101
|
Meneguzzo F, Albanese L, Bartolini G, Zabini F. Temporal and Spatial Variability of Volatile Organic Compounds in the Forest Atmosphere. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16244915. [PMID: 31817339 PMCID: PMC6950249 DOI: 10.3390/ijerph16244915] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/01/2019] [Accepted: 12/03/2019] [Indexed: 11/28/2022]
Abstract
The healing effects of the forest are increasingly being valued for their contribution to human psychological and physiological health, motivating further advances aimed at improving knowledge of relevant forest resources. Biogenic volatile organic compounds, emitted by the plants and accumulating in the forest atmosphere, are essential contributors to the healing effects of the forest, and represent the focus of this study. Using a photoionization detector, we investigated the high frequency variability, in time and space, of the concentration of total volatile organic compounds on a hilly site as well as along forest paths and long hiking trails in the Italian northern Apennines. The scale of concentration variability was found to be comparable to absolute concentration levels within time scales of less than one hour and spatial scales of several hundred meters. During daylight hours, on clear and calm days, the concentration peaked from noon to early afternoon, followed by early morning, with the lowest levels in the late afternoon. These results were related to meteorological variables including the atmospheric vertical stability profile. Moreover, preliminary evidence pointed to higher concentrations of volatile organic compounds in forests dominated by conifer trees in comparison to pure beech forests.
Collapse
Affiliation(s)
- Francesco Meneguzzo
- Institute for Bioeconomy, National Research Council, 10 Via Madonna del Piano, I-50019 Sesto Fiorentino (FI), Italy;
- “Fiorenzo Gei” Scientific Committee, Italian Alpine Club, 2 Via del Mezzetta, I-50135 Firenze (FI), Italy
- Correspondence: (F.M.); (F.Z.); Tel.: +39-392-985-0002 (F.M.); +39-333-379-2947 (F.Z.)
| | - Lorenzo Albanese
- Institute for Bioeconomy, National Research Council, 10 Via Madonna del Piano, I-50019 Sesto Fiorentino (FI), Italy;
| | - Giorgio Bartolini
- Laboratory of Monitoring and Environmental Modelling for the Sustainable Development (LaMMA Consortium), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy;
| | - Federica Zabini
- Institute for Bioeconomy, National Research Council, 10 Via Madonna del Piano, I-50019 Sesto Fiorentino (FI), Italy;
- Correspondence: (F.M.); (F.Z.); Tel.: +39-392-985-0002 (F.M.); +39-333-379-2947 (F.Z.)
| |
Collapse
|
102
|
A comprehensive quantum chemical study on the mechanism and kinetics of atmospheric reactions of 3-chloro-2-methyl-1-propene with OH radical. Theor Chem Acc 2019. [DOI: 10.1007/s00214-019-2518-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
103
|
Lawson CA, Possell M, Seymour JR, Raina JB, Suggett DJ. Coral endosymbionts (Symbiodiniaceae) emit species-specific volatilomes that shift when exposed to thermal stress. Sci Rep 2019; 9:17395. [PMID: 31758008 PMCID: PMC6874547 DOI: 10.1038/s41598-019-53552-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/01/2019] [Indexed: 12/27/2022] Open
Abstract
Biogenic volatile organic compounds (BVOCs) influence organism fitness by promoting stress resistance and regulating trophic interactions. Studies examining BVOC emissions have predominantly focussed on terrestrial ecosystems and atmospheric chemistry - surprisingly, highly productive marine ecosystems remain largely overlooked. Here we examined the volatilome (total BVOCs) of the microalgal endosymbionts of reef invertebrates, Symbiodiniaceae. We used GC-MS to characterise five species (Symbiodinium linucheae, Breviolum psygmophilum, Durusdinium trenchii, Effrenium voratum, Fugacium kawagutii) under steady-state growth. A diverse range of 32 BVOCs were detected (from 12 in D. trenchii to 27 in S. linucheae) with halogenated hydrocarbons, alkanes and esters the most common chemical functional groups. A thermal stress experiment on thermally-sensitive Cladocopium goreaui and thermally-tolerant D. trenchii significantly affected the volatilomes of both species. More BVOCs were detected in D. trenchii following thermal stress (32 °C), while fewer BVOCs were recorded in stressed C. goreaui. The onset of stress caused dramatic increases of dimethyl-disulfide (98.52%) in C. goreaui and nonanoic acid (99.85%) in D. trenchii. This first volatilome analysis of Symbiodiniaceae reveals that both species-specificity and environmental factors govern the composition of BVOC emissions among the Symbiodiniaceae, which potentially have, as yet unexplored, physiological and ecological importance in shaping coral reef community functioning.
Collapse
Affiliation(s)
- Caitlin A Lawson
- Climate Change Cluster (C3), University of Technology Sydney, Sydney, Australia.
| | - Malcolm Possell
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Justin R Seymour
- Climate Change Cluster (C3), University of Technology Sydney, Sydney, Australia
| | - Jean-Baptiste Raina
- Climate Change Cluster (C3), University of Technology Sydney, Sydney, Australia
| | - David J Suggett
- Climate Change Cluster (C3), University of Technology Sydney, Sydney, Australia
| |
Collapse
|
104
|
Malik TG, Gajbhiye T, Pandey SK. Some insights into composition and monoterpene emission rates from selected dominant tropical tree species of Central India: Plant‐specific seasonal variations. Ecol Res 2019. [DOI: 10.1111/1440-1703.12058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tanzil G. Malik
- Department of Botany Guru Ghasidas Central University Bilaspur Chhattisgarh India
| | - Triratnesh Gajbhiye
- Department of Botany Guru Ghasidas Central University Bilaspur Chhattisgarh India
| | - Sudhir K. Pandey
- Department of Botany Guru Ghasidas Central University Bilaspur Chhattisgarh India
| |
Collapse
|
105
|
Intermediate-scale horizontal isoprene concentrations in the near-canopy forest atmosphere and implications for emission heterogeneity. Proc Natl Acad Sci U S A 2019; 116:19318-19323. [PMID: 31501347 DOI: 10.1073/pnas.1904154116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The emissions, deposition, and chemistry of volatile organic compounds (VOCs) are thought to be influenced by underlying landscape heterogeneity at intermediate horizontal scales of several hundred meters across different forest subtypes within a tropical forest. Quantitative observations and scientific understanding at these scales, however, remain lacking, in large part due to a historical absence of canopy access and suitable observational approaches. Herein, horizontal heterogeneity in VOC concentrations in the near-canopy atmosphere was examined by sampling from an unmanned aerial vehicle (UAV) flown horizontally several hundred meters over the plateau and slope forests in central Amazonia during the morning and early afternoon periods of the wet season of 2018. Unlike terpene concentrations, the isoprene concentrations in the near-canopy atmosphere over the plateau forest were 60% greater than those over the slope forest. A gradient transport model constrained by the data suggests that isoprene emissions differed by 220 to 330% from these forest subtypes, which is in contrast to a 0% difference implemented in most present-day biosphere emissions models (i.e., homogeneous emissions). Quantifying VOC concentrations, emissions, and other processes at intermediate horizontal scales is essential for understanding the ecological and Earth system roles of VOCs and representing them in climate and air quality models.
Collapse
|
106
|
Yadav R, Sahu LK, Tripathi N, Pal D, Beig G, Jaaffrey SNA. Investigation of emission characteristics of NMVOCs over urban site of western India. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:245-255. [PMID: 31153029 DOI: 10.1016/j.envpol.2019.05.089] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 05/16/2019] [Accepted: 05/16/2019] [Indexed: 06/09/2023]
Abstract
This is the first study to characterize the variation and emission of C2-C5 non-methane volatile organic compounds (NMVOCs) in a semi-urban site of western India based on measurements during February-December 2015. Anthropogenic NMVOCs show clear seasonal dependence with highest in winter and lowest in monsoon season. Biogenic NMVOCs likes isoprene show highest mixing ratios in the pre-monsoon season. The diurnal variation of NMVOC species can be described by elevated values from night till morning and lower values in the afternoon hours. The elevated levels of NMVOCs during night and early morning hours were caused mainly by weaker winds, temperature inversion and reduced chemical loss. The correlations between NMVOCs, CO and NOx indicate the dominant role of various local emission sources. Use and leakage of liquefied petroleum gas (LPG) contributed to the elevated levels of propane and butanes. Mixing ratios of ethylene, propylene, CO, NOx, etc. show predominant emissions from combustion of fuels in automobiles and industries. The Positive Matrix Factorization (PMF) source apportionments were performed for the seven major emission sectors (i.e. Vehicular exhaust, Mixed industrial emissions, Biomass/Fired brick kilns/Bio-fuel, Petrochem, LPG, Gas evaporation, Biogenic). Emissions from vehicle exhaust and industry-related sources contributed to about 19% and 40% of the NMVOCs, respectively. And the rest (41%) was attributed to the emissions from biogenic sources, LPG, gasoline evaporation and biomass burning. Diurnal and seasonal variations of NMVOCs were controlled by local emissions, meteorology, OH concentrations, long-range transport and planetary boundary layer height. This study provides a good reference for framing environmental policies to improve the air quality in western region of India.
Collapse
Affiliation(s)
- Ravi Yadav
- Space and Atmospheric Science Division, Physical Research Laboratory, Ahmedabad, India; Department of Environmental Science and Engineering, Fudan University, Shanghai, China.
| | - L K Sahu
- Space and Atmospheric Science Division, Physical Research Laboratory, Ahmedabad, India
| | - Nidhi Tripathi
- Space and Atmospheric Science Division, Physical Research Laboratory, Ahmedabad, India; Indian Institute of Technology Gandhinagar Palaj, Gandhinagar, India
| | - D Pal
- Space and Atmospheric Science Division, Physical Research Laboratory, Ahmedabad, India; McGill University, Montreal, Quebec, Canada
| | - G Beig
- Indian Institute of Tropical Meteorology, Pune, India
| | | |
Collapse
|
107
|
Chen J, Bi H, Yu X, Fu Y, Liao W. Influence of physiological and environmental factors on the diurnal variation in emissions of biogenic volatile compounds from Pinus tabuliformis. J Environ Sci (China) 2019; 81:102-118. [PMID: 30975314 DOI: 10.1016/j.jes.2019.01.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 06/09/2023]
Abstract
Biological volatile organic compounds (BVOCs) have a large influence on atmospheric environmental quality, climate change and the carbon cycle. This study assesses the composition and diurnal variation in emission rates of BVOCs from Pinus tabuliformis, using an enclosure technique. Environmental parameters (temperature and light intensity) and physiological parameters (net photosynthetic rate, Pn; stomatal conductance, gs; intercellular CO2 concentration, Ci; and transpiration rate, Tr) that may affect emission behavior were continuously monitored. The 10 most abundant compound groups emitted by P. tabuliformis were classified by gas chromatography-mass spectrometry. The dominant monoterpenoid compounds emitted were α-pinene, β-myrcene, α-farnesene and limonene. The diurnal emission rate of BVOCs changed with temperature and light intensity, with dynamic analysis of BVOCs emissions revealing that their emission rates were more affected by temperature than light. The variation in monoterpene emission rates was consistent with estimates of Pn, gs and Tr. Basal emission rates (at 30 °C,) of the main BVOCs ranged from 0.006 to 0.273 μg -1/(hr g), while the basal ER standardization coefficients ranged from 0.049 to 0.144 °C-1. Overall, these results provide a detailed reference for the effective selection and configuration of tree species to effectively prevent and control atmospheric pollution.
Collapse
Affiliation(s)
- Jungang Chen
- College of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China; Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China
| | - Huaxing Bi
- College of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China; Ji County Station, Chinese National Ecosystem Research Network (CNERN), Beijing 100083, China; Key Laboratory of State Forestry Administration on Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China; Beijing Engineering Research Center of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China; Engineering Research Center of Forestry Ecological Engineering, Ministry of Education, Beijing Forestry University, Beijing 100083, China; Beijing Collaborative Innovation Center for Eco-Environmental Improvement With Forestry and Fruit Trees, 102206 Beijing, China.
| | - Xinxiao Yu
- College of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
| | - Yanlin Fu
- College of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
| | - Wenchao Liao
- Beijing Water Consulting Co., LTD, 100048 Beijing, China
| |
Collapse
|
108
|
Lan H, Holopainen J, Hartonen K, Jussila M, Ritala M, Riekkola ML. Fully Automated Online Dynamic In-Tube Extraction for Continuous Sampling of Volatile Organic Compounds in Air. Anal Chem 2019; 91:8507-8515. [PMID: 31247721 PMCID: PMC6750644 DOI: 10.1021/acs.analchem.9b01668] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Comprehensive and time-dependent information (e.g., chemical composition, concentration) of volatile organic compounds (VOCs) in atmospheric, indoor, and breath air is essential to understand the fundamental science of the atmosphere, air quality, and diseases diagnostic. Here, we introduced a fully automated online dynamic in-tube extraction (ITEX)-gas chromatography/mass spectrometry (GC/MS) method for continuous and quantitative monitoring of VOCs in air. In this approach, modified Cycle Composer software and a PAL autosampler controlled and operated the ITEX preconditioning, internal standard (ISTD) addition, air sampling, and ITEX desorption sequentially to enable full automation. Air flow passed through the ITEX with the help of an external pump, instead of plunger up-down strokes, to allow larger sampling volumes, exhaustive extraction, and consequently lower detection limits. Further, in order to evaluate the ITEX system stability and to develop the corresponding quantitative ITEX method, two laboratory-made permeation systems (for standard VOCs and ISTD) were constructed. The stability and suitability of the developed system was validated with a consecutive 19 day atmospheric air campaign under automation. By using an electrospun polyacrylonitrile nanofibers packed ITEX, selective extraction of some VOCs and durability of over 1500 extraction and desorption cycles were achieved. Especially, the latter step is critically important for on-site long-term application at remote regions. This ITEX method provided 2-3 magnitudes lower quantitation limits than the headspace dynamic ITEX method and other needle trap methods. Our results proved the excellence of the fully automated online dynamic ITEX-GC/MS system for tracking VOCs in the atmospheric air.
