101
|
Cholesterol regulates the endoplasmic reticulum exit of the major membrane protein P0 required for peripheral myelin compaction. J Neurosci 2009; 29:6094-104. [PMID: 19439587 DOI: 10.1523/jneurosci.0686-09.2009] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Rapid impulse conduction requires electrical insulation of axons by myelin, a cholesterol-rich extension of the glial cell membrane with a characteristic composition of proteins and lipids. Mutations in several myelin protein genes cause endoplasmic reticulum (ER) retention and disease, presumably attributable to failure of misfolded proteins to pass the ER quality control. Because many myelin proteins partition into cholesterol-rich membrane rafts, their interaction with cholesterol could potentially be part of the ER quality control system. Here, we provide in vitro and in vivo evidence that the major peripheral myelin protein P0 requires cholesterol for exiting the ER and reaching the myelin compartment. Cholesterol dependency of P0 trafficking in heterologous cells is mediated by a cholesterol recognition/interaction amino acid consensus (CRAC) motif. Mutant mice lacking cholesterol biosynthesis in Schwann cells suffer from severe hypomyelination with numerous uncompacted myelin stretches. This demonstrates that high-level cholesterol coordinates P0 export with myelin membrane synthesis, which is required for the correct stoichiometry of myelin components and for myelin compaction.
Collapse
|
102
|
Jessen KR, Mirsky R. Negative regulation of myelination: relevance for development, injury, and demyelinating disease. Glia 2009; 56:1552-1565. [PMID: 18803323 DOI: 10.1002/glia.20761] [Citation(s) in RCA: 381] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Dedifferentiation of myelinating Schwann cells is a key feature of nerve injury and demyelinating neuropathies. We review recent evidence that this dedifferentiation depends on activation of specific intracellular signaling molecules that drive the dedifferentiation program. In particular, we discuss the idea that Schwann cells contain negative transcriptional regulators of myelination that functionally complement positive regulators such as Krox-20, and that myelination is therefore determined by a balance between two opposing transcriptional programs. Negative transcriptional regulators should be expressed prior to myelination, downregulated as myelination starts but reactivated as Schwann cells dedifferentiate following injury. The clearest evidence for a factor that works in this way relates to c-Jun, while other factors may include Notch, Sox-2, Pax-3, Id2, Krox-24, and Egr-3. The role of cell-cell signals such as neuregulin-1 and cytoplasmic signaling pathways such as the extracellular-related kinase (ERK)1/2 pathway in promoting dedifferentiation of myelinating cells is also discussed. We also review evidence that neurotrophin 3 (NT3), purinergic signaling, and nitric oxide synthase are involved in suppressing myelination. The realization that myelination is subject to negative as well as positive controls contributes significantly to the understanding of Schwann cell plasticity. Negative regulators are likely to have a major role during injury, because they promote the transformation of damaged nerves to an environment that fosters neuronal survival and axonal regrowth. In neuropathies, however, activation of these pathways is likely to be harmful because they may be key contributors to demyelination, a situation which would open new routes for clinical intervention.
Collapse
Affiliation(s)
- Kristján R Jessen
- Department of Cell and Developmental Biology, University College London, London, United Kingdom.
| | | |
Collapse
|
103
|
Birchmeier C, Nave KA. Neuregulin-1, a key axonal signal that drives Schwann cell growth and differentiation. Glia 2009; 56:1491-1497. [PMID: 18803318 DOI: 10.1002/glia.20753] [Citation(s) in RCA: 184] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Interactions between neuronal and glial cells are crucial for establishing a functional nervous system. Many aspects of Schwann cell development and physiology are regulated by neuronal signals; possibly the most spectacular is the elaboration of the myelin sheath. An extensive line of research has revealed that one neuronal factor, termed "neuregulin", promotes Schwann cell growth and survival, migration along the extending axon, and myelination. The versatility of glial responses elicited by this factor is thus clearly astounding.
Collapse
Affiliation(s)
- Carmen Birchmeier
- Max-Delbrueck-Centrum, Robert-Roessle-Strasse 10, Berlin-Buch, Germany.
| | | |
Collapse
|
104
|
Svaren J, Meijer D. The molecular machinery of myelin gene transcription in Schwann cells. Glia 2009; 56:1541-1551. [PMID: 18803322 DOI: 10.1002/glia.20767] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
During late fetal life, Schwann cells in the peripheral nerves singled out by the larger axons will transit through a promyelinating stage before exiting the cell cycle and initiating myelin formation. A network of extra- and intracellular signaling pathways, regulating a transcriptional program of cell differentiation, governs this progression of cellular changes, culminating in a highly differentiated cell. In this review, we focus on the roles of a number of transcription factors not only in myelination, during normal development, but also in demyelination, following nerve trauma. These factors include specification factors involved in early development of Schwann cells from neural crest (Sox10) as well as factors specifically required for transitions into the promyelinating and myelinating stages (Oct6/Scip and Krox20/Egr2). From this description, we can glean the first, still very incomplete, contours of a gene regulatory network that governs myelination and demyelination during development and regeneration.
Collapse
Affiliation(s)
- John Svaren
- Department of Comparative Biosciences, School of Veterinary Medicine and Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | |
Collapse
|
105
|
Ryu D, Oh KJ, Jo HY, Hedrick S, Kim YN, Hwang YJ, Park TS, Han JS, Choi CS, Montminy M, Koo SH. TORC2 regulates hepatic insulin signaling via a mammalian phosphatidic acid phosphatase, LIPIN1. Cell Metab 2009; 9:240-51. [PMID: 19254569 DOI: 10.1016/j.cmet.2009.01.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2008] [Revised: 11/13/2008] [Accepted: 01/14/2009] [Indexed: 01/10/2023]
Abstract
TORC2 is a major transcriptional coactivator for hepatic glucose production. Insulin impedes gluconeogenesis by inhibiting TORC2 via SIK2-dependent phosphorylation at Ser171. Interruption of this process greatly perturbs hepatic glucose metabolism, thus promoting hyperglycemia in rodents. Here, we show that hyperactivation of TORC2 would exacerbate insulin resistance by enhancing expression of LIPIN1, a mammalian phosphatidic acid phosphatase for diacylglycerol (DAG) synthesis. Diet-induced or genetic obesity increases LIPIN1 expression in mouse liver, and TORC2 is responsible for its transcriptional activation. While overexpression of LIPIN1 disturbs hepatic insulin signaling, knockdown of LIPIN1 ameliorates hyperglycemia and insulin resistance by reducing DAG and PKCvarepsilon activity in db/db mice. Finally, TORC2-mediated insulin resistance is partially rescued by concomitant knockdown of LIPIN1, confirming the critical role of LIPIN1 in the perturbation of hepatic insulin signaling. These data propose that dysregulation of TORC2 would further exaggerate insulin resistance and promote type 2 diabetes in a LIPIN1-dependent manner.
Collapse
Affiliation(s)
- Dongryeol Ryu
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, 300 Chunchun-dong, Jangan-gu, Suwon, Gyeonggi-do 440-746, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Barbaria EM, Kohl B, Buhren BA, Hasenpusch-Theil K, Kruse F, Küry P, Martini R, Müller HW. The α-chemokine CXCL14 is up-regulated in the sciatic nerve of a mouse model of Charcot–Marie–Tooth disease type 1A and alters myelin gene expression in cultured Schwann cells. Neurobiol Dis 2009; 33:448-58. [DOI: 10.1016/j.nbd.2008.11.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Revised: 10/30/2008] [Accepted: 11/28/2008] [Indexed: 10/21/2022] Open
|
107
|
Birchmeier C. ErbB receptors and the development of the nervous system. Exp Cell Res 2009; 315:611-8. [DOI: 10.1016/j.yexcr.2008.10.035] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Revised: 10/17/2008] [Accepted: 10/20/2008] [Indexed: 02/05/2023]
|
108
|
|
109
|
Mirsky R, Woodhoo A, Parkinson DB, Arthur-Farraj P, Bhaskaran A, Jessen KR. Novel signals controlling embryonic Schwann cell development, myelination and dedifferentiation. J Peripher Nerv Syst 2008; 13:122-35. [PMID: 18601657 DOI: 10.1111/j.1529-8027.2008.00168.x] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Immature Schwann cells found in perinatal rodent nerves are generated from Schwann cell precursors (SCPs) that originate from the neural crest. Immature Schwann cells generate the myelinating and non-myelinating Schwann cells of adult nerves. When axons degenerate following injury, Schwann cells demyelinate, proliferate and dedifferentiate to assume a molecular phenotype similar to that of immature cells, a process essential for successful nerve regeneration. Increasing evidence indicates that Schwann cell dedifferentiation involves activation of specific receptors, intracellular signalling pathways and transcription factors in a manner analogous to myelination. We have investigated the roles of Notch and the transcription factor c-Jun in development and after nerve transection. In vivo, Notch signalling regulates the transition from SCP to Schwann cell, times Schwann cell generation, controls Schwann cell proliferation and acts as a brake on myelination. Notch is elevated in injured nerves where it accelerates the rate of dedifferentiation. Likewise, the transcription factor c-Jun is required for Schwann cell proliferation and death and is down-regulated by Krox-20 on myelination. Forced expression of c-Jun in Schwann cells prevents myelination, and in injured nerves, c-Jun is required for appropriate dedifferentiation, the re-emergence of the immature Schwann cell state and nerve regeneration. Thus, both Notch and c-Jun are negative regulators of myelination. The growing realisation that myelination is subject to negative as well as positive controls and progress in molecular identification of negative regulators is likely to impact on our understanding of demyelinating disease and mechanisms that control nerve repair.
