101
|
Dündar G, Shao Z, Higashitani N, Kikuta M, Izumi M, Higashitani A. Autophagy mitigates high-temperature injury in pollen development of Arabidopsis thaliana. Dev Biol 2019; 456:190-200. [DOI: 10.1016/j.ydbio.2019.08.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 07/31/2019] [Accepted: 08/27/2019] [Indexed: 01/26/2023]
|
102
|
Bai W, Wang P, Hong J, Kong W, Xiao Y, Yu X, Zheng H, You S, Lu J, Lei D, Wang C, Wang Q, Liu S, Liu X, Tian Y, Chen L, Jiang L, Zhao Z, Wu C, Wan J. Earlier Degraded Tapetum1 ( EDT1) Encodes an ATP-Citrate Lyase Required for Tapetum Programmed Cell Death. PLANT PHYSIOLOGY 2019; 181:1223-1238. [PMID: 31515447 PMCID: PMC6836821 DOI: 10.1104/pp.19.00202] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 08/15/2019] [Indexed: 05/06/2023]
Abstract
In flowering plants, the tapetum cells in anthers undergo programmed cell death (PCD) at the late meiotic stage, providing nutrients for further development of microspores, including the formation of the pollen wall. However, the molecular basis of tapetum PCD remains elusive. Here we report a tapetum PCD-related mutant in rice (Oryza sativa), earlier degraded tapetum 1 (edt1), that shows complete pollen abortion associated with earlier-than-programmed tapetum cell death. EDT1 encodes a subunit of ATP-citrate lyase (ACL), and is specifically expressed in the tapetum of anthers. EDT1 localized in both the nucleus and the cytoplasm as observed in rice protoplast transient assays. We demonstrated that the A and B subunits of ACL interacted with each other and might function as a heteromultimer in the cytoplasm. EDT1 catalyzes the critical steps in cytosolic acetyl-CoA synthesis. Our data indicated a decrease in ATP level, energy charge, and fatty acid content in mutant edt1 anthers. In addition, the genes encoding secretory proteases or lipid transporters, and the transcription factors known to regulate PCD, were downregulated. Our results demonstrate that the timing of tapetum PCD must be tightly regulated for successful pollen development, and that EDT1 is involved in the tapetum PCD process. This study furthers our understanding of the molecular basis of pollen fertility and fecundity in rice and may also be relevant to other flowering plants.
Collapse
Affiliation(s)
- Wenting Bai
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Peiran Wang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Jun Hong
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Weiyi Kong
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanjia Xiao
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaowen Yu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Hai Zheng
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Shimin You
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiayu Lu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Dekun Lei
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Chaolong Wang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Qiming Wang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Shijia Liu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Xi Liu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Yunlu Tian
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Liangming Chen
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Ling Jiang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhigang Zhao
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Chuanyin Wu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianmin Wan
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
103
|
Yang C, Liu X, Li D, Zhu X, Wei Z, Feng Z, Zhang L, He J, Mou C, Jiang L, Wan J. OsLUGL is involved in the regulating auxin level and OsARFs expression in rice (Oryza sativa L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 288:110239. [PMID: 31521225 DOI: 10.1016/j.plantsci.2019.110239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/27/2019] [Accepted: 08/25/2019] [Indexed: 06/10/2023]
Abstract
Specification of floral organ identity is critical for floral morphology and inflorescence architecture. Floral organ identity in plants is controlled by floral homeotic A/B/C/D/E-class genes. Although multiple genes regulate floral organogenesis, our understanding of the regulatory network remains fragmentary. Here, we characterized a rice floral organ gene KAIKOUXIAO (KKX), mutation of which produces an uncharacteristic open hull, abnormal seed and semi-sterility. KKX encodes a putative LEUNIG-like (LUGL) transcriptional regulator OsLUGL. OsLUGL is preferentially expressed in young panicles and its protein can interact with OsSEU, which functions were reported as an adaptor for LEUNIG. OsLUGL-OsSEU functions together as a transcriptional co-regulatory complex to control organ identity. SEP3 (such as OsMADS8) and AP1 (such as OsMADS18) serve as the DNA-binding partner of OsLUGL-OsSEU complex. Further studies indicated that OsMADS8 and OsMADS18 could bind to the promoter of OsGH3-8. The altered expression of OsGH3-8 might cause the increased auxin level and the decreased expression of OsARFs. Overall, our results demonstrate a possible pathway whereby OsLUGL-OsSEU-OsAP1-OsSEP3 complex as a transcriptional co-regulator by targeting the promoter of OsGH3-8, then affecting auxin level, OsARFs expression and thereby influencing floral development. These findings provide a valuable insight into the molecular functions of OsLUGL in rice floral development.
Collapse
Affiliation(s)
- Chunyan Yang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xi Liu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dianli Li
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xingjie Zhu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ziyao Wei
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhiming Feng
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Long Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jun He
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Changling Mou
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ling Jiang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jianmin Wan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China; National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
104
|
Li Y, Qin T, Wei C, Sun J, Dong T, Zhou R, Chen Q, Wang Q. Using Transcriptome Analysis to Screen for Key Genes and Pathways Related to Cytoplasmic Male Sterility in Cotton ( Gossypium hirsutum L.). Int J Mol Sci 2019; 20:ijms20205120. [PMID: 31623069 PMCID: PMC6830320 DOI: 10.3390/ijms20205120] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/10/2019] [Accepted: 10/12/2019] [Indexed: 12/19/2022] Open
Abstract
Cotton (Gossypium hirsutum L.) is one of the most important cash crops worldwide. Cytoplasmic male sterility (CMS) is an excellent breeding system for exploitation of heterosis, which has great potential to increase crop yields. To understand the molecular mechanism of CMS in cotton, we compared transcriptome, cytomorphological, physiological and bioinformatics data between the CMS line C2P5A and its maintainer line C2P5B. By using high-throughput sequencing technology, 178,166 transcripts were assembled and 2013 differentially expression genes (DEGs) were identified at three different stages of C2P5A anther development. In this study, we identified DEGs associated with reactive oxygen species (ROS), peroxisomes, aldehyde dehydrogenases (ALDH), cytochrome oxidase subunit VI, and cytochrome P450, and DEGs associated with tapetum development, Jojoba acyl-CoA reductase-related male sterility protein, basic helix-loop-helix (bHLH) and MYB transcription factors. The abnormal expression of one of these genes may be responsible for the CMS C2P5A line. In gene ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, DEGs were mainly related to carbohydrate metabolism, amino acid metabolism, transport and catabolism, and signal transduction. Carbohydrate metabolism provides energy for anther development, starch and sucrose metabolism, fatty acid biosynthesis and metabolism and ascorbate and aldarate metabolism. These results showed that numerous genes and multiple complex metabolic pathways regulate cotton anther development. Weighted correlation network analysis (WGCNA) indicated that three modules, ‘turquoise,’ ‘blue,’ and ‘green,’ were specific for the CMS C2P5A line. The ‘turquoise’ and ‘blue’ modules were mainly related to carbohydrate metabolism, amino acid metabolism, energy metabolism, peroxisomes, pyruvate metabolism as well as fatty acid degradation. The ‘green’ module was mainly related to energy metabolism, carbon metabolism, translation, and lipid metabolism. RNA-sequencing and WGCNA polymerization modules were screened for key genes and pathways related to CMS in cotton. This study presents a new perspective for further research into the metabolic pathways of pollen abortion in the CMS C2P5A line and also provides a theoretical basis for its breeding and production.
Collapse
Affiliation(s)
- Yuqing Li
- College of Agriculture, Xinjiang Agricultural University, Urumqi 830000, China.
- School of Life Science and Technology, Henan Institute of Science and Technology/Collaborative Innovation Center of Modern Biological Breeding of Henan Province/Henan Key Laboratory Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Xinxiang 453003, China.
| | - Tengfei Qin
- School of Life Science and Technology, Henan Institute of Science and Technology/Collaborative Innovation Center of Modern Biological Breeding of Henan Province/Henan Key Laboratory Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Xinxiang 453003, China.
| | - Chunyan Wei
- School of Life Science and Technology, Henan Institute of Science and Technology/Collaborative Innovation Center of Modern Biological Breeding of Henan Province/Henan Key Laboratory Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Xinxiang 453003, China.
| | - Jialiang Sun
- School of Life Science and Technology, Henan Institute of Science and Technology/Collaborative Innovation Center of Modern Biological Breeding of Henan Province/Henan Key Laboratory Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Xinxiang 453003, China.
| | - Tao Dong
- School of Life Science and Technology, Henan Institute of Science and Technology/Collaborative Innovation Center of Modern Biological Breeding of Henan Province/Henan Key Laboratory Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Xinxiang 453003, China.
| | - Ruiyang Zhou
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530006, China.
| | - Quanjia Chen
- College of Agriculture, Xinjiang Agricultural University, Urumqi 830000, China.
| | - Qinglian Wang
- School of Life Science and Technology, Henan Institute of Science and Technology/Collaborative Innovation Center of Modern Biological Breeding of Henan Province/Henan Key Laboratory Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Xinxiang 453003, China.
| |
Collapse
|
105
|
Su Y, Liu J, Liang W, Dou Y, Fu R, Li W, Feng C, Gao C, Zhang D, Kang Z, Li H. Wheat AGAMOUS LIKE 6 transcription factors function in stamen development by regulating the expression of Ta APETALA3. Development 2019; 146:dev.177527. [PMID: 31540915 DOI: 10.1242/dev.177527] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 09/11/2019] [Indexed: 11/20/2022]
Abstract
Previous studies have revealed the functions of rice and maize AGAMOUS LIKE 6 (AGL6) genes OsMADS6 and ZAG3, respectively, in floral development; however, the functions of three wheat (Triticum aestivum) AGL6 genes are still unclear. Here, we report the main functions of wheat AGL6 homoeologous genes in stamen development. In RNAi plants, stamens showed abnormality in number and morphology, and a tendency to transform into carpels. Consistently, the expression of the B-class gene TaAPETALA3 (AP3) and the auxin-responsive gene TaMGH3 was downregulated, whereas the wheat ortholog of the rice carpel identity gene DROOPING LEAF was ectopically expressed in RNAi stamens. TaAGL6 proteins bind to the promoter of TaAP3 directly. Yeast one-hybrid and transient expression assays further showed that TaAGL6 positively regulates the expression of TaAP3 in vivo. Wheat AGL6 transcription factors interact with TaAP3, TaAGAMOUS and TaMADS13. Our findings indicate that TaAGL6 transcription factors play an essential role in stamen development through transcriptional regulation of TaAP3 and other related genes. We propose a model to illustrate the function and probable mechanism of this regulation. This study extends our understanding of AGL6 genes.
Collapse
Affiliation(s)
- Yali Su
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Jinxing Liu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wanqi Liang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yanhua Dou
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Ruifeng Fu
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenqiang Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Cuizhu Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Caixia Gao
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Dabing Zhang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Haifeng Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
106
|
Wen K, Chen Y, Zhou X, Chang S, Feng H, Zhang J, Chu Z, Han X, Li J, Liu J, Xi C, Zhao H, Han S, Wang Y. OsCPK21 is required for pollen late-stage development in rice. JOURNAL OF PLANT PHYSIOLOGY 2019; 240:153000. [PMID: 31220626 DOI: 10.1016/j.jplph.2019.153000] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 06/12/2019] [Accepted: 06/12/2019] [Indexed: 06/09/2023]
Abstract
In flowering plants, pollen development is a critical step for reproductive success and necessarily involves complex genetic regulatory networks. Calcium-dependent protein kinases (CPKs) are plant-specific calcium sensors involved in the regulation of plant development and adaption to the environment; however, whether they play a role in regulating male reproduction remains elusive. Here, we found that the knockdown of spikelet-specific OsCPK21 causes pollen abortion in OsCPK21-RNAi transgenic plants. Severe defects in pollen development initiated at stage 10 of anther development and simultaneous cell death occurred in the pollen cells of OsCPK21-RNAi plants. Microarray analysis and qRT-PCR revealed that the transcription of OsCPK21 is coordinated with that of MIKC*-type MADS box transcription factors OsMADS62, OsMADS63, and OsMADS68 during rice anther development. We further showed that OsCPK21 indirectly up-regulates the transcription of OsMADS62, OsMADS63, and OsMADS68 through the potential MYB binding site, DRE/CRT element, and/or new ERF binding motif localised in the promoter region of these three MADS genes. These findings suggest that OsCPK21 plays an essential role in pollengenesis, possibly via indirectly regulating the transcription of MIKC*-type MADS box proteins.