Collapse
Affiliation(s)
- Hangzhen Lan
- Department of Chemistry , University of Helsinki , P.O. Box 55, 00014 Helsinki , Finland.,Institute for Atmospheric and Earth System Research , University of Helsinki , P.O. Box 64, 00014 Helsinki , Finland
| | - Jani Holopainen
- Department of Chemistry , University of Helsinki , P.O. Box 55, 00014 Helsinki , Finland
| | - Kari Hartonen
- Department of Chemistry , University of Helsinki , P.O. Box 55, 00014 Helsinki , Finland.,Institute for Atmospheric and Earth System Research , University of Helsinki , P.O. Box 64, 00014 Helsinki , Finland
| | - Matti Jussila
- Department of Chemistry , University of Helsinki , P.O. Box 55, 00014 Helsinki , Finland.,Institute for Atmospheric and Earth System Research , University of Helsinki , P.O. Box 64, 00014 Helsinki , Finland
| | - Mikko Ritala
- Department of Chemistry , University of Helsinki , P.O. Box 55, 00014 Helsinki , Finland
| | - Marja-Liisa Riekkola
- Department of Chemistry , University of Helsinki , P.O. Box 55, 00014 Helsinki , Finland.,Institute for Atmospheric and Earth System Research , University of Helsinki , P.O. Box 64, 00014 Helsinki , Finland
| |
Collapse
|
109
|
Yang Y, Bai L, Wang B, Wu J, Fu S. Reliability of the global climate models during 1961-1999 in arid and semiarid regions of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 667:271-286. [PMID: 30831367 DOI: 10.1016/j.scitotenv.2019.02.188] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 02/08/2019] [Accepted: 02/12/2019] [Indexed: 05/12/2023]
Abstract
General circulation models (GCMs) are useful tools for investigating mechanisms of climate change and projecting future climate change scenarios, but have large uncertainties and biases. Accurate models are of significant importance for agriculture, water resources management, hydrological simulation, and species distribution. In this study, we examined the precipitation and temperature reproducibility of 34 GCMs during the period from 1961 to 1999 over arid and semiarid regions of China. The study area was divided into eight sub-regions; each represented a specific topography. The evaluation was conducted for the whole study area and the sub-regions. Spatial and temporal indices and weighting methodology were used to comprehensively illustrate the models' reproducibility. The results showed that the simulation ability during winter outperformed than that during summer (the weight was 0.192 higher for precipitation and 0.044 higher for temperature during winter than that during summer over the whole study area). Precipitation was more accurately simulated during spring than during autumn as opposed to temperature (the weight was 0.124 higher during spring than during autumn for precipitation and 0.1 higher during autumn than during spring for temperature for the whole region). For precipitation, the simulation ability in the basins was the best, followed by plateaus and mountains; the weights were 0.462, 0.308, and 0.231, respectively. For temperature, the mountains and plateaus had the best and poorest reproducibility, at weights of 0.446 and 0.198, respectively. The top models for precipitation and temperature at different spatial scales (whole study area, three topography types, eight sub-regions) were recommended. The results served as a reference for model selection in future studies regarding impacts of climate change on eco-hydrology.
Collapse
Affiliation(s)
- Yanfen Yang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Lei Bai
- College of Resources and Environmental Science, Xinjiang University, Urumqi 830046, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bing Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jing Wu
- Lanzhou Central Meteorological Observatory, Lanzhou 730020, China
| | - Suhua Fu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
110
|
Plant Approach-Avoidance Response in Locusts Driven by Plant Volatile Sensing at Different Ranges. J Chem Ecol 2019; 45:410-419. [DOI: 10.1007/s10886-019-01053-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/24/2019] [Accepted: 02/05/2019] [Indexed: 10/27/2022]
|
111
|
Mäki M, Aalto J, Hellén H, Pihlatie M, Bäck J. Interannual and Seasonal Dynamics of Volatile Organic Compound Fluxes From the Boreal Forest Floor. FRONTIERS IN PLANT SCIENCE 2019; 10:191. [PMID: 30853968 PMCID: PMC6395408 DOI: 10.3389/fpls.2019.00191] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 02/05/2019] [Indexed: 06/09/2023]
Abstract
In the northern hemisphere, boreal forests are a major source of biogenic volatile organic compounds (BVOCs), which drive atmospheric processes and lead to cloud formation and changes in the Earth's radiation budget. Although forest vegetation is known to be a significant source of BVOCs, the role of soil and the forest floor, and especially interannual variations in fluxes, remains largely unknown due to a lack of long-term measurements. Our aim was to determine the interannual, seasonal and diurnal dynamics of boreal forest floor volatile organic compound (VOC) fluxes and to estimate how much they contribute to ecosystem VOC fluxes. We present here an 8-year data set of forest floor VOC fluxes, measured with three automated chambers connected to the quadrupole proton transfer reaction mass spectrometer (quadrupole PTR-MS). The exceptionally long data set shows that forest floor fluxes were dominated by monoterpenes and methanol, with relatively comparable emission rates between the years. Weekly mean monoterpene fluxes from the forest floor were highest in spring and in autumn (maximum 59 and 86 μg m-2 h-1, respectively), whereas the oxygenated VOC fluxes such as methanol had highest weekly mean fluxes in spring and summer (maximum 24 and 79 μg m-2 h-1, respectively). Although the chamber locations differed from each other in emission rates, the inter-annual dynamics were very similar and systematic. Accounting for this chamber location dependent variability, temperature and relative humidity, a mixed effects linear model was able to explain 79-88% of monoterpene, methanol, acetone, and acetaldehyde fluxes from the boreal forest floor. The boreal forest floor was a significant contributor in the forest stand fluxes, but its importance varies between seasons, being most important in autumn. The forest floor emitted 2-93% of monoterpene fluxes in spring and autumn and 1-72% of methanol fluxes in spring and early summer. The forest floor covered only a few percent of the forest stand fluxes in summer.
Collapse
Affiliation(s)
- Mari Mäki
- Institute for Atmospheric and Earth System Research/Forest Sciences, Helsinki, Finland
- Department of Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Juho Aalto
- Institute for Atmospheric and Earth System Research/Forest Sciences, Helsinki, Finland
- Department of Physics, Faculty of Science, University of Helsinki, Helsinki, Finland
| | - Heidi Hellén
- Finnish Meteorological Institute, Helsinki, Finland
| | - Mari Pihlatie
- Institute for Atmospheric and Earth System Research/Forest Sciences, Helsinki, Finland
- Department of Agricultural Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
- Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Jaana Bäck
- Institute for Atmospheric and Earth System Research/Forest Sciences, Helsinki, Finland
- Department of Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
- Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| |
Collapse
|
112
|
Reductive metabolism of the important atmospheric gas isoprene by homoacetogens. ISME JOURNAL 2019; 13:1168-1182. [PMID: 30643199 PMCID: PMC6474224 DOI: 10.1038/s41396-018-0338-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 10/18/2018] [Accepted: 12/02/2018] [Indexed: 02/01/2023]
Abstract
Isoprene is the most abundant biogenic volatile organic compound (BVOC) in the Earth's atmosphere and plays important roles in atmospheric chemistry. Despite this, little is known about microbiological processes serving as a terrestrial sink for isoprene. While aerobic isoprene degrading bacteria have been identified, there are no known anaerobic, isoprene-metabolizing organisms. In this study an H2-consuming homoacetogenic enrichment was shown to utilize 1.6 μmoles isoprene h-1 as an electron acceptor in addition to HCO3-. The isoprene-reducing community was dominated by Acetobacterium spp. and isoprene was shown to be stoichiometrically reduced to three methylbutene isomers (2-methyl-1-butene (>97%), 3-methyl-1-butene (≤2%), 2-methyl-2-butene (≤1%). In the presence of isoprene, 40% less acetate was formed suggesting that isoprene reduction is coupled to energy conservation in Acetobacterium spp. This study improves our understanding of linkages and feedbacks between biogeochemistry and terrestrial microbial activity.
Collapse
|
113
|
Charnawskas JC, Alpert PA, Lambe AT, Berkemeier T, O'Brien RE, Massoli P, Onasch TB, Shiraiwa M, Moffet RC, Gilles MK, Davidovits P, Worsnop DR, Knopf DA. Condensed-phase biogenic-anthropogenic interactions with implications for cold cloud formation. Faraday Discuss 2018; 200:165-194. [PMID: 28574555 DOI: 10.1039/c7fd00010c] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Anthropogenic and biogenic gas emissions contribute to the formation of secondary organic aerosol (SOA). When present, soot particles from fossil fuel combustion can acquire a coating of SOA. We investigate SOA-soot biogenic-anthropogenic interactions and their impact on ice nucleation in relation to the particles' organic phase state. SOA particles were generated from the OH oxidation of naphthalene, α-pinene, longifolene, or isoprene, with or without the presence of sulfate or soot particles. Corresponding particle glass transition (Tg) and full deliquescence relative humidity (FDRH) were estimated using a numerical diffusion model. Longifolene SOA particles are solid-like and all biogenic SOA sulfate mixtures exhibit a core-shell configuration (i.e. a sulfate-rich core coated with SOA). Biogenic SOA with or without sulfate formed ice at conditions expected for homogeneous ice nucleation, in agreement with respective Tg and FDRH. α-pinene SOA coated soot particles nucleated ice above the homogeneous freezing temperature with soot acting as ice nuclei (IN). At lower temperatures the α-pinene SOA coating can be semisolid, inducing ice nucleation. Naphthalene SOA coated soot particles acted as ice nuclei above and below the homogeneous freezing limit, which can be explained by the presence of a highly viscous SOA phase. Our results suggest that biogenic SOA does not play a significant role in mixed-phase cloud formation and the presence of sulfate renders this even less likely. However, anthropogenic SOA may have an enhancing effect on cloud glaciation under mixed-phase and cirrus cloud conditions compared to biogenic SOA that dominate during pre-industrial times or in pristine areas.
Collapse
Affiliation(s)
- Joseph C Charnawskas
- Institute for Terrestrial and Planetary Atmospheres, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Acton WJF, Jud W, Ghirardo A, Wohlfahrt G, Hewitt CN, Taylor JE, Hansel A. The effect of ozone fumigation on the biogenic volatile organic compounds (BVOCs) emitted from Brassica napus above- and below-ground. PLoS One 2018; 13:e0208825. [PMID: 30532234 PMCID: PMC6287848 DOI: 10.1371/journal.pone.0208825] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 11/23/2018] [Indexed: 11/18/2022] Open
Abstract
The emissions of BVOCs from oilseed rape (Brassica napus), both when the plant is exposed to clean air and when it is fumigated with ozone at environmentally-relevant mixing ratios (ca. 135 ppbv), were measured under controlled laboratory conditions. Emissions of BVOCs were recorded from combined leaf and root chambers using a recently developed Selective Reagent Ionisation-Time of Flight-Mass Spectrometer (SRI-ToF-MS) enabling BVOC detection with high time and mass resolution, together with the ability to identify certain molecular functionality. Emissions of BVOCs from below-ground were found to be dominated by sulfur compounds including methanethiol, dimethyl disulfide and dimethyl sulfide, and these emissions did not change following fumigation of the plant with ozone. Emissions from above-ground plant organs exposed to clean air were dominated by methanol, monoterpenes, 4-oxopentanal and methanethiol. Ozone fumigation of the plants caused a rapid decrease in monoterpene and sesquiterpene concentrations in the leaf chamber and increased concentrations of ca. 20 oxygenated species, almost doubling the total carbon lost by the plant leaves as volatiles. The drop in sesquiterpenes concentrations was attributed to ozonolysis occurring to a major extent on the leaf surface. The drop in monoterpene concentrations was attributed to gas phase reactions with OH radicals deriving from ozonolysis reactions. As plant-emitted terpenoids have been shown to play a role in plant-plant and plant-insect signalling, the rapid loss of these species in the air surrounding the plants during photochemical pollution episodes may have a significant impact on plant-plant and plant-insect communications.