Collapse
Affiliation(s)
- Rhona Mirsky
- Department of Cell and Developmental Biology, University College London, London, UK.
| | | | | | | | | | | |
Collapse
|
110
|
Abstract
The lipin protein family, consisting of three members, was first identified early this century. In the last few years, the lipin proteins have been shown to have important roles in glycerolipid biosynthesis and gene regulation, and mutations in the corresponding genes cause lipodystrophy, myoglobinuria, and inflammatory disorders. Here, we review some of the progress toward elucidating the molecular and physiological functions of the lipin proteins.
Collapse
Affiliation(s)
- Karen Reue
- Department of Human Genetics, University of California, Los Angeles, CA 90095, USA.
| | | |
Collapse
|
111
|
Reue K, Brindley DN. Thematic Review Series: Glycerolipids. Multiple roles for lipins/phosphatidate phosphatase enzymes in lipid metabolism. J Lipid Res 2008; 49:2493-503. [PMID: 18791037 DOI: 10.1194/jlr.r800019-jlr200] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Phosphatidate phosphatase-1 (PAP1) enzymes have a key role in glycerolipid synthesis through the conversion of phosphatidate to diacylglycerol, the immediate precursor of triacylglycerol, phosphatidylcholine, and phosphatidylethanolamine. PAP1 activity in mammals is determined by the lipin family of proteins, lipin-1, lipin-2, and lipin-3, which each have distinct tissue expression patterns and appear to have unique physiological functions. In addition to its role in glycerolipid synthesis, lipin-1 also operates as a transcriptional coactivator, working in collaboration with known nuclear receptors and coactivators to modulate lipid metabolism gene expression. The requirement for different lipin activities in vivo is highlighted by the occurrence of lipodystrophy, insulin resistance, and neuropathy in a lipin-1-deficient mutant mouse strain. In humans, variations in lipin-1 expression levels and gene polymorphisms are associated with insulin sensitivity, metabolic rate, hypertension, and risk for the metabolic syndrome. Furthermore, critical mutations in lipin-2 result in the development of an inflammatory disorder in human patients. A key goal of future studies will be to further elucidate the specific roles and modes of regulation of each of the three lipin proteins in key metabolic processes, including triglyceride and phospholipid synthesis, fatty acid metabolism, and insulin sensitivity.
Collapse
Affiliation(s)
- Karen Reue
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
| | | |
Collapse
|
112
|
Analysis of peripheral nerve expression profiles identifies a novel myelin glycoprotein, MP11. J Neurosci 2008; 28:7563-73. [PMID: 18650334 DOI: 10.1523/jneurosci.1659-08.2008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The myelin sheath insulates axons and allows for rapid salutatory conduction in the nervous system of all vertebrates. The formation of peripheral myelin requires expression of the transcription factor Egr2, which is responsible for inducing such essential myelin-associated genes as Mpz, Mbp, Pmp22, and Mag. Using microarray analysis to compare gene expression patterns in peripheral nerve during development, during remyelination after nerve injury, and in a congenital hypomyelinating mouse model, we identified an evolutionarily conserved novel component of myelin called Mp11 (myelin protein of 11 kDa). The Mp11 genomic locus contains multiple conserved Egr binding sites, and Mp11 induction is regulated by the expression of Egr2. Similar to other Egr2-dependent genes, it is induced during developmental myelination and remyelination after nerve injury. Mp11 is a glycoprotein expressed preferentially in the myelin of the peripheral nervous system versus CNS and is specifically localized to the Schmidt-Lanterman incisures and paranodes of peripheral nerve. The Mp11 protein contains no identifiable similarity to other known protein domains or motifs. However, like other myelin genes, strict Mp11 expression levels are a requirement for the in vitro myelination of DRG neurons, indicating that this previously uncharacterized gene product is a critical component of peripheral nervous system myelin.
Collapse
|
113
|
Abstract
Schwann cells integrate signals deriving from the axon and the basal lamina to myelinate peripheral nerves. Integrin alpha6beta4 is a laminin receptor synthesized by Schwann cells and displayed apposed to the basal lamina. alpha6beta4 integrin expression in Schwann cells is induced by axons at the onset of myelination, and rises in adulthood. The beta4 chain has a uniquely long cytoplasmic domain that interacts with intermediate filaments such as dystonin, important in peripheral myelination. Furthermore, alpha6beta4 integrin binds peripheral myelin protein 22, whose alteration causes the most common demyelinating hereditary neuropathy. All these data suggest a role for alpha6beta4 integrin in peripheral nerve myelination. Here we show that ablating alpha6beta4 integrin specifically in Schwann cells of transgenic mice does not affect peripheral nerve development, myelin formation, maturation, or regeneration. However, consistent with maximal expression in adult nerves, alpha6beta4 integrin-null myelin is more prone to abnormal folding with aging. When the laminin receptor dystroglycan is also ablated, major folding abnormalities occur, associated with acute demyelination in some peripheral nervous system districts. These data indicate that, similar to its role in skin, alpha6beta4 integrin confers stability to myelin in peripheral nerves.
Collapse
|
114
|
Microanatomical structure of the human sciatic nerve. Surg Radiol Anat 2008; 30:619-26. [DOI: 10.1007/s00276-008-0386-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Accepted: 05/29/2008] [Indexed: 11/25/2022]
|
115
|
Mager GM, Ward RM, Srinivasan R, Jang SW, Wrabetz L, Svaren J. Active gene repression by the Egr2.NAB complex during peripheral nerve myelination. J Biol Chem 2008; 283:18187-97. [PMID: 18456662 PMCID: PMC2440619 DOI: 10.1074/jbc.m803330200] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Indexed: 11/06/2022] Open
Abstract
The Egr2/Krox20 transactivator is required for activation of many myelin-associated genes during peripheral nerve myelination by Schwann cells. However, recent work has indicated that Egr2 not only activates genes required for peripheral nerve myelination but may also be involved in gene repression. The NAB (NGFI-A/Egr-binding) corepressors interact with Egr2 and are required for proper coordination of myelin formation. Therefore, NAB proteins could mediate repression of some Egr2 target genes, although direct repression by Egr2 or NAB proteins during myelination has not been demonstrated. To define the physiological role of NAB corepression in gene repression by Egr2, we tested whether the Egr2.NAB complex directly repressed specific target genes. A screen for NAB-regulated genes identified several (including Id2, Id4, and Rad) that declined during the course of peripheral nerve myelination. In vivo chromatin immunoprecipitation analysis of the myelinating sciatic nerve was used to show developmental association of both Egr2 and NAB2 on the Id2, Id4, and Rad promoters as they were repressed during the myelination process. In addition, NAB2 represses transcription by interaction with the chromodomain helicase DNA-binding protein 4 (CHD4) subunit of the nucleosome remodeling and deacetylase chromatin remodeling complex, and we demonstrate that CHD4 occupies NAB-repressed promoters in a developmentally regulated manner in vivo. These results illustrate a novel aspect of genetic regulation of peripheral nerve myelination by showing that Egr2 directly represses genes during myelination in conjunction with NAB corepressors. Furthermore, repression of Id2 was found to augment activation of Mpz (myelin protein zero) expression.
Collapse
Affiliation(s)
- Gennifer M Mager
- Molecular and Cellular Pharmacology Training Program, Department of Comparative Biosciences, Graduate Program in Cellular and Molecular Biology, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | | | | | |
Collapse
|
116
|
Nadra K, de Preux Charles AS, Médard JJ, Hendriks WT, Han GS, Grès S, Carman GM, Saulnier-Blache JS, Verheijen MH, Chrast R. Phosphatidic acid mediates demyelination in Lpin1 mutant mice. Genes Dev 2008; 22:1647-61. [PMID: 18559480 PMCID: PMC2428062 DOI: 10.1101/gad.1638008] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Accepted: 04/18/2008] [Indexed: 11/25/2022]
Abstract
Lipids play crucial roles in many aspects of glial cell biology, affecting processes ranging from myelin membrane biosynthesis to axo-glial interactions. In order to study the role of lipid metabolism in myelinating glial cells, we specifically deleted in Schwann cells the Lpin1 gene, which encodes the Mg2+-dependent phosphatidate phosphatase (PAP1) enzyme necessary for normal triacylglycerol biosynthesis. The affected animals developed pronounced peripheral neuropathy characterized by myelin degradation, Schwann cell dedifferentiation and proliferation, and a reduction in nerve conduction velocity. The observed demyelination is mediated by endoneurial accumulation of the substrate of the PAP1 enzyme, phosphatidic acid (PA). In addition, we show that PA is a potent activator of the MEK-Erk pathway in Schwann cells, and that this activation is required for PA-induced demyelination. Our results therefore reveal a surprising role for PA in Schwann cell fate determination and provide evidence of a direct link between diseases affecting lipid metabolism and abnormal Schwann cell function.