Collapse
Affiliation(s)
- Kexin Wen
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Yixing Chen
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Xiaojin Zhou
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China; Department of Crop Genomic & Genetic Improvement, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Shu Chang
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Hao Feng
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Jing Zhang
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Zhilin Chu
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Xiaogang Han
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Jie Li
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Jin Liu
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Chao Xi
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Heping Zhao
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Shengcheng Han
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Yingdian Wang
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
107
|
Kong L, Duan Y, Ye Y, Cai Z, Wang F, Qu X, Qiu R, Wu C, Wu W. Screening and analysis of proteins interacting with OsMADS16 in rice (Oryza sativa L.). PLoS One 2019; 14:e0221473. [PMID: 31437207 PMCID: PMC6705763 DOI: 10.1371/journal.pone.0221473] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 08/07/2019] [Indexed: 11/18/2022] Open
Abstract
OsMADS16, a class B floral organ identity gene, plays a pivotal role in stamen formation in rice. To date, little is known about the interacting partners of OsMADS16 except for several MADS-box proteins. In this study, we constructed a high-quality cDNA library of young panicles (< 5 cm in length) and performed yeast two-hybrid (Y2H) screening using OsMADS16 as bait. Eleven candidate proteins interacting with OsMADS16 were identified by Y2H and validated by BiFC and Co-IP assays. Subcellular localization results further confirmed the possibility of the interactions of OsMADS16 with 10 of the candidate proteins in natural rice cells. Bioinformatics analysis indicated that these partners exerted various molecular, cellular and physiological functions. Some of them were known or likely to be related to reproductive events, such as stamen primordium initiation, differentiation and development (OsMADS2, OsMADS4 and OsCOP9) and pollen development (OsbHLH40 and Os6PGDH). Our results provide an important reference for further research on OsMADS16-mediated regulation mechanism on floral organ development and pollen formation.
Collapse
Affiliation(s)
- Lan Kong
- Fujian Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yuanlin Duan
- Fujian Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yanfang Ye
- Fujian Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Zhengzheng Cai
- Fujian Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Feng Wang
- Biotechnology Research Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Xiaojie Qu
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Ronghua Qiu
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Chunyan Wu
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Weiren Wu
- Fujian Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
108
|
Tang X, Hao YJ, Lu JX, Lu G, Zhang T. Transcriptomic analysis reveals the mechanism of thermosensitive genic male sterility (TGMS) of Brassica napus under the high temperature inducement. BMC Genomics 2019; 20:644. [PMID: 31409283 PMCID: PMC6691554 DOI: 10.1186/s12864-019-6008-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 07/30/2019] [Indexed: 11/24/2022] Open
Abstract
Background The thermo-sensitive genic male sterility (TGMS) of Brassica napus facilitates reproductive researches and hybrid seed production. Considering the complexity and little information about the molecular mechanism involved in B. napus TGMS, comparative transcriptomic analyses were peroformed for the sterile (160S-MS) and fertile (160S-MF) flowers to identify potential crucial genes and pathways associated with TGMS. Results In total, RNA-seq analysis showed that 2202 genes (561 up-regulated and 1641 down-regulated) were significantly differentially expressed in the fertile flowers of 160S-MF at 25 °C when compared the sterile flower of 160S-MS at 15 °C. Detailed analysis revealed that expression changes in genes encoding heat shock proteins, antioxidant, skeleton protein, GTPase and calmodulin might be involved in TGMS of B. napus. Moreover, gene expression of some key members in plant hormone signaling pathways, such as auxin, gibberellins, jasmonic acid, abscisic acid, brassinosteroid signalings, were significantly surppressed in the flowers of 160S, suggesting that these genes might be involved in the regulation in B. napus TGMS. Here, we also found that transcription factor MADS, NFY, HSF, MYB/C and WRKY might play a crucial role in male fertility under the high temperature condition. Conclusion High temperature can significant affect gene expression in the flowers. The findings in the current study improve our understanding of B. napus TGMS at the molecular level and also provide an effective foundation for male fertility researches in other important economic crops. Electronic supplementary material The online version of this article (10.1186/s12864-019-6008-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xin Tang
- College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - You-Jin Hao
- College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Jun-Xing Lu
- College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Geng Lu
- College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Tao Zhang
- College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China.
| |
Collapse
|
109
|
Yu J, Zhang D. Molecular Control of Redox Homoeostasis in Specifying the Cell Identity of Tapetal and Microsporocyte Cells in Rice. RICE (NEW YORK, N.Y.) 2019; 12:42. [PMID: 31214893 PMCID: PMC6582093 DOI: 10.1186/s12284-019-0300-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 05/24/2019] [Indexed: 05/18/2023]
Abstract
In flowering plants, male reproduction occurs within the male organ anther with a series of complex biological events including de novo specification of germinal cells and somatic cells, male meiosis, and pollen development and maturation. Particularly, unlike other tissue, anther lacks a meristem, therefore, both germinal and somatic cell types are derived from floral stem cells within anther lobes. Here, we review the molecular mechanism specifying the identity of somatic cells and reproductive microsporocytes by redox homoeostasis during rice anther development. Factors such as glutaredoxins (GRXs), TGA transcription factors, receptor-like protein kinase signaling pathway, and glutamyl-tRNA synthetase maintaining the redox status are discussed. We also conceive the conserved and divergent aspect of cell identity specification of anther cells in plants via changing redox status.
Collapse
Affiliation(s)
- Jing Yu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, People's Republic of China
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, People's Republic of China.
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, 5064, Australia.
| |
Collapse
|
110
|
Liu W, Huang S, Liu Z, Lou T, Tan C, Wang Y, Feng H. A missense mutation of STERILE APETALA leads to female sterility in Chinese cabbage (Brassica campestris ssp. pekinensis). PLANT REPRODUCTION 2019; 32:217-228. [PMID: 30806770 DOI: 10.1007/s00497-019-00368-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 02/18/2019] [Indexed: 05/03/2023]
Abstract
Flower development is essential for the sexual reproduction and crop yield of plants. Thus, a better understanding of plant sterility from the perspective of morphological and molecular genetics is imperative. In our previous study, a recessive female-sterile Chinese cabbage mutant fsm was obtained from a doubled haploid line 'FT' via an isolated microspore culture combined with EMS mutagenesis. Pistil aniline blue staining and stigma scanning observation showed that the growth of the stigma papillar cells and pollen tubes of the mutant fsm were normal. Therefore, the female sterility was due to abnormal development of the ovules. To map the mutant fsm, 3108 F2 individuals were selected for linkage analysis. Two closely linked markers, Indel-I2 and Indel-I7, were localized on the flanking region of fsm at distances of 0.05 cM and 0.06 cM, respectively. The physical distance between Indel-I2 and Indel-I7 was ~ 1376 kb, with 107 genes remaining in the target region. This region was located on the chromosome A04 centromere, on which low recombination rates and a high frequency of repetitive sequences were present. Whole-genome re-sequencing detected a single-nucleotide (C-to-A) transition (TCG/TAG) on the exon of BraA04001030, resulting in a premature stop codon. Genotyping revealed that the female-sterile phenotype was fully cosegregated with this SNP. BraA04001030 encodes a homologue of STERILE APETALA (SAP) transcriptional regulator, which plays vital roles in floral development. The results of the present study suggest that BraA04001030 is a strong candidate gene for fsm and provide the basis for exploring the molecular mechanism underlying female sterility in Chinese cabbage.
Collapse
Affiliation(s)
- Wenjie Liu
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, People's Republic of China
| | - Shengnan Huang
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, People's Republic of China
| | - Zhiyong Liu
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, People's Republic of China
| | - Tengxue Lou
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
| | - Chong Tan
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, People's Republic of China
| | - Yiheng Wang
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, People's Republic of China
| | - Hui Feng
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, People's Republic of China.
| |
Collapse
|
111
|
Yu XZ, Lin YJ, Zhang Q. Metallothioneins enhance chromium detoxification through scavenging ROS and stimulating metal chelation in Oryza sativa. CHEMOSPHERE 2019; 220:300-313. [PMID: 30590296 DOI: 10.1016/j.chemosphere.2018.12.119] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/11/2018] [Accepted: 12/17/2018] [Indexed: 05/03/2023]
Abstract
Metallothioneins (MTs) is a metal ion binding protein to detoxify heavy metal stress in plant cells. This study examines involvement of MTs in metal chelation and ROS scavenging in rice seedling under Cr induction either Cr(VI) or Cr(III) at three different effective concentrations using Agilent 44K rice microarray and real-time PCR technology. Results showed that the concentration of Cr was higher in roots than in shoots in both Cr treatments. Accumulation of both H2O2 and O2- in rice tissues was evident, but the fluctuation of H2O2 was more remarkable than O2-. Both Cr exposures resulted in enhancement of MTs in plant tissues. Results from PCR analysis confirmed that ten specific OsMT genes responsible for regulating ROS removal were expressed differentially in plant tissues as well as in Cr variants, suggesting that their different regulation and responsiveness strategies. Expression patterns of metal chelation-related OsMT genes, after Cr exposure were also inconsistent in rice tissues. Longer exposure periods caused more transcriptional changes in both Cr treatments. We also noticed that OsMT1b might carry more weight during Cr chelation in roots rather than in shoots, while OsMT2c had more important role in eliminating H2O2 accumulation in shoots than roots. These results suggest that different speciation of Cr in rice tissues resulted in inconsistent transcriptional changes of OsMT genes, which functioned in different regulation and responsiveness pathways responsible for metal ions chelating and ROS scavenging during Cr detoxification.
Collapse
Affiliation(s)
- Xiao-Zhang Yu
- The Guangxi Key Laboratory of Theory & Technology for Environmental Pollution Control, College of Environmental Science & Engineering, Guilin University of Technology, Guilin 541004, People's Republic of China.
| | - Yu-Juan Lin
- The Guangxi Key Laboratory of Theory & Technology for Environmental Pollution Control, College of Environmental Science & Engineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Qing Zhang
- The Guangxi Key Laboratory of Theory & Technology for Environmental Pollution Control, College of Environmental Science & Engineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| |
Collapse
|
112
|
Yu J, Jiang M, Guo C. Crop Pollen Development under Drought: From the Phenotype to the Mechanism. Int J Mol Sci 2019; 20:E1550. [PMID: 30925673 PMCID: PMC6479728 DOI: 10.3390/ijms20071550] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/22/2019] [Accepted: 03/23/2019] [Indexed: 12/13/2022] Open
Abstract
Drought stress induced pollen sterility is a harmful factor that reduces crop yield worldwide. During the reproductive process, the meiotic stage and the mitotic stage in anthers are both highly vulnerable to water deficiency. Drought at these stages causes pollen sterility by affecting the nature and structure of the anthers, including the degeneration of some meiocytes, disorientated microspores, an expanded middle layer and abnormal vacuolizated tapeta. The homeostasis of the internal environment is imbalanced in drought-treated anthers, involving the decreases of gibberellic acid (GA) and auxin, and the increases of abscisic acid (ABA), jasmonic acid (JA) and reactive oxygen species (ROS). Changes in carbohydrate availability, metabolism and distribution may be involved in the effects of drought stress at the reproductive stages. Here, we summarize the molecular regulatory mechanism of crop pollen development under drought stresses. The meiosis-related genes, sugar transporter genes, GA and ABA pathway genes and ROS-related genes may be altered in their expression in anthers to repair the drought-induced injures. It could also be that some drought-responsive genes, mainly expressed in the anther, regulate the expression of anther-related genes to improve both drought tolerance and anther development. A deepened understanding of the molecular regulatory mechanism of pollen development under stress will be beneficial for breeding drought-tolerant crops with high and stable yield under drought conditions.
Collapse
Affiliation(s)
- Jing Yu
- State Key Laboratory of Subtropical Silviculture, School of Agriculture and Food Sciences, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China.
| | - Mengyuan Jiang
- State Key Laboratory of Subtropical Silviculture, School of Agriculture and Food Sciences, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China.
| | - Changkui Guo
- State Key Laboratory of Subtropical Silviculture, School of Agriculture and Food Sciences, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China.
| |
Collapse
|
113
|
OsAGO2 controls ROS production and the initiation of tapetal PCD by epigenetically regulating OsHXK1 expression in rice anthers. Proc Natl Acad Sci U S A 2019; 116:7549-7558. [PMID: 30902896 PMCID: PMC6462063 DOI: 10.1073/pnas.1817675116] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Understanding the development of anthers, the male reproductive organs of plants, has key implications for crop yield. Epigenetic mechanisms modulate gene expression by altering modifications of DNA or histones and via noncoding RNAs. Many studies have examined anther development, but the involvement of epigenetic mechanisms remains to be explored. Here, we investigated the role of an ARGONAUTE (AGO) family protein, OsAGO2. We find that OsAGO2 epigenetically regulates anther development by modulating DNA methylation modifications in the Hexokinase (OsHXK) promoter region. OsHXK1, in turn, affects anther development by regulating the production of reactive oxygen and the initiation of cell death in key anther structures. Identification of this epigenetic regulatory mechanism has implications for the production of hybrid crop varieties. Proteins of the ARGONAUTE (AGO) family function in the epigenetic regulation of gene expression. Although the rice (Oryza sativa) genome encodes 19 predicted AGO proteins, few of their functions have thus far been characterized. Here, we show that the AGO protein OsAGO2 regulates anther development in rice. OsAGO2 was highly expressed in anthers. Knockdown of OsAGO2 led to the overaccumulation of reactive oxygen species (ROS) and abnormal anther development, causing premature initiation of tapetal programmed cell death (PCD) and pollen abortion. The expression level of Hexokinase 1 (OsHXK1) increased significantly, and the methylation levels of its promoter decreased, in plants with knocked-down OsAGO2 expression. Overexpression of OsHXK1 also resulted in the overaccumulation of ROS, premature initiation of PCD, and pollen abortion. Moreover, knockdown of OsHXK1 restored pollen fertility in OsAGO2 knockdown plants. Chromatin immunoprecipitation assays demonstrated that OsAGO2 binds directly to the OsHXK1 promoter region, suggesting that OsHXK1 is a target gene of OsAGO2. These results indicate that OsHXK1 controls the appropriate production of ROS and the proper timing of tapetal PCD and is directly regulated by OsAGO2 through epigenetic regulation.
