101
|
McEwen BS, McKittrick CR, Tamashiro KLK, Sakai RR. The brain on stress: Insight from studies using the Visible Burrow System. Physiol Behav 2016; 146:47-56. [PMID: 26066722 DOI: 10.1016/j.physbeh.2015.04.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 04/04/2015] [Accepted: 04/07/2015] [Indexed: 11/26/2022]
Abstract
The discovery of adrenal steroid receptors outside of the hypothalamus in the hippocampus and other forebrain regions catalyzed research on the effects of stress upon cognitive function, emotions and self-regulatory behaviors as well as the molecular, cellular and neuroanatomical mechanisms underlying acute and chronic stress effects on the brain. Indeed, this work has shown that the brain is a plastic and vulnerable organ in the face of acute and chronic stress. The insight that Bob and Caroline Blanchard had in developing and interpreting findings using the Visible Burrow System model made an enormous contribution to the current view that the human brain is very sensitive to the social environment and to agonistic interactions between individuals. Their collaboration with Sakai and McEwen at The Rockefeller University extended application of the Visible Burrow System model to demonstrate that it also was a unique and highly relevant neuroethological model with which to study stress and adaptation to stressors. Those studies focused on the brain and systemic organ responses to stress and, in turn, described that the brain is also very responsive to changes in systemic physiology.
Collapse
|
102
|
Teicher MH, Samson JA. Annual Research Review: Enduring neurobiological effects of childhood abuse and neglect. J Child Psychol Psychiatry 2016; 57:241-66. [PMID: 26831814 PMCID: PMC4760853 DOI: 10.1111/jcpp.12507] [Citation(s) in RCA: 679] [Impact Index Per Article: 75.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/24/2015] [Indexed: 12/17/2022]
Abstract
BACKGROUND Childhood maltreatment is the most important preventable cause of psychopathology accounting for about 45% of the population attributable risk for childhood onset psychiatric disorders. A key breakthrough has been the discovery that maltreatment alters trajectories of brain development. METHODS This review aims to synthesize neuroimaging findings in children who experienced caregiver neglect as well as from studies in children, adolescents and adults who experienced physical, sexual and emotional abuse. In doing so, we provide preliminary answers to questions regarding the importance of type and timing of exposure, gender differences, reversibility and the relationship between brain changes and psychopathology. We also discuss whether these changes represent adaptive modifications or stress-induced damage. RESULTS Parental verbal abuse, witnessing domestic violence and sexual abuse appear to specifically target brain regions (auditory, visual and somatosensory cortex) and pathways that process and convey the aversive experience. Maltreatment is associated with reliable morphological alterations in anterior cingulate, dorsal lateral prefrontal and orbitofrontal cortex, corpus callosum and adult hippocampus, and with enhanced amygdala response to emotional faces and diminished striatal response to anticipated rewards. Evidence is emerging that these regions and interconnecting pathways have sensitive exposure periods when they are most vulnerable. CONCLUSIONS Early deprivation and later abuse may have opposite effects on amygdala volume. Structural and functional abnormalities initially attributed to psychiatric illness may be a more direct consequence of abuse. Childhood maltreatment exerts a prepotent influence on brain development and has been an unrecognized confound in almost all psychiatric neuroimaging studies. These brain changes may be best understood as adaptive responses to facilitate survival and reproduction in the face of adversity. Their relationship to psychopathology is complex as they are discernible in both susceptible and resilient individuals with maltreatment histories. Mechanisms fostering resilience will need to be a primary focus of future studies.
Collapse
Affiliation(s)
- Martin H. Teicher
- Department of Psychiatry, Harvard Medical School, Boston, MA,Developmental Biopsychiatry Research Program, McLean Hospital, Belmont, MA, USA
| | - Jacqueline A. Samson
- Department of Psychiatry, Harvard Medical School, Boston, MA,Developmental Biopsychiatry Research Program, McLean Hospital, Belmont, MA, USA
| |
Collapse
|
103
|
Maleki N, Bernstein C, Napadow V, Field A. Migraine and Puberty: Potential Susceptible Brain Sites. Semin Pediatr Neurol 2016; 23:53-9. [PMID: 27017023 DOI: 10.1016/j.spen.2016.01.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Puberty is a sensitive and critical period for brain development. The relationship between developmental processes in the brain during puberty and the onset of migraine disease in relation to the potential sites of susceptibility in the brain remains largely unknown. There are few data on how such processes interact with each other in influencing the migraine onset during puberty or even later in adulthood. Focusing on the migraine brain during pubertal development may provide us with a "window of opportunity" both to better understand the mechanisms of the disease and, also more importantly, to effectively intervene.
Collapse
Affiliation(s)
- Nasim Maleki
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Department of Anesthesia, Boston Children's Hospital, Boston, MA.
| | - Carolyn Bernstein
- Department of Anesthesia, Beth Israel Deaconess Hospital, Harvard Medical School, Boston, MA
| | - Vitaly Napadow
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA; Department of Anesthesiology, Brigham and Women's Hospital, Boston, MA
| | - Alison Field
- Harvard T.H. Chan School of Public Health, Boston, MA; Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA; Department of Medicine, Brigham and Women's Hospital, Boston, MA; Department of Epidemiology, Brown University School of Public Heath, MA
| |
Collapse
|
104
|
Neuroactive Steroids in First-Episode Psychosis: A Role for Progesterone? SCHIZOPHRENIA RESEARCH AND TREATMENT 2016; 2016:1942828. [PMID: 27747103 PMCID: PMC5055965 DOI: 10.1155/2016/1942828] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 08/04/2016] [Accepted: 08/17/2016] [Indexed: 01/10/2023]
Abstract
Neuroactive steroids may play a role in the pathophysiology of psychotic disorders, but few studies examined this issue. We compared serum levels of cortisol, testosterone, dehydroepiandrosterone, and progesterone between a representative sample of first-episode psychosis (FEP) patients and age- and gender-matched healthy subjects. Furthermore, we analyzed the associations between neuroactive steroids levels and the severity of psychotic symptom dimensions. Male patients had lower levels of progesterone than controls (p = 0.03). Progesterone levels were inversely associated with the severity of positive symptoms (p = 0.007). Consistent with preclinical findings, results suggest that progesterone might have a role in the pathophysiology of psychotic disorders.
Collapse
|
105
|
McEwen BS. Stress-induced remodeling of hippocampal CA3 pyramidal neurons. Brain Res 2015; 1645:50-4. [PMID: 26740399 DOI: 10.1016/j.brainres.2015.12.043] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 12/19/2015] [Indexed: 01/05/2023]
Abstract
The discovery of steroid hormone receptors in brain regions that mediate virtually every aspect of brain function has broadened the definition of 'neuroendocrinology' to include the reciprocal communication between the brain and the body via hormonal and neural pathways. The brain is the central organ of stress and adaptation to stress because it perceives and determines what is threatening, as well as determining the behavioral and physiological responses to the stressor. The adult and developing brain possess remarkable structural and functional plasticity in response to stress, including neurogenesis leading to neuronal replacement, dendritic remodeling, and synapse turnover. Stress causes an imbalance of neural circuitry subserving cognition, decision-making, anxiety and mood that can alter expression of those behaviors and behavioral states. The two Brain Research papers noted in this review played an important role in triggering these advances. This article is part of a Special Issue entitled SI:50th Anniversary Issue.
Collapse
Affiliation(s)
- Bruce S McEwen
- Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States.
| |
Collapse
|
106
|
Kida S, Kato T. Microendophenotypes of psychiatric disorders: phenotypes of psychiatric disorders at the level of molecular dynamics, synapses, neurons, and neural circuits. Curr Mol Med 2015; 15:111-8. [PMID: 25732153 PMCID: PMC4460283 DOI: 10.2174/1566524015666150303002128] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 12/20/2014] [Accepted: 01/18/2015] [Indexed: 01/31/2023]
Abstract
Psychiatric disorders are caused not only by genetic factors but also by complicated factors such as environmental ones. Moreover, environmental factors are rarely quantitated as biological and biochemical indicators, making it extremely difficult to understand the pathological conditions of psychiatric disorders as
well as their underlying pathogenic mechanisms. Additionally, we have actually no other option but to perform biological studies on postmortem human brains that display features of psychiatric disorders, thereby resulting in a lack of experimental materials to characterize the basic biology of these disorders. From these
backgrounds, animal, tissue, or cell models that can be used in basic research are indispensable to understand biologically the pathogenic mechanisms of psychiatric disorders. In this review, we discuss the importance of microendophenotypes of psychiatric disorders, i.e., phenotypes at the level of molecular
dynamics, neurons, synapses, and neural circuits, as targets of basic research on these disorders.
Collapse
Affiliation(s)
- S Kida
- Department of Bioscience, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo 156-8502, Japan.
| | | |
Collapse
|
107
|
Milman LW, Sammel MD, Barnhart KT, Freeman EW, Dokras A. Higher serum total testosterone levels correlate with increased risk of depressive symptoms in Caucasian women through the entire menopausal transition. Psychoneuroendocrinology 2015; 62:107-13. [PMID: 26280374 DOI: 10.1016/j.psyneuen.2015.07.612] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 07/10/2015] [Accepted: 07/28/2015] [Indexed: 12/31/2022]
Abstract
BACKGROUND Despite the high prevalence of depressive symptoms in women, the precise role of sex hormones in mood changes during the menopausal transition is unclear. Previous studies have been inconsistent with regard to identifying the association of androgens, namely total testosterone, with depressive symptoms. OBJECTIVE The objectives of this study were to evaluate changes in serum total testosterone levels and depressive symptoms during the entire menopausal transition, and examine the impact of covariates on the association between concurrent serum total testosterone levels and depressive symptoms during this time period. METHODS A longitudinal cohort study (428 women at baseline with 3634 repeated measures) using data from the Penn Ovarian Aging Study, a population-based cohort of late reproductive-aged women, followed through the menopausal transition. Serum hormone parameters and depression scores using the Center for Epidemiological Studies of Depression scale (CES-D) were measured at each annual visit over a 14-year period. General linear (for testosterone) and a generalized negative-binomial model (for depressive symptoms) for repeated measures were used for analysis. RESULTS Serum total testosterone levels increased progressively over the study period and were significantly associated with older age and with current smoking (p<0.001, respectively). In the post menopause total testosterone levels were significantly higher in African Americans compared to Caucasians (p=0.012). The proportion of women with CES-D ≥16 significantly decreased with increasing age and in the post-menopausal period, and were higher in women with a history of depression and hot flashes (p<0.001). The association between concurrent testosterone levels and high depressive symptoms (CES-D ≥16) differed by race (p=0.008). In Caucasians, but not African Americans, higher serum testosterone levels were associated with increased depressive symptoms after controlling for several variables including age, obesity status, hot flashes and menopausal status (RR 1.09, 95% CI 1.00-1.17, p=0.042). CONCLUSION In our cohort, testosterone levels were low but progressively increased from premenopause through post menopause. In addition to age and history of depression, we identified race to have a significant interaction between the association of testosterone levels and depressive symptoms. This study further supports the associations between sex hormones and increased risk of having depressive symptoms, although the precise underlying mechanisms for this association remain unclear.