Collapse
Affiliation(s)
- W. J. F. Acton
- Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
| | - W. Jud
- Institute of Ion and Applied Physics, University of Innsbruck, Innsbruck, Austria
- Helmholtz Zentrum München, Institute of Biochemical Plant Pathology, Research Unit Environmental Simulation (EUS), Neuherberg, Germany
| | - A. Ghirardo
- Helmholtz Zentrum München, Institute of Biochemical Plant Pathology, Research Unit Environmental Simulation (EUS), Neuherberg, Germany
| | - G. Wohlfahrt
- Institute of Ecology, University of Innsbruck, Innsbruck, Austria
| | - C. N. Hewitt
- Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
| | - J. E. Taylor
- Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
| | - A. Hansel
- Institute of Ion and Applied Physics, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
115
|
Danner H, Desurmont GA, Cristescu SM, van Dam NM. Herbivore-induced plant volatiles accurately predict history of coexistence, diet breadth, and feeding mode of herbivores. THE NEW PHYTOLOGIST 2018; 220:726-738. [PMID: 28134434 DOI: 10.1111/nph.14428] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 12/08/2016] [Indexed: 05/04/2023]
Abstract
Herbivore-induced plant volatiles (HIPVs) serve as specific cues to higher trophic levels. Novel, exotic herbivores entering native foodwebs may disrupt the infochemical network as a result of changes in HIPV profiles. Here, we analysed HIPV blends of native Brassica rapa plants infested with one of 10 herbivore species with different coexistence histories, diet breadths and feeding modes. Partial least squares (PLS) models were fitted to assess whether HIPV blends emitted by Dutch B. rapa differ between native and exotic herbivores, between specialists and generalists, and between piercing-sucking and chewing herbivores. These models were used to predict the status of two additional herbivores. We found that HIPV blends predicted the evolutionary history, diet breadth and feeding mode of the herbivore with an accuracy of 80% or higher. Based on the HIPVs, the PLS models reliably predicted that Trichoplusia ni and Spodoptera exigua are perceived as exotic, leaf-chewing generalists by Dutch B. rapa plants. These results indicate that there are consistent and predictable differences in HIPV blends depending on global herbivore characteristics, including coexistence history. Consequently, native organisms may be able to rapidly adapt to potentially disruptive effects of exotic herbivores on the infochemical network.
Collapse
Affiliation(s)
- Holger Danner
- Molecular Interaction Ecology, Institute for Water and Wetland Research (IWWR), Radboud University, PO Box 9010, 6500, GL Nijmegen, the Netherlands
| | - Gaylord A Desurmont
- Institute of Biology, University of Neuchâtel, Neuchâtel, 2000, Switzerland
- European Biological Control Laboratory, USDA-ARS, CS 90013, Montferrier-sur-Lez, France
| | - Simona M Cristescu
- Life Science Trace Gas Facility, Institute for Molecules and Materials, Radboud University, 6500, GL Nijmegen, the Netherlands
| | - Nicole M van Dam
- Molecular Interaction Ecology, Institute for Water and Wetland Research (IWWR), Radboud University, PO Box 9010, 6500, GL Nijmegen, the Netherlands
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, Leipzig, 04103, Germany
- Institute of Ecology, Friedrich Schiller University Jena, Dornburger-Str. 159, Jena, 07743, Germany
| |
Collapse
|
116
|
Malik TG, Gajbhiye T, Pandey SK. Plant specific emission pattern of biogenic volatile organic compounds (BVOCs) from common plant species of Central India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2018; 190:631. [PMID: 30284054 DOI: 10.1007/s10661-018-7015-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 09/26/2018] [Indexed: 06/08/2023]
Abstract
In this study, we examined 49 representative plant species of the Achanakmar-Amarkantak Biosphere Reserve (AABR) forest of Central India for emission of a number of biogenic volatile organic compounds (BVOCs). The BVOCs emissions from seven plant species are reported here for the first time. The emission rates of different plant species were ranged from negligible to 80.6 ± 0.82 (μgg-1 h-1). Forty-seven plant species were found to emit isoprene and monoterpenes (23 high emitters, 12 moderate emitters, and 12 low emitters). Dalbergia sissoo showed the maximum total average volatile organic compound (TAVOC) emission rates (80.6 μgg-1 h-1). The percentage composition of monoterpenes was also varied across different plant species. Alpha-pinene (α-pinene) was found as the most dominant monoterpene with about 41.40% of the total monoterpene emission. The highest emission range of α-pinene (7.8 μg g-1 h-1) was observed in Murraya koenigii. Carene was emitted only from two species (i.e., Mangifera indica and Terminalia tomentosa). When the emission rates of present study were compared to previous studies, there were considerable differences even for the same species. The study also reports the emission of BVOCs from Shorea robusta for the first time which is the most dominant plant species of the AABR (covering 60% of the total forest area).
Collapse
Affiliation(s)
- Tanzil Gaffar Malik
- Department of Botany, Guru Ghasidas Central University, Bilaspur, C.G., 495009, India
| | - Triratnesh Gajbhiye
- Department of Botany, Guru Ghasidas Central University, Bilaspur, C.G., 495009, India
| | - Sudhir Kumar Pandey
- Department of Botany, Guru Ghasidas Central University, Bilaspur, C.G., 495009, India.
| |
Collapse
|
117
|
Volatile diterpene emission by two Mediterranean Cistaceae shrubs. Sci Rep 2018; 8:6855. [PMID: 29717178 PMCID: PMC5931525 DOI: 10.1038/s41598-018-25056-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 04/16/2018] [Indexed: 11/16/2022] Open
Abstract
Mediterranean vegetation emits a wide range of biogenic volatile organic compounds (BVOCs) among which isoprenoids present quantitatively the most important compound class. Here, we investigated the isoprenoid emission from two Mediterranean Cistaceae shrubs, Halimium halimifolium and Cistus ladanifer, under controlled and natural conditions, respectively. For the first time, diurnal emission patterns of the diterpene kaurene were detected in real-time by Proton-Transfer-Reaction-Time-of-Flight-Mass-Spectrometer. Kaurene emissions were strongly variable among H. halimifolium plants, ranging from 0.01 ± 0.003 to 0.06 ± 0.01 nmol m−2 s−1 in low and high emitting individuals, respectively. They were in the same order of magnitude as monoterpene (0.01 ± 0.01 to 0.11 ± 0.04 nmol m−2 s−1) and sesquiterpene (0.01 ± 0.01 to 0.52 nmol m−2 s−1) emission rates. Comparable range and variability was found for C. ladanifer under natural conditions. Labelling with 13C-pyruvate suggested that emitted kaurene was not derived from de novo biosynthesis. The high kaurene content in leaves, the weak relationship with ecophysiological parameters and the tendency of higher emissions with increasing temperatures in the field indicate an emission from storage pools. This study highlights significant emissions of kaurene from two Mediterranean shrub species, indicating that the release of diterpenes into the atmosphere should probably deserve more attention in the future.
Collapse
|
118
|
Puentes-Cala E, Liebeke M, Markert S, Harder J. Anaerobic Degradation of Bicyclic Monoterpenes in Castellaniella defragrans. Metabolites 2018; 8:E12. [PMID: 29414896 PMCID: PMC5876002 DOI: 10.3390/metabo8010012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 01/23/2018] [Accepted: 02/02/2018] [Indexed: 11/24/2022] Open
Abstract
The microbial degradation pathways of bicyclic monoterpenes contain unknown enzymes for carbon-carbon cleavages. Such enzymes may also be present in the betaproteobacterium Castellaniella defragrans, a model organism to study the anaerobic monoterpene degradation. In this study, a deletion mutant strain missing the first enzyme of the monocyclic monoterpene pathway transformed cometabolically the bicyclics sabinene, 3-carene and α-pinene into several monocyclic monoterpenes and traces of cyclic monoterpene alcohols. Proteomes of cells grown on bicyclic monoterpenes resembled the proteomes of cells grown on monocyclic monoterpenes. Many transposon mutants unable to grow on bicyclic monoterpenes contained inactivated genes of the monocyclic monoterpene pathway. These observations suggest that the monocyclic degradation pathway is used to metabolize bicyclic monoterpenes. The initial step in the degradation is a decyclization (ring-opening) reaction yielding monocyclic monoterpenes, which can be considered as a reverse reaction of the olefin cyclization of polyenes.
Collapse
Affiliation(s)
- Edinson Puentes-Cala
- Department of Microbiology, Max Planck Institute for Marine Microbiology, Celsiusstr. 1, 28359 Bremen, Germany.
| | - Manuel Liebeke
- Department of Symbiosis, Max Planck Institute for Marine Microbiology, Celsiusstr. 1, 28359 Bremen, Germany.
| | - Stephanie Markert
- Pharmaceutical Biotechnology, University Greifswald, Felix-Hausdorff-Straße, 17489 Greifswald, Germany.
| | - Jens Harder
- Department of Microbiology, Max Planck Institute for Marine Microbiology, Celsiusstr. 1, 28359 Bremen, Germany.
| |
Collapse
|
119
|
Dai K, Yu Q, Zhang Z, Wang Y, Wang X. Non-methane hydrocarbons in a controlled ecological life support system. CHEMOSPHERE 2018; 193:207-212. [PMID: 29131979 DOI: 10.1016/j.chemosphere.2017.11.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 11/05/2017] [Accepted: 11/06/2017] [Indexed: 06/07/2023]
Abstract
Non-methane hydrocarbons (NMHCs) are vital to people's health and plants' growth, especially inside a controlled ecological life support system (CELSS) built for long-term space explorations. In this study, we measured 54 kinds of NMHCs to study their changing trends in concentration levels during a 4-person-180-day integrated experiment inside a CELSS with four cabins for plants growing and other two cabins for human daily activities and resources management. During the experiment, the total mixing ratio of measured NMHCs was 423 ± 283 ppbv at the first day and it approached 2961 ± 323 ppbv ultimately. Ethane and propane were the most abundant alkanes and their mixing ratios kept growing from 27.5 ± 19.4 and 31.0 ± 33.6 ppbv to 2423 ± 449 ppbv and 290 ± 10 ppbv in the end. For alkenes, ethylene and isoprene presented continuously fluctuating states during the experimental period with average mixing ratios of 30.4 ± 19.3 ppbv, 7.4 ± 5.8 ppbv. For aromatic hydrocarbons, the total mixing ratios of benzene, toluene, ethylbenzene and xylenes declined from 48.0 ± 44 ppbv initially to 3.8 ± 1.1 ppbv ultimately. Biomass burning, sewage treatment, construction materials and plants all contributed to NMHCs inside CELSS. In conclusion, the results demonstrate the changing trends of NMHCs in a long-term closed ecological environment's atmosphere which provides valuable information for both the atmosphere management of CELSS and the exploration of interactions between humans and the total environment.
Collapse
Affiliation(s)
- Kun Dai
- National Key Laboratory of Human Engineering, Astronaut Center of China, Beijing, China
| | - Qingni Yu
- National Key Laboratory of Human Engineering, Astronaut Center of China, Beijing, China.
| | - Zhou Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| | - Yuan Wang
- Space Institute of Southern China (Shenzhen), Shenzhen, China
| | - Xinming Wang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China; Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| |
Collapse
|
120
|
Eberl F, Perreca E, Vogel H, Wright LP, Hammerbacher A, Veit D, Gershenzon J, Unsicker SB. Rust Infection of Black Poplar Trees Reduces Photosynthesis but Does Not Affect Isoprene Biosynthesis or Emission. FRONTIERS IN PLANT SCIENCE 2018; 9:1733. [PMID: 30538714 PMCID: PMC6277707 DOI: 10.3389/fpls.2018.01733] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 11/07/2018] [Indexed: 05/13/2023]
Abstract
Poplar (Populus spp.) trees are widely distributed and play an important role in ecological communities and in forestry. Moreover, by releasing high amounts of isoprene, these trees impact global atmospheric chemistry. One of the most devastating diseases for poplar is leaf rust, caused by fungi of the genus Melampsora. Despite the wide distribution of these biotrophic pathogens, very little is known about their effects on isoprene biosynthesis and emission. We therefore infected black poplar (P. nigra) trees with the rust fungus M. larici-populina and monitored isoprene emission and other physiological parameters over the course of infection to determine the underlying mechanisms. We found an immediate and persistent decrease in photosynthesis during infection, presumably caused by decreased stomatal conductance mediated by increased ABA levels. At the same time, isoprene emission remained stable during the time course of infection, consistent with the stability of its biosynthesis. There was no detectable change in the levels of intermediates or gene transcripts of the methylerythritol 4-phosphate (MEP) pathway in infected compared to control leaves. Rust infection thus does not affect isoprene emission, but may still influence the atmosphere via decreased fixation of CO2.
Collapse
Affiliation(s)
- Franziska Eberl
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Erica Perreca
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Heiko Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Louwrance P. Wright
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
- Zeiselhof Research Farm, Pretoria, South Africa
| | - Almuth Hammerbacher
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
- Department of Zoology and Entomology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Daniel Veit
- Technical Service, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Sybille B. Unsicker
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
- *Correspondence: Sybille B. Unsicker,
| |
Collapse
|
121
|
Ren Y, Qu Z, Du Y, Xu R, Ma D, Yang G, Shi Y, Fan X, Tani A, Guo P, Ge Y, Chang J. Air quality and health effects of biogenic volatile organic compounds emissions from urban green spaces and the mitigation strategies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 230:849-861. [PMID: 28734266 DOI: 10.1016/j.envpol.2017.06.049] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 06/14/2017] [Accepted: 06/14/2017] [Indexed: 06/07/2023]
Abstract
Biogenic volatile organic compounds (BVOCs) emissions lead to fine particulate matter (PM2.5) and ground-level ozone pollution, and are harmful to human health, especially in urban areas. However, most BVOCs estimations ignored the emissions from urban green spaces, causing inaccuracies in the understanding of regional BVOCs emissions and their environmental and health effects. In this study, we used the latest local vegetation datasets from our field survey and applied an estimation model to analyze the spatial-temporal patterns, air quality impacts, health damage and mitigating strategies of BVOCs emissions in the Greater Beijing Area. Results showed that: (1) the urban core was the hotspot of regional BVOCs emissions for the highest region-based emission intensity (3.0 g C m-2 yr-1) among the 11 sub-regions; (2) urban green spaces played much more important roles (account for 62% of total health damage) than rural forests in threating human health; (3) BVOCs emissions from green spaces will more than triple by 2050 due to urban area expansion, tree growth and environmental changes; and (4) adopting proactive management (e.g. adjusting tree species composition) can reduce 61% of the BVOCs emissions and 50% of the health damage related to BVOCs emissions by 2050.
