101
|
Rysä J, Tenhunen O, Serpi R, Soini Y, Nemer M, Leskinen H, Ruskoaho H. GATA-4 is an angiogenic survival factor of the infarcted heart. Circ Heart Fail 2010; 3:440-50. [PMID: 20200331 DOI: 10.1161/circheartfailure.109.889642] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Recent data suggest that GATA-4 is an antiapoptotic factor required for adaptive responses and a key regulator of hypertrophy and hypertrophy-associated genes in the heart. As a leading cause of chronic heart failure, reversal of postinfarction left ventricular remodeling represents an important target for therapeutic interventions. Here, we studied the role of GATA-4 as a mediator of postinfarction remodeling in rats. METHODS AND RESULTS Myocardial infarction, caused by ligating the left anterior descending coronary artery, significantly decreased the DNA binding activity of GATA-4 at day 1, whereas at 2 weeks the GATA-4 DNA binding was significantly upregulated. To determine the functional role of GATA-4, peri-infarct intramyocardial delivery of adenoviral vector expressing GATA-4 was done before left anterior descending coronary artery ligation. Hearts treated with GATA-4 gene transfer exhibited significantly increased ejection fraction and fractional shortening. Accordingly, infarct size was significantly reduced. To determine the cardioprotective mechanisms of GATA-4, myocardial angiogenesis, rate of apoptosis, c-kit+ cardiac stemlike cells, and genes regulated by GATA-4 were studied. The number of capillaries and stemlike cells was significantly increased, and decreased apoptosis was observed. CONCLUSION These results indicate that the reversal of reduced GATA-4 activity prevents adverse postinfarction remodeling through myocardial angiogenesis, antiapoptosis, and stem cell recruitment. GATA-4-based gene transfer may represent a novel, efficient therapeutic approach for heart failure.
Collapse
Affiliation(s)
- Jaana Rysä
- Department of Pharmacology and Toxicology, Institute of Biomedicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | | | | | | | | | | | | |
Collapse
|
102
|
Kobayashi S, Volden P, Timm D, Mao K, Xu X, Liang Q. Transcription factor GATA4 inhibits doxorubicin-induced autophagy and cardiomyocyte death. J Biol Chem 2009; 285:793-804. [PMID: 19901028 DOI: 10.1074/jbc.m109.070037] [Citation(s) in RCA: 226] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Doxorubicin (DOX) is a potent anti-tumor drug known to cause heart failure. The transcription factor GATA4 antagonizes DOX-induced cardiotoxicity. However, the protective mechanism remains obscure. Autophagy is the primary cellular pathway for lysosomal degradation of long-lived proteins and organelles, and its activation could be either protective or detrimental depending on specific pathophysiological conditions. Here we investigated the ability of GATA4 to inhibit autophagy as a potential mechanism underlying its protection against DOX toxicity in cultured neonatal rat cardiomyocytes. DOX markedly increased autophagic flux in cardiomyocytes as indicated by the difference in protein levels of LC3-II (microtubule-associated protein light chain 3 form 2) or numbers of autophagic vacuoles in the absence and presence of the lysosomal inhibitor bafilomycin A1. DOX-induced cardiomyocyte death determined by multiple assays was aggravated by a drug or genetic approach that activates autophagy, but it was attenuated by manipulations that inhibit autophagy, suggesting that autophagy contributes to DOX cardiotoxicity. DOX treatment depleted GATA4 protein levels, which predisposed cardiomyocytes to DOX toxicity. Indeed, GATA4 gene silencing triggered autophagy that rendered DOX more toxic, whereas GATA4 overexpression inhibited DOX-induced autophagy, reducing cardiomyocyte death. Mechanistically, GATA4 up-regulated gene expression of the survival factor Bcl2 and suppressed DOX-induced activation of autophagy-related genes, which may likely be responsible for the anti-apoptotic and anti-autophagic effects of GATA4. Together, these findings suggest that activation of autophagy mediates DOX cardiotoxicity, and preservation of GATA4 attenuates DOX cardiotoxicity by inhibiting autophagy through modulation of the expression of Bcl2 and autophagy-related genes.
Collapse
Affiliation(s)
- Satoru Kobayashi
- Cardiovascular Health Research Center, Sanford Research, University of South Dakota, Sioux Falls, South Dakota 57105, USA
| | | | | | | | | | | |
Collapse
|
103
|
He Q, Harding P, LaPointe MC. PKA, Rap1, ERK1/2, and p90RSK mediate PGE2 and EP4 signaling in neonatal ventricular myocytes. Am J Physiol Heart Circ Physiol 2009; 298:H136-43. [PMID: 19880670 DOI: 10.1152/ajpheart.00251.2009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously reported that 1) inhibition of cyclooxygenase-2 and PGE(2) production reduces hypertrophy after myocardial infarction in mice and 2) PGE(2) acting through its EP4 receptor causes hypertrophy of neonatal ventricular myocytes (NVMs) via ERK1/2. It is known that EP4 couples to adenylate cyclase, cAMP, and PKA. The present study was designed to determine interactions between the cAMP-PKA pathway and ERK1/2 and to further characterize events downstream of ERK1/2. We hypothesized that PKA and the small GTPase Rap are upstream of ERK1/2 and that 90-kDa ribosomal S6 kinase (p90RSK) is activated downstream. Treatment of NVMs with PGE(2) activated Rap, and this activation was inhibited in part by an EP4 antagonist and PKA inhibition. Transfection of a dominant negative mutant of Rap reduced PGE(2) activation of ERK1/2. PGE(2) activation of p90RSK was also dependent on EP4, PKA, and Rap. We also tested the involvement of Rap, ERK1/2, and p90RSK in PGE(2) regulation of gene expression. PGE(2) stimulation of brain natriuretic peptide promoter activity was blocked by either ERK1/2 inhibition or a dominant negative mutation of p90RSK. PGE(2) stimulation of c-Fos was dependent on EP4, PKA, ERK1/2, and p90RSK, whereas only the latter two kinases were involved in PGE(2) regulation of early growth response-1. Finally, we tested the involvement of EP4-dependent signaling in the NVM growth response and found that the overexpression of EP4 increased NVM cell size. We conclude that EP4-dependent signaling in NVMs in part involves PKA, Rap, ERK1/2, and p90RSK and results in the increased expression of brain natriuretic peptide and c-Fos.
Collapse
Affiliation(s)
- Quan He
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI 48202-2689, USA
| | | | | |
Collapse
|
104
|
Bogani D, Siggers P, Brixey R, Warr N, Beddow S, Edwards J, Williams D, Wilhelm D, Koopman P, Flavell RA, Chi H, Ostrer H, Wells S, Cheeseman M, Greenfield A. Loss of mitogen-activated protein kinase kinase kinase 4 (MAP3K4) reveals a requirement for MAPK signalling in mouse sex determination. PLoS Biol 2009; 7:e1000196. [PMID: 19753101 PMCID: PMC2733150 DOI: 10.1371/journal.pbio.1000196] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 08/06/2009] [Indexed: 11/29/2022] Open
Abstract
Sex determination in mammals is controlled by the presence or absence of the Y-linked gene SRY. In the developing male (XY) gonad, sex-determining region of the Y (SRY) protein acts to up-regulate expression of the related gene, SOX9, a transcriptional regulator that in turn initiates a downstream pathway of testis development, whilst also suppressing ovary development. Despite the requirement for a number of transcription factors and secreted signalling molecules in sex determination, intracellular signalling components functioning in this process have not been defined. Here we report a role for the phylogenetically ancient mitogen-activated protein kinase (MAPK) signalling pathway in mouse sex determination. Using a forward genetic screen, we identified the recessive boygirl (byg) mutation. On the C57BL/6J background, embryos homozygous for byg exhibit consistent XY gonadal sex reversal. The byg mutation is an A to T transversion causing a premature stop codon in the gene encoding MAP3K4 (also known as MEKK4), a mitogen-activated protein kinase kinase kinase. Analysis of XY byg/byg gonads at 11.5 d post coitum reveals a growth deficit and a failure to support mesonephric cell migration, both early cellular processes normally associated with testis development. Expression analysis of mutant XY gonads at the same stage also reveals a dramatic reduction in Sox9 and, crucially, Sry at the transcript and protein levels. Moreover, we describe experiments showing the presence of activated MKK4, a direct target of MAP3K4, and activated p38 in the coelomic region of the XY gonad at 11.5 d post coitum, establishing a link between MAPK signalling in proliferating gonadal somatic cells and regulation of Sry expression. Finally, we provide evidence that haploinsufficiency for Map3k4 accounts for T-associated sex reversal (Tas). These data demonstrate that MAP3K4-dependent signalling events are required for normal expression of Sry during testis development, and create a novel entry point into the molecular and cellular mechanisms underlying sex determination in mice and disorders of sexual development in humans.
Collapse
Affiliation(s)
- Debora Bogani
- Mammalian Genetics Unit, Medical Research Council (MRC) Harwell, Oxfordshire, United Kingdom
| | - Pam Siggers
- Mammalian Genetics Unit, Medical Research Council (MRC) Harwell, Oxfordshire, United Kingdom
| | - Rachel Brixey
- Mammalian Genetics Unit, Medical Research Council (MRC) Harwell, Oxfordshire, United Kingdom
| | - Nick Warr
- Mammalian Genetics Unit, Medical Research Council (MRC) Harwell, Oxfordshire, United Kingdom
| | - Sarah Beddow
- Mammalian Genetics Unit, Medical Research Council (MRC) Harwell, Oxfordshire, United Kingdom
| | - Jessica Edwards
- Mammalian Genetics Unit, Medical Research Council (MRC) Harwell, Oxfordshire, United Kingdom
| | - Debbie Williams
- Mammalian Genetics Unit, Medical Research Council (MRC) Harwell, Oxfordshire, United Kingdom
| | - Dagmar Wilhelm
- The Institute of Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Peter Koopman
- The Institute of Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Richard A. Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Hongbo Chi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Harry Ostrer
- Human Genetics Program, New York University School of Medicine, New York, New York, United States of America
| | - Sara Wells
- The Mary Lyon Centre, Medical Research Council (MRC) Harwell, Oxfordshire, United Kingdom
| | - Michael Cheeseman
- Mammalian Genetics Unit, Medical Research Council (MRC) Harwell, Oxfordshire, United Kingdom
- The Mary Lyon Centre, Medical Research Council (MRC) Harwell, Oxfordshire, United Kingdom
| | - Andy Greenfield
- Mammalian Genetics Unit, Medical Research Council (MRC) Harwell, Oxfordshire, United Kingdom
| |
Collapse
|
105
|
Glenn DJ, Rahmutula D, Nishimoto M, Liang F, Gardner DG. Atrial natriuretic peptide suppresses endothelin gene expression and proliferation in cardiac fibroblasts through a GATA4-dependent mechanism. Cardiovasc Res 2009; 84:209-17. [PMID: 19546173 DOI: 10.1093/cvr/cvp208] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
AIMS Atrial natriuretic peptide (ANP) is a hormone that has both antihypertrophic and antifibrotic properties in the heart. We hypothesized that myocyte-derived ANP inhibits endothelin (ET) gene expression in fibroblasts. METHODS AND RESULTS We have investigated the mechanism(s) involved in the antiproliferative effect of ANP on cardiac fibroblasts in a cell culture model. We found that cardiac myocytes inhibited DNA synthesis in co-cultured cardiac fibroblasts as did treatment with the ET-1 antagonist BQ610. The effect of co-culture was reversed by antibody directed against ANP or the ANP receptor antagonist HS-142-1. ANP inhibited the expression of the ET-1 gene and ET-1 gene promoter activity in cultured fibroblasts. The site of the inhibition was localized to a GATA-binding site positioned between -132 and -135 upstream from the transcription start site. GATA4 expression was demonstrated in cardiac fibroblasts, GATA4 bound the ET-1 promoter both in vitro and in vivo, and siRNA-mediated knockdown of GATA4 inhibited ET-1 expression. ET-1 treatment resulted in increased levels of phospho-serine(105) GATA4 in cardiac fibroblasts and this induction was partially suppressed by co-treatment with ANP. CONCLUSION Collectively, these findings suggest that locally produced ET-1 serves as an autocrine stimulator of fibroblast proliferation, that ANP produced in neighbouring myocytes serves as a paracrine inhibitor of this proliferation, and that the latter effect operates through a reduction in GATA4 phosphorylation and coincident reduction in GATA4-dependent transcriptional activity.
