101
|
Transcriptome profiling of faba bean (Vicia faba L.) drought-tolerant variety hassawi-2 under drought stress using RNA sequencing. ELECTRON J BIOTECHN 2019. [DOI: 10.1016/j.ejbt.2019.02.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
102
|
Yobi A, Batushansky A, Oliver MJ, Angelovici R. Adaptive responses of amino acid metabolism to the combination of desiccation and low nitrogen availability in Sporobolus stapfianus. PLANTA 2019; 249:1535-1549. [PMID: 30725176 DOI: 10.1007/s00425-019-03105-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 01/30/2019] [Indexed: 06/09/2023]
Abstract
Depending on nitrogen availability, S. stapfianus uses different amino acid metabolism strategies to cope with desiccation stress. The different metabolic strategies support essential processes for the desiccation tolerance phenotype. To provide a comprehensive assessment of the role played by amino acids in the adaptation of Sporobolus stapfianus to a combination of desiccation and nitrogen limitation, we used an absolute quantification of free and protein-bound amino acids (FAAs and PBAAs) as well as their gamma-glutamyl (gg-AA) derivatives in four different tissues grown under high- and low-nitrogen regimes. We demonstrate that although specific FAAs and gg-AAs increased in desiccating immature leaves under both nitrogen regimes, the absolute change in the total amount of either is small or negligible, negating their proposed role in nitrogen storage. FAAs and PBAAs decrease in underground tissues during desiccation, when nitrogen is abundant. In contrast, PBAAs are drastically reduced from the mature leaves, when nitrogen is limiting. Nevertheless, the substantial reduction in PBAA and FAA fractions in both treatments is not manifested in the immature leaves, which strongly suggests that these amino acids are further metabolized to fuel central metabolism or other metabolic adjustments that are essential for the acquisition of desiccation tolerance (DT).
Collapse
Affiliation(s)
- Abou Yobi
- Division of Biological Sciences, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65311, USA
| | - Albert Batushansky
- Division of Biological Sciences, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65311, USA
- Aging and Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Melvin J Oliver
- U.S. Department of Agriculture-Agricultural Research Service, Plant Genetic Research Unit, University of Missouri, Columbia, MO, 65211, USA
| | - Ruthie Angelovici
- Division of Biological Sciences, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65311, USA.
| |
Collapse
|
103
|
Signorelli S, Tarkowski ŁP, Van den Ende W, Bassham DC. Linking Autophagy to Abiotic and Biotic Stress Responses. TRENDS IN PLANT SCIENCE 2019; 24:413-430. [PMID: 30824355 PMCID: PMC6475611 DOI: 10.1016/j.tplants.2019.02.001] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 02/01/2019] [Accepted: 02/04/2019] [Indexed: 05/05/2023]
Abstract
Autophagy is a process in which cellular components are delivered to lytic vacuoles to be recycled and has been demonstrated to promote abiotic/biotic stress tolerance. Here, we review how the responses triggered by stress conditions can affect autophagy and its signaling pathways. Besides the role of SNF-related kinase 1 (SnRK1) and TOR kinases in the regulation of autophagy, abscisic acid (ABA) and its signaling kinase SnRK2 have emerged as key players in the induction of autophagy under stress conditions. Furthermore, an interplay between reactive oxygen species (ROS) and autophagy is observed, ROS being able to induce autophagy and autophagy able to reduce ROS production. We also highlight the importance of osmotic adjustment for the successful performance of autophagy and discuss the potential role of GABA in plant survival and ethylene (ET)-induced autophagy.
Collapse
Affiliation(s)
- Santiago Signorelli
- Laboratory of Molecular Plant Biology, KU Leuven, Leuven, Belgium; Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Montevideo 12900, Uruguay.
| | | | - Wim Van den Ende
- Laboratory of Molecular Plant Biology, KU Leuven, Leuven, Belgium
| | - Diane C Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
104
|
Forlani G, Bertazzini M, Cagnano G. Stress-driven increase in proline levels, and not proline levels themselves, correlates with the ability to withstand excess salt in a group of 17 Italian rice genotypes. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21:336-342. [PMID: 30253007 DOI: 10.1111/plb.12916] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 09/19/2018] [Indexed: 05/23/2023]
Abstract
In most plant species, a rapid increase in free proline content occurs following exposure to hyperosmotic stress conditions. However, inconsistent results were reported concerning the role of such an increase on the plant response to water shortage or excess salt. Therefore, the possibility that proline accumulation may help the cell to withstand stress conditions, or that it simply represents a stress marker, is still a matter of debate. A possible relationship between proline accumulation and salt tolerance was investigated in a set of 17 Italian rice varieties. Rice seedlings were exposed to increasing salt concentrations during germination and early growth. The resulting levels of free proline were measured separately in shoots and roots and compared to those in untreated controls. Results were related to the corresponding ability of a given genotype to tolerate stress conditions. Neither absolute proline levels in untreated or in salt-stressed seedlings showed a straightforward relationship to the relative tolerance to salt, estimated as conductivity values able to reduce growth by 10 or 50%. Conversely, a highly significant correlation was found between the increase in proline levels in shoots and the ability to withstand stress. The results strengthen a recent hypothesis suggesting than an increase in proline metabolic rates, more than the resulting proline content, may help the cell to counteract the effects of abiotic stress conditions.
Collapse
Affiliation(s)
- G Forlani
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
| | - M Bertazzini
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
| | - G Cagnano
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
105
|
Aswani V, Rajsheel P, Bapatla RB, Sunil B, Raghavendra AS. Oxidative stress induced in chloroplasts or mitochondria promotes proline accumulation in leaves of pea (Pisum sativum): another example of chloroplast-mitochondria interactions. PROTOPLASMA 2019; 256:449-457. [PMID: 30206687 DOI: 10.1007/s00709-018-1306-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 08/30/2018] [Indexed: 05/10/2023]
Abstract
Oxidative stress can occur in different parts of plant cells. We employed two oxidants that induce reactive oxygen species (ROS) in different intracellular compartments: methyl viologen (MV, in chloroplasts) and menadione (MD, in mitochondria). The responses of pea (Pisum sativum) leaf discs to MV or MD after 4-h incubation in dark or moderate (300 μE m-2 s-1) or high light (1200 μE m-2 s-1) were examined. Marked increase in ROS levels was observed, irrespective of compartment targeted. The levels of proline, a compatible solute, increased markedly much more than that of ascorbate or glutathione during oxidative/photo-oxidative stress, emphasizing the importance of proline. Further, the activities and transcripts of enzymes involved in biosynthesis or oxidation of proline were studied. An upregulation of biosynthesis and downregulation of oxidation was the basis of proline accumulation. Pyrroline-5-carboxylate synthetase (P5CS, involved in biosynthesis) and proline dehydrogenase (PDH, involved in oxidation) were the key enzymes regulated under oxidative stress. Since these two enzymes-P5CS and PDH-are located in chloroplasts and mitochondria, respectively, we suggest that proline metabolism can help to mediate inter-organelle interactions and achieve redox homeostasis under photo-oxidative stress.
Collapse
Affiliation(s)
- Vetcha Aswani
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Pidakala Rajsheel
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Ramesh B Bapatla
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Bobba Sunil
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Agepati S Raghavendra
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India.
| |
Collapse
|
106
|
Sharma S, Chen C, Khatri K, Rathore MS, Pandey SP. Gracilaria dura extract confers drought tolerance in wheat by modulating abscisic acid homeostasis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 136:143-154. [PMID: 30684843 DOI: 10.1016/j.plaphy.2019.01.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/09/2019] [Accepted: 01/14/2019] [Indexed: 05/25/2023]
Abstract
Water stress severely reduces the production of wheat. Application of seaweed extracts have started to show promise in protecting plants from environmental stresses as they contain several biostimulants. However, the modes of action of these biostimulants are not clear. Here, we investigated the role of Gracilaria dura (GD), a red alga, in conferring stress tolerance to wheat during drought under glasshouse and agro-ecological conditions by integrating molecular studies with physiological and field investigations. GD-sap application conferred drought tolerance (as the biomass increased by up to 57% and crop yield by 70%), via facilitating physiological changes associated to maintaining higher water content. GD-sap application significantly increased ABA accumulation (2.34 and 1.46 fold at 4 and 6 days of drought, respectively) due to enhanced expression of biosynthesis genes. This followed an activation of ABA response genes and physiological processes including reduced stomatal opening, thus reducing water loss. Moreover, GD-sap application enhanced the expression of stress-protective genes specifically under water stress. Treatment with fluridone, an ABA inhibitor, further support the role of ABA in GD-sap mediated drought tolerance in wheat. The findings of this study provide insights into the functional role of GD-sap in improving drought tolerance and show the potential to commercialize GD-sap as a potent biostimulant for sustainable agriculture in regions prone to drought.
Collapse
Affiliation(s)
- Sandeep Sharma
- CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, India; Academy of Scientific and Innovative Research, CSIR, New Delhi, India.
| | - Chen Chen
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, China
| | - Kusum Khatri
- CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, India; Academy of Scientific and Innovative Research, CSIR, New Delhi, India
| | - Mangal S Rathore
- CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, India
| | - Shree P Pandey
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
107
|
Feng Y, Liu J, Zhai L, Gan Z, Zhang G, Yang S, Wang Y, Wu T, Zhang X, Xu X, Han Z. Natural variation in cytokinin maintenance improves salt tolerance in apple rootstocks. PLANT, CELL & ENVIRONMENT 2019; 42:424-436. [PMID: 29989184 DOI: 10.1111/pce.13403] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 07/02/2018] [Accepted: 07/04/2018] [Indexed: 05/20/2023]
Abstract
Plants experiencing salt-induced stress often reduce cytokinin levels during the early phases of stress-response. Interestingly, we found that the cytokinin content in the apple rootstock "robusta" was maintained at a high level under salt stress. Through screening genes involved in cytokinin biosynthesis and catabolism, we found that the high expression levels of IPT5b in robusta roots were involved in maintaining the high cytokinin content. We identified a 42 bp deletion in the promoter region of IPT5b, which elevated IPT5b expression levels, and this deletion was linked to salt tolerance in robusta×M.9 segregating population. The 42 bp deletion resulted in the deletion of a Proline Response Element (ProRE), and our results suggest that ProRE negatively regulates IPT5b expression in response to proline. Under salt stress, the robusta cultivar maintains high cytokinin levels as IPT5b expression cannot be inhibited by proline due to the deletion of ProRE, leading to improve salt tolerance.
Collapse
Affiliation(s)
- Yi Feng
- College of Horticulture, China Agricultural University, Beijing, China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jing Liu
- College of Horticulture, China Agricultural University, Beijing, China
| | - Longmei Zhai
- College of Horticulture, China Agricultural University, Beijing, China
| | - Zengyu Gan
- College of Horticulture, China Agricultural University, Beijing, China
| | - Guifen Zhang
- College of Horticulture, China Agricultural University, Beijing, China
| | - Shuhua Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yi Wang
- College of Horticulture, China Agricultural University, Beijing, China
| | - Ting Wu
- College of Horticulture, China Agricultural University, Beijing, China
| | - Xinzhong Zhang
- College of Horticulture, China Agricultural University, Beijing, China
| | - Xuefeng Xu
- College of Horticulture, China Agricultural University, Beijing, China
| | - Zhenhai Han
- College of Horticulture, China Agricultural University, Beijing, China
| |
Collapse
|
108
|
Liu W, Xiang Y, Zhang X, Han G, Sun X, Sheng Y, Yan J, Scheller HV, Zhang A. Over-Expression of a Maize N-Acetylglutamate Kinase Gene ( ZmNAGK) Improves Drought Tolerance in Tobacco. FRONTIERS IN PLANT SCIENCE 2019; 9:1902. [PMID: 30662448 PMCID: PMC6328498 DOI: 10.3389/fpls.2018.01902] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 12/07/2018] [Indexed: 05/23/2023]
Abstract
Water deficit is a key limiting factor that affects the growth, development and productivity of crops. It is vital to understand the mechanisms by which plants respond to drought stress. Here an N-acetylglutamate kinase gene, ZmNAGK, was cloned from maize (Zea mays). ZmNAGK was expressed at high levels in maize leaves and at lower levels in root, stem, female flower and male flower. The expression of ZmNAGK was significantly induced by PEG, NaCl, ABA, brassinosteroid and H2O2. The ectopic expression of ZmNAGK in tobacco resulted in higher tolerance to drought compared to plants transformed with empty vector. Further physiological analysis revealed that overexpression of ZmNAGK could enhance the activities of antioxidant defense enzymes, and decrease malondialdehyde content and leakage of electrolyte in tobacco under drought stress. Moreover, the ZmNAGK transgenic tobacco accumulated more arginine and nitric oxide (NO) than control plants under drought stress. In addition, the ZmNAGK transgenic tobaccos activated drought responses faster than vector-transformed plants. These results indicate that ZmNAGK can play a vital role in enhancing drought tolerance by likely affecting the arginine and NO accumulation, and ZmNAGK could be involved in different strategies in response to drought stress.