Collapse
|
114
|
Eizenga GC, Jia MH, Jackson AK, Boykin DL, Ali ML, Shakiba E, Tran NT, McCouch SR, Edwards JD. Validation of Yield Component Traits Identified by Genome-Wide Association Mapping in a tropical japonica × tropical japonica Rice Biparental Mapping Population. THE PLANT GENOME 2019; 12:180021. [PMID: 30951093 DOI: 10.3835/plantgenome2018.04.0021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The Rice Diversity Panel 1 (RDP1) was developed for genome-wide association (GWA) studies to explore five rice ( L.) subpopulations (, , , , and ). The RDP1 was evaluated for over 30 traits, including agronomic, panicle architecture, seed, and disease traits and genotyped with 700,000 single nucleotide polymorphisms (SNPs). Most rice grown in the southern United States is and thus the diversity in this subpopulation is interesting to U.S. breeders. Among the RDP1 accessions, 'Estrela' and 'NSFTV199' are both phenotypically and genotypically diverse, thus making them excellent parents for a biparental mapping population. The objectives were to (i) ascertain the GWA QTLs from the RDP1 GWA studies that overlapped with the QTLs uncovered in an Estrela × NSFTV199 recombinant inbred line (RIL) population evaluated for 15 yield traits, and (ii) identify known or novel genes potentially controlling specific yield component traits. The 256 RILs were genotyped with 132 simple sequence repeat markers and 70 QTLs were found. Perl scripts were developed for automatic identification of the underlying candidate genes in the GWA QTL regions. Approximately 100 GWA QTLs overlapped with 41 Estrela × NSFTV199 QTL (RIL QTL) regions and 47 known genes were identified. Two seed trait RIL QTLs with overlapping GWA QTLs were not associated with a known gene. Segregating SNPs in the overlapping GWA QTLs for RIL QTLs with high values will be evaluated as potential DNA markers useful to breeding programs for the associated yield trait.
Collapse
|
115
|
Gao J, Li Q, Wang N, Tao B, Wen J, Yi B, Ma C, Tu J, Fu T, Li Q, Zou J, Shen J. Tapetal Expression of BnaC.MAGL8.a Causes Male Sterility in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2019; 10:763. [PMID: 31249581 PMCID: PMC6582705 DOI: 10.3389/fpls.2019.00763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 05/24/2019] [Indexed: 05/07/2023]
Abstract
Monoacylglycerol lipase (MAGL) hydrolyzes monoacylglycerol, producing free fatty acid and glycerol. Although this enzyme has been shown to play important roles in mammal, its potential function in plants remains poorly understood. In a survey of the MAGL genes in Brassica napus, we found tapetal expression of BnaC.MAGL8.a, a homolog of AtMAGL8, results in male sterility in Arabidopsis thaliana. Retarded tapetal PCD and defective pollen wall were observed in the transgenic plants. The tapetal cells became vacuolated at stage 9, and then degenerated at stage 11. Most microspores degenerated with the tapetal cells, and only few pollen grains with an irregular-shaped exine layer were produced in the transgenic plants. Transcriptome analysis identified 398 differentially expressed genes. Most of them are involved in pollen development and stress response. ABORTED MICROSPORES and its downstream pollen wall biosynthesis genes were down-regulated, but genes related with reactive oxygen species homeostasis and jasmonates signaling were up-regulated in the transgenic plants. These results suggest that expression of BnaC.MAGL8.a in tapetum invokes stress response and impairs pollen development. The apparent phenotypic similarity between atgpat1 mutant and BnA9::BnaC.MAGL8.a transgenic plants lead us to propose a role for monoacylglycerol (MAG) in pollen development in Arabidopsis. Our study provides insights on not only the biological function of plant MAGL genes but also the role of MAG in pollen development.
Collapse
Affiliation(s)
- Jie Gao
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center for Rapeseed, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qun Li
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center for Rapeseed, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Nan Wang
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center for Rapeseed, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Baolong Tao
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center for Rapeseed, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center for Rapeseed, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center for Rapeseed, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center for Rapeseed, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center for Rapeseed, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center for Rapeseed, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qiang Li
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jitao Zou
- National Research Council Canada, Saskatoon, SK, Canada
- *Correspondence: Jitao Zou,
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center for Rapeseed, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Jinxiong Shen,
| |
Collapse
|
116
|
Arakawa T, Ue S, Sano C, Matsunaga M, Kagami H, Yoshida Y, Kuroda Y, Taguchi K, Kitazaki K, Kubo T. Identification and characterization of a semi-dominant restorer-of-fertility 1 allele in sugar beet (Beta vulgaris). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:227-240. [PMID: 30341492 DOI: 10.1007/s00122-018-3211-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/11/2018] [Indexed: 05/05/2023]
Abstract
The sugar beet Rf1 locus has a number of molecular variants. We found that one of the molecular variants is a weak allele of a previously identified allele. Male sterility (MS) caused by nuclear-mitochondrial interaction is called cytoplasmic male sterility (CMS) in which MS-inducing mitochondria are suppressed by a nuclear gene, restorer-of-fertility. Rf and rf are the suppressing and non-suppressing alleles, respectively. This dichotomic view, however, seems somewhat unsatisfactory to explain the recently discovered molecular diversity of Rf loci. In the present study, we first identified sugar beet line NK-305 as a new source of Rf1. Our crossing experiment revealed that NK-305 Rf1 is likely a semi-dominant allele that restores partial fertility when heterozygous but full fertility when homozygous, whereas Rf1 from another sugar beet line appeared to be a dominant allele. Proper degeneration of anther tapetum is a prerequisite for pollen development; thus, we compared tapetal degeneration in the NK-305 Rf1 heterozygote and the homozygote. Degeneration occurred in both genotypes but to a lesser extent in the heterozygote, suggesting an association between NK-305 Rf1 dose and incompleteness of tapetal degeneration leading to partial fertility. Our protein analyses revealed a quantitative correlation between NK-305 Rf1 dose and a reduction in the accumulation of a 250 kDa mitochondrial protein complex consisting of a CMS-specific mitochondrial protein encoded by MS-inducing mitochondria. The abundance of Rf1 transcripts correlated with NK-305 Rf1 dose. The molecular organization of NK-305 Rf1 suggested that this allele evolved through intergenic recombination. We propose that the sugar beet Rf1 locus has a series of multiple alleles that differ in their ability to restore fertility and are reflective of the complexity of Rf evolution.
Collapse
Affiliation(s)
- Takumi Arakawa
- Research Faculty of Agriculture, Hokkaido University, N-9, W-9, Kita-ku, Sapporo, 060-8589, Japan
| | - Sachiyo Ue
- Research Faculty of Agriculture, Hokkaido University, N-9, W-9, Kita-ku, Sapporo, 060-8589, Japan
| | - Chihiro Sano
- Research Faculty of Agriculture, Hokkaido University, N-9, W-9, Kita-ku, Sapporo, 060-8589, Japan
| | - Muneyuki Matsunaga
- Research Faculty of Agriculture, Hokkaido University, N-9, W-9, Kita-ku, Sapporo, 060-8589, Japan
| | - Hiroyo Kagami
- Research Faculty of Agriculture, Hokkaido University, N-9, W-9, Kita-ku, Sapporo, 060-8589, Japan
| | - Yu Yoshida
- Research Faculty of Agriculture, Hokkaido University, N-9, W-9, Kita-ku, Sapporo, 060-8589, Japan
| | - Yosuke Kuroda
- Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization, Shinsei Minami 9-4, Memuro, 082-0081, Japan
| | - Kazunori Taguchi
- Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization, Shinsei Minami 9-4, Memuro, 082-0081, Japan
| | - Kazuyoshi Kitazaki
- Research Faculty of Agriculture, Hokkaido University, N-9, W-9, Kita-ku, Sapporo, 060-8589, Japan
| | - Tomohiko Kubo
- Research Faculty of Agriculture, Hokkaido University, N-9, W-9, Kita-ku, Sapporo, 060-8589, Japan.
| |
Collapse
|
117
|
Gao H, Khawar MB, Li W. Autophagy in Reproduction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1206:453-468. [PMID: 31776998 DOI: 10.1007/978-981-15-0602-4_21] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Autophagy, a major degradation/recycling pathway, plays an essential role in cellular homeostasis maintenance, cell fate decision, and reproductive development. During reproduction, sperms and eggs, the specialized haploid gametes produced by the meiotic process of the germ cells in male and female respectively, are fused to form a new zygote that develops into fetus through embryogenesis and maternal-fetal crosstalk. Researches carried out in the past few years have proved that autophagy plays a key role in the regulation of reproduction process, and blockage of autophagy process likely contributes to reproductive abnormalities and even infertility. Here we summerize the recent progress in exploring the functional roles of autophagy in reproductive processes, such as spermatogenesis, folliculogenesis, fertilization, embryogenesis, and maternal-fetal crosstalk, in both animals and plants.
Collapse
Affiliation(s)
- Hui Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - Muhammad Babar Khawar
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
118
|
Huang H, Ullah F, Zhou DX, Yi M, Zhao Y. Mechanisms of ROS Regulation of Plant Development and Stress Responses. FRONTIERS IN PLANT SCIENCE 2019; 10:800. [PMID: 31293607 PMCID: PMC6603150 DOI: 10.3389/fpls.2019.00800] [Citation(s) in RCA: 571] [Impact Index Per Article: 95.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 06/03/2019] [Indexed: 05/19/2023]
Abstract
Plants are subjected to various environmental stresses throughout their life cycle. Reactive oxygen species (ROS) play important roles in maintaining normal plant growth, and improving their tolerance to stress. This review describes the production and removal of ROS in plants, summarizes recent progress in understanding the role of ROS during plant vegetative apical meristem development, organogenesis, and abiotic stress responses, and some novel findings in recent years are discussed. More importantly, interplay between ROS and epigenetic modifications in regulating gene expression is specifically discussed. To summarize, plants integrate ROS with genetic, epigenetic, hormones and external signals to promote development and environmental adaptation.
Collapse
Affiliation(s)
- Honglin Huang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Farhan Ullah
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Dao-Xiu Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Ming Yi
- College of Science, Huazhong Agricultural University, Wuhan, China
| | - Yu Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Yu Zhao,
| |
Collapse
|
119
|
Jimenez-Quesada MJ, Traverso JA, Potocký M, Žárský V, Alché JDD. Generation of Superoxide by OeRbohH, a NADPH Oxidase Activity During Olive ( Olea europaea L.) Pollen Development and Germination. FRONTIERS IN PLANT SCIENCE 2019; 10:1149. [PMID: 31608092 PMCID: PMC6761571 DOI: 10.3389/fpls.2019.01149] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 08/22/2019] [Indexed: 05/22/2023]
Abstract
Reactive oxygen species (ROS) are produced in the olive reproductive organs as the result of intense metabolism. ROS production and pattern of distribution depend on the developmental stage, supposedly playing a broad panel of functions, which include defense and signaling between pollen and pistil. Among ROS-producing mechanisms, plasma membrane NADPH-oxidase activity is being highlighted in plant tissues, and two enzymes of this type have been characterized in Arabidopsis thaliana pollen (RbohH and RbohJ), playing important roles in pollen physiology. Besides, pollen from different species has shown distinct ROS production mechanism and patterns of distribution. In the olive reproductive tissues, a significant production of superoxide has been described. However, the enzymes responsible for such generation are unknown. Here, we have identified an Rboh-type gene (OeRbohH), mainly expressed in olive pollen. OeRbohH possesses a high degree of identity with RbohH and RbohJ from Arabidopsis, sharing most structural features and motifs. Immunohistochemistry experiments allowed us to localize OeRbohH throughout pollen ontogeny as well as during pollen tube elongation. Furthermore, the balanced activity of tip-localized OeRbohH during pollen tube growth has been shown to be important for normal pollen physiology. This was evidenced by the fact that overexpression caused abnormal phenotypes, whereas incubation with specific NADPH oxidase inhibitor or gene knockdown lead to impaired ROS production and subsequent inhibition of pollen germination and pollen tube growth.