Collapse
Affiliation(s)
- Yuan Ren
- College of Life Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Zelong Qu
- College of Life Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yuanyuan Du
- College of Life Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Ronghua Xu
- College of Life Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Danping Ma
- Engineering Experimental Training Center, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, PR China
| | - Guofu Yang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yan Shi
- School of Landscape Architecture, Zhejiang A & F University, Lin'an 311300, PR China
| | - Xing Fan
- College of Life Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Akira Tani
- Institute for Environmental Sciences, University of Shizuoka, 52-1 Yada, Shizuoka 422-7 8526, Japan
| | - Peipei Guo
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Ying Ge
- College of Life Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Jie Chang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
122
|
Holopainen JK, Kivimäenpää M, Nizkorodov SA. Plant-derived Secondary Organic Material in the Air and Ecosystems. TRENDS IN PLANT SCIENCE 2017; 22:744-753. [PMID: 28789922 DOI: 10.1016/j.tplants.2017.07.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/25/2017] [Accepted: 07/07/2017] [Indexed: 05/24/2023]
Abstract
Biogenic secondary organic aerosol (SOA) and deposited secondary organic material (SOM) are formed by oxidation of volatile organic compounds (VOCs) emitted by plants. Many SOA compounds have much longer chemical lifetimes than the original VOC, and may accumulate on plant surfaces and in soil as SOM because of their low volatility. This suggests that they may have important and presently unrecognized roles in plant adaptation. Using reactive plant terpenoids as a model we propose a three-tier (atmosphere-vegetation-soil) framework to better understand the ecological and evolutionary functions of SOM. In this framework, SOA in the atmosphere is known to affect solar radiation, SOM on the plant surfaces influences the interactive organisms, and wet and dry deposition of SOM on soil affects soil organisms.
Collapse
Affiliation(s)
- J K Holopainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, FI-70211 Kuopio, Finland.
| | - M Kivimäenpää
- Department of Environmental and Biological Sciences, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - S A Nizkorodov
- Department of Chemistry, 1102 Natural Sciences II, University of California, Irvine, CA 92697-2025, USA; Department of Applied Physics, University of Eastern Finland, FI-70211 Kuopio, Finland
| |
Collapse
|
123
|
Wang L, Qian C, Bai J, Luo W, Jin C, Yu Z. Difference in volatile composition between the pericarp tissue and inner tissue of tomato (Solanum lycopersicum) fruit. J FOOD PROCESS PRES 2017. [DOI: 10.1111/jfpp.13387] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Libin Wang
- College of Horticulture; Nanjing Agricultural University; Nanjing 210095, People's Republic of China
| | - Chunlu Qian
- School of Food Science and Technology; Yangzhou University; Yangzhou 225127, People's Republic of China
| | - Jinhe Bai
- U.S. Horticultural Research Laboratory; USDA, ARS; Fort Pierce, Florida, 34945
| | - Weiqi Luo
- U.S. Horticultural Research Laboratory; USDA, ARS; Fort Pierce, Florida, 34945
| | - Changhai Jin
- School of Food Science and Technology; Yangzhou University; Yangzhou 225127, People's Republic of China
| | - Zhifang Yu
- College of Food Science and Technology; Nanjing Agricultural University; Nanjing 210095, People's Republic of China
| |
Collapse
|
124
|
Schollert M, Kivimäenpää M, Michelsen A, Blok D, Rinnan R. Leaf anatomy, BVOC emission and CO2 exchange of arctic plants following snow addition and summer warming. ANNALS OF BOTANY 2017; 119:433-445. [PMID: 28064192 PMCID: PMC5314650 DOI: 10.1093/aob/mcw237] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 08/11/2016] [Accepted: 10/10/2016] [Indexed: 05/22/2023]
Abstract
BACKGROUND AND AIMS Climate change in the Arctic is projected to increase temperature, precipitation and snowfall. This may alter leaf anatomy and gas exchange either directly or indirectly. Our aim was to assess whether increased snow depth and warming modify leaf anatomy and affect biogenic volatile organic compound (BVOC) emissions and CO2 exchange of the widespread arctic shrubs Betula nana and Empetrum nigrum ssp. hermaphroditum METHODS: Measurements were conducted in a full-factorial field experiment in Central West Greenland, with passive summer warming by open-top chambers and snow addition using snow fences. Leaf anatomy was assessed using light microscopy and scanning electron microscopy. BVOC emissions were measured using a dynamic enclosure system and collection of BVOCs into adsorbent cartridges analysed by gas chromatography-mass spectrometry. Carbon dioxide exchange was measured using an infrared gas analyser. KEY RESULTS Despite a later snowmelt and reduced photosynthesis for B. nana especially, no apparent delays in the BVOC emissions were observed in response to snow addition. Only a few effects of the treatments were seen for the BVOC emissions, with sesquiterpenes being the most responsive compound group. Snow addition affected leaf anatomy by increasing the glandular trichome density in B. nana and modifying the mesophyll of E. hermaphroditum The open-top chambers thickened the epidermis of B. nana, while increasing the glandular trichome density and reducing the palisade:spongy mesophyll ratio in E. hermaphroditum CONCLUSIONS: Leaf anatomy was modified by both treatments already after the first winter and we suggest links between leaf anatomy, CO2 exchange and BVOC emissions. While warming is likely to reduce soil moisture, melt water from a deeper snow pack alleviates water stress in the early growing season. The study emphasizes the ecological importance of changes in winter precipitation in the Arctic, which can interact with climate-warming effects.
Collapse
Affiliation(s)
- Michelle Schollert
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen Ø, Denmark
- Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Øster Voldgade 10, 1350 Copenhagen K, Denmark
| | - Minna Kivimäenpää
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 1627, 70211 Kuopio, Finland
| | - Anders Michelsen
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen Ø, Denmark
- Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Øster Voldgade 10, 1350 Copenhagen K, Denmark
| | - Daan Blok
- Department of Physical Geography and Ecosystem Science, Lund University, Sölvegatan 12, 223 62 Lund, Sweden
| | - Riikka Rinnan
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen Ø, Denmark
- Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Øster Voldgade 10, 1350 Copenhagen K, Denmark
| |
Collapse
|
125
|
Svendsen SH, Lindwall F, Michelsen A, Rinnan R. Biogenic volatile organic compound emissions along a high arctic soil moisture gradient. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 573:131-138. [PMID: 27552736 DOI: 10.1016/j.scitotenv.2016.08.100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 08/12/2016] [Accepted: 08/15/2016] [Indexed: 06/06/2023]
Abstract
Emissions of biogenic volatile organic compounds (BVOCs) from terrestrial ecosystems are important for the atmospheric chemistry and the formation of secondary organic aerosols, and may therefore influence the climate. Global warming is predicted to change patterns in precipitation and plant species compositions, especially in arctic regions where the temperature increase will be most pronounced. These changes are potentially highly important for the BVOC emissions but studies investigating the effects are lacking. The aim of this study was to investigate the quality and quantity of BVOC emissions from a high arctic soil moisture gradient extending from dry tundra to a wet fen. Ecosystem BVOC emissions were sampled five times in the July-August period using a push-pull enclosure technique, and BVOCs trapped in absorbent cartridges were analyzed using gas chromatography-mass spectrometry. Plant species compositions were estimated using the point intercept method. In order to take into account important underlying ecosystem processes, gross ecosystem production, ecosystem respiration and net ecosystem production were measured in connection with chamber-based BVOC measurements. Highest emissions of BVOCs were found from vegetation communities dominated by Salix arctica and Cassiope tetragona, which had emission profiles dominated by isoprene and monoterpenes, respectively. These results show that emissions of BVOCs are highly dependent on the plant cover supported by the varying soil moisture, suggesting that high arctic BVOC emissions may affect the climate differently if soil water content and plant cover change.
Collapse
Affiliation(s)
- Sarah Hagel Svendsen
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Universitetsparken 15, DK -2100 Copenhagen E, Denmark; Center for Permafrost (CENPERM), Department of Geoscience and Natural Resource Management, University of Copenhagen, Øster Voldgade 10, DK -1350 Copenhagen K, Denmark
| | - Frida Lindwall
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Universitetsparken 15, DK -2100 Copenhagen E, Denmark; Center for Permafrost (CENPERM), Department of Geoscience and Natural Resource Management, University of Copenhagen, Øster Voldgade 10, DK -1350 Copenhagen K, Denmark
| | - Anders Michelsen
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Universitetsparken 15, DK -2100 Copenhagen E, Denmark; Center for Permafrost (CENPERM), Department of Geoscience and Natural Resource Management, University of Copenhagen, Øster Voldgade 10, DK -1350 Copenhagen K, Denmark
| | - Riikka Rinnan
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Universitetsparken 15, DK -2100 Copenhagen E, Denmark; Center for Permafrost (CENPERM), Department of Geoscience and Natural Resource Management, University of Copenhagen, Øster Voldgade 10, DK -1350 Copenhagen K, Denmark.
| |
Collapse
|
126
|
Baluška F, Yokawa K, Mancuso S, Baverstock K. Understanding of anesthesia - Why consciousness is essential for life and not based on genes. Commun Integr Biol 2016; 9:e1238118. [PMID: 28042377 PMCID: PMC5193047 DOI: 10.1080/19420889.2016.1238118] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 08/05/2016] [Accepted: 09/14/2016] [Indexed: 01/14/2023] Open
Abstract
Anesthesia and consciousness represent 2 mysteries not only for biology but also for physics and philosophy. Although anesthesia was introduced to medicine more than 160 y ago, our understanding of how it works still remains a mystery. The most prevalent view is that the human brain and its neurons are necessary to impose the effects of anesthetics. However, the fact is that all life can be anesthesized. Numerous theories have been generated trying to explain the major impact of anesthetics on our human-specific consciousness; switching it off so rapidly, but no single theory resolves this enduring mystery. The speed of anesthetic actions precludes any direct involvement of genes. Lipid bilayers, cellular membranes, and critical proteins emerge as the most probable primary targets of anesthetics. Recent findings suggest, rather surprisingly, that physical forces underlie both the anesthetic actions on living organisms as well as on consciousness in general.
Collapse
Affiliation(s)
| | - Ken Yokawa
- IZMB, University of Bonn, Kirschalle, Bonn, Germany
| | - Stefano Mancuso
- Department of Plant, Soil and Environmental Science & LINV, University of Florence, Sesto Fiorentino, Italy
| | - Keith Baverstock
- Department of Environmental Science, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
127
|
Jürgens A, Bischoff M. Changing odour landscapes: the effect of anthropogenic volatile pollutants on plant–pollinator olfactory communication. Funct Ecol 2016. [DOI: 10.1111/1365-2435.12774] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Andreas Jürgens
- Department of Biology, Plant Chemical Ecology Technische Universität Darmstadt Schnittspahnstrasse 10 64287 Darmstadt Germany
- School of Life Sciences University of KwaZulu‐Natal P. Bag X01 Scottsville Pietermaritzburg3209 South Africa
| | - Mascha Bischoff
- Department of Biology, Plant Chemical Ecology Technische Universität Darmstadt Schnittspahnstrasse 10 64287 Darmstadt Germany
| |
Collapse
|
128
|
Yuan X, Calatayud V, Gao F, Fares S, Paoletti E, Tian Y, Feng Z. Interaction of drought and ozone exposure on isoprene emission from extensively cultivated poplar. PLANT, CELL & ENVIRONMENT 2016; 39:2276-87. [PMID: 27411672 DOI: 10.1111/pce.12798] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 06/26/2016] [Accepted: 07/05/2016] [Indexed: 05/24/2023]
Abstract
The combined effects of ozone (O3 ) and drought on isoprene emission were studied for the first time. Young hybrid poplars (clone 546, Populus deltoides cv. 55/56 x P. deltoides cv. Imperial) were exposed to O3 (charcoal-filtered air, CF, and non-filtered air +40 ppb, E-O3 ) and soil water stress (well-watered, WW, and mild drought, MD, one-third irrigation) for 96 days. Consistent with light-saturated photosynthesis (Asat ), intercellular CO2 concentration (Ci ) and chlorophyll content, isoprene emission depended on drought, O3 , leaf position and sampling time. Drought stimulated emission (+38.4%), and O3 decreased it (-40.4%). Ozone increased the carbon cost per unit of isoprene emission. Ozone and drought effects were stronger in middle leaves (13th-15th from the apex) than in upper leaves (6th-8th). Only Asat showed a significant interaction between O3 and drought. When the responses were up-scaled to the entire-plant level, however, drought effects on total leaf area translated into around twice higher emission from WW plants in clean air than in E-O3 . Our results suggest that direct effects on plant emission rates and changes in total leaf area may affect isoprene emission from intensively cultivated hybrid poplar under combined MD and O3 exposure, with important feedbacks for air quality.
