101
|
Yasuda T, Alan Wang Y. Immune therapeutic strategies for the senescent tumor microenvironment. Br J Cancer 2025; 132:237-244. [PMID: 39468331 PMCID: PMC11790855 DOI: 10.1038/s41416-024-02865-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/30/2024] Open
Abstract
Senescent cells can either to promote immunosuppressive tumor microenvironment or facilitate immune surveillance. Despite the revolutionary impact of cancer immunotherapy, durable responses in solid tumors, particularly in advanced stages, remain limited. Recent studies have shed light on the influence of senescent status within the tumor microenvironment (TME) on therapy resistance and major efforts are needed to overcome these challenges. This review summarizes recent advancements in targeting cellular senescence, with a particular focus on immunomodulatory approaches on the hallmarks of cellular senescence.
Collapse
Affiliation(s)
- Tadahito Yasuda
- Brown Center for Immunotherapy, Department of Medicine, Indiana University School of Medicine, Indianapolis, USA.
| | - Y Alan Wang
- Brown Center for Immunotherapy, Department of Medicine, Indiana University School of Medicine, Indianapolis, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center Indianapolis, Indianapolis, USA
| |
Collapse
|
102
|
Costa CM, Pedrosa SS, Kirkland JL, Reis F, Madureira AR. The senotherapeutic potential of phytochemicals for age-related intestinal disease. Ageing Res Rev 2025; 104:102619. [PMID: 39638096 DOI: 10.1016/j.arr.2024.102619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/18/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
During the last few decades, life expectancy has increased worldwide along with the prevalence of several age-related diseases. Among aging pathways, cellular senescence and chronic inflammation (or "inflammaging") appear to be connected to gut homeostasis and dysbiosis of the microbiome. Cellular senescence is a state of essentially irreversible cell cycle arrest that occurs in response to stress. Although senescent cells (SC) remain metabolically active, they do not proliferate and can secrete inflammatory and other factors comprising the senescence-associated secretory phenotype (SASP). Accumulation of SCs has been linked to onset of several age-related diseases, in the brain, bones, the gastrointestinal tract, and other organs and tissues. The gut microbiome undergoes substantial changes with aging and is tightly interconnected with either successful (healthy) aging or disease. Senotherapeutic drugs are compounds that can clear senescent cells or modulate the release of SASP factors and hence attenuate the impact of the senescence-associated pro-inflammatory state. Phytochemicals, phenolic compounds and terpenes, which have antioxidant and anti-inflammatory activities, could also be senotherapeutic given their ability to act upon senescence-linked cellular pathways. The aim of this review is to dissect links among the gut microbiome, cellular senescence, inflammaging, and disease, as well as to explore phytochemicals as potential senotherapeutics, focusing on their interactions with gut microbiota. Coordinated targeting of these inter-related processes might unveil new strategies for promoting healthy aging.
Collapse
Affiliation(s)
- Célia Maria Costa
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, Porto 4169-005, Portugal.
| | - Sílvia Santos Pedrosa
- Biorbis, Unipessoal LDA, Edifício de Biotecnologia da Universidade Católica Portuguesa, Rua Diogo Botelho 1327, Porto 4169-005, Portugal.
| | - James L Kirkland
- Department of Medicine, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA.
| | - Flávio Reis
- Institute of Pharmacology and Experimental Therapeutics & Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra 3004-504, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra 3000-548, Portugal; Clinical Academic Center of Coimbra, Coimbra 3004-531, Portugal.
| | - Ana Raquel Madureira
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, Porto 4169-005, Portugal.
| |
Collapse
|
103
|
Parshad B, Baker AG, Ahmed I, Estepa‐Fernández A, Muñoz‐Espín D, Fruk L. Improved Therapeutic Efficiency of Senescent Cell-specific, Galactose-Functionalized Micelle Nanocarriers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2405732. [PMID: 39696860 PMCID: PMC11840467 DOI: 10.1002/smll.202405732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/09/2024] [Indexed: 12/20/2024]
Abstract
Cellular senescence has recently been recognized as one of the hallmarks of cancer, aging, as well as many age-related disorders, sparking significant interest in the development of senolytics, compounds that can remove senescent cells. However, most current pharmacological strategies face challenges related to non-specific delivery, leading to significant side effects that hinder safe and effective treatments. To address these issues, galactose-functionalized amphiphiles are synthesized that can self-assemble into micelles and be loaded with a senolytic cargo. These galactose-micelles are responsive to the lysosomal β-galactosidase enzyme, present in elevated amounts in senescent cells, and are employed for specific delivery of the senolytic Bcl2-inhibitor Navitoclax. This novel formulation showed reduced delivery and toxicity to non-senescent cells, thereby increasing the senolytic index of Navitoclax and making it suitable for future in vivo experimental designs to improve selectivity and safety profiles.
Collapse
Affiliation(s)
- Badri Parshad
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgePhilippa Fawcett DriveCambridgeCB3 0ASUK
| | - Andrew George Baker
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgePhilippa Fawcett DriveCambridgeCB3 0ASUK
- Early Cancer instituteDepartment of OncologyUniversity of CambridgeHills RoadCambridgeCB2 0XZUK
| | - Ishtiaq Ahmed
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgePhilippa Fawcett DriveCambridgeCB3 0ASUK
| | | | - Daniel Muñoz‐Espín
- Early Cancer instituteDepartment of OncologyUniversity of CambridgeHills RoadCambridgeCB2 0XZUK
| | - Ljiljana Fruk
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgePhilippa Fawcett DriveCambridgeCB3 0ASUK
| |
Collapse
|
104
|
Al‐Naggar IM, Antony M, Baker D, Wang L, Godoy LDC, Kuo C, Fraser MO, Smith PP, Xu M, Kuchel GA. Polyploid superficial uroepithelial bladder barrier cells express features of cellular senescence across the lifespan and are insensitive to senolytics. Aging Cell 2025; 24:e14399. [PMID: 39644167 PMCID: PMC11822673 DOI: 10.1111/acel.14399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 10/10/2024] [Accepted: 10/13/2024] [Indexed: 12/09/2024] Open
Abstract
Lower urinary tract dysfunction (LUTD) increases with aging. Ensuing symptoms including incontinence greatly impact quality of life, isolation, depression, and nursing home admission. The aging bladder is hypothesized to be central to this decline, however, it remains difficult to pinpoint a singular strong driver of aging-related bladder dysfunction. Many molecular and cellular changes occur with aging, contributing to decreased resilience to internal and external stressors, affecting urinary control and exacerbating LUTD. In this study, we examined whether cellular senescence, a cell fate involved in the etiology of most aging diseases, contributes to LUTD. We found that umbrella cells (UCs), luminal barrier uroepithelial cells in the bladder, show senescence features over the mouse lifespan. These polyploid UCs exhibit high cyclin D1 staining, previously reported to mediate tetraploidy-induced senescence in vitro. These senescent UCs were not eliminated by the senolytic combination of Dasatinib and Quercetin. We also tested the effect of a high-fat diet (HFD) and senescent cell transplantation on bladder function and showed that both models induce cystometric changes similar to natural aging in mice, with no effect of senolytics on HFD-induced changes. These findings illustrate the heterogeneity of cellular senescence in varied tissues, while also providing potential insights into the origin of urothelial cancer. We conclude that senescence of bladder uroepithelial cells plays a role in normal physiology, namely in their role as barrier cells, helping promote uroepithelial integrity and impermeability and maintaining the urine-blood barrier.
Collapse
Affiliation(s)
- Iman M. Al‐Naggar
- Center on AgingUniversity of ConnecticutFarmingtonConnecticutUSA
- Department of Cell BiologyUniversity of Connecticut HealthFarmingtonConnecticutUSA
- Department of SurgeryUniversity of Connecticut HealthFarmingtonConnecticutUSA
| | - Maria Antony
- The University of Connecticut School of MedicineFarmingtonConnecticutUSA
| | - Dylan Baker
- Department of Genetics & Genome SciencesUniversity of Connecticut HealthFarmingtonConnecticutUSA
- The Jackson Laboratory for Genomic MedicineFarmingtonConnecticutUSA
| | - Lichao Wang
- Center on AgingUniversity of ConnecticutFarmingtonConnecticutUSA
| | - Lucas Da Cunha Godoy
- The Cato T. Laurencin Institute for Regenerative EngineeringFarmingtonConnecticutUSA
| | - Chia‐Ling Kuo
- Center on AgingUniversity of ConnecticutFarmingtonConnecticutUSA
- The Cato T. Laurencin Institute for Regenerative EngineeringFarmingtonConnecticutUSA
| | - Matthew O. Fraser
- Department of Research & DevelopmentDurham Veterans Affairs Medical CentersDurhamNorth CarolinaUSA
| | - Phillip P. Smith
- Center on AgingUniversity of ConnecticutFarmingtonConnecticutUSA
- Department of SurgeryUniversity of Connecticut HealthFarmingtonConnecticutUSA
- Connecticut Institute for Brain and Cognitive ScienceUniversity of ConnecticutStorrsConnecticutUSA
| | - Ming Xu
- Center on AgingUniversity of ConnecticutFarmingtonConnecticutUSA
- Department of Genetics & Genome SciencesUniversity of Connecticut HealthFarmingtonConnecticutUSA
| | - George A. Kuchel
- Center on AgingUniversity of ConnecticutFarmingtonConnecticutUSA
| |
Collapse
|
105
|
Ma R, Zhou Y, Huang W, Kong X. Icariin maintaining TMEM119-positive microglial population improves hippocampus-associated memory in senescent mice in relation to R-3-hydroxybutyric acid metabolism. JOURNAL OF ETHNOPHARMACOLOGY 2025; 340:119287. [PMID: 39736348 DOI: 10.1016/j.jep.2024.119287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/01/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Epimedium Tourn. ex L. is a traditional Chinese medicine used for thousands of years in China to treat forgetfulness. Icariin is a principal component of the genus Epimedium. AIM OF THE STUDY The metabolic mechanism of icariin treating forgetfulness is explored. MATERIALS AND METHODS A D-galactose-induced senescent mouse model was employed. The cognitive performance of mice was assessed in the fear conditioning test. Hippocampal pathology was assessed in the immunohistochemistry assay. Plasma metabolome was analyzed using GC-MS method, and the differential metabolites were further identified by UPLC-MS/MS or GC-MS method. The liver function, including ALT and AST, was assessed by enzyme reaction. Icariin was administered intraperitoneally at 50 and 100 mg/kg. Mice were administered five consecutive days per week for 8 weeks. RESULTS Icariin treatment improved hippocampus-related fear memory but not amygdala-related memory, whereas Pexidartinib (PLX3397), a microglial scavenger, did not. Icariin treatment maintained the TMEM119-positive microglial population and decreased the accumulation of the senescent biomarker p16 in the dorsal hippocampus in senescent mouse brains, whereas PLX3397 did not. Notably, p16 in the CA2 subregion significantly decreased in icariin-treated mice than the other hippocampal subregions. The senescent mice exhibited the circulating metabolic characteristics of mild ketoacidosis, active tricarboxylic acid (TCA) cycle, lactic acidosis, hyperglycemia, active detoxification, active cis-oleic acid metabolism, and inhibitory GABA shut. R-3-Hydroxybutyric acid primarily produced in the liver was selectively and robustly decreased by icariin treatment, which was not observed with PLX3397 treatment. The TCA cycle was rescued in senescent mice by icariin treatment. Icariin also protected liver function (plasma ALT) in D-gal-induced senescent mice. CONCLUSIONS Icariin may protect mouse hippocampal cognition from D-gal-induced senescence by protecting microglial homeostasis, and facilitating the utilization of R-3-hydroxybutyric acid is one of the underpins.
Collapse
Affiliation(s)
- Rong Ma
- Central Laboratory, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Yuge Zhou
- Central Laboratory, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Weifan Huang
- Central Laboratory, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Xiaoni Kong
- Central Laboratory, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
106
|
Wu G, Wu S, Xiong T, Yao Y, Qiu Y, Meng L, Chen C, Yang X, Liang X, Qin Y. Identification of biomarkers for the diagnosis of type 2 diabetes mellitus with metabolic associated fatty liver disease by bioinformatics analysis and experimental validation. Front Endocrinol (Lausanne) 2025; 16:1512503. [PMID: 39936105 PMCID: PMC11810736 DOI: 10.3389/fendo.2025.1512503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/08/2025] [Indexed: 02/13/2025] Open
Abstract
Background Type 2 diabetes (T2DM) combined with fatty liver is a subtype of metabolic fatty liver disease (MAFLD), and the relationship between T2DM and MAFLD is close and mutually influential. However, the connection and mechanisms between the two are still unclear. Therefore, we aimed to identify potential biomarkers for diagnosing both conditions. Methods We performed differential expression analysis and weighted gene correlation network analysis (WGCNA) on publicly available data on the two diseases in the Gene Expression Omnibus database to find genes related to both conditions. We utilised protein-protein interactions (PPIs), Gene Ontology, and the Kyoto Encyclopedia of Genes and Genomes to identify T2DM-associated MAFLD genes and potential mechanisms. Candidate biomarkers were screened using machine learning algorithms combined with 12 cytoHubba algorithms, and a diagnostic model for T2DM-related MAFLD was constructed and evaluated.The CIBERSORT method was used to investigate immune cell infiltration in MAFLD and the immunological significance of central genes. Finally, we collected whole blood from patients with T2DM-related MAFLD, MAFLD patients and healthy individuals, and used high-fat, high-glucose combined with high-fat cell models to verify the expression of hub genes. Results Differential expression analysis and WGCNA identified 354 genes in the MAFLD dataset. The differential expression analysis of the T2DM-peripheral blood mononuclear cells/liver dataset screened 91 T2DM-associated secreted proteins. PPI analysis revealed two important modules of T2DM-related pathogenic genes in MAFLD, which contained 49 nodes, suggesting their involvement in cell interaction, inflammation, and other processes. TNFSF10, SERPINB2, and TNFRSF1A were the only coexisting genes shared between MAFLD key genes and T2DM-related secreted proteins, enabling the construction of highly accurate diagnostic models for both disorders. Additionally, high-fat, high-glucose combined with high-fat cell models were successfully produced. The expression patterns of TNFRSF1A and SERPINB2 were verified in patient blood and our cellular model. Immune dysregulation was observed in MAFLD, with TNFRSF1A and SERPINB2 strongly linked to immune regulation. Conclusion The sensitivity and accuracy in diagnosing and predicting T2DM-associated MAFLD can be greatly improved using SERPINB2 and TNFRSF1A. These genes may significantly influence the development of T2DM-associated MAFLD, offering new diagnostic options for patients with T2DM combined with MAFLD.
Collapse
Affiliation(s)
- Guiling Wu
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China
| | - Sihui Wu
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China
| | - Tian Xiong
- Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China
- Department of Geriatric Endocrinology and Metabolism, First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, Guangxi, China
| | - You Yao
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China
| | - Yu Qiu
- Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China
- Department of Geriatric Endocrinology and Metabolism, First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, Guangxi, China
| | - Liheng Meng
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Cuihong Chen
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xi Yang
- Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China
- Department of Geriatric Endocrinology and Metabolism, First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, Guangxi, China
| | - Xinghuan Liang
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yingfen Qin
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
107
|
Li Z, Li Z, Hu Y, Xie Y, Shi Y, Chen G, Huang J, Xiao Z, Zhu W, Huang H, Wang M, Chen J, Chen X, Liang D. Neutrophil extracellular traps potentiate effector T cells via endothelial senescence in uveitis. JCI Insight 2025; 10:e180248. [PMID: 39846254 PMCID: PMC11790022 DOI: 10.1172/jci.insight.180248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 12/06/2024] [Indexed: 01/24/2025] Open
Abstract
Autoimmune uveitis (AU) is a sight-threatening ocular autoimmune disorder that often manifests as retinal vasculitis. Increased neutrophil infiltration around retinal vessels has been reported during the progression of AU, while how they function is not fully recognized. Neutrophil extracellular traps (NETs), produced by activated neutrophils, have been suggested to be detrimental in autoimmune diseases. Here, we found that NETs were elevated in patients with active AU, and this was verified in an experimental AU (EAU) mouse model. Depletion of neutrophils or degradation of NETs with deoxyribonuclease-I (DNase I) could decrease CD4+ effector T cell (Teff) infiltration in retina and spleen to alleviate EAU. Moreover, we found that the expression of adhesion molecules, selectin, and antigen-presenting molecules was elevated in EAU retina and in retinal microvascular endothelial cells (RMECs) cocultured with NETs. The stimulated RMECs further facilitated CD4+ T cell adhesion, activation, and differentiation into Teffs. Mechanistically, NETs trigger RMEC activation by hastening cell senescence through the cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING) pathway. Slowing down senescence or inhibiting the cGAS/STING pathway in RMECs reduces the activation and differentiation of CD4+ T cells. These results suggest a deleterious role of NETs in AU. Targeting NETs would offer an effective therapeutic method.