Collapse
Affiliation(s)
- Denis J Glenn
- Department of Medicine, University of California at San Francisco, San Francisco, CA, USA
| | | | | | | | | |
Collapse
|
106
|
Qian L, Bodmer R. Partial loss of GATA factor Pannier impairs adult heart function in Drosophila. Hum Mol Genet 2009; 18:3153-63. [PMID: 19494035 DOI: 10.1093/hmg/ddp254] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The GATA transcription factor encoded by pannier (pnr) is a critical regulator of heart progenitor formation in Drosophila. Mutations in GATA4, the mammalian homolog of pnr, have also been implicated in causing human cardiac disease in a haploinsufficient manner. Mouse models of Gata4 loss-of-function and gain-of-function studies underscored the importance of Gata4 in regulating cardiac progenitor cells specification and differentiation. However, it is not known whether pnr/Gata4 is directly involved in establishing and maintaining adult heart physiology because of the lethality associated with defective heart function and redundancy among various GATA factors in vertebrates. Here, we took advantage of the Drosophila heart model to examine the function of pnr in adult heart physiology. We found that pnr heterozygous mutants result in defective cardiac performance in response to electrical pacing of the heart as well as in elevated arrhythmias. Adult-specific disruption of pnr function using a dominant-negative form pnrEnR revealed a cardiac autonomous requirement of pnr in regulating heart physiology. Moreover, we identified Tbx20/neuromancer (nmr) as a potential downstream mediator of pnr in regulating cardiac performance and rhythm regularity, based on the observation that overexpression of nmr genes, but not of tinman, partially rescues the adult defects in pnr mutants. We conclude that pnr is not only essential for early cardiac progenitor formation, along with tinman and T-box factors, but also plays an important role in establishing and/or maintaining proper heart function, which is partially through another key regulator Tbx20/nmr.
Collapse
Affiliation(s)
- Li Qian
- NASCR Center, Burnham Institute for Medical Research, La Jolla, CA 92037, USA
| | | |
Collapse
|
107
|
Vlasblom R, Muller A, Beckers CML, van Nieuw Amerongen GP, Zuidwijk MJ, van Hardeveld C, Paulus WJ, Simonides WS. RhoA-ROCK signaling is involved in contraction-mediated inhibition of SERCA2a expression in cardiomyocytes. Pflugers Arch 2009; 458:785-93. [PMID: 19294414 PMCID: PMC2704291 DOI: 10.1007/s00424-009-0659-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Revised: 02/17/2009] [Accepted: 02/24/2009] [Indexed: 12/18/2022]
Abstract
In neonatal ventricular cardiomyocytes (NVCM), decreased contractile activity stimulates sarco-endoplasmic reticulum Ca(2+)-ATPase2a (SERCA2a), analogous to reduced myocardial load in vivo. This study investigated in contracting NVCM the role of load-dependent RhoA-ROCK signaling in SERCA2a regulation. Contractile arrest of NVCM resulted in low peri-nuclear localized RhoA levels relative to contracting NVCM. In arrested NVCM, ROCK activity was decreased (59%) and paralleled a loss in F-actin levels. Y-27632-induced ROCK inhibition in contracting NVCM increased SERCA2a messenger RNA expression by 150%. This stimulation was transcriptional, as evident from transfections with the SERCA2a promoter. A reciprocal effect of Y-27632 treatment on the promoter activity of atrial natriuretic factor was observed. SERCA2a transcription was not altered by co-transfection of the RhoA-ROCK-dependent serum response factor (SRF) alone or in combination with myocardin. Furthermore, GATA4, another ROCK-dependent transcription factor, induced rather than repressed SERCA2a transcription. This study shows that contractile activity suppresses SERCA2a gene expression via RhoA-ROCK-dependent transcription modulation. This modulation is likely to be accomplished by a transcription factor other than SRF, myocardin, or GATA4.
Collapse
Affiliation(s)
- Ronald Vlasblom
- Laboratory for Physiology, Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, Van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
108
|
Ying Z, Yue P, Xu X, Zhong M, Sun Q, Mikolaj M, Wang A, Brook RD, Chen LC, Rajagopalan S. Air pollution and cardiac remodeling: a role for RhoA/Rho-kinase. Am J Physiol Heart Circ Physiol 2009; 296:H1540-50. [PMID: 19286943 DOI: 10.1152/ajpheart.01270.2008] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Exposure to ambient air pollution has been associated with increases in blood pressure. We have previously demonstrated activation of the Rho/Rho kinase pathway in experimental hypertension in rats. In this investigation, we evaluated the effects of particulate matter of < 2.5 microm (PM(2.5)) exposure on cardiovascular responses and remodeling and tested the effect of Rho kinase inhibition on these effects. C57BL/6 mice were exposed to concentrated ambient PM(2.5) or filtered air for 12 wk followed by a 14-day ANG II infusion in conjunction with fasudil, a Rho kinase antagonist, or placebo treatment. Blood pressure was monitored, followed by analysis of vascular function and ventricular remodeling indexes. PM(2.5) exposure potentiated ANG II-induced hypertension, and this effect was abolished by fasudil treatment. Cardiac and vascular RhoA activation was enhanced by PM(2.5) exposure along with increased expression of the guanine exchange factors (GEFs) PDZ-RhoGEF and p115 RhoGEF in PM(2.5)-exposed mice. Parallel with increased RhoA activation, PM(2.5) exposure increased ANG II-induced cardiac hypertrophy and collagen deposition, with these increases being normalized by fasudil treatment. In conclusion, PM(2.5) potentiates cardiac remodeling in response to ANG II through RhoA/Rho kinase-dependent mechanisms. These findings have implications for the chronic cardiovascular health effects of air pollution.
Collapse
Affiliation(s)
- Zhekang Ying
- Davis Heart Lung Research Institute, The Ohio State Univ., Rm. 110, 473 W. 12th Ave., Columbus, OH 43210-1252, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Kyrönlahti A, Rämö M, Tamminen M, Unkila-Kallio L, Butzow R, Leminen A, Nemer M, Rahman N, Huhtaniemi I, Heikinheimo M, Anttonen M. GATA-4 regulates Bcl-2 expression in ovarian granulosa cell tumors. Endocrinology 2008; 149:5635-42. [PMID: 18653721 DOI: 10.1210/en.2008-0148] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Excessive cell proliferation and decreased apoptosis have been implicated in the pathogenesis of ovarian granulosa cell tumors (GCTs). We hypothesized that transcription factor GATA-4 controls expression of the antiapoptotic factor Bcl-2 and the cell cycle regulator cyclin D2 in normal and neoplastic granulosa cells. To test this hypothesis, a tissue microarray based on 80 GCTs was subjected to immunohistochemistry for GATA-4, Bcl-2, and cyclin D2, and the data were correlated to clinical and histopathological parameters. In addition, quantitative RT-PCR for GATA-4, Bcl-2, and cyclin D2 was performed on 21 human GCTs. A mouse GCT model was used to complement these studies. The role of GATA-4 in the regulation of Bcl2 and ccdn2 (coding for cyclin D2) was studied by transactivation assays, and by disrupting GATA-4 function with dominant negative approaches in mouse and human GCT cell lines. We found that GATA-4 expression correlated with Bcl-2 and cyclin D2 expression in human and murine GCTs. Moreover, GATA-4 enhanced Bcl-2 and cyclin D2 promoter activity in murine GCT cells. Whereas GATA-4 overexpression up-regulated and dominant negative GATA-4 suppressed Bcl-2 expression in human GCT cells, the effects on cyclin D2 were negligible. Our results reveal a previously unknown relationship between GATA-4 and Bcl-2 in mammalian granulosa cells and GCTs, and suggest that GATA-4 influences granulosa cell fate by transactivating Bcl-2.
Collapse
Affiliation(s)
- Antti Kyrönlahti
- Children's Hospital and Institute of Biomedicine, University of Helsinki, 00014 Helsinki, Finland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Afouda BA, Martin J, Liu F, Ciau-Uitz A, Patient R, Hoppler S. GATA transcription factors integrate Wnt signalling during heart development. Development 2008; 135:3185-90. [PMID: 18715946 DOI: 10.1242/dev.026443] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2025]
Abstract
Cardiogenesis is inhibited by canonical Wnt/beta-catenin signalling and stimulated by non-canonical Wnt11/JNK signalling, but how these two signalling pathways crosstalk is currently unknown. Here, we show that Wnt/beta-catenin signalling restricts cardiogenesis via inhibition of GATA gene expression, as experimentally reinstating GATA function overrides beta-catenin-mediated inhibition and restores cardiogenesis. Furthermore, we show that GATA transcription factors in turn directly regulate Wnt11 gene expression, and that Wnt11 is required to a significant degree for mediating the cardiogenesis-promoting function of GATA transcription factors. These results demonstrate that GATA factors occupy a central position between canonical and non-canonical Wnt signalling in regulating heart muscle formation.
Collapse
Affiliation(s)
- Boni A Afouda
- Institute of Medical Sciences, Cell and Developmental Biology Research Programme, School of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | | | | | | | | | | |
Collapse
|
111
|
Huang Y, Wright CD, Kobayashi S, Healy CL, Elgethun M, Cypher A, Liang Q, O'Connell TD. GATA4 is a survival factor in adult cardiac myocytes but is not required for alpha1A-adrenergic receptor survival signaling. Am J Physiol Heart Circ Physiol 2008; 295:H699-707. [PMID: 18552157 DOI: 10.1152/ajpheart.01204.2007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Recently, we defined an alpha1A-adrenergic receptor-ERK (alpha1A-AR-ERK) survival signaling pathway in adult cardiac myocytes. Previous studies in neonatal cardiac myocytes indicated that the cardiac-specific transcription factor GATA4 is a downstream mediator of alpha1-ERK signaling and that phosphorylation of GATA4 by ERK increases DNA binding and transcriptional activity. Therefore, we examined GATA4 as a potential downstream effector of alpha1A-ERK survival signaling in adult cardiac myocytes. We measured norepinephrine (NE)-induced cell death in cultured cardiac myocytes lacking alpha1-ARs (cultured from alpha1A/B-AR double-knockout mice, alpha1ABKO mice) that are susceptible to cell death induced by several proapoptotic stimuli, including NE. Our results show that overexpression of GATA4 is sufficient to protect alpha1ABKO cardiac myocytes from NE-induced cell death. However, we found that the alpha1A-subtype did not induce phosphorylation or increase the activity of GATA4 in adult mouse cardiac myocytes in culture or in vivo. Furthermore, we examined the effect of siRNA-mediated knockdown of GATA4 on alpha1A-survival signaling. In alpha1B-knockout cardiac myocytes, which express only the alpha1A-subtype and are protected from NE-induced cell death, GATA4 knockdown did not reverse alpha1A-survival signaling in response to NE. In summary, we found that GATA4 acted as a survival factor by preventing cell death in alpha1ABKO cardiac myocytes, but GATA4 was not activated by alpha1-AR stimulation and was not required for alpha1A-survival signaling in adult cardiac myocytes. This also identifies an important mechanistic difference in alpha1-signaling between adult and neonatal cardiac myocytes.