Collapse
Affiliation(s)
- Weijuan Liu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yang Xiang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xiaoyun Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Gaoqiang Han
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xiujuan Sun
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yu Sheng
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jingwei Yan
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Henrik Vibe Scheller
- Environmental Genomics and Systems Biology Division, Joint Bioenergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Aying Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
109
|
Resende CF, Pacheco VS, Dornellas FF, Oliveira AMS, Freitas JCE, Peixoto PHP. Responses of antioxidant enzymes, photosynthetic pigments and carbohydrates in micropropagated Pitcairnia encholirioides L.B. Sm. (Bromeliaceae) under ex vitro water deficit and after rehydration. BRAZ J BIOL 2019; 79:53-62. [DOI: 10.1590/1519-6984.175284] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 08/03/2017] [Indexed: 12/21/2022] Open
Abstract
Abstract In this study, the activities of antioxidant enzymes, photosynthetic pigments, proline and carbohydrate contents in Pitcairnia encholirioides under ex vitro conditions of water deficit were evaluated. Results show that plants under progressive water stress, previously in vitro cultured in media supplemented with 30 g L-1 sucrose and GA3, accumulated more proline and increased peroxidase (POD) activity and the contents of photosynthetic pigments and carbohydrates. For plants previously in vitro cultured with 15 g L-1 sucrose and NAA, no differences were found for proline content and there were reductions in activities of peroxidase (POD), catalase (CAT) and poliphenoloxidase (PPO), and in contents of carbohydrates, with progress of ex vitro water deficit. After rehydration, plants showed physiological recovery, with enzymatic activities and contents of metabolites similar to those found in the controls not submitted to dehydration, regardless of the previous in vitro culture conditions. These results show that micropropagated P. encholirioides has high tolerance to dehydration once in ex vitro conditions, which can ensure the survival of plants from tissue culture when transferred to its natural environment, emphasizing the importance of such biotechnology for the propagation of endangered species.
Collapse
|
110
|
Tripathi P, Chandra A, Prakash J. Physio-biochemical assessment and expression analysis of genes associated with drought tolerance in sugarcane (Saccharum spp. hybrids) exposed to GA 3 at grand growth stage. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21:45-53. [PMID: 30255565 DOI: 10.1111/plb.12919] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 09/19/2018] [Indexed: 05/07/2023]
Abstract
Drought is one of the most serious environmental factors limiting production of sugarcane worldwide. In order to assess the influence of gibberellins (GA3 ) on drought and plant growth, along with associated physio-biochemical attributes, expression of eight drought-responsive genes were quantified and analysed. At grand growth stage (120 DAP) two sugarcane varieties (CoLk94184, CoPK05191) were exposed to drought by withholding irrigation. GA3 (35 ppm) was applied using battery-operated uniform controlled dispensing sprayer twice at 1-week intervals on 2-week drought-stressed plants. Physio-biochemical attributes including antioxidant enzyme activities were estimated following standard protocols. RT-PCR was performed to visualise the drought-associated gene expression patterns. Drought triggered a reduction in RWC and chlorophyll content but these recovered when droughted plants were exposed to GA3 . Proline content increased many fold in both varieties under stress, but decreased under the influence of GA3 . There was a mixed response of antioxidant enzyme activity, which distinctly declined after GA3 exposure, together with a lesser reduction in dry matter content over that of control plants. With increasing stress, expression of pyrroline-5-carboxylase synthetase (P5CS) and betaine-aldehyde dehydrogenase genes was observed, selectively up-regulated in CoPK05191. Expression of proline oxidase/transporter was high in CoPK05191 but diminished along with proline content after exposure to GA3. CoLk94184 showed no significant difference in P5CS gene expression under stress condition, whereas expression of betaine-aldehyde dehydrogenase gene was unchanged in response to stress. Results demonstrated that exposure of droughted plants to GA3 not only led to recovery of activity of drought-associated physio-biochemical attributes, but also minimised impact on cane dry weight and quality. Further, GA3 application caused differential gene expression that possibly triggers increased responsiveness towards drought tolerance in sugarcane.
Collapse
Affiliation(s)
- P Tripathi
- Division of Plant Physiology and Biochemistry, ICAR-Indian Institute of Sugarcane Research, Lucknow, India
- Amity Institute of Biotechnology, Amity University, Lucknow, India
| | - A Chandra
- Division of Plant Physiology and Biochemistry, ICAR-Indian Institute of Sugarcane Research, Lucknow, India
| | - J Prakash
- Amity Institute of Biotechnology, Amity University, Lucknow, India
| |
Collapse
|
111
|
Kovács H, Aleksza D, Baba AI, Hajdu A, Király AM, Zsigmond L, Tóth SZ, Kozma-Bognár L, Szabados L. Light Control of Salt-Induced Proline Accumulation Is Mediated by ELONGATED HYPOCOTYL 5 in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2019; 10:1584. [PMID: 31921239 PMCID: PMC6914869 DOI: 10.3389/fpls.2019.01584] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 11/12/2019] [Indexed: 05/21/2023]
Abstract
Plants have to adapt their metabolism to constantly changing environmental conditions, among which the availability of light and water is crucial in determining growth and development. Proline accumulation is one of the sensitive metabolic responses to extreme conditions; it is triggered by salinity or drought and is regulated by light. Here we show that red and blue but not far-red light is essential for salt-induced proline accumulation, upregulation of Δ1-PYRROLINE-5-CARBOXYLATE SYNTHASE 1 (P5CS1) and downregulation of PROLINE DEHYDROGENASE 1 (PDH1) genes, which control proline biosynthetic and catabolic pathways, respectively. Chromatin immunoprecipitation and electrophoretic mobility shift assays demonstrated that the transcription factor ELONGATED HYPOCOTYL 5 (HY5) binds to G-box and C-box elements of P5CS1 and a C-box motif of PDH1. Salt-induced proline accumulation and P5CS1 expression were reduced in the hy5hyh double mutant, suggesting that HY5 promotes proline biosynthesis through connecting light and stress signals. Our results improve our understanding on interactions between stress and light signals, confirming HY5 as a key regulator in proline metabolism.
Collapse
Affiliation(s)
- Hajnalka Kovács
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - Dávid Aleksza
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - Abu Imran Baba
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - Anita Hajdu
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - Anna Mária Király
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - Laura Zsigmond
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - Szilvia Z. Tóth
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - László Kozma-Bognár
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
- Department of Genetics, Faculty of Sciences and Informatics, University of Szeged, Szeged, Hungary
| | - László Szabados
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
- *Correspondence: László Szabados,
| |
Collapse
|
112
|
Kumar M, Yusuf MA, Yadav P, Narayan S, Kumar M. Overexpression of Chickpea Defensin Gene Confers Tolerance to Water-Deficit Stress in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2019; 10:290. [PMID: 30915095 PMCID: PMC6423178 DOI: 10.3389/fpls.2019.00290] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 02/21/2019] [Indexed: 05/22/2023]
Abstract
Plant defensins are mainly known for their antifungal activity. However, limited information is available regarding their function in abiotic stresses. In this study, a defensin gene, Ca-AFP, from Cicer arietinum, commonly known as chickpea, was cloned and transformed in Arabidopsis thaliana for its functional characterization under simulated water-deficit conditions. Under simulated water-deficit conditions (mannitol and polyethylene glycol-6000 induced), the transgenic A. thaliana plants had higher accumulation of the Ca-AFP transcript compared to that under non-stress condition and showed higher germination rate, root length, and biomass than the wild-type (WT) plants. To get further insights into the role of Ca-AFP in conferring tolerance to water-deficit stress, we determined various physiological parameters and found significant reduction in the transpiration rate and stomatal conductance whereas the net photosynthesis and water use efficiency was increased in the transgenic plants compared to that in the WT plants under water deficit conditions. The transgenic plants showed enhanced superoxide dismutase, ascorbate peroxidase, and catalase activities, had higher proline, chlorophyll, and relative water content, and exhibited reduced ion leakage and malondialdehyde content under water-deficit conditions. Overall, our results indicate that overexpression of Ca-AFP could be an efficient approach for conferring tolerance to water-deficit stress in plants.
Collapse
Affiliation(s)
- Manoj Kumar
- Department of Biosciences, Integral University, Lucknow, India
- Department of Biotechnology, CSIR-National Botanical Research Institute, Lucknow, India
| | - Mohd Aslam Yusuf
- Department of Bioengineering, Integral University, Lucknow, India
| | - Pooja Yadav
- Department of Biotechnology, CSIR-National Botanical Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Shiv Narayan
- Plant Physiology Laboratory, CSIR-National Botanical Research Institute, Lucknow, India
| | - Manoj Kumar
- Department of Biotechnology, CSIR-National Botanical Research Institute, Lucknow, India
- *Correspondence: Manoj Kumar,
| |
Collapse
|
113
|
Ding F, Wang G, Zhang S. Exogenous Melatonin Mitigates Methyl Viologen-Triggered Oxidative Stress in Poplar Leaf. Molecules 2018; 23:E2852. [PMID: 30400163 PMCID: PMC6278511 DOI: 10.3390/molecules23112852] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/01/2018] [Accepted: 11/01/2018] [Indexed: 12/13/2022] Open
Abstract
As a ubiquitous molecule, melatonin plays a crucial role in tolerance to multiple stresses in plants. In the present work, we report the role of exogenous melatonin in relieving oxidative stress induced by methyl viologen (MV) in poplar (Populus alba × Populus glandulosa) leaf. Leaf discs pretreated with melatonin exhibited increased tolerance to MV-mediated oxidative stress. It was observed that melatonin pretreatment effectively reduced membrane damage and lipid oxidation as demonstrated by decreased relative electrolyte leakage and malonaldehyde content in poplar leaf discs. Exogenous melatonin also stimulated activities of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and ascorbate peroxidase (APX), and enhanced accumulation of non-enzymatic antioxidants of AsA and GSH in leaf discs exposed to MV. In addition, pretreatment of melatonin prompted expression of genes for those antioxidant enzymes. Notably, exogenous melatonin increased expression of P5CS, a key gene for proline biosynthesis, under MV treatment. It was further observed that pretreatment with melatonin boosted activity of P5CS as well as accumulation of proline in leaf discs under MV-mediated oxidative stress. Collectively, this work provides evidence for the ameliorative effect of melatonin on MV-induced oxidative stress in poplar leaf.
Collapse
Affiliation(s)
- Fei Ding
- College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Gang Wang
- College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi, China.
- Guizhou Academy of Forestry, Guiyang 550005, Guizhou, China.
| | - Shuoxin Zhang
- College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi, China.
- Qinling National Forest Ecosystem Research Station, Huoditang, Ningshan 711600, Shaanxi, China.
| |
Collapse
|
114
|
Drought-mitigating Pseudomonas putida GAP-P45 modulates proline turnover and oxidative status in Arabidopsis thaliana under water stress. ANN MICROBIOL 2018. [DOI: 10.1007/s13213-018-1366-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
115
|
Ramireddy E, Hosseini SA, Eggert K, Gillandt S, Gnad H, von Wirén N, Schmülling T. Root Engineering in Barley: Increasing Cytokinin Degradation Produces a Larger Root System, Mineral Enrichment in the Shoot and Improved Drought Tolerance. PLANT PHYSIOLOGY 2018; 177:1078-1095. [PMID: 29871980 PMCID: PMC6052998 DOI: 10.1104/pp.18.00199] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 05/01/2018] [Indexed: 05/18/2023]
Abstract
Root size and architecture are important crop plant traits, as they determine access to water and soil nutrients. The plant hormone cytokinin is a negative regulator of root growth and branching. Here, we generated transgenic barley (Hordeum vulgare) plants with an enlarged root system by enhancing cytokinin degradation in roots to explore the potential of cytokinin modulations in improving root functions. This was achieved through root-specific expression of a CYTOKININ OXIDASE/DEHYDROGENASE gene. Enhanced biomass allocation to roots did not penalize shoot growth or seed yield, indicating that these plants were not source limited. In leaves of transgenic lines, the concentrations of several macroelements and microelements were increased, particularly those with low soil mobility (phosphorus, manganese, and zinc). Importantly, seeds contained up to 44% more zinc, which is beneficial for human nutrition. Transgenic lines also demonstrated dampened stress responses to long-term drought conditions, indicating lower drought sensitivity. Taken together, this work demonstrates that root engineering of cereals is a promising strategy to improve nutrient efficiency, biofortification, and drought tolerance.