Collapse
Affiliation(s)
- Zuoyi Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, China
| | - Zhuang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, China
| | - Yunwei Hu
- Ophthalmic Center, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yanyan Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, China
| | - Yuxun Shi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, China
| | - Guanyu Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, China
| | - Jun Huang
- Ophthalmic Center, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Zhiqiang Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, China
| | - Wenjie Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, China
| | - Haixiang Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, China
| | - Minzhen Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, China
| | - Jianping Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, China
| | - Xiaoqing Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, China
| | - Dan Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, China
| |
Collapse
|
108
|
Alavimanesh S, Nayerain Jazi N, Choubani M, Saeidi F, Afkhami H, Yarahmadi A, Ronaghi H, Khani P, Modarressi MH. Cellular senescence in the tumor with a bone niche microenvironment: friend or foe? Clin Exp Med 2025; 25:44. [PMID: 39849183 PMCID: PMC11759293 DOI: 10.1007/s10238-025-01564-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/08/2025] [Indexed: 01/25/2025]
Abstract
Cellular senescence is understood to be a biological process that is defined as irreversible growth arrest and was originally recognized as a tumor-suppressive mechanism that prevents further propagation of damaged cells. More recently, cellular senescence has been shown to have a dual role in prevention and tumor promotion. Senescent cells carry a senescence-associated secretory phenotype (SASP), which is altered by secretory factors including pro-inflammatory cytokines, chemokines, and other proteases, leading to the alteration of the tissue microenvironment. Though senescence would eventually halt the growth of cancerous potential cells, SASP contributes to the tumor environment by promoting inflammation, matrix remodeling, and tumor cell invasion. The paradox of tumor prevention/promotion is particularly relevant to the bone niche tumor microenvironment, where longer-lasting, chronic inflammation promotes tumor formation. Insights into a mechanistic understanding of cellular senescence and SASP provide the basis for targeted therapies, such as senolytics, which aim to eliminate senescent cells, or SASP inhibitors, which would eliminate the tumor-promoting effects of senescence. These therapeutic interventions offer significant clinical implications for treating cancer and healthy aging.
Collapse
Affiliation(s)
- Sajad Alavimanesh
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Negar Nayerain Jazi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maedeh Choubani
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzane Saeidi
- Department of Medical Genetics, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Hossein Ronaghi
- Department of Orthopedic, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Pouria Khani
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| | - Mohammad Hossein Modarressi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| |
Collapse
|
109
|
Della Vedova L, Baron G, Morazzoni P, Aldini G, Gado F. The Potential of Polyphenols in Modulating the Cellular Senescence Process: Implications and Mechanism of Action. Pharmaceuticals (Basel) 2025; 18:138. [PMID: 40005954 PMCID: PMC11858549 DOI: 10.3390/ph18020138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Cellular senescence is a biological process with a dual role in organismal health. While transient senescence supports tissue repair and acts as a tumor-suppressive mechanism, the chronic accumulation of senescent cells contributes to aging and the progression of age-related diseases. Senotherapeutics, including senolytics, which selectively eliminate senescent cells, and senomorphics, which modulate the senescence-associated secretory phenotype (SASP), have emerged as promising strategies for managing age-related pathologies. Among these, polyphenols, a diverse group of plant-derived bioactive compounds, have gained attention for their potential to modulate cellular senescence. Methods: This review synthesizes evidence from in vitro, in vivo, and clinical studies on the senolytic and senomorphic activities of bioactive polyphenols, including resveratrol, kaempferol, apigenin, and fisetin. The analysis focuses on their molecular mechanisms of action and their impact on fundamental aging-related pathways. Results: Polyphenols exhibit therapeutic versatility by activating SIRT1, inhibiting NF-κB, and modulating autophagy. These compounds demonstrate a dual role, promoting the survival of healthy cells while inducing apoptosis in senescent cells. Preclinical evidence indicates their capacity to reduce SASP-associated inflammation, restore tissue homeostasis, and attenuate cellular senescence in various models of aging. Conclusions: Polyphenols represent a promising class of senotherapeutics for mitigating age-related diseases and promoting healthy lifespan extension. Further research should focus on clinical validation and the long-term effects of these compounds, paving the way for their development as therapeutic agents in geriatric medicine.
Collapse
Affiliation(s)
- Larissa Della Vedova
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy; (L.D.V.); (G.B.); (G.A.)
| | - Giovanna Baron
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy; (L.D.V.); (G.B.); (G.A.)
| | - Paolo Morazzoni
- Divisione Nutraceutica, Distillerie Umberto Bonollo S.p.A, Via G. Galilei 6, 35035 Mestrino, Italy;
| | - Giancarlo Aldini
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy; (L.D.V.); (G.B.); (G.A.)
| | - Francesca Gado
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy; (L.D.V.); (G.B.); (G.A.)
| |
Collapse
|
110
|
O’Reilly S. Senescence in diffuse systemic sclerosis is elevated and may play a role in fibrosis. Clin Exp Immunol 2025; 219:uxad077. [PMID: 37458231 PMCID: PMC11771193 DOI: 10.1093/cei/uxad077] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/27/2023] [Accepted: 07/15/2023] [Indexed: 01/28/2025] Open
|
111
|
Gadecka A, Nowak N, Bulanda E, Janiszewska D, Dudkowska M, Sikora E, Bielak-Zmijewska A. The senolytic cocktail, dasatinib and quercetin, impacts the chromatin structure of both young and senescent vascular smooth muscle cells. GeroScience 2025:10.1007/s11357-024-01504-6. [PMID: 39828770 DOI: 10.1007/s11357-024-01504-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 12/29/2024] [Indexed: 01/22/2025] Open
Abstract
One promising strategy to alleviate aging symptoms is the treatment with senolytics that is compounds which selectively eliminate senescent cells. Some therapies aim to reduce symptoms of cellular senescence without senescent cell eradication (senomorphic activity). However, senotherapies raise many questions concerning the selectivity, safety and efficiency of senolitic drugs. A vital question is how the senolytic compounds affect young proliferating cells. In our study, we checked the impact of quercetin and dasatinib (D + Q), one of the promising drug mixtures of drugs, on chromatin structure in young and senescent cells. We analyzed the effect of a single and triple drug treatment on vascular smooth muscle cells. We have shown that D + Q impacts the chromatin in both young and senescent cells. In senescent cells, D + Q caused some symptoms of chromatin "rejuvenation" but in young cells some changes characteristic of senescent cells were observed. The alterations in young cells appeared only transiently and chromatin returned to the initial state after 24 h of recovery. The complexity of chromatin staining and nucleus morphology evaluation indicated that a triple treatment makes senescent cells more similar to the young ones than a single treatment. However, the analysis of senescence markers suggested that a single treatment with D + Q caused slightly less pronounced senescence characteristics and was more efficient in alleviating the features of senescence than a triple treatment. It is still an open question whether the alterations caused by D + Q are beneficial or harmful in the long term; however, so far, it can be concluded that the effects depend on cell type and the physiological context.
Collapse
Affiliation(s)
- Agnieszka Gadecka
- Laboratory of Molecular Basis of Aging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., 02-093, Warsaw, Poland
| | - Natalia Nowak
- Laboratory of Imaging Tissue Structure and Function, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., 02-093, Warsaw, Poland
| | - Edyta Bulanda
- Laboratory of Molecular Basis of Aging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., 02-093, Warsaw, Poland
- Faculty of Chemistry, Department of Biotechnology of Medicines and Cosmetics, Warsaw University of Technology, 3 Noakowskiego St., 00-664, Warsaw, Poland
| | - Dorota Janiszewska
- Laboratory of Molecular Basis of Aging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., 02-093, Warsaw, Poland
- Laboratory of Calcium Binding Proteins, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., 02-093, Warsaw, Poland
| | - Magdalena Dudkowska
- Laboratory of Molecular Basis of Aging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., 02-093, Warsaw, Poland
- Laboratory of Calcium Binding Proteins, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., 02-093, Warsaw, Poland
| | - Ewa Sikora
- Laboratory of Molecular Basis of Aging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., 02-093, Warsaw, Poland
| | - Anna Bielak-Zmijewska
- Laboratory of Molecular Basis of Aging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., 02-093, Warsaw, Poland.
- Laboratory of Calcium Binding Proteins, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., 02-093, Warsaw, Poland.
| |
Collapse
|
112
|
Huang Y, Zhou Y, He Z, Yang J, Gu J, Cui B, Li S, Deng H, Zhao W, Yang X, Sun F, He C, Pan W. Cellular Senescence Contributes to Colonic Barrier Integrity Impairment Induced by Toxoplasma gondii Infection. Inflammation 2025:10.1007/s10753-024-02213-0. [PMID: 39827329 DOI: 10.1007/s10753-024-02213-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/30/2024] [Accepted: 12/06/2024] [Indexed: 01/22/2025]
Abstract
Toxoplasma gondii (T. gondii) induces gut barrier integrity impairment, which is crucial to the establishment of long-term infection in hosts. Cellular senescence is an imperative event that drives disease progression. Several studies have indicated that T. gondii induces oxidative stress and cell cycle blockade in the tissues of hosts, suggesting cellular senescence induced by the parasite. Here, we explored whether cell senescence is involved in T. gondii-mediated colonic barrier integrity damage in mice. C57BL/6J mice were infected with 10 cysts of T. gondii. Senolytic therapy (dasatinib and quercetin, DQ, a combination therapy for reducing senescent cells) was given by oral gavage 4 weeks post-infection. Alcian blue staining, immunofluorescence, western blot, quantitative PCR (qPCR), and enzyme-linked immunosorbent assay (ELISA) were employed to evaluate the thickness of the colonic mucus layer, the expression profiles of genes and proteins related to tight junction function and cellular senescence in the colonic tissues, and the levels of serum lipopolysaccharides (LPS), respectively. T. gondii-infected mice exhibited deteriorated secreted mucus, shortened length, decreased expression of zonula occludens-1 (ZO-1) and occludin in the colon, accompanied by elevated levels of serum LPS. Moreover, the infection upregulated cell senescence-related markers (p16INK4A, p21CIP1) while inhibiting Lamin B1 expression. In addition, the expression levels of senescence-associated secretory phenotypes (SASPs), including IL-1β, TNF-α, IL-6, MMP9 and CXCL10, were upregulated post-infection. Notably, reducing cell senescence with DQ administration, significantly ameliorated the colonic pathological alterations induced by T. gondii infection. This study uncovers for the first time that cellular senescence contributes to the colonic barrier integrity damage induced by chronic T. gondii infection. Importantly, we provide evidence that senolytic therapy exerts a therapeutic effect on the intestinal pathological lesions.
Collapse
Affiliation(s)
- Yingting Huang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- The Second Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
- National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yumeng Zhou
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- The Second Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
- National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhicheng He
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, Jiangsu, China
- The First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jiayi Yang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, Jiangsu, China
- The First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jianqi Gu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, Jiangsu, China
- The First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Bingqian Cui
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, Jiangsu, China
- The First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Siyu Li
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- The Second Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
- National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Heng Deng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, Jiangsu, China
- The First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wendi Zhao
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, Jiangsu, China
- The First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiaoying Yang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Fenfen Sun
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Cheng He
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Wei Pan
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
113
|
Russo L, Babboni S, Andreassi MG, Daher J, Canale P, Del Turco S, Basta G. Treating Metabolic Dysregulation and Senescence by Caloric Restriction: Killing Two Birds with One Stone? Antioxidants (Basel) 2025; 14:99. [PMID: 39857433 PMCID: PMC11763027 DOI: 10.3390/antiox14010099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/07/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Cellular senescence is a state of permanent cell cycle arrest accompanied by metabolic activity and characteristic phenotypic changes. This process is crucial for developing age-related diseases, where excessive calorie intake accelerates metabolic dysfunction and aging. Overnutrition disturbs key metabolic pathways, including insulin/insulin-like growth factor signaling (IIS), the mammalian target of rapamycin (mTOR), and AMP-activated protein kinase. The dysregulation of these pathways contributes to insulin resistance, impaired autophagy, exacerbated oxidative stress, and mitochondrial dysfunction, further enhancing cellular senescence and systemic metabolic derangements. On the other hand, dysfunctional endothelial cells and adipocytes contribute to systemic inflammation, reduced nitric oxide production, and altered lipid metabolism. Numerous factors, including extracellular vesicles, mediate pathological communication between the vascular system and adipose tissue, amplifying metabolic imbalances. Meanwhile, caloric restriction (CR) emerges as a potent intervention to counteract overnutrition effects, improve mitochondrial function, reduce oxidative stress, and restore metabolic balance. CR modulates pathways such as IIS, mTOR, and sirtuins, enhancing glucose and lipid metabolism, reducing inflammation, and promoting autophagy. CR can extend the health span and mitigate age-related diseases by delaying cellular senescence and improving healthy endothelial-adipocyte interactions. This review highlights the crosstalk between endothelial cells and adipocytes, emphasizing CR potential in counteracting overnutrition-induced senescence and restoring vascular homeostasis.
Collapse
Affiliation(s)
- Lara Russo
- Institute of Clinical Physiology, National Research Council, Via Moruzzi 1, 56124 Pisa, Italy; (L.R.); (S.B.); (M.G.A.); (P.C.); (G.B.)
| | - Serena Babboni
- Institute of Clinical Physiology, National Research Council, Via Moruzzi 1, 56124 Pisa, Italy; (L.R.); (S.B.); (M.G.A.); (P.C.); (G.B.)
| | - Maria Grazia Andreassi
- Institute of Clinical Physiology, National Research Council, Via Moruzzi 1, 56124 Pisa, Italy; (L.R.); (S.B.); (M.G.A.); (P.C.); (G.B.)
| | - Jalil Daher
- Department of Biology, Faculty of Arts and Sciences, University of Balamand, El-Koura 100, Lebanon;
| | - Paola Canale
- Institute of Clinical Physiology, National Research Council, Via Moruzzi 1, 56124 Pisa, Italy; (L.R.); (S.B.); (M.G.A.); (P.C.); (G.B.)
| | - Serena Del Turco
- Institute of Clinical Physiology, National Research Council, Via Moruzzi 1, 56124 Pisa, Italy; (L.R.); (S.B.); (M.G.A.); (P.C.); (G.B.)
| | - Giuseppina Basta
- Institute of Clinical Physiology, National Research Council, Via Moruzzi 1, 56124 Pisa, Italy; (L.R.); (S.B.); (M.G.A.); (P.C.); (G.B.)
| |
Collapse
|
114
|
Wnuk M, Del Sol-Fernández S, Błoniarz D, Słaby J, Szmatoła T, Żebrowski M, Martínez-Vicente P, Litwinienko G, Moros M, Lewińska A. Design of a Magnetic Nanoplatform Based on CD26 Targeting and HSP90 Inhibition for Apoptosis and Ferroptosis-Mediated Elimination of Senescent Cells. ACS Biomater Sci Eng 2025; 11:280-297. [PMID: 39631769 PMCID: PMC11733919 DOI: 10.1021/acsbiomaterials.4c00771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/16/2024] [Accepted: 11/20/2024] [Indexed: 12/07/2024]
Abstract
The accumulation of senescent cells, a hallmark of aging and age-related diseases, is also considered as a side effect of anticancer therapies, promoting drug resistance and leading to treatment failure. The use of senolytics, selective inducers of cell death in senescent cells, is a promising pharmacological antiaging and anticancer approach. However, more studies are needed to overcome the limitations of first-generation senolytics by the design of targeted senolytics and nanosenolytics and the validation of their usefulness in biological systems. In the present study, we have designed a nanoplatform composed of iron oxide nanoparticles functionalized with an antibody against a cell surface marker of senescent cells (CD26), and loaded with the senolytic drug HSP90 inhibitor 17-DMAG (MNP@CD26@17D). We have documented its action against oxidative stress-induced senescent human fibroblasts, WI-38 and BJ cells, and anticancer drug-induced senescent cutaneous squamous cell carcinoma A431 cells, demonstrating for the first time that CD26 is a valid marker of senescence in cancer cells. A dual response to MNP@CD26@17D stimulation in senescent cells was revealed, namely, apoptosis-based early response (2 h treatment) and ferroptosis-based late response (24 h treatment). MNP@CD26@17D-mediated ferroptosis might be executed by ferritinophagy as judged by elevated levels of the ferritinophagy marker NCOA4 and a decreased pool of ferritin. As 24 h treatment with MNP@CD26@17D did not induce hemolysis in human erythrocytes in vitro, this newly designed nanoplatform could be considered as an optimal multifunctional tool to target and eliminate senescent cells of skin origin, overcoming their apoptosis resistance.
