101
|
Ryder MI, Xenoudi P. Alzheimer disease and the periodontal patient: New insights, connections, and therapies. Periodontol 2000 2021; 87:32-42. [PMID: 34463981 DOI: 10.1111/prd.12389] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Loss of cognitive function in the aging population, particular those with Alzheimer disease, presents unique challenges to health practitioners. For the dental practitioner these include management of periodontal diseases, caries, and other dental conditions in this special population. It is well established in the cognitively impaired patient that a lack of adherence to dental hygiene routines and professional care leads to increases in the prevalence and severity of these dental conditions, leading to increased loss of teeth. More recent evidence has indicated a possible role of the microbiota of dental plaque associated with periodontal diseases in the development and progression of Alzheimer disease, thereby supporting a two-way interaction of these two diseases. New therapies are needed to address the potential upstream events that may precede overt signs of Alzheimer disease. One of these approaches would be to target these various bacterial, viral, and other microbial pathogens associated with periodontal disease that can translocate into the bloodstream and then to distal sites, such as the brain. Such microbial translocation would lead to local inflammation and buildup of the hallmark signs of Alzheimer disease, including amyloid beta deposits, tau fragmentation and tangles, breakdown of host protective molecules, such as the apolipoproteins, and neuron toxicity. In this review, evidence for the biological basis of the role of the periodontal disease microflora on the initiation and progression of Alzheimer disease will be presented with a focus on the potential role of the keystone pathogen Porphyromonas gingivalis with its family of gingipain enzymes. The various mechanisms for which P. gingivalis gingipains may contribute to the initiation and progression of Alzheimer disease are presented. Small-molecule inhibitors of these gingipains and their effects on reducing biological markers of Alzheimer disease may have beneficial effects for the initiation and progression of loss of cognitive function in Alzheimer disease. In addition to these targeted therapies for specific periodontal pathogens, considerations for the dental practitioner in applying more general approaches to reducing the periodontal plaque microflora in the management of the cognitively impaired patient are discussed for this special population.
Collapse
Affiliation(s)
- Mark I Ryder
- Division of Periodontology, Department of Orofacial Sciences, School of Dentistry, University of California, San Francisco, California, USA
| | - Pinelopi Xenoudi
- College of Dental Medicine, California Northstate University, Elk Grove, California, USA
| |
Collapse
|
102
|
Mitra S, Gera R, Linderoth B, Lind G, Wahlberg L, Almqvist P, Behbahani H, Eriksdotter M. A Review of Techniques for Biodelivery of Nerve Growth Factor (NGF) to the Brain in Relation to Alzheimer's Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1331:167-191. [PMID: 34453298 DOI: 10.1007/978-3-030-74046-7_11] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Age-dependent progressive neurodegeneration and associated cognitive dysfunction represent a serious concern worldwide. Currently, dementia accounts for the fifth highest cause of death, among which Alzheimer's disease (AD) represents more than 60% of the cases. AD is associated with progressive cognitive dysfunction which affects daily life of the affected individual and associated family. The cognitive dysfunctions are at least partially due to the degeneration of a specific set of neurons (cholinergic neurons) whose cell bodies are situated in the basal forebrain region (basal forebrain cholinergic neurons, BFCNs) but innervate wide areas of the brain. It has been explicitly shown that the delivery of the neurotrophic protein nerve growth factor (NGF) can rescue BFCNs and restore cognitive dysfunction, making NGF interesting as a potential therapeutic substance for AD. Unfortunately, NGF cannot pass through the blood-brain barrier (BBB) and thus peripheral administration of NGF protein is not viable therapeutically. NGF must be delivered in a way which will allow its brain penetration and availability to the BFCNs to modulate BFCN activity and viability. Over the past few decades, various methodologies have been developed to deliver NGF to the brain tissue. In this chapter, NGF delivery methods are discussed in the context of AD.
Collapse
Affiliation(s)
- Sumonto Mitra
- Division of Clinical Geriatrics, NVS Department, Karolinska Institutet, Stockholm, Sweden.