Collapse
Affiliation(s)
- Eswarayya Ramireddy
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, D-14195 Berlin, Germany
- Indian Institute of Science Education and Research Tirupati, Biology Division, Tirupati-517507, Andhra Pradesh, India
| | - Seyed A Hosseini
- Molecular Plant Nutrition, Leibniz-Institute of Plant Genetics and Crop Plant Research, D-06466 Stadt Seeland OT Gatersleben, Germany
| | - Kai Eggert
- Molecular Plant Nutrition, Leibniz-Institute of Plant Genetics and Crop Plant Research, D-06466 Stadt Seeland OT Gatersleben, Germany
| | - Sabine Gillandt
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Heike Gnad
- Saaten-Union Biotec, D-06466 Stadt Seeland OT Gatersleben, Germany
| | - Nicolaus von Wirén
- Molecular Plant Nutrition, Leibniz-Institute of Plant Genetics and Crop Plant Research, D-06466 Stadt Seeland OT Gatersleben, Germany
| | - Thomas Schmülling
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, D-14195 Berlin, Germany
| |
Collapse
|
116
|
Fichman Y, Koncz Z, Reznik N, Miller G, Szabados L, Kramer K, Nakagami H, Fromm H, Koncz C, Zilberstein A. SELENOPROTEIN O is a chloroplast protein involved in ROS scavenging and its absence increases dehydration tolerance in Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 270:278-291. [PMID: 29576081 DOI: 10.1016/j.plantsci.2018.02.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 02/26/2018] [Accepted: 02/27/2018] [Indexed: 06/08/2023]
Abstract
The evolutionary conserved family of Selenoproteins performs redox-regulatory functions in bacteria, archaea and eukaryotes. Among them, members of the SELENOPROTEIN O (SELO) subfamily are located in mammalian and yeast mitochondria, but their functions are thus far enigmatic. Screening of T-DNA knockout mutants for resistance to the proline analogue thioproline (T4C), identified mutant alleles of the plant SELO homologue in Arabidopsis thaliana. Absence of SELO resulted in a stress-induced transcriptional activation instead of silencing of mitochondrial proline dehydrogenase, and also high elevation of Δ(1)-pyrroline-5-carboxylate dehydrogenase involved in degradation of proline, thereby alleviating T4C inhibition and lessening drought-induced proline accumulation. Unlike its animal homologues, SELO was localized to chloroplasts of plants ectopically expressing SELO-GFP. The protein was co-fractionated with thylakoid membrane complexes, and co-immunoprecipitated with FNR, PGRL1 and STN7, all involved in regulating PSI and downstream electron flow. The selo mutants displayed extended survival under dehydration, accompanied by longer photosynthetic activity, compared with wild-type plants. Enhanced expression of genes encoding ROS scavenging enzymes in the unstressed selo mutant correlated with higher oxidant scavenging capacity and reduced methyl viologen damage. The study elucidates SELO as a PSI-related component involved in regulating ROS levels and stress responses.
Collapse
Affiliation(s)
- Yosef Fichman
- School of Plant Sciences and Food Security, Tel Aviv University, P.O. Box 39040, Tel Aviv 6997801, Israel
| | - Zsuzsa Koncz
- Department of Plant Developmental Biology, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829 Cologne, Germany
| | - Noam Reznik
- School of Plant Sciences and Food Security, Tel Aviv University, P.O. Box 39040, Tel Aviv 6997801, Israel
| | - Gad Miller
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - László Szabados
- Institute of Plant Biology, Biological Research Center of Hungarian Academy of Sciences, Temesvári krt. 62/64, H-6724 Szeged, Hungary
| | - Katharina Kramer
- Protein Mass Spectrometry Group, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829 Cologne, Germany
| | - Hirofumi Nakagami
- Protein Mass Spectrometry Group, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829 Cologne, Germany
| | - Hillel Fromm
- School of Plant Sciences and Food Security, Tel Aviv University, P.O. Box 39040, Tel Aviv 6997801, Israel
| | - Csaba Koncz
- Department of Plant Developmental Biology, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829 Cologne, Germany; Institute of Plant Biology, Biological Research Center of Hungarian Academy of Sciences, Temesvári krt. 62/64, H-6724 Szeged, Hungary
| | - Aviah Zilberstein
- School of Plant Sciences and Food Security, Tel Aviv University, P.O. Box 39040, Tel Aviv 6997801, Israel.
| |
Collapse
|
117
|
Saini S, Kaur N, Pati PK. Reactive oxygen species dynamics in roots of salt sensitive and salt tolerant cultivars of rice. Anal Biochem 2018; 550:99-108. [PMID: 29704477 DOI: 10.1016/j.ab.2018.04.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 04/12/2018] [Accepted: 04/19/2018] [Indexed: 12/11/2022]
Abstract
Salinity stress is one of the major constraints for growth and survival of plants that affects rice productivity worldwide. Hence, in the present study, roots of two contrasting salinity sensitive cultivars, IR64 (IR64, salt sensitive) and Luna Suvarna (LS, salt tolerant) were compared with regard to the levels of reactive oxygen species (ROS) to derive clues for their differential salt stress adaptation mechanisms. In our investigation, the tolerant cultivar exhibited longer primary roots, more lateral roots, higher root number leading to increased root biomass, with respect to IR64. It was observed that LS roots maintained higher level of H2O2 in comparison to IR64. The activities of various enzymes involved in enzymatic antioxidant defense mechanism (SOD, CAT, GPX, DHAR and MDHAR) were found to be greater in LS roots. Further, the higher transcript level accumulation of genes encoding ROS generating (RbohA, RbohD and RbohE) and scavenging enzymes (Fe-SOD, Chloroplastic Cu/Zn-SOD, CAT and DHAR) were noticed in the roots of tolerant cultivar, LS. Moreover, the content of other stress markers such as total protein and proline were also elevated in LS roots. While, the expression of proline biosynthesis gene (P5CS) and proline catabolism gene (PDH) was observed to be lower in LS.
Collapse
Affiliation(s)
- Shivani Saini
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Navdeep Kaur
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Pratap Kumar Pati
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
| |
Collapse
|
118
|
Kong X, Wei B, Gao Z, Zhou Y, Shi F, Zhou X, Zhou Q, Ji S. Changes in Membrane Lipid Composition and Function Accompanying Chilling Injury in Bell Peppers. PLANT & CELL PHYSIOLOGY 2018; 59:167-178. [PMID: 29136239 DOI: 10.1093/pcp/pcx171] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/06/2017] [Indexed: 05/22/2023]
Abstract
Bell peppers are vulnerable to low temperature (<7°C) and subject to chilling injury (CI). To elucidate the relationship between cell membrane lipid composition and CI, a membrane lipidomic approach was taken. In addition, we performed microstructural analysis and low-field nuclear magnetic resonance to better understand CI. We also monitored primary physiological metabolism parameters to explain lipidomics. Our study indicated that cellular structure damage was more serious at 4°C, mostly represented by damage to the plasmalemma and plastid degradation. Membrane lipidomic data analysis reveals monogalactosyldiacylglycerol, phosphatidylcholine, phosphatidylethanolamine and phosphatidic acid as crucial biomarkers during CI. Furthermore, the significant increase in proline, electrolyte leakage and phospholipase D in chilled fruits also proved that membrane lipid metabolism is involved in the response to low temperature stress. To our knowledge, this study is the first attempt to describe the CI mechanisms in bell peppers based on membrane lipidomics.
Collapse
Affiliation(s)
- Ximan Kong
- Post-harvest Biology and Storage of Fruits and Vegetables laboratory, Department of Food Science, Shenyang Agricultural University, 110866, China
| | - Baodong Wei
- Post-harvest Biology and Storage of Fruits and Vegetables laboratory, Department of Food Science, Shenyang Agricultural University, 110866, China
| | - Zhu Gao
- Post-harvest Biology and Storage of Fruits and Vegetables laboratory, Department of Food Science, Shenyang Agricultural University, 110866, China
| | - Ying Zhou
- College of Life Science, Sun Yat-sen University, 510275, China
| | - Fei Shi
- Post-harvest Biology and Storage of Fruits and Vegetables laboratory, Department of Food Science, Shenyang Agricultural University, 110866, China
| | - Xin Zhou
- Post-harvest Biology and Storage of Fruits and Vegetables laboratory, Department of Food Science, Shenyang Agricultural University, 110866, China
| | - Qian Zhou
- Post-harvest Biology and Storage of Fruits and Vegetables laboratory, Department of Food Science, Shenyang Agricultural University, 110866, China
| | - Shujuan Ji
- Post-harvest Biology and Storage of Fruits and Vegetables laboratory, Department of Food Science, Shenyang Agricultural University, 110866, China
| |
Collapse
|
119
|
Yong B, Xie H, Li Z, Li YP, Zhang Y, Nie G, Zhang XQ, Ma X, Huang LK, Yan YH, Peng Y. Exogenous Application of GABA Improves PEG-Induced Drought Tolerance Positively Associated with GABA-Shunt, Polyamines, and Proline Metabolism in White Clover. Front Physiol 2017; 8:1107. [PMID: 29312009 PMCID: PMC5744439 DOI: 10.3389/fphys.2017.01107] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 12/14/2017] [Indexed: 01/11/2023] Open
Abstract
In order to investigate the physiological effects of exogenous γ-aminobutyric acid (GABA) on drought tolerance in white clover (Trifolium repens), GABA shunt, polyamines (PAs), and proline (Pro) metabolism were examined after plants pretreated with or without GABA (8 mM) and then exposed to water or 15% PEG-induced drought stress in growth chamber. In this study, exogenous application of GABA effectively alleviated drought-induced damage in leaves, as reflected by significantly higher relative water content, lower electrolyte leakage, lipid peroxidation, and leaf wilt. Exogenous GABA further promoted drought-induced increases in GABA transaminase and alpha ketone glutarate dehydrogenase activities, but inhibited glutamate decarboxylase activity under both control and drought conditions, resulting in an increase in endogenous glutamate (Glu) and GABA content. Besides, exogenous GABA could well accelerated PAs synthesis and suppressed PAs catabolism, which lead to the extremely enhanced different types of PAs content (free Put and Spd, insoluble bound Spd and Spm, soluble conjugated Spd and Spm, and total Put, Spd and Spm) under drought stress. In addition, exogenous GABA application further activated drought-induced Δ1-pyrroline-5-carboxylate synthetase and proline dehydrogenase activities, but suppressed drought-facilitated ornithine -δ-amino transferase activities, leading to a higher Pro accumulation and metabolism in GABA-pretreated plants in the middle and last period of drought. The results suggested that increased endogenous GABA by exogenous GABA treatment could improve drought tolerance of white clover associated with a positive regulation in the GABA-shunt, PAs and Pro metabolism.
Collapse
Affiliation(s)
- Bin Yong
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural University, Chengdu, China
| | - Huan Xie
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural University, Chengdu, China
- Ganzi Prefecture Grassland Station of Sichuan Province, Kangding, China
| | - Zhou Li
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural University, Chengdu, China
| | - Ya-Ping Li
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural University, Chengdu, China
| | - Yan Zhang
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural University, Chengdu, China
| | - Gang Nie
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural University, Chengdu, China
| | - Xin-Quan Zhang
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural University, Chengdu, China
| | - Xiao Ma
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural University, Chengdu, China
| | - Lin-Kai Huang
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural University, Chengdu, China
| | - Yan-Hong Yan
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural University, Chengdu, China
| | - Yan Peng
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
120
|
Wang T, Chen Y, Zhang M, Chen J, Liu J, Han H, Hua X. Arabidopsis AMINO ACID PERMEASE1 Contributes to Salt Stress-Induced Proline Uptake from Exogenous Sources. FRONTIERS IN PLANT SCIENCE 2017; 8:2182. [PMID: 29312416 PMCID: PMC5743684 DOI: 10.3389/fpls.2017.02182] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 12/12/2017] [Indexed: 05/03/2023]
Abstract
Stress-induced proline accumulation in plants is thought to result primarily from enhanced proline biosynthesis and decreased proline degradation. To identify regulatory components involved in proline transport, we screened for Arabidopsis thaliana T-DNA mutants with enhanced tolerance to toxic levels of exogenous proline (45 mM). We isolated the proline resistant 1-1 (pre1-1) mutant and map-based cloning identified PRE1 as AMINO ACID PERMEASE1 (AAP1, At1g58360), which encodes a plasma membrane-localized amino acid permease. AAP1 expression is induced by salt stress and abscisic acid, but not by proline. In pre1-1 mutants, a 19-nucleotide deletion in the AAP1 coding region produced a premature stop codon. When grown on proline-containing medium, pre1-1 mutants accumulated significantly less proline than did the wild type. Under salt stress, proline uptake decreased significantly in pre1-1 mutants. By contrast, proline uptake increased significantly in the wild type. These results suggest that AAP1 functions in the increase of proline uptake during salt stress. In addition, proline uptake promotes salt tolerance in Arabidopsis seedlings. We conclude that plants can increase proline accumulation by AtAAP1-mediated proline uptake from exogenous source, which help to improve the salt tolerance of seedlings.