Collapse
Affiliation(s)
- Maciej Wnuk
- Institute
of Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, Rzeszow 35-310, Poland
| | - Susel Del Sol-Fernández
- Instituto
de Nanociencia y Materiales de Aragón, INMA (CSIC-Universidad de Zaragoza), C/Pedro Cerbuna 12, Zaragoza 50009, Spain
| | - Dominika Błoniarz
- Institute
of Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, Rzeszow 35-310, Poland
| | - Julia Słaby
- Doctoral
School, University of Rzeszow, Rejtana 16C, Rzeszow 35-959, Poland
| | - Tomasz Szmatoła
- Center of
Experimental and Innovative Medicine, University
of Agriculture in Krakow, al. Mickiewicza 24/28, Cracow 30-059, Poland
| | - Michał Żebrowski
- Faculty of
Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland
| | - Pablo Martínez-Vicente
- Instituto
de Nanociencia y Materiales de Aragón, INMA (CSIC-Universidad de Zaragoza), C/Pedro Cerbuna 12, Zaragoza 50009, Spain
| | | | - María Moros
- Instituto
de Nanociencia y Materiales de Aragón, INMA (CSIC-Universidad de Zaragoza), C/Pedro Cerbuna 12, Zaragoza 50009, Spain
- Centro de
Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid 28029, Spain
| | - Anna Lewińska
- Institute
of Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, Rzeszow 35-310, Poland
| |
Collapse
|
115
|
Fang S, Jiang M, Jiao J, Zhao H, Liu D, Gao D, Wang T, Yang Z, Yuan H. Unraveling the ROS-Inflammation-Immune Balance: A New Perspective on Aging and Disease. Aging Dis 2025:AD.2024.1253. [PMID: 39812539 DOI: 10.14336/ad.2024.1253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/03/2025] [Indexed: 01/16/2025] Open
Abstract
Increased entropy is a common cause of disease and aging. Lifespan entropy is the overall increase in disorder caused by a person over their lifetime. Aging leads to the excessive production of reactive oxygen species (ROS), which damage the antioxidant system and disrupt redox balance. Organ aging causes chronic inflammation, disrupting the balance of proinflammatory and anti-inflammatory factors. Inflammaging, which is a chronic low-grade inflammatory state, is activated by oxidative stress and can lead to immune system senescence. During this process, entropy increases significantly as the body transitions from a state of low order to high disorder. However, the connection among inflammation, aging, and immune system activity is still not fully understood. This review introduces the idea of the ROS-inflammation-immune balance for the first time and suggests that this balance may be connected to aging and the development of age-related diseases. We also explored how the balance of these three factors controls and affects age-related diseases. Moreover, imbalance in the relationship described above disrupts the regular structures of cells and alters their functions, leading to cellular damage and the emergence of a disorganized state marked by increased entropy. Maintaining a low entropy state is crucial for preventing and reversing aging processes. Consequently, we examined the current preclinical evidence for antiaging medications that target this balance. Ultimately, comprehending the intricate relationships between these three factors and the risk of age-related diseases in organisms will aid in the development of clinical interventions that promote long-term health.
Collapse
Affiliation(s)
- Sihang Fang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Mingjun Jiang
- Respiratory Department, Beijing Children's Hospital, Capital Medical University, China National Clinical Research Center of Respiratory Diseases, National Center for Children's Health, Beijing, China
| | - Juan Jiao
- Department of Clinical Laboratory, the Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Hongye Zhao
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education of China, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Dizhi Liu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Danni Gao
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Tenger Wang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Ze Yang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Huiping Yuan
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| |
Collapse
|
116
|
Ming X, Yang Z, Huang Y, Wang Z, Zhang Q, Lu C, Sun Y, Chen Y, Zhang L, Wu J, Shou H, Lu Z, Wang B. A chimeric peptide promotes immune surveillance of senescent cells in injury, fibrosis, tumorigenesis and aging. NATURE AGING 2025; 5:28-47. [PMID: 39623223 DOI: 10.1038/s43587-024-00750-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/15/2024] [Indexed: 12/15/2024]
Abstract
The accumulation of senescent cells can lead to tissue degeneration, chronic inflammatory disease and age-related tumorigenesis. Interventions such as senolytics are currently limited by off-target toxicity, which could be circumvented by instead enhancing immune-mediated senescent cell clearance; however, immune surveillance of senescent cells is often impeded by immunosuppressive factors in the inflammatory microenvironment. Here, we employ a chimeric peptide as a 'matchmaker' to bind to the urokinase-type plasminogen activator receptor, a cell surface marker of senescent cells. This peptide modifies the cell surface with polyglutamic acid, promoting immune cell-mediated responses through glutamate recognition. By enhancing the recruitment of immune cells and directly coupling senescent cells and immune cells, we show that this chimeric peptide induces immune clearance of senescent cells and restores tissue homeostasis in conditions such as liver fibrosis, lung injury, cancer and natural aging in mice. This chimeric peptide introduces an immunological conversion strategy that rebalances the senescent immune microenvironment, offering a promising direction for aging immunotherapy.
Collapse
Affiliation(s)
- Xinliang Ming
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Department of Clinical Laboratory, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ze Yang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuqiao Huang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhiguo Wang
- Institute of Ageing Research, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Qingyan Zhang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Changchang Lu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yandi Sun
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuanhao Chen
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Liang Zhang
- Center for Molecular Diagnosis and Precision Medicine, Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jicheng Wu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hao Shou
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhimin Lu
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Zhejiang University, Hangzhou, China
- Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ben Wang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.
- Institute of Fundamental and Transdisciplinary Research, Zhejiang University, Hangzhou, China.
- Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Hangzhou, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China.
| |
Collapse
|
117
|
Maurer S, Kirsch V, Ruths L, Brenner RE, Riegger J. Senolytic therapy combining Dasatinib and Quercetin restores the chondrogenic phenotype of human osteoarthritic chondrocytes by the release of pro-anabolic mediators. Aging Cell 2025; 24:e14361. [PMID: 39402753 PMCID: PMC11995296 DOI: 10.1111/acel.14361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/21/2024] [Accepted: 09/13/2024] [Indexed: 01/11/2025] Open
Abstract
Cellular senescence is associated with various age-related disorders and is assumed to play a major role in the pathogenesis of osteoarthritis (OA). Based on this, we tested a senolytic combination therapy using Dasatinib (D) and Quercetin (Q) on aged isolated human articular chondrocytes (hACs), as well as in OA-affected cartilage tissue (OARSI grade 1-2). Stimulation with D + Q selectively eliminated senescent cells in both, cartilage explants and isolated hAC. Furthermore, the therapy significantly promoted chondroanabolism, as demonstrated by increased gene expression levels of COL2A1, ACAN, and SOX9, as well as elevated collagen type II and glycosaminoglycan biosynthesis. Additionally, D + Q treatment significantly reduced the release of SASP factors (IL6, CXCL1). RNA sequencing analysis revealed an upregulation of the anabolic factors, inter alia, FGF18, IGF1, and TGFB2, as well as inhibitory effects on cytokines and the YAP-1 signaling pathway, explaining the underlying mechanism of the chondroanabolic promotion upon senolytic treatment. Accordingly, stimulation of untreated hAC with conditioned medium of D + Q-treated cells similarly induced the expression of chondrogenic markers. Detailed analyses demonstrated that chondroanabolic effects could be mainly attributed to Dasatinib, while monotherapeutical application of Quercetin or Navitoclax did not promote the chondroanabolism. Overall, D + Q therapy restored the chondrogenic phenotype in OA hAC most likely by creating a pro-chondroanabolic environment through the reduction of SASP factors and upregulation of growth factors. This senolytic approach could therefore be a promising candidate for further testing as a disease-modifying osteoarthritis drug.
Collapse
Affiliation(s)
- Svenja Maurer
- Division for Biochemistry of Joint and Connective Tissue Diseases, Department of OrthopedicsUniversity of UlmUlmGermany
| | - Valeria Kirsch
- Division for Biochemistry of Joint and Connective Tissue Diseases, Department of OrthopedicsUniversity of UlmUlmGermany
| | - Leonie Ruths
- Division for Biochemistry of Joint and Connective Tissue Diseases, Department of OrthopedicsUniversity of UlmUlmGermany
| | - Rolf E. Brenner
- Division for Biochemistry of Joint and Connective Tissue Diseases, Department of OrthopedicsUniversity of UlmUlmGermany
| | - Jana Riegger
- Division for Biochemistry of Joint and Connective Tissue Diseases, Department of OrthopedicsUniversity of UlmUlmGermany
| |
Collapse
|
118
|
Nakanishi M. Cellular senescence as a source of chronic microinflammation that promotes the aging process. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2025; 101:224-237. [PMID: 40222899 DOI: 10.2183/pjab.101.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Why and how do we age? This physiological phenomenon that we all experience remains a great mystery, largely unexplained even in this age of scientific and technological progress. Aging is a significant risk factor for numerous diseases, including cancer. However, underlying mechanisms responsible for this association remain to be elucidated. Recent findings have elucidated the significance of the accumulation of senescent cells and other inflammatory cells in organs and tissues with age, and their deleterious effects, such as the induction of inflammation in the microenvironment, as underlying factors contributing to organ dysfunction and disease development. Cellular senescence is a cellular phenomenon characterized by a permanent cessation of cell proliferation and secretion of several proinflammatory cytokines (senescence associated secretory phenotypes). Notably, the elimination of senescent cells from aging individuals has been demonstrated to alleviate age-related organ and tissue dysfunction, as well as various geriatric diseases. This review summarizes the molecular mechanisms by which senescent cells are induced and contribute to age-related diseases, as well as the technologies that ameliorate them.
Collapse
Affiliation(s)
- Makoto Nakanishi
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| |
Collapse
|
119
|
Pratsinis H, Mavrogonatou E, Zervou SK, Triantis T, Hiskia A, Kletsas D. Natural Product-Derived Senotherapeutics: Extraction and Biological Evaluation Techniques. Methods Mol Biol 2025; 2906:315-359. [PMID: 40082365 DOI: 10.1007/978-1-0716-4426-3_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Selective targeting of senescent cells has been thus far considered a widespread preventive strategy, as well as a main or adjuvant therapy for age-associated diseases, fueling the research on the discovery of senotherapeutics (i.e., senolytic or senomorphic compounds). Given that until now no single senotherapeutic has been reported to exert a universal anti-senescence action due to the cell- /tissue-, and context-dependent specificity of such compounds, seeking novel selective senotherapeutics remains of great importance. In this chapter, a research strategy that could be followed to screen natural product collections for putative senotherapeutics with enhanced specificity and reduced toxicity is presented, from the extraction of the source material and the isolation and chemical characterization of the compounds of interest to their biological evaluation in vitro and in vivo.
Collapse
Affiliation(s)
- Harris Pratsinis
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Eleni Mavrogonatou
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Sevasti-Kiriaki Zervou
- Laboratory of Photo-Catalytic Processes and Environmental Chemistry, Institute of Nanoscience and Nanotechnology, National Centre of Scientific Research "Demokritos", Athens, Greece
| | - Theodoros Triantis
- Laboratory of Photo-Catalytic Processes and Environmental Chemistry, Institute of Nanoscience and Nanotechnology, National Centre of Scientific Research "Demokritos", Athens, Greece
| | - Anastasia Hiskia
- Laboratory of Photo-Catalytic Processes and Environmental Chemistry, Institute of Nanoscience and Nanotechnology, National Centre of Scientific Research "Demokritos", Athens, Greece
| | - Dimitris Kletsas
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece.
| |
Collapse
|
120
|
Yang Y, Fan L, Li M, Wang Z. Immune senescence: A key player in cancer biology. Semin Cancer Biol 2025; 108:71-82. [PMID: 39675646 DOI: 10.1016/j.semcancer.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/30/2024] [Accepted: 12/10/2024] [Indexed: 12/17/2024]
Abstract
With the rapid development of immunological techniques in recent years, our understanding of immune senescence has gradually deepened, but the role of immune senescence in cancer biology remains incompletely elucidated. Understanding these mechanisms and interactions is crucial for the development of tumor biology. This review examines five key areas: the classification and main features of immune senescence, factors influencing immune cell senescence in cancer, the reciprocal causal cycle between immune senescence and malignancy, and the potential of immune senescence as a target for cancer immunotherapy.
Collapse
Affiliation(s)
- Yanru Yang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, School of Basic Medicine and Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Linni Fan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, School of Basic Medicine and Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Mingyang Li
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, School of Basic Medicine and Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhe Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, School of Basic Medicine and Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
121
|
Magkouta S, Veroutis D, Papaspyropoulos A, Georgiou M, Lougiakis N, Pippa N, Havaki S, Palaiologou A, Thanos DF, Kambas K, Lagopati N, Boukos N, Pouli N, Marakos P, Kotsinas A, Thanos D, Evangelou K, Sampaziotis F, Tamvakopoulos C, Pispas S, Petty R, Kotopoulos N, Gorgoulis VG. Generation of a selective senolytic platform using a micelle-encapsulated Sudan Black B conjugated analog. NATURE AGING 2025; 5:162-175. [PMID: 39730824 PMCID: PMC11754095 DOI: 10.1038/s43587-024-00747-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/14/2024] [Indexed: 12/29/2024]
Abstract
The emerging field of senolytics is centered on eliminating senescent cells to block their contribution to the progression of age-related diseases, including cancer, and to facilitate healthy aging. Enhancing the selectivity of senolytic treatments toward senescent cells stands to reduce the adverse effects associated with existing senolytic interventions. Taking advantage of lipofuscin accumulation in senescent cells, we describe here the development of a highly efficient senolytic platform consisting of a lipofuscin-binding domain scaffold, which can be conjugated with a senolytic drug via an ester bond. As a proof of concept, we present the generation of GL392, a senolytic compound that carries a dasatinib senolytic moiety. Encapsulation of the GL392 compound in a micelle nanocarrier (termed mGL392) allows for both in vitro and in vivo (in mice) selective elimination of senescent cells via targeted release of the senolytic agent with minimal systemic toxicity. Our findings suggest that this platform could be used to enhance targeting of senotherapeutics toward senescent cells.
Collapse
Affiliation(s)
- Sophia Magkouta
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Marianthi Simou and G.P. Livanos Labs, 1st Department of Critical Care and Pulmonary Services, School of Medicine, National & Kapodistrian University of Athens,'Evangelismos' Hospital, Athens, Greece
- Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Dimitris Veroutis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Angelos Papaspyropoulos
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Georgiou
- Division of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens, Greece
| | - Nikolaos Lougiakis
- Division of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens, Greece
| | - Natassa Pippa
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, Athens, Greece
| | - Sophia Havaki
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasia Palaiologou
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Dimitris-Foivos Thanos
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Nefeli Lagopati
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Nikos Boukos
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research 'Demokritos', Agia Paraskevi, Greece
| | - Nicole Pouli
- Division of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens, Greece
| | - Panagiotis Marakos
- Division of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens, Greece
| | - Athanassios Kotsinas
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitris Thanos
- Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Konstantinos Evangelou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Fotios Sampaziotis
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK
- Cambridge Liver Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Constantin Tamvakopoulos
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, Athens, Greece
| | - Russell Petty
- Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Nicholas Kotopoulos
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Vassilis G Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
- Ninewells Hospital and Medical School, University of Dundee, Dundee, UK.
- Biomedical Research Foundation, Academy of Athens, Athens, Greece.
- Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK.
- Intelligencia, Inc., New York, NY, USA.
| |
Collapse
|
122
|
Franco-Caspueñas S, García-Montoya C, Contreras J, Lassaletta L, Varela-Nieto I, Jiménez-Lara AM. Uncovering cellular senescence as a therapeutic target in NF2-related vestibular schwannoma. Hear Res 2025; 455:109165. [PMID: 39647233 DOI: 10.1016/j.heares.2024.109165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024]
Abstract
BACKGROUND Vestibular schwannomas (VS) are complex and heterogeneous human tumors arising from the Schwann cell compartment of the vestibulocochlear nerve. VS cause significant neurological deficit such as hearing loss and vestibular impairment, and in some cases death due to brainstem compression. There is an urgent need to find pharmacotherapies for VS since surgical removal and stereotactic radiosurgery are the only effective treatments. Cancer therapy based in the combination of drug-induced senescence and senolytics may provide an innovative pharmacological alternative for VS management. METHODS Senescence-associated β-galactosidase (SA-β-GAL) activity detection assay, real-time polymerase chain reaction (RT-PCR), western blotting and immunofluorescence, together with viability assays were used to analyze the response to different chemotherapy drugs of the human VS HEI-193 cell line. Human VS tumor paraffin sections were also studied for SA-β-GAL-stained cells. RESULTS We found that chemotherapy compounds induced genotoxic stress and cellular senescence in HEI-193 VS cells, as characterized by increased SA-β-GAL activity, growth arrest, increased levels of the cyclin-dependent kinase inhibitor p21 and the accumulation of DNA damage. These cellular senescence markers were also accompanied by an increase of senescence-associated secretory phenotype (SASP): IL6, IL8, IL1B and MMP1. Induction of senescence by chemotherapy rendered HEI-193 VS cells as druggable targets for senolytic compounds, as navitoclax. Thus, treatment with navitoclax selectively eliminated bleomycin-induced senescent HEI-193 VS cells by activating the extrinsic and intrinsic apoptosis pathways. Our data also show the presence of senescent cells, SA-β-GAL-positive stain, in human VS tumors, which are not present in healthy great auricular nerve sections. CONCLUSIONS These findings suggest that a one-two punch strategy of pro-senescence therapy induced by chemotherapy treatment followed by senolytic therapy represents a new paradigm for the pharmacological treatment of VS.
Collapse
Affiliation(s)
- Sandra Franco-Caspueñas
- Neuropathology of Hearing and Myelinopathies Group. Institute for Biomedical Research Sols-Morreale, Spanish National Research Council, Autonomous University of Madrid (CSIC-UAM), 28029 Madrid, Spain; Rare Disease Network Biomedical Research Centre (CIBERER), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain; Hospital La Paz Institute for Health Research (IdiPAZ), 28046 Madrid, Spain
| | - Carmen García-Montoya
- Neuropathology of Hearing and Myelinopathies Group. Institute for Biomedical Research Sols-Morreale, Spanish National Research Council, Autonomous University of Madrid (CSIC-UAM), 28029 Madrid, Spain; Rare Disease Network Biomedical Research Centre (CIBERER), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - Julio Contreras
- Neuropathology of Hearing and Myelinopathies Group. Institute for Biomedical Research Sols-Morreale, Spanish National Research Council, Autonomous University of Madrid (CSIC-UAM), 28029 Madrid, Spain; Rare Disease Network Biomedical Research Centre (CIBERER), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain; Department of Anatomy, School of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Luis Lassaletta
- Rare Disease Network Biomedical Research Centre (CIBERER), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain; Hospital La Paz Institute for Health Research (IdiPAZ), 28046 Madrid, Spain; Department of Otorhinolaryngology, La Paz University Hospital, 28046 Madrid, Spain
| | - Isabel Varela-Nieto
- Neuropathology of Hearing and Myelinopathies Group. Institute for Biomedical Research Sols-Morreale, Spanish National Research Council, Autonomous University of Madrid (CSIC-UAM), 28029 Madrid, Spain; Rare Disease Network Biomedical Research Centre (CIBERER), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain; Hospital La Paz Institute for Health Research (IdiPAZ), 28046 Madrid, Spain
| | - Ana M Jiménez-Lara
- Neuropathology of Hearing and Myelinopathies Group. Institute for Biomedical Research Sols-Morreale, Spanish National Research Council, Autonomous University of Madrid (CSIC-UAM), 28029 Madrid, Spain; Hospital La Paz Institute for Health Research (IdiPAZ), 28046 Madrid, Spain.
| |
Collapse
|
123
|
Zhao J, Zheng L, Dai G, Sun Y, He R, Liu Z, Jin Y, Wu T, Hu J, Cao Y, Duan C. Senolytics cocktail dasatinib and quercetin alleviate chondrocyte senescence and facet joint osteoarthritis in mice. Spine J 2025; 25:184-198. [PMID: 39343238 DOI: 10.1016/j.spinee.2024.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/22/2024] [Accepted: 09/14/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND CONTEXT Low back pain (LBP) is a pervasive issue, causing substantial economic burden and physical distress worldwide. Facet joint osteoarthritis (FJ OA) is believed to be a significant contributor to this problem. However, the precise role of chondrocyte senescence in FJ OA remains unclear, as does whether the clearance of chondrocyte senescence can alleviate the progression of FJ OA. PURPOSE The goal of this study was to understand the potential of Dasatinib (D) and Quercetin (Q) as a treatment to clear chondrocyte senescence during the progression of FJ OA. STUDY DESIGN We used a preclinical bipedal standing mice model with the administration of Dasatinib (D) (5 mg/kg) and Quercetin (Q) (50 mg/kg) after 10 weeks of bipedal standing. MATERIALS AND METHODS Human degenerative lumbar facet joint (LFJ) samples were obtained to investigate the relationship between chondrocyte cellular senescence and LFJ osteoarthritis (OA). Subsequently, we established an in vitro model of excessive mechanical stress on chondrocytes and an in vivo bipedal standing mice model to induce LFJ OA. IHC (immunohistochemistry) staining in vivo and SA-β-gal staining, qRT-PCR and Western blot analysis were applied to test the senolytic effect of the combination of Dasatinib (D) and Quercetin (Q). IHC staining and X-ray microscope were also performed to examine the contribution of D+Q to the anabolism in cartilage and subchondral bone recoupling. Immunofluorescence and Western blot analysis in vitro and IHC staining in vivo were conducted to assess the impact of D+Q on the regulation of the NF-κB pathway activation during chondrocyte senescence. RESULTS We observed that facet joint cartilage degeneration is associated with chondrocyte cellular senescence in both human and mouse degenerative samples. Following treatment with D+Q in vitro, cellular senescence was significantly reduced. Upon oral gavage administration of D+Q in the bipedal standing mice model, decreased cellular senescence and reversed chondrocyte anabolism were observed. Furthermore, administration of D+Q maintained subchondral bone remodeling homeostasis and potentially reversed the activation of the NF-κB pathway in chondrocytes of the lumbar facet joint. CONCLUSIONS In summary, our investigation unveiled a significant correlation between chondrocyte senescence and LFJOA. Treatment with the senolytic combination of D+Q in FJ OA yielded a notable reduction in chondrocyte senescence, along with a decrease in the release of SASP factors. Additionally, it facilitated the promotion of cartilage anabolism, maintenance of subchondral bone coupling, and amelioration of NF-κB pathway activation. CLINICAL SIGNIFICANCE Our outcomes revealed that D+Q, the renowned combination used for senolytic treatment, alleviate the progression of LFJ OA. The utilization of D+Q as a senolytic demonstrates a novel and promising alternative for LFJ OA treatment.
Collapse
Affiliation(s)
- Jinyun Zhao
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Xiangya Road 87, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, China
| | - Lifu Zheng
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Xiangya Road 87, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, China
| | - Guoyu Dai
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Xiangya Road 87, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, China
| | - Yi Sun
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Xiangya Road 87, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, China
| | - Rundong He
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Xiangya Road 87, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, China
| | - Zhide Liu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Xiangya Road 87, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, China
| | - Yuxin Jin
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Xiangya Road 87, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, China
| | - Tianding Wu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Xiangya Road 87, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, China
| | - Jianzhong Hu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Xiangya Road 87, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, China
| | - Yong Cao
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Xiangya Road 87, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, China.
| | - Chunyue Duan
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Xiangya Road 87, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, China
| |
Collapse
|
124
|
McHugh D, Durán I, Gil J. Senescence as a therapeutic target in cancer and age-related diseases. Nat Rev Drug Discov 2025; 24:57-71. [PMID: 39548312 DOI: 10.1038/s41573-024-01074-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2024] [Indexed: 11/17/2024]
Abstract
Cellular senescence is a stress response that restrains the growth of aged, damaged or abnormal cells. Thus, senescence has a crucial role in development, tissue maintenance and cancer prevention. However, lingering senescent cells fuel chronic inflammation through the acquisition of a senescence-associated secretory phenotype (SASP), which contributes to cancer and age-related tissue dysfunction. Recent progress in understanding senescence has spurred interest in the development of approaches to target senescent cells, known as senotherapies. In this Review, we evaluate the status of various types of senotherapies, including senolytics that eliminate senescent cells, senomorphics that suppress the SASP, interventions that mitigate senescence and strategies that harness the immune system to clear senescent cells. We also summarize how these approaches can be combined with cancer therapies, and we discuss the challenges and opportunities in moving senotherapies into clinical practice. Such therapies have the potential to address root causes of age-related diseases and thus open new avenues for preventive therapies and treating multimorbidities.
Collapse
Affiliation(s)
- Domhnall McHugh
- Senescence Group, MRC Laboratory of Medical Sciences (LMS), London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Imanol Durán
- Senescence Group, MRC Laboratory of Medical Sciences (LMS), London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Jesús Gil
- Senescence Group, MRC Laboratory of Medical Sciences (LMS), London, UK.
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
125
|
Schini-Kerth VB, Diouf I, Muzammel H, Said A, Auger C. Natural Products to Promote Vascular Health. Handb Exp Pharmacol 2025; 287:33-60. [PMID: 39317849 DOI: 10.1007/164_2024_721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Maintaining good vascular health is a major component in healthy ageing as it reduces the risk of cardiovascular diseases. Endothelial dysfunction, in particular, is a key mechanism in the development of major cardiovascular diseases including hypertension, atherosclerosis and diabetes. Recently, endothelial senescence has emerged as a pivotal early event in age-related endothelial dysfunction. Endothelial function is characterized by an imbalance between the endothelial formation of vasoprotective mechanisms, including the formation of nitric oxide (NO) and endothelium-dependent hyperpolarization responses, and an increased level of oxidative stress involving several pro-oxidant enzymes such as NADPH oxidases and, often also, the appearance of cyclooxygenase-derived vasoconstrictors. Pre-clinical studies have indicated that natural products, in particular several polyphenol-rich foods, can trigger activating pathways in endothelial cells promoting an increased formation of NO and endothelium-dependent hyperpolarization. In addition, some can even exert beneficial effects on endothelial senescence. Moreover, some of these products have been associated with the prevention and/or improvement of established endothelial dysfunction in several experimental models of cardiovascular diseases and in humans with cardiovascular diseases. Therefore, intake of certain natural products, such as dietary and plant-derived polyphenol-rich products, appears to be an attractive approach for a healthy vascular system in ageing.
Collapse
Affiliation(s)
- Valérie B Schini-Kerth
- Translational Cardiovascular Medicine, UR 3074, CRBS, University of Strasbourg, Strasbourg, France.
| | - Ibrahima Diouf
- Translational Cardiovascular Medicine, UR 3074, CRBS, University of Strasbourg, Strasbourg, France
| | - Hira Muzammel
- Translational Cardiovascular Medicine, UR 3074, CRBS, University of Strasbourg, Strasbourg, France
| | - Amissi Said
- Translational Cardiovascular Medicine, UR 3074, CRBS, University of Strasbourg, Strasbourg, France
| | - Cyril Auger
- Regenerative Nanomedicine, INSERM UMR 1260, CRBS, University of Strasbourg, Strasbourg, France
| |
Collapse
|
126
|
Nath KA, Juncos LA, Singh RD, Grande JP, Croatt AJ, Ackerman AW, Kanamori KS, Adams CM, Tchkonia T, Kirkland JL, Katusic ZS. The Occurrence of Senescence in the Arteriovenous Fistula in the Rat. KIDNEY360 2025; 6:27-37. [PMID: 39418108 PMCID: PMC11793188 DOI: 10.34067/kid.0000000605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024]
Abstract
Key Points The rat arteriovenous fistula (AVF) model exhibits marked upregulation of p16Ink4a and p21Cip1 and multiple markers of senescence. Fisetin, an established vasoprotective senolytic agent, when administered for 3 weeks, increases AVF blood flow and AVF outward remodeling. Heme is shown to be a novel prosenescence metabolite, and when chronically administered, it decreases AVF blood flow. Background Maturational failure of dialysis arteriovenous fistulas (AVFs) not uncommonly occurs and is of considerable and timely importance. Our prior studies demonstrate that senescence, a phenotypic process that promotes vascular and other diseases, occurs in the murine AVF. In this study, we examined whether senescence also occurs in the rat AVF model and the effect of compounds that inhibit or accelerate senescence. Methods The rat AVF was created in the femoral vessels by an end vein-side artery anastomosis. In the AVF, we assessed the expression of critical drivers of senescence, specifically, the cell cycle inhibitors p16Ink4a and p21Cip1, and such indices of a senescence phenotype as senescence-associated β -galactosidase (SA-β -gal) activity, SA-β -gal staining, and a senescence-associated secretory phenotype. We examined the effects of compounds that retard or accelerate senescence on AVF blood flow. Results The AVF evinced upregulation of p16Ink4a and p21Cip1 when assessed 3 days after AVF creation. The AVF also demonstrated increased SA-β -gal activity in the artery and vein; staining for SA-β -gal in the AVF artery, anastomosis, and vein; and a prominent senescence-associated secretory phenotype. Fisetin, an established senolytic that is protective in other models of vascular injury, when administered for 3 weeks, increased AVF blood flow and outward remodeling. Hemin, when administered for 3 weeks, decreased AVF blood flow. We demonstrate that hemin is a novel inducer of a senescence phenotype in endothelial cells, as reflected by several senescence indices. However, when administered relatively acutely (for 5 days), hemin increased AVF blood flow by heme oxygenase–dependent mechanisms because the latter was entirely prevented by a competitive inhibitor of heme oxygenase activity. Conclusions The rat AVF exhibits senescence within 3 days of its creation. Chronic administration of a senolytic compound (fisetin) increases AVF blood flow, whereas chronic administration of a prosenescence compound (hemin) decreases AVF blood flow.
Collapse
Affiliation(s)
- Karl A. Nath
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Luis A. Juncos
- University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Raman Deep Singh
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Joseph P. Grande
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Anthony J. Croatt
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Allan W. Ackerman
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Karina S. Kanamori
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Christopher M. Adams
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Tamara Tchkonia
- Division of Endocrinology, Department of Medicine, Center for Advanced Gerotherapeutics, Cedars-Sinai Health Sciences Center, Los Angeles, California
| | - James L. Kirkland
- Division of Endocrinology, Department of Medicine, Center for Advanced Gerotherapeutics, Cedars-Sinai Health Sciences Center, Los Angeles, California
| | - Zvonimir S. Katusic
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
127
|
de Oliveira Silva T, Lunardon G, Lino CA, de Almeida Silva A, Zhang S, Irigoyen MCC, Lu YW, Mably JD, Barreto-Chaves MLM, Wang DZ, Diniz GP. Senescent cell depletion alleviates obesity-related metabolic and cardiac disorders. Mol Metab 2025; 91:102065. [PMID: 39557194 PMCID: PMC11636344 DOI: 10.1016/j.molmet.2024.102065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/06/2024] [Accepted: 11/07/2024] [Indexed: 11/20/2024] Open
Abstract
Obesity is a major contributor to metabolic and cardiovascular disease. Although senescent cells have been shown to accumulate in adipose tissue, the role of senescence in obesity-induced metabolic disorders and in cardiac dysfunction is not yet clear; therefore, the therapeutic potential of managing senescence in obesity-related metabolic and cardiac disorders remains to be fully defined. OBJECTIVE We investigated the beneficial effects of a senolytic cocktail (dasatinib and quercetin) on senescence and its influence on obesity-related parameters. METHODS AND RESULTS We found that the increase in body weight and adiposity, glucose intolerance, insulin resistance, dyslipidemia, hyperleptinemia, and hepatic disorders which were induced by an obesogenic diet were alleviated by senolytic cocktail treatment in mice. Treatment with senolytic compounds eliminated senescent cells, counteracting the activation of the senescence program and DNA damage in white adipose tissue (WAT) observed with an obesogenic diet. Moreover, the senolytic cocktail prevented the brown adipose tissue (BAT) whitening and increased the expression of the thermogenic gene profile in BAT and pWAT. In the hearts of obese mice, senolytic combination abolished myocardial maladaptation, reducing the senescence-associated secretory phenotype (SASP) and DNA damage, repressing cardiac hypertrophy, and improving diastolic dysfunction. Additionally, we showed that treatment with the senolytic cocktail corrected gene expression programs associated with fatty acid metabolism, oxidative phosphorylation, the P53 pathway, and DNA repair, which were all downregulated in obese mice. CONCLUSIONS Collectively, these data suggest that a senolytic cocktail can prevent the activation of the senescence program in the heart and WAT and activate the thermogenic program in BAT. Our results suggest that targeting senescent cells may be a novel therapeutic strategy for alleviating obesity-related metabolic and cardiac disorders.