Collapse
Affiliation(s)
- Yuan Huang
- Cardiovascular Research Center, Sanford Research/Univ. of South Dakota, Dept. of Internal Medicine, Univ. of South Dakota, 1100 E. 21st St., Ste. 700, Sioux Falls, SD 57105, USA
| | | | | | | | | | | | | | | |
Collapse
|
112
|
Novikova SI, He F, Bai J, Cutrufello NJ, Lidow MS, Undieh AS. Maternal cocaine administration in mice alters DNA methylation and gene expression in hippocampal neurons of neonatal and prepubertal offspring. PLoS One 2008; 3:e1919. [PMID: 18382688 PMCID: PMC2271055 DOI: 10.1371/journal.pone.0001919] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Accepted: 02/11/2008] [Indexed: 02/03/2023] Open
Abstract
Previous studies documented significant behavioral changes in the offspring of cocaine-exposed mothers. We now explore the hypothesis that maternal cocaine exposure could alter the fetal epigenetic machinery sufficiently to cause lasting neurochemical and functional changes in the offspring. Pregnant CD1 mice were administered either saline or 20 mg/kg cocaine twice daily on gestational days 8-19. Male pups from each of ten litters of the cocaine and control groups were analyzed at 3 (P3) or 30 (P30) days postnatum. Global DNA methylation, methylated DNA immunoprecipitation followed by CGI(2) microarray profiling and bisulfite sequencing, as well as quantitative real-time RT-PCR gene expression analysis, were evaluated in hippocampal pyramidal neurons excised by laser capture microdissection. Following maternal cocaine exposure, global DNA methylation was significantly decreased at P3 and increased at P30. Among the 492 CGIs whose methylation was significantly altered by cocaine at P3, 34% were hypermethylated while 66% were hypomethylated. Several of these CGIs contained promoter regions for genes implicated in crucial cellular functions. Endogenous expression of selected genes linked to the abnormally methylated CGIs was correspondingly decreased or increased by as much as 4-19-fold. By P30, some of the cocaine-associated effects at P3 endured, reversed to opposite directions, or disappeared. Further, additional sets of abnormally methylated targets emerged at P30 that were not observed at P3. Taken together, these observations indicate that maternal cocaine exposure during the second and third trimesters of gestation could produce potentially profound structural and functional modifications in the epigenomic programs of neonatal and prepubertal mice.
Collapse
Affiliation(s)
- Svetlana I. Novikova
- Laboratory of Neurogenomics and Proteomics, Department of Biomedical Sciences, University of Maryland, Baltimore, Maryland, United States of America
- Laboratory of Integrative Neuropharmacology, Department of Pharmaceutical Sciences, Thomas Jefferson University School of Pharmacy, Philadelphia, Pennsylvania, United States of America
| | - Fang He
- Laboratory of Neurogenomics and Proteomics, Department of Biomedical Sciences, University of Maryland, Baltimore, Maryland, United States of America
| | - Jie Bai
- Laboratory of Neurogenomics and Proteomics, Department of Biomedical Sciences, University of Maryland, Baltimore, Maryland, United States of America
| | - Nicholas J. Cutrufello
- Laboratory of Neurogenomics and Proteomics, Department of Biomedical Sciences, University of Maryland, Baltimore, Maryland, United States of America
| | - Michael S. Lidow
- Laboratory of Neurogenomics and Proteomics, Department of Biomedical Sciences, University of Maryland, Baltimore, Maryland, United States of America
| | - Ashiwel S. Undieh
- Laboratory of Integrative Neuropharmacology, Department of Pharmaceutical Sciences, Thomas Jefferson University School of Pharmacy, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
113
|
Walsh K, Shiojima I. Cardiac growth and angiogenesis coordinated by intertissue interactions. J Clin Invest 2008; 117:3176-9. [PMID: 17975662 DOI: 10.1172/jci34126] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cardiac hypertrophy and angiogenesis are coordinately regulated during physiological or adaptive cardiac growth, and disruption of the balanced growth and angiogenesis leads to contractile dysfunction and heart failure. Coordination of growth and angiogenesis is in part mediated by the secretion of angiogenic growth factors from myocytes in response to hypertrophic stimuli, which enables the vasculature to "catch up" to the growth of the myocardium. In this issue of the JCI, two studies provide novel insights into the regulatory mechanisms of cardiac growth and coronary angiogenesis. Heineke et al. demonstrate that GATA4 acts as a stress-responsive transcription factor in murine cardiac myocytes that induces the expression of angiogenic growth factors (see the related article beginning on page 3198). Tirziu et al. show that enhanced coronary angiogenesis per se leads to hypertrophic growth of myocytes through a nitric oxide-dependent mechanism (see the related article beginning on page 3188). These studies, together with previous reports, suggest the existence of reciprocal signals between the myocardium and the vasculature that promote the growth of each other in a paracrine fashion.
Collapse
Affiliation(s)
- Kenneth Walsh
- Molecular Cardiology Unit, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts 02118, USA.
| | | |
Collapse
|
114
|
Toenjes M, Schueler M, Hammer S, Pape UJ, Fischer JJ, Berger F, Vingron M, Sperling S. Prediction of cardiac transcription networks based on molecular data and complex clinical phenotypes. MOLECULAR BIOSYSTEMS 2008; 4:589-98. [PMID: 18493657 DOI: 10.1039/b800207j] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We present an integrative approach combining sophisticated techniques to construct cardiac gene regulatory networks based on correlated gene expression and optimized prediction of transcription factor binding sites. We analyze transcription levels of a comprehensive set of 42 genes in biopsies derived from hearts of a cohort of 190 patients as well as healthy individuals. To precisely describe the variety of heart malformations observed in the patients, we delineate a detailed phenotype ontology that allows description of observed clinical characteristics as well as the definition of informative meta-phenotypes. Based on the expression data obtained by real-time PCR we identify specific disease associated transcription profiles by applying linear models. Furthermore, genes that show highly correlated expression patterns are depicted. By predicting binding sites on promoter settings optimized using a cardiac specific chromatin immunoprecipitation data set, we reveal regulatory dependencies. Several of the found interactions have been previously described in literature, demonstrating that the approach is a versatile tool to predict regulatory networks.
Collapse
Affiliation(s)
- Martje Toenjes
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Ihnestr. 73, 14195 Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
115
|
Viger RS, Guittot SM, Anttonen M, Wilson DB, Heikinheimo M. Role of the GATA family of transcription factors in endocrine development, function, and disease. Mol Endocrinol 2008; 22:781-98. [PMID: 18174356 PMCID: PMC2276466 DOI: 10.1210/me.2007-0513] [Citation(s) in RCA: 198] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2007] [Accepted: 12/21/2007] [Indexed: 12/30/2022] Open
Abstract
The WGATAR motif is a common nucleotide sequence found in the transcriptional regulatory regions of numerous genes. In vertebrates, these motifs are bound by one of six factors (GATA1 to GATA6) that constitute the GATA family of transcriptional regulatory proteins. Although originally considered for their roles in hematopoietic cells and the heart, GATA factors are now known to be expressed in a wide variety of tissues where they act as critical regulators of cell-specific gene expression. This includes multiple endocrine organs such as the pituitary, pancreas, adrenals, and especially the gonads. Insights into the functional roles played by GATA factors in adult organ systems have been hampered by the early embryonic lethality associated with the different Gata-null mice. This is now being overcome with the generation of tissue-specific knockout models and other knockdown strategies. These approaches, together with the increasing number of human GATA-related pathologies have greatly broadened the scope of GATA-dependent genes and, importantly, have shown that GATA action is not necessarily limited to early development. This has been particularly evident in endocrine organs where GATA factors appear to contribute to the transcription of multiple hormone-encoding genes. This review provides an overview of the GATA family of transcription factors as they relate to endocrine function and disease.
Collapse
Affiliation(s)
- Robert S Viger
- Ontogeny-Reproduction Research Unit, Room T1-49, CHUQ Research Centre, 2705 Laurier Boulevard, Quebec City, Quebec, Canada G1V 4G2.
| | | | | | | | | |
Collapse
|
116
|
Heineke J, Auger-Messier M, Xu J, Oka T, Sargent MA, York A, Klevitsky R, Vaikunth S, Duncan SA, Aronow BJ, Robbins J, Cromblehol TM, Molkentin JD. Cardiomyocyte GATA4 functions as a stress-responsive regulator of angiogenesis in the murine heart. J Clin Invest 2007; 117:3198-210. [PMID: 17975667 PMCID: PMC2045611 DOI: 10.1172/jci32573] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Accepted: 09/12/2007] [Indexed: 12/20/2022] Open
Abstract
The transcription factor GATA4 is a critical regulator of cardiac gene expression, modulating cardiomyocyte differentiation and adaptive responses of the adult heart. We report what we believe to be a novel function for GATA4 in murine cardiomyocytes as a nodal regulator of cardiac angiogenesis. Conditional overexpression of GATA4 within adult cardiomyocytes increased myocardial capillary and small conducting vessel densities and increased coronary flow reserve and perfusion-dependent cardiac contractility. Coculture of HUVECs with either GATA4-expressing cardiomyocytes or with myocytes expressing a dominant-negative form of GATA4 enhanced or reduced HUVEC tube formation, respectively. Expression of GATA4 in skeletal muscle by adenoviral gene transfer enhanced capillary densities and hindlimb perfusion following femoral artery ablation. Deletion of Gata4 specifically from cardiomyocytes reduced myocardial capillary density and prevented pressure overload-augmented angiogenesis in vivo. GATA4 induced the angiogenic factor VEGF-A, directly binding the Vegf-A promoter and enhancing transcription. GATA4-overexpressing mice showed increased levels of cardiac VEGF-A, while Gata4-deleted mice demonstrated decreased VEGF-A levels. The induction of HUVEC tube formation in GATA4-overexpressing cocultured myocytes was blocked with a VEGF receptor antagonist. Pressure overload-induced dysfunction in Gata4-deleted hearts was partially rescued by adenoviral gene delivery of VEGF and angiopoietin-1. To our knowledge, these results demonstrate [corrected] a previously unrecognized function for GATA4 as a regulator of cardiac angiogenesis through a nonhypoxic, load, and/or disease-responsive mechanism.
Collapse
Affiliation(s)
- Joerg Heineke
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA.
Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Mannix Auger-Messier
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA.
Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Jian Xu
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA.
Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Toru Oka
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA.
Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Michelle A. Sargent
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA.
Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Allen York
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA.
Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Raisa Klevitsky
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA.
Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Sachin Vaikunth
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA.
Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Stephen A. Duncan
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA.
Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Bruce J. Aronow
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA.
Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Jeffrey Robbins
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA.
Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Timothy M. Cromblehol
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA.
Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Jeffery D. Molkentin
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA.
Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
117
|
Karmazyn M, Purdham DM, Rajapurohitam V, Zeidan A. Leptin as a Cardiac Hypertrophic Factor: A Potential Target for Therapeutics. Trends Cardiovasc Med 2007; 17:206-11. [PMID: 17662916 DOI: 10.1016/j.tcm.2007.06.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Revised: 06/07/2007] [Accepted: 06/08/2007] [Indexed: 01/26/2023]
Abstract
The satiety factor leptin has received extensive attention especially in terms of its potential role in appetite suppression and regulation of energy expenditure. Once considered to be solely derived from adipose tissue, which accounts for the greatly increased levels observed in obese subjects, it is now apparent that leptin can be produced by a multiplicity of tissues, including the heart, where it appears to function in an autocrine and paracrine manner. Plasma leptin concentrations are also elevated in patients with heart disease including those with congestive heart failure. Leptin exerts its biological effects via a family of receptors termed Ob-R. In cardiac cells, one of leptin's primary actions is to produce cardiomyocyte hypertrophy through multifaceted cell signaling mechanisms including stimulation of mitogen-activated protein kinase and activation of the RhoA/Rho kinase (ROCK) pathway. The hypertrophic effect of leptin suggests that it may contribute to myocardial remodeling after cardiac injury and offers the potential targeting of the leptin system as a novel cardiac therapy.