Collapse
Affiliation(s)
- María José Jimenez-Quesada
- Plant Reproductive Biology and Advanced Microscopy Laboratory, Department of Biochemistry, Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín (CSIC), Granada, Spain
| | - José Angel Traverso
- Plant Reproductive Biology and Advanced Microscopy Laboratory, Department of Biochemistry, Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín (CSIC), Granada, Spain
| | - Martin Potocký
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Viktor Žárský
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
- Department of Experimental Plant Biology, Faculty of Science, Charles University in Prague, Prague, Czechia
| | - Juan de Dios Alché
- Plant Reproductive Biology and Advanced Microscopy Laboratory, Department of Biochemistry, Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín (CSIC), Granada, Spain
- *Correspondence: Juan de Dios Alché,
| |
Collapse
|
120
|
Castelán-Muñoz N, Herrera J, Cajero-Sánchez W, Arrizubieta M, Trejo C, García-Ponce B, Sánchez MDLP, Álvarez-Buylla ER, Garay-Arroyo A. MADS-Box Genes Are Key Components of Genetic Regulatory Networks Involved in Abiotic Stress and Plastic Developmental Responses in Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:853. [PMID: 31354752 PMCID: PMC6636334 DOI: 10.3389/fpls.2019.00853] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 06/13/2019] [Indexed: 05/05/2023]
Abstract
Plants, as sessile organisms, adapt to different stressful conditions, such as drought, salinity, extreme temperatures, and nutrient deficiency, via plastic developmental and growth responses. Depending on the intensity and the developmental phase in which it is imposed, a stress condition may lead to a broad range of responses at the morphological, physiological, biochemical, and molecular levels. Transcription factors are key components of regulatory networks that integrate environmental cues and concert responses at the cellular level, including those that imply a stressful condition. Despite the fact that several studies have started to identify various members of the MADS-box gene family as important molecular components involved in different types of stress responses, we still lack an integrated view of their role in these processes. In this review, we analyze the function and regulation of MADS-box gene family members in response to drought, salt, cold, heat, and oxidative stress conditions in different developmental processes of several plants. In addition, we suggest that MADS-box genes are key components of gene regulatory networks involved in plant responses to stress and plant developmental plasticity in response to seasonal changes in environmental conditions.
Collapse
Affiliation(s)
- Natalia Castelán-Muñoz
- Laboratorio de Genética Molecular, Epigenética y Desarrollo de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Postgrado en Recursos Genéticos y Productividad-Fisiología Vegetal, Colegio de Postgraduados, Texcoco, Mexico
| | - Joel Herrera
- Laboratorio de Genética Molecular, Epigenética y Desarrollo de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Wendy Cajero-Sánchez
- Laboratorio de Genética Molecular, Epigenética y Desarrollo de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Maite Arrizubieta
- Laboratorio de Genética Molecular, Epigenética y Desarrollo de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Carlos Trejo
- Postgrado en Botánica, Colegio de Postgraduados, Texcoco, Mexico
| | - Berenice García-Ponce
- Laboratorio de Genética Molecular, Epigenética y Desarrollo de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - María de la Paz Sánchez
- Laboratorio de Genética Molecular, Epigenética y Desarrollo de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Elena R. Álvarez-Buylla
- Laboratorio de Genética Molecular, Epigenética y Desarrollo de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Adriana Garay-Arroyo
- Laboratorio de Genética Molecular, Epigenética y Desarrollo de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
- *Correspondence: Adriana Garay-Arroyo
| |
Collapse
|
121
|
Sun L, Xiang X, Yang Z, Yu P, Wen X, Wang H, Abbas A, Muhammad Khan R, Zhang Y, Cheng S, Cao L. OsGPAT3 Plays a Critical Role in Anther Wall Programmed Cell Death and Pollen Development in Rice. Int J Mol Sci 2018; 19:ijms19124017. [PMID: 30545137 PMCID: PMC6321289 DOI: 10.3390/ijms19124017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 11/30/2018] [Accepted: 12/04/2018] [Indexed: 11/16/2022] Open
Abstract
In flowering plants, ideal male reproductive development requires the systematic coordination of various processes, in which timely differentiation and degradation of the anther wall, especially the tapetum, is essential for both pollen formation and anther dehiscence. Here, we show that OsGPAT3, a conserved glycerol-3-phosphate acyltransferase gene, plays a critical role in regulating anther wall degradation and pollen exine formation. The gpat3-2 mutant had defective synthesis of Ubisch bodies, delayed programmed cell death (PCD) of the inner three anther layers, and abnormal degradation of micropores/pollen grains, resulting in failure of pollen maturation and complete male sterility. Complementation and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) experiments demonstrated that OsGPAT3 is responsible for the male sterility phenotype. Furthermore, the expression level of tapetal PCD-related and nutrient metabolism-related genes changed significantly in the gpat3-2 anthers. Based on these genetic and cytological analyses, OsGPAT3 is proposed to coordinate the differentiation and degradation of the anther wall and pollen grains in addition to regulating lipid biosynthesis. This study provides insights for understanding the function of GPATs in regulating rice male reproductive development, and also lays a theoretical basis for hybrid rice breeding.
Collapse
Affiliation(s)
- Lianping Sun
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Xiaojiao Xiang
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Zhengfu Yang
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Ping Yu
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Xiaoxia Wen
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Hong Wang
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Adil Abbas
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Riaz Muhammad Khan
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Yingxin Zhang
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Shihua Cheng
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Liyong Cao
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| |
Collapse
|
122
|
Shan J, Cai Z, Zhang Y, Xu H, Rao J, Fan Y, Yang J. The underlying pathway involved in inter-subspecific hybrid male sterility in rice. Genomics 2018; 111:1447-1455. [PMID: 30336276 DOI: 10.1016/j.ygeno.2018.09.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 09/14/2018] [Accepted: 09/28/2018] [Indexed: 11/24/2022]
Abstract
f5 locus in rice (Oryza sativa L.) confers significant effects on hybrid male sterility and segregation distortion. BC14F2 plants with f5-i/i, f5-j/j and f5-i/j genotypes were used to dissect the underlying pathway of f5-caused hybrid male sterility via comparative transcriptome analysis. A total of 350, 421, and 480 differentially expressed genes (DEGs) were identified from f5-i/j vs f5-j/j, f5-j/j vs f5-i/i, and f5-i/j vs f5-i/i, respectively. 145 DEGs were identified simultaneously in f5-i/j vs f5-j/j and f5-i/j vs f5-i/i. Enrichment analysis indicated that stress and cell control related processes were enriched. The expression of ascorbate peroxidase (APX) and most of the heat shock proteins (HSPs) were decreased, which might result in higher sensitivity to various stresses in pollen cells. A model was proposed to summarize the underlying process for f5-caused hybrid male sterility. These results would provide significant clues to further dissecting the molecular mechanism of f5-caused inter-subspecific reproductive isolation.
Collapse
Affiliation(s)
- Jianwei Shan
- College of Life Science and Technology; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, Guangxi, China
| | - Zhongquan Cai
- College of Life Science and Technology; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, Guangxi, China; College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China
| | - Yu Zhang
- College of Life Science and Technology; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, Guangxi, China
| | - Hannan Xu
- College of Life Science and Technology; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, Guangxi, China
| | - Jianglei Rao
- College of Life Science and Technology; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, Guangxi, China
| | - Yourong Fan
- College of Life Science and Technology; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, Guangxi, China.
| | - Jiangyi Yang
- College of Life Science and Technology; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, Guangxi, China.
| |
Collapse
|
123
|
Sharma C, Kumar S, Saripalli G, Jain N, Raghuvanshi S, Sharma JB, Prabhu KV, Sharma PK, Balyan HS, Gupta PK. H3K4/K9 acetylation and Lr28-mediated expression of six leaf rust responsive genes in wheat (Triticum aestivum). Mol Genet Genomics 2018; 294:227-241. [PMID: 30298213 DOI: 10.1007/s00438-018-1500-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 09/28/2018] [Indexed: 10/28/2022]
Abstract
Development of leaf rust-resistant cultivars is a priority during wheat breeding, since leaf rust causes major losses in yield. Resistance against leaf rust due to Lr genes is partly controlled by epigenetic modifications including histone acetylation that is known to respond to biotic/abiotic stresses. In the present study, enrichment of H3K4ac and H3K9ac in promoters of six defense responsive genes (N-acetyltransferase, WRKY 40, WRKY 70, ASR1, Peroxidase 12 and Sarcosine oxidase) was compared with their expression in a pair of near-isogenic lines (NILs) for the gene Lr28 following inoculation with leaf rust pathotype '77-5'; ChIP-qPCR was used for this purpose. The proximal and distal promoters of these genes contained a number of motifs that are known to respond to biotic stresses. The enrichment of two acetylation marks changed with passage of time; changes in expression of two of the six genes (N-acetyltransferase and peroxidase12), largely matched with changes in H3K4/H3K9 acetylation patterns of the two promoter regions. For example, enrichment of both the marks matched with higher expression of N-acetyltransferase gene in susceptible NIL and the deacetylation (H3K4ac) largely matched with reduced gene expression in resistant NIL. In peroxidase12, enrichment of H3K4ac and H3K9ac largely matched with higher expression in both the NILs. In the remaining four genes, changes in H3 acetylation did not always match with gene expression levels. This indicated complexity in the regulation of the expression of these remaining four genes, which may be controlled by other epigenetic/genetic regulatory mechanisms that need further analysis.
Collapse
Affiliation(s)
- Chanchal Sharma
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, 250004, India.,Department of Biotechnology, College of Engineering, Daegu University, Gyeongsan, Gyeongbuk, 38453, South Korea
| | - Santosh Kumar
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Gautam Saripalli
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, 250004, India
| | - Neelu Jain
- Division of Genetics, ICAR-Indian Agricultural Research Institute (IARI), Pusa, New Delhi, 110022, India
| | - Saurabh Raghuvanshi
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - J B Sharma
- Division of Genetics, ICAR-Indian Agricultural Research Institute (IARI), Pusa, New Delhi, 110022, India
| | - K V Prabhu
- Division of Genetics, ICAR-Indian Agricultural Research Institute (IARI), Pusa, New Delhi, 110022, India
| | - P K Sharma
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, 250004, India
| | - H S Balyan
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, 250004, India
| | - P K Gupta
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, 250004, India.
| |
Collapse
|
124
|
Yang L, Wu Y, Zhang M, Zhang J, Stewart JM, Xing C, Wu J, Jin S. Transcriptome, cytological and biochemical analysis of cytoplasmic male sterility and maintainer line in CMS-D8 cotton. PLANT MOLECULAR BIOLOGY 2018; 97:537-551. [PMID: 30066309 DOI: 10.1007/s11103-018-0757-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 07/14/2018] [Indexed: 05/26/2023]
Abstract
Key message This research based on RNA-seq, biochemical, and cytological analyses sheds that ROS may serve as important signaling molecules of cytoplasmic male sterility in CMS-D8 cotton. To understand the mechanism of cytoplasmic male sterility in cotton (Gossypium hirsutum), transcriptomic, cytological, and biochemical analysis were performed between the cytoplasmic male sterility CMS-D8 line, Zhong41A, and its maintainer line Zhong41B. A total of 2335 differentially expressed genes (DEGs) were identified in the CMS line at three different stages of anther development. Bioinformatics analysis of these DEGs indicated their relationship to reactive oxygen species (ROS) homeostasis, including reduction-oxidation reactions and the metabolism of glutathione and ascorbate. At the same time, DEGs associated with tapetum development, especially the transition to secretory tapetum, were down-regulated in the CMS line. Biochemical analysis indicated that the ability of the CMS line to eliminate ROS was decreased, which led to the rapid release of H2O2. Cytological analysis revealed that the most crucial defect in the CMS line was the abnormal tapetum. All these results are consistent with the RNA sequencing data. On the basis of our findings, we propose that ROS act as signal molecules, which are released from mitochondria and transferred to the nucleus, triggering the formation of abnormal tapetum.
Collapse
Affiliation(s)
- Li Yang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Yuanlong Wu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Meng Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, People's Republic of China
| | - Jinfa Zhang
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, 88003, USA
| | | | - Chaozhu Xing
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, People's Republic of China.
| | - Jianyong Wu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, People's Republic of China.
| | - Shuangxia Jin
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| |
Collapse
|
125
|
Ma Y, Min L, Wang M, Wang C, Zhao Y, Li Y, Fang Q, Wu Y, Xie S, Ding Y, Su X, Hu Q, Zhang Q, Li X, Zhang X. Disrupted Genome Methylation in Response to High Temperature Has Distinct Affects on Microspore Abortion and Anther Indehiscence. THE PLANT CELL 2018; 30:1387-1403. [PMID: 29866646 PMCID: PMC6096589 DOI: 10.1105/tpc.18.00074] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/21/2018] [Accepted: 05/30/2018] [Indexed: 05/17/2023]
Abstract
High-temperature (HT) stress induces male sterility, leading to yield reductions in crops. DNA methylation regulates a range of processes involved in plant development and stress responses, but its role in male sterility under HT remains unknown. Here, we investigated DNA methylation levels in cotton (Gossypium hirsutum) anthers under HT and normal temperature (NT) conditions by performing whole-genome bisulfite sequencing to investigate the regulatory roles of DNA methylation in male fertility under HT. Global disruption of DNA methylation, especially CHH methylation (where H = A, C, or T), was detected in an HT-sensitive line. Changes in the levels of 24-nucleotide small-interfering RNAs were significantly associated with DNA methylation levels. Experimental suppression of DNA methylation led to pollen sterility in the HT-sensitive line under NT conditions but did not affect the normal dehiscence of anther walls. Further transcriptome analysis showed that the expression of genes in sugar and reactive oxygen species (ROS) metabolic pathways were significantly modulated in anthers under HT, but auxin biosynthesis and signaling pathways were only slightly altered, indicating that HT disturbs sugar and ROS metabolism via disrupting DNA methylation, leading to microspore sterility. This study opens up a pathway for creating HT-tolerant cultivars using epigenetic techniques.