Collapse
Affiliation(s)
- Tábatha de Oliveira Silva
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil; Center for Regenerative Medicine, USF Health Heart Institute, University of South Florida, Tampa, FL, USA
| | - Guilherme Lunardon
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Caroline A Lino
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Amanda de Almeida Silva
- Hypertension Unit, Heart Institute (InCor), School of Medicine, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Shiju Zhang
- Center for Regenerative Medicine, USF Health Heart Institute, University of South Florida, Tampa, FL, USA
| | | | - Yao Wei Lu
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Medicine, and Hastings Center for Pulmonary Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - John D Mably
- Center for Regenerative Medicine, USF Health Heart Institute, University of South Florida, Tampa, FL, USA
| | | | - Da-Zhi Wang
- Center for Regenerative Medicine, USF Health Heart Institute, University of South Florida, Tampa, FL, USA
| | - Gabriela P Diniz
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil; Center for Regenerative Medicine, USF Health Heart Institute, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
128
|
Wang Y, Li Z, Xu X, Li X, Huang R, Wu G. Construction and validation of a senescence-related gene signature for early prediction and treatment of osteoarthritis based on bioinformatics analysis. Sci Rep 2024; 14:31862. [PMID: 39738612 PMCID: PMC11686076 DOI: 10.1038/s41598-024-83268-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 12/12/2024] [Indexed: 01/02/2025] Open
Abstract
The aim of this study is to screen key target genes of osteoarthritis associated with aging and to preliminarily explore the associated immune infiltration cells and potential drugs. Differentially expressed senescence-related genes (DESRGs) selected from Cellular senescence-related genes (SRGs) and differentially expressed genes (DEGs) were analyzed using Gene Ontology enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and protein-protein interaction networks. Hub genes in DESRGs were selected based on degree, and diagnostic genes were further screened by gene expression and receiver operating characteristic (ROC) curve. CIBERSORTx and ssGSEA algorithms were then used to assess immune cell infiltration and to analyse the correlation between key DESRGs and immune infiltration. Finally, a miRNA-gene network of diagnostic genes was constructed and targeted drug prediction was performed. Combined with the DEGs and SRGs, we screened 19 DESRGs for further study. Five diagnostic genes were ultimately identified: CDKN1A, VEGFA, MCL1, SNAI1 and MYC. ROC analysis showed that the area under the curve (AUC). Correlation analysis showed that the five hub genes were closely associated with neutrophil, plasmacytoid dendritic cell, activated CD4 T-cell and type 2 T-helper cell infiltration in the development of Osteoarthritis (OA). Finally, we found that drugs such as lithium chloride, acetaminophen, curcumin, celecoxib and resveratrol could be targeted for the treatment of senescence-related OA. The results of this study indicate that CDKN1A, VEGFA, MCL1, SNAI1, and MYC are key biomarkers that can be used to predict and prevent early aging-related OA. Lithium chloride, acetaminophen, curcumin, celecoxib, and resveratrol can be used for personalized treatment of aging-related OA.
Collapse
Affiliation(s)
- Yonggang Wang
- Department of Spinal Surgery, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei, China
| | - Zhihao Li
- Department of Spinal Surgery, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei, China
| | - Xiaolong Xu
- Department of Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xin Li
- Department of Orthopedics, Southern University of Science and Technology Hospital, Shenzhen, Guangdong, China
| | - Rongxiang Huang
- Department of Orthopedics, Southern University of Science and Technology Hospital, Shenzhen, Guangdong, China.
- Graduate School, Jinan University, Guangzhou, Guangdong, China.
| | - Guofeng Wu
- Department of Orthopedics, Southern University of Science and Technology Hospital, Shenzhen, Guangdong, China.
| |
Collapse
|
129
|
Chen J, Li H, Liang R, Huang Y, Tang Q. Aging through the lens of mitochondrial DNA mutations and inheritance paradoxes. Biogerontology 2024; 26:33. [PMID: 39729246 DOI: 10.1007/s10522-024-10175-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
Mitochondrial DNA encodes essential components of the respiratory chain complexes, serving as the foundation of mitochondrial respiratory function. Mutations in mtDNA primarily impair energy metabolism, exerting far-reaching effects on cellular physiology, particularly in the context of aging. The intrinsic vulnerability of mtDNA is increasingly recognized as a key driver in the initiation of aging and the progression of its related diseases. In the field of aging research, it is critical to unravel the intricate mechanisms underpinning mtDNA mutations in living organisms and to elucidate the pathological consequences they trigger. Interestingly, certain effects, such as oxidative stress and apoptosis, may not universally accelerate aging as traditionally perceived. These phenomena demand deeper investigation and a more nuanced reinterpretation of current findings to address persistent scientific uncertainties. By synthesizing recent insights, this review seeks to clarify how pathogenic mtDNA mutations drive cellular senescence and systemic health deterioration, while also exploring the complex dynamics of mtDNA inheritance that may propagate these mutations. Such a comprehensive understanding could ultimately inform the development of innovative therapeutic strategies to counteract mitochondrial dysfunctions associated with aging.
Collapse
Affiliation(s)
- Jia Chen
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hongyu Li
- Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Runyu Liang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yongyin Huang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qiang Tang
- Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China.
| |
Collapse
|
130
|
Burdusel D, Doeppner TR, Surugiu R, Hermann DM, Olaru DG, Popa-Wagner A. The Intersection of Epigenetics and Senolytics in Mechanisms of Aging and Therapeutic Approaches. Biomolecules 2024; 15:18. [PMID: 39858413 PMCID: PMC11762397 DOI: 10.3390/biom15010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/11/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025] Open
Abstract
The biological process of aging is influenced by a complex interplay of genetic, environmental, and epigenetic factors. Recent advancements in the fields of epigenetics and senolytics offer promising avenues for understanding and addressing age-related diseases. Epigenetics refers to heritable changes in gene expression without altering the DNA sequence, with mechanisms like DNA methylation, histone modification, and non-coding RNA regulation playing critical roles in aging. Senolytics, a class of drugs targeting and eliminating senescent cells, address the accumulation of dysfunctional cells that contribute to tissue degradation and chronic inflammation through the senescence-associated secretory phenotype. This scoping review examines the intersection of epigenetic mechanisms and senolytic therapies in aging, focusing on their combined potential for therapeutic interventions. Senescent cells display distinct epigenetic signatures, such as DNA hypermethylation and histone modifications, which can be targeted to enhance senolytic efficacy. Epigenetic reprogramming strategies, such as induced pluripotent stem cells, may further complement senolytics by rejuvenating aged cells. Integrating epigenetic modulation with senolytic therapy offers a dual approach to improving healthspan and mitigating age-related pathologies. This narrative review underscores the need for continued research into the molecular mechanisms underlying these interactions and suggests future directions for therapeutic development, including clinical trials, biomarker discovery, and combination therapies that synergistically target aging processes.
Collapse
Affiliation(s)
- Daiana Burdusel
- Experimental Research Center for Normal and Pathological Aging, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania; (D.B.); (R.S.); (D.M.H.)
| | - Thorsten R. Doeppner
- Department of Neurology, University of Giessen Medical School, 35392 Giessen, Germany;
- Department of Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Roxana Surugiu
- Experimental Research Center for Normal and Pathological Aging, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania; (D.B.); (R.S.); (D.M.H.)
| | - Dirk M. Hermann
- Experimental Research Center for Normal and Pathological Aging, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania; (D.B.); (R.S.); (D.M.H.)
- Chair of Vascular Neurology and Dementia, Department of Neurology, University Hospital Essen, 45147 Essen, Germany
| | - Denissa Greta Olaru
- Experimental Research Center for Normal and Pathological Aging, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania; (D.B.); (R.S.); (D.M.H.)
| | - Aurel Popa-Wagner
- Experimental Research Center for Normal and Pathological Aging, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania; (D.B.); (R.S.); (D.M.H.)
- Chair of Vascular Neurology and Dementia, Department of Neurology, University Hospital Essen, 45147 Essen, Germany
| |
Collapse
|
131
|
Miyajima C, Nagasaka M, Aoki H, Toriuchi K, Yamanaka S, Hashiguchi S, Morishita D, Aoyama M, Hayashi H, Inoue Y. The Hippo Signaling Pathway Manipulates Cellular Senescence. Cells 2024; 14:13. [PMID: 39791714 PMCID: PMC11719916 DOI: 10.3390/cells14010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/21/2024] [Accepted: 12/24/2024] [Indexed: 01/12/2025] Open
Abstract
The Hippo pathway, a kinase cascade, coordinates with many intracellular signals and mediates the regulation of the activities of various downstream transcription factors and their coactivators to maintain homeostasis. Therefore, the aberrant activation of the Hippo pathway and its associated molecules imposes significant stress on tissues and cells, leading to cancer, immune disorders, and a number of diseases. Cellular senescence, the mechanism by which cells counteract stress, prevents cells from unnecessary damage and leads to sustained cell cycle arrest. It acts as a powerful defense mechanism against normal organ development and aging-related diseases. On the other hand, the accumulation of senescent cells without their proper removal contributes to the development or worsening of cancer and age-related diseases. A correlation was recently reported between the Hippo pathway and cellular senescence, which preserves tissue homeostasis. This review is the first to describe the close relationship between aging and the Hippo pathway, and provides insights into the mechanisms of aging and the development of age-related diseases. In addition, it describes advanced findings that may lead to the development of tissue regeneration therapies and drugs targeting rejuvenation.
Collapse
Affiliation(s)
- Chiharu Miyajima
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan; (M.N.); (S.Y.); (S.H.); (D.M.); (H.H.)
| | - Mai Nagasaka
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan; (M.N.); (S.Y.); (S.H.); (D.M.); (H.H.)
- Department of Experimental Chemotherapy, Cancer Chemotherapy Center of JFCR, Tokyo 135-8550, Japan
| | - Hiromasa Aoki
- Department of Pathobiology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan; (H.A.); (K.T.); (M.A.)
| | - Kohki Toriuchi
- Department of Pathobiology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan; (H.A.); (K.T.); (M.A.)
| | - Shogo Yamanaka
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan; (M.N.); (S.Y.); (S.H.); (D.M.); (H.H.)
| | - Sakura Hashiguchi
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan; (M.N.); (S.Y.); (S.H.); (D.M.); (H.H.)
| | - Daisuke Morishita
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan; (M.N.); (S.Y.); (S.H.); (D.M.); (H.H.)
| | - Mineyoshi Aoyama
- Department of Pathobiology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan; (H.A.); (K.T.); (M.A.)
| | - Hidetoshi Hayashi
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan; (M.N.); (S.Y.); (S.H.); (D.M.); (H.H.)
| | - Yasumichi Inoue
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan; (M.N.); (S.Y.); (S.H.); (D.M.); (H.H.)
| |
Collapse
|
132
|
Hejazian SM, Hejazian SS, Mostafavi SM, Hosseiniyan SM, Montazersaheb S, Ardalan M, Zununi Vahed S, Barzegari A. Targeting cellular senescence in kidney diseases and aging: A focus on mesenchymal stem cells and their paracrine factors. Cell Commun Signal 2024; 22:609. [PMID: 39696575 DOI: 10.1186/s12964-024-01968-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024] Open
Abstract
Cellular senescence is a phenomenon distinguished by the halting of cellular division, typically triggered by DNA injury or numerous stress-inducing factors. Cellular senescence is implicated in various pathological and physiological processes and is a hallmark of aging. The presence of accumulated senescent cells, whether transiently (acute senescence) or persistently (chronic senescence) plays a dual role in various conditions such as natural kidney aging and different kidney disorders. Elevations in senescent cells and senescence-associated secretory phenotype (SASP) levels correlate with decreased kidney function, kidney ailments, and age-related conditions. Strategies involving senotherapeutic agents like senolytics, senomorphics, and senoinflammation have been devised to specifically target senescent cells. Mesenchymal stem cells (MSCs) and their secreted factors may also offer alternative approaches for anti-senescence interventions. The MSC-derived secretome compromises significant therapeutic benefits in kidney diseases by facilitating tissue repair via anti-inflammatory, anti-fibrosis, anti-apoptotic, and pro-angiogenesis effects, thereby improving kidney function and mitigating disease progression. Moreover, by promoting the clearance of senescent cells or modulating their secretory profiles, MSCs could potentially reverse some age-related declines in kidney function.This review article intends to shed light on the present discoveries concerning the role of cellular senescence in kidney aging and diseases. Furthermore, it outlines the role of senotherapeutics utilized to alleviate kidney damage and aging. It also highlights the possible impact of MSCs secretome on mitigating kidney injury and prolonging lifespan across various models of kidney diseases as a novel senotherapy.
Collapse
Affiliation(s)
| | - Seyyed Sina Hejazian
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyyedeh Mina Mostafavi
- Ayatollah Taleghani Hospital, Research Development Unit, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Soheila Montazersaheb
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Abolfazl Barzegari
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
133
|
Auger C, Muzammel H, Diouf I, Schini-Kerth VB. Potential of Anthocyanin-rich Products to Prevent and Improve Endothelial Function and Senescence: Focus on Anthocyanins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27590-27618. [PMID: 39629614 DOI: 10.1021/acs.jafc.4c04727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Endothelial dysfunction is a pivotal early event in the development of major cardiovascular diseases including hypertension, atherosclerosis, diabetes, and aging. The alteration of the endothelial function is often triggered by an imbalance between the endothelial formation of vasoprotective factors, including nitric oxide (NO) and endothelium-dependent hyperpolarization (EDH), and vasocontracting factors, such as arachidonic acid-derived mediators generated by cyclooxygenases, and an increased level of oxidative stress. Recently, endothelial senescence was reported to be an early trigger of endothelial dysfunction. Preclinical studies indicate that polyphenol-rich food, including anthocyanin-rich products, can activate pathways promoting an increased formation of vasoprotective factors and can prevent the induction of endothelial dysfunction in endothelial cells and isolated blood vessels. Similarly, intake of anthocyanin-rich products has been associated with the prevention and/or the improvement of an endothelial dysfunction in several experimental models of cardiovascular diseases, including physiological aging. Moreover, clinical data indicate that polyphenol-rich and anthocyanin-rich products can improve endothelial function and vascular health in humans with cardiovascular diseases. The present review will discuss both experimental and clinical evidence indicating that several polyphenol-rich foods and natural products, and especially anthocyanin-rich products, can promote endothelial and vascular health, as well as the underlying mechanisms.
