101
|
Akimova OA, Hamet P, Orlov SN. [Na+]i/[K+]i -independent death of ouabain-treated renal epithelial cells is not mediated by Na+,K+ -ATPase internalization and de novo gene expression. Pflugers Arch 2007; 455:711-9. [PMID: 17622553 DOI: 10.1007/s00424-007-0283-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2007] [Accepted: 05/02/2007] [Indexed: 10/23/2022]
Abstract
The cytotoxic effect of long-term exposure of renal epithelial cells to ouabain and other cardiotonic steroids (CTS) is mediated by the interaction of these compounds with Na(+),K(+)-ATPase but is independent of the inhibition of Na(+),K(+)-ATPase-mediated ion fluxes. Sustained application of CTS also leads to Na(+),K(+)-ATPase endocytosis and its translocation into the nuclei that might trigger the cell death machinery via the regulation of gene expression. This study examines the role of Na(+),K(+)-ATPase internalization and de novo gene expression in the death of ouabain-treated C7-Madin-Darby canine kidney (MDCK) cells derived from distal tubules of the MDCK. In these cells, 6-h exposure to 3 microM ouabain led to the internalization of approximately 50% of plasmalemmal Na(+),K(+)-ATPase. Prolonged incubation in a K(+)-free medium abolished ouabain-induced Na(+),K(+)-ATPase internalization but did not affect the cytotoxic action of ouabain seen after 18-h incubation. Previously, it was shown that CTS-induced Na(+),K(+)-ATPase internalization is mediated by its interaction with Src within caveolae. Neither caveolae damage by cholesterol depletion with methyl-beta-cyclodextrin nor Src inhibition with 4-amino-5(4-chlorophenyl)-7-(t-butyl)pyrazol[3,4-d]pyridine affected the death of ouabain-treated C7-MDCK cells. Actinomycin D at the 0.1-microg/ml concentration almost completely abolished ribonucleic acid synthesis but did not protect C7-MDCK cells from the cytotoxic action of ouabain. Our results show that neither Na(+),K(+)-ATPase endocytosis nor de novo gene expression contributes to Na(+)(i), K(+)(i)-independent cell death signaling evoked by prolonged exposure to CTS.
Collapse
Affiliation(s)
- Olga A Akimova
- Research Centre, Centre Hospitalier de l'Université de Montréal, Technôpole Angus, 2901 Rachel East, Montreal, Quebec H1W 4A4, Canada
| | | | | |
Collapse
|
102
|
Schoner W, Scheiner-Bobis G. Endogenous and exogenous cardiac glycosides: their roles in hypertension, salt metabolism, and cell growth. Am J Physiol Cell Physiol 2007; 293:C509-36. [PMID: 17494630 DOI: 10.1152/ajpcell.00098.2007] [Citation(s) in RCA: 341] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cardiotonic steroids (CTS), long used to treat heart failure, are endogenously produced in mammals. Among them are the hydrophilic cardenolide ouabain and the more hydrophobic cardenolide digoxin, as well as the bufadienolides marinobufagenin and telecinobufagin. The physiological effects of endogenous ouabain on blood pressure and cardiac activity are consistent with the "Na(+)-lag" hypothesis. This hypothesis assumes that, in cardiac and arterial myocytes, a CTS-induced local increase of Na(+) concentration due to inhibition of Na(+)/K(+)-ATPase leads to an increase of intracellular Ca(2+) concentration ([Ca(2+)](i)) via a backward-running Na(+)/Ca(2+) exchanger. The increase in [Ca(2+)](i) then activates muscle contraction. The Na(+)-lag hypothesis may best explain short-term and inotropic actions of CTS. Yet all data on the CTS-induced alteration of gene expression are consistent with another hypothesis, based on the Na(+)/K(+)-ATPase "signalosome," that describes the interaction of cardiac glycosides with the Na(+) pump as machinery activating various signaling pathways via intramembrane and cytosolic protein-protein interactions. These pathways, which may be activated simultaneously or selectively, elevate [Ca(2+)](i), activate Src and the ERK1/2 kinase pathways, and activate phosphoinositide 3-kinase and protein kinase B (Akt), NF-kappaB, and reactive oxygen species. A recent development indicates that new pharmaceuticals with antihypertensive and anticancer activities may be found among CTS and their derivatives: the antihypertensive rostafuroxin suppresses Na(+) resorption and the Src-epidermal growth factor receptor-ERK pathway in kidney tubule cells. It may be the parent compound of a new principle of antihypertensive therapy. Bufalin and oleandrin or the cardenolide analog UNBS-1450 block tumor cell proliferation and induce apoptosis at low concentrations in tumors with constitutive activation of NF-kappaB.