Collapse
Affiliation(s)
- Ting Wang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences (CAS), Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Ying Chen
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences (CAS), Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Min Zhang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences (CAS), Beijing, China
| | - Jiugeng Chen
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences (CAS), Beijing, China
| | - Jie Liu
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences (CAS), Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Huiling Han
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences (CAS), Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Xuejun Hua
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences (CAS), Beijing, China
| |
Collapse
|
121
|
|
122
|
Wang L, Guo Z, Zhang Y, Wang Y, Yang G, Yang L, Wang R, Xie Z. Characterization of LhSorP5CS, a gene catalyzing proline synthesis in Oriental hybrid lily Sorbonne: molecular modelling and expression analysis. BOTANICAL STUDIES 2017; 58:10. [PMID: 28510193 PMCID: PMC5432930 DOI: 10.1186/s40529-017-0163-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/07/2017] [Indexed: 05/29/2023]
Abstract
BACKGROUND Abiotic stresses negatively affect plant growth and flower production. In plants, P5CS proteins are key enzymes that catalyzed the rate-limiting steps of proline synthesis, and proline is a well-known osmoprotectant that is closely related to abiotic stress tolerance. However, information about the P5CS genes, their effects on proline accumulation, and their role in abiotic stress tolerance in Lilium is still lacking. RESULTS We isolated and characterized a novel gene (LhSorP5CS) from Oriental hybrid lily cultivar Sorbonne. Phylogenetic analysis indicated that LhSorP5CS is a member of the P5CS family. The three-dimensional structure of LhSorP5CS predicted by homology modeling showed high similarity to its correspondant human P5CS template. Further gene expression analysis revealed that LhSorP5CS expression was up-regulated by NaCl, mannitol, and ABA, and that stress-exposed plants accumulated proline at a significantly higher level than in the control. CONCLUSIONS LhSorP5CS characterized in this study is involved in proline synthesis in lily, and that it might play an important role in abiotic stress tolerance. However, there should be other P5CS homologues in the lily genome, and some of them could be highly stress-induced and more important for proline accumulation. Future studies on P5CS family genes would be of great importance to proline-related stress tolerance in lily.
Collapse
Affiliation(s)
- Le Wang
- Gaolan Station of Agricultural and Ecological Experiment, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Zhihong Guo
- Gaolan Station of Agricultural and Ecological Experiment, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000 China
| | - Yubao Zhang
- Gaolan Station of Agricultural and Ecological Experiment, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000 China
| | - Yajun Wang
- Gaolan Station of Agricultural and Ecological Experiment, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000 China
| | - Guo Yang
- Gaolan Station of Agricultural and Ecological Experiment, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000 China
| | - Liu Yang
- Gaolan Station of Agricultural and Ecological Experiment, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Ruoyu Wang
- Gaolan Station of Agricultural and Ecological Experiment, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000 China
| | - Zhongkui Xie
- Gaolan Station of Agricultural and Ecological Experiment, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000 China
| |
Collapse
|
123
|
Signorelli S, Monza J. Identification of Δ 1-pyrroline 5-carboxylate synthase (P5CS) genes involved in the synthesis of proline in Lotus japonicus. PLANT SIGNALING & BEHAVIOR 2017; 12:e1367464. [PMID: 28985146 PMCID: PMC5703238 DOI: 10.1080/15592324.2017.1367464] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 08/09/2017] [Accepted: 08/09/2017] [Indexed: 05/05/2023]
Abstract
Proline accumulation is a common response of plants to different biotic and abiotic stresses. In the model legume Lotus japonicus, osmotic stress-induced proline accumulation is one of the first responses of the plant, converting proline in a reliable stress marker. The main biosynthetic pathway of proline is from glutamate and the reaction catalyzed by the enzyme Δ1-pyrroline 5-carboxylate synthase (P5CS) is the rate limiting step. L. japonicus has been suggested to have three different P5CS genes. Here the predicted P5CS genes of L. japonicus were analyzed in silico and their expression under osmotic stress was determined. Contrary to previous suggestions this study demonstrated that L. japonicus has two different P5CS genes, as most dicotyledonous plants do. The gene that is inducible by osmotic stress and is located on chromosome 1, was called LjP5CS1, and the one located on chromosome 2 and not inducible by osmotic stress was called LjP5CS2.
Collapse
Affiliation(s)
- Santiago Signorelli
- Department of Agriculture, The School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
- Department of Plant Biology, The School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia
- Department of Plant Biology, School of Agriculture, Universidad de la República, Montevideo, Uruguay
| | - Jorge Monza
- Department of Plant Biology, School of Agriculture, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
124
|
Qin T, Zhao H, Cui P, Albesher N, Xiong L. A Nucleus-Localized Long Non-Coding RNA Enhances Drought and Salt Stress Tolerance. PLANT PHYSIOLOGY 2017; 175:1321-1336. [PMID: 28887353 PMCID: PMC5664461 DOI: 10.1104/pp.17.00574] [Citation(s) in RCA: 184] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 08/31/2017] [Indexed: 05/20/2023]
Abstract
Long noncoding RNAs (lncRNAs) affect gene expression through a wide range of mechanisms and are considered as important regulators in many essential biological processes. A large number of lncRNA transcripts have been predicted or identified in plants in recent years. However, the biological functions for most of them are still unknown. In this study, we identified an Arabidopsis (Arabidopsis thaliana) lncRNA, DROUGHT INDUCED lncRNA (DRIR), as a novel positive regulator of the plant response to drought and salt stress. DRIR was expressed at a low level under nonstress conditions but can be significantly activated by drought and salt stress as well as by abscisic acid (ABA) treatment. We identified a T-DNA insertion mutant, drirD , which had higher expression of the DRIR gene than the wild-type plants. The drirD mutant exhibits increased tolerance to drought and salt stress. Overexpressing DRIR in Arabidopsis also increased tolerance to drought and salt stress of the transgenic plants. The drirD mutant and the overexpressing seedlings are more sensitive to ABA than the wild type in stomata closure and seedling growth. Genome-wide transcriptome analysis demonstrated that the expression of a large number of genes was altered in drirD and the overexpressing plants. These include genes involved in ABA signaling, water transport, and other stress-relief processes. Our study reveals a mechanism whereby DRIR regulates the plant response to abiotic stress by modulating the expression of a series of genes involved in the stress response.
Collapse
Affiliation(s)
- Tao Qin
- Texas A&M AgriLife Research Center, Dallas, Texas 75252
| | - Huayan Zhao
- Applied Biotechnology Center, Wuhan Institute of Bioengineering, Wuhan 430415, China
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Peng Cui
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Nour Albesher
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Liming Xiong
- Texas A&M AgriLife Research Center, Dallas, Texas 75252
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
- Department of Horticultural Sciences, Texas A&M University, College Station, Texas 77843
| |
Collapse
|
125
|
Landi S, De Lillo A, Nurcato R, Grillo S, Esposito S. In-field study on traditional Italian tomato landraces: The constitutive activation of the ROS scavenging machinery reduces effects of drought stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 118:150-160. [PMID: 28633087 DOI: 10.1016/j.plaphy.2017.06.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 05/31/2017] [Accepted: 06/12/2017] [Indexed: 05/18/2023]
Abstract
The involvement and the efficiency of the antioxidants scavenging system upon drought were examined by comparing traditional tomato landraces with respect to an industrial commercial genotype (Red Setter); for the first time, comprehensive analyses of physiological, biochemical and molecular parameters were investigated directly under real field conditions, in a typical agricultural environment of Southern Italy. The characterization of the responses upon drought evidenced peculiar changes in stomatal conductance, ascorbate peroxidase and catalase activities and expression in drought tolerant tomato landraces, with respect to the industrial genotype. An in silico analysis (promoter and co-expression study) coupled to a phylogenetic investigation of selected enzymes was performed, reinforcing the hypothesis of a basal activation of ROS scavenging machinery in the Mediterranean landraces. Thus our data suggest a constitutive increase in the expression and activities of specific enzymes involved in ROS detoxification that can play a pivotal role in the drought response shown by tomato landraces. Therefore, traditional landraces could represent an important source of useful genetic variability for the improvement of commercial varieties; their ROS detoxifying capabilities denote peculiar aspects worth being explored to better describe their specific stress tolerance.
Collapse
Affiliation(s)
- Simone Landi
- Institute of Biosciences and Bioresources, Research Division, National Research Council of Italy (IBBR-CNR), Portici, 80055, Naples, Italy; Dipartimento di Biologia, Università di Napoli ''Federico II'', Via Cinthia, I-80126 Napoli, Italy
| | - Alessia De Lillo
- Dipartimento di Biologia, Università di Napoli ''Federico II'', Via Cinthia, I-80126 Napoli, Italy
| | - Roberta Nurcato
- Institute of Biosciences and Bioresources, Research Division, National Research Council of Italy (IBBR-CNR), Portici, 80055, Naples, Italy
| | - Stefania Grillo
- Institute of Biosciences and Bioresources, Research Division, National Research Council of Italy (IBBR-CNR), Portici, 80055, Naples, Italy
| | - Sergio Esposito
- Dipartimento di Biologia, Università di Napoli ''Federico II'', Via Cinthia, I-80126 Napoli, Italy.
| |
Collapse
|
126
|
Aleksza D, Horváth GV, Sándor G, Szabados L. Proline Accumulation Is Regulated by Transcription Factors Associated with Phosphate Starvation. PLANT PHYSIOLOGY 2017; 175:555-567. [PMID: 28765275 PMCID: PMC5580772 DOI: 10.1104/pp.17.00791] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 07/11/2017] [Indexed: 05/20/2023]
Abstract
Pro accumulation in plants is a well-documented physiological response to osmotic stress caused by drought or salinity. In Arabidopsis (Arabidopsis thaliana), the stress and ABA-induced Δ1-PYRROLINE-5-CARBOXYLATE SYNTHETASE1 (P5CS1) gene was previously shown to control Pro biosynthesis in such adverse conditions. To identify regulatory factors that control the transcription of P5CS1, Y1H screens were performed with a genomic fragment of P5CS1, containing 1.2-kB promoter and 0.8-kb transcribed regions. The myeloblastosis (MYB)-type transcription factors PHOSPHATE STARVATION RESPONSE1 (PHR1) and PHR1-LIKE1 (PHL1) were identified to bind to P5CS1 regulatory sequences in the first intron, which carries a conserved PHR1-binding site (P1BS) motif. Binding of PHR1 and PHL1 factors to P1BS was confirmed by Y1H, electrophoretic mobility assay and chromatin immunoprecipitation. Phosphate starvation led to gradual increase in Pro content in wild-type Arabidopsis plants as well as transcriptional activation of P5CS1 and PRO DEHYDROGENASE2 genes. Induction of P5CS1 transcription and Pro accumulation during phosphate deficiency was considerably reduced by phr1 and phl1 mutations and was impaired in the ABA-deficient aba2-3 and ABA-insensitive abi4-1 mutants. Growth and viability of phr1phl1 double mutant was significantly reduced in phosphate-depleted medium, while growth was only marginally affected in the aba2-3 mutants, suggesting that ABA is implicated in growth retardation in such nutritional stress. Our results reveal a previously unknown link between Pro metabolism and phosphate nutrition and show that Pro biosynthesis is target of cross talk between ABA signaling and regulation of phosphate homeostasis through PHR1- and PHL1-mediated transcriptional activation of the P5CS1 gene.
Collapse
Affiliation(s)
- Dávid Aleksza
- Institute of Plant Biology, Biological Research Centre, 6726-Szeged, Hungary
| | - Gábor V Horváth
- Institute of Plant Biology, Biological Research Centre, 6726-Szeged, Hungary
| | - Györgyi Sándor
- Institute of Plant Biology, Biological Research Centre, 6726-Szeged, Hungary
| | - László Szabados
- Institute of Plant Biology, Biological Research Centre, 6726-Szeged, Hungary
| |
Collapse
|
127
|
Bandurska H, Niedziela J, Pietrowska-Borek M, Nuc K, Chadzinikolau T, Radzikowska D. Regulation of proline biosynthesis and resistance to drought stress in two barley (Hordeum vulgare L.) genotypes of different origin. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 118:427-437. [PMID: 28711792 DOI: 10.1016/j.plaphy.2017.07.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/26/2017] [Accepted: 07/06/2017] [Indexed: 05/21/2023]
Abstract
Drought is considered the main abiotic stress factor that inhibits growth of crop plants (including barley), limiting yield in many regions worldwide. Predicted climate changes show that in future the frequency and intensity of drought events will rise, so crops that are resistant to this stress are in demand. One of the adaptive metabolic responses to drought is the accumulation of proline. The aim of this study was to examine the effect of 10-day drought on tissue dehydration and proline biosynthesis in leaves as well as in roots of barley genotypes of different origin: the Syrian breeding line Cam/B1/CI and the German cultivar Maresi. The involvement of Δ1 pyrroline-5-carboxylate synthetase (P5CS), the expression of the P5CS gene and ABA in proline synthesis under drought were also studied. Finally, we examined the resistance of tested genotypes to applied drought using chlorophyll fluorescence parameters and above-ground dry matter accumulation. Drought caused a gradual decrease of water content and an increase of proline and ABA content in roots and leaves of both genotypes. A statistically significant positive correlation between proline accumulation and activity of P5CS was also revealed. The skyrocketing increase of P5CS activity and proline accumulation was proceeded by transcriptional up-regulation of P5CS. The relationships between changes in P5CS expression, P5CS activity and ABA content show that the latter compound is involved in drought-induced proline synthesis at the transcription and enzyme activity level. The examined barley genotypes were equally resistant to applied moderate drought stress regardless of the differences in the level of proline accumulated.