Collapse
Affiliation(s)
- Cyril Auger
- University of Strasbourg, INSERM, Regenerative Nanomedicine UMR 1260, 67000 Strasbourg, France
| | - Hira Muzammel
- University of Strasbourg, Translational Cardiovascular Medicine UR 3074, 67000 Strasbourg, France
| | - Ibrahima Diouf
- University of Strasbourg, Translational Cardiovascular Medicine UR 3074, 67000 Strasbourg, France
| | - Valérie B Schini-Kerth
- University of Strasbourg, Translational Cardiovascular Medicine UR 3074, 67000 Strasbourg, France
| |
Collapse
|
134
|
Dehghan N, Mousavikia SN, Qasempour Y, Azimian H. Radiation-induced senescence in glioblastoma: An overview of the mechanisms and eradication strategies. Life Sci 2024; 359:123218. [PMID: 39510171 DOI: 10.1016/j.lfs.2024.123218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/29/2024] [Accepted: 11/02/2024] [Indexed: 11/15/2024]
Abstract
Radiotherapy as a treatment method for glioblastoma is limited due to the intrinsic apoptosis resistance mechanisms of the tumor. Administration of higher radiation doses contributes to toxicities in normal tissues and organs at risk, like optic chiasma. Cellular senescence represents an alternative mechanism to apoptosis following radiotherapy in glioblastoma, occurring in both normal and neoplastic cells. Although it impedes the growth of tumors and sustains cells in their cycle, it can also act as a cause of tumor development and recurrence following treatment. In this review, we discuss detailed insights into the significance of radiation-induced senescence in glioblastoma and the underlying mechanisms that lead to radioresistance. We also discuss senescence biomarkers and the role of senescence-associated secretory phenotype (SASP) in tumor recurrence. Finally, we review the studies that have administered potential interventions to eradicate or inhibit senescent cells in glioblastoma after treatment with radiation.
Collapse
Affiliation(s)
- Neda Dehghan
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Nasibeh Mousavikia
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Physics Research Center, Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Younes Qasempour
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hosein Azimian
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Physics Research Center, Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
135
|
Huang Z, Xu P, Hess DC, Zhang Q. Cellular senescence as a key contributor to secondary neurodegeneration in traumatic brain injury and stroke. Transl Neurodegener 2024; 13:61. [PMID: 39668354 PMCID: PMC11636056 DOI: 10.1186/s40035-024-00457-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/21/2024] [Indexed: 12/14/2024] Open
Abstract
Traumatic brain injury (TBI) and stroke pose major health challenges, impacting millions of individuals globally. Once considered solely acute events, these neurological conditions are now recognized as enduring pathological processes with long-term consequences, including an increased susceptibility to neurodegeneration. However, effective strategies to counteract their devastating consequences are still lacking. Cellular senescence, marked by irreversible cell-cycle arrest, is emerging as a crucial factor in various neurodegenerative diseases. Recent research further reveals that cellular senescence may be a potential driver for secondary neurodegeneration following brain injury. Herein, we synthesize emerging evidence that TBI and stroke drive the accumulation of senescent cells in the brain. The rationale for targeting senescent cells as a therapeutic approach to combat neurodegeneration following TBI/stroke is outlined. From a translational perspective, we emphasize current knowledge and future directions of senolytic therapy for these neurological conditions.
Collapse
Affiliation(s)
- Zhihai Huang
- Department of Neurology, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71103, USA
| | - Peisheng Xu
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, 715 Sumter, Columbia, SC, 29208, USA
| | - David C Hess
- Department of Neurology, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Quanguang Zhang
- Department of Neurology, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA.
| |
Collapse
|
136
|
Roato I, Visca M, Mussano F. Suppressing the Aging Phenotype of Mesenchymal Stromal Cells: Are We Ready for Clinical Translation? Biomedicines 2024; 12:2811. [PMID: 39767719 PMCID: PMC11673080 DOI: 10.3390/biomedicines12122811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are involved in the maintenance and regeneration of a large variety of tissues due to their stemness and multi-lineage differentiation capability. Harnessing these advantageous features, a flurry of clinical trials have focused on MSCs to treat different pathologies, but only few protocols have received regulatory approval so far. Among the various causes hindering MSCs' efficacy is the emergence of cellular senescence, which has been correlated with specific characteristics, such as morphological and epigenetic alterations, DNA damage, ROS production, mitochondrial dysfunction, telomere shortening, non-coding RNAs, loss of proteostasis, and a peculiar senescence-associated secretory phenotype. Several strategies have been investigated for delaying or even hopefully reverting the onset of senescence, as assessed by the senescent phenotype of MSCs. Here, the authors reviewed the most updated literature on the potential causes of senescence, with a particular emphasis on the current and future therapeutic approaches aimed at reverting senescence and/or extending the functional lifespan of stem cells.
Collapse
Affiliation(s)
- Ilaria Roato
- Department of Surgical Sciences, CIR-Dental School, University of Turin, 10126 Turin, Italy; (M.V.); (F.M.)
| | | | | |
Collapse
|
137
|
Vasilieva MI, Shatalova RO, Matveeva KS, Shindyapin VV, Minskaia E, Ivanov RA, Shevyrev DV. Senolytic Vaccines from the Central and Peripheral Tolerance Perspective. Vaccines (Basel) 2024; 12:1389. [PMID: 39772050 PMCID: PMC11680330 DOI: 10.3390/vaccines12121389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/02/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Preventive medicine has proven its long-term effectiveness and economic feasibility. Over the last century, vaccination has saved more lives than any other medical technology. At present, preventative measures against most infectious diseases are successfully used worldwide; in addition, vaccination platforms against oncological and even autoimmune diseases are being actively developed. At the same time, the development of medicine led to an increase in both life expectancy and the proportion of age-associated diseases, which pose a heavy socio-economic burden. In this context, the development of vaccine-based approaches for the prevention or treatment of age-related diseases opens up broad prospects for extending the period of active longevity and has high economic potential. It is well known that the development of age-related diseases is associated with the accumulation of senescent cells in various organs and tissues. It has been demonstrated that the elimination of such cells leads to the restoration of functions, rejuvenation, and extension of the lives of experimental animals. However, the development of vaccines against senescent cells is complicated by their antigenic heterogeneity and the lack of a unique marker. In addition, senescent cells are the body's own cells, which may be the reason for their low immunogenicity. This mini-review discusses the mechanisms of central and peripheral tolerance that may influence the formation of an anti-senescent immune response and be responsible for the accumulation of senescent cells with age.
Collapse
Affiliation(s)
- Mariia I. Vasilieva
- Research Center for Translational Medicine, Sirius University of Science and Technology, Federal Territory Sirius, Krasnodarsky Krai, Sirius 354349, Russia
| | - Rimma O. Shatalova
- Research Center for Translational Medicine, Sirius University of Science and Technology, Federal Territory Sirius, Krasnodarsky Krai, Sirius 354349, Russia
| | - Kseniia S. Matveeva
- Research Center for Translational Medicine, Sirius University of Science and Technology, Federal Territory Sirius, Krasnodarsky Krai, Sirius 354349, Russia
- Research Center for Genetics and Life Sciences, Sirius University of Science and Technology, Federal Territory Sirius, Krasnodarsky Krai, Sirius 354349, Russia;
| | - Vadim V. Shindyapin
- Research Center for Genetics and Life Sciences, Sirius University of Science and Technology, Federal Territory Sirius, Krasnodarsky Krai, Sirius 354349, Russia;
| | - Ekaterina Minskaia
- Research Center for Translational Medicine, Sirius University of Science and Technology, Federal Territory Sirius, Krasnodarsky Krai, Sirius 354349, Russia
| | - Roman A. Ivanov
- Research Center for Translational Medicine, Sirius University of Science and Technology, Federal Territory Sirius, Krasnodarsky Krai, Sirius 354349, Russia
| | - Daniil V. Shevyrev
- Research Center for Translational Medicine, Sirius University of Science and Technology, Federal Territory Sirius, Krasnodarsky Krai, Sirius 354349, Russia
| |
Collapse
|
138
|
Elmitwalli O, Darwish R, Al-Jabery L, Algahiny A, Roy S, Butler AE, Hasan AS. The Emerging Role of p21 in Diabetes and Related Metabolic Disorders. Int J Mol Sci 2024; 25:13209. [PMID: 39684919 DOI: 10.3390/ijms252313209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
In the context of cell cycle inhibition, anti-proliferation, and the dysregulation observed in certain cancer pathologies, the protein p21 assumes a pivotal role. p21 links DNA damage responses to cellular processes such as apoptosis, senescence, and cell cycle arrest, primarily functioning as a regulator of the cell cycle. However, accumulating empirical evidence suggests that p21 is both directly and indirectly linked to a number of different metabolic processes. Intriguingly, recent investigations indicate that p21 significantly contributes to the pathogenesis of diabetes. In this review, we present a comprehensive evaluation of the scientific literature regarding the involvement of p21 in metabolic processes, diabetes etiology, pancreatic function, glucose homeostasis, and insulin resistance. Furthermore, we provide an encapsulated overview of therapies that target p21 to alleviate metabolic disorders. A deeper understanding of the complex interrelationship between p21 and diabetes holds promise for informing current and future therapeutic strategies to address this rapidly escalating health crisis.
Collapse
Affiliation(s)
- Omar Elmitwalli
- Department of Medicine, Royal College of Surgeons in Ireland-Medical University of Bahrain Busaiteen, Adliya P.O. Box 15503, Bahrain
| | - Radwan Darwish
- Department of Medicine, Royal College of Surgeons in Ireland-Medical University of Bahrain Busaiteen, Adliya P.O. Box 15503, Bahrain
| | - Lana Al-Jabery
- Department of Medicine, Royal College of Surgeons in Ireland-Medical University of Bahrain Busaiteen, Adliya P.O. Box 15503, Bahrain
| | - Ahmed Algahiny
- Department of Medicine, Royal College of Surgeons in Ireland-Medical University of Bahrain Busaiteen, Adliya P.O. Box 15503, Bahrain
| | - Sornali Roy
- Department of Medicine, Royal College of Surgeons in Ireland-Medical University of Bahrain Busaiteen, Adliya P.O. Box 15503, Bahrain
| | - Alexandra E Butler
- Department of Postgraduate Studies and Research, Royal College of Surgeons in Ireland-Medical University of Bahrain Busaiteen, Adliya P.O. Box 15503, Bahrain
| | - Ammar S Hasan
- Department of Postgraduate Studies and Research, Royal College of Surgeons in Ireland-Medical University of Bahrain Busaiteen, Adliya P.O. Box 15503, Bahrain
| |
Collapse
|
139
|
Wang S, Zhai J, Heng K, Sha L, Song X, Zhai H, Dai C, Li J, Teng F, Huang J, Wang G, Geng Y, Geng R, Lu Q, Nie X, Xue K, Wang Q, Huang W, Zhang H, Yang Y, Lan J, Yu D, Liu Y, Guo Y, Geng Q. Senolytic cocktail dasatinib and quercetin attenuates chronic high altitude hypoxia associated bone loss in mice. Sci Rep 2024; 14:30417. [PMID: 39638948 PMCID: PMC11621334 DOI: 10.1038/s41598-024-82262-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 12/03/2024] [Indexed: 12/07/2024] Open
Abstract
Chronic high-altitude hypoxia (CHH) induces irreversible abnormalities in various organisms. Emerging evidence indicates that CHH markedly suppresses bone mass and bone strength. Targeting senescent cells and the consequent senescence-associated secretory phenotype (SASP) with senolytics is a recently developed novel therapy for multiple age-related diseases. The combination of dasatinib and quercetin (DQ) has been proven to selectively target senescent cells and attenuate SASP in multiple tissues. In this study, experimental mice were subjected to an environment simulating 5,000 m above sea level for 8 weeks to induce CHH conditions. Our results indicated that DQ supplementation was well-tolerated with negligible toxicity. In vivo, DQ prevented reductions in BMD and BMC and improved bone microarchitecture against CHH-induced changes. Biomechanical testing demonstrated that DQ significantly improved the mechanical properties of femoral bones in CHH-exposed mice. Furthermore, DQ mitigated senescence in LepR + BMSCs and decreased the population of senescent cells, as evidenced by reduced senescence markers and SA-β-Gal staining. An analysis of serum and bone marrow aspirates showed that DQ treatment preserved angiogenic and osteogenic coupling in the bone marrow microenvironment by maintaining type H vessels and angiogenic growth factors. The results suggest that DQ has significant anti-senescence effects on BMSCs and a positive impact on the bone marrow microenvironment, supporting its clinical investigation as a therapeutic agent for CHH-related osteoporosis.
Collapse
Affiliation(s)
- Shen Wang
- Central Lab, Pizhou Hospital, Xuzhou Medical University, Xuzhou, 221300, China
- Key Laboratory of Clinical Research of Osteoporosis, Xuzhou Medical University, Xuzhou, 221300, China
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Beijing, 100044, China
- Trauma Medicine Center, Peking University People's Hospital, Beijing, 100044, China
| | - Juan Zhai
- Central Lab, Pizhou Hospital, Xuzhou Medical University, Xuzhou, 221300, China
- Key Laboratory of Clinical Research of Osteoporosis, Xuzhou Medical University, Xuzhou, 221300, China
| | - Ke Heng
- Department of Orthopedics, Changzhou Second Hospital, Nanjing Medical University, Changzhou, 213000, China
| | - Liangwei Sha
- Department of Traditional Chinese Medicine, Pizhou Hospital of Traditional Chinese Medicine, Xuzhou, 221300, China
| | - Xingchen Song
- Central Lab, Pizhou Hospital, Xuzhou Medical University, Xuzhou, 221300, China
- Key Laboratory of Clinical Research of Osteoporosis, Xuzhou Medical University, Xuzhou, 221300, China
| | - Huaiyuan Zhai
- Central Lab, Pizhou Hospital, Xuzhou Medical University, Xuzhou, 221300, China
- Key Laboratory of Clinical Research of Osteoporosis, Xuzhou Medical University, Xuzhou, 221300, China
| | - Chengbai Dai
- Central Lab, Pizhou Hospital, Xuzhou Medical University, Xuzhou, 221300, China
- Key Laboratory of Clinical Research of Osteoporosis, Xuzhou Medical University, Xuzhou, 221300, China
| | - Jian Li
- Central Lab, Pizhou Hospital, Xuzhou Medical University, Xuzhou, 221300, China
- Key Laboratory of Clinical Research of Osteoporosis, Xuzhou Medical University, Xuzhou, 221300, China
| | - Fei Teng
- Central Lab, Pizhou Hospital, Xuzhou Medical University, Xuzhou, 221300, China
- Key Laboratory of Clinical Research of Osteoporosis, Xuzhou Medical University, Xuzhou, 221300, China
| | - Junli Huang
- Central Lab, Pizhou Hospital, Xuzhou Medical University, Xuzhou, 221300, China
- Key Laboratory of Clinical Research of Osteoporosis, Xuzhou Medical University, Xuzhou, 221300, China
| | - Guoqiang Wang
- Central Lab, Pizhou Hospital, Xuzhou Medical University, Xuzhou, 221300, China
- Key Laboratory of Clinical Research of Osteoporosis, Xuzhou Medical University, Xuzhou, 221300, China
| | - Yinuo Geng
- Xuzhou Vocational College of Bioengineering, Xuzhou, 221300, China
| | - Rui Geng
- Central Lab, Pizhou Hospital, Xuzhou Medical University, Xuzhou, 221300, China
- Key Laboratory of Clinical Research of Osteoporosis, Xuzhou Medical University, Xuzhou, 221300, China
| | - Qingguo Lu
- Central Lab, Pizhou Hospital, Xuzhou Medical University, Xuzhou, 221300, China
- Key Laboratory of Clinical Research of Osteoporosis, Xuzhou Medical University, Xuzhou, 221300, China
| | - Xinfa Nie
- Central Lab, Pizhou Hospital, Xuzhou Medical University, Xuzhou, 221300, China
- Key Laboratory of Clinical Research of Osteoporosis, Xuzhou Medical University, Xuzhou, 221300, China
| | - Kui Xue
- Central Lab, Pizhou Hospital, Xuzhou Medical University, Xuzhou, 221300, China
- Key Laboratory of Clinical Research of Osteoporosis, Xuzhou Medical University, Xuzhou, 221300, China
| | - Qilong Wang
- Central Lab, Pizhou Hospital, Xuzhou Medical University, Xuzhou, 221300, China
- Key Laboratory of Clinical Research of Osteoporosis, Xuzhou Medical University, Xuzhou, 221300, China
| | - Wanying Huang
- Central Lab, Pizhou Hospital, Xuzhou Medical University, Xuzhou, 221300, China
- Key Laboratory of Clinical Research of Osteoporosis, Xuzhou Medical University, Xuzhou, 221300, China
| | - Huanyu Zhang
- Central Lab, Pizhou Hospital, Xuzhou Medical University, Xuzhou, 221300, China
- Key Laboratory of Clinical Research of Osteoporosis, Xuzhou Medical University, Xuzhou, 221300, China
| | - Yuanji Yang
- Department of Surgery, Xinghai People's Hospital, Xinghai, 813300, Qinghai, China
| | - Junyun Lan
- Department of Surgery, Xinghai People's Hospital, Xinghai, 813300, Qinghai, China
| | - Dehong Yu
- Central Lab, Pizhou Hospital, Xuzhou Medical University, Xuzhou, 221300, China
- Key Laboratory of Clinical Research of Osteoporosis, Xuzhou Medical University, Xuzhou, 221300, China
| | - Yanhong Liu
- Central Lab, Pizhou Hospital, Xuzhou Medical University, Xuzhou, 221300, China
- Key Laboratory of Clinical Research of Osteoporosis, Xuzhou Medical University, Xuzhou, 221300, China
| | - Yilong Guo
- Central Lab, Pizhou Hospital, Xuzhou Medical University, Xuzhou, 221300, China.