Collapse
Affiliation(s)
- Karim Nadra
- Department of Medical Genetics, University of Lausanne, 1005 Lausanne, Switzerland
| | - Anne-Sophie de Preux Charles
- Department of Medical Genetics, University of Lausanne, 1005 Lausanne, Switzerland
- Graduate Program in Neurosciences, University of Lausanne, 1015 Lausanne, Switzerland
| | - Jean-Jacques Médard
- Department of Medical Genetics, University of Lausanne, 1005 Lausanne, Switzerland
| | - William T. Hendriks
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Gil-Soo Han
- Department of Food Science and Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey 08901, USA
| | - Sandra Grès
- INSERM, U858/I2MR, Department of Metabolism and Obesity, BP 84225, 31432 Toulouse Cedex 4, France
| | - George M. Carman
- Department of Food Science and Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey 08901, USA
| | | | - Mark H.G. Verheijen
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Roman Chrast
- Department of Medical Genetics, University of Lausanne, 1005 Lausanne, Switzerland
| |
Collapse
|
117
|
Vázquez-Chona FR, Lu L, Williams RW, Geisert EE. Genomic loci modulating the retinal transcriptome in wound healing. GENE REGULATION AND SYSTEMS BIOLOGY 2008; 1:327-48. [PMID: 19936100 PMCID: PMC2759132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
PURPOSE The present study predicts and tests genetic networks that modulate gene expression during the retinal wound-healing response. METHODS Upstream modulators and target genes were defined using meta-analysis and bioinformatic approaches. Quantitative trait loci (QTLs) for retinal acute phase genes (Vazquez-Chona et al. 2005) were defined using QTL analysis of CNS gene expression (Chesler et al. 2005). Candidate modulators were defined using computational analysis of gene and motif sequences. The effect of candidate genes on wound healing was tested using animal models of gene expression. RESULTS A network of early wound-healing genes is modulated by a locus on chromosome 12. The genetic background of the locus altered the wound-healing response of the retina. The C57BL/6 allele conferred enhanced expression of neuronal marker Thy1 and heat-shock-like crystallins, whereas the DBA/2J allele correlated with greater levels of the classic marker of retinal stress, glial fibrillary acidic protein (GFAP). Id2 and Lpin1 are candidate upstream modulators as they strongly correlated with the segregation of DBA/2J and C57BL/6 alleles, and their dosage levels correlated with the enhanced expression of survival genes (Thy1 and crystallin genes). CONCLUSION We defined a genetic network associated with the retinal acute injury response. Using genetic linkage analysis of natural transcript variation, we identified regulatory loci and can didate modulators that control transcript levels of acute phase genes. Our results support the convergence of gene expression profiling, QTL analysis, and bioinformatics as a rational approach to discover molecular pathways controlling retinal wound healing.
Collapse
Affiliation(s)
- Félix R. Vázquez-Chona
- Moran Eye Center, University of Utah, Salt Lake City, UT, Department of Ophthalmology, The Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN,Correspondence: Félix R. Vázquez-Chona, Moran Eye Center, University of Utah, 65 N Medical Dr, Suite # S3230, Salt Lake City UT 84132. Tel: (801) 618-8743; Fax: (801) 587-7724;
| | - Lu Lu
- Key Laboratory of Nerve Regeneration, Nantong University, China, Department of Ophthalmology, The Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN, Department of Anatomy and Neurobiology, University of Tennessee Health Science center, Memphis, TN
| | - Robert W. Williams
- Department of Ophthalmology, The Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN, Center of Genomics and Bioinformatics, University of Tennessee Health Science Center, Memphis, TN, Department of Anatomy and Neurobiology, University of Tennessee Health Science center, Memphis, TN
| | - Eldon E. Geisert
- Center of Genomics and Bioinformatics, University of Tennessee Health Science Center, Memphis, TN
| |
Collapse
|
118
|
Srinivasan R, Jang SW, Ward RM, Sachdev S, Ezashi T, Svaren J. Differential regulation of NAB corepressor genes in Schwann cells. BMC Mol Biol 2007; 8:117. [PMID: 18096076 PMCID: PMC2235890 DOI: 10.1186/1471-2199-8-117] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Accepted: 12/20/2007] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Myelination of peripheral nerves by Schwann cells requires not only the Egr2/Krox-20 transactivator, but also the NGFI-A/Egr-binding (NAB) corepressors, which modulate activity of Egr2. Previous work has shown that axon-dependent expression of Egr2 is mediated by neuregulin stimulation, and NAB corepressors are co-regulated with Egr2 expression in peripheral nerve development. NAB corepressors have also been implicated in macrophage development, cardiac hypertrophy, prostate carcinogenesis, and feedback regulation involved in hindbrain development. RESULTS To test the mechanism of NAB regulation in Schwann cells, transfection assays revealed that both Nab1 and Nab2 promoters are activated by Egr2 expression. Furthermore, direct binding of Egr2 at these promoters was demonstrated in vivo by chromatin immunoprecipitation analysis of myelinating sciatic nerve, and binding of Egr2 to the Nab2 promoter was stimulated by neuregulin in primary Schwann cells. Although Egr2 expression activates the Nab2 promoter more highly than Nab1, we surprisingly found that only Nab1 - but not Nab2 - expression levels were reduced in sciatic nerve from Egr2 null mice. Analysis of the Nab2 promoter showed that it is also activated by ETS proteins (Ets2 and Etv1/ER81) and is bound by Ets2 in vivo. CONCLUSION Overall, these results indicate that induction of Nab2 expression in Schwann cells involves not only Egr2, but also ETS proteins that are activated by neuregulin stimulation. Although Nab1 and Nab2 play partially redundant roles, regulation of Nab2 expression by ETS factors explains several observations regarding regulation of NAB genes. Finally, these data suggest that NAB proteins are not only feedback inhibitors of Egr2, but rather that co-induction of Egr2 and NAB genes is involved in forming an Egr2/NAB complex that is crucial for regulation of gene expression.
Collapse
Affiliation(s)
- Rajini Srinivasan
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Sung-Wook Jang
- Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Rebecca M Ward
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Shrikesh Sachdev
- Department of Biochemistry, University of Missouri-Columbia, Columbia, MO, USA
| | - Toshihiko Ezashi
- Department of Animal Sciences, University of Missouri-Columbia, Columbia, MO, USA
| | - John Svaren
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
119
|
Reue K, Zhang P. The lipin protein family: dual roles in lipid biosynthesis and gene expression. FEBS Lett 2007; 582:90-6. [PMID: 18023282 DOI: 10.1016/j.febslet.2007.11.014] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Accepted: 11/06/2007] [Indexed: 12/11/2022]
Abstract
The prevalence of obesity in the western world has focused attention on factors that influence triglyceride biosynthesis, storage, and utilization. Members of the lipin protein family have a newly discovered enzymatic role in triglyceride and phospholipid biosynthesis as a phosphatidate phosphatase, and also act as an inducible transcriptional coactivator in conjunction with peroxisome proliferator-activated receptor gamma (PPAR gamma) coactivator-1 alpha and PPAR alpha. Through these activities, the founding member of the family, lipin-1, influences lipid metabolism and glucose homeostasis in diverse tissues including adipose tissue, skeletal muscle, and liver. The physiological roles of lipin-2 and lipin-3 are less well defined, but are likely to carry out similar functions in glycerolipid biosynthesis and gene expression in a distinct tissue distribution.
Collapse
Affiliation(s)
- Karen Reue
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States.
| | | |
Collapse
|
120
|
Loos RJF, Rankinen T, Pérusse L, Tremblay A, Després JP, Bouchard C. Association of lipin 1 gene polymorphisms with measures of energy and glucose metabolism. Obesity (Silver Spring) 2007; 15:2723-32. [PMID: 18070763 DOI: 10.1038/oby.2007.324] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To examine the importance of lipin 1 (LPIN1) gene variation in energy and glucose metabolism. Transgenic animal models have shown that lipin, a protein encoded by the LPIN1 gene, promotes fat synthesis and storage in adipose tissue while decreasing energy expenditure and lipid oxidation in skeletal muscle. Lpin1 was identified as the mutated gene in the fatty liver dystrophy mouse, which exhibits lipin deficiency and features of human lipodystrophy. RESEARCH METHODS AND PROCEDURES We genotyped five LPIN1 polymorphisms and tested for association with resting metabolic rate (RMR), fat oxidation, fasting plasma insulin and glucose concentration, and obesity-related phenotypes, including BMI, body fat percentage, sum of six skinfolds, and waist circumference in 712 subjects of the Quebec Family Study. RESULTS The strongest results were generation-specific. In parents, RMR of the G/G IVS13 + 3333A>G homozygotes was 107 kcal/d higher than in A/A homozygotes and 39 kcal/d higher than in A/G heterozygotes (p = 0.0003). In offspring, carriers of the C allele of the IVS18 + 181C>T variant had significantly higher (p < 0.0003) insulin levels than T/T homozygotes. These associations remained significant after adjusting for multiple testing. Several other associations between body composition measures and the IVS18 + 181C>T variant were significant (p = 0.05 to 0.003), suggesting a strong pattern of relationships. DISCUSSION These findings support the hypothesis that sequence variation in the LPIN1 gene contributes to variation in RMR and obesity-related phenotypes potentially in an age-dependent manner.
Collapse
Affiliation(s)
- Ruth J F Loos
- Pennington Biomedical Research Center, Human Genomics Laboratory, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| | | | | | | | | | | |
Collapse
|
121
|
Oort PJ, Warden CH, Baumann TK, Knotts TA, Adams SH. Characterization of Tusc5, an adipocyte gene co-expressed in peripheral neurons. Mol Cell Endocrinol 2007; 276:24-35. [PMID: 17689857 DOI: 10.1016/j.mce.2007.06.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Accepted: 06/22/2007] [Indexed: 12/25/2022]
Abstract
Tumor suppressor candidate 5 (Tusc5, also termed brain endothelial cell derived gene-1 or BEC-1), a CD225 domain-containing, cold-repressed gene identified during brown adipose tissue (BAT) transcriptome analyses was found to be robustly-expressed in mouse white adipose tissue (WAT) and BAT, with similarly high expression in human adipocytes. Tusc5 mRNA was markedly increased from trace levels in pre-adipocytes to significant levels in developing 3T3-L1 adipocytes, coincident with several mature adipocyte markers (phosphoenolpyruvate carboxykinase 1, GLUT4, adipsin, leptin). The Tusc5 transcript levels were increased by the peroxisome proliferator activated receptor-gamma (PPARgamma) agonist GW1929 (1microg/mL, 18h) by >10-fold (pre-adipocytes) to approximately 1.5-fold (mature adipocytes) versus controls (p<0.0001). Taken together, these results suggest an important role for Tusc5 in maturing adipocytes. Intriguingly, we discovered robust co-expression of the gene in peripheral nerves (primary somatosensory neurons). In light of the marked repression of the gene observed after cold exposure, these findings may point to participation of Tusc5 in shared adipose-nervous system functions linking environmental cues, CNS signals, and WAT-BAT physiology. Characterization of such links is important for clarifying the molecular basis for adipocyte proliferation and could have implications for understanding the biology of metabolic disease-related neuropathies.