Collapse
Affiliation(s)
- Morris Karmazyn
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada N6A 5C1.
| | | | | | | |
Collapse
|
118
|
Majalahti T, Suo-Palosaari M, Sármán B, Hautala N, Pikkarainen S, Tokola H, Vuolteenaho O, Wang J, Paradis P, Nemer M, Ruskoaho H. Cardiac BNP gene activation by angiotensin II in vivo. Mol Cell Endocrinol 2007; 273:59-67. [PMID: 17587490 DOI: 10.1016/j.mce.2007.05.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2007] [Revised: 04/20/2007] [Accepted: 05/09/2007] [Indexed: 01/12/2023]
Abstract
The transcription factors involved in the activation of cardiac gene expression by angiotensin II (Ang II) in vivo are not well understood. Here we studied the contribution of transcriptional elements to the activation of the cardiac B-type natriuretic peptide (BNP) gene promoter by Ang II in conscious rats and in angiotensin II type 1 receptor (AT1R) transgenic mice. Rat BNP luciferase reporter gene constructs were injected into the left ventricular wall. The mean luciferase activity was 1.8-fold higher (P<0.05) in the ventricles of animals subjected to 2-week Ang II infusion as compared with vehicle infusion. Our results indicate that GATA binding sites at -90 and -81 in the rat BNP promoter are essential for the in vivo response to Ang II. The GATA factor binding to these sites is GATA-4. BNP mRNA levels and GATA-4 binding activity are also increased in the hypertrophied hearts of aged AT1R transgenic mice.
Collapse
MESH Headings
- Angiotensin II/pharmacology
- Animals
- Body Weight/drug effects
- Cells, Cultured
- DNA/metabolism
- GATA4 Transcription Factor/genetics
- GATA4 Transcription Factor/metabolism
- GATA6 Transcription Factor/genetics
- GATA6 Transcription Factor/metabolism
- Gene Expression Regulation/drug effects
- Hypertension/physiopathology
- Hypertrophy, Left Ventricular/physiopathology
- Male
- Mice
- Mice, Transgenic
- Myocardium/metabolism
- Natriuretic Peptide, Brain/genetics
- Organ Size/drug effects
- Promoter Regions, Genetic/genetics
- Protein Binding/drug effects
- Proto-Oncogene Proteins c-ets/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptor, Angiotensin, Type 1/metabolism
- Transcription Factor AP-1/metabolism
- Transcriptional Activation
Collapse
Affiliation(s)
- Theresa Majalahti
- Department of Physiology, Biocenter Oulu, University of Oulu, Oulu FIN-90014, Finland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Vogt A, Lutz S, Rümenapp U, Han L, Jakobs KH, Schmidt M, Wieland T. Regulator of G-protein signalling 3 redirects prototypical Gi-coupled receptors from Rac1 to RhoA activation. Cell Signal 2007; 19:1229-37. [PMID: 17300916 DOI: 10.1016/j.cellsig.2007.01.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Revised: 01/08/2007] [Accepted: 01/08/2007] [Indexed: 11/19/2022]
Abstract
The small GTPases, Rac1 and RhoA, are pivotal regulators of several essential, but distinct cellular processes. Numerous G-protein-coupled receptors signal to these GTPases, but with different specificities. Specifically, Gi-coupled receptors (GiPCRs) are generally believed to activate Rac1, but not RhoA, a process involving Gbetagamma-dimers and phosphatidylinositol 3-kinase (PI3K). Here we show that, depending on the expression level of the 519 amino acid isoform of regulator of G-protein signalling 3 (RGS3L), prototypical GiPCRs, like M2 muscarinic, A1 adenosine, and alpha2-adrenergic receptors, activate either Rac1 or RhoA in human embryonic kidney cells and neonatal rat cardiomyocyte-derived H10 cells. The switch from Rac1 to RhoA activation in H10 cells was controlled by fibroblast growth factor-2 (FGF-2), lowering the expression of RGS3L. Activation of both, Rac1 and RhoA, seen at low and high expression levels of RGS3L, respectively, was sensitive to pertussis toxin and the PI3K inhibitor LY294002 and mediated by Gbetagamma-dimers. We conclude that RGS3L functions as a molecular switch, redirecting GiPCRs via Gbetagamma-dimers and PI3K from Rac1 to RhoA activation. Considering the essential roles of Rac1 and RhoA in many signalling pathways, this additional function of RGS3L indicates a specific role of this protein in cellular signalling networks.
Collapse
Affiliation(s)
- Andreas Vogt
- Department of Experimental and Clinical Pharmacology and Toxicology, University of Heidelberg, Mannheim, Germany
| | | | | | | | | | | | | |
Collapse
|
120
|
Appert-Collin A, Cotecchia S, Nenniger-Tosato M, Pedrazzini T, Diviani D. The A-kinase anchoring protein (AKAP)-Lbc-signaling complex mediates alpha1 adrenergic receptor-induced cardiomyocyte hypertrophy. Proc Natl Acad Sci U S A 2007; 104:10140-5. [PMID: 17537920 PMCID: PMC1891209 DOI: 10.1073/pnas.0701099104] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
In response to various pathological stresses, the heart undergoes a pathological remodeling process that is associated with cardiomyocyte hypertrophy. Because cardiac hypertrophy can progress to heart failure, a major cause of lethality worldwide, the intracellular signaling pathways that control cardiomyocyte growth have been the subject of intensive investigation. It has been known for more than a decade that the small molecular weight GTPase RhoA is involved in the signaling pathways leading to cardiomyocyte hypertrophy. Although some of the hypertrophic pathways activated by RhoA have now been identified, the identity of the exchange factors that modulate its activity in cardiomyocytes is currently unknown. In this study, we show that AKAP-Lbc, an A-kinase anchoring protein (AKAP) with an intrinsic Rho-specific guanine nucleotide exchange factor activity, is critical for activating RhoA and transducing hypertrophic signals downstream of alpha1-adrenergic receptors (ARs). In particular, our results indicate that suppression of AKAP-Lbc expression by infecting rat neonatal ventricular cardiomyocytes with lentiviruses encoding AKAP-Lbc-specific short hairpin RNAs strongly reduces both alpha1-AR-mediated RhoA activation and hypertrophic responses. Interestingly, alpha1-ARs promote AKAP-Lbc activation via a pathway that requires the alpha subunit of the heterotrimeric G protein G12. These findings identify AKAP-Lbc as the first Rho-guanine nucleotide exchange factor (GEF) involved in the signaling pathways leading to cardiomyocytes hypertrophy.
Collapse
Affiliation(s)
- Aline Appert-Collin
- *Département de Pharmacologie et de Toxicologie, Faculté de Biologie et de Médecine, Université de Lausanne, 1005 Lausanne, Switzerland; and
| | - Susanna Cotecchia
- *Département de Pharmacologie et de Toxicologie, Faculté de Biologie et de Médecine, Université de Lausanne, 1005 Lausanne, Switzerland; and
| | - Monique Nenniger-Tosato
- *Département de Pharmacologie et de Toxicologie, Faculté de Biologie et de Médecine, Université de Lausanne, 1005 Lausanne, Switzerland; and
| | - Thierry Pedrazzini
- Department of Medicine, University of Lausanne Medical School, 1011 Lausanne, Switzerland
| | - Dario Diviani
- *Département de Pharmacologie et de Toxicologie, Faculté de Biologie et de Médecine, Université de Lausanne, 1005 Lausanne, Switzerland; and
- To whom correspondence should be addressed at:
Département de Pharmacologie et de Toxicologie, Rue du Bugnon 27, 1005 Lausanne, Switzerland. E-mail:
| |
Collapse
|
121
|
Affiliation(s)
- David G Gardner
- Diabetes Center, University of California at San Francisco, San Francisco, CA 94143-0540, USA.
| | | | | | | |
Collapse
|
122
|
Abstract
Neonatal rat ventricular myocytes (NRVMs) cultured in vitro have been used as a model system for easily recreating and studying several cardiac molecular conditions, such as hypertrophy, oxygen deprivation, and gene expression. However, low efficiency of gene transfer has often represented one of the major limitations of this technique. In this chapter we describe in detail how to isolate NRVMs from neonatal rat heart and the optimal conditions for their long-term culture. Different cardiomyocyte transfection methodologies, based on viral or viral/chemical delivery carriers, are also discussed.
Collapse
|
123
|
Chang DF, Belaguli NS, Chang J, Schwartz RJ. LIM-only protein, CRP2, switched on smooth muscle gene activity in adult cardiac myocytes. Proc Natl Acad Sci U S A 2006; 104:157-62. [PMID: 17185421 PMCID: PMC1765427 DOI: 10.1073/pnas.0605635103] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Smooth muscle alpha-actin gene activity appears in promyocardial cells well before cardiac myocyte differentiation and is down-regulated during the onset of rhythmic contractility and cardiac morphogenesis. The levels of LIM-only CRP2 correlated well with smooth muscle gene activity. Cardiomyocyte-specific expression of CRP2 in transgenic mice showed robust expression of smooth muscle cell-specific transcripts and protein filaments in the adult heart. Protein transduction of a recombinant CRP2 protein, fused to the protein transduction domain of HIV, into neonatal heart cells induced de novo synthesis of smooth muscle cell-specific transcripts and proteins. The LIM zinc fingers in CRP2 were found to collaborate with Brg1 of the SNF/SWI complexes, recruited serum response factor, and remodeled smooth muscle target gene chromatin through histone acetylation. CRP2 may have a cytoskeletal role, but as a nuclear protein, CRP2 acted as a potent transcription coadaptor that remodeled silent cardiac myocyte chromatin and directed serum response factor-dependent smooth muscle gene activity.
Collapse
Affiliation(s)
- David F. Chang
- *Center for Cardiovascular Development and
- Departments of Medicine and
| | | | - Jiang Chang
- Center for Molecular Development and Diseases, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030
| | - Robert J. Schwartz
- Center for Molecular Development and Diseases, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030
- To whom correspondence should be addressed at:
Institute of Biosciences and Technology, Center for Molecular Development and Diseases, Texas A&M University, 2121 Holcombe Boulevard, Houston, Texas 77030-3303. E-mail:
| |
Collapse
|
124
|
Oka T, Xu J, Molkentin JD. Re-employment of developmental transcription factors in adult heart disease. Semin Cell Dev Biol 2006; 18:117-31. [PMID: 17161634 PMCID: PMC1855184 DOI: 10.1016/j.semcdb.2006.11.012] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A finite number of transcription factors constitute a combinatorial code that orchestrates cardiac development and the specification and differentiation of myocytes. Many, if not all of these same transcription factors are re-employed in the adult heart in response to disease stimuli that promote hypertrophic enlargement and/or dilated cardiomyopathy, as part of the so-called "fetal gene program". This review will discuss the transcription factors that regulate the hypertrophic growth response of the adult heart, with a special emphasis on those regulators that participate in cardiac development.