Collapse
Affiliation(s)
- Lauren W Milman
- Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Mary D Sammel
- Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Kurt T Barnhart
- Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Ellen W Freeman
- Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Anuja Dokras
- Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States.
| |
Collapse
|
108
|
Stress dynamically regulates behavior and glutamatergic gene expression in hippocampus by opening a window of epigenetic plasticity. Proc Natl Acad Sci U S A 2015; 112:14960-5. [PMID: 26627246 DOI: 10.1073/pnas.1516016112] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Excitatory amino acids play a key role in both adaptive and deleterious effects of stressors on the brain, and dysregulated glutamate homeostasis has been associated with psychiatric and neurological disorders. Here, we elucidate mechanisms of epigenetic plasticity in the hippocampus in the interactions between a history of chronic stress and familiar and novel acute stressors that alter expression of anxiety- and depressive-like behaviors. We demonstrate that acute restraint and acute forced swim stressors induce differential effects on these behaviors in naive mice and in mice with a history of chronic-restraint stress (CRS). They reveal a key role for epigenetic up- and down-regulation of the putative presynaptic type 2 metabotropic glutamate (mGlu2) receptors and the postsynaptic NR1/NMDA receptors in the hippocampus and particularly in the dentate gyrus (DG), a region of active neurogenesis and a target of antidepressant treatment. We show changes in DG long-term potentiation (LTP) that parallel behavioral responses, with habituation to the same acute restraint stressor and sensitization to a novel forced-swim stressor. In WT mice after CRS and in unstressed mice with a BDNF loss-of-function allele (BDNF Val66Met), we show that the epigenetic activator of histone acetylation, P300, plays a pivotal role in the dynamic up- and down-regulation of mGlu2 in hippocampus via histone-3-lysine-27-acetylation (H3K27Ac) when acute stressors are applied. These hippocampal responses reveal a window of epigenetic plasticity that may be useful for treatment of disorders in which glutamatergic transmission is dysregulated.
Collapse
|
109
|
Abstract
Anhedonia, or the loss of pleasure in previously rewarding stimuli, is a core symptom of major depressive disorder that may reflect an underlying dysregulation in reward processing. The mesolimbic dopamine circuit, also known as the brain's reward circuit, is integral to processing the rewarding salience of stimuli to guide actions. Manifestation of anhedonia and associated depression symptoms like feelings of sadness, changes in appetite, and psychomotor effects, may reflect changes in the brain reward circuitry as a common underlying disease process. This review will synthesize the recent literature from human and rodent studies providing a circuit-level framework for understanding anhedonia in depression, with emphasis on the nucleus accumbens.
Collapse
Affiliation(s)
- Mitra Heshmati
- Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Icahn 10-71, Box 1065, New York, NY 10029 (212) 659- 5917
| | - Scott J Russo
- Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Icahn 10-71, Box 1065, New York, NY 10029 (212) 659- 5917
| |
Collapse
|
110
|
Maternal testosterone exposure increases anxiety-like behavior and impacts the limbic system in the offspring. Proc Natl Acad Sci U S A 2015; 112:14348-53. [PMID: 26578781 DOI: 10.1073/pnas.1507514112] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
During pregnancy, women with polycystic ovary syndrome (PCOS) display high circulating androgen levels that may affect the fetus and increase the risk of mood disorders in offspring. This study investigated whether maternal androgen excess causes anxiety-like behavior in offspring mimicking anxiety disorders in PCOS. The PCOS phenotype was induced in rats following prenatal androgen (PNA) exposure. PNA offspring displayed anxiety-like behavior in the elevated plus maze, which was reversed by flutamide [androgen receptor (AR) blocker] and tamoxifen [selective estrogen receptor (ER) modulator]. Circulating sex steroids did not differ between groups at adult age. The expression of serotonergic and GABAergic genes associated with emotional regulation in the amygdala was consistent with anxiety-like behavior in female, and partly in male PNA offspring. Furthermore, AR expression in amygdala was reduced in female PNA offspring and also in females exposed to testosterone in adult age. To determine whether AR activation in amygdala affects anxiety-like behavior, female rats were given testosterone microinjections into amygdala, which resulted in anxiety-like behavior. Together, these data describe the anxiety-like behavior in PNA offspring and adult females with androgen excess, an impact that seems to occur during fetal life, and is mediated via AR in amygdala, together with changes in ERα, serotonergic, and GABAergic genes in amygdala and hippocampus. The anxiety-like behavior following testosterone microinjections into amygdala demonstrates a key role for AR activation in this brain area. These results suggest that maternal androgen excess may underpin the risk of developing anxiety disorders in daughters and sons of PCOS mothers.
Collapse
|
111
|
Farrell MR, Gruene TM, Shansky RM. The influence of stress and gonadal hormones on neuronal structure and function. Horm Behav 2015; 76:118-24. [PMID: 25819727 PMCID: PMC4583315 DOI: 10.1016/j.yhbeh.2015.03.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 03/11/2015] [Accepted: 03/19/2015] [Indexed: 11/27/2022]
Abstract
This article is part of a Special Issue "SBN 2014". The brain is highly plastic, allowing us to adapt and respond to environmental and physiological challenges and experiences. In this review, we discuss the relationships among alterations in dendritic arborization, spine morphology, and behavior due to stress exposure, endogenous hormone fluctuation, or exogenous hormonal manipulation. Very few studies investigate structure-function associations directly in the same cohort of animals, and there are notable inconsistencies in evidence of structure-function relationships in the prefrontal cortex and hippocampus. Moreover, little work has been done to probe the causal relationship between dendritic morphology and neuronal excitability, leaving only speculation about the adaptive versus maladaptive nature of experience-dependent dendritic remodeling. We propose that future studies combine electrophysiology with a circuit-level approach to better understand how dendritic structure contributes to neuronal functional properties and behavioral outcomes.
Collapse
Affiliation(s)
| | - Tina M Gruene
- Department of Psychology, Northeastern University, USA
| | | |
Collapse
|
112
|
McEwen BS, Bowles NP, Gray JD, Hill MN, Hunter RG, Karatsoreos IN, Nasca C. Mechanisms of stress in the brain. Nat Neurosci 2015; 18:1353-63. [PMID: 26404710 PMCID: PMC4933289 DOI: 10.1038/nn.4086] [Citation(s) in RCA: 905] [Impact Index Per Article: 90.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 07/08/2015] [Indexed: 02/07/2023]
Abstract
The brain is the central organ involved in perceiving and adapting to social and physical stressors via multiple interacting mediators, from the cell surface to the cytoskeleton to epigenetic regulation and nongenomic mechanisms. A key result of stress is structural remodeling of neural architecture, which may be a sign of successful adaptation, whereas persistence of these changes when stress ends indicates failed resilience. Excitatory amino acids and glucocorticoids have key roles in these processes, along with a growing list of extra- and intracellular mediators that includes endocannabinoids and brain-derived neurotrophic factor (BDNF). The result is a continually changing pattern of gene expression mediated by epigenetic mechanisms involving histone modifications and CpG methylation and hydroxymethylation as well as by the activity of retrotransposons that may alter genomic stability. Elucidation of the underlying mechanisms of plasticity and vulnerability of the brain provides a basis for understanding the efficacy of interventions for anxiety and depressive disorders as well as age-related cognitive decline.
Collapse
Affiliation(s)
- Bruce S McEwen
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, New York, USA
| | - Nicole P Bowles
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, New York, USA
| | - Jason D Gray
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, New York, USA
| | - Matthew N Hill
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Richard G Hunter
- Department of Psychology, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Ilia N Karatsoreos
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington, USA
| | - Carla Nasca
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, New York, USA
| |
Collapse
|
113
|
Relationship between the catechol-O-methyl transferase Val108/158Met genotype and brain volume in treatment-naive major depressive disorder: Voxel-based morphometry analysis. Psychiatry Res 2015; 233:481-7. [PMID: 26253436 DOI: 10.1016/j.pscychresns.2015.07.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 05/24/2015] [Accepted: 07/30/2015] [Indexed: 02/04/2023]
Abstract
Catechol-O-methyltransferase (COMT) is a methylation enzyme engaged in the degradation of dopamine and noradrenaline by catalyzing the transfer of a methyl group from S-adenosylmethionine. An association was found between the Valine (Val) 108/158Methionine (Met) COMT polymorphism (rs4680) and major depressive disorder (MDD). The authors prospectively investigated the relationship between the Val108/158Met COMT genotype and voxel-based morphometry (VBM) findings for patients with first-episode and treatment-naïve MDD and healthy subjects (HS). Participants comprised 30 MDD patients and 48 age- and sex-matched HS who were divided according to the COMT genotype. Effects of diagnosis, COMT genotype, and the genotype-diagnosis interaction in relation to brain morphology in the Val/Met and Val/Val individuals were evaluated using a VBM analysis of high-resolution magnetic resonance imaging findings. Among the Val/Met individuals, the volume of the bilateral caudate was significantly smaller for MDD patients than for HS. In the Val/Val individuals, the caudate volume was comparable between MDD patients and HS. Significant genotype-diagnosis interaction effects on brain morphology were noted in the right caudate.
Collapse
|
114
|
Tost H, Champagne FA, Meyer-Lindenberg A. Environmental influence in the brain, human welfare and mental health. Nat Neurosci 2015; 18:1421-31. [PMID: 26404717 DOI: 10.1038/nn.4108] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 08/14/2015] [Indexed: 12/12/2022]
Abstract
The developing human brain is shaped by environmental exposures--for better or worse. Many exposures relevant to mental health are genuinely social in nature or believed to have social subcomponents, even those related to more complex societal or area-level influences. The nature of how these social experiences are embedded into the environment may be crucial. Here we review select neuroscience evidence on the neural correlates of adverse and protective social exposures in their environmental context, focusing on human neuroimaging data and supporting cellular and molecular studies in laboratory animals. We also propose the inclusion of innovative methods in social neuroscience research that may provide new and ecologically more valid insight into the social-environmental risk architecture of the human brain.