- Key Laboratory of Clinical Research of Osteoporosis, Xuzhou Medical University, Xuzhou, 221300, China.
| | - Qinghe Geng
- Central Lab, Pizhou Hospital, Xuzhou Medical University, Xuzhou, 221300, China.
- Key Laboratory of Clinical Research of Osteoporosis, Xuzhou Medical University, Xuzhou, 221300, China.
| |
Collapse
|
140
|
Yakubo S, Abe H, Li Y, Kudo M, Kimura A, Wakabayashi T, Watanabe Y, Kimura N, Setsu T, Yokoo T, Sakamaki A, Kamimura H, Tsuchiya A, Kamimura K, Terai S. Dasatinib and Quercetin as Senolytic Drugs Improve Fat Deposition and Exhibit Antifibrotic Effects in the Medaka Metabolic Dysfunction-Associated Steatotic Liver Disease Model. Diseases 2024; 12:317. [PMID: 39727647 PMCID: PMC11727104 DOI: 10.3390/diseases12120317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) causes cellular senescence due to oxidative stress, endoplasmic reticulum stress, and ectopic fat deposition in the liver. Recently, dasatinib, an antitumor agent, and quercetin, a dietary supplement, were combined as a senolytic drug to eliminate senescent cells. Thus, this study aimed to examine the effects of dasatinib and quercetin administration on removing senescent cells and their therapeutic effects on MASLD in a medaka MASLD model. Dasatinib and quercetin were administered to a medaka MASLD model, which was fed a high-fat diet by dissolving them in aquarium water. The results revealed that senescent cells in the liver were increased in the HFD group but improved in the treatment group. Hematoxylin and eosin staining also showed that treatment improved fat deposition in hepatocytes. In addition, TGFβ1, a driver factor of fibrosis, was reduced in the treatment group. Dasatinib and quercetin eliminated senescent cells in MASLD, attenuated fat deposition, and suppressed fibrosis gene expression. The results indicate that dasatinib and quercetin as senolytic drugs are novel therapeutic agents that reduce MASLD.
Collapse
Affiliation(s)
- Shunta Yakubo
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-9510, Japan; (S.Y.); (Y.L.); (M.K.); (A.K.); (T.W.); (Y.W.); (N.K.); (T.S.); (A.S.); (H.K.); (A.T.); (K.K.); (S.T.)
| | - Hiroyuki Abe
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-9510, Japan; (S.Y.); (Y.L.); (M.K.); (A.K.); (T.W.); (Y.W.); (N.K.); (T.S.); (A.S.); (H.K.); (A.T.); (K.K.); (S.T.)
| | - Yawen Li
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-9510, Japan; (S.Y.); (Y.L.); (M.K.); (A.K.); (T.W.); (Y.W.); (N.K.); (T.S.); (A.S.); (H.K.); (A.T.); (K.K.); (S.T.)
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Marina Kudo
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-9510, Japan; (S.Y.); (Y.L.); (M.K.); (A.K.); (T.W.); (Y.W.); (N.K.); (T.S.); (A.S.); (H.K.); (A.T.); (K.K.); (S.T.)
| | - Atsushi Kimura
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-9510, Japan; (S.Y.); (Y.L.); (M.K.); (A.K.); (T.W.); (Y.W.); (N.K.); (T.S.); (A.S.); (H.K.); (A.T.); (K.K.); (S.T.)
| | - Takuya Wakabayashi
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-9510, Japan; (S.Y.); (Y.L.); (M.K.); (A.K.); (T.W.); (Y.W.); (N.K.); (T.S.); (A.S.); (H.K.); (A.T.); (K.K.); (S.T.)
| | - Yusuke Watanabe
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-9510, Japan; (S.Y.); (Y.L.); (M.K.); (A.K.); (T.W.); (Y.W.); (N.K.); (T.S.); (A.S.); (H.K.); (A.T.); (K.K.); (S.T.)
| | - Naruhiro Kimura
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-9510, Japan; (S.Y.); (Y.L.); (M.K.); (A.K.); (T.W.); (Y.W.); (N.K.); (T.S.); (A.S.); (H.K.); (A.T.); (K.K.); (S.T.)
| | - Toru Setsu
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-9510, Japan; (S.Y.); (Y.L.); (M.K.); (A.K.); (T.W.); (Y.W.); (N.K.); (T.S.); (A.S.); (H.K.); (A.T.); (K.K.); (S.T.)
| | - Takeshi Yokoo
- Department of Preemptive Medicine for Digestive Diseases and Healthy Active Life, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan;
| | - Akira Sakamaki
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-9510, Japan; (S.Y.); (Y.L.); (M.K.); (A.K.); (T.W.); (Y.W.); (N.K.); (T.S.); (A.S.); (H.K.); (A.T.); (K.K.); (S.T.)
| | - Hiroteru Kamimura
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-9510, Japan; (S.Y.); (Y.L.); (M.K.); (A.K.); (T.W.); (Y.W.); (N.K.); (T.S.); (A.S.); (H.K.); (A.T.); (K.K.); (S.T.)
| | - Atsunori Tsuchiya
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-9510, Japan; (S.Y.); (Y.L.); (M.K.); (A.K.); (T.W.); (Y.W.); (N.K.); (T.S.); (A.S.); (H.K.); (A.T.); (K.K.); (S.T.)
| | - Kenya Kamimura
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-9510, Japan; (S.Y.); (Y.L.); (M.K.); (A.K.); (T.W.); (Y.W.); (N.K.); (T.S.); (A.S.); (H.K.); (A.T.); (K.K.); (S.T.)
- Department of General Medicine, Niigata University School of Medicine, Niigata 951-8510, Japan
| | - Shuji Terai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-9510, Japan; (S.Y.); (Y.L.); (M.K.); (A.K.); (T.W.); (Y.W.); (N.K.); (T.S.); (A.S.); (H.K.); (A.T.); (K.K.); (S.T.)
| |
Collapse
|
141
|
Han Z, Wang K, Ding S, Zhang M. Cross-talk of inflammation and cellular senescence: a new insight into the occurrence and progression of osteoarthritis. Bone Res 2024; 12:69. [PMID: 39627227 PMCID: PMC11615234 DOI: 10.1038/s41413-024-00375-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 09/10/2024] [Accepted: 09/24/2024] [Indexed: 12/06/2024] Open
Abstract
Osteoarthritis (OA) poses a significant challenge in orthopedics. Inflammatory pathways are regarded as central mechanisms in the onset and progression of OA. Growing evidence suggests that senescence acts as a mediator in inflammation-induced OA. Given the lack of effective treatments for OA, there is an urgent need for a clearer understanding of its pathogenesis. In this review, we systematically summarize the cross-talk between cellular senescence and inflammation in OA. We begin by focusing on the mechanisms and hallmarks of cellular senescence, summarizing evidence that supports the relationship between cellular senescence and inflammation. We then discuss the mechanisms of interaction between cellular senescence and inflammation, including senescence-associated secretory phenotypes (SASP) and the effects of pro- and anti-inflammatory interventions on cellular senescence. Additionally, we focus on various types of cellular senescence in OA, including senescence in cartilage, subchondral bone, synovium, infrapatellar fat pad, stem cells, and immune cells, elucidating their mechanisms and impacts on OA. Finally, we highlight the potential of therapies targeting senescent cells in OA as a strategy for promoting cartilage regeneration.
Collapse
Affiliation(s)
- Zeyu Han
- Department of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, PR China
| | - Ketao Wang
- Department of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, PR China
| | - Shenglong Ding
- Department of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, PR China
| | - Mingzhu Zhang
- Department of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, PR China.
| |
Collapse
|
142
|
Sun X, Chen Y, Yang C, Yang S, Lin W, Quan B, Pan X, Ding Q, Chen X, Wang C, Qin W. Chemical Recording of Pump-Specific Drug Efflux in Living Cells. Angew Chem Int Ed Engl 2024; 63:e202409282. [PMID: 39324755 DOI: 10.1002/anie.202409282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 09/27/2024]
Abstract
Drug efflux-a process primarily facilitated by efflux pumps such as multidrug resistance proteins (MRPs)-plays a pivotal role in cellular resistance to chemotherapies. Conventional approaches to assess drug efflux are predominantly conducted in vitro and often lack pump specificity. Here we report the bioorthogonal reporter inhibiting efflux (BRIEF) strategy, which enables the recording of pump-specific drug efflux in living cells. In BRIEF, a specific substrate is engineered as a bioorthogonal efflux probe (BEP) for specific pumps. The cellular concentration and protein labeling level of the probe can be augmented when the test drug is transported by the same pumps. Serendipitously, we discovered that per-O-acetylated unnatural monosaccharides, initially designed for metabolic glycan labeling, are exported by some MRPs. Using Ac4GlcNAl as a BEP, we studied the structure-efflux relationship of flavonoids and identified small molecules, including tannic acid, cholesterol and gallic acid, as novel MRP substrates in high-throughput screening. Tannic acid, known for anti-tumor and anti-SARS-CoV-2 properties, showed increased efficacy upon MRP inhibition. Additionally, BRIEF was adapted to assess p-glycoprotein-mediated efflux using Rhodamine 123 as a BEP, leveraging its light-activatable proximity labeling ability. BRIEF provides a versatile approach to investigate drug efflux and enhance chemotherapy strategies.
Collapse
Affiliation(s)
- Xuege Sun
- School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, The State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, 100871, China
| | - Ying Chen
- College of Chemistry and Molecular Engineering, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Chen Yang
- School of Medicine, Tsinghua University, Beijing, 100871, China
| | - Song Yang
- College of Chemistry and Molecular Engineering, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Wei Lin
- College of Chemistry and Molecular Engineering, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Baiyi Quan
- College of Chemistry and Molecular Engineering, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Xuanzhen Pan
- School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, The State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, 100871, China
| | - Qiang Ding
- School of Medicine, Tsinghua University, Beijing, 100871, China
| | - Xing Chen
- College of Chemistry and Molecular Engineering, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Chu Wang
- College of Chemistry and Molecular Engineering, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Wei Qin
- School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, The State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, 100871, China
| |
Collapse
|
143
|
Torres G, Salladay-Perez IA, Dhingra A, Covarrubias AJ. Genetic origins, regulators, and biomarkers of cellular senescence. Trends Genet 2024; 40:1018-1031. [PMID: 39341687 PMCID: PMC11717094 DOI: 10.1016/j.tig.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/18/2024] [Accepted: 08/21/2024] [Indexed: 10/01/2024]
Abstract
This review comprehensively examines the molecular biology and genetic origins of cellular senescence. We focus on various cellular stressors and pathways leading to senescence, including recent advances in the understanding of the genetic influences driving senescence, such as telomere attrition, chemotherapy-induced DNA damage, pathogens, oncogene activation, and cellular and metabolic stress. This review also highlights the complex interplay of various signaling and metabolic pathways involved in cellular senescence and provides insights into potential therapeutic targets for aging-related diseases. Furthermore, this review outlines future research directions to deepen our understanding of senescence biology and develop effective interventions targeting senescent cells (SnCs).
Collapse
Affiliation(s)
- Grasiela Torres
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA; Molecular Biology Interdepartmental Doctoral Program, University of California, Los Angeles, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ivan A Salladay-Perez
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA; Molecular Biology Interdepartmental Doctoral Program, University of California, Los Angeles, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Anika Dhingra
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Anthony J Covarrubias
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
144
|
Zhao Q, Huang Y, Fu N, Cui C, Peng X, Kang H, Xiao J, Ke G. Podocyte senescence: from molecular mechanisms to therapeutics. Ren Fail 2024; 46:2398712. [PMID: 39248407 PMCID: PMC11385655 DOI: 10.1080/0886022x.2024.2398712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/10/2024] Open
Abstract
As an important component of the glomerular filtration membrane, the state of the podocytes is closely related to kidney function, they are also key cells involved in aging and play a central role in the damage caused by renal aging. Therefore, understanding the aging process of podocytes will allow us to understand their susceptibility to injury and identify targeted protective mechanisms. In fact, the process of physiological aging itself can induce podocyte senescence. Pathological stresses, such as oxidative stress, mitochondrial damage, secretion of senescence-associated secretory phenotype, reduced autophagy, oncogene activation, altered transcription factors, DNA damage response, and other factors, play a crucial role in inducing premature senescence and accelerating aging. Senescence-associated-β-galactosidase (SA-β-gal) is a marker of aging, and β-hydroxybutyric acid treatment can reduce SA-β-gal activity to alleviate cellular senescence and damage. In addition, CCAAT/enhancer-binding protein-α, transforming growth factor-β signaling, glycogen synthase kinase-3β, cycle-dependent kinase, programmed cell death protein 1, and plasminogen activator inhibitor-1 are closely related to aging. The absence or elevation of these factors can affect aging through different mechanisms. Podocyte injury is not an independent process, and injured podocytes interact with the surrounding epithelial cells or other kidney cells to mediate the injury or loss of podocytes. In this review, we discuss the manifestations, molecular mechanisms, biomarkers, and therapeutic drugs for podocyte senescence. We included elamipretide, lithium, calorie restriction, rapamycin; and emerging treatment strategies, such as gene and immune therapies. More importantly, we summarize how podocyte interact with other kidney cells.
Collapse
Affiliation(s)
- Qian Zhao
- Department of Nephrology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yongzhang Huang
- Department of Nephrology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ningying Fu
- Department of Nephrology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Caixia Cui
- Department of Nephrology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Xuan Peng
- Department of Nephrology, Affiliated Hospital/Clinical Medical College of Chengdu University, Chengdu, China
| | - Haiyan Kang
- Department of Nephrology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jie Xiao
- Department of Nephrology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Guibao Ke
- Department of Nephrology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
145
|
Park K, Jeon MC, Lee D, Kim JI, Im SW. Genetic and epigenetic alterations in aging and rejuvenation of human. Mol Cells 2024; 47:100137. [PMID: 39433213 PMCID: PMC11625158 DOI: 10.1016/j.mocell.2024.100137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/19/2024] [Accepted: 10/16/2024] [Indexed: 10/23/2024] Open
Abstract
All the information essential for life is encoded within our genome and epigenome, which orchestrates diverse cellular states spatially and temporally. In particular, the epigenome interacts with internal and external stimuli, encoding and preserving cellular experiences, and it serves as the regulatory base of the transcriptome across diverse cell types. The emergence of single-cell transcriptomic and epigenomic data collection has revealed unique omics signatures in diverse tissues, highlighting cellular heterogeneity. Recent research has documented age-related epigenetic changes at the single-cell level, alongside the validation of cellular rejuvenation through partial reprogramming, which involves simultaneous epigenetic modifications. These dynamic shifts, primarily fueled by stem cell plasticity, have catalyzed significant interest and cross-disciplinary research endeavors. This review explores the genomic and epigenomic alterations with aging, elucidating their reciprocal interactions. Additionally, it seeks to discuss the evolving landscape of rejuvenation research, with a particular emphasis on dissecting stem cell behavior through the lens of single-cell analysis. Moreover, it proposes potential research methodologies for future studies.