Collapse
Affiliation(s)
- Hanna Bandurska
- Department of Plant Physiology, Poznań University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland.
| | - Justyna Niedziela
- Department of Plant Physiology, Poznań University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland
| | - Małgorzata Pietrowska-Borek
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland
| | - Katarzyna Nuc
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland
| | - Tamara Chadzinikolau
- Department of Plant Physiology, Poznań University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland
| | - Dominika Radzikowska
- Department of Agronomy, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland
| |
Collapse
|
128
|
Xu HX, Li XY, Chen JW. Comparative transcriptome profiling of freezing stress responses in loquat (Eriobotrya japonica) fruitlets. JOURNAL OF PLANT RESEARCH 2017; 130:893-907. [PMID: 28447204 DOI: 10.1007/s10265-017-0942-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 03/09/2017] [Indexed: 06/07/2023]
Abstract
Loquat (Eriobotrya japonica Lindl.) is an important subtropical, commercial fruit in China. It blossoms during autumn and winter in most areas of China and its fruitlets usually suffer from freezing stress. However, studies about the mechanisms underlying freezing stress in loquat are very limited. The gene expression profiles of loquat fruitlets subjected to freezing (G2 library) versus non-treated ones (G1 library) were investigated using Illumina sequencing technology to elucidate the molecular mechanisms and identify the genes that play vital roles in the freezing stress response. The results showed that approximately 157.63 million reads in total were obtained from freeze-treated and non-treated loquat fruitlets. These reads were assembled into 87,379 unigenes with an average length of 710 bp and an N50 of 1,200 bp. After comparing the profiles obtained from the G1 and G2 libraries, 2,892 differentially expressed genes were identified, of which 1,883 were up-regulated and 1,009 were down-regulated in the treated samples compared to non-treated ones. These unigenes showed significant differences in expression for carbohydrate transport and metabolism, amino acid metabolism, energy metabolism, and lipid metabolism, which are involved in defense against freezing stress. Glycolysis/gluconeogenesis was one of the most significantly regulated pathways. Freezing also significantly damaged the membrane system of loquat fruitlets, and several defense mechanisms were induced. Some selected genes related to low temperature resistance were validated by quantitative real-time PCR (qRT-PCR). The results revealed many genes and pathways that are part of freezing resistance processes and expand our understanding of the complex molecular events involved in freezing stress.
Collapse
Affiliation(s)
- Hong-Xia Xu
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, People's Republic of China
| | - Xiao-Ying Li
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, People's Republic of China
| | - Jun-Wei Chen
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, People's Republic of China.
| |
Collapse
|
129
|
Ghosh D, Sen S, Mohapatra S. Modulation of proline metabolic gene expression in Arabidopsis thaliana under water-stressed conditions by a drought-mitigating Pseudomonas putida strain. ANN MICROBIOL 2017. [DOI: 10.1007/s13213-017-1294-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
130
|
Forlani G, Nocek B, Chakravarthy S, Joachimiak A. Functional Characterization of Four Putative δ 1-Pyrroline-5-Carboxylate Reductases from Bacillus subtilis. Front Microbiol 2017; 8:1442. [PMID: 28824574 PMCID: PMC5539093 DOI: 10.3389/fmicb.2017.01442] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 07/17/2017] [Indexed: 11/21/2022] Open
Abstract
In most living organisms, the amino acid proline is synthesized starting from both glutamate and ornithine. In prokaryotes, in the absence of an ornithine cyclodeaminase that has been identified to date only in a small number of soil and plant bacteria, these pathways share the last step, the reduction of δ1-pyrroline-5-carboxylate (P5C) catalyzed by P5C reductase (EC 1.5.1.2). In several species, multiple forms of P5C reductase have been reported, possibly reflecting the dual function of proline. Aside from its common role as a building block of proteins, proline is indeed also involved in the cellular response to osmotic and oxidative stress conditions. Genome analysis of Bacillus subtilis identifies the presence of four genes (ProH, ProI, ProG, and ComER) that, based on bioinformatic and phylogenic studies, were defined as respectively coding a putative P5C reductase. Here we describe the cloning, heterologous expression, functional analysis and small-angle X-ray scattering studies of the four affinity-purified proteins. Results showed that two of them, namely ProI and ComER, lost their catalytic efficiency or underwent subfunctionalization. In the case of ComER, this could be likely explained by the loss of the ability to form a dimer, which has been previously shown to be an essential structural feature of the catalytically active P5C reductase. The properties of the two active enzymes are consistent with a constitutive role for ProG, and suggest that ProH expression may be beneficial to satisfy an increased need for proline.
Collapse
Affiliation(s)
- Giuseppe Forlani
- Department of Life Science and Biotechnology, University of FerraraFerrara, Italy
| | - Boguslaw Nocek
- Center for Structural Genomics of Infectious Diseases, University of ChicagoChicago, IL, United States
| | - Srinivas Chakravarthy
- Argonne National Laboratory, BioCAT, Center for Synchrotron Radiation Research and InstrumentationArgonne, IL, United States
- Department of Biological and Chemical Sciences, Illinois Institute of TechnologyChicago, IL, United States
| | - Andrzej Joachimiak
- Center for Structural Genomics of Infectious Diseases, University of ChicagoChicago, IL, United States
| |
Collapse
|
131
|
Per TS, Khan NA, Reddy PS, Masood A, Hasanuzzaman M, Khan MIR, Anjum NA. Approaches in modulating proline metabolism in plants for salt and drought stress tolerance: Phytohormones, mineral nutrients and transgenics. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 115:126-140. [PMID: 28364709 DOI: 10.1016/j.plaphy.2017.03.018] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Revised: 03/26/2017] [Accepted: 03/26/2017] [Indexed: 05/21/2023]
Abstract
Major abiotic stress factors such as salt and drought adversely affect important physiological processes and biochemical mechanisms and cause severe loss in crop productivity worldwide. Plants develop various strategies to stand healthy against these stress factors. The accumulation of proline (Pro) is one of the striking metabolic responses of plants to salt and drought stress. Pro biosynthesis and signalling contribute to the redox balance of cell under normal and stressful conditions. However, literature is meager on the sustainable strategies potentially fit for modulating Pro biosynthesis and production in stressed plants. Considering the recent literature, this paper in its first part overviews Pro biosynthesis and transport in plants and also briefly highlights the significance of Pro in plant responses to salt and drought stress. Secondly, this paper discusses mechanisms underlying the regulation of Pro metabolism in salt and drought-exposed plant via phytohormones, mineral nutrients and transgenic approaches. The outcome of the studies may give new opportunities in modulating Pro metabolism for improving plant tolerance to salt and drought stress and benefit sustainable agriculture.
Collapse
Affiliation(s)
- Tasir S Per
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Nafees A Khan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India.
| | - Palakolanu Sudhakar Reddy
- Cell, Molecular Biology and Genetic Engineering Group, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad 502 324, Telangana, India
| | - Asim Masood
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - M Iqbal R Khan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; Crop and Environmental Sciences Division, International Rice Research Institute, 4030 Los Banos, Philippines.
| | - Naser A Anjum
- CESAM-Centre for Environmental & Marine Studies and Department of Chemistry, University of Aveiro, 3810-19 Aveiro, Portugal
| |
Collapse
|
132
|
Antoniou C, Chatzimichail G, Xenofontos R, Pavlou JJ, Panagiotou E, Christou A, Fotopoulos V. Melatonin systemically ameliorates drought stress-induced damage in Medicago sativa plants by modulating nitro-oxidative homeostasis and proline metabolism. J Pineal Res 2017; 62. [PMID: 28226194 DOI: 10.1111/jpi.12401] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 02/17/2017] [Indexed: 12/11/2022]
Abstract
Recent reports have uncovered the multifunctional role of melatonin in plant physiological responses under optimal and suboptimal environmental conditions. In this study, we explored whether melatonin pretreatment could provoke priming effects in alfalfa (Medicago sativa L.) plants subsequently exposed to prolonged drought stress (7 days), by withholding watering. Results revealed that the rhizospheric application of melatonin (10 μmol L-1 ) remarkably enhanced the drought tolerance of alfalfa plants, as evidenced by the observed plant tolerant phenotype, as well as by the higher levels of chlorophyll fluorescence and stomatal conductance, compared with nontreated drought-stressed plants. In addition, lower levels of lipid peroxidation (MDA content) as well as of both H2 O2 and NO contents in primed compared with nonprimed stressed plants suggest that melatonin pretreatment resulted in the systemic mitigation of drought-induced nitro-oxidative stress. Nitro-oxidative homeostasis was achieved by melatonin through the regulation of reactive oxygen (SOD, GR, CAT, APX) and nitrogen species (NR, NADHde) metabolic enzymes at the enzymatic and/or transcript level. Moreover, melatonin pretreatment resulted in the limitation of cellular redox disruption through the regulation of the mRNA levels of antioxidant and redox-related components (ADH, AOX, GST7, GST17), as well via osmoprotection through the regulation of proline homeostasis, at both the enzymatic (P5CS) and gene expression level (P5CS, P5CR). Overall, novel results highlight the importance of melatonin as a promising priming agent for the enhancement of plant tolerance to drought conditions through the regulation of nitro-oxidative and osmoprotective homeostasis.
Collapse
Affiliation(s)
- Chrystalla Antoniou
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Lemesos, Cyprus
| | - Giannis Chatzimichail
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Lemesos, Cyprus
| | - Rafaella Xenofontos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Lemesos, Cyprus
| | - Jan J Pavlou
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Lemesos, Cyprus
| | - Evangelia Panagiotou
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Lemesos, Cyprus
| | - Anastasis Christou
- Agricultural Research Institute, Ministry of Agriculture, Rural Development and Natural Recourses, Nicosia, Cyprus
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Lemesos, Cyprus
| |
Collapse
|
133
|
Balestro GC, Higashi B, Lopes SMS, Gonçalves JE, Vieira LGE, de Oliveira AJB, Gonçalves RAC. Biochemical composition of symplastic sap from sugarcane genetically modified to overproduce proline. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 113:133-140. [PMID: 28213180 DOI: 10.1016/j.plaphy.2017.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 02/07/2017] [Accepted: 02/07/2017] [Indexed: 06/06/2023]
Abstract
Global interest in sugarcane has increased significantly in recent years because of its economic impact on sustainable energy production. The purpose of the present study was to evaluate changes in the concentrations of total sugars, amino acids, free proline, and total proteins by colorimetric analyses and nuclear magnetic resonance (NMR) to perform a metabolic profiling of a water-soluble fraction of symplastic sap in response to the constitutive expression of a mutant Δ1-pyrroline-5-carboxylate synthetase (P5CS) gene from Vigna aconitifolia. However, there was not a significant increase in the free proline content in the sap of transgenic plants compared to the non-transformed control plants. The most noticeable difference between the two genotypes was an almost two-fold increase in the accumulation of sucrose in the stem internodes of P5CS transgenic sugarcane plants. The results presented in this work showed that transgenic sugarcane plants with increased levels of free proline accumulates high soluble sugar content and, therefore, may represent a novel genotype for improving sugarcane cultivars.