Collapse
Affiliation(s)
- Xiangyang Yuan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Vicent Calatayud
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing, 100085, China
- Fundación CEAM, c/Charles R. Darwin 14, Parque Tecnológico, Paterna, 46980, Valencia, Spain
| | - Feng Gao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Silvano Fares
- Research Centre for Soil-Plant System, Council for Agricultural Research and Economics, Rome, Italy
| | - Elena Paoletti
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing, 100085, China
- National Research Council, Via Madonna del Piano 10, 50019, Sesto, Fiorentino, Italy
| | - Yuan Tian
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing, 100048, China
| | - Zhaozhong Feng
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing, 100085, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.
| |
Collapse
|
129
|
Lindwall F, Svendsen SS, Nielsen CS, Michelsen A, Rinnan R. Warming increases isoprene emissions from an arctic fen. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 553:297-304. [PMID: 26933965 DOI: 10.1016/j.scitotenv.2016.02.111] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 02/16/2016] [Accepted: 02/16/2016] [Indexed: 05/22/2023]
Abstract
Emissions of biogenic volatile organic compounds (BVOCs) from dry ecosystems at high latitudes respond strongly to small increases in temperature, and warm canopy surface temperatures drive emissions to higher levels than expected. However, it is not known whether emissions from wetlands, cooled by through-flowing water and higher evapotranspiration show similar response to warming as in drier ecosystems. Climate change will cause parts of the Arctic to experience increased snow fall, which delays the start of the growing season, insulates soil from low temperatures in winter, and increases soil moisture and possibly nutrient availability. Currently the effects of increasing snow depth on BVOC emissions are unknown. BVOC emissions were measured in situ across the growing season in a climate experiment, which used open top chambers to increase temperature and snow fences to increase winter snow depth. The treatments were arranged in a full factorial design. Measurements took place during two growing seasons in a fen ecosystem in west Greenland. BVOC samples collected by an enclosure technique in adsorbent cartridges were analysed using gas chromatography-mass spectrometry. Gross ecosystem production (GEP) was measured with a closed chamber technique, to reveal any immediate effect of treatments on photosynthesis, which could further influence BVOC emissions. Isoprene made up 84-92% of the emitted BVOCs. Isoprene emission increased 240 and 340% due to an increase in temperature of 1.3 and 1.6°C in 2014 and 2015, respectively. Isoprene emissions were 25 times higher in 2015 than in 2014 most likely due to a 2.4°C higher canopy air temperature during sampling in 2015. Snow addition had no significant effect on isoprene emissions even though GEP was increased by 24%. Arctic BVOC emissions respond strongly to rising temperatures in wet ecosystems, suggesting a large increase in arctic emissions in a future warmer climate.
Collapse
Affiliation(s)
- Frida Lindwall
- Terrestrial Ecology, Department of Biology, University of Copenhagen, Copenhagen, Denmark; Center for Permafrost, Department of Geoscience and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | | | - Cecilie Skov Nielsen
- Center for Permafrost, Department of Geoscience and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - Anders Michelsen
- Terrestrial Ecology, Department of Biology, University of Copenhagen, Copenhagen, Denmark; Center for Permafrost, Department of Geoscience and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - Riikka Rinnan
- Terrestrial Ecology, Department of Biology, University of Copenhagen, Copenhagen, Denmark; Center for Permafrost, Department of Geoscience and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
130
|
McCormick AC, Reinecke A, Gershenzon J, Unsicker SB. Feeding Experience Affects the Behavioral Response of Polyphagous Gypsy Moth Caterpillars to Herbivore-induced Poplar Volatiles. J Chem Ecol 2016; 42:382-93. [PMID: 27170157 PMCID: PMC4912982 DOI: 10.1007/s10886-016-0698-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 03/22/2016] [Accepted: 04/28/2016] [Indexed: 11/27/2022]
Abstract
Plant volatiles influence host selection of herbivorous insects. Since volatiles often vary in space and time, herbivores (especially polyphagous ones) may be able to use these compounds as cues to track variation in host plant quality based on their innate abilities and previous experience. We investigated the behavioral response of naïve (fed on artificial diet) and experienced (fed on poplar) gypsy moth (Lymantria dispar) caterpillars, a polyphagous species, towards constitutive and herbivore-induced black poplar (Populus nigra) volatiles at different stages of herbivore attack. In Y-tube olfactometer assays, both naïve and experienced caterpillars were attracted to constitutive volatiles and volatiles released after short-term herbivory (up to 6 hr). Naïve caterpillars also were attracted to volatiles released after longer-term herbivory (24-30 hr), but experienced caterpillars preferred the odor of undamaged foliage. A multivariate statistical analysis comparing the volatile emission of undamaged plants vs. plants after short and longer-term herbivory, suggested various compounds as being responsible for distinguishing between the odors of these plants. Ten compounds were selected for individual testing of caterpillar behavioral responses in a four-arm olfactometer. Naïve caterpillars spent more time in arms containing (Z)-3-hexenol and (Z)-3-hexenyl acetate than in solvent permeated arms, while avoiding benzyl cyanide and salicyl aldehyde. Experienced caterpillars avoided benzyl cyanide and preferred (Z)-3-hexenyl acetate and the homoterpene (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT) over solvent. Only responses to DMNT were significantly different when comparing experienced and naïve caterpillars. The results show that gypsy moth caterpillars display an innate behavioral response towards constitutive and herbivore-induced plant volatiles, but also that larval behavior is plastic and can be modulated by previous feeding experience.
Collapse
Affiliation(s)
- Andrea C McCormick
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany.
- Institute of Agriculture and Environment, Massey University, Private Bag 11222, 4442, Palmerston North, New Zealand.
| | - Andreas Reinecke
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany
- Department of Behavioral Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Eberhard-Gwinner-Str. 7, 82319, Seewiesen, Germany
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany
| | - Sybille B Unsicker
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany
| |
Collapse
|
131
|
Nölscher AC, Yañez-Serrano AM, Wolff S, de Araujo AC, Lavrič JV, Kesselmeier J, Williams J. Unexpected seasonality in quantity and composition of Amazon rainforest air reactivity. Nat Commun 2016; 7:10383. [PMID: 26797390 PMCID: PMC4735797 DOI: 10.1038/ncomms10383] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 12/04/2015] [Indexed: 11/16/2022] Open
Abstract
The hydroxyl radical (OH) removes most atmospheric pollutants from air. The loss frequency of OH radicals due to the combined effect of all gas-phase OH reactive species is a measureable quantity termed total OH reactivity. Here we present total OH reactivity observations in pristine Amazon rainforest air, as a function of season, time-of-day and height (0–80 m). Total OH reactivity is low during wet (10 s−1) and high during dry season (62 s−1). Comparison to individually measured trace gases reveals strong variation in unaccounted for OH reactivity, from 5 to 15% missing in wet-season afternoons to mostly unknown (average 79%) during dry season. During dry-season afternoons isoprene, considered the dominant reagent with OH in rainforests, only accounts for ∼20% of the total OH reactivity. Vertical profiles of OH reactivity are shaped by biogenic emissions, photochemistry and turbulent mixing. The rainforest floor was identified as a significant but poorly characterized source of OH reactivity. The degree to which biogenic volatile organic compounds released by the Amazon canopy impact oxidation capacity remains uncertain. Here, the authors evaluate the vertical distribution of total hydroxyl radical reactivity and individual trace gases in the Amazon rainforest, and determine seasonal variations.
Collapse
Affiliation(s)
- A C Nölscher
- Air Chemistry and Biogeochemistry Department, Max Planck Institute for Chemistry, Mainz 55128, Germany
| | - A M Yañez-Serrano
- Air Chemistry and Biogeochemistry Department, Max Planck Institute for Chemistry, Mainz 55128, Germany.,Clima e Ambiente (CLIAMB), Instituto Nacional de Pesquisas da Amazônia (INPA), Avenue André Araújo 2936, Manaus, Amazonas CEP 69083-000, Brazil
| | - S Wolff
- Air Chemistry and Biogeochemistry Department, Max Planck Institute for Chemistry, Mainz 55128, Germany.,Clima e Ambiente (CLIAMB), Instituto Nacional de Pesquisas da Amazônia (INPA), Avenue André Araújo 2936, Manaus, Amazonas CEP 69083-000, Brazil
| | - A Carioca de Araujo
- Embrapa Amazônia Oriental, Empresa Brasileira de Pesquisa Agropecuaria, Belem, Pará CEP 66095-100, Brazil
| | - J V Lavrič
- Biogeochemical Systems Department, Max Planck Institute for Biogeochemistry, Jena 07745, Germany
| | - J Kesselmeier
- Air Chemistry and Biogeochemistry Department, Max Planck Institute for Chemistry, Mainz 55128, Germany
| | - J Williams
- Air Chemistry and Biogeochemistry Department, Max Planck Institute for Chemistry, Mainz 55128, Germany
| |
Collapse
|
132
|
Borges RM. On the Air: Broadcasting and Reception of Volatile Messages in Brood-Site Pollination Mutualisms. SIGNALING AND COMMUNICATION IN PLANTS 2016. [DOI: 10.1007/978-3-319-33498-1_10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
133
|
Eller ASD, Young LL, Trowbridge AM, Monson RK. Differential controls by climate and physiology over the emission rates of biogenic volatile organic compounds from mature trees in a semi-arid pine forest. Oecologia 2015; 180:345-58. [DOI: 10.1007/s00442-015-3474-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 10/02/2015] [Indexed: 10/22/2022]
|
134
|
Weyens N, Thijs S, Popek R, Witters N, Przybysz A, Espenshade J, Gawronska H, Vangronsveld J, Gawronski SW. The Role of Plant-Microbe Interactions and Their Exploitation for Phytoremediation of Air Pollutants. Int J Mol Sci 2015; 16:25576-604. [PMID: 26516837 PMCID: PMC4632817 DOI: 10.3390/ijms161025576] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/13/2015] [Accepted: 10/19/2015] [Indexed: 01/06/2023] Open
Abstract
Since air pollution has been linked to a plethora of human health problems, strategies to improve air quality are indispensable. Despite the complexity in composition of air pollution, phytoremediation was shown to be effective in cleaning air. Plants are known to scavenge significant amounts of air pollutants on their aboveground plant parts. Leaf fall and runoff lead to transfer of (part of) the adsorbed pollutants to the soil and rhizosphere below. After uptake in the roots and leaves, plants can metabolize, sequestrate and/or excrete air pollutants. In addition, plant-associated microorganisms play an important role by degrading, detoxifying or sequestrating the pollutants and by promoting plant growth. In this review, an overview of the available knowledge about the role and potential of plant-microbe interactions to improve indoor and outdoor air quality is provided. Most importantly, common air pollutants (particulate matter, volatile organic compounds and inorganic air pollutants) and their toxicity are described. For each of these pollutant types, a concise overview of the specific contributions of the plant and its microbiome is presented. To conclude, the state of the art and its related future challenges are presented.
Collapse
Affiliation(s)
- Nele Weyens
- Centre for Environmental Sciences, Hasselt University, Agoralaan building D, Diepenbeek 3590, Belgium.
| | - Sofie Thijs
- Centre for Environmental Sciences, Hasselt University, Agoralaan building D, Diepenbeek 3590, Belgium.
| | - Robert Popek
- Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Nowoursynowska 159, Warsaw 02-766, Poland.
| | - Nele Witters
- Centre for Environmental Sciences, Hasselt University, Agoralaan building D, Diepenbeek 3590, Belgium.
| | - Arkadiusz Przybysz
- Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Nowoursynowska 159, Warsaw 02-766, Poland.
| | - Jordan Espenshade
- Centre for Environmental Sciences, Hasselt University, Agoralaan building D, Diepenbeek 3590, Belgium.
| | - Helena Gawronska
- Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Nowoursynowska 159, Warsaw 02-766, Poland.
| | - Jaco Vangronsveld
- Centre for Environmental Sciences, Hasselt University, Agoralaan building D, Diepenbeek 3590, Belgium.
| | - Stanislaw W Gawronski
- Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Nowoursynowska 159, Warsaw 02-766, Poland.
| |
Collapse
|
135
|
Schollert M, Kivimäenpää M, Valolahti HM, Rinnan R. Climate change alters leaf anatomy, but has no effects on volatile emissions from Arctic plants. PLANT, CELL & ENVIRONMENT 2015; 38:2048-60. [PMID: 25737381 DOI: 10.1111/pce.12530] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 02/20/2015] [Accepted: 02/23/2015] [Indexed: 05/22/2023]
Abstract
Biogenic volatile organic compound (BVOC) emissions are expected to change substantially because of the rapid advancement of climate change in the Arctic. BVOC emission changes can feed back both positively and negatively on climate warming. We investigated the effects of elevated temperature and shading on BVOC emissions from arctic plant species Empetrum hermaphroditum, Cassiope tetragona, Betula nana and Salix arctica. Measurements were performed in situ in long-term field experiments in subarctic and high Arctic using a dynamic enclosure system and collection of BVOCs into adsorbent cartridges analysed by gas chromatography-mass spectrometry. In order to assess whether the treatments had resulted in anatomical adaptations, we additionally examined leaf anatomy using light microscopy and scanning electron microscopy. Against expectations based on the known temperature and light-dependency of BVOC emissions, the emissions were barely affected by the treatments. In contrast, leaf anatomy of the studied plants was significantly altered in response to the treatments, and these responses appear to differ from species found at lower latitudes. We suggest that leaf anatomical acclimation may partially explain the lacking treatment effects on BVOC emissions at plant shoot-level. However, more studies are needed to unravel why BVOC emission responses in arctic plants differ from temperate species.