Collapse
Affiliation(s)
- Heike Tost
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, University of Heidelberg, Medical Faculty Mannheim, Mannheim, Germany
| | | | - Andreas Meyer-Lindenberg
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, University of Heidelberg, Medical Faculty Mannheim, Mannheim, Germany
| |
Collapse
|
115
|
Zhou J, Liu Z, Yu J, Han X, Fan S, Shao W, Chen J, Qiao R, Xie P. Quantitative Proteomic Analysis Reveals Molecular Adaptations in the Hippocampal Synaptic Active Zone of Chronic Mild Stress-Unsusceptible Rats. Int J Neuropsychopharmacol 2015; 19:pyv100. [PMID: 26364272 PMCID: PMC4772275 DOI: 10.1093/ijnp/pyv100] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 08/31/2015] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND While stressful events are recognized as an important cause of major depressive disorder, some individuals exposed to life stressors maintain normal psychological functioning. The molecular mechanism(s) underlying this phenomenon remain unclear. Abnormal transmission and plasticity of hippocampal synapses have been implied to play a key role in the pathoetiology of major depressive disorder. METHODS A chronic mild stress protocol was applied to separate susceptible and unsusceptible rat subpopulations. Proteomic analysis using an isobaric tag for relative and absolute quantitation coupled with tandem mass spectrometry was performed to identify differential proteins in enriched hippocampal synaptic junction preparations. RESULTS A total of 4318 proteins were quantified, and 89 membrane proteins were present in differential amounts. Of these, SynaptomeDB identified 81 (91%) having a synapse-specific localization. The unbiased profiles identified several candidate proteins within the synaptic junction that may be associated with stress vulnerability or insusceptibility. Subsequent functional categorization revealed that protein systems particularly involved in membrane trafficking at the synaptic active zone exhibited a positive strain as potential molecular adaptations in the unsusceptible rats. Moreover, through STRING and immunoblotting analysis, membrane-associated GTP-bound Rab3a and Munc18-1 appear to coregulate syntaxin-1/SNAP25/VAMP2 assembly at the hippocampal presynaptic active zone of unsusceptible rats, facilitating SNARE-mediated membrane fusion and neurotransmitter release, and may be part of a stress-protection mechanism in actively maintaining an emotional homeostasis. CONCLUSIONS The present results support the concept that there is a range of potential protein adaptations in the hippocampal synaptic active zone of unsusceptible rats, revealing new investigative targets that may contribute to a better understanding of stress insusceptibility.
Collapse
Affiliation(s)
- Jian Zhou
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China (Drs Zhou, Liu, Yu, Han, Fan, Shao, Chen, Qiao, and Xie); Chongqing Key Laboratory of Neurobiology, Chongqing, China (Drs Zhou, Liu, Yu, Han, Fan, Shao, Chen, Qiao, and Xie); Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China (Drs Liu, Han, Fan, Shao, and Xie)
| | - Zhao Liu
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China (Drs Zhou, Liu, Yu, Han, Fan, Shao, Chen, Qiao, and Xie); Chongqing Key Laboratory of Neurobiology, Chongqing, China (Drs Zhou, Liu, Yu, Han, Fan, Shao, Chen, Qiao, and Xie); Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China (Drs Liu, Han, Fan, Shao, and Xie)
| | - Jia Yu
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China (Drs Zhou, Liu, Yu, Han, Fan, Shao, Chen, Qiao, and Xie); Chongqing Key Laboratory of Neurobiology, Chongqing, China (Drs Zhou, Liu, Yu, Han, Fan, Shao, Chen, Qiao, and Xie); Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China (Drs Liu, Han, Fan, Shao, and Xie)
| | - Xin Han
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China (Drs Zhou, Liu, Yu, Han, Fan, Shao, Chen, Qiao, and Xie); Chongqing Key Laboratory of Neurobiology, Chongqing, China (Drs Zhou, Liu, Yu, Han, Fan, Shao, Chen, Qiao, and Xie); Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China (Drs Liu, Han, Fan, Shao, and Xie)
| | - Songhua Fan
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China (Drs Zhou, Liu, Yu, Han, Fan, Shao, Chen, Qiao, and Xie); Chongqing Key Laboratory of Neurobiology, Chongqing, China (Drs Zhou, Liu, Yu, Han, Fan, Shao, Chen, Qiao, and Xie); Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China (Drs Liu, Han, Fan, Shao, and Xie)
| | - Weihua Shao
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China (Drs Zhou, Liu, Yu, Han, Fan, Shao, Chen, Qiao, and Xie); Chongqing Key Laboratory of Neurobiology, Chongqing, China (Drs Zhou, Liu, Yu, Han, Fan, Shao, Chen, Qiao, and Xie); Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China (Drs Liu, Han, Fan, Shao, and Xie)
| | - Jianjun Chen
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China (Drs Zhou, Liu, Yu, Han, Fan, Shao, Chen, Qiao, and Xie); Chongqing Key Laboratory of Neurobiology, Chongqing, China (Drs Zhou, Liu, Yu, Han, Fan, Shao, Chen, Qiao, and Xie); Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China (Drs Liu, Han, Fan, Shao, and Xie)
| | - Rui Qiao
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China (Drs Zhou, Liu, Yu, Han, Fan, Shao, Chen, Qiao, and Xie); Chongqing Key Laboratory of Neurobiology, Chongqing, China (Drs Zhou, Liu, Yu, Han, Fan, Shao, Chen, Qiao, and Xie); Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China (Drs Liu, Han, Fan, Shao, and Xie)
| | - Peng Xie
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China (Drs Zhou, Liu, Yu, Han, Fan, Shao, Chen, Qiao, and Xie); Chongqing Key Laboratory of Neurobiology, Chongqing, China (Drs Zhou, Liu, Yu, Han, Fan, Shao, Chen, Qiao, and Xie); Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China (Drs Liu, Han, Fan, Shao, and Xie).
| |
Collapse
|
116
|
Xu Y, Cheng X, Cui X, Wang T, Liu G, Yang R, Wang J, Bo X, Wang S, Zhou W, Zhang Y. Effects of 5-h multimodal stress on the molecules and pathways involved in dendritic morphology and cognitive function. Neurobiol Learn Mem 2015; 123:225-38. [DOI: 10.1016/j.nlm.2015.06.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 06/17/2015] [Accepted: 06/23/2015] [Indexed: 11/25/2022]
|
117
|
Sex differences in NMDA GluN1 plasticity in rostral ventrolateral medulla neurons containing corticotropin-releasing factor type 1 receptor following slow-pressor angiotensin II hypertension. Neuroscience 2015; 307:83-97. [PMID: 26306872 DOI: 10.1016/j.neuroscience.2015.08.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 08/12/2015] [Accepted: 08/14/2015] [Indexed: 11/15/2022]
Abstract
There are profound, yet incompletely understood, sex differences in the neurogenic regulation of blood pressure. Both corticotropin signaling and glutamate receptor plasticity, which differ between males and females, are known to play important roles in the neural regulation of blood pressure. However, the relationship between hypertension and glutamate plasticity in corticotropin-releasing factor (CRF)-receptive neurons in brain cardiovascular regulatory areas, including the rostral ventrolateral medulla (RVLM) and paraventricular nucleus of the hypothalamus (PVN), is not understood. In the present study, we used dual-label immuno-electron microscopy to analyze sex differences in slow-pressor angiotensin II (AngII) hypertension with respect to the subcellular distribution of the obligatory NMDA glutamate receptor subunit 1 (GluN1) subunit of the N-methyl-D-aspartate receptor (NMDAR) in the RVLM and PVN. Studies were conducted in mice expressing the enhanced green fluorescence protein (EGFP) under the control of the CRF type 1 receptor (CRF1) promoter (i.e., CRF1-EGFP reporter mice). By light microscopy, GluN1-immunoreactivity (ir) was found in CRF1-EGFP neurons of the RVLM and PVN. Moreover, in both regions tyrosine hydroxylase (TH) was found in CRF1-EGFP neurons. In response to AngII, male mice showed an elevation in blood pressure that was associated with an increase in the proportion of GluN1 on presumably functional areas of the plasma membrane (PM) in CRF1-EGFP dendritic profiles in the RVLM. In female mice, AngII was neither associated with an increase in blood pressure nor an increase in PM GluN1 in the RVLM. Unlike the RVLM, AngII-mediated hypertension had no effect on GluN1 localization in CRF1-EGFP dendrites in the PVN of either male or female mice. These studies provide an anatomical mechanism for sex-differences in the convergent modulation of RVLM catecholaminergic neurons by CRF and glutamate. Moreover, these results suggest that sexual dimorphism in AngII-induced hypertension is reflected by NMDA receptor trafficking in presumptive sympathoexcitatory neurons in the RVLM.
Collapse
|
118
|
McLaughlin KA, Sheridan MA, Lambert HK. Childhood adversity and neural development: deprivation and threat as distinct dimensions of early experience. Neurosci Biobehav Rev 2015; 47:578-91. [PMID: 25454359 DOI: 10.1016/j.neubiorev.2014.10.012] [Citation(s) in RCA: 715] [Impact Index Per Article: 71.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 09/30/2014] [Accepted: 10/15/2014] [Indexed: 12/16/2022]
Abstract
A growing body of research has examined the impact of childhood adversity on neural structure and function. Advances in our understanding of the neurodevelopmental consequences of adverse early environments require the identification of dimensions of environmental experience that influence neural development differently and mechanisms other than the frequently-invoked stress pathways. We propose a novel conceptual framework that differentiates between deprivation (absence of expected environmental inputs and complexity) and threat (presence of experiences that represent a threat to one's physical integrity) and make predictions grounded in basic neuroscience principles about their distinct effects on neural development. We review animal research on fear learning and sensory deprivation as well as human research on childhood adversity and neural development to support these predictions. We argue that these previously undifferentiated dimensions of experience exert strong and distinct influences on neural development that cannot be fully explained by prevailing models focusing only on stress pathways. Our aim is not to exhaustively review existing evidence on childhood adversity and neural development, but to provide a novel framework to guide future research.
Collapse
|
119
|
McEwen BS, Gray JD, Nasca C. 60 YEARS OF NEUROENDOCRINOLOGY: Redefining neuroendocrinology: stress, sex and cognitive and emotional regulation. J Endocrinol 2015; 226:T67-83. [PMID: 25934706 PMCID: PMC4515381 DOI: 10.1530/joe-15-0121] [Citation(s) in RCA: 182] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/01/2015] [Indexed: 12/12/2022]
Abstract
The discovery of steroid hormone receptors in brain regions that mediate every aspect of brain function has broadened the definition of 'neuroendocrinology' to include the reciprocal communication between the brain and the body via hormonal and neural pathways. The brain is the central organ of stress and adaptation to stress because it perceives and determines what is threatening, as well as the behavioral and physiological responses to the stressor. The adult and developing brain possess remarkable structural and functional plasticity in response to stress, including neuronal replacement, dendritic remodeling, and synapse turnover. Stress causes an imbalance of neural circuitry subserving cognition, decision-making, anxiety and mood that can alter expression of those behaviors and behavioral states. This imbalance, in turn, affects systemic physiology via neuroendocrine, autonomic, immune and metabolic mediators. In the short term, as for increased fearful vigilance and anxiety in a threatening environment, these changes may be adaptive. But, if the danger passes and the behavioral state persists along with the changes in neural circuitry, such maladaptation may need intervention with a combination of pharmacological and behavioral therapies, as is the case for chronic anxiety and depression. There are important sex differences in the brain responses to stressors that are in urgent need of further exploration. Moreover, adverse early-life experience, interacting with alleles of certain genes, produce lasting effects on brain and body over the life-course via epigenetic mechanisms. While prevention is most important, the plasticity of the brain gives hope for therapies that take into consideration brain-body interactions.