Collapse
Affiliation(s)
- Pieter J Oort
- USDA/Agricultural Research Service Western Human Nutrition Research Center, University of California, Davis, CA 95616, USA
| | | | | | | | | |
Collapse
|
122
|
de Preux AS, Goosen K, Zhang W, Sima AAF, Shimano H, Ouwens DM, Diamant M, Hillebrands JL, Rozing J, Lemke G, Beckmann JS, Smit AB, Verheijen MHG, Chrast R. SREBP-1c expression in Schwann cells is affected by diabetes and nutritional status. Mol Cell Neurosci 2007; 35:525-34. [PMID: 17632011 DOI: 10.1016/j.mcn.2007.04.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Accepted: 04/24/2007] [Indexed: 02/02/2023] Open
Abstract
Our previous work demonstrated that the sterol response element binding proteins (SREBP)-1 and SREBP-2, which are the key regulators of storage lipid and cholesterol metabolism respectively, are highly expressed in Schwann cells of adult peripheral nerves. In order to evaluate the role of Schwann cell SREBPs in myelination and functioning of peripheral nerves we have determined their expression during development, after fasting and refeeding, and in a rodent model of diabetes. Our results show that SREBP-1c and SREBP-2, unlike SREBP-1a, are the major forms of SREBPs present in peripheral nerves. The expression profile of SREBP-2 follows the expression of genes involved in cholesterol biosynthesis, while SREBP-1c is co-expressed with genes involved in storage lipid metabolism. In addition, the expression of SREBP-1c in the endoneurial compartment of peripheral nerves depends on nutritional status and is disturbed in type 1 diabetes. In line with this, insulin elevates the expression of SREBP-1c in primary cultured Schwann cells by activating the SREBP-1c promoter. Taken together, these findings reveal that SREBP-1c expression in Schwann cells responds to metabolic stimuli including insulin and that this response is affected in type 1 diabetes mellitus. This suggests that disturbed SREBP-1c regulated lipid metabolism may contribute to the pathophysiology of diabetic peripheral neuropathy.
Collapse
|
123
|
Gowri PM, Sengupta S, Bertera S, Katzenellenbogen BS. Lipin1 regulation by estrogen in uterus and liver: implications for diabetes and fertility. Endocrinology 2007; 148:3685-93. [PMID: 17463059 DOI: 10.1210/en.2006-1728] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Estrogens are essential for fertility and also have important effects on regulation of adiposity and the euglycemic state. We report here that lipin1, a candidate gene for lipodystrophy and obesity that is a phosphatidic acid phosphatase critical in regulation of cellular levels of diacylglycerol and triacylglycerol and a key regulator of lipid utilization, is rapidly and robustly down-regulated in the uterus by estradiol via the estrogen receptor. Lipin1 is expressed predominantly in the uterine luminal and glandular epithelium, and during the estrous cycle, lipin1 is lowest when blood levels of estrogen are highest. Lipin1 is expressed throughout all cells in the liver of ovariectomized female mice, and a sustained down-regulation is observed at the mRNA, protein and immunohistochemical levels after estrogen administration. Because the coupling of proper energy use and availability is central to reproduction, we also investigated expression of lipin1 in the uterus and liver of several mouse models of diabetes. Nonobese diabetic (NOD) mice, which have high blood levels of estrogen and impaired fertility, were severely deficient in lipin1 in the uterus and liver, which, interestingly, could be restored by insulin treatment. By contrast, nonobese diabetic/severe combined immunodeficient (NOD-SCID) mice, which do not develop diabetes, showed normal levels of lipin1. Our findings of lipin1 regulation by estrogen in two key target organs suggest a new role for this lipid-regulating phosphatase not only in central metabolic regulation but also in uterine function and reproductive biology. Estrogen regulation of lipin1 may provide a mechanistic link between estrogens, lipid metabolism, and lipid signaling.
Collapse
Affiliation(s)
- P Mangala Gowri
- University of Illinois, Department of Molecular and Integrative Physiology, 524 Burrill Hall, 407 South Goodwin Avenue, Urbana, Illinois 61801-3704, USA
| | | | | | | |
Collapse
|
124
|
Riccardi VM. The genetic predisposition to and histogenesis of neurofibromas and neurofibrosarcoma in neurofibromatosis Type 1. Neurosurg Focus 2007; 22:E3. [PMID: 17613220 DOI: 10.3171/foc.2007.22.6.4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The author addresses the issue of neurofibroma classification and implications for treatment. He emphasizes the importance of understanding that not all neurofibromas are the same and that the key differences between the types of neurofibromas involve which portions of the nerve sheath contribute to the distinctive behavior of the different types of lesions.
Endoneurial neurofibromas derive from cellular elements ordinarily restricted to the endoneurium. Perineurial neurofibromas arise within individual fascicles of a nerve and are largely confined thereby, precluding a breach of the epineurium. Epineurial neurofibromas are contained only by the epineurium, and ultimately that portion of the nerve sheath is breached by these lesions.
Whether the perineurium is present or breached becomes the key element for exploiting this approach to neurofibroma origins, behaviors, and treatment, surgical and medical. With respect to surgical treatment, perineurial neurofibromas will have clean planes of dissection about the involved nerve. In contrast, endoneurial and epineurial neurofibromas infiltrate adjacent tissues, leading to surgical challenges. With respect to pharmaceutical approaches, the integrity of the perineurium is likely to prove critical: a specific function of the perineurium is to serve as a barrier to various materials, microbiological or chemical. Thus, drugs that might be effective when the perineurium is absent or rent may be less effective (or not effective at all) if the perineurium is intact, as is expected in cases of perineurial neurofibromas.
Collapse
|
125
|
Komori N, Takemori N, Kim HK, Singh A, Hwang SH, Foreman RD, Chung K, Chung JM, Matsumoto H. Proteomics study of neuropathic and nonneuropathic dorsal root ganglia: altered protein regulation following segmental spinal nerve ligation injury. Physiol Genomics 2007; 29:215-30. [PMID: 17213366 DOI: 10.1152/physiolgenomics.00255.2006] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Peripheral nerve injury is often followed by the development of severe neuropathic pain. Nerve degeneration accompanied by inflammatory mediators is thought to play a role in generation of neuropathic pain. Neuronal cell death follows axonal degeneration, devastating a vast number of molecules in injured neurons and the neighboring cells. Because we have little understanding of the cellular and molecular mechanisms underlying neuronal cell death triggered by nerve injury, we conducted a proteomics study of rat 4th and 5th lumbar (L4 and L5) dorsal root ganglion (DRG) after L5 spinal nerve ligation. DRG proteins were displayed on two-dimensional gels and analyzed through quantitative densitometry, statistical validation of the quantitative data, and peptide mass fingerprinting for protein identification. Among approximately 1,300 protein spots detected on each gel, we discovered 67 proteins that were tightly regulated by nerve ligation. We find that the injury to primary sensory neurons turned on multiple cellular mechanisms critical for the structural and functional integrity of neurons and for the defense against oxidative damage. Our data indicate that the regulation of metabolic enzymes was carefully orchestrated to meet the altered energy requirement of the DRG cells. Our data also demonstrate that ligation of the L5 spinal nerve led to the upregulation in the L4 DRG of the proteins that are highly expressed in embryonic sensory neurons. To understand the molecular mechanisms underlying neuropathic pain, we need to comprehend such dynamic aspect of protein modulations that follow nerve injury.
Collapse
Affiliation(s)
- Naoka Komori
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73190, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Liang G, Cline GW, Macica CM. IGF-1 stimulates de novo fatty acid biosynthesis by Schwann cells during myelination. Glia 2007; 55:632-41. [PMID: 17299765 DOI: 10.1002/glia.20496] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Schwann cell (SC) differentiation to the myelinating phenotype is characterized by the elaboration of a lipid-rich membrane and the expression of myelin-specific proteins. Insulin-like growth factor-1 (IGF-1) has been identified as a growth factor that stimulates the early events of myelination in SCs that signals via the PI3K/Akt pathway. Given the role of IGF-1 in promoting myelination, we performed studies to determine if the fatty acid biosynthetic pathway was a target of IGF-1 signaling in the formation of myelin membrane in dorsal root ganglion neuron/Schwann cell (DRG/SC) cocultures. We report that the fatty acid profile of lipid extracts of cocultures treated with IGF-1 match that reported for native myelin membrane by electrospray mass spectroscopy analysis. We also demonstrate de novo fatty acid biosynthesis in response to IGF-1 treatment in DRG/SC cocultures metabolically labeled with (13)C-acetate as a carbon source for fatty acid synthesis. Consistent with this finding, Western blot analysis of lysates from both cocultures and purified SCs reveal that IGF-1 stimulates two key fatty acid synthesizing enzymes. Additionally, we show that stimulation of fatty acid synthesizing enzymes is mediated by the PI3K/Akt signaling pathway. We also show that the fatty acid synthesizing enzymes and associated signaling pathways are elevated during the period of myelin membrane formation in sciatic nerve. Collectively, these findings demonstrate that IGF-1 plays an important regulatory function during myelin membrane formation.