Collapse
Affiliation(s)
- Graciele Carraro Balestro
- Department of Pharmacy, Graduate Program in Pharmaceutical Sciences, State University of Maringá, Avenida Colombo 5790, 87.020-900 Maringá, PR, Brazil
| | - Bruna Higashi
- Department of Pharmacy, Graduate Program in Pharmaceutical Sciences, State University of Maringá, Avenida Colombo 5790, 87.020-900 Maringá, PR, Brazil
| | - Sheila Mara Sanches Lopes
- Department of Pharmacy, Graduate Program in Pharmaceutical Sciences, State University of Maringá, Avenida Colombo 5790, 87.020-900 Maringá, PR, Brazil
| | - José Eduardo Gonçalves
- Program of Master in Health Promotion and Program of Master in Clean Technologies, University Center of Maringá, Avenida Guedner, 1610, 87050-900 Maringá, PR, Brazil
| | - Luiz Gonzaga Esteves Vieira
- Universidade do Oeste Paulista (UNOESTE), Rodovia Raposo Tavares, km 572, 19.067-175 Presidente Prudente, SP, Brazil
| | - Arildo José Braz de Oliveira
- Department of Pharmacy, Graduate Program in Pharmaceutical Sciences, State University of Maringá, Avenida Colombo 5790, 87.020-900 Maringá, PR, Brazil
| | - Regina Aparecida Correia Gonçalves
- Department of Pharmacy, Graduate Program in Pharmaceutical Sciences, State University of Maringá, Avenida Colombo 5790, 87.020-900 Maringá, PR, Brazil.
| |
Collapse
|
134
|
Peppino Margutti M, Reyna M, Meringer MV, Racagni GE, Villasuso AL. Lipid signalling mediated by PLD/PA modulates proline and H 2O 2 levels in barley seedlings exposed to short- and long-term chilling stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 113:149-160. [PMID: 28214728 DOI: 10.1016/j.plaphy.2017.02.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 02/02/2017] [Accepted: 02/07/2017] [Indexed: 05/05/2023]
Abstract
Phospholipase D (PLD) hydrolyses phospholipids to yield phosphatidic acid (PA) and a head group, and is involved in responses to a variety of environmental stresses, including chilling and freezing stress. Barley responses to chilling stress (induced by incubating seedlings at 4 °C) are dynamic and the duration of stress, either short (0-180 min) or long-term (24-36 h) had a significant impact on the response. We investigated the roles of PLD/PA in responses of barley (Hordeum vulgare) seedlings to short and long-term chilling stress, based on regulation of proline and reactive oxygen species (ROS) levels. Short-term chilling stress caused rapid and transient increases in PLD activity, proline level, and ROS levels in young leaves. PLD has the ability to catalyse the transphosphatidylation reaction leading to formation of phosphatidylalcohol (preferentially, to PA). Pre-treatment of seedlings with 1-butanol significantly increased proline synthesis but decreased ROS (H2O2) formation. These observations suggest that PLD is a negative regulator of proline synthesis, whereas PA/PLD promote ROS signals. Exogenous PA pre-treatment reduced the proline synthesis but enhanced H2O2 formation. Effects of long-term chilling stress on barley seedlings differed from those of short-term chilling stress. E.g., PLD activity was significantly reduced in young leaves and roots, whereas proline synthesis and ROS signals were increased in roots. Exogenous ROS application enhanced proline level while exogenous proline application reduced ROS level and modulated some effects of long-term chilling stress. Our findings suggest that PLD contributes to signalling pathways in responses to short-term chilling stress in barley seedling, through regulation of the balance between proline and ROS levels. In contrast, reduced PLD activity in the response to long-term chilling stress did not affect proline level. Increased ROS levels may reflect an antioxidant system that is affected by chilling stress and positively compensated by changes in proline level. Implications of our findings are discussed in regard to adaptation strategies of barley seedlings to low temperatures.
Collapse
Affiliation(s)
- Micaela Peppino Margutti
- Dpto. de Biología Molecular, FCEFQN, Universidad Nacional de Río Cuarto, X5804BYA Río Cuarto, Córdoba, Argentina
| | - Mercedes Reyna
- Dpto. de Biología Molecular, FCEFQN, Universidad Nacional de Río Cuarto, X5804BYA Río Cuarto, Córdoba, Argentina
| | - María Verónica Meringer
- Dpto. de Biología Molecular, FCEFQN, Universidad Nacional de Río Cuarto, X5804BYA Río Cuarto, Córdoba, Argentina
| | - Graciela E Racagni
- Dpto. de Biología Molecular, FCEFQN, Universidad Nacional de Río Cuarto, X5804BYA Río Cuarto, Córdoba, Argentina
| | - Ana Laura Villasuso
- Dpto. de Biología Molecular, FCEFQN, Universidad Nacional de Río Cuarto, X5804BYA Río Cuarto, Córdoba, Argentina.
| |
Collapse
|
135
|
Zhao L, Wang C, Zhu F, Li Y. Mild osmotic stress promotes 4-methoxy indolyl-3-methyl glucosinolate biosynthesis mediated by the MKK9-MPK3/MPK6 cascade in Arabidopsis. PLANT CELL REPORTS 2017; 36:543-555. [PMID: 28155113 DOI: 10.1007/s00299-017-2101-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 01/03/2017] [Indexed: 05/22/2023]
Abstract
MKK9-MPK3/MPK6 cascade positively regulates IGSs' biosynthetic genes. Glucosinolates (GSs), secondary metabolites well known for their roles in plant defense, have been implicated to play an important role in plant abiotic stress response; however, the exact role in these processes and the underlying regulatory mechanisms remain elusive. Mitogen-activated protein kinase (MAPK) cascades are extensively involved in plant abiotic stress response. In this study, we examined the levels of four indolic glucosinolates (IGSs) in the shoots of Arabidopsis seedlings under mild osmotic stress conditions and found that 4-methoxy indolyl-3-methyl glucosinolate (4MI3G) accumulated and that MPK3 and MPK6 were activated. Loss of MPK3 or MPK6 function led to a reduction in mild osmotic stress-induced 4MI3G. Further analyses revealed that MKK9 acts upstream of MPK3 and MPK6 to promote 4MI3G accumulation. The level of 4MI3G induced by mild osmotic stress was reduced in the mkk9 mutant. Conversely, 4MI3G increased in MKK9 DD , a constitutively activate mutant of MKK9. Gene expression analyses indicated that the activated MKK9-MPK3/MPK6 cascade upregulates the IGS biosynthetic genes. Moreover, the lack of MYB51, the transcription factor controlling biosynthetic genes responsible for synthesizing the IGS core structure, or CYP81F2, the enzyme catalyzing core structure modification to 4MI3G, significantly reduced mild osmotic stress- and MKK9 DD -induced 4MI3G. Thus, our study demonstrates that mild osmotic stress promotes 4MI3G biosynthesis and the accumulation in Arabidopsis through activation of the MKK9-MPK3/MPK6 cascade and provides an MAPK-mediated signaling pathway for the IGS response to abiotic stress in plants.
Collapse
Affiliation(s)
- Luo Zhao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Chuchu Wang
- College of Plant Science, Jilin University, Changchun, 130000, China
| | - Fan Zhu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yuan Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
136
|
Salazar-Blas A, Noriega-Calixto L, Campos ME, Eapen D, Cruz-Vázquez T, Castillo-Olamendi L, Sepulveda-Jiménez G, Porta H, Dubrovsky JG, Cassab GI. Robust root growth in altered hydrotropic response1 (ahr1) mutant of Arabidopsis is maintained by high rate of cell production at low water potential gradient. JOURNAL OF PLANT PHYSIOLOGY 2017; 208:102-114. [PMID: 27912083 DOI: 10.1016/j.jplph.2016.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/28/2016] [Accepted: 11/09/2016] [Indexed: 05/03/2023]
Abstract
Hydrotropism is the directional root growth response determined by water stimulus. In a water potential gradient system (WPGS) the roots of the Arabidopsis wild type have a diminished root growth compared to normal medium (NM). In contrast, the altered hydrotropic response1 (ahr1) mutant roots maintain their robust growth in the same WPGS. The aims of this work were to ascertain how ahr1 roots could sustain growth in the WPGS, with a special focus on the integration of cellular processes involved in the signaling that determines root growth during abiotic stress and their relation to hydrotropism. Cellular analysis of the root apical meristem of ahr1 mutant contrary to the wild type showed an absence of changes in the meristem length, the elongation zone length, the length of fully elongated cells, and the cell cycle duration. The robust and steady root growth of ahr1 seedlings in the WPGS is explained by the mutant capacity to maintain cell production and cell elongation at the same level as in the NM. Analysis of auxin response at a transcriptional level showed that roots of the ahr1 mutant had a lower auxin response when grown in the WPGS, compared to wild type, indicating that auxin signaling participates in attenuation of root growth under water stress conditions. Also, wild type plants exhibited a high increase in proline content while ahr1 mutants showed minimum changes in the Normal Medium→Water Stress Medium (NM→WSM), a lower water potential gradient system than the WPGS. Accordingly, in this condition, gene expression of Δ1-6 Pyrroline-5-Carboxylate Synthetase1 (P5CS1) involved in proline synthesis strongly increased in wild type but not in ahr1 seedlings. The ahr1 phenotype shows unique features since the mutant root cells continue to proliferate and grow in the presence of a progressively negative water potential gradient at a level comparable to wild type growing in the NM. As such, it represents an exceptional resource for understanding hydrotropism.
Collapse
Affiliation(s)
- Amed Salazar-Blas
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Mor. 62250, México
| | - Laura Noriega-Calixto
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Mor. 62250, México
| | - María E Campos
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Mor. 62250, México
| | - Delfeena Eapen
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Mor. 62250, México
| | - Tania Cruz-Vázquez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Mor. 62250, México
| | - Luis Castillo-Olamendi
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Mor. 62250, México
| | - Gabriela Sepulveda-Jiménez
- Doctorado en Ciencias Biológicas, Facultad de Ciencias UNAM, Centro de Desarrollo de Productos Bióticos-IPN, Calle CeProBi No. 8, Col. San Isidro, Yautepec Morelos 62731, México
| | - Helena Porta
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Mor. 62250, México
| | - Joseph G Dubrovsky
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Mor. 62250, México
| | - Gladys I Cassab
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Mor. 62250, México.
| |
Collapse
|
137
|
Azmat R, Moin S, Saleem A. Remediation of Cu metal-induced accelerated Fenton reaction by potato peels bio-sorbent. ENVIRONMENTAL MONITORING AND ASSESSMENT 2016; 188:674. [PMID: 27853966 DOI: 10.1007/s10661-016-5670-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 10/31/2016] [Indexed: 06/06/2023]
Abstract
This article has allied exposure to Ecological Particulate Matter (EPM) and its remediation using potato peel surface (PPC) bio-sorbent on two important edible crops Spinacia oleracea and Luffa acutangula. Fenton reaction acceleration was one of the major stress oxidation reactions as a consequence of iron and copper toxicity, which involve in the formation of hydroxyl radical (OH) through EPM. Results showed that the oxidative stress encouraged by Cu in both species that recruits the degradation of photosynthetic pigments, initiating decline in growth, reduced leaf area and degrade proteins. The plants were cultivated in natural environmental condition in three pots with three replicates like (a) control, (b) Cu treated and (c) treated water. Oxidative stress initiated by metal activity in Cu accumulated plant (b) were controlled, through bio-sorption of metal from contaminated water using PPC; arranged at laboratory scale. The acceleration of Fenton reaction was verified in terms of OH radical generation. These radicals were tested in aqueous extract of leaves of three types of plants via benzoic acid. The benzoic acid acts as a scavenger of OH radical due to which the decarboxylation of benzoic acid cured. Observation on (b) showed more rapid decarboxylation as compared to other plants which showed that Cu activity was much higher in (b) as compared to (a) and (c). The rapid decarboxylation of benzoic acid and lower chlorophyll contents in (b) suggest that Fenton reaction system was much enhanced by Cu-O and Fe-O chemistry that was successfully controlled by PPC which results in restoring the metabolic pathway and nullifying oxidative stress in
Collapse
Affiliation(s)
- Rafia Azmat
- Department of Chemistry, University of Karachi, Karachi, 75270, Pakistan.
| | - Sumeira Moin
- Department of Botany, University of Karachi, Karachi, 75270, Pakistan
| | - Ailyan Saleem
- Department of Chemistry, University of Karachi, Karachi, 75270, Pakistan
| |
Collapse
|
138
|
Yang Y, Mo Y, Yang X, Zhang H, Wang Y, Li H, Wei C, Zhang X. Transcriptome Profiling of Watermelon Root in Response to Short-Term Osmotic Stress. PLoS One 2016; 11:e0166314. [PMID: 27861528 PMCID: PMC5115733 DOI: 10.1371/journal.pone.0166314] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 10/26/2016] [Indexed: 11/18/2022] Open
Abstract
Osmotic stress adversely affects the growth, fruit quality and yield of watermelon (Citrullus lanatus (Thunb.) Matsum. & Nakai). Increasing the tolerance of watermelon to osmotic stress caused by factors such as high salt and water deficit is an effective way to improve crop survival in osmotic stress environments. Roots are important organs in water absorption and are involved in the initial response to osmosis stress; however, few studies have examined the underlying mechanism of tolerance to osmotic stress in watermelon roots. For better understanding of this mechanism, the inbred watermelon accession M08, which exhibits relatively high tolerance to water deficits, was treated with 20% polyethylene glycol (PEG) 6000. The root samples were harvested at 6 h after PEG treatment and untreated samples were used as controls. Transcriptome analyses were carried out by Illumina RNA sequencing. A total of 5246 differentially expressed genes were identified. Gene ontology enrichment and biochemical pathway analyses of these 5246 genes showed that short-term osmotic stress affected osmotic adjustment, signal transduction, hormone responses, cell division, cell cycle and ribosome, and M08 may repress root growth to adapt osmotic stress. The results of this study describe the watermelon root transcriptome under osmotic stress and propose new insight into watermelon root responses to osmotic stress at the transcriptome level. Accordingly, these results allow us to better understand the molecular mechanisms of watermelon in response to drought stress and will facilitate watermelon breeding projects to improve drought tolerance.