Collapse
Affiliation(s)
- Kyunghyuk Park
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Korea
| | - Min Chul Jeon
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Dakyung Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Jong-Il Kim
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea; Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea.
| | - Sun-Wha Im
- Department of Biochemistry and Molecular Biology, Kangwon National University School of Medicine, Gangwon, Korea.
| |
Collapse
|
146
|
Deng Y, Liu T, Scifo E, Li T, Xie K, Taschler B, Morsy S, Schaaf K, Ehninger A, Bano D, Ehninger D. Analysis of the senescence-associated cell surfaceome reveals potential senotherapeutic targets. Aging Cell 2024; 23:e14312. [PMID: 39228130 PMCID: PMC11634743 DOI: 10.1111/acel.14312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/22/2024] [Accepted: 07/27/2024] [Indexed: 09/05/2024] Open
Abstract
The accumulation of senescent cells is thought to play a crucial role in aging-associated physiological decline and the pathogenesis of various age-related pathologies. Targeting senescence-associated cell surface molecules through immunotherapy emerges as a promising avenue for the selective removal of these cells. Despite its potential, a thorough characterization of senescence-specific surface proteins remains to be achieved. Our study addresses this gap by conducting an extensive analysis of the cell surface proteome, or "surfaceome", in senescent cells, spanning various senescence induction regimes and encompassing both murine and human cell types. Utilizing quantitative mass spectrometry, we investigated enriched cell surface proteins across eight distinct models of senescence. Our results uncover significant changes in surfaceome expression profiles during senescence, highlighting extensive modifications in cell mechanics and extracellular matrix remodeling. Our research also reveals substantive heterogeneity of senescence, predominantly influenced by cell type and senescence inducer. A key discovery of our study is the identification of four unique cell surface proteins with extracellular epitopes. These proteins are expressed in senescent cells, absent or present at low levels in their proliferating counterparts, and notably upregulated in tissues from aged mice and an Alzheimer's disease mouse model. These proteins stand out as promising candidates for senotherapeutic targeting, offering potential pathways for the detection and strategic targeting of senescent cell populations in aging and age-related diseases.
Collapse
Affiliation(s)
- Yushuang Deng
- Translational Biogerontology LabGerman Center for Neurodegenerative Diseases (DZNE)BonnGermany
| | - Ting Liu
- Translational Biogerontology LabGerman Center for Neurodegenerative Diseases (DZNE)BonnGermany
| | - Enzo Scifo
- Translational Biogerontology LabGerman Center for Neurodegenerative Diseases (DZNE)BonnGermany
| | - Tao Li
- Department of Neurodegenerative Disease and Geriatric Psychiatry/NeurologyUniversity of Bonn Medical CenterBonnGermany
| | - Kan Xie
- Translational Biogerontology LabGerman Center for Neurodegenerative Diseases (DZNE)BonnGermany
| | | | - Sarah Morsy
- Translational Biogerontology LabGerman Center for Neurodegenerative Diseases (DZNE)BonnGermany
- AvenCell Europe GmbHDresdenGermany
| | - Kristina Schaaf
- Translational Biogerontology LabGerman Center for Neurodegenerative Diseases (DZNE)BonnGermany
| | | | - Daniele Bano
- Aging and Neurodegeneration LabGerman Center for Neurodegenerative Diseases (DZNE)BonnGermany
| | - Dan Ehninger
- Translational Biogerontology LabGerman Center for Neurodegenerative Diseases (DZNE)BonnGermany
| |
Collapse
|
147
|
Suryadevara V, Hudgins AD, Rajesh A, Pappalardo A, Karpova A, Dey AK, Hertzel A, Agudelo A, Rocha A, Soygur B, Schilling B, Carver CM, Aguayo-Mazzucato C, Baker DJ, Bernlohr DA, Jurk D, Mangarova DB, Quardokus EM, Enninga EAL, Schmidt EL, Chen F, Duncan FE, Cambuli F, Kaur G, Kuchel GA, Lee G, Daldrup-Link HE, Martini H, Phatnani H, Al-Naggar IM, Rahman I, Nie J, Passos JF, Silverstein JC, Campisi J, Wang J, Iwasaki K, Barbosa K, Metis K, Nernekli K, Niedernhofer LJ, Ding L, Wang L, Adams LC, Ruiyang L, Doolittle ML, Teneche MG, Schafer MJ, Xu M, Hajipour M, Boroumand M, Basisty N, Sloan N, Slavov N, Kuksenko O, Robson P, Gomez PT, Vasilikos P, Adams PD, Carapeto P, Zhu Q, Ramasamy R, Perez-Lorenzo R, Fan R, Dong R, Montgomery RR, Shaikh S, Vickovic S, Yin S, Kang S, Suvakov S, Khosla S, Garovic VD, Menon V, Xu Y, Song Y, Suh Y, Dou Z, Neretti N. SenNet recommendations for detecting senescent cells in different tissues. Nat Rev Mol Cell Biol 2024; 25:1001-1023. [PMID: 38831121 PMCID: PMC11578798 DOI: 10.1038/s41580-024-00738-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2024] [Indexed: 06/05/2024]
Abstract
Once considered a tissue culture-specific phenomenon, cellular senescence has now been linked to various biological processes with both beneficial and detrimental roles in humans, rodents and other species. Much of our understanding of senescent cell biology still originates from tissue culture studies, where each cell in the culture is driven to an irreversible cell cycle arrest. By contrast, in tissues, these cells are relatively rare and difficult to characterize, and it is now established that fully differentiated, postmitotic cells can also acquire a senescence phenotype. The SenNet Biomarkers Working Group was formed to provide recommendations for the use of cellular senescence markers to identify and characterize senescent cells in tissues. Here, we provide recommendations for detecting senescent cells in different tissues based on a comprehensive analysis of existing literature reporting senescence markers in 14 tissues in mice and humans. We discuss some of the recent advances in detecting and characterizing cellular senescence, including molecular senescence signatures and morphological features, and the use of circulating markers. We aim for this work to be a valuable resource for both seasoned investigators in senescence-related studies and newcomers to the field.
Collapse
Affiliation(s)
- Vidyani Suryadevara
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, School of Medicine, Stanford, CA, USA
| | - Adam D Hudgins
- Department of Obstetrics and Gynecology, Columbia University, New York, NY, USA
| | - Adarsh Rajesh
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Genome and Epigenetics Program, La Jolla, CA, USA
| | | | - Alla Karpova
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Amit K Dey
- National Institute on Aging, NIH, Baltimore, MD, USA
| | - Ann Hertzel
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Anthony Agudelo
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
- Center on the Biology of Aging, Brown University, Providence, RI, USA
| | - Azucena Rocha
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
- Center on the Biology of Aging, Brown University, Providence, RI, USA
| | - Bikem Soygur
- The Buck Institute for Research on Aging, Novato, CA, USA
| | | | - Chase M Carver
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - Cristina Aguayo-Mazzucato
- Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center, Harvard Medical School, Boston, USA
| | - Darren J Baker
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | - David A Bernlohr
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Diana Jurk
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Dilyana B Mangarova
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, School of Medicine, Stanford, CA, USA
| | - Ellen M Quardokus
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA
| | | | - Elizabeth L Schmidt
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Feng Chen
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Francesca E Duncan
- The Buck Institute for Research on Aging, Novato, CA, USA
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Gagandeep Kaur
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - George A Kuchel
- UConn Center on Aging, University of Connecticut Health Center, Farmington, CT, USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Gung Lee
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - Heike E Daldrup-Link
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, School of Medicine, Stanford, CA, USA
| | - Helene Martini
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - Hemali Phatnani
- New York Genome Center, New York, NY, USA
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Iman M Al-Naggar
- UConn Center on Aging, University of Connecticut Health Center, Farmington, CT, USA
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Jia Nie
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - João F Passos
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - Jonathan C Silverstein
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Judith Campisi
- The Buck Institute for Research on Aging, Novato, CA, USA
| | - Julia Wang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Kanako Iwasaki
- Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center, Harvard Medical School, Boston, USA
| | - Karina Barbosa
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Genome and Epigenetics Program, La Jolla, CA, USA
| | - Kay Metis
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kerem Nernekli
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, School of Medicine, Stanford, CA, USA
| | - Laura J Niedernhofer
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Li Ding
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Lichao Wang
- UConn Center on Aging, University of Connecticut Health Center, Farmington, CT, USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Lisa C Adams
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, School of Medicine, Stanford, CA, USA
| | - Liu Ruiyang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Madison L Doolittle
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, USA
| | - Marcos G Teneche
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Genome and Epigenetics Program, La Jolla, CA, USA
| | - Marissa J Schafer
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Ming Xu
- UConn Center on Aging, University of Connecticut Health Center, Farmington, CT, USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Mohammadjavad Hajipour
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, School of Medicine, Stanford, CA, USA
| | | | | | - Nicholas Sloan
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Nikolai Slavov
- Center on the Biology of Aging, Brown University, Providence, RI, USA
- Department of Bioengineering, Northeastern University, Boston, MA, USA
- Department of Biology, Northeastern University, Boston, MA, USA
- Barnett Institute for Chemical and Biological Analysis, Northeastern University, Boston, MA, USA
| | - Olena Kuksenko
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Paul Robson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Institute for Systems Genomics, University of Connecticut, Farmington, CT, USA
| | - Paul T Gomez
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - Periklis Vasilikos
- Department of Genetics and Development, Columbia University, New York, NY, USA
| | - Peter D Adams
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Genome and Epigenetics Program, La Jolla, CA, USA
| | - Priscila Carapeto
- Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center, Harvard Medical School, Boston, USA
| | - Quan Zhu
- Center for Epigenomics, University of California, San Diego, CA, USA
| | | | | | - Rong Fan
- Yale-Center for Research on Aging, Yale School of Medicine, New Haven, CT, USA
| | - Runze Dong
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Graduate Program in Biological Physics, Structure and Design, University of Washington, Seattle, WA, USA
| | - Ruth R Montgomery
- Yale-Center for Research on Aging, Yale School of Medicine, New Haven, CT, USA
| | - Sadiya Shaikh
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Sanja Vickovic
- New York Genome Center, New York, NY, USA
- Herbert Irving Institute for Cancer Dynamics, Columbia University, New York, NY, USA
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Beijer Laboratory for Gene and Neuro Research, Uppsala University, Uppsala, Sweden
| | - Shanshan Yin
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Genome and Epigenetics Program, La Jolla, CA, USA
| | - Shoukai Kang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Sonja Suvakov
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Sundeep Khosla
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, USA
| | - Vesna D Garovic
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, MN, USA
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Vilas Menon
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Translational and Computational Neuroimmunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Yanxin Xu
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Yizhe Song
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Yousin Suh
- Department of Obstetrics and Gynecology, Columbia University, New York, NY, USA
- Department of Genetics and Development, Columbia University, New York, NY, USA
| | - Zhixun Dou
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Nicola Neretti
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA.
- Center on the Biology of Aging, Brown University, Providence, RI, USA.
| |
Collapse
|
148
|
Balamurli G, Liew AQX, Tee WW, Pervaiz S. Interplay between epigenetics, senescence and cellular redox metabolism in cancer and its therapeutic implications. Redox Biol 2024; 78:103441. [PMID: 39612910 PMCID: PMC11629570 DOI: 10.1016/j.redox.2024.103441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/01/2024] Open
Abstract
There is accumulating evidence indicating a close crosstalk between key molecular events regulating cell growth and proliferation, which could profoundly impact carcinogenesis and its progression. Here we focus on reviewing observations highlighting the interplay between epigenetic modifications, irreversible cell cycle arrest or senescence, and cellular redox metabolism. Epigenetic alterations, such as DNA methylation and histone modifications, dynamically influence tumour transcriptome, thereby impacting tumour phenotype, survival, growth and spread. Interestingly, the acquisition of senescent phenotype can be triggered by epigenetic changes, acting as a double-edged sword via its ability to suppress tumorigenesis or by facilitating an inflammatory milieu conducive for cancer progression. Concurrently, an aberrant redox metabolism, which is a function of the balance between reactive oxygen species (ROS) generation and intracellular anti-oxidant defences, influences signalling cascades and genomic stability in cancer cells by serving as a critical link between epigenetics and senescence. Recognizing this intricate interconnection offers a nuanced perspective for therapeutic intervention by simultaneously targeting specific epigenetic modifications, modulating senescence dynamics, and restoring redox homeostasis.
Collapse
Affiliation(s)
- Geoffrey Balamurli
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, NUS, Singapore; Chromatin Dynamics and Disease Epigenetics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), Singapore
| | - Angeline Qiu Xia Liew
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore; Integrative Science and Engineering Programme (ISEP), NUS Graduate School (NUSGS), NUS, Singapore
| | - Wee Wei Tee
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, NUS, Singapore; Chromatin Dynamics and Disease Epigenetics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), Singapore
| | - Shazib Pervaiz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, NUS, Singapore; Integrative Science and Engineering Programme (ISEP), NUS Graduate School (NUSGS), NUS, Singapore; NUS Medicine Healthy Longevity Program, NUS, Singapore; National University Cancer Institute, National University Health System, Singapore.
| |
Collapse
|
149
|
Bi J, Zeng J, Liu X, Mo C, Yao M, Zhang J, Yuan P, Jia B, Xu S. Drug delivery for age-related bone diseases: From therapeutic targets to common and emerging therapeutic strategies. Saudi Pharm J 2024; 32:102209. [PMID: 39697472 PMCID: PMC11653637 DOI: 10.1016/j.jsps.2024.102209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/22/2024] [Indexed: 12/20/2024] Open
Abstract
With the accumulation of knowledge on aging, people have gradually realized that among the many factors that cause individual aging, the accumulation of aging cells is an essential cause of organ degeneration and, ultimately, age-related diseases. Most cells present in the bone microenvironment gradually age over time, leading to an imbalance of osteogenesis, osteoclastogenesis, adipogenesis, and chondrogenesis. This imbalance contributes to age-related bone loss and the development of age-related bone diseases, such as osteoporosis. Bone aging can prolong the lifespan and delay the development of age-related diseases. Nanoparticles have controllable and stable physical and chemical properties and can precisely target different tissues and organs. By preparing multiple easily modified and biocompatible nanoparticles as different drug delivery carriers, specifically targeting various diseased tissues for controlled-release and sustained-release administration, the delivery efficiency of drugs can be significantly improved, and the toxicity and side effects of drugs can be substantially reduced, thereby improving the therapeutic effect of age-related bone diseases. In addition, other novel anti-aging strategies (such as stem cell exosomes) also have significant scientific and practical significance in anti-aging research on age-related bone diseases. This article reviews the research progress of various nano-drug-loaded particles and emerging anti-aging methods for treating age-related bone diseases, offering new insights and directions for precise targeted clinical therapies.
Collapse
Affiliation(s)
- Jiaming Bi
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiawei Zeng
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaohao Liu
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Chuzi Mo
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Mingyan Yao
- Department of Endocrinology, Baoding No.1 Central Hospital, Baoding, China
| | - Jing Zhang
- Department of Cardiology, Affiliated Hospital of Hebei University, Baoding, China
| | - Peiyan Yuan
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Bo Jia
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Shuaimei Xu
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
150
|
von Zglinicki T. Oxidative stress and cell senescence as drivers of ageing: Chicken and egg. Ageing Res Rev 2024; 102:102558. [PMID: 39454760 DOI: 10.1016/j.arr.2024.102558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024]
Abstract
Oxidative stress and cell senescence are both important drivers of ageing and age-associated disease and disability. In vitro, they are closely interconnected in a chicken-and-egg relationship: Not only is oxidative stress an important cause of cell senescence, but senescent cells are also sources of oxidative stress, obscuring cause-effect relationships during the ageing process. We hypothesize that cell senescence is a significant cause of tissue and systemic oxidative stress during ageing. This review aims to critically summarize the available evidence for this hypothesis. After summarizing the cellular feedback mechanisms that make oxidative stress an integral part of the senescent phenotype, it critically reviews the existing evidence for a role of senescent cells as causes of oxidative stress during mammalian ageing in vivo, focussing on results from intervention experiments. It is concluded that while the available data are in agreement with this hypothesis, they are still too scarce to support a robust conclusion.
Collapse
Affiliation(s)
- Thomas von Zglinicki
- Ageing Research Laboratories, Biosciences Institute, Faculty of Medical Sciences, Campus for Ageing and Health, Newcastle University, UK.
| |
Collapse
|