Collapse
Affiliation(s)
- Yizan Ma
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Ling Min
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Maojun Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Chaozhi Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Yunlong Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Yaoyao Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Qidi Fang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Yuanlong Wu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Sai Xie
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Yuanhao Ding
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Xiaojun Su
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Qin Hu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Qinghua Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Xueyuan Li
- Xinjiang Academy of Agricultural Science, Urumqi 830001, Xinjiang, China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| |
Collapse
|
126
|
Identification of Wheat Inflorescence Development-Related Genes Using a Comparative Transcriptomics Approach. Int J Genomics 2018; 2018:6897032. [PMID: 29581960 PMCID: PMC5822904 DOI: 10.1155/2018/6897032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 11/26/2017] [Accepted: 12/03/2017] [Indexed: 12/14/2022] Open
Abstract
Inflorescence represents the highly specialized plant tissue producing the grains. Although key genes regulating flower initiation and development are conserved, the mechanism regulating fertility is still not well explained. To identify genes and gene network underlying inflorescence morphology and fertility of bread wheat, expressed sequence tags (ESTs) from different tissues were analyzed using a comparative transcriptomics approach. Based on statistical comparison of EST frequencies of individual genes in EST pools representing different tissues and verification with RT-PCR and RNA-seq data, 170 genes of 59 gene sets predominantly expressed in the inflorescence were obtained. Nearly one-third of the gene sets displayed differentiated expression profiles in terms of their subgenome orthologs. The identified genes, most of which were predominantly expressed in anthers, encode proteins involved in wheat floral identity determination, anther and pollen development, pollen-pistil interaction, and others. Particularly, 25 annotated gene sets are associated with pollen wall formation, of which 18 encode enzymes or proteins participating in lipid metabolic pathway, including fatty acid ω-hydroxylation, alkane and fatty alcohol biosynthesis, and glycerophospholipid metabolism. We showed that the comparative transcriptomics approach was effective in identifying genes for reproductive development and found that lipid metabolism was particularly active in wheat anthers.
Collapse
|
127
|
Li Y, Xiao J, Chen L, Huang X, Cheng Z, Han B, Zhang Q, Wu C. Rice Functional Genomics Research: Past Decade and Future. MOLECULAR PLANT 2018; 11:359-380. [PMID: 29409893 DOI: 10.1016/j.molp.2018.01.007] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/15/2018] [Accepted: 01/23/2018] [Indexed: 05/22/2023]
Abstract
Rice (Oryza sativa) is a major staple food crop for more than 3.5 billion people worldwide. Understanding the regulatory mechanisms of complex agronomic traits in rice is critical for global food security. Rice is also a model plant for genomics research of monocotyledons. Thanks to the rapid development of functional genomic technologies, over 2000 genes controlling important agronomic traits have been cloned, and their molecular biological mechanisms have also been partially characterized. Here, we briefly review the advances in rice functional genomics research during the past 10 years, including a summary of functional genomics platforms, genes and molecular regulatory networks that regulate important agronomic traits, and newly developed tools for gene identification. These achievements made in functional genomics research will greatly facilitate the development of green super rice. We also discuss future challenges and prospects of rice functional genomics research.
Collapse
Affiliation(s)
- Yan Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Jinghua Xiao
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Lingling Chen
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Xuehui Huang
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Zhukuan Cheng
- National Center for Plant Gene Research, State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bin Han
- National Center for Gene Research, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200233, China
| | - Qifa Zhang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China.
| | - Changyin Wu
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
128
|
Cai W, Zhang D. The role of receptor-like kinases in regulating plant male reproduction. PLANT REPRODUCTION 2018; 31:77-87. [PMID: 29508076 DOI: 10.1007/s00497-018-0332-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 02/19/2018] [Indexed: 05/21/2023]
Abstract
RLKs in anther development. The cell-to-cell communication is essential for specifying different cell types during plant growth, development and adaption to the ever-changing environment. Plant male reproduction, in particular, requires the exquisitely synchronized development of different cell layers within the male tissue, the anther. Receptor-like kinases (RLKs) belong to a large group of kinases localized on the cell surfaces, perceiving extracellular signals and thereafter regulating intracellular processes. Here we update the role of RLKs in early anther development by defining the cell fate and anther patterning, responding to the changing environment and controlling anther carbohydrate metabolism. We provide speculation of the poorly characterized ligands and substrates of these RLKs. The conserved and diversified aspects underlying the function of RLKs in anther development are discussed.
Collapse
Affiliation(s)
- Wenguo Cai
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA, 5064, Australia.
| |
Collapse
|
129
|
Qi ZY, Wang KX, Yan MY, Kanwar MK, Li DY, Wijaya L, Alyemeni MN, Ahmad P, Zhou J. Melatonin Alleviates High Temperature-Induced Pollen Abortion in Solanum lycopersicum. Molecules 2018; 23:E386. [PMID: 29439470 PMCID: PMC6017144 DOI: 10.3390/molecules23020386] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/07/2018] [Accepted: 02/08/2018] [Indexed: 12/21/2022] Open
Abstract
Melatonin is a pleiotropic signal molecule that plays critical roles in regulating plant growth and development, as well as providing physiological protections against various environmental stresses. Nonetheless, the mechanisms for melatonin-mediated pollen thermotolerance remain largely unknown. In this study, we report that irrigation treatment with melatonin (20 µM) effectively ameliorated high temperature-induced inactivation of pollen and inhibition of pollen germination in tomato (Solanum lycopersicum) plants. Melatonin alleviated reactive oxygen species production in tomato anthers under high temperature by the up-regulation of the transcription and activities of several antioxidant enzymes. Transmission electron micrograph results showed that high temperature-induced pollen abortion is associated with a premature degeneration of the tapetum cells and the formation of defective pollen grains with degenerated nuclei at the early uninuclear microspore stage, whilst melatonin protected degradation of organelles by enhancing the expression of heat shock protein genes to refold unfolded proteins and the expression of autophagy-related genes and formation of autophagosomes to degrade denatured proteins. These findings suggest a novel function of melatonin to protect pollen activity under high temperature and support the potential effects of melatonin on reproductive development of plants.
Collapse
Affiliation(s)
- Zhen-Yu Qi
- Department of Horticulture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou 310058, China.
- Agricultural Experiment Station, Zhejiang University, Hangzhou 310058, China.
| | - Kai-Xin Wang
- Department of Horticulture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou 310058, China.
| | - Meng-Yu Yan
- Department of Horticulture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou 310058, China.
| | - Mukesh Kumar Kanwar
- Department of Horticulture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou 310058, China.
| | - Dao-Yi Li
- Chinese Academy of Agricultural Mechanization Sciences, Beijing 10083, China.
| | - Leonard Wijaya
- Department of Botany and Microbiology, Faculty of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Mohammed Nasser Alyemeni
- Department of Botany and Microbiology, Faculty of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Parvaiz Ahmad
- Department of Botany and Microbiology, Faculty of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Jie Zhou
- Department of Horticulture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
130
|
Wu D, Liang W, Zhu W, Chen M, Ferrándiz C, Burton RA, Dreni L, Zhang D. Loss of LOFSEP Transcription Factor Function Converts Spikelet to Leaf-Like Structures in Rice. PLANT PHYSIOLOGY 2018; 176:1646-1664. [PMID: 29217592 PMCID: PMC5813523 DOI: 10.1104/pp.17.00704] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 12/04/2017] [Indexed: 05/08/2023]
Abstract
SEPALLATA (SEP)-like genes, which encode a subfamily of MADS-box transcription factors, are essential for specifying floral organ and meristem identity in angiosperms. Rice (Oryza sativa) has five SEP-like genes with partial redundancy and overlapping expression domains, yet their functions and evolutionary conservation are only partially known. Here, we describe the biological role of one of the SEP genes of rice, OsMADS5, in redundantly controlling spikelet morphogenesis. OsMADS5 belongs to the conserved LOFSEP subgroup along with OsMADS1 and OsMADS34OsMADS5 was expressed strongly across a broad range of reproductive stages and tissues. No obvious phenotype was observed in the osmads5 single mutants when compared with the wild type, which was largely due to the functional redundancy among the three LOFSEP genes. Genetic and molecular analyses demonstrated that OsMADS1, OsMADS5, and OsMADS34 together regulate floral meristem determinacy and specify the identities of spikelet organs by positively regulating the other MADS-box floral homeotic genes. Experiments conducted in yeast also suggested that OsMADS1, OsMADS5, and OsMADS34 form protein-protein interactions with other MADS-box floral homeotic members, which seems to be a typical, conserved feature of plant SEP proteins.
Collapse
Affiliation(s)
- Di Wu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wanwan Zhu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mingjiao Chen
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Cristina Ferrándiz
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia 46022, Spain
| | - Rachel A Burton
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia
| | - Ludovico Dreni
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia 46022, Spain
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia
| |
Collapse
|
131
|
Zhang Z, Hu M, Feng X, Gong A, Cheng L, Yuan H. Proteomes and Phosphoproteomes of Anther and Pollen: Availability and Progress. Proteomics 2018; 17. [PMID: 28665021 DOI: 10.1002/pmic.201600458] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 06/02/2017] [Indexed: 12/24/2022]
Abstract
In flowering plants, anther development plays crucial role in sexual reproduction. Within the anther, microspore mother cells meiosis produces microspores, which further develop into pollen grains that play decisive role in plant reproduction. Previous studies on anther biology mainly focused on single gene functions relying on genetic and molecular methods. Recently, anther development has been expanded from multiple OMICS approaches like transcriptomics, proteomics/phosphoproteomics, and metabolomics. The development of proteomics techniques allowing increased proteome coverage and quantitative measurements of proteins which can characterize proteomes and their modulation during normal development, biotic and abiotic stresses in anther development. In this review, we summarize the achievements of proteomics and phosphoproteomics with anther and pollen organs from model plant and crop species (i.e. Arabidopsis, rice, tobacco). The increased proteomic information facilitated translation of information from the models to crops and thus aid in agricultural improvement.
Collapse
Affiliation(s)
- Zaibao Zhang
- Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang, Henan, P. R. China.,College of Life Science, Xinyang Normal College, Xinyang, Henan, P. R. China
| | - Menghui Hu
- Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang, Henan, P. R. China.,College of Life Science, Xinyang Normal College, Xinyang, Henan, P. R. China
| | - Xiaobing Feng
- Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang, Henan, P. R. China.,College of Life Science, Xinyang Normal College, Xinyang, Henan, P. R. China
| | - Andong Gong
- Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang, Henan, P. R. China.,College of Life Science, Xinyang Normal College, Xinyang, Henan, P. R. China
| | - Lin Cheng
- Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang, Henan, P. R. China.,College of Life Science, Xinyang Normal College, Xinyang, Henan, P. R. China
| | - Hongyu Yuan
- Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang, Henan, P. R. China.,College of Life Science, Xinyang Normal College, Xinyang, Henan, P. R. China
| |
Collapse
|
132
|
Xiao G, Zhou J, Lu X, Huang R, Zhang H. Excessive UDPG resulting from the mutation of UAP1 causes programmed cell death by triggering reactive oxygen species accumulation and caspase-like activity in rice. THE NEW PHYTOLOGIST 2018; 217:332-343. [PMID: 28967675 DOI: 10.1111/nph.14818] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 08/25/2017] [Indexed: 05/08/2023]
Abstract
Lesion mimic mutants are valuable to unravel the mechanisms governing the programmed cell death (PCD) process. Uridine 5'-diphosphoglucose-glucose (UDPG) functions as a signaling molecule activating multiple pathways in animals, but little is known about its function in plants. Two novel allelic mutants of spl29 with typical PCD characters and reduced pollen viability were obtained by ethane methyl sulfonate mutagenesis in rice cv Kitaake. The enzymatic analyses showed that UDP-N-acetylglucosamine pyrophosphorylase 1 (UAP1) irreversibly catalyzed the decomposition of UDPG. Its activity was severely destroyed and caused excessive UDPG accumulation, with the lesion occurrence associated with the enhanced caspase-like activities in spl29-2. At the transcriptional level, several key genes involved in endoplasmic reticulum stress and the unfolded protein response were abnormally expressed. Moreover, exogenous UDPG could aggravate lesion initiation and development in spl29-2. Importantly, exogenous UDPG and its derivative UDP-N-acetylglucosamine could induce reactive oxygen species (ROS) accumulation and lesion mimics in Kitaake seedlings. These results suggest that the excessive accumulation of UDPG, caused by the mutation of UAP1, was a key biochemical event resulting in the lesion mimics in spl29-2. Thus, our findings revealed that UDPG might be an important component involved in ROS accumulation, PCD execution and lesion mimicking in rice, which also provided new clues for investigating the connection between sugar metabolism and PCD process.