Collapse
Affiliation(s)
- Michelle Schollert
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Copenhagen Ø, 2100, Denmark
- Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen K, 1350, Denmark
| | - Minna Kivimäenpää
- Department of Environmental Science, University of Eastern Finland, Kuopio, 70211, Finland
| | - Hanna M Valolahti
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Copenhagen Ø, 2100, Denmark
- Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen K, 1350, Denmark
| | - Riikka Rinnan
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Copenhagen Ø, 2100, Denmark
- Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen K, 1350, Denmark
| |
Collapse
|
136
|
Niederbacher B, Winkler JB, Schnitzler JP. Volatile organic compounds as non-invasive markers for plant phenotyping. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:5403-16. [PMID: 25969554 DOI: 10.1093/jxb/erv219] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Plants emit a great variety of volatile organic compounds (VOCs) that can actively participate in plant growth and protection against biotic and abiotic stresses. VOC emissions are strongly dependent on environmental conditions; the greatest ambiguity is whether or not the predicted change in climate will influence and modify plant-pest interactions that are mediated by VOCs. The constitutive and induced emission patterns between plant genotypes, species, and taxa are highly variable and can be used as pheno(chemo)typic markers to distinguish between different origins and provenances. In recent years significant progress has been made in molecular and genetic plant breeding. However, there is actually a lack of knowledge in functionally linking genotypes and phenotypes, particularly in analyses of plant-environment interactions. Plant phenotyping, the assessment of complex plant traits such as growth, development, tolerance, resistance, etc., has become a major bottleneck, and quantitative information on genotype-environment relationships is the key to addressing major future challenges. With increasing demand to support and accelerate progress in breeding for novel traits, the plant research community faces the need to measure accurately increasingly large numbers of plants and plant traits. In this review article, we focus on the promising outlook of VOC phenotyping as a fast and non-invasive measure of phenotypic dynamics. The basic principle is to define plant phenotypes according to their disease resistance and stress tolerance, which in turn will help in improving the performance and yield of economically relevant plants.
Collapse
Affiliation(s)
- B Niederbacher
- Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, D-85764, Neuherberg, Germany
| | - J B Winkler
- Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, D-85764, Neuherberg, Germany
| | - J P Schnitzler
- Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, D-85764, Neuherberg, Germany
| |
Collapse
|
137
|
Maja MM, Kasurinen A, Holopainen T, Kontunen-Soppela S, Oksanen E, Holopainen JK. Volatile organic compounds emitted from silver birch of different provenances across a latitudinal gradient in Finland. TREE PHYSIOLOGY 2015; 35:975-986. [PMID: 26093370 DOI: 10.1093/treephys/tpv052] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 05/11/2015] [Indexed: 06/04/2023]
Abstract
Climate warming is having an impact on distribution, acclimation and defence capability of plants. We compared the emission rate and composition of volatile organic compounds (VOCs) from silver birch (Betula pendula (Roth)) provenances along a latitudinal gradient in a common garden experiment over the years 2012 and 2013. Micropropagated silver birch saplings from three provenances were acquired along a gradient of 7° latitude and planted at central (Joensuu 62°N) and northern (Kolari 67°N) sites. We collected VOCs emitted by shoots and assessed levels of herbivore damage of three genotypes of each provenance on three occasions at the central site and four occasions at the northern site. In 2012, trees of all provenances growing at the central site had higher total VOC emission rates than the same provenances growing at the northern site; in 2013 the reverse was true, thus indicating a variable effect of latitude. Trees of the southern provenance had lower VOC emission rates than trees of the central and northern provenances during both sampling years. However, northward or southward translocation itself had no significant effect on the total VOC emission rates, and no clear effect on insect herbivore damage. When VOC blend composition was studied, trees of all provenances usually emitted more green leaf volatiles at the northern site and more sesquiterpenes at the central site. The monoterpene composition of emissions from trees of the central provenance was distinct from that of the other provenances. In summary, provenance translocation did not have a clear effect in the short-term on VOC emissions and herbivory was not usually intense at the lower latitude. Our data did not support the hypothesis that trees growing at lower latitudes would experience more intense herbivory, and therefore allocate resources to chemical defence in the form of inducible VOC emissions.
Collapse
Affiliation(s)
- Mengistu M Maja
- Department of Environmental Science, University of Eastern Finland, PO Box 127, Kuopio, Finland
| | - Anne Kasurinen
- Department of Environmental Science, University of Eastern Finland, PO Box 127, Kuopio, Finland
| | - Toini Holopainen
- Department of Environmental Science, University of Eastern Finland, PO Box 127, Kuopio, Finland
| | | | - Elina Oksanen
- Department of Biology, University of Eastern Finland, PO Box 111, Joensuu, Finland
| | - Jarmo K Holopainen
- Department of Environmental Science, University of Eastern Finland, PO Box 127, Kuopio, Finland
| |
Collapse
|
138
|
Valolahti H, Kivimäenpää M, Faubert P, Michelsen A, Rinnan R. Climate change-induced vegetation change as a driver of increased subarctic biogenic volatile organic compound emissions. GLOBAL CHANGE BIOLOGY 2015; 21:3478-88. [PMID: 25994223 PMCID: PMC4676918 DOI: 10.1111/gcb.12953] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 03/17/2015] [Indexed: 05/06/2023]
Abstract
Emissions of biogenic volatile organic compounds (BVOCs) have been earlier shown to be highly temperature sensitive in subarctic ecosystems. As these ecosystems experience rapidly advancing pronounced climate warming, we aimed to investigate how warming affects the BVOC emissions in the long term (up to 13 treatment years). We also aimed to assess whether the increased litterfall resulting from the vegetation changes in the warming subarctic would affect the emissions. The study was conducted in a field experiment with factorial open-top chamber warming and annual litter addition treatments on subarctic heath in Abisko, northern Sweden. After 11 and 13 treatment years, BVOCs were sampled from plant communities in the experimental plots using a push-pull enclosure technique and collection into adsorbent cartridges during the growing season and analyzed with gas chromatography-mass spectrometry. Plant species coverage in the plots was analyzed by the point intercept method. Warming by 2 °C caused a 2-fold increase in monoterpene and 5-fold increase in sesquiterpene emissions, averaged over all measurements. When the momentary effect of temperature was diminished by standardization of emissions to a fixed temperature, warming still had a significant effect suggesting that emissions were also indirectly increased. This indirect increase appeared to result from increased plant coverage and changes in vegetation composition. The litter addition treatment also caused significant increases in the emission rates of some BVOC groups, especially when combined with warming. The combined treatment had both the largest vegetation changes and the highest BVOC emissions. The increased emissions under litter addition were probably a result of a changed vegetation composition due to alleviated nutrient limitation and stimulated microbial production of BVOCs. We suggest that the changes in the subarctic vegetation composition induced by climate warming will be the major factor indirectly affecting the BVOC emission potentials and composition.
Collapse
Affiliation(s)
- Hanna Valolahti
- Terrestrial Ecology Section, Department of Biology, University of CopenhagenCopenhagen, Denmark
- Center for Permafrost (CENPERM), Department of Geography and Geology, University of CopenhagenCopenhagen, Denmark
| | - Minna Kivimäenpää
- Department of Environmental Sciences, University of Eastern FinlandKuopio, Finland
| | - Patrick Faubert
- Chaire en éco-conseil, Département des sciences fondamentales, Université du Québec à ChicoutimiChicoutimi, QC, Canada
| | - Anders Michelsen
- Terrestrial Ecology Section, Department of Biology, University of CopenhagenCopenhagen, Denmark
- Center for Permafrost (CENPERM), Department of Geography and Geology, University of CopenhagenCopenhagen, Denmark
| | - Riikka Rinnan
- Terrestrial Ecology Section, Department of Biology, University of CopenhagenCopenhagen, Denmark
- Center for Permafrost (CENPERM), Department of Geography and Geology, University of CopenhagenCopenhagen, Denmark
- Correspondence: Riikka Rinnan, tel. +45 51827039, fax +45 35322321, e-mail:
| |
Collapse
|
139
|
Misztal PK, Hewitt CN, Wildt J, Blande JD, Eller ASD, Fares S, Gentner DR, Gilman JB, Graus M, Greenberg J, Guenther AB, Hansel A, Harley P, Huang M, Jardine K, Karl T, Kaser L, Keutsch FN, Kiendler-Scharr A, Kleist E, Lerner BM, Li T, Mak J, Nölscher AC, Schnitzhofer R, Sinha V, Thornton B, Warneke C, Wegener F, Werner C, Williams J, Worton DR, Yassaa N, Goldstein AH. Atmospheric benzenoid emissions from plants rival those from fossil fuels. Sci Rep 2015; 5:12064. [PMID: 26165168 PMCID: PMC4499884 DOI: 10.1038/srep12064] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 06/16/2015] [Indexed: 11/11/2022] Open
Abstract
Despite the known biochemical production of a range of aromatic compounds by plants and the presence of benzenoids in floral scents, the emissions of only a few benzenoid compounds have been reported from the biosphere to the atmosphere. Here, using evidence from measurements at aircraft, ecosystem, tree, branch and leaf scales, with complementary isotopic labeling experiments, we show that vegetation (leaves, flowers, and phytoplankton) emits a wide variety of benzenoid compounds to the atmosphere at substantial rates. Controlled environment experiments show that plants are able to alter their metabolism to produce and release many benzenoids under stress conditions. The functions of these compounds remain unclear but may be related to chemical communication and protection against stress. We estimate the total global secondary organic aerosol potential from biogenic benzenoids to be similar to that from anthropogenic benzenoids (~10 Tg y−1), pointing to the importance of these natural emissions in atmospheric physics and chemistry.