Collapse
Affiliation(s)
- Bruce S McEwen
- Laboratory of NeuroendocrinologyThe Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | - Jason D Gray
- Laboratory of NeuroendocrinologyThe Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | - Carla Nasca
- Laboratory of NeuroendocrinologyThe Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| |
Collapse
|
120
|
Abstract
Anhedonia, or the loss of pleasure in previously rewarding stimuli, is a core symptom of major depressive disorder that may reflect an underlying dysregulation in reward processing. The mesolimbic dopamine circuit, also known as the brain's reward circuit, is integral to processing the rewarding salience of stimuli to guide actions. Manifestation of anhedonia and associated depression symptoms like feelings of sadness, changes in appetite, and psychomotor effects, may reflect changes in the brain reward circuitry as a common underlying disease process. This review will synthesize the recent literature from human and rodent studies providing a circuit-level framework for understanding anhedonia in depression, with emphasis on the nucleus accumbens.
Collapse
Affiliation(s)
- Mitra Heshmati
- Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Icahn 10-71, Box 1065, New York, NY 10029 (212) 659- 5917
| | - Scott J Russo
- Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Icahn 10-71, Box 1065, New York, NY 10029 (212) 659- 5917
| |
Collapse
|
121
|
Sandi C, Haller J. Stress and the social brain: behavioural effects and neurobiological mechanisms. Nat Rev Neurosci 2015; 16:290-304. [PMID: 25891510 DOI: 10.1038/nrn3918] [Citation(s) in RCA: 389] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Stress often affects our social lives. When undergoing high-level or persistent stress, individuals frequently retract from social interactions and become irritable and hostile. Predisposition to antisocial behaviours - including social detachment and violence - is also modulated by early life adversity; however, the effects of early life stress depend on the timing of exposure and genetic factors. Research in animals and humans has revealed some of the structural, functional and molecular changes in the brain that underlie the effects of stress on social behaviour. Findings in this emerging field will have implications both for the clinic and for society.
Collapse
Affiliation(s)
- Carmen Sandi
- Brain Mind Institute, School of Life Sciences, École Polytechnique Federale de Lausanne (EPFL), Lausanne CH-1050, Switzerland
| | - József Haller
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest H-1450, Hungary
| |
Collapse
|
122
|
Ménard C, Hodes GE, Russo SJ. Pathogenesis of depression: Insights from human and rodent studies. Neuroscience 2015; 321:138-162. [PMID: 26037806 DOI: 10.1016/j.neuroscience.2015.05.053] [Citation(s) in RCA: 380] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 05/14/2015] [Accepted: 05/21/2015] [Indexed: 12/30/2022]
Abstract
Major depressive disorder (MDD) will affect one out of every five people in their lifetime and is the leading cause of disability worldwide. Nevertheless, mechanisms associated with the pathogenesis of MDD have yet to be completely understood and current treatments remain ineffective in a large subset of patients. In this review, we summarize the most recent discoveries and insights for which parallel findings have been obtained in human depressed subjects and rodent models of mood disorders in order to examine the potential etiology of depression. These mechanisms range from synaptic plasticity mechanisms to epigenetics and the immune system where there is strong evidence to support a functional role in the development of specific depression symptomology. Ultimately we conclude by discussing how novel therapeutic strategies targeting central and peripheral processes might ultimately aid in the development of effective new treatments for MDD and related stress disorders.
Collapse
Affiliation(s)
- C Ménard
- Fishberg Department of Neuroscience and the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - G E Hodes
- Fishberg Department of Neuroscience and the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - S J Russo
- Fishberg Department of Neuroscience and the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
123
|
Croston R, Branch CL, Kozlovsky DY, Roth TC, LaDage LD, Freas CA, Pravosudov VV. Potential Mechanisms Driving Population Variation in Spatial Memory and the Hippocampus in Food-caching Chickadees. Integr Comp Biol 2015; 55:354-71. [DOI: 10.1093/icb/icv029] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
124
|
Stress, sex, and addiction: potential roles of corticotropin-releasing factor, oxytocin, and arginine-vasopressin. Behav Pharmacol 2015; 25:445-57. [PMID: 24949572 DOI: 10.1097/fbp.0000000000000049] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Stress sensitivity and sex are predictive factors for the development of neuropsychiatric disorders. Life stresses are not only risk factors for the development of addiction but also are triggers for relapse to drug use. Therefore, it is imperative to elucidate the molecular mechanisms underlying the interactions between stress and drug abuse, as an understanding of this may help in the development of novel and more effective therapeutic approaches to block the clinical manifestations of drug addiction. The development and clinical course of addiction-related disorders do appear to involve neuroadaptations within neurocircuitries that modulate stress responses and are influenced by several neuropeptides. These include corticotropin-releasing factor, the prototypic member of this class, as well as oxytocin and arginine-vasopressin that play important roles in affiliative behaviors. Interestingly, these peptides function to balance emotional behavior, with sexual dimorphism in the oxytocin/arginine-vasopressin systems, a fact that might play an important role in the differential responses of women and men to stressful stimuli and the specific sex-based prevalence of certain addictive disorders. Thus, this review aims to summarize (i) the contribution of sex differences to the function of dopamine systems, and (ii) the behavioral, neurochemical, and anatomical changes in brain stress systems.
Collapse
|
125
|
Early life stress alters pituitary growth during adolescence-a longitudinal study. Psychoneuroendocrinology 2015; 53:185-94. [PMID: 25622011 DOI: 10.1016/j.psyneuen.2015.01.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 01/07/2015] [Accepted: 01/07/2015] [Indexed: 11/20/2022]
Abstract
The pituitary gland is integral in mediating the stress-response via its role in hypothalamic-pituitary-adrenal (HPA) axis function. Pituitary gland volume (PGV) is altered in stress-related psychopathology, and one study to date has shown stress to be associated with age-related PGV change during adolescence. The current study investigated the effects of a number of different types of early life (i.e., childhood and adolescent) stress (including childhood maltreatment, stressful life events, and maternal affective behavior) on PGV development from mid- to late adolescence using a longitudinal design. The influence of PGV development on depressive and anxiety symptoms was also investigated. Ninety one (49 male) adolescents took part in mother-child dyadic interaction tasks when they were approximately 12 years old, reported on childhood maltreatment and stressful life events when they were approximately 15 years old, and underwent two waves of structural magnetic resonance imaging (MRI) scans, when they were approximately 16 and 19 years old. Results revealed that childhood maltreatment predicted accelerated PGV development in females, and maternal dysphoric behavior predicted accelerated PGV development in the whole sample. PGV development was not associated with depressive or anxiety symptoms. These results suggest an effect of early life stress on altered HPA axis function across mid- to late adolescence. Further research is required to assess functional implications and whether these changes might be associated with risk for subsequent psychopathology.
Collapse
|
126
|
McCormick CM, Hodges TE, Simone JJ. Peer pressures: social instability stress in adolescence and social deficits in adulthood in a rodent model. Dev Cogn Neurosci 2015; 11:2-11. [PMID: 24830945 PMCID: PMC6989754 DOI: 10.1016/j.dcn.2014.04.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 04/10/2014] [Accepted: 04/11/2014] [Indexed: 12/22/2022] Open
Abstract
Studies in animal models generate and test hypotheses regarding developmental stage-specific vulnerability that might inform research questions about human development. In both rats and humans, peer relationships are qualitatively different in adolescence than at other stages of development, and social experiences in adolescence are considered important determinants of adult social function. This review describes our adolescent rat social instability stress model and the long-lasting effects social instability has on social behaviour in adulthood as well as the possible neural underpinnings. Effects of other adolescent social stress experiences in rats on social behaviours in adulthood also are reviewed. We discuss the role of hypothalamic-pituitary-adrenal (HPA) function and glucocorticoid release in conferring differential susceptibility to social experiences in adolescents compared to adults. We propose that although differential perception of social experiences rather than immature HPA function may underlie the heightened vulnerability of adolescents to social instability, the changes in the trajectory of brain development and resultant social deficits likely are mediated by the heightened glucocorticoid release in response to repeated social stressors in adolescence compared to in adulthood.
Collapse
Affiliation(s)
- Cheryl M McCormick
- Department of Psychology, Brock University, Canada; Department of Biological Sciences, Brock University, Canada.
| | | | | |
Collapse
|
127
|
Sex steroid signaling: implications for lung diseases. Pharmacol Ther 2015; 150:94-108. [PMID: 25595323 DOI: 10.1016/j.pharmthera.2015.01.007] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 01/09/2015] [Indexed: 12/12/2022]
Abstract
There is increasing recognition that sex hormones (estrogen, progesterone, and testosterone) have biological and pathophysiological actions in peripheral, non-reproductive organs, including the lung. Clinically, sex differences in the incidence, morbidity and mortality of lung diseases such as asthma, chronic obstructive pulmonary disease (COPD), pulmonary fibrosis, lung cancer and pulmonary hypertension have been noted, although intrinsic sex differences vs. the roles of sex steroids are still not well-understood. Accordingly, it becomes important to ask the following questions: 1) Which sex steroids are involved? 2) How do they affect different components of the lung under normal circumstances? 3) How does sex steroid signaling change in or contribute to lung disease, and in this regard, are sex steroids detrimental or beneficial? As our understanding of sex steroid signaling in the lung improves, it is important to consider whether such information can be used to develop new therapeutic strategies to target lung diseases, perhaps in both sexes or in a sex-specific manner. In this review, we focus on the basics of sex steroid signaling, and the current state of knowledge regarding how they influence structure and function of specific lung components across the life span and in the context of some important lung diseases. We then summarize the potential for sex steroids as useful biomarkers and therapeutic targets in these lung diseases as a basis for future translational research in the area of gender and individualized medicine.
Collapse
|
128
|
Abstract
As the central organ of stress and adaptation to stressors, the brain plays a pivotal role in behavioral and physiological responses that may lead to successful adaptation or to pathophysiology and mental and physical disease. In this context, resilience can be defined as "achieving a positive outcome in the face of adversity". Underlying this deceptively simple statement are several questions; first, to what extent is this ability limited to those environments that have shaped the individual or can it be more flexible; second, when in the life course does the brain develop capacity for flexibility for adapting positively to new challenges; and third, can such flexibility be instated in individuals where early life experiences have limited that capacity? Brain architecture continues to show plasticity throughout adult life and studies of gene expression and epigenetic regulation reveal a dynamic and ever-changing brain. The goal is to recognize those biological changes that underlie flexible adaptability, and to recognize gene pathways, epigenetic factors and structural changes that indicate lack of resilience leading to negative outcomes, particularly when the individual is challenged by new circumstances. Early life experiences determine individual differences in such capabilities via epigenetic pathways and laying down of brain architecture that determine the later capacity for flexible adaptation or the lack thereof. Reactivation of such plasticity in individuals lacking such resilience is a new challenge for research and practical application. Finally, sex differences in the plasticity of the brain are often overlooked and must be more fully investigated.