Collapse
Affiliation(s)
- Wilhelm Schoner
- Institut für Biochemie und Endokrinologie, Fachbereich Veterinärmedizin, Justus-Liebig-Universität Giessen, Frankfurter Str 100, Giessen, Germany.
| | | |
Collapse
|
103
|
Ma L, Kuang K, Smith RW, Rittenband D, Iserovich P, Diecke F, Fischbarg J. Modulation of tight junction properties relevant to fluid transport across rabbit corneal endothelium. Exp Eye Res 2007; 84:790-8. [PMID: 17320078 PMCID: PMC1993899 DOI: 10.1016/j.exer.2006.12.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Revised: 11/30/2006] [Accepted: 12/15/2006] [Indexed: 11/20/2022]
Abstract
Paracellular junctions could play an important role in corneal endothelial fluid transport. In this study we explored the effects of different reagents on the tight junctional barrier by assessing the translayer specific electrical resistance (TER) across rabbit corneal endothelial preparations and cultured rabbit corneal endothelial cells' (CRCEC) monolayers, the paracellular permeability (Papp) for fluorescein isothiocyanate (FITC) dextrans across CRCEC, and fluid transport across de-epithelialized rabbit corneal endothelial preparations. Palmitoyl carnitine (PC), poly-L-lysine (PLL), adenosine triphosphate (ATP), and dibutyryl adenosine 3',5'-cyclic monophosphate (dB-cAMP) were used to modulate corneal endothelial fluid transport and tight junctions (TJs). After seeding, the TER across CRCEC reached maximal values (29.2+/-1.0 Omega cm2) only after the 10th day. PC (0.1 mM) caused decreases both in TER (by 40%) and fluid transport (swelling rate: 18.5+/-0.3 microm/h), and an increase in Papp. PLL resulted in increased TER rose and Papp but decreased fluid transport (swelling rate: 10+/-0.3 microm/h). dB-cAMP (0.1 mM) and ATP (0.1 mM) decreased TER by 16% and 6%, increased Papp slightly, and stimulated fluid transport; the rates of de-swelling (in microm/h) were -5.4+/-0.3 and -12.1+/-0.4, respectively. PC might cause the junctions to open up unspecifically and thus increase passive leak. PLL is a known junctional charge modifier that may be adding steric hindrance to the tight junctions. The results with dB-cAMP and ATP are consistent with fluid transport via the paracellular route.
Collapse
Affiliation(s)
- Li Ma
- Department of Ophthalmology, College of Physicians and Surgeons, Columbia University
| | - Kunyan Kuang
- Department of Ophthalmology, College of Physicians and Surgeons, Columbia University
| | | | | | - Pavel Iserovich
- Department of Ophthalmology, College of Physicians and Surgeons, Columbia University
| | - F.P.J. Diecke
- Dept. of Pharmacology and Physiology, UMDNJ-New Jersey Medical School, Newark, NJ
| | - Jorge Fischbarg
- Department of Ophthalmology, College of Physicians and Surgeons, Columbia University
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University
| |
Collapse
|
104
|
Liang M, Tian J, Liu L, Pierre S, Liu J, Shapiro J, Xie ZJ. Identification of a pool of non-pumping Na/K-ATPase. J Biol Chem 2007; 282:10585-93. [PMID: 17296611 DOI: 10.1074/jbc.m609181200] [Citation(s) in RCA: 195] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Recent studies have ascribed many non-pumping functions to the Na/K-ATPase. Here, we present experimental evidence demonstrating that over half of the plasma membrane Na/K-ATPase in LLC-PK1 cells is performing cellular functions other than ion pumping. This "non-pumping" pool of Na/K-ATPase, like the pumping pump, binds ouabain. Depletion of either cholesterol or caveolin-1 moves some of the "non-pumping" Na/K-ATPase into the pumping pool. Graded knock-down of the alpha1 subunit of the Na/K-ATPase eventually results in loss of this "non-pumping" pool while preserving the pumping pool. Our prior studies indicate that a loss of the non-pumping pool is associated with a loss of receptor function as evidenced by the failure of ouabain administration to induce the activation of Src and/or ERK. Therefore, our new findings suggest that a substantial amount of surface-expressed Na/K-ATPase, at least in some types of cells, may function as non-canonical ouabain-binding receptors.
Collapse
Affiliation(s)
- Man Liang
- Department of Physiology, Pharmacology, Metabolism, and Cardiovascular Sciences, University of Toledo Health Science Campus, Toledo, Ohio 43614, USA
| | | | | | | | | | | | | |
Collapse
|
105
|
Abstract
Cardiac glycosides have been used for decades to treat congestive heart failure. The recent identification of cardiotonic steroids such as ouabain, digoxin, marinobufagenin, and telocinobufagin in blood plasma, adrenal glands, and hypothalamus of mammals led to exciting new perspectives in the pathology of heart failure and arterial hypertension. Biosynthesis of ouabain and digoxin occurs in adrenal glands and is under the control of angiotensin II, endothelin, and epinephrine released from cells of the midbrain upon stimulation of brain areas sensing cerebrospinal Na(+) concentration and, apparently, the body's K(+) content. Rapid changes of endogenous ouabain upon physical exercise may favor the economy of the heart by a rise of intracellular Ca(2)(+) levels in cardiac and atrial muscle cells. According to the sodium pump lag hypothesis, this may be accomplished by partial inhibition of the sodium pump and Ca(2+) influx via the Na(+)/Ca(2+) exchanger working in reverse mode or via activation of the Na(+)/K(+)-ATPase signalosome complex, generating intracellular calcium oscillations, reactive oxygen species, and gene activation via nuclear factor-kappaB or extracellular signal-regulated kinases 1 and 2. Elevated concentrations of endogenous ouabain and marinobufagenin in the subnanomolar concentration range were found to stimulate proliferation and differentiation of cardiac and smooth muscle cells. They may have a primary role in the development of cardiac dysfunction and failure because (i) offspring of hypertensive patients evidently inherit elevated plasma concentrations of endogenous ouabain; (ii) such elevated concentrations correlate positively with cardiac dysfunction, hypertrophy, and arterial hypertension; (iii) about 40% of Europeans with uncomplicated essential hypertension show increased concentrations of endogenous ouabain associated with reduced heart rate and cardiac hypertrophy; (iv) in patients with advanced arterial hypertension, circulating levels of endogenous ouabain correlate with BP and total peripheral resistance; (v) among patients with idiopathic dilated cardiomyopathy, high circulating levels of endogenous ouabain and marinobufagenin identify those individuals who are predisposed to progressing more rapidly to heart failure, suggesting that endogenous ouabain (and marinobufagenin) may contribute to toxicity upon digoxin therapy. In contrast to endogenous ouabain, endogenous marinobufagenin may act as a natriuretic substance as well. It shows a higher affinity for the ouabain-insensitive alpha(1) isoform of Na(+)/K(+)-ATPase of rat kidney tubular cells and its levels are increased in volume expansion and pre-eclampsia. Digoxin, which is synthesized in adrenal glands, seems to counteract the hypertensinogenic action of ouabain in rats, as do antibodies against ouabain, for example, (Digibind) and rostafuroxin (PST 2238), a selective ouabain antagonist. It lowers BP in ouabain- and adducin-dependent hypertension in rats and is a promising new class of antihypertensive medication in humans.
