 Padova, Italy
| | - Thomas Nietzel
- Plant Energy Biology Lab, Institute of Crop Science and Resource Conservation, University of Bonn, 53113 Bonn, Germany
| | - Magdalena Füßl
- Plant Proteomics Group, Max-Planck-Institute for Plant Breeding Research, 50829 Cologne, Germany
| | | | - Lorella Navazio
- Department of Biology, University of Padova, 35121 Padova, Italy
| | - Mark D Fricker
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom
| | - Olivier Van Aken
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, WA 6009, Australia
| | - Iris Finkemeier
- Plant Proteomics Group, Max-Planck-Institute for Plant Breeding Research, 50829 Cologne, Germany Institute for Plant Biology and Biotechnology, University of Münster, 48149 Münster, Germany
| | - Andreas J Meyer
- Department Chemical Signalling, Institute of Crop Science and Resource Conservation, University of Bonn, 53113 Bonn, Germany
| | - Ildikò Szabò
- Department of Biology, University of Padova, 35121 Padova, Italy
| | - Alex Costa
- Department of Biosciences, University of Milan, 20133 Milan, Italy Institute of Biophysics, Consiglio Nazionale delle Ricerche, 20133 Milan, Italy
| | - Markus Schwarzländer
- Plant Energy Biology Lab, Institute of Crop Science and Resource Conservation, University of Bonn, 53113 Bonn, Germany
| |
Collapse
|