Collapse
Affiliation(s)
- Guiqing Xiao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jiahao Zhou
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiangyang Lu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Rongfeng Huang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Haiwen Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
133
|
Lin H, Yu J, Pearce SP, Zhang D, Wilson ZA. RiceAntherNet: a gene co-expression network for identifying anther and pollen development genes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:1076-1091. [PMID: 29031031 DOI: 10.1111/tpj.13744] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 09/29/2017] [Accepted: 10/02/2017] [Indexed: 06/07/2023]
Abstract
In plants, normal anther and pollen development involves many important biological events and complex molecular regulatory coordination. Understanding gene regulatory relationships during male reproductive development is essential for fundamental biology and crop breeding. In this work, we developed a rice gene co-expression network for anther development (RiceAntherNet) that allows prediction of gene regulatory relationships during pollen development. RiceAntherNet was generated from 57 rice anther tissue microarrays across all developmental stages. The microarray datasets from nine rice male sterile mutants, including msp1-4, ostdl1a, gamyb-2, tip2, udt1-1, tdr, eat1-1, ptc1 and mads3-4, were used to explore and test the network. Among the changed genes, three clades showing differential expression patterns were constructed to identify genes associated with pollen formation. Many of these have known roles in pollen development, for example, seven genes in Clade 1 (OsABCG15, OsLAP5, OsLAP6, DPW, CYP703A3, OsNP1 and OsCP1) are involved in rice pollen wall formation. Furthermore, Clade 1 contained 12 genes whose predicted orthologs in Arabidopsis have been reported as key during pollen development and may play similar roles in rice. Genes in Clade 2 are expressed earlier than Clade 1 (anther stages 2-9), while genes in Clade 3 are expressed later (stages 10-12). RiceAntherNet serves as a valuable tool for identifying novel genes during plant anther and pollen development. A website is provided (https://www.cpib.ac.uk/anther/riceindex.html) to present the expression profiles for gene characterization. This will assist in determining the key relationships between genes, thus enabling characterization of critical genes associated with anther and pollen regulatory networks.
Collapse
Affiliation(s)
- Hong Lin
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Division of Plant & Crop Sciences, School of Biosciences, University of Nottingham, Loughborough, UK
| | - Jing Yu
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Simon P Pearce
- School of Mathematics, University of Manchester, Manchester, UK
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Dabing Zhang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zoe A Wilson
- Division of Plant & Crop Sciences, School of Biosciences, University of Nottingham, Loughborough, UK
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Nottingham, UK
| |
Collapse
|
134
|
Ko SS, Li MJ, Lin YJ, Hsing HX, Yang TT, Chen TK, Jhong CM, Ku MSB. Tightly Controlled Expression of bHLH142 Is Essential for Timely Tapetal Programmed Cell Death and Pollen Development in Rice. FRONTIERS IN PLANT SCIENCE 2017; 8:1258. [PMID: 28769961 PMCID: PMC5513933 DOI: 10.3389/fpls.2017.01258] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 07/03/2017] [Indexed: 05/24/2023]
Abstract
Male sterility is important for hybrid seed production. Pollen development is regulated by a complex network. We previously showed that knockout of bHLH142 in rice (Oryza sativa) causes pollen sterility by interrupting tapetal programmed cell death (PCD) and bHLH142 coordinates with TDR to modulate the expression of EAT1. In this study, we demonstrated that overexpression of bHLH142 (OE142) under the control of the ubiquitin promoter also leads to male sterility in rice by triggering the premature onset of PCD. Protein of bHLH142 was found to accumulate specifically in the OE142 anthers. Overexpression of bHLH142 induced early expression of several key regulatory transcription factors in pollen development. In particular, the upregulation of EAT1 at the early stage of pollen development promoted premature PCD in the OE142 anthers, while its downregulation at the late stage impaired pollen development by suppressing genes involved in pollen wall biosynthesis, ROS scavenging and PCD. Collectively, these events led to male sterility in OE142. Analyses of related mutants further revealed the hierarchy of the pollen development regulatory gene network. Thus, the findings of this study advance our understanding of the central role played by bHLH142 in the regulatory network leading to pollen development in rice and how overexpression of its expression affects pollen development. Exploitation of this novel functionality of bHLH142 may confer a big advantage to hybrid seed production.
Collapse
Affiliation(s)
- Swee-Suak Ko
- Academia Sinica Biotechnology Center in Southern TaiwanTainan, Taiwan
- Agricultural Biotechnology Research Center, Academia SinicaTaipei, Taiwan
| | - Min-Jeng Li
- Academia Sinica Biotechnology Center in Southern TaiwanTainan, Taiwan
- Agricultural Biotechnology Research Center, Academia SinicaTaipei, Taiwan
| | - Yi-Jyun Lin
- Academia Sinica Biotechnology Center in Southern TaiwanTainan, Taiwan
| | - Hong-Xian Hsing
- Academia Sinica Biotechnology Center in Southern TaiwanTainan, Taiwan
- Agricultural Biotechnology Research Center, Academia SinicaTaipei, Taiwan
| | - Ting-Ting Yang
- Academia Sinica Biotechnology Center in Southern TaiwanTainan, Taiwan
- Agricultural Biotechnology Research Center, Academia SinicaTaipei, Taiwan
| | - Tien-Kuan Chen
- Academia Sinica Biotechnology Center in Southern TaiwanTainan, Taiwan
| | - Chung-Min Jhong
- Academia Sinica Biotechnology Center in Southern TaiwanTainan, Taiwan
| | - Maurice Sun-Ben Ku
- Department of Bioagricultural Science, National Chiayi UniversityChiayi, Taiwan
- School of Biological Sciences, Washington State University, PullmanWA, United States
| |
Collapse
|
135
|
Paupière MJ, Müller F, Li H, Rieu I, Tikunov YM, Visser RGF, Bovy AG. Untargeted metabolomic analysis of tomato pollen development and heat stress response. PLANT REPRODUCTION 2017; 30:81-94. [PMID: 28508929 PMCID: PMC5486769 DOI: 10.1007/s00497-017-0301-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 05/02/2017] [Indexed: 05/17/2023]
Abstract
Pollen development metabolomics. Developing pollen is among the plant structures most sensitive to high temperatures, and a decrease in pollen viability is often associated with an alteration of metabolite content. Most of the metabolic studies of pollen have focused on a specific group of compounds, which limits the identification of physiologically important metabolites. To get a better insight into pollen development and the pollen heat stress response, we used a liquid chromatography-mass spectrometry platform to detect secondary metabolites in pollen of tomato (Solanum lycopersicum L.) at three developmental stages under control conditions and after a short heat stress at 38 °C. Under control conditions, the young microspores accumulated a large amount of alkaloids and polyamines, whereas the mature pollen strongly accumulated flavonoids. The heat stress treatment led to accumulation of flavonoids in the microspore. The biological role of the detected metabolites is discussed. This study provides the first untargeted metabolomic analysis of developing pollen under a changing environment that can serve as reference for further studies.
Collapse
Affiliation(s)
- Marine J Paupière
- Plant Breeding, Wageningen University and Research Centre, PO Box 386, 6700 AJ, Wageningen, The Netherlands
| | - Florian Müller
- Molecular Plant Physiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Hanjing Li
- Molecular Plant Physiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Ivo Rieu
- Molecular Plant Physiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Yury M Tikunov
- Plant Breeding, Wageningen University and Research Centre, PO Box 386, 6700 AJ, Wageningen, The Netherlands
| | - Richard G F Visser
- Plant Breeding, Wageningen University and Research Centre, PO Box 386, 6700 AJ, Wageningen, The Netherlands
| | - Arnaud G Bovy
- Plant Breeding, Wageningen University and Research Centre, PO Box 386, 6700 AJ, Wageningen, The Netherlands.
| |
Collapse
|
136
|
Liu S, Liu Y, Jia Y, Wei J, Wang S, Liu X, Zhou Y, Zhu Y, Gu W, Ma H. Gm1-MMP is involved in growth and development of leaf and seed, and enhances tolerance to high temperature and humidity stress in transgenic Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 259:48-61. [PMID: 28483053 DOI: 10.1016/j.plantsci.2017.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 02/14/2017] [Accepted: 03/10/2017] [Indexed: 05/28/2023]
Abstract
Matrix metalloproteinases (MMPs) are a family of zinc- and calcium-dependent endopeptidases. Gm1-MMP was found to play an important role in soybean tissue remodeling during leaf expansion. In this study, Gm1-MMP was isolated and characterized. Its encoding protein had a relatively low phylogenetic relationship with the MMPs in other plant species. Subcellular localization indicated that Gm1-MMP was a plasma membrane protein. Gm1-MMP showed higher expression levels in mature leaves, old leaves, pods, and mature seeds, as well as was involved in the development of soybean seed. Additionally, it was involved in response to high temperature and humidity (HTH) stress in R7 leaves and seeds in soybean. The analysis of promoter of Gm1-MMP suggested that the fragment from -399 to -299 was essential for its promoter activity in response to HTH stress. The overexpression of Gm1-MMP in Arabidopsis affected the growth and development of leaves, enhanced leaf and developing seed tolerance to HTH stress and improved seed vitality. The levels of hydrogen peroxide (H2O2) and ROS in transgenic Arabidopsis seeds were lower than those in wild type seeds under HTH stress. Gm1-MMP could interact with soybean metallothionein-II (GmMT-II), which was confirmed by analysis of yeast two-hybrid assay and BiFC assays. All the results indicated that Gm1-MMP plays an important role in the growth and development of leaves and seeds as well as in tolerance to HTH stress. It will be helpful for us understanding the functions of Gm1-MMP in plant growth and development, and in response to abiotic stresses.
Collapse
Affiliation(s)
- Sushuang Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanmin Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanhong Jia
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiaping Wei
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuang Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaolin Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Yali Zhou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Yajing Zhu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Weihong Gu
- Animal and Plant Introduction and Research Center, Shanghai Agricultural Academy, Shanghai 201106, China
| | - Hao Ma
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
137
|
Cheng Z, Ge W, Li L, Hou D, Ma Y, Liu J, Bai Q, Li X, Mu S, Gao J. Analysis of MADS-Box Gene Family Reveals Conservation in Floral Organ ABCDE Model of Moso Bamboo ( Phyllostachys edulis). FRONTIERS IN PLANT SCIENCE 2017; 8:656. [PMID: 28515730 PMCID: PMC5413564 DOI: 10.3389/fpls.2017.00656] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 04/10/2017] [Indexed: 05/05/2023]
Abstract
Mini chromosome maintenance 1, agamous, deficiens, and serum response factor (MADS)-box genes are transcription factors which play fundamental roles in flower development and regulation of floral organ identity. However, till date, identification and functions of MADS-box genes remain largely unclear in Phyllostachys edulis. In view of this, we performed a whole-genome survey and identified 34 MADS-box genes in P. edulis, and based on phylogeny, they were classified as MIKCC, MIKC∗, Mα, and Mβ. The detailed analysis about gene structure and motifs, phylogenetic classification, comparison of gene divergence and duplication are provided. Interestingly, expression patterns for most genes were found similar to those of Arabidopsis and rice, indicating that the well-established ABCDE model can be applied to P. edulis. Moreover, we overexpressed PheMADS15, an AP1-like gene, in Arabidopsis, and found that the transgenic plants have early flowering phenotype, suggesting that PheMADS15 might be a regulator of flowering transition in P. edulis. Taken together, this study provides not only insightful comprehension but also useful information for understanding the functions of MADS-box genes in P. edulis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jian Gao
- Key Laboratory of Bamboo and Rattan Science and Technology of the State Forestry Administration, International Centre for Bamboo and RattanBeijing, China
| |
Collapse
|
138
|
Pratibha P, Singh SK, Srinivasan R, Bhat SR, Sreenivasulu Y. Gametophyte Development Needs Mitochondrial Coproporphyrinogen III Oxidase Function. PLANT PHYSIOLOGY 2017; 174:258-275. [PMID: 28270625 PMCID: PMC5411134 DOI: 10.1104/pp.16.01482] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 02/28/2017] [Indexed: 05/03/2023]
Abstract
Tetrapyrrole biosynthesis is one of the most essential metabolic pathways in almost all organisms. Coproporphyrinogen III oxidase (CPO) catalyzes the conversion of coproporphyrinogen III into protoporphyrinogen IX in this pathway. Here, we report that mutation in the Arabidopsis (Arabidopsis thaliana) CPO-coding gene At5g63290 (AtHEMN1) adversely affects silique length, ovule number, and seed set. Athemn1 mutant alleles were transmitted via both male and female gametes, but homozygous mutants were never recovered. Plants carrying Athemn1 mutant alleles showed defects in gametophyte development, including nonviable pollen and embryo sacs with unfused polar nuclei. Improper differentiation of the central cell led to defects in endosperm development. Consequently, embryo development was arrested at the globular stage. The mutant phenotype was completely rescued by transgenic expression of AtHEMN1 Promoter and transcript analyses indicated that AtHEMN1 is expressed mainly in floral tissues and developing seeds. AtHEMN1-green fluorescent protein fusion protein was found targeted to mitochondria. Loss of AtHEMN1 function increased coproporphyrinogen III level and reduced protoporphyrinogen IX level, suggesting the impairment of tetrapyrrole biosynthesis. Blockage of tetrapyrrole biosynthesis in the AtHEMN1 mutant led to increased reactive oxygen species (ROS) accumulation in anthers and embryo sacs, as evidenced by nitroblue tetrazolium staining. Our results suggest that the accumulated ROS disrupts mitochondrial function by altering their membrane polarity in floral tissues. This study highlights the role of mitochondrial ROS homeostasis in gametophyte and seed development and sheds new light on tetrapyrrole/heme biosynthesis in plant mitochondria.
Collapse
Affiliation(s)
- Pritu Pratibha
- Biotechnology Division, Council of Scientific and Industrial Research-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India (P.P., S.K.S., Y.S.)
- Academy of Scientific and Innovative Research-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India (P.P., Y.S.); and
- Indian Council of Agricultural Research-National Research Centre on Plant Biotechnology, New Delhi 110012, India (R.S., S.R.B.)
| | - Sunil Kumar Singh
- Biotechnology Division, Council of Scientific and Industrial Research-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India (P.P., S.K.S., Y.S.)