Collapse
Affiliation(s)
- Wilhelm Schoner
- Institute of Biochemistry and Endocrinology, Justus-Liebig-University Giessen, Giessen, Germany.
| | | |
Collapse
|
106
|
Liu L, Li J, Liu J, Yuan Z, Pierre SV, Qu W, Zhao X, Xie Z. Involvement of Na+/K+-ATPase in hydrogen peroxide-induced hypertrophy in cardiac myocytes. Free Radic Biol Med 2006; 41:1548-56. [PMID: 17045923 DOI: 10.1016/j.freeradbiomed.2006.08.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2006] [Revised: 08/08/2006] [Accepted: 08/21/2006] [Indexed: 10/24/2022]
Abstract
We have shown that increased production of reactive oxygen species (ROS) was required for ouabain-induced hypertrophy in cultured cardiac myocytes. In the present study we assessed whether long-term exposure of myocytes to nontoxic ROS stress alone is sufficient to induce hypertrophy. A moderate amount of H2O2 was continuously generated in culture media by glucose oxidase. This resulted in a steady increase in intracellular ROS in cultured cardiac myocytes for at least 12 h. Such sustained, but not transient, increase in intracellular ROS at a level comparable to that induced by ouabain was sufficient to stimulate protein synthesis, increase cell size, and change the expression of several hypertrophic marker genes. Like ouabain, glucose oxidase increased intracellular Ca2+ and activated extracellular signal-regulated kinases 1 and 2 (ERK1/2). These effects of glucose oxidase were additive to ouabain-induced cellular changes. Furthermore, glucose oxidase stimulated endocytosis of the plasma membrane Na+/K+-ATPase, resulting in significant inhibition of sodium pump activity. While inhibition of ERK1/2 abolished glucose oxidase-induced increases in protein synthesis, chelating intracellular Ca2+ by BAPTA-AM showed no effect. These results, taken together with our prior observations, suggest that ROS may cross talk with Na+/K+-ATPase, leading to the activation of hypertrophic pathways in cardiac myocytes.
Collapse
Affiliation(s)
- Lijun Liu
- Department of Physiology, Pharmacology, Metabolism and Cardiovascular Sciences, Medical University of Ohio, Toledo, OH 43614, USA
| | | | | | | | | | | | | | | |
Collapse
|
107
|
Jaitovich AA, Bertorello AM. Na+, K+-ATPase: An Indispensable Ion Pumping-Signaling Mechanism Across Mammalian Cell Membranes. Semin Nephrol 2006; 26:386-92. [PMID: 17071332 DOI: 10.1016/j.semnephrol.2006.07.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Na(+), K(+)-adenosine triphosphatase is a ubiquitous enzyme present in higher eukaryotes responsible for the maintenance of ionic gradients across the plasma membrane. It creates appropriate conditions for critical cellular processes such as secondary transport of solutes and water, for pH regulation, and also for creating an electrical potential that gives singular qualities to excitable cells. It also served as a platform for a higher level of cellular complexity because many important signaling networks appear to be downstream events of the pump's function. Renal physiology and pathology are affected significantly by its presence, and it seems that both molecular and pharmacologic manipulations of its action can create different venues to deal with diverse disease states.
Collapse
Affiliation(s)
- A Ariel Jaitovich
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.