Collapse
|
125
|
Park AM, Nagase H, Vinod Kumar S, Suzuki YJ. Acute intermittent hypoxia activates myocardial cell survival signaling. Am J Physiol Heart Circ Physiol 2006; 292:H751-7. [PMID: 17098826 DOI: 10.1152/ajpheart.01016.2006] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Intermittent hypoxia (IH) with repeated episodes of hypoxia-normoxia cycle has been shown to exert preconditioning-like cardioprotective effects. To understand the mechanism of these events, we investigated the changes in cardiac gene expression in response to acute IH. Mice were subjected to five cycles of 2 min of 10% O(2) plus 2 min of 21% O(2). RNA was isolated, and gene array analysis was performed. Results show that the expression of antiapoptotic genes, such as Bcl-2 and Bcl-x(L), were increased after acute IH. GATA-4 regulates transcription of these genes, and, consistently, GATA-4 activity was increased by acute IH. Although the phosphorylation of GATA-4 has been shown to regulate its activity, no changes in GATA-4 phosphorylation status by acute IH were noted. Gene transcription of gata4 was increased by acute IH, and this might be responsible for the enhanced GATA activity. To understand the mechanism of acute IH activation of gata4 gene transcription, we identified a promoter region of the mouse gata4 gene that is 1,000 bp immediately upstream from the transcriptional start site. In cardiac muscle cells, truncation of 1,000 to 250 bp did not alter the transcriptional activity, suggesting that the proximal 250-bp region contains important transcriptional regulatory sites. We further found that acute IH activates factors which bind to the proximal 100-bp region. Thus acute IH activates not yet identified factors that bind to the proximal 100-bp region of the gata4 promoter and, in turn, increases gata4 gene transcription, leading to enhanced expression of Bcl-2 and Bcl-x(L).
Collapse
Affiliation(s)
- Ah-Mee Park
- Department of Pharmacology, Georgetown University Medical Center, NW403 Medical-Dental Bldg., 3900 Reservoir Rd. NW, Washington, DC 20057, USA
| | | | | | | |
Collapse
|
126
|
Lavallée G, Andelfinger G, Nadeau M, Lefebvre C, Nemer G, Horb ME, Nemer M. The Kruppel-like transcription factor KLF13 is a novel regulator of heart development. EMBO J 2006; 25:5201-13. [PMID: 17053787 PMCID: PMC1630408 DOI: 10.1038/sj.emboj.7601379] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2006] [Accepted: 09/06/2006] [Indexed: 11/09/2022] Open
Abstract
In humans, congenital heart defects occur in 1-2% of live birth, but the molecular mechanisms and causative genes remain unidentified in the majority of cases. We have uncovered a novel transcription pathway important for heart morphogenesis. We report that KLF13, a member of the Krüppel-like family of zinc-finger proteins, is expressed predominantly in the heart, binds evolutionarily conserved regulatory elements on cardiac promoters and activates cardiac transcription. KLF13 is conserved across species and knockdown of KLF13 in Xenopus embryos leads to atrial septal defects and hypotrabeculation similar to those observed in humans or mice with hypomorphic GATA-4 alleles. Physical and functional interaction with GATA-4, a dosage-sensitive cardiac regulator, provides a mechanistic explanation for KLF13 action in the heart. The data demonstrate that KLF13 is an important component of the transcription network required for heart development and suggest that KLF13 is a GATA-4 modifier; by analogy to other GATA-4 collaborators, mutations in KLF13 may be causative for congenital human heart disease.
Collapse
Affiliation(s)
- Geneviève Lavallée
- Institut de recherches cliniques de Montréal (IRCM), Montréal, Quebec, Canada
- Université de Montréal, Montréal, Quebec, Canada
| | - Gregor Andelfinger
- Institut de recherches cliniques de Montréal (IRCM), Montréal, Quebec, Canada
- Université de Montréal, Montréal, Quebec, Canada
| | - Mathieu Nadeau
- Institut de recherches cliniques de Montréal (IRCM), Montréal, Quebec, Canada
- Université de Montréal, Montréal, Quebec, Canada
| | - Chantal Lefebvre
- Institut de recherches cliniques de Montréal (IRCM), Montréal, Quebec, Canada
- Université de Montréal, Montréal, Quebec, Canada
| | - Georges Nemer
- Institut de recherches cliniques de Montréal (IRCM), Montréal, Quebec, Canada
- Université de Montréal, Montréal, Quebec, Canada
| | - Marko E Horb
- Institut de recherches cliniques de Montréal (IRCM), Montréal, Quebec, Canada
- Université de Montréal, Montréal, Quebec, Canada
- Cardiac Growth and Differentiation Unit, Institut de recherches cliniques de Montréal (IRCM), 110, avenue des Pins Ouest, Montréal, Quebec, Canada H2W 1R7. Tel.: +1 514 987 5680; Fax: +1 514 987 5575; E-mail:
| | - Mona Nemer
- Institut de recherches cliniques de Montréal (IRCM), Montréal, Quebec, Canada
- Université de Montréal, Montréal, Quebec, Canada
- Cardiac Growth and Differentiation Unit, Institut de recherches cliniques de Montréal (IRCM), 110, avenue des Pins Ouest, Montréal, Quebec, Canada H2W 1R7. Tel.: +1 514 987 5680; Fax: +1 514 987 5575; E-mail:
| |
Collapse
|
127
|
Watanabe KI, Ma M, Hirabayashi KI, Gurusamy N, Veeraveedu PT, Prakash P, Zhang S, Muslin AJ, Kodama M, Aizawa Y. Swimming stress in DN 14-3-3 mice triggers maladaptive cardiac remodeling: role of p38 MAPK. Am J Physiol Heart Circ Physiol 2006; 292:H1269-77. [PMID: 17040971 DOI: 10.1152/ajpheart.00550.2006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
It is generally believed that a mechanical signal initiates a cascade of biological events leading to coordinated cardiac remodeling. 14-3-3 family members are dimeric phosphoserine-binding proteins that regulate signal transduction, apoptotic, and checkpoint control pathways. To evaluate the molecular mechanism underlying swimming stress-induced cardiac remodeling, we examined the role of 14-3-3 protein and MAPK pathway by pharmacological and genetic means using transgenic mice with cardiac-specific expression of dominant-negative (DN) mutants of 14-3-3 (DN 14-3-3/TG) and p38alpha/beta MAPK (DNp38alpha and DNp38beta) mice. p38 MAPK activation was earlier, more marked, and longer in the myocardium of the TG group compared with that of the nontransgenic (NTG) group after swimming stress, whereas JNK activation was detected on day 5 and decreased afterward. In contrast, ERK1/2 was not activated after swimming stress in either group. Cardiomyocyte apoptosis, cardiac hypertrophy, and fibrosis were greatly increased in the TG group compared with those in the NTG group. Moreover, we found a significant correlation between p38 MAPK activation and apoptosis in the TG group. Furthermore, DN 14-3-3 hearts showed enhanced atrial natriuretic peptide expression. In contrast, DNp38alpha and DNp38beta mice exhibited reduced mortality and increased resistance to cardiac remodeling after 28 days of swimming stress compared with TG and NTG mice. Besides, treatment with a p38 MAPK inhibitor, FR-167653, resulted in regression of cardiac hypertrophy and fibrosis and improvement in the survival rate in the TG group. These results indicate for the first time that 14-3-3 protein along with p38 MAPK plays a crucial role in left ventricular remodeling associated with swimming stress.
Collapse
Affiliation(s)
- Ken-ichi Watanabe
- Dept of Clinical Pharmacology, Niigata Univ of Pharmacy and Applied Life Sciences, Higashijima, Niigata City, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Divine JK, Staloch LJ, Haveri H, Rowley CW, Heikinheimo M, Simon TC. Cooperative interactions among intestinal GATA factors in activating the rat liver fatty acid binding protein gene. Am J Physiol Gastrointest Liver Physiol 2006; 291:G297-306. [PMID: 16603485 DOI: 10.1152/ajpgi.00422.2003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
GATA-4, GATA-5, and GATA-6 are endodermal zinc-finger transcription factors that activate numerous enterocytic genes. GATA-4 and GATA-6 but not GATA-5 are present in adult murine small intestinal enterocytes, and we now report the simultaneous presence of all three GATA factors in murine small intestinal enterocytes before weaning age. An immunohistochemical survey detected enterocytic GATA-4 and GATA-6 at birth and 1 wk of age and GATA-5 at 1 wk but not birth. Interactions among GATA factors were explored utilizing a transgene constructed from the proximal promoter of the rat liver fatty acid binding protein gene (Fabp1). GATA-4 and GATA-5 but not GATA-6 activate the Fabp1 transgene through a cognate binding site at -128. A dose-response assay revealed a maximum in transgene activation by both factors, where additional factor did not further increase transgene activity. However, at saturated levels of GATA-4, additional transgene activation was achieved by adding GATA-5 expression construct, and vice versa. Similar cooperativity occurred with GATA-5 and GATA-6. Identical interactions were observed with a target transgene consisting of a single GATA site upstream of a minimal promoter. Furthermore, GATA-4 and GATA-5 or GATA-5 and GATA-6 bound to each other in solution. These results are consistent with tethering of one GATA factor to the Fabp1 promoter through interaction with a second GATA factor to produce increased target gene activation. Cooperative target gene activation was specific to an intestinal cell line and may represent a mechanism by which genes are activated in the small intestinal epithelium during the period before weaning.
Collapse
Affiliation(s)
- Joyce K Divine
- Division of Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
129
|
Eduardo Carreño J, Apablaza F, Paz Ocaranza M, E. Jalil J. Hipertrofia cardiaca: eventos moleculares y celulares. Rev Esp Cardiol 2006. [DOI: 10.1157/13087900] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
130
|
Carreño JE, Apablaza F, Ocaranza MP, Jalil JE. Cardiac Hypertrophy: Molecular and Cellular Events. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/s1885-5857(06)60796-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
131
|
Abstract
Over the last decade, the Rho family GTPases have gained considerable recognition as powerful regulators of actin cytoskeletal organization. As with many high profile signal transducers, these molecules soon attracted the attention of the cardiovascular research community. Shortly thereafter, two prominent members known as RhoA and Rac1 were linked to agonist-induced gene expression and myofilament organization using the isolated cardiomyocyte cell model. Subsequent creation of transgenic mouse lines provided evidence for more complex roles of RhoA and Rac1 signaling. Clues from in vitro and in vivo studies suggest the involvement of numerous downstream targets of RhoA and Rac1 signaling including serum response factor, NF-kappaB, and other transcription factors, myofilament proteins, ion channels, and reactive oxygen species generation. Which of these contribute to the observed phenotypic effects of enhanced RhoA and Rac activation in vivo remain to be determined. Current research efforts with a more translational focus have used statins or Rho kinase blockers to assess RhoA and Rac1 as targets for interventional approaches to blunt hypertrophy or heart failure. Generally, salutary effects on remodeling and ischemic damage are observed, but the broad specificity and multiple cellular targets for these drugs within the myocardium demands caution in interpretation. In this review, we assess the evolution of knowledge related to Rac1 and RhoA in the context of hypertrophy and heart failure and highlight the direction that future exploration will lead.
Collapse
Affiliation(s)
- Joan Heller Brown
- Department of Pharmacology, University of California, San Diego, USA
| | | | | |
Collapse
|
132
|
Castellani L, Salvati E, Alemà S, Falcone G. Fine regulation of RhoA and Rock is required for skeletal muscle differentiation. J Biol Chem 2006; 281:15249-57. [PMID: 16574652 DOI: 10.1074/jbc.m601390200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The RhoA GTPase controls a variety of cell functions such as cell motility, cell growth, and gene expression. Previous studies suggested that RhoA mediates signaling inputs that promote skeletal myogenic differentiation. We show here that levels and activity of RhoA protein are down-regulated in both primary avian myoblasts and mouse satellite cells undergoing differentiation, suggesting that a fine regulation of this GTPase is required. In addition, ectopic expression of activated RhoA in primary quail myocytes, but not in mouse myocytes, inhibits accumulation of muscle-specific proteins and cell fusion. By disrupting RhoA signaling with specific inhibitors, we have shown that this GTPase, although required for cell identity in proliferating myoblasts, is not essential for commitment to terminal differentiation and muscle gene expression. Ectopic expression of an activated form of its downstream effector, Rock, impairs differentiation of both avian and mouse myoblasts. Conversely, Rock inhibition with specific inhibitors and small interfering RNA-mediated gene silencing leads to accelerated progression in the lineage and enhanced cell fusion, underscoring a negative regulatory function of Rock in myogenesis. Finally, we have reported that Rock acts independently from RhoA in preventing myoblast exit from the cell cycle and commitment to differentiation and may receive signaling inputs from Raf-1 kinase.