Collapse
Affiliation(s)
- Guoying Liang
- Division of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520-8020, USA
| | | | | |
Collapse
|
127
|
Vázquez-Chona FR, Lu L, Williams RW, Geisert EE. Genomic Loci Modulating the Retinal Transcriptome in Wound Healing. GENE REGULATION AND SYSTEMS BIOLOGY 2007. [DOI: 10.1177/117762500700100022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Purpose The present study predicts and tests genetic networks that modulate gene expression during the retinal wound-healing response. Methods Upstream modulators and target genes were defined using meta-analysis and bioinformatic approaches. Quantitative trait loci (QTLs) for retinal acute phase genes (Vazquez-Chona et al. 2005) were defined using QTL analysis of CNS gene expression (Chesler et al. 2005). Candidate modulators were defined using computational analysis of gene and motif sequences. The effect of candidate genes on wound healing was tested using animal models of gene expression. Results A network of early wound-healing genes is modulated by a locus on chromosome 12. The genetic background of the locus altered the wound-healing response of the retina. The C57BL/6 allele conferred enhanced expression of neuronal marker Thy1 and heat-shock-like crystallins, whereas the DBA/2J allele correlated with greater levels of the classic marker of retinal stress, glial fibrillary acidic protein (GFAP). Id2 and Lpin1 are candidate upstream modulators as they strongly correlated with the segregation of DBA/2J and C57BL/6 alleles, and their dosage levels correlated with the enhanced expression of survival genes ( Thy1 and crystallin genes). Conclusion We defined a genetic network associated with the retinal acute injury response. Using genetic linkage analysis of natural transcript variation, we identified regulatory loci and candidate modulators that control transcript levels of acute phase genes. Our results support the convergence of gene expression profiling, QTL analysis, and bioinformatics as a rational approach to discover molecular pathways controlling retinal wound healing.
Collapse
Affiliation(s)
- Félix R. Vázquez-Chona
- Moran Eye Center, University of Utah, Salt Lake City, UT
- Department of Ophthalmology, The Hamilton Eye Institute and
| | - Lu Lu
- Key Laboratory of Nerve Regeneration, Nantong University, China
- Department of Ophthalmology, The Hamilton Eye Institute and
- Department of Anatomy and Neurobiology, University of Tennessee Health Science center, Memphis, TN
| | - Robert W. Williams
- Department of Ophthalmology, The Hamilton Eye Institute and
- Center of Genomics and Bioinformatics, University of Tennessee Health Science Center, Memphis, TN
- Department of Anatomy and Neurobiology, University of Tennessee Health Science center, Memphis, TN
| | - Eldon E. Geisert
- Center of Genomics and Bioinformatics, University of Tennessee Health Science Center, Memphis, TN
| |
Collapse
|
128
|
Lai CQ, Parnell LD, Lyman RF, Ordovas JM, Mackay TFC. Candidate genes affecting Drosophila life span identified by integrating microarray gene expression analysis and QTL mapping. Mech Ageing Dev 2006; 128:237-49. [PMID: 17196240 DOI: 10.1016/j.mad.2006.12.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Revised: 09/20/2006] [Accepted: 12/01/2006] [Indexed: 01/22/2023]
Abstract
The current increase in life expectancy observed in industrialized societies underscores the need to achieve a better understanding of the aging process that could help the development of effective strategies to achieve healthy aging. This will require not only identifying genes involved in the aging process, but also understanding how their effects are modulated by environmental factors, such as dietary intake and life style. Although the human genome has been sequenced, it may be impractical to study humans or other long-lived organisms to gain a mechanistic understanding about the aging process. Thus, short-lived animal models are essential to identifying the mechanisms and genes that affect the rate and quality of aging as a first step towards identifying genetic variants in humans. In this study, we investigated gene expression changes between two strains of Drosophila (Oregon and 2b) for which quantitative trait loci (QTLs) affecting life span were identified previously. We collected males and females from both strains at young and old ages, and assessed whole genome variation in transcript abundance using Affymetrix GeneChips. We observed 8217 probe sets with detectable transcripts. A total of 2371 probe sets, representing 2220 genes, exhibited significant changes in transcript abundance with age; and 839 probe sets were differentially expressed between Oregon and 2b. We focused on the 359 probe sets (representing 354 genes) that exhibited significant changes in gene expression both with age and between strains. We used these genes to integrate the analysis of microarray gene expression data, bioinformatics, and the results of genetic mapping studies reported previously, to identify 49 candidate genes and four pathways that could potentially be responsible for regulating life span and involved in the process of aging in Drosophila and humans.
Collapse
Affiliation(s)
- Chao-Qiang Lai
- JM-USDA Human Nutrition Research Center on Aging, Nutrition and Genomics, Tufts University, Boston, MA 02111, United States.
| | | | | | | | | |
Collapse
|
129
|
Nielsen JA, Maric D, Lau P, Barker JL, Hudson LD. Identification of a novel oligodendrocyte cell adhesion protein using gene expression profiling. J Neurosci 2006; 26:9881-91. [PMID: 17005852 PMCID: PMC1613258 DOI: 10.1523/jneurosci.2246-06.2006] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Oligodendrocytes undergo extensive changes as they differentiate from progenitors into myelinating cells. To better understand the molecular mechanisms underlying this transformation, we performed a comparative analysis using gene expression profiling of A2B5+ oligodendrocyte progenitors and O4+ oligodendrocytes. Cells were sort-purified ex vivo from postnatal rat brain using flow cytometry. Using Affymetrix microarrays, 1707 transcripts were identified with a more than twofold increase in expression in O4+ oligodendrocytes. Many genes required for oligodendrocyte differentiation were upregulated in O4+ oligodendrocytes, including numerous genes encoding myelin proteins. Transcriptional changes included genes required for cell adhesion, actin cytoskeleton regulation, and fatty acid and cholesterol biosynthesis. At the O4+ stage, there was an increase in expression of a novel proline-rich transmembrane protein (Prmp). Localized to the plasma membrane, Prmp displays adhesive properties that may be important for linking the extracellular matrix to the actin cytoskeleton. Together, our results highlight the usefulness of this discovery-driven experimental strategy to identify genes relevant to oligodendrocyte differentiation and myelination.
Collapse
Affiliation(s)
| | - Dragan Maric
- Laboratory of Neurophysiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | | | - Jeffery L. Barker
- Laboratory of Neurophysiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | | |
Collapse
|
130
|
Ten Asbroek ALMA, Van Ruissen F, Ruijter JM, Baas F. Comparison of Schwann cell and sciatic nerve transcriptomes indicates that mouse is a valid model for the human peripheral nervous system. J Neurosci Res 2006; 84:542-52. [PMID: 16786575 DOI: 10.1002/jnr.20966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
High-throughput gene expression analyses of murine models of the peripheral nervous system (PNS), and its cellular components, have yielded enormous amounts of expression data of the PNS in various conditions. These data provided clues for future research directions to further decipher this complex organ in relation to acquired and inherited PNS diseases. Various studies addressing the validity of mouse models for human conditions in other tissues and cell types have indicated that in many cases the mouse model only poorly represents the human situation. To determine how well the mouse can serve as model to study the biological processes occurring in the PNS, we compared the gene expression profiles that we generated for mouse and human sciatic nerve and cultured Schwann cells derived thereof. A two-way analysis based on the differentially expressed genes between the sciatic nerve and the cultured Schwann cell, and which takes into account the differential expression between mouse and man, indicates that the human PNS is well represented by that of the mouse in terms of the "biological processes" ontology.
Collapse
|
131
|
Jang SW, LeBlanc SE, Roopra A, Wrabetz L, Svaren J. In vivo detection of Egr2 binding to target genes during peripheral nerve myelination. J Neurochem 2006; 98:1678-87. [PMID: 16923174 DOI: 10.1111/j.1471-4159.2006.04069.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Egr2/Krox20 is a zinc finger transactivator that regulates a diverse array of genes required for peripheral nerve myelination. Although several studies have elucidated the Egr2-regulated gene network, it is not clear if Egr2 regulates its target genes directly or indirectly through induction of other transactivators. Moreover, very few Egr2 binding sites have been identified in regulatory elements of myelin genes. To address this issue, we have successfully adapted chromatin immunoprecipitation assays to test if Egr2 binds directly to target genes in myelinating rat sciatic nerve. These experiments demonstrate direct binding of Egr2 to previously described binding sites within the Schwann cell enhancer of the myelin basic protein gene. Furthermore, we show Egr2 binding to a conserved site within the myelin-associated glycoprotein gene. Finally, our experiments provide the first evidence that Egr2 directly regulates expression of desert hedgehog, which is critically involved in development, maintenance and regeneration of multiple nerve elements including myelinated fibers. Surprisingly, this analysis has identified an apparent preponderance of Egr2 binding sites within conserved intron sequences of several myelin genes. Application of chromatin immunoprecipitation analysis to myelination in vivo will prove to be a valuable asset in assaying transcription factor binding and chromatin modifications during activation of myelin genes.