| | | |
Collapse
|
108
|
Zhou Y, Bouyer P, Boron WF. Role of a tyrosine kinase in the CO2-induced stimulation of HCO3−reabsorption by rabbit S2 proximal tubules. Am J Physiol Renal Physiol 2006; 291:F358-67. [PMID: 16705143 DOI: 10.1152/ajprenal.00520.2005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A previous study demonstrated that proximal tubule cells regulate HCO3−reabsorption by sensing acute changes in basolateral CO2concentration, suggesting that there is some sort of CO2sensor at or near the basolateral membrane (Zhou Y, Zhao J, Bouyer P, and Boron WF Proc Natl Acad Sci USA 102: 3875–3880, 2005). Here, we hypothesized that an early element in the CO2signal-transduction cascade might be either a receptor tyrosine kinase (RTK) or a receptor-associated (or soluble) tyrosine kinase (sTK). In our experiments, we found, first, that basolateral 17.5 μM genistein, a broad-spectrum tyrosine kinase inhibitor, virtually eliminates the CO2sensitivity of HCO3−absorption rate ( J[Formula: see text]). Second, we found that neither basolateral 250 nM nor basolateral 2 μM PP2, a high-affinity inhibitor for the Src family that also inhibits the Bcr-Abl sTK as well as the Kit RTK, reduces the CO2-stimulated increase in J[Formula: see text]. Third, we found that either basolateral 35 nM PD168393, a high-affinity inhibitor of RTKs in the erbB (i.e., EGF receptor) family, or basolateral 10 nM BPIQ-I, which blocks erbB RTKs by competing with ATP, eliminates the CO2sensitivity. In conclusion, the transduction of the CO2signal requires activation of a tyrosine kinase, perhaps an erbB. The possibilities include the following: 1) a TK is simply permissive for the effect of CO2on J[Formula: see text]; 2) a CO2receptor activates an sTK, which would then raise J[Formula: see text]; 3) a CO2receptor transactivates an RTK; and 4) the CO2receptor could itself be an RTK.
Collapse
Affiliation(s)
- Yuehan Zhou
- Dept. of Cellular and Molecular Physiology, Yale Univ. School of Medicine, 333 Cedar St., New Haven, CT 06520, USA
| | | | | |
Collapse
|
109
|
Kennedy DJ, Vetteth S, Xie M, Periyasamy SM, Xie Z, Han C, Basrur V, Mutgi K, Fedorov V, Malhotra D, Shapiro JI. Ouabain decreases sarco(endo)plasmic reticulum calcium ATPase activity in rat hearts by a process involving protein oxidation. Am J Physiol Heart Circ Physiol 2006; 291:H3003-11. [PMID: 16861692 DOI: 10.1152/ajpheart.00603.2006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effect of cardiac glycosides to increase cardiac inotropy by altering Ca(2+) cycling is well known but still poorly understood. The studies described in this report focus on defining the effects of ouabain signaling on sarcoplasmic reticulum Ca(2+)-ATPase function. Rat cardiac myocytes treated with 50 microM ouabain demonstrated substantial increases in systolic and diastolic Ca(2+) concentrations. The recovery time constant for the Ca(2+) transient, tau(Ca(2+)), was significantly prolonged by ouabain. Exposure to 10 microM H(2)O(2), which causes an increase in intracellular reactive oxygen species similar to that of 50 microM ouabain, caused a similar increase in tau(Ca(2+)). Concurrent exposure to 10 mM N-acetylcysteine or an aqueous extract from green tea (50 mg/ml) both prevented the increases in tau(Ca(2+)) as well as the changes in systolic or diastolic Ca(2+) concentrations. We also observed that 50 microM ouabain induced increases in developed pressure in addition to diastolic dysfunction in the isolated perfused rat heart. Coadministration of ouabain with N-acetylcysteine prevented these increases. Analysis of sarcoplasmic reticulum Ca(2+)-ATPase protein revealed increases in both the oxidation and nitrotyrosine content in the ouabain-treated hearts. Liquid chromatography-mass spectrometric analysis confirmed that the sarcoplasmic reticulum Ca(2+)-ATPase protein from ouabain-treated hearts had modifications consistent with oxidative and nitrosative stress. These data suggest that ouabain induces oxidative changes of the sarcoplasmic reticulum Ca(2+)-ATPase structure and function that may, in turn, produce some of the associated changes in Ca(2+) cycling and physiological function.
Collapse
Affiliation(s)
- David J Kennedy
- Dept. of Medicine, Medical University of Ohio, Toledo, Ohio 43614-5089, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Liang M, Cai T, Tian J, Qu W, Xie ZJ. Functional Characterization of Src-interacting Na/K-ATPase Using RNA Interference Assay. J Biol Chem 2006; 281:19709-19. [PMID: 16698801 DOI: 10.1074/jbc.m512240200] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have shown that the Na/K-ATPase and Src form a signaling receptor complex. Here we determined how alterations in the amount and properties of the Na/K-ATPase affect basal Src activity and ouabain-induced signal transduction. Several alpha1 subunit knockdown cell lines were generated by transfecting LLC-PK1 cells with a vector expressing alpha1-specific small interference RNA. Although the alpha1 knockdown resulted in significant decreases in Na/K-ATPase activity, it increased the basal Src activity and tyrosine phosphorylation of focal adhesion kinase, a Src effector. Concomitantly it also abolished ouabain-induced activation of Src and ERK1/2. When the knockdown cells were rescued by a rat alpha1, both Na/K-ATPase activity and the basal Src activity were restored. In addition, ouabain was able to stimulate Src and ERK1/2 in the rescued cells at a much higher concentration, consistent with the established differences in ouabain sensitivity between pig and rat alpha1. Finally both fluorescence resonance energy transfer analysis and co-immunoprecipitation assay indicated that the pumping-null rat alpha1 (D371E) mutant could also bind Src. Expression of this mutant restored the basal Src activity and focal adhesion kinase tyrosine phosphorylation. Taken together, the new findings suggest that LLC-PK1 cells contain a pool of Src-interacting Na/K-ATPase that not only regulates Src activity but also serves as a receptor for ouabain to activate protein kinases.