Collapse
Affiliation(s)
- Loriana Castellani
- Istituto di Biologia Cellulare, Consiglio Nazionale delle Ricerche, 00016 Monterotondo Scalo (RM), Italy
| | | | | | | |
Collapse
|
133
|
Tanaka T, Nishimura D, Wu RC, Amano M, Iso T, Kedes L, Nishida H, Kaibuchi K, Hamamori Y. Nuclear Rho kinase, ROCK2, targets p300 acetyltransferase. J Biol Chem 2006; 281:15320-9. [PMID: 16574662 DOI: 10.1074/jbc.m510954200] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Rho-associated coiled-coil protein kinase (ROCK) is an effector for the small GTPase Rho and plays a pivotal role in diverse cellular activities, including cell adhesion, cytokinesis, and gene expression, primarily through an alteration of actin cytoskeleton dynamics. Here, we show that ROCK2 is localized in the nucleus and associates with p300 acetyltransferase both in vitro and in cells. Nuclear ROCK2 is present in a large protein complex and partially cofractionates with p300 by gel filtration analysis. By immunofluorescence, ROCK2 partially colocalizes with p300 in distinct insoluble nuclear structures. ROCK2 phosphorylates p300 in vitro, and nuclear-restricted expression of constitutively active ROCK2 induces p300 phosphorylation in cells. p300 acetyltransferase activity is dependent on its phosphorylation status in cells, and p300 phosphorylation by ROCK2 results in an increase in its acetyltransferase activity in vitro. These observations suggest that nucleus-localized ROCK2 targets p300 for phosphorylation to regulate its acetyltransferase activity.
Collapse
Affiliation(s)
- Toru Tanaka
- Department of Medicine and Center for Cardiovascular Development, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Oka T, Maillet M, Watt AJ, Schwartz RJ, Aronow BJ, Duncan SA, Molkentin JD. Cardiac-specific deletion of Gata4 reveals its requirement for hypertrophy, compensation, and myocyte viability. Circ Res 2006; 98:837-45. [PMID: 16514068 DOI: 10.1161/01.res.0000215985.18538.c4] [Citation(s) in RCA: 358] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The transcription factor GATA4 is a critical regulator of cardiac gene expression where it controls embryonic development, cardiomyocyte differentiation, and stress responsiveness of the adult heart. Traditional deletion of Gata4 caused embryonic lethality associated with endoderm defects and cardiac malformations, precluding an analysis of the role of GATA4 in the adult myocardium. To address the function of GATA4 in the adult heart, Gata4-loxP-targeted mice (Gata4fl/fl) were crossed with mice containing a beta-myosin heavy chain (beta-MHC) or alpha-MHC promoter-driven Cre transgene, which produced viable mice that survived into adulthood despite a 95% and 70% loss of GATA4 protein, respectively. However, cardiac-specific deletion of Gata4 resulted in a progressive and dosage-dependent deterioration in cardiac function and dilation in adulthood. Moreover, pressure overload stimulation induced rapid decompensation and heart failure in cardiac-specific Gata4-deleted mice. More provocatively, Gata4-deleted mice were compromised in their ability to hypertrophy following pressure overload or exercise stimulation. Mechanistically, cardiac-specific deletion of Gata4 increased cardiomyocyte TUNEL at baseline in embryos and adults as they aged, as well as dramatically increased TUNEL following pressure overload stimulation. Examination of gene expression profiles in the heart revealed a number of profound alterations in known GATA4-regulated structural genes as well as genes with apoptotic implications. Thus, GATA4 is a necessary regulator of cardiac gene expression, hypertrophy, stress-compensation, and myocyte viability.
Collapse
Affiliation(s)
- Toru Oka
- Department of Pediatrics, University of Cincinnati, Children's Hospital Medical Center, Ohio 45229-3039, USA
| | | | | | | | | | | | | |
Collapse
|
135
|
Elliott DA, Solloway MJ, Wise N, Biben C, Costa MW, Furtado MB, Lange M, Dunwoodie S, Harvey RP. A tyrosine-rich domain within homeodomain transcription factor Nkx2-5 is an essential element in the early cardiac transcriptional regulatory machinery. Development 2006; 133:1311-22. [PMID: 16510504 DOI: 10.1242/dev.02305] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Homeodomain factor Nkx2-5 is a central component of the transcription factor network that guides cardiac development; in humans, mutations in NKX2.5 lead to congenital heart disease (CHD). We have genetically defined a novel conserved tyrosine-rich domain (YRD) within Nkx2-5 that has co-evolved with its homeodomain. Mutation of the YRD did not affect DNA binding and only slightly diminished transcriptional activity of Nkx2-5 in a context-specific manner in vitro. However, the YRD was absolutely essential for the function of Nkx2-5 in cardiogenesis during ES cell differentiation and in the developing embryo. Furthermore, heterozygous mutation of all nine tyrosines to alanine created an allele with a strong dominant-negative-like activity in vivo: ES cell<-->embryo chimaeras bearing the heterozygous mutation died before term with cardiac malformations similar to the more severe anomalies seen in NKX2.5 mutant families. These studies suggest a functional interdependence between the NK2 class homeodomain and YRD in cardiac development and evolution, and establish a new model for analysis of Nkx2-5 function in CHD.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Animals, Newborn
- Blotting, Western
- Cell Line
- Cells, Cultured
- Cephalopoda
- Conserved Sequence
- Electrophoretic Mobility Shift Assay
- Embryo, Mammalian
- Embryo, Nonmammalian
- Gene Expression Regulation, Developmental
- Gene Targeting
- Genes, Reporter
- Glutathione Transferase/metabolism
- Green Fluorescent Proteins/metabolism
- Heterozygote
- Homeobox Protein Nkx-2.5
- Homeodomain Proteins/chemistry
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- In Situ Hybridization
- Luciferases/metabolism
- Mice
- Molecular Sequence Data
- Mutation
- Myocardium/cytology
- Myocardium/metabolism
- Myocardium/pathology
- Myocytes, Cardiac/cytology
- Myocytes, Cardiac/metabolism
- Phylogeny
- Protein Structure, Tertiary
- Recombinant Fusion Proteins/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Homology, Amino Acid
- Transcription Factors/chemistry
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription, Genetic
- Transcriptional Activation
- Tyrosine/chemistry
Collapse
Affiliation(s)
- David A Elliott
- Victor Chang Cardiac Research Institute, Darlinghurst, Sydney 2010, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
136
|
Brewer AC, Sparks EC, Shah AM. Transcriptional regulation of the NADPH oxidase isoform, Nox1, in colon epithelial cells: role of GATA-binding factor(s). Free Radic Biol Med 2006; 40:260-74. [PMID: 16413408 DOI: 10.1016/j.freeradbiomed.2005.08.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2005] [Revised: 07/29/2005] [Accepted: 08/13/2005] [Indexed: 10/25/2022]
Abstract
Nonphagocytic NADPH oxidases (Noxs) are major sources of reactive oxygen species (ROS) and exist as a family of isoenzymes with tissue-restricted expression and functions. Nox1, expressed in colon epithelium and vascular smooth muscle, is suggested to be involved in innate immune defense and cell growth or proliferation. The transcriptional regulation of Nox1 appears to be particularly important in the modulation of its activity but the underlying mechanisms are unknown. Here we have identified the functional Nox1 promoter in human colon epithelial Caco-2 cells, and show that a 520-bp genomic fragment encompassing the CAP site is sufficient to direct high levels of expression of a linked reporter gene in these cells. Deletion analyses together with electrophoretic mobility-shift assays (EMSAs) suggest that maximal promoter activity is dependent on a GATA-binding site, conserved between human and mouse, within the proximal promoter region. The ability of mouse GATA factors to transactivate the Nox1 promoter was demonstrated in Cos-7 cells and site-directed mutagenesis of the conserved GATA-binding site further demonstrates that the regulation of Nox1 transcription is mediated by the direct binding of a GATA factor to the Nox1 proximal promoter. We also identified more distal, upstream regions which act to repress significantly expression from the Nox1 promoter.
Collapse
Affiliation(s)
- Alison C Brewer
- King's College London, Department of Cardiology, GKT School of Medicine and Dentistry, New Medical School Building, Bessemer Road, London SE5 9PJ, UK.
| | | | | |
Collapse
|
137
|
Wang J, Paradis P, Aries A, Komati H, Lefebvre C, Wang H, Nemer M. Convergence of protein kinase C and JAK-STAT signaling on transcription factor GATA-4. Mol Cell Biol 2005; 25:9829-44. [PMID: 16260600 PMCID: PMC1280254 DOI: 10.1128/mcb.25.22.9829-9844.2005] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Angiotensin II (AII), a potent vasoactive hormone, acts on numerous organs via G-protein-coupled receptors and elicits cell-specific responses. At the level of the heart, AII stimulation alters gene transcription and leads to cardiomyocyte hypertrophy. Numerous intracellular signaling pathways are activated in this process; however, which of these directly link receptor activation to transcriptional regulation remains undefined. We used the atrial natriuretic factor (ANF) gene (NPPA) as a marker to elucidate the signaling cascades involved in AII transcriptional responses. We show that ANF transcription is activated directly by the AII type 1 receptor and precedes the development of myocyte hypertrophy. This response maps to STAT and GATA binding sites, and the two elements transcriptionally cooperate to mediate signaling through the JAK-STAT and protein kinase C (PKC)-GATA-4 pathways. PKC phosphorylation enhances GATA-4 DNA binding activity, and STAT-1 functionally and physically interacts with GATA-4 to synergistically activate AII and other growth factor-inducible promoters. Moreover, GATA factors are able to recruit STAT proteins to target promoters via GATA binding sites, which are sufficient to support synergy. Thus, STAT proteins can act as growth factor-inducible coactivators of tissue-specific transcription factors. Interactions between STAT and GATA proteins may provide a general paradigm for understanding cell specificity of cytokine and growth factor signaling.
Collapse
Affiliation(s)
- Jun Wang
- Unité de Recherche en Développement et Différenciation Cardiaques, Institut de Recherches Cliniques de Montréal, 110, Avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada
| | | | | | | | | | | | | |
Collapse
|
138
|
Debrus S, Rahbani L, Marttila M, Delorme B, Paradis P, Nemer M. The zinc finger-only protein Zfp260 is a novel cardiac regulator and a nuclear effector of alpha1-adrenergic signaling. Mol Cell Biol 2005; 25:8669-82. [PMID: 16166646 PMCID: PMC1265756 DOI: 10.1128/mcb.25.19.8669-8682.2005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
alpha1-Adrenergic receptors mediate several biological effects of catecholamines, including the regulation of myocyte growth and contractility and transcriptional regulation of the atrial natriuretic factor (ANF) gene whose promoter contains an alpha1-adrenergic response element. The nuclear pathways and effectors that link receptor activation to genetic changes remain poorly understood. Here, we describe the isolation by the yeast one-hybrid system of a cardiac cDNA encoding a novel nuclear zinc finger protein, Zfp260, belonging to the Krüppel family of transcriptional regulators. Zfp260 is highly expressed in the embryonic heart but is downregulated during postnatal development. Functional studies indicate that Zfp260 is a transcriptional activator of ANF and a cofactor for GATA-4, a key cardiac regulator. Knockdown of Zfp260 in cardiac cells decreases endogenous ANF gene expression and abrogates its response to alpha1-adrenergic stimulation. Interestingly, Zfp260 transcripts are induced by alpha1-adrenergic agonists and are elevated in genetic models of hypertension and cardiac hypertrophy. The data identify Zfp260 as a novel transcriptional regulator in normal and pathological heart development and a nuclear effector of alpha1-adrenergic signaling.