Collapse
Affiliation(s)
- Sung-Wook Jang
- Graduate Program in Cellular and Molecular Biology, University of Wisconsin, Madison, Wisconsin, USA
| | | | | | | | | |
Collapse
|
132
|
Fernø J, Raeder MB, Vik-Mo AO, Skrede S, Glambek M, Tronstad KJ, Breilid H, Løvlie R, Berge RK, Stansberg C, Steen VM. Antipsychotic drugs activate SREBP-regulated expression of lipid biosynthetic genes in cultured human glioma cells: a novel mechanism of action? THE PHARMACOGENOMICS JOURNAL 2006; 5:298-304. [PMID: 16027736 DOI: 10.1038/sj.tpj.6500323] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Several studies have reported on structural abnormalities, decreased myelination and oligodendrocyte dysfunction in post-mortem brains from schizophrenic patients. Glia-derived cholesterol is essential for both myelination and synaptogenesis in the CNS. Lipogenesis and myelin synthesis are thus interesting etiological candidate targets in schizophrenia. Using a microarray approach, we here demonstrate that the antipsychotic drugs clozapine and haloperidol upregulate several genes involved in cholesterol and fatty acid biosynthesis in cultured human glioma cells, including HMGCR (3-hydroxy-3-methylglutaryl-coenzyme A reductase), HMGCS1 (3-hydroxy-3-methylglutaryl-coenzyme A synthase-1), FASN (fatty acid synthase) and SCD (stearoyl-CoA desaturase). The changes in gene expression were followed by enhanced HMGCR-enzyme activity and elevated cellular levels of cholesterol and triglycerides. The upregulated genes are all known to be controlled by the sterol regulatory element-binding protein (SREBP) transcription factors. We show that clozapine and haloperidol both activate the SREBP system. The antipsychotic-induced SREBP-mediated increase in glial cell lipogenesis could represent a novel mechanism of action, and may also be relevant for the metabolic side effects of antipsychotics.
Collapse
Affiliation(s)
- J Fernø
- Dr Einar Martens' Research Group for Biological Psychiatry and Bergen Mental Health Research Center, Section for Medical Genetics and Molecular Medicine, University of Bergen, Norway
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Srinivasan R, Mager GM, Ward RM, Mayer J, Svaren J. NAB2 Represses Transcription by Interacting with the CHD4 Subunit of the Nucleosome Remodeling and Deacetylase (NuRD) Complex. J Biol Chem 2006; 281:15129-37. [PMID: 16574654 DOI: 10.1074/jbc.m600775200] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Early growth response (EGR) transactivators act as critical regulators of several physiological processes, including peripheral nerve myelination and progression of prostate cancer. The NAB1 and NAB2 (NGFI-A/EGR1-binding protein) transcriptional corepressors directly interact with three EGR family members (Egr1/NGFI-A/zif268, Egr2/Krox20, and Egr3) and repress activation of their target promoters. To understand the molecular mechanisms underlying NAB repression, we found that EGR activity is modulated by at least two repression domains within NAB2, one of which uniquely requires interaction with the CHD4 (chromodomain helicase DNA-binding protein 4) subunit of the NuRD (nucleosome remodeling and deacetylase) chromatin remodeling complex. Both NAB proteins can bind either CHD3 or CHD4, indicating that the interaction is conserved among these two protein families. Furthermore, we show that repression of the endogenous Rad gene by NAB2 involves interaction with CHD4 and demonstrate colocalization of NAB2 and CHD4 on the Rad promoter in myelinating Schwann cells. Finally, we show that interaction with CHD4 is regulated by alternative splicing of the NAB2 mRNA.
Collapse
Affiliation(s)
- Rajini Srinivasan
- Department of Comparative Biosciences, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
134
|
Bosse F, Hasenpusch-Theil K, Küry P, Müller HW. Gene expression profiling reveals that peripheral nerve regeneration is a consequence of both novel injury-dependent and reactivated developmental processes. J Neurochem 2006; 96:1441-57. [PMID: 16478531 DOI: 10.1111/j.1471-4159.2005.03635.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
One of the most striking features of the injured mature peripheral nervous system is the ability to regenerate. The lesioned peripheral nervous system displays stereotypic histopathological reactions indicating the activation of a co-ordinated lesion-induced gene expression programme. Previous research has already identified molecular components of this axonal switch from a mature transmitting to a regenerative growth mode. The observed alterations in gene expression within the lesioned distal nerve stump were largely attributed to recapitulated developmental processes. However, to our knowledge, this hypothesis has not been proven systematically. Most of the stereotypic molecular and cellular reactions during nerve development and repair can be assigned to specific time windows. Consequently, we have compared gene expression profiles of both paradigms at six different time-points each by means of cDNA array hybridization. Our data identified injury-specific molecular reactions and revealed to what extent developmental mechanisms are reactivated in response to nerve lesion. Ninety-one genes (47% of the regeneration-associated genes) were found to be significantly regulated in both paradigms, suggesting that regeneration only partially recapitulates development and that approximately half of the regulated genes are part of a regeneration-dependent programme. Interestingly, mainly genes encoding signal transducers or factors involved in processes such as cell death, immune response, transport and transcriptional regulation showed injury-specific gene expression.
Collapse
Affiliation(s)
- Frank Bosse
- Molecular Neurobiology Laboratory, Department of Neurology, Heinrich-Heine-University, Düsseldorf, Germany.
| | | | | | | |
Collapse
|
135
|
D'Antonio M, Michalovich D, Paterson M, Droggiti A, Woodhoo A, Mirsky R, Jessen KR. Gene profiling and bioinformatic analysis of Schwann cell embryonic development and myelination. Glia 2006; 53:501-15. [PMID: 16369933 DOI: 10.1002/glia.20309] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
To elucidate the molecular mechanisms involved in Schwann cell development, we profiled gene expression in the developing and injured rat sciatic nerve. The genes that showed significant changes in expression in developing and dedifferentiated nerve were validated with RT-PCR, in situ hybridisation, Western blot and immunofluorescence. A comprehensive approach to annotating micro-array probes and their associated transcripts was performed using Biopendium, a database of sequence and structural annotation. This approach significantly increased the number of genes for which a functional insight could be found. The analysis implicates agrin and two members of the collapsin response-mediated protein (CRMP) family in the switch from precursors to Schwann cells, and synuclein-1 and alphaB-crystallin in peripheral nerve myelination. We also identified a group of genes typically related to chondrogenesis and cartilage/bone development, including type II collagen, that were expressed in a manner similar to that of myelin-associated genes. The comprehensive function annotation also identified, among the genes regulated during nerve development or after nerve injury, proteins belonging to high-interest families, such as cytokines and kinases, and should therefore provide a uniquely valuable resource for future research.
Collapse
Affiliation(s)
- Maurizio D'Antonio
- Department of Anatomy and Developmental Biology, University College London, London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
136
|
Cheng H, Guan S, Han X. Abundance of triacylglycerols in ganglia and their depletion in diabetic mice: implications for the role of altered triacylglycerols in diabetic neuropathy. J Neurochem 2006; 97:1288-300. [PMID: 16539649 PMCID: PMC2137160 DOI: 10.1111/j.1471-4159.2006.03794.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein, we report the first study on the mass distribution and molecular species composition of abundant triacylglycerols (TAG) in ganglia. This study demonstrates five novel findings. First, unanticipated high levels of TAG were present in all examined ganglia from multiple species (e.g. mouse, rat and rabbit). Second, ganglial TAG mass content is location-dependent. Third, the TAG mass levels in ganglia are species-specific. Fourth, dorsal root ganglial TAG mass levels in streptozotocin-induced diabetic mice are dramatically depleted relative to those found in untreated control mice. Fifth, mouse ganglial TAG mass levels decrease with age although molecular species composition is not changed. Collectively, these results indicate that TAG is an important component of ganglia and may potentially contribute to pathological alterations in peripheral neuronal function in diabetic neuropathy.
Collapse
MESH Headings
- Age Factors
- Aging/metabolism
- Animals
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/physiopathology
- Diabetic Neuropathies/etiology
- Diabetic Neuropathies/metabolism
- Diabetic Neuropathies/physiopathology
- Disease Models, Animal
- Female
- Ganglia, Spinal/metabolism
- Ganglia, Spinal/physiopathology
- Ganglia, Sympathetic/metabolism
- Ganglia, Sympathetic/physiopathology
- Male
- Mass Spectrometry
- Mice
- Mice, Inbred C57BL
- Nerve Degeneration/etiology
- Nerve Degeneration/metabolism
- Nerve Degeneration/physiopathology
- Neurons, Afferent/metabolism
- Rabbits
- Rats
- Rats, Sprague-Dawley
- Species Specificity
- Triglycerides/analysis
- Triglycerides/deficiency
- Triglycerides/metabolism
Collapse
Affiliation(s)
- Hua Cheng
- Division of Bioorganic Chemistry and Molecular Pharmacology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | | | | |
Collapse
|
137
|
Reue K, Donkor J. Lipin: a determinant of adiposity, insulin sensitivity and energy balance. ACTA ACUST UNITED AC 2006. [DOI: 10.2217/17460875.1.1.91] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
138
|
LeBlanc SE, Jang SW, Ward RM, Wrabetz L, Svaren J. Direct regulation of myelin protein zero expression by the Egr2 transactivator. J Biol Chem 2005; 281:5453-60. [PMID: 16373334 DOI: 10.1074/jbc.m512159200] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
During myelination of the peripheral nervous system, the myelin protein zero (Mpz) gene is induced to produce the most abundant protein component (P(0)) of mature myelin. Although the basal embryonic expression of Mpz in Schwann cells has been attributed to regulation by Sox10, the molecular mechanism for the profound up-regulation of this gene during myelination has not been established. In this study, we have identified a highly conserved element within the first intron of the Mpz gene, which contains binding sites for the early growth response 2 (Egr2/Krox20) transcription factor, a critical regulator of peripheral nerve myelination. Egr2 can transactivate the intron element, and the induction is blocked by two known repressors of Egr2 activity. Using chromatin immunoprecipitation assays, we find that Egr2 binds in vivo to the intron element, but not to the Mpz promoter. Known inducers of Mpz expression such as forskolin and insulin-like growth factor-1 also activate the element in an Egr2-dependent manner. In addition, we found that Egr2 can act synergistically with Sox10 to activate this intron element, suggesting a model in which cooperative interactions between Egr2 and Sox10 mediate a large increase in Mpz expression to the high levels found in myelinating Schwann cells.