- Academy of Scientific and Innovative Research-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India (P.P., Y.S.); and
- Indian Council of Agricultural Research-National Research Centre on Plant Biotechnology, New Delhi 110012, India (R.S., S.R.B.)
| | - Ramamurthy Srinivasan
- Biotechnology Division, Council of Scientific and Industrial Research-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India (P.P., S.K.S., Y.S.)
- Academy of Scientific and Innovative Research-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India (P.P., Y.S.); and
- Indian Council of Agricultural Research-National Research Centre on Plant Biotechnology, New Delhi 110012, India (R.S., S.R.B.)
| | - Shripad Ramachandra Bhat
- Biotechnology Division, Council of Scientific and Industrial Research-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India (P.P., S.K.S., Y.S.);
- Academy of Scientific and Innovative Research-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India (P.P., Y.S.); and
- Indian Council of Agricultural Research-National Research Centre on Plant Biotechnology, New Delhi 110012, India (R.S., S.R.B.)
| | - Yelam Sreenivasulu
- Biotechnology Division, Council of Scientific and Industrial Research-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India (P.P., S.K.S., Y.S.);
- Academy of Scientific and Innovative Research-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India (P.P., Y.S.); and
- Indian Council of Agricultural Research-National Research Centre on Plant Biotechnology, New Delhi 110012, India (R.S., S.R.B.)
| |
Collapse
|
139
|
Kurusu T, Kuchitsu K. Autophagy, programmed cell death and reactive oxygen species in sexual reproduction in plants. JOURNAL OF PLANT RESEARCH 2017; 130:491-499. [PMID: 28364377 DOI: 10.1007/s10265-017-0934-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 03/14/2017] [Indexed: 05/18/2023]
Abstract
Autophagy is one of the major cellular processes of recycling of proteins, metabolites and intracellular organelles, and plays crucial roles in the regulation of innate immunity, stress responses and programmed cell death (PCD) in many eukaryotes. It is also essential in development and sexual reproduction in many animals. In plants, although autophagy-deficient mutants of Arabidopsis thaliana show phenotypes in abiotic and biotic stress responses, their life cycle seems normal and thus little had been known until recently about the roles of autophagy in development and reproduction. Rice mutants defective in autophagy show sporophytic male sterility and immature pollens, indicating crucial roles of autophagy during pollen maturation. Enzymatic production of reactive oxygen species (ROS) by respiratory burst oxidase homologues (Rbohs) play multiple roles in regulating anther development, pollen tube elongation and fertilization. Significance of autophagy and ROS in the regulation of PCD of transient cells during plant sexual reproduction is discussed in comparison with animals.
Collapse
Affiliation(s)
- Takamitsu Kurusu
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo, 192-0982, Japan
- Imaging Frontier Center, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Kazuyuki Kuchitsu
- Imaging Frontier Center, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.
| |
Collapse
|
140
|
Yu SX, Feng QN, Xie HT, Li S, Zhang Y. Reactive oxygen species mediate tapetal programmed cell death in tobacco and tomato. BMC PLANT BIOLOGY 2017; 17:76. [PMID: 28427341 PMCID: PMC5399379 DOI: 10.1186/s12870-017-1025-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 04/06/2017] [Indexed: 05/18/2023]
Abstract
BACKGROUND Hybrid vigor is highly valued in the agricultural industry. Male sterility is an important trait for crop breeding. Pollen development is under strict control of both gametophytic and sporophytic factors, and defects in this process can result in male sterility. Both in the dicot Arabidopsis and in the moncot rice, proper timing of programmed cell death (PCD) in the tapetum ensures pollen development. Dynamic ROS levels have been reported to control tapetal PCD, and thus pollen development, in Arabidopsis and rice. However, it was unclear whether it is evolutionarily conserved, as only those two distantly related species were studied. RESULTS Here, we performed histological analyses of anther development of two economically important dicot species, tobacco and tomato. We identified the same ROS amplitude during anther development in these two species and found that dynamic ROS levels correlate with the initiation and progression of tapetal PCD. We further showed that manipulating ROS levels during anther development severely impaired pollen development, resulting in partial male sterility. Finally, real-time quantitative PCR showed that several tobacco and tomato RBOHs, encoding NADPH oxidases, are preferentially expressed in anthers. CONCLUSION This study demonstrated evolutionarily conserved ROS amplitude during anther development by examining two commercially important crop species in the Solanaceae. Manipulating ROS amplitude through genetic interference of RBOHs therefore may provide a practical way to generate male sterile plants.
Collapse
Affiliation(s)
- Shi-Xia Yu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Qiang-Nan Feng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Hong-Tao Xie
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Sha Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Yan Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China.
| |
Collapse
|
141
|
Rieu I, Twell D, Firon N. Pollen Development at High Temperature: From Acclimation to Collapse. PLANT PHYSIOLOGY 2017; 173:1967-1976. [PMID: 28246296 PMCID: PMC5373052 DOI: 10.1104/pp.16.01644] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 02/22/2017] [Indexed: 05/19/2023]
Abstract
Pollen development at high temperature depends on a fine balance between acclimation and injury.
Collapse
Affiliation(s)
- Ivo Rieu
- Department of Molecular Plant Physiology, Institute for Water and Wetland Research, Radboud University, 6500 GL Nijmegen, The Netherlands (I.R.);
- Department of Genetics, University of Leicester, Leicester LE1 7RH, United Kingdom (D.T.); and
- Department of Vegetable Research, Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan 50250, Israel (N.F.)
| | - David Twell
- Department of Molecular Plant Physiology, Institute for Water and Wetland Research, Radboud University, 6500 GL Nijmegen, The Netherlands (I.R.)
- Department of Genetics, University of Leicester, Leicester LE1 7RH, United Kingdom (D.T.); and
- Department of Vegetable Research, Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan 50250, Israel (N.F.)
| | - Nurit Firon
- Department of Molecular Plant Physiology, Institute for Water and Wetland Research, Radboud University, 6500 GL Nijmegen, The Netherlands (I.R.)
- Department of Genetics, University of Leicester, Leicester LE1 7RH, United Kingdom (D.T.); and
- Department of Vegetable Research, Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan 50250, Israel (N.F.)
| |
Collapse
|
142
|
Ye S, Yang W, Zhai R, Lu Y, Wang J, Zhang X. Mapping and application of the twin-grain1 gene in rice. PLANTA 2017; 245:707-716. [PMID: 27999987 DOI: 10.1007/s00425-016-2627-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 11/28/2016] [Indexed: 06/06/2023]
Abstract
The map-based cloning and application of a flower organ number gene twin - grain1 provide great potential for improving seed production in hybrid rice. A new germplasm for high-yield rice breeding, the twin-grain1 (tg1) mutant with more than one grain in a glume, was obtained from the Zhejing 22 rice variety via physical mutagenesis. The mapping results showed that TG1 is allelic to FLORAL ORGAN NUMBER2 (FON2)/FLORAL ORGAN NUMBER4 (FON4), a flower organ number gene located at 88.7 cM on chromosome 11. The novel tg1 gene allele was introgressed into the cytoplasmic male sterility (CMS) line Zhejing 22A, giving rise to a new CMS line Zhejing 22-tg1A. The Zhejing 22-tg1A line showed enhanced glume opening and stigma exsertion, which increased the outcrossing rate in hybrid rice. A small-scale hybrid rice seed production test demonstrated that the grain yield of the Zhejing 22-tg1A/Zhejinghui 5 line was significantly increased compared to that of the Zhejing 22A/Zhejinghui 5 line. The plot yield evaluation of the F1 hybrid lines showed a higher yield for the Zhejing 22-tg1A/Zhejinghui 5 line than that of the Zhejing 22A/Zhejinghui 5 line. The results implied great potentials for the tg1 gene in hybrid rice breeding.
Collapse
Affiliation(s)
- Shenghai Ye
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Weibing Yang
- Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Rongrong Zhai
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yanting Lu
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Junmei Wang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xiaoming Zhang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
143
|
Ranjan R, Khurana R, Malik N, Badoni S, Parida SK, Kapoor S, Tyagi AK. bHLH142 regulates various metabolic pathway-related genes to affect pollen development and anther dehiscence in rice. Sci Rep 2017; 7:43397. [PMID: 28262713 PMCID: PMC5338287 DOI: 10.1038/srep43397] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 01/20/2017] [Indexed: 01/14/2023] Open
Abstract
Apposite development of anther and its dehiscence are important for the reproductive success of the flowering plants. Recently, bHLH142, a bHLH transcription factor encoding gene of rice has been found to show anther-specific expression and mutant analyses suggest its functions in regulating tapetum differentiation and degeneration during anther development. However, our study on protein level expression and gain-of-function phenotype revealed novel aspects of its regulation and function during anther development. Temporally dissimilar pattern of bHLH142 transcript and polypeptide accumulation suggested regulation of its expression beyond transcriptional level. Overexpression of bHLH142 in transgenic rice resulted in indehiscent anthers and aborted pollen grains. Defects in septum and stomium rupture caused anther indehiscence while pollen abortion phenotype attributed to abnormal degeneration of the tapetum. Furthermore, RNA-Seq-based transcriptome analysis of tetrad and mature pollen stage anthers of wild type and bHLH142OEplants suggested that it might regulate carbohydrate and lipid metabolism, cell wall modification, reactive oxygen species (ROS) homeostasis and cell death-related genes during rice anther development. Thus, bHLH142 is an anther-specific gene whose expression is regulated at transcriptional and post-transcriptional/translational levels. It plays a role in pollen maturation and anther dehiscence by regulating expression of various metabolic pathways-related genes.
Collapse
Affiliation(s)
- Rajeev Ranjan
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Reema Khurana
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Marg, New Delhi 110021, India
| | - Naveen Malik
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Saurabh Badoni
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Swarup K. Parida
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Sanjay Kapoor
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Marg, New Delhi 110021, India
| | - Akhilesh K. Tyagi
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Marg, New Delhi 110021, India
| |
Collapse
|
144
|
Xu W, Tao J, Chen M, Dreni L, Luo Z, Hu Y, Liang W, Zhang D. Interactions between FLORAL ORGAN NUMBER4 and floral homeotic genes in regulating rice flower development. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:483-498. [PMID: 28204535 PMCID: PMC6055531 DOI: 10.1093/jxb/erw459] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 11/03/2016] [Indexed: 05/21/2023]
Abstract
The floral meristem (FM) is self-maintaining at the early stages of flower development, but it is terminated when a fixed number of floral organs are produced. The FLORAL ORGAN NUMBER4 (FON4; also known as FON2) gene, an ortholog of Arabidopsis CLAVATA3 (CLV3), is required for regulating FM size and determinacy in rice. However, its interactions with floral homeotic genes remain unknown. Here, we report the genetic interactions between FON4 and floral homeotic genes OsMADS15 (an A-class gene), OsMADS16 (also called SUPERWOMAN1, SPW1, a B-class gene), OsMADS3 and OsMADS58 (C-class genes), OsMADS13 (a D-class gene), and OsMADS1 (an E-class gene) during flower development. We observed an additive phenotype in the fon4 double mutant with the OsMADS15 mutant allele dep (degenerative palea). The effect on the organ number of whorl 2 was enhanced in fon4 spw1. Double mutant combinations of fon4 with osmads3, osmads58, osmads13, and osmads1 displayed enhanced defects in FM determinacy and identity, respectively, indicating that FON4 and these genes synergistically control FM activity. In addition, the expression patterns of all the genes besides OsMADS13 had no obvious change in the fon4 mutant. This work reveals how the meristem maintenance gene FON4 genetically interacts with C, D, and E floral homeotic genes in specifying FM activity in monocot rice.
Collapse
Affiliation(s)
- Wei Xu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University–University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Juhong Tao
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University–University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Mingjiao Chen
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University–University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ludovico Dreni
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University–University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain
| | - Zhijing Luo
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University–University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yun Hu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University–University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University–University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University–University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
- Correspondence:
| |
Collapse
|
145
|
Pu CX, Han YF, Zhu S, Song FY, Zhao Y, Wang CY, Zhang YC, Yang Q, Wang J, Bu SL, Sun LJ, Zhang SW, Zhang SQ, Sun DY, Sun Y. The Rice Receptor-Like Kinases DWARF AND RUNTISH SPIKELET1 and 2 Repress Cell Death and Affect Sugar Utilization during Reproductive Development. THE PLANT CELL 2017; 29:70-89. [PMID: 28082384 PMCID: PMC5304344 DOI: 10.1105/tpc.16.00218] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 12/19/2016] [Accepted: 01/07/2017] [Indexed: 05/18/2023]
Abstract
Cell-to-cell communication precisely controls the creation of new organs during reproductive growth. However, the sensor molecules that mediate developmental signals in monocot plants are poorly understood. Here, we report that DWARF AND RUNTISH SPIKELET1 (DRUS1) and DRUS2, two closely related receptor-like kinases (RLKs), redundantly control reproductive growth and development in rice (Oryza sativa). A drus1-1 drus2 double knockout mutant, but not either single mutant, showed extreme dwarfism and barren inflorescences that harbored sterile spikelets. The gibberellin pathway was not impaired in this mutant. A phenotypic comparison of mutants expressing different amounts of DRUS1 and 2 revealed that reproductive growth requires a threshold level of DRUS1/2 proteins. DRUS1 and 2 maintain cell viability by repressing protease-mediated cell degradation and likely by affecting sugar utilization or conversion. In the later stages of anther development, survival of the endothecium requires DRUS1/2, which may stimulate expression of the UDP-glucose pyrophosphorylase gene UGP2 and starch biosynthesis in pollen. Unlike their Arabidopsis thaliana ortholog FERONIA, DRUS1 and 2 mediate a fundamental signaling process that is essential for cell survival and represents a novel biological function for the CrRLK1L RLK subfamily.