Collapse
Affiliation(s)
- Bruce S. McEwen
- Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | | | | |
Collapse
|
129
|
Gender differences in latent cognitive abilities and education links with g in Italian elders. LEARNING AND INDIVIDUAL DIFFERENCES 2015. [DOI: 10.1016/j.lindif.2014.10.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
130
|
Musazzi L, Treccani G, Popoli M. Functional and structural remodeling of glutamate synapses in prefrontal and frontal cortex induced by behavioral stress. Front Psychiatry 2015; 6:60. [PMID: 25964763 PMCID: PMC4410487 DOI: 10.3389/fpsyt.2015.00060] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 04/09/2015] [Indexed: 12/24/2022] Open
Abstract
Increasing evidence has shown that the pathophysiology of neuropsychiatric disorders, including mood disorders, is associated with abnormal function and regulation of the glutamatergic system. Consistently, preclinical studies on stress-based animal models of pathology showed that glucocorticoids and stress exert crucial effects on neuronal excitability and function, especially in cortical and limbic areas. In prefrontal and frontal cortex, acute stress was shown to induce enhancement of glutamate release/transmission dependent on activation of corticosterone receptors. Although the mechanisms whereby stress affects glutamate transmission have not yet been fully understood, it was shown that synaptic, non-genomic action of corticosterone is required to increase the readily releasable pool of glutamate vesicles, but is not sufficient to enhance transmission in prefrontal and frontal cortex. Slower, partly genomic mechanisms are probably necessary for the enhancement of glutamate transmission induced by stress. Combined evidence has suggested that the changes in glutamate release and transmission are responsible for the dendritic remodeling and morphological changes induced by stress and it has been argued that sustained alterations of glutamate transmission may play a key role in the long-term structural/functional changes associated with mood disorders in patients. Intriguingly, modifications of the glutamatergic system induced by stress in the prefrontal cortex seem to be biphasic. Indeed, while the fast response to stress suggests an enhancement in the number of excitatory synapses, synaptic transmission and working memory, long-term adaptive changes - including those consequent to chronic stress - induce opposite effects. Better knowledge of the cellular effectors involved in this biphasic effect of stress may be useful to understand the pathophysiology of stress-related disorders, and open new paths for the development of therapeutic approaches.
Collapse
Affiliation(s)
- Laura Musazzi
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmacologiche e Biomolecolari, Center of Excellence on Neurodegenerative Diseases (CEND), Università degli Studi di Milano , Milano , Italy
| | - Giulia Treccani
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmacologiche e Biomolecolari, Center of Excellence on Neurodegenerative Diseases (CEND), Università degli Studi di Milano , Milano , Italy ; Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University , Aarhus , Denmark
| | - Maurizio Popoli
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmacologiche e Biomolecolari, Center of Excellence on Neurodegenerative Diseases (CEND), Università degli Studi di Milano , Milano , Italy
| |
Collapse
|
131
|
Gillies G, Virdee K, McArthur S, Dalley J. Sex-dependent diversity in ventral tegmental dopaminergic neurons and developmental programing: A molecular, cellular and behavioral analysis. Neuroscience 2014; 282:69-85. [PMID: 24943715 PMCID: PMC4245713 DOI: 10.1016/j.neuroscience.2014.05.033] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 05/12/2014] [Accepted: 05/18/2014] [Indexed: 02/02/2023]
Abstract
The knowledge that diverse populations of dopaminergic neurons within the ventral tegmental area (VTA) can be distinguished in terms of their molecular, electrophysiological and functional properties, as well as their differential projections to cortical and subcortical regions has significance for key brain functions, such as the regulation of motivation, working memory and sensorimotor control. Almost without exception, this understanding has evolved from landmark studies performed in the male sex. However, converging evidence from both clinical and pre-clinical studies illustrates that the structure and functioning of the VTA dopaminergic systems are intrinsically different in males and females. This may be driven by sex differences in the hormonal environment during adulthood ('activational' effects) and development (perinatal and/or pubertal 'organizational' effects), as well as genetic factors, especially the SRY gene on the Y chromosome in males, which is expressed in a sub-population of adult midbrain dopaminergic neurons. Stress and stress hormones, especially glucocorticoids, are important factors which interact with the VTA dopaminergic systems in order to achieve behavioral adaptation and enable the individual to cope with environmental change. Here, also, there is male/female diversity not only during adulthood, but also in early life when neurobiological programing by stress or glucocorticoid exposure differentially impacts dopaminergic developmental trajectories in male and female brains. This may have enduring consequences for individual resilience or susceptibility to pathophysiological change induced by stressors in later life, with potential translational significance for sex bias commonly found in disorders involving dysfunction of the mesocorticolimbic dopaminergic systems. These findings highlight the urgent need for a better understanding of the sexual dimorphism in the VTA if we are to improve strategies for the prevention and treatment of debilitating conditions which differentially affect men and women in their prevalence and nature, including schizophrenia, attention/deficit hyperactivity disorder, autism spectrum disorders, anxiety, depression and addiction.
Collapse
Affiliation(s)
- G.E. Gillies
- Division of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK,Corresponding author. Address: Division of Brain Sciences, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK. Tel: +44-(0)-20-7594-7050.
| | - K. Virdee
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing Street, Cambridge CB2 3EB, UK,Department of Psychology, University of Cambridge, Downing Street, Cambridge CB2 3EB, UK
| | - S. McArthur
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Charterhouse Square, London EC1 6BQ, UK
| | - J.W. Dalley
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing Street, Cambridge CB2 3EB, UK,Department of Psychology, University of Cambridge, Downing Street, Cambridge CB2 3EB, UK,Department of Psychiatry, University of Cambridge, Addenbrooke’s Hospital, Hill’s Road, Cambridge CB2 2QQ, UK
| |
Collapse
|
132
|
Crews D, Gillette R, Miller-Crews I, Gore AC, Skinner MK. Nature, nurture and epigenetics. Mol Cell Endocrinol 2014; 398:42-52. [PMID: 25102229 PMCID: PMC4300943 DOI: 10.1016/j.mce.2014.07.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Revised: 07/18/2014] [Accepted: 07/18/2014] [Indexed: 01/11/2023]
Abstract
Real life by definition combines heritability (e.g., the legacy of exposures) and experience (e.g. stress during sensitive or 'critical' periods), but how to study or even model this interaction has proven difficult. The hoary concept of evaluating traits according to nature versus nurture continues to persist despite repeated demonstrations that it retards, rather than advances, our understanding of biological processes. Behavioral genetics has proven the obvious, that genes influence behavior and, vice versa, that behavior influences genes. The concept of Genes X Environment (G X E) and its modern variants was viewed as an improvement on nature-nurture but has proven that, except in rare instances, it is not possible to fractionate phenotypes into these constituent elements. The entanglement inherent in terms such as nature-nurture or G X E is a Gordian knot that cannot be dissected or even split. Given that the world today is not what it was less than a century ago, yet the arbitrator (differential survival and reproduction) has stayed constant, de novo principles and practices are needed to better predict what the future holds. Put simply, the transformation that is now occurring within and between individuals as a product of global endocrine disruption is quite independent of what has been regarded as evolution by selection. This new perspective should focus on how epigenetic modifications might revise approaches to understand how the phenotype and, in particular its components, is shaped. In this review we summarize the literature in this developing area, focusing on our research on the fungicide vinclozolin.
Collapse
Affiliation(s)
- David Crews
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Ross Gillette
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Isaac Miller-Crews
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Andrea C Gore
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Michael K Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| |
Collapse
|
133
|
Stress and the dynamic genome: Steroids, epigenetics, and the transposome. Proc Natl Acad Sci U S A 2014; 112:6828-33. [PMID: 25385609 DOI: 10.1073/pnas.1411260111] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Stress plays a substantial role in shaping behavior and brain function, often with lasting effects. How these lasting effects occur in the context of a fixed postmitotic neuronal genome has been an enduring question for the field. Synaptic plasticity and neurogenesis have provided some of the answers to this question, and more recently epigenetic mechanisms have come to the fore. The exploration of epigenetic mechanisms recently led us to discover that a single acute stress can regulate the expression of retrotransposons in the rat hippocampus via an epigenetic mechanism. We propose that this response may represent a genomic stress response aimed at maintaining genomic and transcriptional stability in vulnerable brain regions such as the hippocampus. This finding and those of other researchers have made clear that retrotransposons and the genomic plasticity they permit play a significant role in brain function during stress and disease. These observations also raise the possibility that the transposome might have adaptive functions at the level of both evolution and the individual organism.
Collapse
|
134
|
Effect of chronic stress on short and long-term plasticity in dentate gyrus; Study of recovery and adaptation. Neuroscience 2014; 280:121-9. [DOI: 10.1016/j.neuroscience.2014.09.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 09/03/2014] [Indexed: 12/31/2022]
|
135
|
Volpicelli F, Caiazzo M, Moncharmont B, di Porzio U, Colucci-D’Amato L. Neuronal differentiation dictates estrogen-dependent survival and ERK1/2 kinetic by means of caveolin-1. PLoS One 2014; 9:e109671. [PMID: 25350132 PMCID: PMC4211669 DOI: 10.1371/journal.pone.0109671] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 09/02/2014] [Indexed: 11/18/2022] Open
Abstract
Estrogens promote a plethora of effects in the CNS that profoundly affect both its development and mature functions and are able to influence proliferation, differentiation, survival and neurotransmission. The biological effects of estrogens are cell-context specific and also depend on differentiation and/or proliferation status in a given cell type. Furthermore, estrogens activate ERK1/2 in a variety of cellular types. Here, we investigated whether ERK1/2 activation might be influenced by estrogens stimulation according to the differentiation status and the molecular mechanisms underling this phenomenon. ERK1/2 exert an opposing role on survival and death, as well as on proliferation and differentiation depending on different kinetics of phosphorylation. Hence we report that mesencephalic primary cultures and the immortalized cell line mes-c-myc A1 express estrogen receptor α and activate ERK1/2 upon E2 stimulation. Interestingly, following the arrest of proliferation and the onset of differentiation, we observe a change in the kinetic of ERKs phosphorylation induced by estrogens stimulation. Moreover, caveolin-1, a main constituent of caveolae, endogenously expressed and co-localized with ER-α on plasma membrane, is consistently up-regulated following differentiation and cell growth arrest. In addition, we demonstrate that siRNA-induced caveolin-1 down-regulation or disruption by means of ß-cyclodextrin treatment changes ERK1/2 phosphorylation in response to estrogens stimulation. Finally, caveolin-1 down-regulation abolishes estrogens-dependent survival of neurons. Thus, caveolin-1 appears to be an important player in mediating, at least, some of the non-genomic action of estrogens in neurons, in particular ERK1/2 kinetics of activation and survival.