Collapse
Affiliation(s)
- Scott E LeBlanc
- Molecular and Cellular Pharmacology Program, School of Veterinary Medicine, University of Wisconsin, 2015 Linden Drive, Madison, WI 53705, USA
| | | | | | | | | |
Collapse
|
139
|
Affiliation(s)
- Anil K Agarwal
- Division of Nutrition and Metabolic Diseases, the Department of Internal Medicine and the Center for Human Nutrition, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | | |
Collapse
|
140
|
Vigo T, Nobbio L, Hummelen PV, Abbruzzese M, Mancardi G, Verpoorten N, Verhoeven K, Sereda MW, Nave KA, Timmerman V, Schenone A. Experimental Charcot-Marie-Tooth type 1A: a cDNA microarrays analysis. Mol Cell Neurosci 2005; 28:703-14. [PMID: 15797717 DOI: 10.1016/j.mcn.2004.11.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2004] [Revised: 11/25/2004] [Accepted: 11/30/2004] [Indexed: 11/23/2022] Open
Abstract
To reveal the spectrum of genes that are modulated in Charcot-Marie-Tooth neuropathy type 1A (CMT1A), which is due to overexpression of the gene coding for the peripheral myelin protein 22 (pmp22), we performed a cDNA microarray experiment with cDNA from sciatic nerves of a rat model of the disease. In homozygous pmp22 overexpressing animals, we found a significant down-regulation of 86 genes, while only 23 known genes were up-regulated, suggesting that the increased dosage of pmp22 induces a general down-regulation of gene expression in peripheral nerve tissue. Classification of the modulated genes into functional categories leads to the identification of some pathways altered by overexpression of pmp22. In particular, a selective down-regulation of the ciliary neurotrophic factor transcript and of genes coding for proteins involved in cell cycle regulation, for cytoskeletal components and for proteins of the extracellular matrix, was observed. Cntf expression was further studied by real-time PCR and ELISA technique in pmp22 transgenic sciatic nerves, human CMT1A sural nerve biopsies, and primary cultures of transgenic Schwann cells. According to the results of cDNA microarray analysis, a down-regulation of cntf, both at the mRNA and protein level, was found in all the conditions tested. These results are relevant to reveal the molecular function of PMP22 and the pathogenic mechanism of CMT1A. In particular, finding a specific reduction of cntf expression in CMT1A Schwann cells suggests that overexpression of pmp22 significantly affects the ability of Schwann cells to offer a trophic support to the axon, which could be a factor, among other, responsible for the development of axonal atrophy in human and experimental CMT1A.
Collapse
Affiliation(s)
- Tiziana Vigo
- Department of Neurosciences, Ophthalmology and Genetics, University of Genova, Italy, via De Toni 5, 16132 Genova, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Abstract
This review focuses on the influence of laminins, mediated through laminin receptors present on Schwann cells, on peripheral nerve development and pathology. Laminins influence multiple aspects of cell differentiation and tissue morphogenesis, including cell survival, proliferation, cytoskeletal rearrangements, and polarity. Peripheral nerves are no exception, as shown by the discovery that defective laminin signals contribute to the pathogenesis of diverse neuropathies such as merosin-deficient congenital muscular dystrophy and Charcot-Marie-Tooth 4F, neurofibromatosis, and leprosy. In the last 5 years, advanced molecular and cell biological techniques and conditional mutagenesis in mice began revealing the role of different laminins and receptors in developing nerves. In this way, we are starting to explain morphological and pathological observations beginning at the start of the last century. Here, we review these recent advances and show how the roles of laminins and their receptors are surprisingly varied in both time and place.
Collapse
Affiliation(s)
- Maria Laura Feltri
- San Raffaele Scientific Institute, DIBIT 4A2, Via Olgettina 58, 20132 Milan, Italy.
| | | |
Collapse
|
142
|
Giambonini-Brugnoli G, Buchstaller J, Sommer L, Suter U, Mantei N. Distinct disease mechanisms in peripheral neuropathies due to altered peripheral myelin protein 22 gene dosage or a Pmp22 point mutation. Neurobiol Dis 2005; 18:656-68. [PMID: 15755691 DOI: 10.1016/j.nbd.2004.10.023] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2004] [Revised: 10/27/2004] [Accepted: 10/28/2004] [Indexed: 01/25/2023] Open
Abstract
Point mutations affecting PMP22 can cause hereditary demyelinating and dysmyelinating peripheral neuropathies. In addition, duplication and deletion of PMP22 are associated with Charcot-Marie-Tooth disease Type 1A (CMT1A) and Hereditary Neuropathy with Liability to Pressure Palsy (HNPP), respectively. This study was designed to elucidate disease processes caused by misexpression of Pmp22 and, at the same time, to gain further information on the controversial molecular function of PMP22. To this end, we took advantage of the unique resource of a set of various Pmp22 mutant mice to carry out comparative expression profiling of mutant and wild-type sciatic nerves. Tissues derived from Pmp22-/- ("knockout"), Pmp22tg (increased Pmp22 copy number), and Trembler (Tr; point mutation in Pmp22) mutant mice were analyzed at two developmental stages: (i) at postnatal day (P)4, when normal myelination has just started and primary causative defects of the mutations are expected to be apparent, and (ii) at P60, with the goal of obtaining information on secondary disease effects. Interestingly, the three Pmp22 mutants exhibited distinct profiles of gene expression, suggesting different disease mechanisms. Increased expression of genes involved in cell cycle regulation and DNA replication is characteristic and specific for the early stage in Pmp22-/- mice, supporting a primary function of PMP22 in the regulation of Schwann cell proliferation. In the Tr mutant, a distinguishing feature is the high expression of stress response genes. Both Tr and Pmp22tg mice show strongly reduced expression of genes important for cholesterol synthesis at P4, a characteristic that is common to all three mutants at P60. Finally, we have identified a number of candidate genes that may play important roles in the disease process or in myelination per se.
Collapse
Affiliation(s)
- Guya Giambonini-Brugnoli
- Institute for Cell Biology, Department of Biology, ETH-Hönggerberg, Swiss Federal Institute of Technology, Schafmattstrasse 18, CH-8093 Zürich, Switzerland
| | | | | | | | | |
Collapse
|
143
|
Saher G, Brügger B, Lappe-Siefke C, Möbius W, Tozawa RI, Wehr MC, Wieland F, Ishibashi S, Nave KA. High cholesterol level is essential for myelin membrane growth. Nat Neurosci 2005; 8:468-75. [PMID: 15793579 DOI: 10.1038/nn1426] [Citation(s) in RCA: 498] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2005] [Accepted: 02/25/2005] [Indexed: 01/07/2023]
Abstract
Cholesterol in the mammalian brain is a risk factor for certain neurodegenerative diseases, raising the question of its normal function. In the mature brain, the highest cholesterol content is found in myelin. We therefore created mice that lack the ability to synthesize cholesterol in myelin-forming oligodendrocytes. Mutant oligodendrocytes survived, but CNS myelination was severely perturbed, and mutant mice showed ataxia and tremor. CNS myelination continued at a reduced rate for many months, and during this period, the cholesterol-deficient oligodendrocytes actively enriched cholesterol and assembled myelin with >70% of the cholesterol content of wild-type myelin. This shows that cholesterol is an indispensable component of myelin membranes and that cholesterol availability in oligodendrocytes is a rate-limiting factor for brain maturation.
Collapse
MESH Headings
- 2',3'-Cyclic-Nucleotide Phosphodiesterases/metabolism
- Age Factors
- Animals
- Animals, Newborn
- Apolipoproteins E/metabolism
- Behavior, Animal
- Blotting, Northern/methods
- Blotting, Southern/methods
- Blotting, Western/methods
- Cell Membrane/metabolism
- Central Nervous System/metabolism
- Cholesterol/deficiency
- Cholesterol/physiology
- Chromatography, Thin Layer/methods
- Cloning, Molecular
- Creatine/metabolism
- Farnesyl-Diphosphate Farnesyltransferase/deficiency
- Farnesyl-Diphosphate Farnesyltransferase/genetics
- Farnesyl-Diphosphate Farnesyltransferase/metabolism
- Gene Expression Regulation, Developmental/physiology
- In Situ Hybridization/methods
- Lipid Metabolism
- Mass Spectrometry/methods
- Mice
- Mice, Inbred C57BL
- Mice, Mutant Strains/physiology
- Microscopy, Electron, Transmission/methods
- Microsomes/metabolism
- Myelin Proteolipid Protein/metabolism
- Myelin Sheath/metabolism
- Myelin Sheath/ultrastructure
- Oligodendroglia/metabolism
- Oligodendroglia/ultrastructure
- Phenotype
- Psychomotor Performance/physiology
- RNA/analysis
- Receptors, LDL/metabolism
- Silver Staining/methods
- Spinal Cord/metabolism
- Spinal Cord/ultrastructure
Collapse
Affiliation(s)
- Gesine Saher
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Goettingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Leblanc SE, Srinivasan R, Ferri C, Mager GM, Gillian-Daniel AL, Wrabetz L, Svaren J. Regulation of cholesterol/lipid biosynthetic genes by Egr2/Krox20 during peripheral nerve myelination. J Neurochem 2005; 93:737-48. [PMID: 15836632 DOI: 10.1111/j.1471-4159.2005.03056.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Myelination of peripheral nerves by Schwann cells requires a large amount of lipid and cholesterol biosynthesis. To understand the transcriptional coordination of the myelination process, we have investigated the developmental relationship between early growth response 2 (Egr2)/Krox20--a pivotal regulator of peripheral nerve myelination--and the sterol regulatory element binding protein (SREBP) pathway, which controls expression of cholesterol/lipid biosynthetic genes. During myelination of sciatic nerve, there is a very significant induction of SREBP1 and SREBP2, as well as their target genes, suggesting that the SREBP transactivators are important regulators in the myelination process. Egr2/Krox20 does not appear to directly regulate the levels of SREBP pathway components, but rather, we found that Egr2/Krox20 and SREBP transactivators can synergistically activate promoters of several SREBP target genes, indicating that direct induction of cholesterol/lipid biosynthetic genes by Egr2/Krox20 is a part of the myelination program regulated by this transactivator.