| | - Ruchi Gera
- Division of Clinical Geriatrics, NVS Department, Karolinska Institutet, Stockholm, Sweden
| | - Bengt Linderoth
- Section of Neurosurgery, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Göran Lind
- Section of Neurosurgery, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | - Per Almqvist
- Section of Neurosurgery, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Homira Behbahani
- Division of Clinical Geriatrics, NVS Department, Karolinska Institutet, Stockholm, Sweden.,Karolinska Universitets laboratoriet (LNP5), Karolinska University Hospital, Stockholm, Sweden
| | - Maria Eriksdotter
- Division of Clinical Geriatrics, NVS Department, Karolinska Institutet, Stockholm, Sweden.,Theme Aging, Karolinska University Hospital, Huddinge, Sweden
| |
Collapse
|
103
|
Wilson DW. Motor Skills: Recruitment of Kinesins, Myosins and Dynein during Assembly and Egress of Alphaherpesviruses. Viruses 2021; 13:v13081622. [PMID: 34452486 PMCID: PMC8402756 DOI: 10.3390/v13081622] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 12/14/2022] Open
Abstract
The alphaherpesviruses are pathogens of the mammalian nervous system. Initial infection is commonly at mucosal epithelia, followed by spread to, and establishment of latency in, the peripheral nervous system. During productive infection, viral gene expression, replication of the dsDNA genome, capsid assembly and genome packaging take place in the infected cell nucleus, after which mature nucleocapsids emerge into the cytoplasm. Capsids must then travel to their site of envelopment at cytoplasmic organelles, and enveloped virions need to reach the cell surface for release and spread. Transport at each of these steps requires movement of alphaherpesvirus particles through a crowded and viscous cytoplasm, and for distances ranging from several microns in epithelial cells, to millimeters or even meters during egress from neurons. To solve this challenging problem alphaherpesviruses, and their assembly intermediates, exploit microtubule- and actin-dependent cellular motors. This review focuses upon the mechanisms used by alphaherpesviruses to recruit kinesin, myosin and dynein motors during assembly and egress.
Collapse
Affiliation(s)
- Duncan W. Wilson
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; ; Tel.: +1-718-430-2305
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| |
Collapse
|
104
|
Espay AJ, Sturchio A, Schneider LS, Ezzat K. Soluble Amyloid-β Consumption in Alzheimer's Disease. J Alzheimers Dis 2021; 82:1403-1415. [PMID: 34151810 DOI: 10.3233/jad-210415] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Brain proteins function in their soluble, native conformation and cease to function when transformed into insoluble aggregates, also known as amyloids. Biophysically, the soluble-to-insoluble phase transformation represents a process of polymerization, similar to crystallization, dependent on such extrinsic factors as concentration, pH, and a nucleation surface. The resulting cross-β conformation of the insoluble amyloid is markedly stable, making it an unlikely source of toxicity. The spread of brain amyloidosis can be fully explained by mechanisms of spontaneous or catalyzed polymerization and phase transformation instead of active replication, which is an enzyme- and energy-requiring process dependent on a specific nucleic acid code for the transfer of biological information with high fidelity. Early neuronal toxicity in Alzheimer's disease may therefore be mediated to a greater extent by a reduction in the pool of soluble, normal-functioning protein than its accumulation in the polymerized state. This alternative loss-of-function hypothesis of pathogenicity can be examined by assessing the clinical and neuroimaging effects of administering non-aggregating peptide analogs to replace soluble amyloid-β levels above the threshold below which neuronal toxicity may occur. Correcting the depletion of soluble amyloid-β, however, would only exemplify 'rescue medicine.' Precision medicine will necessitate identifying the pathogenic factors catalyzing the protein aggregation in each affected individual. Only then can we stratify patients for etiology-specific treatments and launch precision medicine for Alzheimer's disease and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Alberto J Espay
- James J. and Joan A. Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Andrea Sturchio
- James J. and Joan A. Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, Ohio, USA.,Department of Clinical Neuroscience, Neuro Svenningsson, Karolinska Institute, 171 76 Stockholm, Sweden
| | - Lon S Schneider
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kariem Ezzat
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
105
|
Krenn V, Bosone C, Burkard TR, Spanier J, Kalinke U, Calistri A, Salata C, Rilo Christoff R, Pestana Garcez P, Mirazimi A, Knoblich JA. Organoid modeling of Zika and herpes simplex virus 1 infections reveals virus-specific responses leading to microcephaly. Cell Stem Cell 2021; 28:1362-1379.e7. [PMID: 33838105 PMCID: PMC7611471 DOI: 10.1016/j.stem.2021.03.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 12/07/2020] [Accepted: 03/04/2021] [Indexed: 02/07/2023]
Abstract
Viral infection in early pregnancy is a major cause of microcephaly. However, how distinct viruses impair human brain development remains poorly understood. Here we use human brain organoids to study the mechanisms underlying microcephaly caused by Zika virus (ZIKV) and herpes simplex virus (HSV-1). We find that both viruses efficiently replicate in brain organoids and attenuate their growth by causing cell death. However, transcriptional profiling reveals that ZIKV and HSV-1 elicit distinct cellular responses and that HSV-1 uniquely impairs neuroepithelial identity. Furthermore, we demonstrate that, although both viruses fail to potently induce the type I interferon system, the organoid defects caused by their infection can be rescued by distinct type I interferons. These phenotypes are not seen in 2D cultures, highlighting the superiority of brain organoids in modeling viral infections. These results uncover virus-specific mechanisms and complex cellular immune defenses associated with virus-induced microcephaly.