Collapse
Affiliation(s)
- Floriana Volpicelli
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
- Institute of Genetics and Biophysics “Adriano Buzzati Traverso”, CNR, Naples, Italy
| | - Massimiliano Caiazzo
- Institute of Genetics and Biophysics “Adriano Buzzati Traverso”, CNR, Naples, Italy
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Bruno Moncharmont
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| | - Umberto di Porzio
- Institute of Genetics and Biophysics “Adriano Buzzati Traverso”, CNR, Naples, Italy
| | - Luca Colucci-D’Amato
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Caserta, Italy
- C.I.R.N., Inter-University Center for Research in Neuroscience, Naples, Italy
- * E-mail:
| |
Collapse
|
136
|
Gillette R, Miller-Crews I, Nilsson EE, Skinner MK, Gore AC, Crews D. Sexually dimorphic effects of ancestral exposure to vinclozolin on stress reactivity in rats. Endocrinology 2014; 155:3853-66. [PMID: 25051444 PMCID: PMC4164929 DOI: 10.1210/en.2014-1253] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
How an individual responds to the environment depends upon both personal life history as well as inherited genetic and epigenetic factors from ancestors. Using a 2-hit, 3 generations apart model, we tested how F3 descendants of rats given in utero exposure to the environmental endocrine-disrupting chemical (EDC) vinclozolin reacted to stress during adolescence in their own lives, focusing on sexually dimorphic phenotypic outcomes. In adulthood, male and female F3 vinclozolin- or vehicle-lineage rats, stressed or nonstressed, were behaviorally characterized on a battery of tests and then euthanized. Serum was used for hormone assays, and brains were used for quantitative PCR and transcriptome analyses. Results showed that the effects of ancestral exposure to vinclozolin converged with stress experienced during adolescence in a sexually dimorphic manner. Debilitating effects were seen at all levels of the phenotype, including physiology, behavior, brain metabolism, gene expression, and genome-wide transcriptome modifications in specific brain nuclei. Additionally, females were significantly more vulnerable than males to transgenerational effects of vinclozolin on anxiety but not sociality tests. This fundamental transformation occurs in a manner not predicted by the ancestral exposure or the proximate effects of stress during adolescence, an interaction we refer to as synchronicity.
Collapse
Affiliation(s)
- Ross Gillette
- Institute for Cellular and Molecular Biology (R.G., I.M.-C., A.C.G., D.C.), Division of Pharmacology and Toxicology (A.C.G., D.C.), and Department of Integrative Biology (D.C.), The University of Texas at Austin, Austin, Texas 78712; and Center for Reproductive Biology (E.E.N., M.K.S.), School of Biological Sciences, Washington State University, Pullman, Washington 99164
| | | | | | | | | | | |
Collapse
|
137
|
Rubin TG, Gray JD, McEwen BS. Experience and the ever-changing brain: what the transcriptome can reveal. Bioessays 2014; 36:1072-81. [PMID: 25213333 DOI: 10.1002/bies.201400095] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The brain is an ever-changing organ that encodes memories and directs behavior. Neuroanatomical studies have revealed structural plasticity of neural architecture, and advances in gene expression technology and epigenetics have demonstrated new mechanisms underlying the brain's dynamic nature. Stressful experiences challenge the plasticity of the brain, and prolonged exposure to environmental stress redefines the normative transcriptional profile of both neurons and glia, and can lead to the onset of mental illness. A more thorough understanding of normal and abnormal gene expression is needed to define the diseased brain and improve current treatments for psychiatric disorders. The efforts to describe gene expression networks have been bolstered by microarray and RNA-sequencing technologies. The heterogeneity of neural cell populations and their unique microenvironments, coupled with broad ranging interconnectivity, makes resolving this complexity exceedingly challenging and requires the combined efforts of single cell and systems level expression profiling to identify targets for therapeutic intervention.
Collapse
Affiliation(s)
- Todd G Rubin
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, USA
| | | | | |
Collapse
|
138
|
Brötzner CP, Klimesch W, Doppelmayr M, Zauner A, Kerschbaum HH. Resting state alpha frequency is associated with menstrual cycle phase, estradiol and use of oral contraceptives. Brain Res 2014; 1577:36-44. [PMID: 25010817 PMCID: PMC4152552 DOI: 10.1016/j.brainres.2014.06.034] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 06/10/2014] [Accepted: 06/27/2014] [Indexed: 11/22/2022]
Abstract
Ongoing intrinsic brain activity in resting, but awake humans is dominated by alpha oscillations. In human, individual alpha frequency (IAF) is associated with cognitive performance. Noticeable, performance in cognitive and emotional tasks in women is associated with menstrual cycle phase and sex hormone levels, respectively. In the present study, we correlated frequency of alpha oscillation in resting women with menstrual cycle phase, sex hormone level, or use of oral contraceptives. Electroencephalogram (EEG) was recorded from 57 women (aged 24.07 ± 3.67 years) having a natural menstrual cycle as well as from 57 women (aged 22.37 ± 2.20 years) using oral contraceptives while they sat in an armchair with eyes closed. Alpha frequency was related to the menstrual cycle phase. Luteal women showed highest and late follicular women showed lowest IAF or center frequency. Furthermore, IAF as well as center frequency correlated negatively with endogenous estradiol level, but did not reveal an association with endogenous progesterone. Women using oral contraceptives showed an alpha frequency similar to women in the early follicular phase. We suggest that endogenous estradiol modulate resting alpha frequency.
Collapse
Affiliation(s)
- Christina P Brötzner
- Department of Cell Biology, University of Salzburg, Salzburg, Austria; Department of Physiological Psychology, University of Salzburg, Salzburg, Austria
| | - Wolfgang Klimesch
- Department of Physiological Psychology, University of Salzburg, Salzburg, Austria; Center for Neurocognitive, Research, University of Salzburg, Salzburg, Austria
| | - Michael Doppelmayr
- Center for Neurocognitive, Research, University of Salzburg, Salzburg, Austria; Department of Sportscience, University of Mainz, Mainz, Germany
| | - Andrea Zauner
- Department of Physiological Psychology, University of Salzburg, Salzburg, Austria
| | - Hubert H Kerschbaum
- Department of Cell Biology, University of Salzburg, Salzburg, Austria; Center for Neurocognitive, Research, University of Salzburg, Salzburg, Austria.
| |
Collapse
|
139
|
Expression profiling associates blood and brain glucocorticoid receptor signaling with trauma-related individual differences in both sexes. Proc Natl Acad Sci U S A 2014; 111:13529-34. [PMID: 25114262 DOI: 10.1073/pnas.1401660111] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Delineating the molecular basis of individual differences in the stress response is critical to understanding the pathophysiology and treatment of posttraumatic stress disorder (PTSD). In this study, 7 d after predator-scent-stress (PSS) exposure, male and female rats were classified into vulnerable (i.e., "PTSD-like") and resilient (i.e., minimally affected) phenotypes on the basis of their performance on a variety of behavioral measures. Genome-wide expression profiling in blood and two limbic brain regions (amygdala and hippocampus), followed by quantitative PCR validation, was performed in these two groups of animals, as well as in an unexposed control group. Differentially expressed genes were identified in blood and brain associated with PSS-exposure and with distinct behavioral profiles postexposure. There was a small but significant between-tissue overlap (4-21%) for the genes associated with exposure-related individual differences, indicating convergent gene expression in both sexes. To uncover convergent signaling pathways across tissue and sex, upstream activated/deactivated transcription factors were first predicted for each tissue and then the respective pathways were identified. Glucocorticoid receptor (GR) signaling was the only convergent pathway associated with individual differences when using the most stringent statistical threshold. Corticosterone treatment 1 h after PSS-exposure prevented anxiety and hyperarousal 7 d later in both sexes, confirming the GR involvement in the PSS behavioral response. In conclusion, genes and pathways associated with extreme differences in the traumatic stress behavioral response can be distinguished from those associated with trauma exposure. Blood-based biomarkers can predict aspects of brain signaling. GR signaling is a convergent signaling pathway, associated with trauma-related individual differences in both sexes.
Collapse
|
140
|
Van Dam NT, Rando K, Potenza MN, Tuit K, Sinha R. Childhood maltreatment, altered limbic neurobiology, and substance use relapse severity via trauma-specific reductions in limbic gray matter volume. JAMA Psychiatry 2014; 71:917-25. [PMID: 24920451 PMCID: PMC4437819 DOI: 10.1001/jamapsychiatry.2014.680] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
IMPORTANCE Substance use disorders (SUDs) are among the most common sequelae of childhood maltreatment, yet the independent contributions of SUDs and childhood maltreatment to neurobiological changes and the effect of the latter on relapse risk (a critical variable in addiction treatment) are relatively unknown. OBJECTIVES To identify structural neural characteristics independently associated with childhood maltreatment (CM; a common type of childhood adversity), comparing a sample with SUD with a demographically comparable control sample, and to examine the relationship between CM-related structural brain changes and subsequent relapse. DESIGN, SETTING, AND PARTICIPANTS Structural magnetic resonance imaging study comparing 79 treatment-engaged participants with SUD in acute remission in inpatient treatment at a community mental health center vs 98 healthy control participants at an outpatient research center at an academic medical center. Both groups included individuals with a range of CM experiences. Participants with SUD were followed up prospectively for 90 days to assess relapse and relapse severity. INTERVENTION Standard 12-step, recovery-based, inpatient addiction treatment for all participants with SUD. MAIN OUTCOMES AND MEASURES Gray matter volume (GMV), subsequent substance use relapse, days to relapse, and severity of relapse. RESULTS Controlling for SUD and psychiatric comorbidity, CM (dichotomously classified) was uniquely associated with lower GMV across all participants in the left hippocampus (cornu ammonis 1-3, dentate gyrus), parahippocampus (presubiculum, parasubiculum, prosubiculum, subiculum, and entorhinal cortex), and anterior fusiform gyrus (corrected P < .05; uncorrected P = .001). Among the sample with SUD, CM prospectively predicted a shorter relapse to use of any drug (P = .048), while CM-related GMV reductions predicted severity of substance use relapse (P = .04). CONCLUSIONS AND RELEVANCE Findings indicate that CM was related to decreased GMV in limbic regions, which in turn predicted increased risk of relapse in SUD. These results suggest that CM may significantly affect the course of SUD treatment outcomes and that SUD treatment planning may benefit from identifying and addressing CM.