Collapse
Affiliation(s)
- Man Liang
- Department of Physiology, Pharmacology, Metabolism, and Cardiovascular Sciences, Medical University of Ohio, Toledo, Ohio 43614, USA
| | | | | | | | | |
Collapse
|
111
|
Orlov SN, Hamet P. The death of cardiotonic steroid-treated cells: evidence of Na+i,K+i-independent H+i-sensitive signalling. Acta Physiol (Oxf) 2006; 187:231-40. [PMID: 16734760 DOI: 10.1111/j.1748-1716.2006.01546.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Na/K-ATPase is the only known target of cardiotonic steroids (CTS) identified in plants, amphibians and later on in several mammalian species, including human. We focus our review on recent data implicating CTS in the tissue-specific regulation of cell survival and death. In vascular smooth muscle cells, CTS inhibited cell death triggered by apoptotic stimuli via a novel Na+i-mediated, Ca2+i-independent mechanism of expression of antiapoptotic genes, including mortalin. In contrast, exposure to CTS in vascular endothelial and renal epithelial cells led to cell death, showing combined markers of apoptosis and necrosis. This mode of cell death, termed oncosis, is caused by CTS interaction with Na/K-ATPase but is independent of the inhibition of Na/K-ATPase-mediated ion fluxes and inversion of the [Na+]i/[K+]i ratio. The intermediates of intracellular signalling involved in Na+i, K+i-independent oncosis of CTS-treated cells remain unknown. Recently, we found that this mode of cell death can be protected by modest intracellular acidification via the expression of H+i-sensitive genes. The molecular origin of intracellular Na+ and H+ sensor involvement in the development of apoptosis and oncosis is currently under investigation.
Collapse
Affiliation(s)
- S N Orlov
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CHUM)-Hôtel-Dieu, Montreal, Quebec, Canada.
| | | |
Collapse
|
112
|
Trevisi L, Pighin I, Bazzan S, Luciani S. Inhibition of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) endocytosis by ouabain in human endothelial cells. FEBS Lett 2006; 580:2769-73. [PMID: 16647703 DOI: 10.1016/j.febslet.2006.04.040] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2005] [Revised: 03/15/2006] [Accepted: 04/06/2006] [Indexed: 11/18/2022]
Abstract
3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) uptake and reduction is widely used to evaluate cell proliferation and viability. MTT is taken up by the cells through endocytosis. We find that ouabain (1-200 nM) inhibits MTT reduction in human umbilical vein endothelial cells (HUVEC) without affecting cell viability. Ouabain does not inhibit MTT reduction when cell lysates substituted for the intact cells. Disruption of caveolae by cholesterol depletion, completely prevents the effect of ouabain. Treatment of HUVEC with Src inhibitor 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine partially abrogates the inhibitory effect of ouabain. The data suggest that ouabain interaction with caveolar Na/K-ATPase inhibits MTT endocytosis through the activation of signaling proteins such as Src kinase.
Collapse
Affiliation(s)
- Lucia Trevisi
- Department of Pharmacology and Anaesthesiology, Egidio Meneghetti, University of Padua, 35131 Padua, Italy
| | | | | | | |
Collapse
|
113
|
Liu L, Askari A. Beta-subunit of cardiac Na+-K+-ATPase dictates the concentration of the functional enzyme in caveolae. Am J Physiol Cell Physiol 2006; 291:C569-78. [PMID: 16624992 DOI: 10.1152/ajpcell.00002.2006] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Previous studies showed the presence of a significant fraction of Na(+)-K(+)-ATPase alpha-subunits in cardiac myocyte caveolae, suggesting the caveolar interactions of Na(+)-K(+)-ATPase with its signaling partners. Because both alpha- and beta-subunits are required for ATPase activity, to clarify the status of the pumping function of caveolar Na(+)-K(+)-ATPase, we have examined the relative distribution of two major subunit isoforms (alpha(1) and beta(1)) in caveolar and noncaveolar membranes of adult rat cardiac myocytes. When cell lysates treated with high salt (Na(2)CO(3) or KCl) concentrations were fractionated by a standard density gradient procedure, the resulting light caveolar membranes contained 30-40% of alpha(1)-subunits and 80-90% of beta(1)-subunits. Use of Na(2)CO(3) was shown to inactivate Na(+)-K(+)-ATPase; however, caveolar membranes obtained by the KCl procedure were not denatured and contained approximately 75% of total myocyte Na(+)-K(+)-ATPase activity. Sealed isolated caveolae exhibited active Na(+) transport. Confocal microscopy supported the presence of alpha,beta-subunits in caveolae, and immunoprecipitation showed the association of the subunits with caveolin oligomers. The findings indicate that cardiac caveolar inpocketings are the primary portals for active Na(+)-K(+) fluxes, and the sites where the pumping and signaling functions of Na(+)-K(+)-ATPase are integrated. Preferential concentration of beta(1)-subunit in caveolae was cell specific; it was also noted in neonatal cardiac myocytes but not in fibroblasts and A7r5 cells. Uneven distributions of alpha(1) and beta(1) in early and late endosomes of myocytes suggested different internalization routes of two subunits as a source of selective localization of active Na(+)-K(+)-ATPase in cardiac caveolae.