Collapse
Affiliation(s)
- P K Misztal
- 1] University of California Berkeley, Environmental Science, Policy, and Management, Berkeley, CA 94720, USA [2] National Center for Atmospheric Research, Atmospheric Chemistry Division, Boulder, CO 80301, USA
| | - C N Hewitt
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - J Wildt
- Institut IBG-2, Phytosphäre, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - J D Blande
- Department of Environmental Science, University of Eastern Finland, 70211 Kuopio, Finland
| | - A S D Eller
- 1] CIRES, University of Colorado, Boulder CO 80309 USA [2] University of Colorado, Department of Ecology and Evolutionary Biology, Boulder, Colorado 80309 USA
| | - S Fares
- 1] University of California Berkeley, Environmental Science, Policy, and Management, Berkeley, CA 94720, USA [2] Council for Agricultural Research and Economics, Research Centre for the Soil-Plant System, Rome, Italy
| | - D R Gentner
- 1] University of California Berkeley, Department of Civil and Environmental Engineering, Berkeley, CA 94720, USA [2] Yale University, Chemical and Environmental Engineering, New Haven, CT 06520, USA
| | - J B Gilman
- 1] CIRES, University of Colorado, Boulder CO 80309 USA [2] ESRL-NOAA, Chemical Sciences Division, Boulder CO 80305 USA
| | - M Graus
- 1] CIRES, University of Colorado, Boulder CO 80309 USA [2] ESRL-NOAA, Chemical Sciences Division, Boulder CO 80305 USA
| | - J Greenberg
- National Center for Atmospheric Research, Atmospheric Chemistry Division, Boulder, CO 80301, USA
| | - A B Guenther
- 1] National Center for Atmospheric Research, Atmospheric Chemistry Division, Boulder, CO 80301, USA [2] Pacific Northwest National Laboratory, Atmospheric Sciences and Global Change Division, Richland, WA, USA [3] Washington State University, Department of Civil and Environmental Engineering, Pullman, WA, USA
| | - A Hansel
- University of Innsbruck, Institute for Ion Physics and Applied Physics, 6020 Innsbruck, Austria
| | - P Harley
- 1] National Center for Atmospheric Research, Atmospheric Chemistry Division, Boulder, CO 80301, USA [2] Estonian University of Life Sciences, Department of Plant Physiology, Tartu, Estonia
| | - M Huang
- National Center for Atmospheric Research, Atmospheric Chemistry Division, Boulder, CO 80301, USA
| | - K Jardine
- Lawrence Berkeley National Laboratory, Climate Sciences Department, Berkeley, CA 94720, USA
| | - T Karl
- University of Innsbruck, Institute of Atmospheric And Cryospheric Sciences, 6020 Innsbruck, Austria
| | - L Kaser
- 1] National Center for Atmospheric Research, Atmospheric Chemistry Division, Boulder, CO 80301, USA [2] University of Innsbruck, Institute for Ion Physics and Applied Physics, 6020 Innsbruck, Austria
| | - F N Keutsch
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - A Kiendler-Scharr
- Institut IEK-8, Troposphäre, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - E Kleist
- Institut IBG-2, Phytosphäre, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - B M Lerner
- 1] CIRES, University of Colorado, Boulder CO 80309 USA [2] ESRL-NOAA, Chemical Sciences Division, Boulder CO 80305 USA
| | - T Li
- Department of Environmental Science, University of Eastern Finland, 70211 Kuopio, Finland
| | - J Mak
- Stony Brook University, School of Marine and Atmospheric Sciences, Stony Brook, NY, USA
| | - A C Nölscher
- Max Planck Institut für Chemie, 55128 Mainz, Germany
| | - R Schnitzhofer
- University of Innsbruck, Institute for Ion Physics and Applied Physics, 6020 Innsbruck, Austria
| | - V Sinha
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Mohali, India
| | - B Thornton
- University of Northern Colorado, School of Biological Sciences, Greeley, CO 80639, USA
| | - C Warneke
- 1] CIRES, University of Colorado, Boulder CO 80309 USA [2] ESRL-NOAA, Chemical Sciences Division, Boulder CO 80305 USA
| | - F Wegener
- University Bayreuth, AgroEcosystem Research, BAYCEER, 95447 Bayreuth, Germany
| | - C Werner
- University Bayreuth, AgroEcosystem Research, BAYCEER, 95447 Bayreuth, Germany
| | - J Williams
- Max Planck Institut für Chemie, 55128 Mainz, Germany
| | - D R Worton
- 1] University of California Berkeley, Environmental Science, Policy, and Management, Berkeley, CA 94720, USA [2] Aerosol Dynamics Inc., Berkeley, CA, 94710, USA
| | - N Yassaa
- 1] USTHB, University of Sciences and Technology Houari Boumediene, Faculty of Chemistry, Algiers, Algeria [2] Centre de Développement des Energies Renouvelable, CDER, Algiers, Algeria
| | - A H Goldstein
- University of California Berkeley, Environmental Science, Policy, and Management, Berkeley, CA 94720, USA
| |
Collapse
|
140
|
Shi J, Deng H, Bai Z, Kong S, Wang X, Hao J, Han X, Ning P. Emission and profile characteristic of volatile organic compounds emitted from coke production, iron smelt, heating station and power plant in Liaoning Province, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 515-516:101-8. [PMID: 25704266 DOI: 10.1016/j.scitotenv.2015.02.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 01/27/2015] [Accepted: 02/09/2015] [Indexed: 05/22/2023]
Abstract
107 kinds of C₂-C₁₂ volatile organic compound (VOC) mass concentrations and profiles for four types of coal-fired stationary sources in Liaoning Province were studied by a dilution sampling system and GC-MS analysis method, which are of significant importance with regard to VOC emissions in northeast of China. The results showed that there were some differences among these VOC source profiles. The total mass concentrations of analyzed 107 VOC species varied from 10,917 to 19,652 μg m(-3). Halogenated hydrocarbons exhibited higher mass percentages for the VOC source profiles of iron smelt (48.8%) and coke production plant (37.7%). Aromatic hydrocarbons were the most abundant in heating station plant (69.1%). Ketones, alcohols and acetates held 45.0% of total VOCs in thermal power plant. For non-methane hydrocarbons (NMHCs), which are demanded for photochemical assessment in the USA, toluene and n-hexane were the most abundant species in the iron smelt, coke production and thermal power plant, with the mass percentages of 64.8%, 52.7% and 38.6%, respectively. Trimethylbenzene, n-propylbenzene and o,m-ethyltoluene approximately accounted for 70.0% in heating station plant. NMHCs emitted from coke production, iron smelt, heating station and power plant listed above presented different chemical reactivities. The average OH loss rate of NMHCs from heating station, was 4 to 5.6 times higher than that of NMHCs from iron smelt, coke production and power plant, which implies that VOCs emitted from heating station in northeast of China should be controlled firstly to avoid photochemical ozone pollution and protect human health. There are significant variations in the ratios of benzene/toluene and m, p-xylene/ethylbenzene of these coal-fired source profiles. The representativeness of the coal-fired sources studied and the VOC samples collected should be more closely examined. The accuracy of VOC source profiles related to coal-fired processes is highly dependent on location and sampling method.
Collapse
Affiliation(s)
- Jianwu Shi
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Hao Deng
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhipeng Bai
- Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Shaofei Kong
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing 210044, China; Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Xiuyan Wang
- College of Environmental Science and Engineering, Nankai University, Weijin Road 94#, Tianjin, China
| | - Jiming Hao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Xinyu Han
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Ping Ning
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
141
|
Lindwall F, Faubert P, Rinnan R. Diel Variation of Biogenic Volatile Organic Compound Emissions--A field Study in the Sub, Low and High Arctic on the Effect of Temperature and Light. PLoS One 2015; 10:e0123610. [PMID: 25897519 PMCID: PMC4405581 DOI: 10.1371/journal.pone.0123610] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 03/04/2015] [Indexed: 11/29/2022] Open
Abstract
Many hours of sunlight in the midnight sun period suggest that significant amounts of biogenic volatile organic compounds (BVOCs) may be released from arctic ecosystems during night-time. However, the emissions from these ecosystems are rarely studied and limited to point measurements during daytime. We measured BVOC emissions during 24-hour periods in the field using a push-pull chamber technique and collection of volatiles in adsorbent cartridges followed by analysis with gas chromatography-mass spectrometry. Five different arctic vegetation communities were examined: high arctic heaths dominated by Salix arctica and Cassiope tetragona, low arctic heaths dominated by Salix glauca and Betula nana and a subarctic peatland dominated by the moss Warnstorfia exannulata and the sedge Eriophorum russeolum. We also addressed how climate warming affects the 24-hour emission and how the daytime emissions respond to sudden darkness. The emissions from the high arctic sites were lowest and had a strong diel variation with almost no emissions during night-time. The low arctic sites as well as the subarctic site had a more stable release of BVOCs during the 24-hour period with night-time emissions in the same range as those during the day. These results warn against overlooking the night period when considering arctic emissions. During the day, the quantity of BVOCs and the number of different compounds emitted was higher under ambient light than in darkness. The monoterpenes α-fenchene, α-phellandrene, 3-carene and α-terpinene as well as isoprene were absent in dark measurements during the day. Warming by open top chambers increased the emission rates both in the high and low arctic sites, forewarning higher emissions in a future warmer climate in the Arctic.
Collapse
Affiliation(s)
- Frida Lindwall
- Terrestrial Ecology section, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Center for permafrost, Department of Geoscience and Natural resource Management, University of Copenhagen, Copenhagen, Denmark
| | - Patrick Faubert
- Chaire en éco-conseil, Département des sciences fondamentales, Université du Québec à Chicoutimi, Chicoutimi, Canada
| | - Riikka Rinnan
- Terrestrial Ecology section, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Center for permafrost, Department of Geoscience and Natural resource Management, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
142
|
Ulrich D, Nothnagel T, Schulz H. Influence of cultivar and harvest year on the volatile profiles of leaves and roots of carrots (Daucus carota spp. sativus Hoffm.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:3348-56. [PMID: 25797828 DOI: 10.1021/acs.jafc.5b00704] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The focus of the present work centers on the diversity of volatile patterns of carrots. In total 15 main volatiles were semiquantified in leaves and roots using isolation by headspace solid phase microextraction followed by gas chromatography with FID and MS detection. Significant differences in the main number of compounds were detected between the cultivars as well as the years. Genotype-environment interactions (G × E) are discussed. The most abundant metabolites, β-myrcene (leaves) and terpinolene (roots), differ in the sum of all interactions (cultivar × harvest year) by a factor of 22 and 62, respectively. A statistical test indicates significant metabolic differences between cultivars for nine volatiles in leaves and 10 in roots. In contrast to others the volatiles α-pinene, γ-terpinene, limonene, and myristicine in leaves as well as β-pinene, humulene, and bornyl acetate in roots are relatively stable over years. A correlation analysis shows no strict clustering regarding root color. While the biosynthesis in leaves and roots is independent between these two organs for nine of the 15 volatiles, a significant correlation of the myristicine content between leaves and roots was determined, which suggests the use of this compound as a bitter marker in carrot breeding.
Collapse
Affiliation(s)
- Detlef Ulrich
- †Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection and ‡Institute for Breeding Research on Horticultural Crops, Julius Kühn-Institute (JKI), Federal Research Centre for Cultivated Plants, Erwin-Baur-Strasse 27, D-06484 Quedlinburg, Germany
| | - Thomas Nothnagel
- †Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection and ‡Institute for Breeding Research on Horticultural Crops, Julius Kühn-Institute (JKI), Federal Research Centre for Cultivated Plants, Erwin-Baur-Strasse 27, D-06484 Quedlinburg, Germany
| | - Hartwig Schulz
- †Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection and ‡Institute for Breeding Research on Horticultural Crops, Julius Kühn-Institute (JKI), Federal Research Centre for Cultivated Plants, Erwin-Baur-Strasse 27, D-06484 Quedlinburg, Germany
| |
Collapse
|
143
|
Moelzner J, Fink P. Gastropod grazing on a benthic alga leads to liberation of food-finding infochemicals. OIKOS 2015. [DOI: 10.1111/oik.02069] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jana Moelzner
- Cologne Biocenter, Workgroup Aquatic Chemical Ecology, Univ. of Cologne; Zuelpicher Strasse 47b DE-50674 Koeln Germany
| | - Patrick Fink
- Cologne Biocenter, Workgroup Aquatic Chemical Ecology, Univ. of Cologne; Zuelpicher Strasse 47b DE-50674 Koeln Germany
| |
Collapse
|
144
|
Dani KGS, Jamie IM, Prentice IC, Atwell BJ. Increased ratio of electron transport to net assimilation rate supports elevated isoprenoid emission rate in eucalypts under drought. PLANT PHYSIOLOGY 2014; 166:1059-72. [PMID: 25139160 PMCID: PMC4213076 DOI: 10.1104/pp.114.246207] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 08/15/2014] [Indexed: 05/23/2023]
Abstract
Plants undergoing heat and low-CO2 stresses emit large amounts of volatile isoprenoids compared with those in stress-free conditions. One hypothesis posits that the balance between reducing power availability and its use in carbon assimilation determines constitutive isoprenoid emission rates in plants and potentially even their maximum emission capacity under brief periods of stress. To test this, we used abiotic stresses to manipulate the availability of reducing power. Specifically, we examined the effects of mild to severe drought on photosynthetic electron transport rate (ETR) and net carbon assimilation rate (NAR) and the relationship between estimated energy pools and constitutive volatile isoprenoid emission rates in two species of eucalypts: Eucalyptus occidentalis (drought tolerant) and Eucalyptus camaldulensis (drought sensitive). Isoprenoid emission rates were insensitive to mild drought, and the rates increased when the decline in NAR reached a certain species-specific threshold. ETR was sustained under drought and the ETR-NAR ratio increased, driving constitutive isoprenoid emission until severe drought caused carbon limitation of the methylerythritol phosphate pathway. The estimated residual reducing power unused for carbon assimilation, based on the energetic status model, significantly correlated with constitutive isoprenoid emission rates across gradients of drought (r(2) > 0.8) and photorespiratory stress (r(2) > 0.9). Carbon availability could critically limit emission rates under severe drought and photorespiratory stresses. Under most instances of moderate abiotic stress levels, increased isoprenoid emission rates compete with photorespiration for the residual reducing power not invested in carbon assimilation. A similar mechanism also explains the individual positive effects of low-CO2, heat, and drought stresses on isoprenoid emission.
Collapse
Affiliation(s)
- Kaidala Ganesha Srikanta Dani
- Department of Biological Sciences (K.G.S.D., I.C.P., B.J.A.) and Department of Chemistry and Biomolecular Sciences (K.G.S.D., I.M.J.), Macquarie University, North Ryde, Sydney, New South Wales 2109, Australia; andGrantham Institute for Climate Change and Grand Challenges in Ecosystems and Environment, Department of Life Sciences, Imperial College London, Ascot SL5 7PY, United Kingdom (I.C.P.)
| | - Ian McLeod Jamie
- Department of Biological Sciences (K.G.S.D., I.C.P., B.J.A.) and Department of Chemistry and Biomolecular Sciences (K.G.S.D., I.M.J.), Macquarie University, North Ryde, Sydney, New South Wales 2109, Australia; andGrantham Institute for Climate Change and Grand Challenges in Ecosystems and Environment, Department of Life Sciences, Imperial College London, Ascot SL5 7PY, United Kingdom (I.C.P.)
| | - Iain Colin Prentice
- Department of Biological Sciences (K.G.S.D., I.C.P., B.J.A.) and Department of Chemistry and Biomolecular Sciences (K.G.S.D., I.M.J.), Macquarie University, North Ryde, Sydney, New South Wales 2109, Australia; andGrantham Institute for Climate Change and Grand Challenges in Ecosystems and Environment, Department of Life Sciences, Imperial College London, Ascot SL5 7PY, United Kingdom (I.C.P.)
| | - Brian James Atwell
- Department of Biological Sciences (K.G.S.D., I.C.P., B.J.A.) and Department of Chemistry and Biomolecular Sciences (K.G.S.D., I.M.J.), Macquarie University, North Ryde, Sydney, New South Wales 2109, Australia; andGrantham Institute for Climate Change and Grand Challenges in Ecosystems and Environment, Department of Life Sciences, Imperial College London, Ascot SL5 7PY, United Kingdom (I.C.P.)
| |
Collapse
|
145
|
Aydin YM, Yaman B, Koca H, Dasdemir O, Kara M, Altiok H, Dumanoglu Y, Bayram A, Tolunay D, Odabasi M, Elbir T. Biogenic volatile organic compound (BVOC) emissions from forested areas in Turkey: determination of specific emission rates for thirty-one tree species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 490:239-53. [PMID: 24858222 DOI: 10.1016/j.scitotenv.2014.04.132] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 04/10/2014] [Accepted: 04/30/2014] [Indexed: 05/27/2023]
Abstract
Normalized biogenic volatile organic compound (BVOC) emission rates for thirty one tree species that cover the 98% of national forested areas in Turkey were determined. Field samplings were performed at fourteen different forested areas in Turkey using a specific dynamic enclosure system. The selected branches of tree species were enclosed in a chamber consisted of a transparent Nalofan bag. The air-flows were sampled from both inlet and outlet of the chamber by Tenax-filled sorbent tubes during photosynthesis of trees under the presence of sunlight. Several environmental parameters (temperature, humidity, photosynthetically active radiation-PAR, and CO2) were continuously monitored inside and outside the enclosure chamber during the samplings. Collected samples were analyzed using a gas chromatography mass spectrometry (GC/MS) system equipped with a thermal desorber (TD). Sixty five BVOCs classified in five major groups (isoprene, monoterpenes, sesquiterpenes, oxygenated sesquiterpenes, and other oxygenated compounds) were analyzed. Emission rates were determined by normalization to standard conditions (1000 μmol/m(2)s PAR and 30 °C temperature for isoprene and 30 °C temperature for the remaining compounds). In agreement with the literature, isoprene was mostly emitted by broad-leaved trees while coniferous species mainly emitted monoterpenes. Several tree species such as Sweet Chestnut, Silver Lime, and European Alder had higher monoterpene emissions although they are broad-leaved species. High isoprene emissions were also observed for a few coniferous species such as Nordmann Fir and Oriental Spruce. The highest normalized total BVOC emission rate of 27.1 μg/gh was observed for Oriental Plane while South European Flowering Ash was the weakest BVOC emitter with a total normalized emission rate of 0.031 μg/gh. Monoterpene emissions of broad-leaved species mainly consisted of sabinene, limonene and trans-beta-ocimene, while alpha-pinene, beta-pinene and beta-myrcene were generally emitted by coniferous species. Oxygenated compounds were the third most prominent BVOC group and sesquiterpenes had slightly lower contributions.