Collapse
Affiliation(s)
| | - Kenneth Rando
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Marc N. Potenza
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Keri Tuit
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Rajita Sinha
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
141
|
Bangasser DA, Valentino RJ. Sex differences in stress-related psychiatric disorders: neurobiological perspectives. Front Neuroendocrinol 2014; 35:303-19. [PMID: 24726661 PMCID: PMC4087049 DOI: 10.1016/j.yfrne.2014.03.008] [Citation(s) in RCA: 476] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 02/26/2014] [Accepted: 03/28/2014] [Indexed: 12/14/2022]
Abstract
Stress is associated with the onset and severity of several psychiatric disorders that occur more frequently in women than men, including posttraumatic stress disorder (PTSD) and depression. Patients with these disorders present with dysregulation of several stress response systems, including the neuroendocrine response to stress, corticolimbic responses to negatively valenced stimuli, and hyperarousal. Thus, sex differences within their underlying circuitry may explain sex biases in disease prevalence. This review describes clinical studies that identify sex differences within the activity of these circuits, as well as preclinical studies that demonstrate cellular and molecular sex differences in stress responses systems. These studies reveal sex differences from the molecular to the systems level that increase endocrine, emotional, and arousal responses to stress in females. Exploring these sex differences is critical because this research can reveal the neurobiological underpinnings of vulnerability to stress-related psychiatric disorders and guide the development of novel pharmacotherapies.
Collapse
Affiliation(s)
- Debra A Bangasser
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, United States.
| | - Rita J Valentino
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, United States
| |
Collapse
|
142
|
Mueller SC, Grissom EM, Dohanich GP. Assessing gonadal hormone contributions to affective psychopathologies across humans and animal models. Psychoneuroendocrinology 2014; 46:114-28. [PMID: 24882164 DOI: 10.1016/j.psyneuen.2014.04.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 04/15/2014] [Accepted: 04/21/2014] [Indexed: 10/25/2022]
Abstract
Despite increasing acknowledgement of hormonal contributions to mood and anxiety disorders, the underlying mechanisms by which gonadal hormones influence psychopathology-related behaviours remain unknown. This review focuses on recent research that examines the influence of gonadal steroid hormones, including androgens, oestrogens, and progesterone, on mood and anxiety-related behaviours in human health and disease. To this aim, the literature was surveyed for studies that assess conditions with suspected underlying hormonal imbalances in otherwise healthy participants (e.g., premenstrual dysphoric disorder, postmenopausal depression) as well as conditions linked to congenital endocrine abnormalities (e.g., Turner Syndrome, Klinefelter Syndrome, polycystic ovary syndrome, congenital adrenal hyperplasia, familial male precocious puberty, androgen insensitivity syndrome). Furthermore, to better inform clinical work and to create a translational bridge, a second goal was to set human psychopathologies and animal models of these conditions side-by-side. In the second part of the review, based on consistencies revealed in the existing literature across conditions, a new model for the impact of gonadal hormones on anxious and depressed behavioural states is proposed. Finally, we conclude by proposing directions for future research, including the development of specific tasks suitable for cross-species comparisons to increase our knowledge of the role of gonadal hormones in mood and anxiety.
Collapse
Affiliation(s)
- S C Mueller
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium.
| | - E M Grissom
- Department of Psychology, Tulane University, New Orleans, LA, USA
| | - G P Dohanich
- Department of Psychology, Tulane University, New Orleans, LA, USA; Program in Neuroscience, Tulane University, New Orleans, LA, USA
| |
Collapse
|
143
|
Ghiretti AE, Paradis S. Molecular mechanisms of activity-dependent changes in dendritic morphology: role of RGK proteins. Trends Neurosci 2014; 37:399-407. [PMID: 24910262 PMCID: PMC4113564 DOI: 10.1016/j.tins.2014.05.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 05/09/2014] [Accepted: 05/13/2014] [Indexed: 01/10/2023]
Abstract
The nervous system has the amazing capacity to transform sensory experience from the environment into changes in neuronal activity that, in turn, cause long-lasting alterations in neuronal morphology. Recent findings indicate that, surprisingly, sensory experience concurrently activates molecular signaling pathways that both promote and inhibit dendritic complexity. Historically, a number of positive regulators of activity-dependent dendritic complexity have been described, whereas the list of identified negative regulators of this process is much shorter. In recent years, there has been an emerging appreciation of the importance of the Rad/Rem/Rem2/Gem/Kir (RGK) GTPases as mediators of activity-dependent structural plasticity. In the following review, we discuss the traditional view of RGK proteins, as well as our evolving understanding of the role of these proteins in instructing structural plasticity.
Collapse
Affiliation(s)
- Amy E Ghiretti
- Department of Biology, National Center for Behavioral Genomics, and Volen Center for Complex Systems, Brandeis University, Waltham, MA 02454, USA
| | - Suzanne Paradis
- Department of Biology, National Center for Behavioral Genomics, and Volen Center for Complex Systems, Brandeis University, Waltham, MA 02454, USA.
| |
Collapse
|
144
|
Badowska-Szalewska E, Ludkiewicz B, Spodnik JH, Moryś J. Interleukin-1β-immunoreactive neurons in the hippocampus and paraventricular nucleus of the hypothalamus after stress stimulation in aged versus adult rats. J Neurosci Res 2014; 92:1446-56. [PMID: 24939320 DOI: 10.1002/jnr.23428] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 05/08/2014] [Accepted: 05/09/2014] [Indexed: 12/26/2022]
Abstract
It is believed that the impact of stress on interleukin-1β (IL-1β) depends on the ontogenetic age. This study examines the influence of acute or chronic exposure to forced-swim (FS) stress or high-light open-field (HL-OF) stimulation on the expression of IL-1β. Double immunofluorescence staining was used to reveal the density of IL-1β/NeuN (NeuN is a neuronal nuclear marker)-immunoreactive (-ir) cells in the hippocampal subfields CA1 and CA3, dentate gyrus (DG), and paraventricular nucleus (PVN) of the hypothalamus. Adult postnatal day 90 (P90) and aged (P720) rats were used in this experiment. The data showed a significant increase in the density of IL-1β/NeuN-ir cells in the CA1, CA3, DG, and PVN in P720 nonstressed rats in relation to P90 control animals. Neither FS nor HL-OF acute stimulation caused alteration in the density of IL-1β-ir neurons in any of the investigated structures in P90 and P720 rats in comparison with control groups. However, chronic FS caused a significant increase in CA3 and DG of P720 rats, and chronic HL-OF led to a significant increase in the density of IL-1β-ir neurons in the PVN of P90 rats and in all hippocampal subfields of P720 animals. These results indicate that chronic HL-OF stimulation is a factor that induces changes in the number of IL-1β-ir neurons in the PVN of adult rats, whereas both chronic FS and HL-OF are aggravating factors for the hippocampus of aged (P720) animals.
Collapse
|
145
|
Poletti S, Locatelli C, Radaelli D, Lorenzi C, Smeraldi E, Colombo C, Benedetti F. Effect of early stress on hippocampal gray matter is influenced by a functional polymorphism in EAAT2 in bipolar disorder. Prog Neuropsychopharmacol Biol Psychiatry 2014; 51:146-52. [PMID: 24518437 DOI: 10.1016/j.pnpbp.2014.01.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 01/17/2014] [Accepted: 01/30/2014] [Indexed: 01/08/2023]
Abstract
Current views on the pathogenesis of psychiatric disorders focus on the interplay between genetic and environmental factors, with individual variation in vulnerability and resilience to hazards being part of the multifactorial development of illness. The aim of the study is to investigate the effect of glutamate transporter polymorphism SLC1A2-181A>C and exposure to Adverse Childhood Experiences (ACE) on hippocampal gray matter volume of patients with bipolar disorder (BD). Patients exposed to higher levels of ACE reported lower gray matter volume. The effect of SLC1A2-181A>C revealed itself only among patients exposed to lower levels of ACE, with T/T homozygotes showing the lowest, and G/G the highest, gray matter volume. The greatest difference between high and low exposures to ACE was observed in carriers of the G allele. Since the mutant G allele has been associated with a reduced transcriptional activity and expression of the transporter protein, we could hypothesize that after exposure to highest levels of ACE G/G homozygotes are more vulnerable to stress reporting the highest brain damage as a consequence of an excess of free glutamate.
Collapse
Affiliation(s)
- Sara Poletti
- Department of Clinical Neurosciences, Scientific Institute and University Vita-Salute San Raffaele, Milan, Italy.
| | - Clara Locatelli
- Department of Clinical Neurosciences, Scientific Institute and University Vita-Salute San Raffaele, Milan, Italy
| | - Daniele Radaelli
- Department of Clinical Neurosciences, Scientific Institute and University Vita-Salute San Raffaele, Milan, Italy
| | - Cristina Lorenzi
- Department of Clinical Neurosciences, Scientific Institute and University Vita-Salute San Raffaele, Milan, Italy
| | - Enrico Smeraldi
- Department of Clinical Neurosciences, Scientific Institute and University Vita-Salute San Raffaele, Milan, Italy
| | - Cristina Colombo
- Department of Clinical Neurosciences, Scientific Institute and University Vita-Salute San Raffaele, Milan, Italy
| | - Francesco Benedetti
- Department of Clinical Neurosciences, Scientific Institute and University Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
146
|
Nicod E, Stringhini S, Marques-Vidal P, Paccaud F, Waeber G, Lamiraud K, Vollenweider P, Bochud M. Association of education and receiving social transfers with allostatic load in the Swiss population-based CoLaus study. Prev Med 2014; 63:63-71. [PMID: 24657126 DOI: 10.1016/j.ypmed.2014.03.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 01/13/2014] [Accepted: 03/11/2014] [Indexed: 12/14/2022]
Abstract
BACKGROUND Allostatic load reflects cumulative exposure to stressors throughout lifetime and has been associated with several adverse health outcomes. It is hypothesized that people with low socioeconomic status (SES) are exposed to higher chronic stress and have therefore greater levels of allostatic load. OBJECTIVE To assess the association of receiving social transfers and low education with allostatic load. METHODS We included 3589 participants (1812 women) aged over 35years and under retirement age from the population-based CoLaus study (Lausanne, Switzerland, 2003-2006). We computed an allostatic load index aggregating cardiovascular, metabolic, dyslipidemic and inflammatory markers. A novel index additionally including markers of oxidative stress was also examined. RESULTS Men with low vs. high SES were more likely to have higher levels of allostatic load (odds ratio (OR)=1.93/2.34 for social transfers/education, 95%CI from 1.45 to 4.17). The same patterns were observed among women. Associations persisted after controlling for health behaviors and marital status. CONCLUSIONS Low education and receiving social transfers independently and cumulatively predict high allostatic load and dysregulation of several homeostatic systems in a Swiss population-based study. Participants with low SES are at higher risk of oxidative stress, which may justify its inclusion as a separate component of allostatic load.