Collapse
Affiliation(s)
- Yongchao Yang
- College of Horticulture, Northwest A&F University, Yangling, China
- Wenshan Academy of Agricultural Sciences, Wenshan, China
| | - Yanling Mo
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Xiaozheng Yang
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Haifei Zhang
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Yongqi Wang
- College of Horticulture, Northwest A&F University, Yangling, China
- Hanzhong City Agro-technology Extension Center, Hanzhong, China
| | - Hao Li
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Chunhua Wei
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Xian Zhang
- College of Horticulture, Northwest A&F University, Yangling, China
| |
Collapse
|
139
|
Exploring drought stress-regulated genes in senna (Cassia angustifolia Vahl.): a transcriptomic approach. Funct Integr Genomics 2016; 17:1-25. [PMID: 27709374 DOI: 10.1007/s10142-016-0523-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 09/02/2016] [Accepted: 09/05/2016] [Indexed: 01/08/2023]
Abstract
De novo assembly of reads produced by next-generation sequencing (NGS) technologies offers a rapid approach to obtain expressed gene sequences for non-model organisms. Senna (Cassia angustifolia Vahl.) is a drought-tolerant annual undershrub of Caesalpiniaceae, a subfamily of Fabaceae. There are insufficient transcriptomic and genomic data in public databases for understanding the molecular mechanism underlying the drought tolerance of senna. Therefore, the main purpose of this study was to know the transcriptome profile of senna, with special reference to drought stress. RNA from two different stages of leaf development was extracted and sequenced separately using the Illumina technology. A total of 200 million reads were generated, and a de novo assembly of processed reads in the pooled transcriptome using Trinity yielded 43,413 transcripts which were further annotated using NCBI BLAST with "green plant database (txid 33090)," Swiss Prot, Kyoto Encyclopedia of Genes and Genomes (KEGG), Clusters of Orthologous Groups (COG), and Gene Ontology (GO). Out of the total transcripts, 42,280 (95.0 %) were annotated by BLASTX against the green plant database of NCBI. Senna transcriptome showed the highest similarity to Glycine max (41 %), followed by Phaseolus vulgaris (16 %), Cicer arietinum (15 %), and Medicago trancatula (5 %). The highest number of GO terms were enriched for the molecular functions category; of these "catalytic activity" (GO: 0003824) (25.10 %) and "binding activity" (GO: 0005488) (20.10 %) were most abundantly represented. We used InterProscan to see protein similarity at domain level; a total of 33,256 transcripts were annotated against the Pfam domains. The transcripts were assigned with various KEGG pathways. Coding DNA sequences (CDS) encoding various drought stress-regulated pathways such as signaling factors, protein-modifying/degrading enzymes, biosynthesis of phytohormone, phytohormone signaling, osmotically active compounds, free radical scavengers, chlorophyll metabolism, leaf cuticular wax, polyamines, and protective proteins were identified through BLASTX search. The lucine-rich repeat kinase family was the most abundantly found group of protein kinases. Orphan, bHLH, and bZIP family TFs were the most abundantly found in senna. Six genes encoding MYC2 transcription factor, 9-cis-epoxycarotenoid dioxygenase (NCED), l -ascorbate peroxidase (APX), aminocyclopropane carboxylate oxidase (ACO), abscisic acid 8'-hydroxylase (ABA), and WRKY transcription factor were confirmed through reverse transcriptase-PCR (RT-PCR) and Sanger sequencing for the first time in senna. The potential drought stress-related transcripts identified in this study provide a good start for further investigation into the drought adaptation in senna. Additionally, our transcriptome sequences are the valuable resource for accelerated genomics-assisted genetic improvement programs and facilitate manipulation of biochemical pathways for developing drought-tolerant genotypes of crop plants.
Collapse
|
140
|
Shinde S, Villamor JG, Lin W, Sharma S, Verslues PE. Proline Coordination with Fatty Acid Synthesis and Redox Metabolism of Chloroplast and Mitochondria. PLANT PHYSIOLOGY 2016; 172:1074-1088. [PMID: 27512016 PMCID: PMC5047111 DOI: 10.1104/pp.16.01097] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 08/05/2016] [Indexed: 05/20/2023]
Abstract
Proline (Pro) accumulation is one of the most prominent changes in plant metabolism during drought and low water potential; however, the regulation and function of Pro metabolism remain unclear. We used a combination of forward genetic screening based on a Proline Dehydrogenase1 (PDH1) promoter-luciferase reporter (PDH1pro:LUC2) and RNA sequencing of the Pro synthesis mutant p5cs1-4 to identify multiple loci affecting Pro accumulation in Arabidopsis (Arabidopsis thaliana). Two mutants having high PDH1pro:LUC2 expression and increased Pro accumulation at low water potential were found to be alleles of Cytochrome P450, Family 86, Subfamily A, Polypeptide2 (CYP86A2) and Long Chain Acyl Synthetase2 (LACS2), which catalyze two successive steps in very-long-chain fatty acid (VLCFA) synthesis. Reverse genetic experiments found additional VLCFA and lipid metabolism-related mutants with increased Pro accumulation. Altered cellular redox status is a key factor in the coordination of Pro and VLCFA metabolism. The NADPH oxidase inhibitor diphenyleneiodonium (DPI) induced high levels of Pro accumulation and strongly repressed PDH1pro:LUC2 expression. cyp86a2 and lacs2 mutants were hypersensitive to diphenyleneiodonium but could be reverted to wild-type Pro and PDH1pro:LUC2 expression by reactive oxygen species scavengers. The coordination of Pro and redox metabolism also was indicated by the altered expression of chloroplast and mitochondria electron transport genes in p5cs1-4 These results show that Pro metabolism is both influenced by and influences cellular redox status via previously unknown coordination with several metabolic pathways. In particular, Pro and VLCFA synthesis share dual roles to help buffer cellular redox status while producing products useful for stress resistance, namely the compatible solute Pro and cuticle lipids.
Collapse
Affiliation(s)
- Suhas Shinde
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115, Taiwan
| | - Joji Grace Villamor
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115, Taiwan
| | - Wendar Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115, Taiwan
| | - Sandeep Sharma
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115, Taiwan
| | - Paul E Verslues
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
141
|
Jday A, Ben Rejeb K, Slama I, Saadallah K, Bordenave M, Planchais S, Savouré A, Abdelly C. Effects of exogenous nitric oxide on growth, proline accumulation and antioxidant capacity in Cakile maritima seedlings subjected to water deficit stress. FUNCTIONAL PLANT BIOLOGY : FPB 2016; 43:939-948. [PMID: 32480517 DOI: 10.1071/fp15363] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 05/26/2016] [Indexed: 06/11/2023]
Abstract
Nitric oxide (NO) - an endogenous signalling molecule in plants and animals - mediates responses to biotic and abiotic stresses. In the present study, we examined the role of exogenous application of NO in mediating stress responses in Cakile maritima Scop. seedlings under water deficit stress using sodium nitroprusside (SNP) as NO donor and as a pre-treatment before the application of stress. Water deficit stress was applied by withholding water for 14 days. Growth, leaf water content (LWC), osmotic potential (ψs), chlorophyll, malondialdehyde (MDA), electrolyte leakage (EL), proline and Δ1-pyrroline-5-carboxylate synthetase (P5CS) and proline dehydrogenase (ProDH) protein levels were determined. Enzyme activities involved in antioxidant activities (superoxide dismutase (SOD) and catalase (CAT)) were measured upon withholding water. The results showed that shoot biomass production was significantly decreased in plants subjected to water deficit stress alone. However, in water deficit stressed plants pre-treated with SNP, growth activity was improved and proline accumulation was significantly increased. Proline accumulation was concomitant with the stimulation of its biosynthesis as shown by the accumulation of P5CS proteins. Nevertheless, no significant change in ProDH protein levels was observed. Besides plants showed lower water deficit-induced lipid membrane degradation and oxidative stress after the pretreatment with 100µM SNP. This behaviour was related to the increased activity of SOD and CAT. Thus, we concluded that NO increased C. maritima drought tolerance and mitigated damage associated with water deficit stress by the regulation of proline metabolism and the reduction of oxidative damage.
Collapse
Affiliation(s)
- Asma Jday
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie de Borj-Cedria (CBBC), BP 901, Hammam-Lif, 2050, Tunisia
| | - Kilani Ben Rejeb
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie de Borj-Cedria (CBBC), BP 901, Hammam-Lif, 2050, Tunisia
| | - Ines Slama
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie de Borj-Cedria (CBBC), BP 901, Hammam-Lif, 2050, Tunisia
| | - Kaouthar Saadallah
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie de Borj-Cedria (CBBC), BP 901, Hammam-Lif, 2050, Tunisia
| | - Marianne Bordenave
- Laboratoire d'Adaptation des Plantes aux Contraintes Environnementales, UR5, Université Pierre et Marie Curie (UPMC), Case 156, 4 Place Jussieu, 75252 Paris cedex 05, France
| | - Séverine Planchais
- Laboratoire d'Adaptation des Plantes aux Contraintes Environnementales, UR5, Université Pierre et Marie Curie (UPMC), Case 156, 4 Place Jussieu, 75252 Paris cedex 05, France
| | - Arnould Savouré
- Laboratoire d'Adaptation des Plantes aux Contraintes Environnementales, UR5, Université Pierre et Marie Curie (UPMC), Case 156, 4 Place Jussieu, 75252 Paris cedex 05, France
| | - Chedly Abdelly
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie de Borj-Cedria (CBBC), BP 901, Hammam-Lif, 2050, Tunisia
| |
Collapse
|
142
|
Signorelli S. The Fermentation Analogy: A Point of View for Understanding the Intriguing Role of Proline Accumulation in Stressed Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:1339. [PMID: 27642286 PMCID: PMC5015475 DOI: 10.3389/fpls.2016.01339] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 08/19/2016] [Indexed: 05/21/2023]
Affiliation(s)
- Santiago Signorelli
- School of Plant Biology and the UWA Institute of Agriculture, University of Western AustraliaCrawley, WA, Australia
- Laboratorio de Bioquímica, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la RepúblicaMontevideo, Uruguay
| |
Collapse
|
143
|
Kim J, Liu Y, Zhang X, Zhao B, Childs KL. Analysis of salt-induced physiological and proline changes in 46 switchgrass (Panicum virgatum) lines indicates multiple response modes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 105:203-212. [PMID: 27111258 DOI: 10.1016/j.plaphy.2016.04.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/11/2016] [Accepted: 04/11/2016] [Indexed: 05/24/2023]
Abstract
Switchgrass (Panicum virgatum) is targeted as a biofuel feedstock species that may be grown on marginal lands including those with saline soils. Our study investigated salt stress responses in 46 switchgrass lines from the lowland and upland ecotypes by assessing physiological phenotypes and proline concentrations. Lowland switchgrass lines demonstrated less severe responses to salt stress than most upland switchgrass lines, but a number of upland lines performed as well as lowland individuals. Photosynthetic rate (Pn), the most important physiological trait measured, was reduced by salt treatment in all lines. Tolerant lines showed ∼50% reduction in Pn under salt stress, and sensitive lines exhibited ∼90% reduction in Pn after salt stress. Proline analysis showed the largest amount of variation under salt stress with some lines exhibiting minor increases in proline, but some salt-sensitive lines demonstrated more than 5000-fold increase in proline concentration in response to salt treatment. Clustering of salt-stress phenotypic responses revealed five groups of switchgrass. Lowland lines were present in two of the phenotypic clusters, but upland lines were found in all five of the phenotypic clusters. These results suggest that there are multiple modes of salt response in switchgrass including two distinct modes of salt tolerance.