Collapse
Affiliation(s)
- Lijun Liu
- Department of Physiology, Pharmacology, Metabolism, and Cardiovascular Sciences, Medical Univ. of Ohio, 3035 Arlington Ave., Toledo, OH 43614-5804, USA
| | | |
Collapse
|
114
|
Chen Z, Krmar RT, Dada L, Efendiev R, Leibiger IB, Pedemonte CH, Katz AI, Sznajder JI, Bertorello AM. Phosphorylation of adaptor protein-2 mu2 is essential for Na+,K+-ATPase endocytosis in response to either G protein-coupled receptor or reactive oxygen species. Am J Respir Cell Mol Biol 2006; 35:127-32. [PMID: 16498080 PMCID: PMC2658693 DOI: 10.1165/rcmb.2006-0044oc] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Activation of G protein-coupled receptor by dopamine and hypoxia-generated reactive oxygen species promote Na+,K+-ATPase endocytosis. This effect is clathrin dependent and involves the activation of protein kinase C (PKC)-zeta and phosphorylation of the Na+,K+-ATPase alpha-subunit. Because the incorporation of cargo into clathrin vesicles requires association with adaptor proteins, we studied whether phosphorylation of adaptor protein (AP)-2 plays a role in its binding to the Na+,K+-ATPase alpha-subunit and thereby in its endocytosis. Dopamine induces a time-dependent phosphorylation of the AP-2 mu2 subunit. Using specific inhibitors and dominant-negative mutants, we establish that this effect was mediated by activation of the adaptor associated kinase 1/PKC-zeta isoform. Expression of the AP-2 mu2 bearing a mutation in its phosphorylation site (T156A) prevented Na+,K+-ATPase endocytosis and changes in activity induced by dopamine. Similarly, in lung alveolar epithelial cells, hypoxia-induced endocytosis of Na+,K+-ATPase requires the binding of AP-2 to the tyrosine-based motif (Tyr-537) located in the Na+,K+-ATPase alpha-subunit, and this effect requires phosphorylation of the AP-2 mu2 subunit. We conclude that phosphorylation of AP-2 mu2 subunit is essential for Na+,K+-ATPase endocytosis in response to a variety of signals, such as dopamine or reactive oxygen species.
Collapse
Affiliation(s)
- Zongpei Chen
- Department of Medicine, Membrane Signaling Networks, Karolinska Institutet, Karolinska Hospital, Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Fedorova OV, Agalakova NI, Talan MI, Lakatta EG, Bagrov AY. Brain ouabain stimulates peripheral marinobufagenin via angiotensin II signalling in NaCl-loaded Dahl-S rats. J Hypertens 2005; 23:1515-23. [PMID: 16003178 DOI: 10.1097/01.hjh.0000174969.79836.8b] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE In NaCl-loaded Dahl salt-sensitive (DS) rats the transient stimulation of brain endogenous ouabain (EO) precedes the increase in renal excretion of marinobufagenin (MBG), a vasoconstrictor and natriuretic. In hypertensive DS rats, EO raises blood pressure (BP) via an ATII-sensitive pathway. We hypothesized that an NaCl-induced increase in MBG is linked to the EO-stimulated ATII pathway. METHODS We studied the effects of 3 h of NaCl loading (17 mmol/kg, intraperitoneally) in male DS rats treated with antibodies to MBG or ouabain, or with losartan (25 mg/kg). RESULTS NaCl loading alone induced a transient stimulation of pituitary EO (22.4 +/- 1.8 versus 12.2 +/- 1.3 pmol/g) and ATII (39.4 +/- 2.8 versus 18.4 +/- 3.2 ng/g), a sustained increase in MBG excretion (5.2 +/- 0.6 versus 1.1 +/- 0.2 pmol/h), a 40% inhibition of the renal sodium pump, a natriuretic response, a 35 mmHg increase in systolic BP, and an increase in adrenocortical ATII and MBG levels and in plasma norepinephrine. The anti-MBG antibody reduced the natriuresis (36%) and BP (40 mmHg), and restored renal sodium pump activity. The anti-ouabain antibody prevented the increase in pituitary ATII, reduced MBG excretion, natriuresis and BP, increased sodium pump activity, and prevented increases in plasma norepinephrine, pituitary and adrenocortical ATII, and adrenocortical MBG. Losartan mimicked the effects of the anti-ouabain antibody, but did not affect the excretion of EO. In adrenocortical cells of DS rats, ATII stimulated MBG secretion, and losartan blocked this effect. CONCLUSIONS In response to NaCl loading, brain EO, via an AT1 receptor pathway and probably via sympathetic activation, stimulates adrenocortical MBG, which inhibits the renal sodium pump and elevates BP.
Collapse
Affiliation(s)
- Olga V Fedorova
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | | | | | | | | |
Collapse
|
116
|
Oweis S, Wu L, Kiela PR, Zhao H, Malhotra D, Ghishan FK, Xie Z, Shapiro JI, Liu J. Cardiac glycoside downregulates NHE3 activity and expression in LLC-PK1 cells. Am J Physiol Renal Physiol 2005; 290:F997-1008. [PMID: 16352745 DOI: 10.1152/ajprenal.00322.2005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Ouabain, a cardiotonic steroid and a specific inhibitor of the Na(+)-K(+)-ATPase, has been shown to significantly inhibit transcellular Na(+) transport without altering the intracellular Na(+) concentration ([Na(+)](i)) in the epithelial cells derived from the renal proximal tubules. We therefore studied whether ouabain affects the activity and expression of Na(+)/H(+) exchanger isoform 3 (NHE3) representing the major route of apical Na(+) reabsorption in LLC-PK(1) cells. Chronic basolateral, but not apical, exposure to low-concentration ouabain (50 and 100 nM) did not change [Na(+)](i) but significantly reduced NHE3 activity, NHE3 protein, and mRNA expression. Inhibition of c-Src or phosphoinositide 3-kinase (PI3K) with PP2 or wortmannin, respectively, abolished ouabain-induced downregulation of NHE3 activity and mRNA expression. In caveolin-1 knockdown LLC-PK(1) cells, ouabain failed to downregulate NHE3 mRNA expression and NHE3 promoter activity. Ouabain response elements were mapped to a region between -450 and -1,194 nt, where decreased binding of thyroid hormone receptor (TR) and Sp1 to their cognate cis-elements was documented in vitro and in vivo by protein/DNA array analysis, EMSA, supershift, and chromatin immunoprecipitation. These data suggest that, in LLC-PK(1) cells, ouabain-induced signaling through the Na(+)-K(+)-ATPase-Src pathway results in decreased Sp1 and TR DNA binding activity and consequently in decreased expression and activity of NHE3. These novel findings may represent the underlying mechanism of cardiotonic steroid-mediated renal compensatory response to volume expansion and/or hypertension.