Collapse
Affiliation(s)
- Cui-Xia Pu
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei 050024, P.R. China
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Hebei 050024, P.R. China
- Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, Hebei 050024, P.R. China
| | - Yong-Feng Han
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei 050024, P.R. China
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Hebei 050024, P.R. China
| | - Shu Zhu
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei 050024, P.R. China
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Hebei 050024, P.R. China
- Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, Hebei 050024, P.R. China
| | - Feng-Yan Song
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei 050024, P.R. China
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Hebei 050024, P.R. China
| | - Ying Zhao
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei 050024, P.R. China
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Hebei 050024, P.R. China
| | - Chun-Yan Wang
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei 050024, P.R. China
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Hebei 050024, P.R. China
- Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, Hebei 050024, P.R. China
| | - Yong-Cun Zhang
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei 050024, P.R. China
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Hebei 050024, P.R. China
| | - Qian Yang
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei 050024, P.R. China
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Hebei 050024, P.R. China
| | - Jiao Wang
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei 050024, P.R. China
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Hebei 050024, P.R. China
- Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, Hebei 050024, P.R. China
| | - Shuo-Lei Bu
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei 050024, P.R. China
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Hebei 050024, P.R. China
- Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, Hebei 050024, P.R. China
| | - Li-Jing Sun
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei 050024, P.R. China
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Hebei 050024, P.R. China
| | - Sheng-Wei Zhang
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei 050024, P.R. China
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Hebei 050024, P.R. China
- Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, Hebei 050024, P.R. China
| | - Su-Qiao Zhang
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei 050024, P.R. China
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Hebei 050024, P.R. China
- Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, Hebei 050024, P.R. China
| | - Da-Ye Sun
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei 050024, P.R. China
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Hebei 050024, P.R. China
- Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, Hebei 050024, P.R. China
| | - Ying Sun
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei 050024, P.R. China
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Hebei 050024, P.R. China
- Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, Hebei 050024, P.R. China
| |
Collapse
|
146
|
Yu Y, Li QF, Zhang JP, Zhang F, Zhou YF, Feng YZ, Chen YQ, Zhang YC. Laccase-13 Regulates Seed Setting Rate by Affecting Hydrogen Peroxide Dynamics and Mitochondrial Integrity in Rice. FRONTIERS IN PLANT SCIENCE 2017; 8:1324. [PMID: 28798768 PMCID: PMC5526905 DOI: 10.3389/fpls.2017.01324] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 07/14/2017] [Indexed: 05/03/2023]
Abstract
Seed setting rate is one of the most important components of rice grain yield. To date, only several genes regulating setting rate have been identified in plant. In this study, we showed that laccase-13 (OsLAC13), a member of laccase family genes which are known for their roles in modulating phenylpropanoid pathway and secondary lignification in cell wall, exerts a regulatory function in rice seed setting rate. OsLAC13 expressed in anthers and promotes hydrogen peroxide production both in vitro and in the filaments and anther connectives. Knock-out of OsLAC13 showed significantly increased seed setting rate, while overexpression of this gene exhibited induced mitochondrial damage and suppressed sugar transportation in anthers, which in turn affected seed setting rate. OsLAC13 also induced H2O2 production and mitochondrial damage in the root tip cells which caused the lethal phenotype. We also showed that high abundant of OsmiR397, the suppressor of OsLAC13 mRNA, increased the seed setting rate of rice plants, and restrains H2O2 accumulation in roots during oxidative stress. Our results suggested a novel regulatory role of OsLAC13 gene in regulating seed setting rate by affecting H2O2 dynamics and mitochondrial integrity in rice.
Collapse
|
147
|
Khan MR, Ihsan H, Ali GM. WSA206, a paralog of duplicated MPF2-like MADS-box family is recruited in fertility function in Withania. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 253:215-228. [PMID: 27968991 DOI: 10.1016/j.plantsci.2016.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Revised: 09/03/2016] [Accepted: 10/08/2016] [Indexed: 06/06/2023]
Abstract
Best known for their implication in calyx inflation, MPF2-like genes pertinent to the STMADS11 clade of the MADS-box family exert their functions in leaf development, flowering time, inflorescence architecture and floral reversion to just name but a few. However, our knowledge about their involvement in fertility function remained obscure. Therefore the major thrust of this study was to probe the recruitment of WSA206 (MPF2-like) protein in fertility function. The WSA206 functions were revealed by knocking down and overexpressing this protein in Withania somnifera. The WSA206 promoter functions were defined by stable integration in Arabidopsis using GUS tag. The interactions of WSA206 were investigated by screening Arabidopsis Oligo-dT yeast library and YFP-split analysis. WSA206 knockdown plants revealed fewer flowers, abortion in seed set, reduction in pollen number and deformed non-viable pollen in comparison with wild type counterparts. Overexpression of WSA206 in Withania generated more berries/seeds and healthier viable pollen grains. Remarkably, along with fertility control, the impairment in calyx inflation in knockdown Withania plants and extraordinary growth of sepals in overexpression lines is observed. Thus, fertility and calyx inflation are tightly coupled traits under the control of WSA206. Coding sequence revealed SNP mutations from arginine to lysine as well as a leucine-rich motif duplication at the C-terminus, a characteristic feature of pollen specific and fertility function proteins. The protein-protein interaction spectrum of WSA206 comprises 40% of those MADS and non-MADS-box proteins implicated in floral/anther expression and embryogenesis. Predominant WSA206 promoter:GUS expression accrued in the anthers/pollen may be attributed to of the presence of GAAATTGTTA pollen specific proximal motifs along with several other anther specific homotypic cis-clusters. MPF2-like protein WSA206 through interactions with MADS-box and non-MADS-domain proteins confers male fertility in Withania regulated by anther/pollen specific promoter motif GAAATTGTTA.
Collapse
Affiliation(s)
- Muhammad Ramzan Khan
- National Centre for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan; National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre, Park Road, Islamabad, Pakistan.
| | - Humera Ihsan
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre, Park Road, Islamabad, Pakistan
| | - Ghulam Muhammad Ali
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre, Park Road, Islamabad, Pakistan
| |
Collapse
|
148
|
Guo C, Yao L, You C, Wang S, Cui J, Ge X, Ma H. MID1 plays an important role in response to drought stress during reproductive development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 88:280-293. [PMID: 27337541 DOI: 10.1111/tpj.13250] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 06/19/2016] [Accepted: 06/22/2016] [Indexed: 05/18/2023]
Abstract
Drought during rice reproductive development results in yield loss. It is important to understand the functions of drought-responsive genes in reproductive tissues for improving rice yield under water-deficit conditions. We show here that MID1 (MYB Important for Drought Response1), encoding a putative R-R-type MYB-like transcription factor, can improve rice yield under drought. MID1 was primarily expressed in root and leaf vascular tissues, with low level in the tapetum, and was induced by drought and other abiotic stresses. Compared with wild type, MID1-overexpressing plants were more tolerant to drought at both vegetative and reproductive stages and produced more grains under water stress. MID1-overexpressing plants exhibited less severe anther defects such as deformed anther locules, abnormal tapetum, degenerated microspores and expanded middle layer, with improved pollen fertility and higher seed setting rate. MID1 was localized to the nucleus and could activate gene expression in yeast, and its homologs were identified in many other plants with high levels sequence similarity. In addition, candidate MID1-regulated genes were analyzed using RNA-seq and qRT-PCR, including genes crucial for stress responses and anther development, with altered expressions in the florets of MID1-overexpressing plants and RNAi lines. Furthermore, MID1 could bind to the promoters of two drought-related genes (Hsp17.0 and CYP707A5) and one anther developmental gene (KAR) according to ChIP-qPCR data. Our findings suggest that MID1 is a transcriptional regulator that promotes rice male development under drought by modulating the expressions of drought-related and anther developmental genes and provide valuable information for crop improvement.
Collapse
Affiliation(s)
- Changkui Guo
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
- Zhejiang Provincial Key Laboratory of Bioremediation of Soil Contamination, School of Agriculture and Food Science, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China
| | - Lingya Yao
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Chenjiang You
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Shuangshuang Wang
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Jie Cui
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Xiaochun Ge
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Hong Ma
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
- Institutes of Biomedical Sciences, 138 Yixueyuan Road, Shanghai, 200032, China
| |
Collapse
|
149
|
Ye J, Zhang Z, You C, Zhang X, Lu J, Ma H. Abundant protein phosphorylation potentially regulates Arabidopsis anther development. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:4993-5008. [PMID: 27531888 PMCID: PMC5014169 DOI: 10.1093/jxb/erw293] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
As the male reproductive organ of flowering plants, the stamen consists of the anther and filament. Previous studies on stamen development mainly focused on single gene functions by genetic methods or gene expression changes using comparative transcriptomic approaches, especially in model plants such as Arabidopsis thaliana However, studies on Arabidopsis anther protein expression and post-translational modifications are still lacking. Here we report proteomic and phosphoproteomic studies on developing Arabidopsis anthers at stages 4-7 and 8-12. We identified 3908 high-confidence phosphorylation sites corresponding to 1637 phosphoproteins. Among the 1637 phosphoproteins, 493 were newly identified, with 952 phosphorylation sites. Phosphopeptide enrichment prior to LC-MS analysis facilitated the identification of low-abundance proteins and regulatory proteins, thereby increasing the coverage of proteomic analysis, and facilitated the analysis of more regulatory proteins. Thirty-nine serine and six threonine phosphorylation motifs were uncovered from the anther phosphoproteome and further analysis supports that phosphorylation of casein kinase II, mitogen-activated protein kinases, and 14-3-3 proteins is a key regulatory mechanism in anther development. Phosphorylated residues were preferentially located in variable protein regions among family members, but they were they were conserved across angiosperms in general. Moreover, phosphorylation might reduce activity of reactive oxygen species scavenging enzymes and hamper brassinosteroid signaling in early anther development. Most of the novel phosphoproteins showed tissue-specific expression in the anther according to previous microarray data. This study provides a community resource with information on the abundance and phosphorylation status of thousands of proteins in developing anthers, contributing to understanding post-translational regulatory mechanisms during anther development.
Collapse
Affiliation(s)
- Juanying Ye
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Zaibao Zhang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Chenjiang You
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Xumin Zhang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Jianan Lu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Hong Ma
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| |
Collapse
|
150
|
Suárez-Baron H, Pérez-Mesa P, Ambrose BA, González F, Pabón-Mora N. Deep into the Aristolochia Flower: Expression of C, D, and E-Class Genes in Aristolochia fimbriata (Aristolochiaceae). JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2016; 328:55-71. [PMID: 27507740 DOI: 10.1002/jez.b.22686] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 06/13/2016] [Accepted: 06/18/2016] [Indexed: 02/02/2023]
Abstract
Aristolochia fimbriata (Aristolochiaceae) is a member of an early diverging lineage of flowering plants and a promising candidate for evo-devo studies. Aristolochia flowers exhibit a unique floral synorganization that consists of a monosymmetric and petaloid calyx formed by three congenitally fused sepals, and a gynostemium formed by the congenital fusion between stamens and the stigmatic region of the carpels. This floral ground plan atypical in the magnoliids can be used to evaluate the role of floral organ identity MADS-box genes during early flower evolution. In this study, we present in situ hybridization experiments for the homologs of the canonical C-, D-, and E-class genes. Spatiotemporal expression of the C-class gene AfimAG is restricted to stamens, ovary, and ovules, suggesting a conserved stamen and carpel identity function, consistent with that reported in core-eudicots and monocots. The D-class gene AfimSTK is detected in the anthers, the stigmas, the ovary, the ovules, the fruit, and the seeds, suggesting conserved roles in ovule and seed identity and unique roles in stamens, ovary, and fruit development. In addition, AfimSTK expression patterns in areas of organ abscission and dehiscence zones suggest putative roles linked to senescence processes. We found that both E-class genes are expressed in the anthers and the ovary; however, AfimSEP2 exhibits higher expression compared to AfimSEP1. These findings provide a comprehensive picture of the ancestral expression patterns of the canonical MADS-box floral organ identity genes and the foundations for further comparative analyses in other magnoliids.
Collapse
Affiliation(s)
| | - Pablo Pérez-Mesa
- Instituto de Biología, Universidad de Antioquia, Medellín, Colombia
| | | | - Favio González
- Universidad Nacional de Colombia, Facultad de Ciencias, Instituto de Ciencias Naturales, Sede Bogotá, Colombia
| | - Natalia Pabón-Mora
- Instituto de Biología, Universidad de Antioquia, Medellín, Colombia.,The New York Botanical Garden, Bronx, NY, USA
| |
Collapse
|