Collapse
Affiliation(s)
- Jeongwoon Kim
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Yiming Liu
- Department of Crop and Soil Environmental Science, Virginia Tech, Blacksburg, VA, USA
| | - Xunzhong Zhang
- Department of Crop and Soil Environmental Science, Virginia Tech, Blacksburg, VA, USA
| | - Bingyu Zhao
- Department of Horticulture, Virginia Tech, Blacksburg, VA, USA
| | - Kevin L Childs
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA; Center for Genomics-Enabled Plant Science, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
144
|
Fabro G, Rizzi YS, Alvarez ME. Arabidopsis Proline Dehydrogenase Contributes to Flagellin-Mediated PAMP-Triggered Immunity by Affecting RBOHD. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:620-8. [PMID: 27269509 DOI: 10.1094/mpmi-01-16-0003-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Plants activate different defense systems to counteract the attack of microbial pathogens. Among them, the recognition of conserved microbial- or pathogen-associated molecular patterns (MAMPs or PAMPs) by pattern-recognition receptors stimulates MAMP- or PAMP-triggered immunity (PTI). In recent years, the elicitors, receptors, and signaling pathways leading to PTI have been extensively studied. However, the contribution of organelles to this program deserves further characterization. Here, we studied how processes altering the mitochondrial electron transport chain (mETC) influence PTI establishment. With particular emphasis, we evaluated the effect of proline dehydrogenase (ProDH), an enzyme that can load electrons into the mETC and regulate the cellular redox state. We found that mETC uncouplers (antimycin or rotenone) and manganese superoxide dismutase deficiency impair flg22-induced responses such as accumulation of reactive oxygen species (ROS) and bacterial growth limitation. ProDH mutants also reduce these defenses, decreasing callose deposition as well. Using ProDH inhibitors and ProDH inducers (exogenous Pro treatment), we showed that this enzyme modulates the generation of ROS by the plasma membrane respiratory burst NADPH oxidase homolog D. In this way, we contribute to the understanding of mitochondrial activities influencing early and late PTI responses and the coordination of the redox-associated mitochondrial enzyme ProDH with defense events initiated at the plasma membrane.
Collapse
Affiliation(s)
- Georgina Fabro
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Yanina Soledad Rizzi
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - María Elena Alvarez
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| |
Collapse
|
145
|
Landi S, Nurcato R, De Lillo A, Lentini M, Grillo S, Esposito S. Glucose-6-phosphate dehydrogenase plays a central role in the response of tomato (Solanum lycopersicum) plants to short and long-term drought. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 105:79-89. [PMID: 27085599 DOI: 10.1016/j.plaphy.2016.04.013] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 04/05/2016] [Accepted: 04/07/2016] [Indexed: 05/03/2023]
Abstract
The present study was undertaken to investigate the expression, occurrence and activity of glucose 6 phosphate dehydrogenase (G6PDH - EC 1.1.1.49), the key-enzyme of the Oxidative Pentose Phosphate Pathway (OPPP), in tomato plants (Solanum lycopersicum cv. Red Setter) exposed to short- and long-term drought stress. For the first time, drought effects have been evaluated in plants under different growth conditions: in hydroponic laboratory system, and in greenhouse pots under controlled conditions; and in open field, in order to evaluate drought response in a representative agricultural environment. Interestingly, changes observed appear strictly associated to the induction of well known stress response mechanisms, such as the increase of proline synthesis, accumulation of chaperone Hsp70, and ascorbate peroxidase. Results show significant increase in total activity of G6PDH, and specifically in expression and occurrence of cytosolic isoform (cy-G6PDH) in plants grown in any cultivation system upon drought. Intriguingly, the results clearly suggest that abscissic acid (ABA) pathway and signaling cascade (protein phosphatase 2C PP2C) could be strictly related to increased G6PDH expression, occurrence and activities. We hypothesized for G6PDH a specific role as one of the main reductants' suppliers to counteract the effects of drought stress, in the light of converging evidences given by young and adult tomato plants under stress of different duration and intensity.
Collapse
Affiliation(s)
- Simone Landi
- Università di Napoli ''Federico II", Dipartimento di Biologia, Via Cinthia, I-80126, Napoli, Italy; National Research Council of Italy, Institute of Biosciences and Bioresources, Research Division Portici, Portici, 80055, Naples, Italy
| | - Roberta Nurcato
- National Research Council of Italy, Institute of Biosciences and Bioresources, Research Division Portici, Portici, 80055, Naples, Italy
| | - Alessia De Lillo
- Università di Napoli ''Federico II", Dipartimento di Biologia, Via Cinthia, I-80126, Napoli, Italy
| | - Marco Lentini
- Università di Napoli ''Federico II", Dipartimento di Biologia, Via Cinthia, I-80126, Napoli, Italy
| | - Stefania Grillo
- National Research Council of Italy, Institute of Biosciences and Bioresources, Research Division Portici, Portici, 80055, Naples, Italy
| | - Sergio Esposito
- Università di Napoli ''Federico II", Dipartimento di Biologia, Via Cinthia, I-80126, Napoli, Italy.
| |
Collapse
|
146
|
Sun C, Gao X, Chen X, Fu J, Zhang Y. Metabolic and growth responses of maize to successive drought and re-watering cycles. AGRICULTURAL WATER MANAGEMENT 2016; 172:62-73. [PMID: 0 DOI: 10.1016/j.agwat.2016.04.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
|
147
|
Proteomic and functional analysis of proline dehydrogenase 1 link proline catabolism to mitochondrial electron transport in Arabidopsis thaliana. Biochem J 2016; 473:2623-34. [PMID: 27303048 DOI: 10.1042/bcj20160314] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 06/14/2016] [Indexed: 11/17/2022]
Abstract
Proline accumulates in many plant species in response to environmental stresses. Upon relief from stress, proline is rapidly oxidized in mitochondria by proline dehydrogenase (ProDH) and then by pyrroline-5-carboxylate dehydrogenase (P5CDH). Two ProDH genes have been identified in the genome of the model plant Arabidopsis thaliana To gain a better understanding of ProDH1 functions in mitochondria, proteomic analysis was performed. ProDH1 polypeptides were identified in Arabidopsis mitochondria by immunoblotting gels after 2D blue native (BN)-SDS/PAGE, probing them with an anti-ProDH antibody and analysing protein spots by MS. The 2D gels showed that ProDH1 forms part of a low-molecular-mass (70-140 kDa) complex in the mitochondrial membrane. To evaluate the contribution of each isoform to proline oxidation, mitochondria were isolated from wild-type (WT) and prodh1, prodh2, prodh1prodh2 and p5cdh mutants. ProDH activity was high for genotypes in which ProDH, most likely ProDH1, was strongly induced by proline. Respiratory measurements indicate that ProDH1 has a role in oxidizing excess proline and transferring electrons to the respiratory chain.
Collapse
|
148
|
Gupta A, Sarkar AK, Senthil-Kumar M. Global Transcriptional Analysis Reveals Unique and Shared Responses in Arabidopsis thaliana Exposed to Combined Drought and Pathogen Stress. FRONTIERS IN PLANT SCIENCE 2016; 7:686. [PMID: 27252712 PMCID: PMC4878317 DOI: 10.3389/fpls.2016.00686] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 05/04/2016] [Indexed: 05/18/2023]
Abstract
With frequent fluctuations in global climate, plants are exposed to co-occurring drought and pathogen infection and this combination adversely affects plant survival. In the past, some studies indicated that morpho-physiological responses of plants to the combined stress are different from the individual stressed plants. However, interaction of drought stressed plants with pathogen has not been widely studied at molecular level. Such studies are important to understand the defense pathways that operate as part of combined stress tolerance mechanism. In this study, Arabidopsis thaliana was exposed to individual drought stress, Pseudomonas syringae pv tomato DC3000 (Pst DC3000) infection and their combination. Using Affymetrix WT gene 1.0 ST array, global transcriptome profiling of leaves under individual drought stress and pathogen infection was compared with their combination. The results obtained from pathway mapping (KAAS and MAPMAN) demonstrated the modulation in defense pathways in A. thaliana under drought and host pathogen Pst DC3000 infection. Further, our study revealed "tailored" responses under combined stress and the time of occurrence of each stress during their concurrence has shown differences in transcriptome profile. Our results from microarray and RT-qPCR revealed regulation of 20 novel genes uniquely during the stress interaction. This study indicates that plants exposed to concurrent drought and pathogen stress experience a new state of stress. Thus, under frequently changing climatic conditions, time of occurrence of each stress in the interaction defines the plant responses and should thus be studied explicitly.
Collapse
|
149
|
Li C, Nong Q, Solanki MK, Liang Q, Xie J, Liu X, Li Y, Wang W, Yang L, Li Y. Differential expression profiles and pathways of genes in sugarcane leaf at elongation stage in response to drought stress. Sci Rep 2016; 6:25698. [PMID: 27170459 PMCID: PMC4864372 DOI: 10.1038/srep25698] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 04/21/2016] [Indexed: 01/06/2023] Open
Abstract
Water stress causes considerable yield losses in sugarcane. To investigate differentially expressed genes under water stress, a pot experiment was performed with the sugarcane variety GT21 at three water-deficit levels (mild, moderate, and severe) during the elongation stage and gene expression was analyzed using microarray technology. Physiological parameters of sugarcane showed significant alterations in response to drought stress. Based on the expression profile of 15,593 sugarcane genes, 1,501 (9.6%) genes were differentially expressed under different water-level treatments; 821 genes were upregulated and 680 genes were downregulated. A gene similarity analysis showed that approximately 62.6% of the differentially expressed genes shared homology with functional proteins. In a Gene Ontology (GO) analysis, 901 differentially expressed genes were assigned to 36 GO categories. Moreover, 325 differentially expressed genes were classified into 101 pathway categories involved in various processes, such as the biosynthesis of secondary metabolites, ribosomes, carbon metabolism, etc. In addition, some unannotated genes were detected; these may provide a basis for studies of water-deficit tolerance. The reliability of the observed expression patterns was confirmed by RT-PCR. The results of this study may help identify useful genes for improving drought tolerance in sugarcane.
Collapse
Affiliation(s)
- Changning Li
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Center of Chinese Academy of Agricultural Sciences, Sugarcane Research Institute of Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007, China
| | - Qian Nong
- Microbiology Research Institute of Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007, China
| | - Manoj Kumar Solanki
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Center of Chinese Academy of Agricultural Sciences, Sugarcane Research Institute of Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007, China
| | - Qiang Liang
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Center of Chinese Academy of Agricultural Sciences, Sugarcane Research Institute of Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007, China
| | - Jinlan Xie
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Center of Chinese Academy of Agricultural Sciences, Sugarcane Research Institute of Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007, China
| | - Xiaoyan Liu
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Center of Chinese Academy of Agricultural Sciences, Sugarcane Research Institute of Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007, China
| | - Yijie Li
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Center of Chinese Academy of Agricultural Sciences, Sugarcane Research Institute of Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007, China
| | - Weizan Wang
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Center of Chinese Academy of Agricultural Sciences, Sugarcane Research Institute of Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007, China
| | - Litao Yang
- College of Agriculture, State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi 530004, China
| | - Yangrui Li
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Center of Chinese Academy of Agricultural Sciences, Sugarcane Research Institute of Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007, China
| |
Collapse
|
150
|
Overexpression of Arabidopsis AnnAt8 Alleviates Abiotic Stress in Transgenic Arabidopsis and Tobacco. PLANTS 2016; 5:plants5020018. [PMID: 27135239 PMCID: PMC4931398 DOI: 10.3390/plants5020018] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 03/28/2016] [Accepted: 04/01/2016] [Indexed: 01/11/2023]
Abstract
Abiotic stress results in massive loss of crop productivity throughout the world. Because of our limited knowledge of the plant defense mechanisms, it is very difficult to exploit the plant genetic resources for manipulation of traits that could benefit multiple stress tolerance in plants. To achieve this, we need a deeper understanding of the plant gene regulatory mechanisms involved in stress responses. Understanding the roles of different members of plant gene families involved in different stress responses, would be a step in this direction. Arabidopsis, which served as a model system for the plant research, is also the most suitable system for the functional characterization of plant gene families. Annexin family in Arabidopsis also is one gene family which has not been fully explored. Eight annexin genes have been reported in the genome of Arabidopsis thaliana. Expression studies of different Arabidopsis annexins revealed their differential regulation under various abiotic stress conditions. AnnAt8 (At5g12380), a member of this family has been shown to exhibit ~433 and ~175 fold increase in transcript levels under NaCl and dehydration stress respectively. To characterize Annexin8 (AnnAt8) further, we have generated transgenic Arabidopsis and tobacco plants constitutively expressing AnnAt8, which were evaluated under different abiotic stress conditions. AnnAt8 overexpressing transgenic plants exhibited higher seed germination rates, better plant growth, and higher chlorophyll retention when compared to wild type plants under abiotic stress treatments. Under stress conditions transgenic plants showed comparatively higher levels of proline and lower levels of malondialdehyde compared to the wild-type plants. Real-Time PCR analyses revealed that the expression of several stress-regulated genes was altered in AnnAt8 over-expressing transgenic tobacco plants, and the enhanced tolerance exhibited by the transgenic plants can be correlated with altered expressions of these stress-regulated genes. Our findings suggest a role for AnnAt8 in enhancing abiotic stress tolerance at different stages of plant growth and development.
Collapse
|