Collapse
Affiliation(s)
- Shadi Oweis
- Dept. of Medicine, Medical Univ. of Ohio, 3120 Glendale Ave., Toledo, OH 43614-5089, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Akimova OA, Lopina OD, Hamet P, Orlov SN. Search for intermediates of Na+,K+-ATPase-mediated [Na+]i/[K+]i-independent death signaling triggered by cardiotonic steroids. PATHOPHYSIOLOGY 2005; 12:125-35. [PMID: 16023561 DOI: 10.1016/j.pathophys.2005.03.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2005] [Revised: 03/08/2005] [Accepted: 03/10/2005] [Indexed: 11/22/2022] Open
Abstract
Previously, we reported that ouabain and other cardiotonic steroids (CTS) kill renal epithelial and vascular endothelial cells via their interaction with the Na+,K+-ATPase alpha-subunit, but independently of elevation of the [Na+]i/[K+]i ratio. In distinct cell types, side-by-side with inhibition of Na+,K+-ATPase-mediated ion fluxes, CTS trigger [Ca2+]i oscillation, activation of Ras, mitogen-activated protein kinases (MAPK), phosphoinositide-3 kinase (PI3K), and protein kinase C as well as the production of reactive oxygen species and cytoskeleton reorganization. This study examined the potential involvement of the above-listed intermediates in death signaling triggered by ouabain in C7-Madin-Darby canine kidney cells. In these cells, twofold decreased staining with dimethylthiazol diphenyltetrazolium (MTT) and detachment of up to 80% of dead cells were detected in 6 and 24 h of ouabain addition, respectively. We did not observe any effect of extra- (EGTA) and intracellular (BAPTA) Ca2+-chelators, [Ca2+]i-raising compounds (thapsigargin, ATP), inhibitors of Ras signaling (alpha-hydroxyfarnesyl-sulphosphoric acid), PI3K (wortmannin), MAPK ERK1/2 kinase (PD98059), tyrosine kinases (genistein) as well as activators (4beta-PMA, 8-Br-cAMP, 8-Br-cGMP, forskolin) and inhibitors (calphostin) of serine-threonine kinases on MTT staining and death of ouabain-treated cells. Ouabain did not affect cellular redox state and the production of superoxide anion and hydroperoxide. Neither N-acetylcysteine nor reduced gluthatione suppressed the death of ouabain-treated cells. Thus, our results show that none of the above-listed signaling systems plays a major role in the development of Nai+,Ki+-independent death machinery triggered by CTS interaction with the Na+,K+-ATPase alpha-subunit.
Collapse
Affiliation(s)
- Olga A Akimova
- Centre de Recherche, Centre hospitalier de l'Université de Montréal (CHUM-Hôtel-Dieu), Montreal, Que., H2W 1T7, Canada
| | | | | | | |
Collapse
|
118
|
Liu J, Liang M, Liu L, Malhotra D, Xie Z, Shapiro JI. Ouabain-induced endocytosis of the plasmalemmal Na/K-ATPase in LLC-PK1 cells requires caveolin-1. Kidney Int 2005; 67:1844-54. [PMID: 15840032 DOI: 10.1111/j.1523-1755.2005.00283.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND We have demonstrated that ouabain causes dose- and time-dependent decreases in (86)Rb uptake in pig renal proximal tubule cell line (LLC-PK1) cells; and ouabain induces endocytosis of plasmalemmal Na/K-ATPase in LLC-PK1 cells in a clathrin-dependent pathway. Our data also suggest a role of endocytosis in both ouabain-induced signal transduction and proximal tubule sodium handling. The present study addresses the molecular mechanisms involved in this process. METHODS Studies were performed with cultured LLC-PK1 and a stable-expressed caveolin-1 knockdown LLC-PK1 cell line by SiRNA method. RESULTS In wild-type LLC-PK1 cells, depletion of cholesterol by methyl beta-cyclodextrin reduced ouabain-induced accumulation of Na/K-ATPase alpha-1 subunit, EGFR, Src, and MAPKs in clathrin-coated vesicles, as well as in endosomes. Depletion of cholesterol also significantly reduced the protein-protein interaction among alpha-1 subunit, AP2, PI-3K, and clathrin heavy chain. In LLC-PK1 cells expressing mock-vehicle and caveolin-1 siRNA, depletion of caveolin-1 abolished ouabain-induced decrease in Rb uptake and decrease in the plasmalemmal Na/K-ATPase content. Depletion of caveolin-1 also significantly reduced the ouabain-induced accumulation of Na/K-ATPase alpha-1 subunit, EGFR, Src, and MAPKs in clathrin-coat vesicles, as well as early and late endosomes. In addition, depletion of caveolin-1 also significantly reduced the protein-protein interaction among alpha-1 subunit, AP2, PI-3K, and clathrin heavy chain. These data suggest that caveolae are involved in ouabain-induced endocytosis and signal transduction by initiating assembly of signaling cascades through the caveolar Na/K-ATPase and/or the interaction with clathrin-mediated endocytosis of the Na/K-ATPase.