Collapse
Affiliation(s)
- Yagmur Meltem Aydin
- Department of Environmental Engineering, Faculty of Engineering, Dokuz Eylul University, Tinaztepe Campus, Buca, Izmir, Turkey
| | - Baris Yaman
- Department of Environmental Engineering, Faculty of Engineering, Dokuz Eylul University, Tinaztepe Campus, Buca, Izmir, Turkey
| | - Husnu Koca
- Department of Environmental Engineering, Faculty of Engineering, Dokuz Eylul University, Tinaztepe Campus, Buca, Izmir, Turkey
| | - Okan Dasdemir
- Department of Environmental Engineering, Faculty of Engineering, Dokuz Eylul University, Tinaztepe Campus, Buca, Izmir, Turkey
| | - Melik Kara
- Department of Environmental Engineering, Faculty of Engineering, Dokuz Eylul University, Tinaztepe Campus, Buca, Izmir, Turkey
| | - Hasan Altiok
- Department of Environmental Engineering, Faculty of Engineering, Dokuz Eylul University, Tinaztepe Campus, Buca, Izmir, Turkey
| | - Yetkin Dumanoglu
- Department of Environmental Engineering, Faculty of Engineering, Dokuz Eylul University, Tinaztepe Campus, Buca, Izmir, Turkey
| | - Abdurrahman Bayram
- Department of Environmental Engineering, Faculty of Engineering, Dokuz Eylul University, Tinaztepe Campus, Buca, Izmir, Turkey
| | - Doganay Tolunay
- Department of Soil Science and Ecology, Faculty of Forestry, Istanbul University, Bahcekoy, Istanbul, Turkey
| | - Mustafa Odabasi
- Department of Environmental Engineering, Faculty of Engineering, Dokuz Eylul University, Tinaztepe Campus, Buca, Izmir, Turkey
| | - Tolga Elbir
- Department of Environmental Engineering, Faculty of Engineering, Dokuz Eylul University, Tinaztepe Campus, Buca, Izmir, Turkey.
| |
Collapse
|
146
|
Grote R, Morfopoulos C, Niinemets Ü, Sun Z, Keenan T, Pacifico F, Butler T. A fully integrated isoprenoid emissions model coupling emissions to photosynthetic characteristics. PLANT, CELL & ENVIRONMENT 2014; 37:1965-80. [PMID: 24661098 PMCID: PMC4415481 DOI: 10.1111/pce.12326] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 03/14/2014] [Indexed: 05/20/2023]
Abstract
The lack of a mechanistic basis has hampered modelling isoprene emission responses to environmental drivers, in particular the simulation of isoprene emissions under different CO₂ concentrations. Here, we advance previous semi-mechanistic model formulations by introducing a model that explicitly links electron availability for other purpose than carbon assimilation (or available energy for secondary metabolism processes; supply-constraint) and enzyme activity (capacity-constraint) to emissions. We furthermore investigate the sensitivity of the model to variations in photosynthetic and emission-specific parameters. By comparing species-specific simulations with experimental data, we demonstrate that differences in photosynthetic characteristics can explain inter-species differences in emissions. Interestingly, the seasonal development of emissions could also be explained to some degree by the change in energy supply from photosynthesis throughout the season. In addition, we show that the principal responses are not limited to isoprene but can be formulated to describe the emission of other light-dependent volatile species. The proposed model is suitable for implementation into regional and global models, particularly those that already provide species-specific photosynthesis estimates.
Collapse
Affiliation(s)
- Rüdiger Grote
- Institute for Advanced Sustainability Studies (IASS), Berliner Str. 130, 14467 Potsdam, Germany
- Karlsruhe Institute for Technology, Institute for Meteorology and Climate Research (IMK-IFU), Kreuzeckbahnstraße 19, 82467 Garmisch-Partenkirchen, Germany
| | | | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia
| | - Zhihong Sun
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia
| | - Trevor Keenan
- Department of Biological Sciences, E8C Building Room 270, Macquarie University, Sydney, Australia
| | - Federica Pacifico
- University of Exeter College of Engineering, Mathematics and Physical Sciences Harrison, Building, North Park Road Exeter, EX4 4QF, UK
| | - Tim Butler
- Institute for Advanced Sustainability Studies (IASS), Berliner Str. 130, 14467 Potsdam, Germany
| |
Collapse
|
147
|
Clavijo McCormick A, Irmisch S, Reinecke A, Boeckler GA, Veit D, Reichelt M, Hansson BS, Gershenzon J, Köllner TG, Unsicker SB. Herbivore-induced volatile emission in black poplar: regulation and role in attracting herbivore enemies. PLANT, CELL & ENVIRONMENT 2014; 37:1909-23. [PMID: 24471487 DOI: 10.1111/pce.12287] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 01/17/2014] [Accepted: 01/20/2014] [Indexed: 05/05/2023]
Abstract
After herbivory, plants release volatile organic compounds from damaged foliage as well as from nearby undamaged leaves that attract herbivore enemies. Little is known about what controls the volatile emission differences between damaged and undamaged tissues and how these affect the orientation of herbivore enemies. We investigated volatile emission from damaged and adjacent undamaged foliage of black poplar (Populus nigra) after herbivory by gypsy moth (Lymantria dispar) caterpillars and determined the compounds mediating the attraction of the gypsy moth parasitoid Glyptapanteles liparidis (Braconidae). Female parasitoids were more attracted to gypsy moth-damaged leaves than to adjacent non-damaged leaves. The most characteristic volatiles of damaged versus neighbouring undamaged leaves included terpenes, green leaf volatiles and nitrogen-containing compounds, such as aldoximes and nitriles. Electrophysiological recordings and olfactometer bioassays demonstrated the importance of nitrogenous volatiles. Under field conditions, parasitic Hymenoptera were more attracted to traps baited with these substances than most other compounds. The differences in volatile emission profiles between damaged and undamaged foliage appear to be regulated by jasmonate signalling and the local activation of volatile biosynthesis. We conclude that characteristic volatiles from damaged black poplar foliage are essential cues enabling parasitoids to find their hosts.
Collapse
|
148
|
Peeters J, Müller JF, Stavrakou T, Nguyen VS. Hydroxyl Radical Recycling in Isoprene Oxidation Driven by Hydrogen Bonding and Hydrogen Tunneling: The Upgraded LIM1 Mechanism. J Phys Chem A 2014; 118:8625-43. [DOI: 10.1021/jp5033146] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jozef Peeters
- Department
of Chemistry, University of Leuven, B-3001 Heverlee, Belgium
| | - Jean-François Müller
- Belgian Institute for Space Aeronomy, Avenue Circulaire 3, B-1180 Brussels, Belgium
| | | | - Vinh Son Nguyen
- Department
of Chemistry, University of Leuven, B-3001 Heverlee, Belgium
| |
Collapse
|
149
|
Acosta Navarro JC, Smolander S, Struthers H, Zorita E, Ekman AML, Kaplan JO, Guenther A, Arneth A, Riipinen I. Global emissions of terpenoid VOCs from terrestrial vegetation in the last millennium. JOURNAL OF GEOPHYSICAL RESEARCH. ATMOSPHERES : JGR 2014; 119:6867-6885. [PMID: 25866703 PMCID: PMC4370762 DOI: 10.1002/2013jd021238] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 05/06/2014] [Accepted: 05/13/2014] [Indexed: 05/31/2023]
Abstract
We investigated the millennial variability (1000 A.D.-2000 A.D.) of global biogenic volatile organic compound (BVOC) emissions by using two independent numerical models: The Model of Emissions of Gases and Aerosols from Nature (MEGAN), for isoprene, monoterpene, and sesquiterpene, and Lund-Potsdam-Jena-General Ecosystem Simulator (LPJ-GUESS), for isoprene and monoterpenes. We found the millennial trends of global isoprene emissions to be mostly affected by land cover and atmospheric carbon dioxide changes, whereas monoterpene and sesquiterpene emission trends were dominated by temperature change. Isoprene emissions declined substantially in regions with large and rapid land cover change. In addition, isoprene emission sensitivity to drought proved to have significant short-term global effects. By the end of the past millennium MEGAN isoprene emissions were 634 TgC yr-1 (13% and 19% less than during 1750-1850 and 1000-1200, respectively), and LPJ-GUESS emissions were 323 TgC yr-1(15% and 20% less than during 1750-1850 and 1000-1200, respectively). Monoterpene emissions were 89 TgC yr-1(10% and 6% higher than during 1750-1850 and 1000-1200, respectively) in MEGAN, and 24 TgC yr-1 (2% higher and 5% less than during 1750-1850 and 1000-1200, respectively) in LPJ-GUESS. MEGAN sesquiterpene emissions were 36 TgC yr-1(10% and 4% higher than during 1750-1850 and 1000-1200, respectively). Although both models capture similar emission trends, the magnitude of the emissions are different. This highlights the importance of building better constraints on VOC emissions from terrestrial vegetation.
Collapse
Affiliation(s)
- J C Acosta Navarro
- Department of Applied Environmental Science and Bolin Centre for Climate Research, Stockholm UniversityStockholm, Sweden
| | - S Smolander
- Department of Physics, University of HelsinkiHelsinki, Finland
| | | | - E Zorita
- Institute for Coastal ResearchGeesthacht, Germany
| | - A M L Ekman
- Department of Meteorology and Bolin Centre for Climate Research, Stockholm UniversityStockholm, Sweden
| | - J O Kaplan
- Institute of Environmental Engineering, Ecole Polytechnique Federale de LausanneLausanne, Switzerland
| | - A Guenther
- Atmospheric Sciences and Global Change Division, PNNLRichland, Washington, USA
| | - A Arneth
- Institute of Meteorology and Climate Research, Karlsruhe Institute of TechnologyGarmisch-Partenkirchen, Germany
| | - I Riipinen
- Department of Applied Environmental Science and Bolin Centre for Climate Research, Stockholm UniversityStockholm, Sweden
| |
Collapse
|
150
|
Ren Y, Ge Y, Gu B, Min Y, Tani A, Chang J. Role of management strategies and environmental factors in determining the emissions of biogenic volatile organic compounds from urban greenspaces. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:6237-6246. [PMID: 24811523 DOI: 10.1021/es4054434] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Biogenic volatile organic compound (BVOC) emissions from urban greenspace have recently become a global concern. To identify key factors affecting the dynamics of urban BVOC emissions, we built an estimation model and utilized the city of Hangzhou in southeastern China as an example. A series of single-factor scenarios were first developed, and then nine multifactor scenarios using a combination of different single-factor scenarios were built to quantify the effects of environmental changes and urban management strategies on urban BVOC emissions. Results of our model simulations showed that (1) annual total BVOC emissions from the metropolitan area of Hangzhou were 4.7×10(8) g of C in 2010 and were predicted to be 1.2-3.2 Gg of C (1 Gg=10(9) g) in our various scenarios in 2050, (2) urban management played a more important role in determining future urban BVOC emissions than environmental changes, and (3) a high ecosystem service value (e.g., lowest BVOC/leaf mass ratio) could be achieved through positive coping in confronting environmental changes and adopting proactive urban management strategies on a local scale, that is, to moderately increase tree density while restricting excessive greenspace expansion and optimizing the species composition of existing and newly planted trees.
Collapse
Affiliation(s)
- Yuan Ren
- College of Life Sciences, Zhejiang University , Hangzhou 310058, PR China
| | | | | | | | | | | |
Collapse
|