Collapse
MESH Headings
- Adenoviridae/genetics
- Amino Acid Sequence
- Animals
- Atrial Natriuretic Factor/metabolism
- Base Sequence
- Blotting, Western
- Cell Nucleus/metabolism
- Cell Proliferation
- Cloning, Molecular
- DNA, Complementary/metabolism
- Down-Regulation
- Fluorescent Antibody Technique, Indirect
- Gene Expression Regulation
- Gene Expression Regulation, Developmental
- Gene Library
- Genes, Reporter
- HeLa Cells
- Heart/embryology
- Humans
- Hypertension/genetics
- Hypertrophy/genetics
- Immunohistochemistry
- Lac Operon
- Molecular Sequence Data
- Myocardium/metabolism
- Myocytes, Cardiac/metabolism
- Oligonucleotides, Antisense/chemistry
- Plasmids/metabolism
- Promoter Regions, Genetic
- Protein Structure, Tertiary
- RNA/metabolism
- RNA, Messenger/metabolism
- Rats
- Rats, Inbred WKY
- Rats, Sprague-Dawley
- Receptors, Adrenergic, alpha-1/metabolism
- Recombinant Proteins/chemistry
- Sequence Homology, Amino Acid
- Signal Transduction
- Time Factors
- Trans-Activators/biosynthesis
- Trans-Activators/chemistry
- Transcription, Genetic
- Transcriptional Activation
- Zinc Fingers
Collapse
Affiliation(s)
- Sophie Debrus
- Unité de Recherche en Développement et Différenciation Cardiaques, Institut de Recherches Cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal QC H2W 1R7, Canada
| | | | | | | | | | | |
Collapse
|
139
|
Richardson KE, Tannous P, Berenji K, Nolan B, Bayless KJ, Davis GE, Rothermel BA, Hill JA. Guanosine Triphosphatase Activation Occurs Downstream of Calcineurin in Cardiac Hypertrophy*. J Investig Med 2005; 53:414-24. [PMID: 16354580 DOI: 10.2310/6650.2005.53805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
There is great interest in deciphering mechanisms of maladaptive remodeling in cardiac hypertrophy in the hope of affording clinical benefit. Potential targets of therapeutic intervention include the cytoplasmic phosphatase calcineurin and small guanosine triphosphate-binding proteins, such as Rac1 and RhoA, all of which have been implicated in maladaptive hypertrophy. However, little is known about the interaction-if any-between these important signaling molecules in hypertrophic heart disease. In this study, we examined the molecular interplay among these molecules, finding that Rho family guanosine triphosphatase signaling occurs either downstream of calcineurin or as a required, parallel pathway. It has been shown that 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibition blocks hypertrophy, and we report here that "statin" therapy effectively suppresses small G protein activation and blunts hypertrophic growth in vitro and in vivo. Importantly, despite significant suppression of hypertrophy, clinical and hemodynamic markers remained compensated, suggesting that the hypertrophic growth induced by this pathway is not required to maintain circulatory performance.
Collapse
Affiliation(s)
- Kenneth E Richardson
- Molecular Biology Interdisciplinary Program, Univerity of Iowa Carver College of Medicine, Iwoa City, IA, USA
| | | | | | | | | | | | | | | |
Collapse
|
140
|
Bouchard MF, Taniguchi H, Viger RS. Protein kinase A-dependent synergism between GATA factors and the nuclear receptor, liver receptor homolog-1, regulates human aromatase (CYP19) PII promoter activity in breast cancer cells. Endocrinology 2005; 146:4905-16. [PMID: 16109788 DOI: 10.1210/en.2005-0187] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cancers, including that of the breast, are the result of multiple contributing factors including aberrant gene expression. Indeed, the CYP19 gene encoding P450 aromatase, the key enzyme for estrogen biosynthesis, is up-regulated in breast tumors predominantly via the cAMP-responsive gonad-type PII promoter, ultimately leading to increased intratumoral estrogen production and tumor growth. Thus, identifying the molecular factors involved in aromatase PII promoter regulation is essential for our understanding and treatment of the disease. Because we have previously shown activity of the murine aromatase PII promoter to be markedly up-regulated by GATA factors with respect to the gonads, we hypothesized that GATA factors are also key determinants of human PII promoter-driven aromatase transcription in breast tumors. We now show that GATA3 and GATA4 are indeed expressed in several breast cancer cells lines. Consistent with the cAMP dependence of the PII promoter, activation elicited by GATA3 or GATA4 alone and the striking synergism between GATA3 or GATA4 and the nuclear receptor liver receptor homolog (LRH)-1 was intimately linked to forskolin treatment or overexpression of protein kinase A (PKA) catalytic subunit. PKA-mediated phosphorylation increases the interaction between GATA3 and LRH-1 and the requirement for PKA in aromatase PII promoter stimulation involves at least three specific amino acid residues: GATA3 Ser308, GATA4 Ser261, and LRH-1 Ser469. Finally, we show that the human LRH-1 promoter is itself a target for GATA factors. Thus, taken together, our results suggest that GATA factors likely contribute to aberrant aromatase expression in breast tumors through two distinct, yet complementary mechanisms.
Collapse
Affiliation(s)
- Marie France Bouchard
- Ontogeny and Reproduction Research Unit, T1-49, Centre Hospitalier de l'Université Research Centre, 2705 Laurier Boulevard, Ste-Foy, Quebec, Canada G1V 4G2
| | | | | |
Collapse
|
141
|
Temsah R, Nemer M. GATA factors and transcriptional regulation of cardiac natriuretic peptide genes. ACTA ACUST UNITED AC 2005; 128:177-85. [PMID: 15837526 DOI: 10.1016/j.regpep.2004.12.026] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The A- and B-natriuretic peptides (ANP and BNP) are the heart major secretory products. ANF and BNP expression is a marker of cardiomyocyte differentiation, and is regulated spatially, developmentally and hormonally. Analysis of the ANP and BNP promoters has contributed in a major way to our present understanding of the key regulators of cardiac development. It has also started to unravel the complex combinatorial interactions required for proper regulation of the cardiac genetic program. The GATA family of transcription factors initially identified as essential regulators of the two natriuretic peptide genes appears to be at the heart of the molecular circuits governing cardiac growth and differentiation. In particular, GATA-4 has emerged as the nuclear effector of several signaling pathways which modulate its function through post-translational modifications and protein-protein interactions. This review will cover our current knowledge of cardiac transcription and the role of GATA factors in embryonic and postnatal heart development.
Collapse
Affiliation(s)
- Rana Temsah
- Laboratoire de développement et différenciation cardiaques, Institut de recherches cliniques de Montréal (IRCM), Québec, Canada
| | | |
Collapse
|
142
|
Munugalavadla V, Dore LC, Tan BL, Hong L, Vishnu M, Weiss MJ, Kapur R. Repression of c-kit and its downstream substrates by GATA-1 inhibits cell proliferation during erythroid maturation. Mol Cell Biol 2005; 25:6747-59. [PMID: 16024808 PMCID: PMC1190349 DOI: 10.1128/mcb.25.15.6747-6759.2005] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Stem cell factor (SCF), erythropoietin (Epo), and GATA-1 play an essential role(s) in erythroid development. We examined how these proteins interact functionally in G1E cells, a GATA-1(-) erythroblast line that proliferates in an SCF-dependent fashion and, upon restoration of GATA-1 function, undergoes GATA-1 proliferation arrest and Epo-dependent terminal maturation. We show that SCF-induced cell cycle progression is mediated via activation of the Src kinase/c-Myc pathway. Restoration of GATA-1 activity induced G1 cell cycle arrest coincident with repression of c-Kit and its downstream effectors Vav1, Rac1, and Akt. Sustained expression of each of these individual signaling components inhibited GATA-1-induced cell cycle arrest to various degrees but had no effects on the expression of GATA-1-regulated erythroid maturation markers. Chromatin immunoprecipitation analysis revealed that GATA-1 occupies a defined Kit gene regulatory element in vivo, suggesting a direct mechanism for gene repression. Hence, in addition to its well-established function as an activator of erythroid genes, GATA-1 also participates in a distinct genetic program that inhibits cell proliferation by repressing the expression of multiple components of the c-Kit signaling axis. Our findings reveal a novel aspect of molecular cross talk between essential transcriptional and cytokine signaling components of hematopoietic development.
Collapse
Affiliation(s)
- Veerendra Munugalavadla
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Cancer Research Institute, 1044 W. Walnut Street, Room 425, Indianapolis, IN 46202, USA.
| | | | | | | | | | | | | |
Collapse
|
143
|
Oka T, Dai YS, Molkentin JD. Regulation of calcineurin through transcriptional induction of the calcineurin A beta promoter in vitro and in vivo. Mol Cell Biol 2005; 25:6649-59. [PMID: 16024800 PMCID: PMC1190362 DOI: 10.1128/mcb.25.15.6649-6659.2005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2004] [Revised: 01/19/2005] [Accepted: 05/04/2005] [Indexed: 11/20/2022] Open
Abstract
The calcineurin-nuclear factor of activated T cells (NFAT) signaling pathway has been shown to be of critical importance in regulating the growth response of cardiac myocytes. We have previously demonstrated that calcineurin A(beta) (CnA(beta)) mRNA and protein are increased in response to growth stimulation, although the precise regulatory mechanism underlying CnA(beta) upregulation is not clear. Here, we isolated the mouse CnA(beta) promoter and characterized its responsiveness to growth stimuli in vitro and in vivo. A 2.3-kb promoter fragment was strongly activated by phenylephrine and endothelin-1 stimulation and by cotransfection with constitutively active CnA, NFATc4, and GATA4. Using chromatin immunoprecipitation, sequence regions were identified within the 2.3-kb promoter that associated with NFAT and GATA4, as well as with acetylated histone H3, following agonist stimulation. Consistent with the chromatin immunoprecipitation experiments, deletion of the distal half of the CnA(beta) promoter severely reduced NFAT, GATA4, and hypertrophic agonist-mediated activation. To investigate in vivo activity, we generated beta-galactosidase (LacZ) containing transgenic mice under the control of the CnA(beta) 2.3-kb promoter. CnA(beta)-LacZ mice showed expression in the heart that was cyclosporine sensitive, as well as expression in the central nervous system and skeletal muscle from early embryonic stages through adulthood. CnA(beta)-LacZ mice were subjected to cardiac pressure overload stimulation and crossbreeding with mice containing cardiac-specific transgenes for activated calcineurin and NFATc4, which revealed inducible expression in the heart. These results indicate that the CnA(beta) 2.3-kb promoter is specifically activated by hypertrophic stimuli through a positive feedback mechanism involving NFAT and GATA4 transcription factors, suggesting transcriptional induction of CnA(beta) expression as an additional means of regulating calcineurin activity in the heart.