Collapse
Affiliation(s)
- Scott E Leblanc
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | | | | | | | |
Collapse
|
145
|
ten Asbroek ALMA, Verhamme C, van Groenigen M, Wolterman R, de Kok-Nazaruk MM, Baas F. Expression profiling of sciatic nerve in a Charcot-Marie-Tooth disease type 1a mouse model. J Neurosci Res 2005; 79:825-35. [PMID: 15672449 DOI: 10.1002/jnr.20406] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Expression profiling was performed on sciatic nerve of normal mice and of transgenic mice overexpressing the peripheral myelin protein 22 kDa (PMP22). These mice represent a model for the hereditary peripheral neuropathy Charcot-Marie Tooth type 1A. Comparison of the profiles reveals that the proteasomal degradation pathway and various signaling mechanisms are up-regulated in the diseased nerve. The down-regulated processes represent cell shape and adhesion as well as cellular activity and metabolism. In addition, we found that the most significantly up-regulated differences could not be mapped on known transcripts and thus might represent not identified transcripts. Our data will be helpful to direct future research aimed at deciphering the molecular pathogenesis of the most prevalent hereditary peripheral neuropathy.
Collapse
|
146
|
Friedrich RP, Schlierf B, Tamm ER, Bösl MR, Wegner M. The class III POU domain protein Brn-1 can fully replace the related Oct-6 during schwann cell development and myelination. Mol Cell Biol 2005; 25:1821-9. [PMID: 15713637 PMCID: PMC549364 DOI: 10.1128/mcb.25.5.1821-1829.2005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2004] [Accepted: 11/20/2004] [Indexed: 11/20/2022] Open
Abstract
For differentiation, Schwann cells rely on the class III POU domain transcription factor Oct-6, which is expressed transiently when Schwann cells have established a one-to-one relation with axons but have not yet started to myelinate. Loss of Oct-6 leads to a transient arrest in this promyelinating stage and a delay in myelination. Although the closely related POU domain protein Brn-2 is coexpressed with Oct-6 in Schwann cells, its loss has only mild consequences. Combined loss of both POU domain proteins, in contrast, dramatically increases the myelination delay, raising the question of how related POU domain proteins compare to each other in their activities. Here, we have replaced Oct-6 expression in the mouse with expression of the class III POU domain protein Brn-1. Although this protein is not normally expressed in Schwann cells, Brn-1 was capable of fully replacing Oct-6. Brn-1 efficiently induced Krox-20 expression as a prerequisite for myelination. Onset and extent of myelination were also indistinguishable from that of the wild type in mice that carried only Brn-1 instead of Oct-6 alleles. Similar to Oct-6, Brn-1 down-regulated its own expression at later stages of myelination. Thus, class III POU domain proteins can fully replace each other in Schwann cell development.
Collapse
Affiliation(s)
- Ralf P Friedrich
- Institut für Biochemie, Universität Erlangen, Fahrstrasse 17, 91054 Erlangen, Germany
| | | | | | | | | |
Collapse
|
147
|
Le N, Nagarajan R, Wang JYT, Araki T, Schmidt RE, Milbrandt J. Analysis of congenital hypomyelinating Egr2Lo/Lo nerves identifies Sox2 as an inhibitor of Schwann cell differentiation and myelination. Proc Natl Acad Sci U S A 2005; 102:2596-601. [PMID: 15695336 PMCID: PMC548989 DOI: 10.1073/pnas.0407836102] [Citation(s) in RCA: 229] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Egr2 is a transcription factor required for peripheral nerve myelination in rodents, and mutations in Egr2 are associated with congenital hypomyelinating neuropathy (CHN) in humans. To further study its role in myelination, we generated mice harboring a hypomorphic Egr2 allele (Egr2Lo) that survive for up to 3 weeks postnatally, a period of active myelination in rodents. These Egr2Lo/Lo mice provided the opportunity to study the molecular effects of Egr2 deficiency on Schwann cell biology, an analysis that was not possible previously, because of the perinatal lethality of Egr2-null mice. Egr2Lo/Lo mice phenocopy CHN, as evidenced by the severe hypomyelination and increased numbers of proliferating Schwann cells of the peripheral nerves. Comparison of sciatic nerve gene expression profiles during development and after crush injury with those of Egr2Lo/Lo Schwann cells revealed that they are developmentally arrested, with down-regulation of myelination-related genes and up-regulation of genes associated with immature and promyelinating Schwann cells. One of the abnormally elevated genes in Egr2Lo/Lo Schwann cells, Sox2, encodes a transcription factor that is crucial for maintenance of neural stem cell pluripotency. Wild-type Schwann cells infected with Sox2 adenovirus or lentivirus inhibited expression of myelination-associated genes (e.g., myelin protein zero; Mpz), and failed to myelinate axons in vitro, but had an enhanced proliferative response to beta-neuregulin. The characterization of a mouse model of CHN has provided insight into Schwann cell differentiation and allowed the identification of Sox2 as a negative regulator of myelination.
Collapse
Affiliation(s)
- Nam Le
- Department of Pathology and Immunology, Washington University School of Medicine, 660 South Euclid Avenue, Box 8118, St. Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
148
|
Chrast R, Verheijen MHG, Lemke G. Complement factors in adult peripheral nerve: a potential role in energy metabolism. Neurochem Int 2004; 45:353-9. [PMID: 15145549 DOI: 10.1016/j.neuint.2003.09.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2003] [Revised: 09/18/2003] [Accepted: 09/23/2003] [Indexed: 10/26/2022]
Abstract
Complement cascade factors are known to play a critical role in myelin clearance after peripheral nerve injury. Here we show that components of both the classical (C1qa, C1qb, C1qc, C2 and C4) and alternative (C3, B and adipsin) pathways are expressed by uninjured peripheral nerve as well. mRNAs of components of the alternative pathway were predominantly found in the peri/epineurium, although factor C3 and factor B were also detected in the endoneurial compartment of adult nerve. Interestingly, adipsin mRNA was detected only in peri/epineurium, while adipsin protein was present in both peri/epineurium and endoneurium. This suggests that adipsin is transported to the endoneurium via the circulation from the peri/epineurium or outside of the nerve. Factor 5 and factor 9, necessary for the formation of the membrane-attack complex, were not detected in any part of the healthy peripheral nerve, which together with the observed presence of negative regulators of complement activation, is likely to prevent damage to the healthy nerve caused by complement activation. By analogy with the known role of complement factors in fat, we propose that local expression of these factors plays a role in the regulation of fatty acid homeostasis in the nerve and, thereby, in energy metabolism cross-talk between different compartments of the peripheral nerve.
Collapse
Affiliation(s)
- Roman Chrast
- Molecular Neurobiology Laboratory, The Salk Institute, 10010 N. Torrey Pines Rd., La Jolla, CA 92037, USA
| | | | | |
Collapse
|
149
|
Buchstaller J, Sommer L, Bodmer M, Hoffmann R, Suter U, Mantei N. Efficient isolation and gene expression profiling of small numbers of neural crest stem cells and developing Schwann cells. J Neurosci 2004; 24:2357-65. [PMID: 15014110 PMCID: PMC6729482 DOI: 10.1523/jneurosci.4083-03.2004] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Schwann cells develop from multipotent neural crest stem cells and are important for neuronal survival, maintenance of axonal integrity, and myelination. We used transgenic mice expressing green fluorescent protein in a tissue-specific manner to isolate viable, pure populations of neural crest stem cells and developing Schwann cells, which are not readily accessible by microdissection. Starting with the minute amounts of RNA obtained, a two-round amplification procedure was used to achieve reproducible DNA array hybridizations. We validated our screening procedure by comparisons with the literature and by in situ hybridization. Stage-to-stage comparisons and hierarchical clustering for neural crest and five stages of Schwann cell development suggest a wealth of candidates for genes involved in stem cell regulation and in early Schwann cell development. The combination of methods applied in this study should be generally useful for isolating and profiling other stem cell and difficult to isolate cell populations.
Collapse
Affiliation(s)
- Johanna Buchstaller
- Institute of Cell Biology, Department of Biology, Swiss Federal Institute of Technology, CH-8093 Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
150
|
A new look at lipids in nerves. Nat Rev Neurosci 2003. [DOI: 10.1038/nrn1281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|