Collapse
Affiliation(s)
- Edouard Nicod
- Institute of Social and Preventive Medicine (IUMSP), Lausanne University Hospital, Lausanne, Switzerland
| | - Silvia Stringhini
- Institute of Social and Preventive Medicine (IUMSP), Lausanne University Hospital, Lausanne, Switzerland
| | - Pedro Marques-Vidal
- Institute of Social and Preventive Medicine (IUMSP), Lausanne University Hospital, Lausanne, Switzerland
| | - Fred Paccaud
- Institute of Social and Preventive Medicine (IUMSP), Lausanne University Hospital, Lausanne, Switzerland
| | - Gérard Waeber
- Department of Medicine, Internal Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | | | - Peter Vollenweider
- Department of Medicine, Internal Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Murielle Bochud
- Institute of Social and Preventive Medicine (IUMSP), Lausanne University Hospital, Lausanne, Switzerland.
| |
Collapse
|
147
|
Wei J, Yuen EY, Liu W, Li X, Zhong P, Karatsoreos IN, McEwen BS, Yan Z. Estrogen protects against the detrimental effects of repeated stress on glutamatergic transmission and cognition. Mol Psychiatry 2014; 19:588-98. [PMID: 23835908 DOI: 10.1038/mp.2013.83] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 04/24/2013] [Accepted: 05/24/2013] [Indexed: 02/06/2023]
Abstract
Converging evidence suggests that females and males show different responses to stress; however, little is known about the mechanism underlying the sexually dimorphic effects of stress. In this study, we found that young female rats exposed to 1 week of repeated restraint stress show no negative effects on temporal order recognition memory (TORM), a cognitive process controlled by the prefrontal cortex (PFC), which was contrary to the impairment in TORM observed in stressed males. Concomitantly, normal glutamatergic transmission and glutamate receptor surface expression in PFC pyramidal neurons were found in repeatedly stressed females, in contrast to the significant reduction seen in stressed males. The detrimental effects of repeated stress on TORM and glutamate receptors were unmasked in stressed females when estrogen receptors were inhibited or knocked down in PFC, and were prevented in stressed males with the administration of estradiol. Blocking aromatase, the enzyme for the biosynthesis of estrogen, revealed the stress-induced glutamatergic deficits and memory impairment in females, and the level of aromatase was significantly higher in the PFC of females than in males. These results suggest that estrogen protects against the detrimental effects of repeated stress on glutamatergic transmission and PFC-dependent cognition, which may underlie the stress resilience of females.
Collapse
Affiliation(s)
- J Wei
- Department of Physiology and Biophysics, State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, NY, USA
| | - E Y Yuen
- Department of Physiology and Biophysics, State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, NY, USA
| | - W Liu
- Department of Physiology and Biophysics, State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, NY, USA
| | - X Li
- Department of Physiology and Biophysics, State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, NY, USA
| | - P Zhong
- Department of Physiology and Biophysics, State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, NY, USA
| | - I N Karatsoreos
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, USA
| | - B S McEwen
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, USA
| | - Z Yan
- Department of Physiology and Biophysics, State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, NY, USA
| |
Collapse
|
148
|
Bos PA, Montoya ER, Terburg D, van Honk J. Cortisol administration increases hippocampal activation to infant crying in males depending on childhood neglect. Hum Brain Mapp 2014; 35:5116-26. [PMID: 24757127 DOI: 10.1002/hbm.22537] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 04/03/2014] [Accepted: 04/08/2014] [Indexed: 11/10/2022] Open
Abstract
Animal studies show that exposure to parental neglect alters stress regulation and can lead to neural hyposensitivity or hypersensitivity in response to cortisol, most pronounced in the hippocampus. Cortisol, the end product of the hypothalamic-pituitary-adrenal (HPA) axis, has also been related to parenting more directly, for example, in both sexes, cortisol levels increase when listening to infants crying, possibly to activate and facilitate effective care behavior. Severe trauma is known to negatively affect the HPA-axis in humans; however, it is unknown whether normal variation in parental care in the healthy population can alter sensitivity of the hippocampus to cortisol. Here, we investigate whether variation in experienced neglect changes neural sensitivity to cortisol when humans listen to infant crying, which is an unequivocal signal relevant for care behavior. In a placebo-controlled, within-subject neuroimaging study, we administered 40 mg cortisol to 21 healthy young males without children and used a validated task for measuring neural responses to infant crying. The Dutch version of the Childhood Trauma Questionnaire was used to index participants' early exposure to abuse and neglect. The data show that cortisol markedly increased hippocampal activation toward crying infants, and this effect varied significantly with parental neglect, even in our nonclinical subject sample. Without exposure to severe trauma or neglect, reduced self-experienced quality of parental care in the normal range already substantially increased hippocampal responsivity to cortisol. Altered hippocampal sensitivity to cortisol might be a cross-species marker for the risk of developing later life psychopathology.
Collapse
Affiliation(s)
- Peter A Bos
- Department of Psychology, Utrecht University, Utrecht, The Netherlands; Department of Psychiatry and Mental Health, University of Cape Town, J-Block, Groote Schuur Hospital, Cape Town, South Africa
| | | | | | | |
Collapse
|
149
|
Hwang AC, Peng LN, Wen YW, Tsai YW, Chang LC, Chiou ST, Chen LK. Predicting all-cause and cause-specific mortality by static and dynamic measurements of allostatic load: a 10-year population-based cohort study in Taiwan. J Am Med Dir Assoc 2014; 15:490-496. [PMID: 24631353 DOI: 10.1016/j.jamda.2014.02.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 01/31/2014] [Accepted: 02/04/2014] [Indexed: 10/25/2022]
Abstract
OBJECTIVE To evaluate the role of allostatic load (AL), either static or dynamic measurements, in predicting all-cause and cause-specific mortality of older people in Taiwan. DESIGN A prospective cohort study. SETTING Population-based community study. PARTICIPANTS One thousand twenty-three community-dwelling older people. MEASUREMENTS Allostatic load (calculated by systolic blood pressure, diastolic blood pressure, total cholesterol, high-density lipoprotein cholesterol, triglyceride, glycosylated hemoglobin, fasting glucose, waist-to-hip ratio, body mass index, dehydroepiandrosterone sulfate, insulin-like growth factor-1, 12-hour urine cortisol, 12-hour urine epinephrine, 12-hour urine norepinephrine, 12-hour urine dopamine, white blood cell count, neutrophils, interleukin-6, albumin, creatinine) and all-cause and cause-specific mortality from national death registry. INTERVENTION None. RESULTS Adjusted for age and sex, each 1-point increase in AL score was associated with 20% incremental risk of mortality [hazard ratio 1.20, 95% confidence interval (CI) 1.09-1.31]. This association can be extended to cause-specific mortality in both sexes in general. In addition, the higher AL score quintile was significantly associated with higher risk of 10-year all-cause mortality (P < .0001). This association was consistent across different cause-specific mortality (ie, malignant neoplasm (P = .008), cardiometabolic diseases (P < .0001), infectious diseases (P < .0001), respiratory diseases (P < .0001), and others (P = .0002), respectively. Compared with AL score decliners, adjusted for age, sex, and baseline AL score in 2000, participants with fast increase had significantly higher mortality (HR 2.68, 95% CI 1.23-5.84, P = .01). The effect was stronger in men (HR 2.83, 95% CI 1.1-7.29, P = .03 in slow increase; HR 4.06, 95% CI 1.56-10.6, P = .001 in fast increase group), but it was insignificant in female participants. CONCLUSIONS Higher AL score or rapid increase of AL score significantly increased subsequent mortality risk in older adults, either measured statically or dynamically. AL is predictive of 10-year mortality regardless of cause of death, and rapid increase in AL score is associated with higher subsequent mortality.
Collapse
Affiliation(s)
- An-Chun Hwang
- Aging and Health Research Center, National Yang Ming University, Taipei, Taiwan; Institute of Public Health, National Yang Ming University, Taipei, Taiwan; Center for Geriatrics and Gerontology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Li-Ning Peng
- Aging and Health Research Center, National Yang Ming University, Taipei, Taiwan; Institute of Public Health, National Yang Ming University, Taipei, Taiwan; Center for Geriatrics and Gerontology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yu-Wen Wen
- Clinical Informatics and Medical Statistics Research Center, Chang-Gung University, Taoyuan, Taiwan
| | - Yi-Wen Tsai
- Aging and Health Research Center, National Yang Ming University, Taipei, Taiwan; Institute of Health Welfare and Policy, National Yang Ming University, Taipei, Taiwan
| | - Li-Chuan Chang
- Institute of Health Welfare and Policy, National Yang Ming University, Taipei, Taiwan
| | - Shu-Ti Chiou
- Institute of Public Health, National Yang Ming University, Taipei, Taiwan; Health Promotion Administration, Ministry of Health and Welfare, Taipei, Taiwan
| | - Liang-Kung Chen
- Aging and Health Research Center, National Yang Ming University, Taipei, Taiwan; Clinical Informatics and Medical Statistics Research Center, Chang-Gung University, Taoyuan, Taiwan.
| |
Collapse
|
150
|
Li Y, Wang H, Wang X, Liu Z, Wan Q, Wang G. Differential expression of hippocampal EphA4 and ephrinA3 in anhedonic-like behavior, stress resilience, and antidepressant drug treatment after chronic unpredicted mild stress. Neurosci Lett 2014; 566:292-7. [PMID: 24631563 DOI: 10.1016/j.neulet.2014.03.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Revised: 02/22/2014] [Accepted: 03/04/2014] [Indexed: 02/01/2023]
Abstract
Stress exposure is one of the major risk factors of depression, but the mechanism is not understood. While some individuals show resilience to stress exposure, antidepressants only partially reduce stress-induced depression in both humans and rodents. Stress could dysregulate the remodeling of neuronal dendrites and spines in hippocampus while antidepressants could recover the deficiency induced by stress. EphA4 and its ligand ephrinA3 are critical in the remodeling of neuronal dendrites and spines, but the relationship between ephrinA3/EphA4, stress-induced depression and antidepressants treatment is largely unknown. Based on a rat chronic unpredicted mild stress (CUMS) model, we investigated ephrinA3/EphA4 expression in stress susceptibility, stress resilience, treatment response and treatment resistance in rats. CUMS led to downregulation of EphA4 expression and upregulation of ephrinA3 expression in the hippocampus of stress-susceptible rats, but not in stress-resilient rats. Dysregulated EphA4 and ephrinA3 can be rescued by fluoxetine administration in drug responders, but not in fluoxetine resistant rats. These data provide insights into the potential role of EphA4 and ephrinA3 after stressor exposure, stress adaptation, fluoxetine response and drug treatment refraction.
Collapse
Affiliation(s)
- Ye Li
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan 430060, Hubei, PR China
| | - Huiling Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan 430060, Hubei, PR China; Institute of Neuropsychiatry, Wuhan University, Wuhan 430060, PR China
| | - Xiaoping Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan 430060, Hubei, PR China; Institute of Neuropsychiatry, Wuhan University, Wuhan 430060, PR China
| | - Zhongchun Liu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan 430060, Hubei, PR China; Institute of Neuropsychiatry, Wuhan University, Wuhan 430060, PR China
| | - Qirong Wan
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan 430060, Hubei, PR China
| | - Gaohua Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan 430060, Hubei, PR China; Institute of Neuropsychiatry, Wuhan University, Wuhan 430060, PR China.
| |
Collapse
|