Collapse
Affiliation(s)
- Jiang Liu
- Department of Medicine, Medical College of Ohio, Toledo, Ohio 43614-5089, USA
| | | | | | | | | | | |
Collapse
|
119
|
Periyasamy SM, Liu J, Tanta F, Kabak B, Wakefield B, Malhotra D, Kennedy DJ, Nadoor A, Fedorova OV, Gunning W, Xie Z, Bagrov AY, Shapiro JI. Salt loading induces redistribution of the plasmalemmal Na/K-ATPase in proximal tubule cells. Kidney Int 2005; 67:1868-77. [PMID: 15840034 DOI: 10.1111/j.1523-1755.2005.00285.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND We have reported that digitalis-like substances (cardiotonic steroids), including marinobufagenin (MBG), induce endocytosis of the plasmalemmal Na/K-ATPase in LLC-PK1 cells. The current report addresses the potential relevance of plasmalemmal Na/K-ATPase redistribution to in vivo salt handling. METHODS Male Sprague-Dawley rats were given 1 week of a high salt (4.0% NaCl) or normal salt (0.4% NaCl) diet. Urinary sodium excretion, as well as MBG excretion, was monitored, and proximal tubules were isolated using a Percoll gradient method. Tubular (86)Rb uptake, Na/K-ATPase enzymatic activity, and Na/K-ATPase alpha1 subunit density were determined. RESULTS The high salt diet increased urinary sodium (17.8 +/- 1.8 vs. 2.5 +/- 0.3 mEq/day, P < 0.01) and MBG excretion (104 +/- 12 vs. 26 +/- 4 pmol/day), and decreased proximal tubular (86)Rb uptake (0.44 +/- 0.07 vs. 1.00 +/- 0.10, P < 0.01) and Na/K-ATPase enzymatic activity (5.1 +/- 1.1 vs. 9.9 +/- 1.6 micromol/mg pr/hr, P < 0.01) relative to the normal diet. Proximal tubular Na/K-ATPase alpha1 protein density was decreased in the plasmalemma fraction but increased in both early and late endosomes following the high salt diet. In rats fed a high salt diet, anti-MBG antibody caused a 60% reduction in urinary sodium excretion, substantial increases in proximal tubule (86)Rb uptake, and Na/K-ATPase enzymatic activity, as well as significant decreases in the early and late endosomal Na/K-ATPase alpha1 protein content. CONCLUSION These data suggest that redistribution of the proximal tubule Na/K-ATPase in response to endogenous cardiotonic steroids plays an important role in renal adaptation to salt loading.
Collapse
|
120
|
Yuan Z, Cai T, Tian J, Ivanov AV, Giovannucci DR, Xie Z. Na/K-ATPase tethers phospholipase C and IP3 receptor into a calcium-regulatory complex. Mol Biol Cell 2005; 16:4034-45. [PMID: 15975899 PMCID: PMC1196317 DOI: 10.1091/mbc.e05-04-0295] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
We have shown that the caveolar Na/K-ATPase transmits ouabain signals via multiple signalplexes. To obtain the information on the composition of such complexes, we separated the Na/K-ATPase from the outer medulla of rat kidney into two different fractions by detergent treatment and density gradient centrifugation. Analysis of the light fraction indicated that both PLC-gamma1 and IP3 receptors (isoforms 2 and 3, IP3R2 and IP3R3) were coenriched with the Na/K-ATPase, caveolin-1 and Src. GST pulldown assays revealed that the central loop of the Na/K-ATPase alpha1 subunit interacts with PLC-gamma1, whereas the N-terminus binds IP3R2 and IP3R3, suggesting that the signaling Na/K-ATPase may tether PLC-gamma1 and IP3 receptors together to form a Ca(2+)-regulatory complex. This notion is supported by the following findings. First, both PLC-gamma1 and IP3R2 coimmunoprecipitated with the Na/K-ATPase and ouabain increased this interaction in a dose- and time-dependent manner in LLC-PK1 cells. Depletion of cholesterol abolished the effects of ouabain on this interaction. Second, ouabain induced phosphorylation of PLC-gamma1 at Tyr(783) and activated PLC-gamma1 in a Src-dependent manner, resulting in increased hydrolysis of PIP2. It also stimulated Src-dependent tyrosine phosphorylation of the IP3R2. Finally, ouabain induced Ca(2+) release from the intracellular stores via the activation of IP3 receptors in LLC-PK1 cells. This effect required the ouabain-induced activation of PLC-gamma1. Inhibition of Src or depletion of cholesterol also abolished the effect of ouabain on intracellular Ca(2+).
Collapse
Affiliation(s)
- Zhaokan Yuan
- Department of Pharmacology, Medical College of Ohio, Toledo, OH 43614, USA
| | | | | | | | | | | |
Collapse
|