Collapse
Affiliation(s)
- Toru Oka
- Cincinnati Children's Hospital Medical Center, Division of Molecular Cardiovascular Biology, 3333 Burnet Ave., MLC7020, Cincinnati OH 45229-3039, USA
| | | | | |
Collapse
|
144
|
Deaton RA, Su C, Valencia TG, Grant SR. Transforming growth factor-beta1-induced expression of smooth muscle marker genes involves activation of PKN and p38 MAPK. J Biol Chem 2005; 280:31172-81. [PMID: 15980430 DOI: 10.1074/jbc.m504774200] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Differentiated vascular smooth muscle cells (SMCs) exhibit a work phenotype characterized by expression of several well documented contractile apparatus-associated proteins. However, SMCs retain the ability to de-differentiate into a proliferative phenotype, which is involved in the progression of vascular diseases such as atherosclerosis and restenosis. Understanding the mechanisms involved in maintaining SMC differentiation is critical for preventing proliferation associated with vascular disease. In this study, the molecular mechanisms through which transforming growth factor-beta1 (TGF-beta1) induces differentiation of SMCs were examined. TGF-beta1 stimulated actin re-organization, inhibited cell proliferation, and up-regulated SMC marker gene expression in PAC-1 SMCs. These effects were blocked by pretreatment of cells with either HA1077 or Y-27632, which inhibit the kinases downstream of RhoA. Moreover, TGF-beta1 activated RhoA and its downstream target PKN. Overexpression of active PKN alone was sufficient to increase the transcriptional activity of the promoters that control expression of smooth muscle (SM) alpha-actin, SM-myosin heavy chain, and SM22alpha. In addition, PKN increased the activities of serum-response factor (SRF), GATA, and MEF2-dependent enhancer-reporters. RNA interference-mediated inhibition of PKN abolished TGF-beta1-induced activation of SMC marker gene promoters. Finally, examination of MAPK signaling demonstrated that TGF-beta1 increased the activity of p38 MAPK, which was required for activation of the SMC marker gene promoters. Co-expression of dominant negative p38 MAPK was sufficient to block PKN-mediated activation of the SMC marker gene promoters as well as the serum-response factor, GATA, and MEF2 enhancers. Taken together, these results identify components of an important intracellular signaling pathway through which TGF-beta1 activates PKN to promote differentiation of SMCs.
Collapse
Affiliation(s)
- Rebecca A Deaton
- Cardiovascular Research Institute, Department of Integrative Physiology, University of North Texas Health Science Center, Fort Worth, Texas 76107-2699, USA
| | | | | | | |
Collapse
|
145
|
Ma KK, Banas K, de Bold AJ. Determinants of inducible brain natriuretic peptide promoter activity. ACTA ACUST UNITED AC 2005; 128:169-76. [PMID: 15837525 DOI: 10.1016/j.regpep.2004.12.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Atrial natriuretic factor (ANF) and brain natriuretic peptide (BNP) are polypeptide hormones belonging to the cardiac-derived mammalian natriuretic peptide system. These hormones share the same biological properties and receptors and both play important roles in the maintenance of fluid and electrolyte balance and in cardiovascular growth. Most hemodynamic and neurohumoral stimuli can coordinately increase ANF and BNP gene expression. However, instances of discoordinated ANF and BNP gene expression have been described, providing an opportunity for investigating the mechanisms that differentially regulate the expression of the natriuretic peptide genes. For example, exposure of cardiocytes in culture to certain pro-inflammatory cytokines and conditioned medium from mixed lymphocyte cultures upregulate BNP but not ANF gene expression. BNP promoter activity is also upregulated under these conditions but the cis-acting elements involved in this phenomenon are not known. In comparison to the ANF gene, less is known about BNP promoter consensus elements that regulate gene expression by mechanical or neurohumoral agonists. A number of cis-acting elements for GATA, Nkx2.5, NF-kappaB and TEF transcription factors have recently been identified within the BNP promoter that regulate BNP expression in response to specific agonists. This review focuses on the information available regarding cis-acting determinants responsible for inducible BNP transcription.
Collapse
Affiliation(s)
- Kenneth K Ma
- Cardiovascular Endocrinology Laboratory, University of Ottawa Heart Institute, Department of Cellular and Molecular Medicine, Faculty of Medicine, Canada
| | | | | |
Collapse
|
146
|
Abstract
RhoA and Rho-kinase (ROCK) participate in a wide variety of cell signal functions such as cell growth, smooth and cardiac muscle contraction, cytoskeleton rearrangement, cell migration and proliferation. In vascular smooth muscle cells, RhoA and ROCK play an important role in Ca2+ sensitization and regulate vascular smooth muscle tone. In the heart, RhoA and ROCK mediate hypertrophic response leading to cardiac hypertrophy. Recent cellular and molecular biology studies using ROCK inhibitors such as Y-27632 and fasudil have indicated a pivotal role of the RhoA-ROCK cascade in many aspects of cardiovascular function such as cardiac hypertrophy and ventricular remodeling following myocardial infarction. Inhibition of the RhoA-ROCK signaling pathway may be a suitable target for a number of cardiovascular diseases including hypertension, atherosclerosis, diabetes and hypertrophic heart failure. This review focuses on the current understanding of the RhoA-ROCK signal pathway in heart diseases and discusses the use of ROCK inhibitors as therapeutic agents for heart diseases ranging from hypertensive cardiomyopathy to heart failure.
Collapse
Affiliation(s)
- Jun Ren
- Center for Cardiovascular Research and Alternative Medicine and Division of Pharmaceutical Sciences, University of Wyoming, Laramie, WY 82071, USA.
| | | |
Collapse
|
147
|
Woods A, Wang G, Beier F. RhoA/ROCK signaling regulates Sox9 expression and actin organization during chondrogenesis. J Biol Chem 2005; 280:11626-34. [PMID: 15665004 DOI: 10.1074/jbc.m409158200] [Citation(s) in RCA: 239] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Endochondral ossification is initiated by the differentiation of mesenchymal precursor cells to chondrocytes (chondrogenesis). This process is characterized by a strong interdependence of cell shape, cytoskeletal organization, and the onset of chondrogenic gene expression, but the molecular mechanisms mediating these interactions are not known. Here we investigated the role of the RhoA/ROCK pathway, a well characterized regulator of cytoskeletal organization, in chondrogenesis. We show that pharmacological inhibition of ROCK signaling by Y27632 resulted in increased glycosaminoglycan synthesis and elevated expression of the chondrogenic transcription factor Sox9, whereas overexpression of RhoA in the chondrogenic cell line ATDC5 had the opposite effects. Suppression of Sox9 expression by ROCK signaling was achieved through repression of Sox9 promoter activity. These molecular changes were accompanied by reorganization of the actin cytoskeleton, where RhoA/ROCK signaling suppressed cortical actin organization, a hallmark of differentiated chondrocytes. This led us to analyze the regulation of Sox9 expression by drugs affecting cytoskeletal dynamics. Both inhibition of actin polymerization by cytochalasin D and stabilization of existing actin filaments by jasplakinolide resulted in increased Sox9 mRNA levels, whereas inhibition of microtubule polymerization by colchicine completely blocked Sox9 expression. In conclusion, our data suggest that RhoA/ROCK signaling suppresses chondrogenesis through the control of Sox9 expression and actin organization.
Collapse
Affiliation(s)
- Anita Woods
- Canadian Institutes of Health Research Group in Skeletal Development and Remodeling, Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | | | | |
Collapse
|
148
|
Afouda BA, Ciau-Uitz A, Patient R. GATA4, 5 and 6 mediate TGFbeta maintenance of endodermal gene expression in Xenopus embryos. Development 2005; 132:763-74. [PMID: 15659482 DOI: 10.1242/dev.01647] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The individual contributions of the three vertebrate GATA factors to endoderm formation have been unclear. Here we detail the early expression of GATA4, 5 and 6 in presumptive endoderm in Xenopus embryos and their induction of endodermal markers in presumptive ectoderm. Induction of HNF3beta by all three GATA factors was abolished when protein synthesis was inhibited, showing that these inductions are indirect. In contrast, whereas induction of Sox17alpha and HNF1beta by GATA4 and 5 was substantially reduced when protein synthesis was inhibited, induction by GATA6 was minimally affected, suggesting that GATA6 is a direct activator of these early endodermal genes. GATA4 induced GATA6 expression in the same assay and antisense morpholino oligonucleotides (MOs), designed to knock down translation of GATA6, blocked induction of Sox17alpha and HNF1beta by GATA4, suggesting that GATA4 induces these genes via GATA6 in this assay. All three GATA factors were induced by activin, although GATA4 and 6 required lower concentrations. GATA MOs inhibited Sox17alpha and HNF1beta induction by activin at low and high concentrations in the order: GATA6>GATA4>GATA5. Together with the timing of their expression and the effects of GATA MOs in vivo, these observations identify GATA6 as the predominant GATA factor in the maintenance of endodermal gene expression by TGFbeta signaling in gastrulating embryos. In addition, examination of gene expression and morphology in later embryos, revealed GATA5 and 6 as the most critical for the development of the gut and the liver.
Collapse
Affiliation(s)
- Boni Anatole Afouda
- Institute of Genetics, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | | | | |
Collapse
|
149
|
Zhou D, Herrick DJ, Rosenbloom J, Chaqour B. Cyr61 mediates the expression of VEGF, alphav-integrin, and alpha-actin genes through cytoskeletally based mechanotransduction mechanisms in bladder smooth muscle cells. J Appl Physiol (1985) 2005; 98:2344-54. [PMID: 15649872 DOI: 10.1152/japplphysiol.01093.2004] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Application of cyclic strain to bladder smooth muscle (SM) cells results in profound alterations of the histomorphometry, phenotype, and function of the cells. The onset of this process is characterized by the activation of a cascade of signaling events coupled to progressive and, perhaps, interdependent changes of gene expression. In particular, externally applied cyclic stretch to cultured bladder SM cells results in the transient expression of the Cyr61 gene that encodes a cysteine-rich heparin-binding protein originally described as a proangiogenic factor capable of altering the gene programs for angiogenesis, adhesion, and extracellular matrix synthesis. In this study, we investigated the effects of mechanical stretch-induced Cyr61 on the expression of potential mechanosensitive Cyr61 target genes and the signaling pathways involved. We showed that suppression of Cyr61 expression with an adenoviral vector encoding an antisense oligonucleotide reduced mechanical strain-induced VEGF, alpha(v)-integrin, and SM alpha-actin gene expression but had no effect on the myosin heavy chain isoforms SM-1 and SM-2. Signaling pathways involving RhoA GTPase, phosphatidyl inositol 3-kinase, and cytoskeletal actin dynamics altered stretch-induced Cyr61 and Cyr61 target genes. Reciprocally, adenovirus-mediated overexpression of Cyr61 in cells cultured under static conditions increased the expression of VEGF, alpha(v)-integrin, and SM alpha-actin, as well as that of SM-1 and SM-2 isoforms, suggesting that the effects of a sustained expression of Cyr61 extend to SM specific contractile function. These effects were dependent on integrity of the actin cytoskeleton. Together, these results indicate that Cyr61 is an important determinant of the genetic reprogramming that occurs in mechanically challenged cells.
Collapse
Affiliation(s)
- Dongming Zhou
- Dept. of Anatomy and Cell Biology, SUNY Downstate Medical Center, 450 Clarkson Ave., Box 5, Brooklyn, NY 11203-2098, USA
| | | | | | | |
Collapse
|
150
|
Abstract
Cell-extracellular matrix (ECM) adhesion is crucial for control of cell behavior. It connects the ECM to the intracellular cytoskeleton and transduces bidirectional signals between the extracellular and intracellular compartments. The subcellular machinery that mediates cell-ECM adhesion and signaling is complex. It consists of transmembrane proteins (e.g., integrins) and at least several dozens of membrane-proximal proteins that assemble into a network through multiple protein interactions. Furthermore, despite sharing certain common components, cell-ECM adhesions exhibit considerable heterogeneity in different types of cells (e.g., the cell-ECM adhesions in cardiac myocytes are considerably different from those in fibroblasts). Here, we will first briefly describe the general properties of the integrin-mediated cell-ECM adhesion and signal transduction. Next, we will focus on one of the recently discovered cell-ECM adhesion protein complexes consisting of PINCH, integrin-linked kinase (ILK), and Parvin and use it as an example to illustrate the molecular basis underlying the assembly and functions of cell-ECM adhesions. Finally, we will discuss in detail the structure and regulation of cell-ECM adhesion complexes in cardiac myocytes, which illustrate the importance and complexity of the cell-ECM adhesion structures in organogenesis and diseases.
Collapse
Affiliation(s)
- Jorge L Sepulveda
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | |
Collapse
|