Collapse
Affiliation(s)
- Veronica Krenn
- Institute of Molecular Biotechnology (IMBA), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna 1030, Austria
| | - Camilla Bosone
- Institute of Molecular Biotechnology (IMBA), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna 1030, Austria
| | - Thomas R Burkard
- Institute of Molecular Biotechnology (IMBA), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna 1030, Austria
| | - Julia Spanier
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Helmholtz Centre for Infection Research, Braunschweig, and the Hanover Medical School, Hanover 30625, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Helmholtz Centre for Infection Research, Braunschweig, and the Hanover Medical School, Hanover 30625, Germany; Cluster of Excellence - Resolving Infection Susceptibility (RESIST), Hanover Medical School, Hanover 30625, Germany
| | - Arianna Calistri
- Department of Molecular Medicine, University of Padua, Padua 35121, Italy
| | - Cristiano Salata
- Department of Molecular Medicine, University of Padua, Padua 35121, Italy
| | - Raissa Rilo Christoff
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Patricia Pestana Garcez
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Ali Mirazimi
- Department of Laboratory Medicine (LABMED), Karolinska Institute, Stockholm 17177, Sweden; National Veterinary Institute, Uppsala 75189, Sweden
| | - Jürgen A Knoblich
- Institute of Molecular Biotechnology (IMBA), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna 1030, Austria; Medical University of Vienna, Vienna 1030, Austria.
| |
Collapse
|
106
|
Park Y, Chung TS, Rogers JA. Three dimensional bioelectronic interfaces to small-scale biological systems. Curr Opin Biotechnol 2021; 72:1-7. [PMID: 34358775 DOI: 10.1016/j.copbio.2021.07.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/06/2021] [Accepted: 07/17/2021] [Indexed: 11/26/2022]
Abstract
Recent advances in bio-interface technologies establish a rich range of electronic, optoelectronic, thermal, and chemical options for probing and modulating the behaviors of small-scale three dimensional (3D) biological constructs (e.g. organoids, spheroids, and assembloids). These approaches represent qualitative advances over traditional alternatives due to their ability to extend broadly into volumetric spaces and/or to wrap tightly curved surfaces of natural or artificial tissues. Thin deformable sheets, filamentary penetrating pins, open mesh structures and 3D interconnected networks represent some of the most effective design strategies in this emerging field of bioelectronics. This review focuses on recent developments, with an emphasis on multimodal interfaces in the form of tissue-embedding scaffolds and tissue-surrounding frameworks.
Collapse
Affiliation(s)
- Yoonseok Park
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
| | - Ted S Chung
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA; Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - John A Rogers
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA; Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA; Department of Materials Science and Engineering, Northwestern, University, Evanston, IL 60208, USA; Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, IL 60208, USA; Department of Chemistry, Northwestern University, Evanston, IL 60208, USA; Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA; Department of Neurological Surgery, Northwestern University, Evanston, IL 60208, United States.
| |
Collapse
|
107
|
Vavougios GD, Nday C, Pelidou SH, Gourgoulianis KI, Stamoulis G, Doskas T, Zarogiannis SG. Outside-in induction of the IFITM3 trafficking system by infections, including SARS-CoV-2, in the pathobiology of Alzheimer's disease. Brain Behav Immun Health 2021; 14:100243. [PMID: 33817671 PMCID: PMC7997139 DOI: 10.1016/j.bbih.2021.100243] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/13/2021] [Accepted: 03/17/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND IFITM3 is a viral restriction protein that enables sequestration of viral particles and subsequent trafficking to lysosomes. Recently, IFITM3 upregulation was found to induce gamma - secretase activity and the production of amyloid beta. The purpose of this study was to determine whether dysregulation of IFITM3-dependent pathways was present in neurons and peripheral immune cells donated by AD patients. As a secondary aim, we sought to determine whether these perturbations could be induced by viruses, including SARS-CoV-2. METHODS Gene set enrichment analyses (GSEA) previously performed on publicly available transcriptomic data from tissues donated by AD patients were screened for enriched pathways containing IFITM3. Subsequently, signature containing IFITM3, derived from entorhinal cortex (EC) neurons containing neurofibrillary tangles (NFT) was screened for overlap with curated, publicly available, viral infection-induced gene signatures (including SARS-CoV-2). RESULTS GSEA determined that IFITM3 gene networks are significantly enriched both in CNS sites (entorhinal and hippocampal cortices) and in peripheral blood mononuclear cells (PBMCs) donated by AD patients. Overlap screening revealed that IFITM3 signatures are induced by several viruses, including SARS-CoV, MERS-CoV, SARS-CoV-2 and HIV-1 (adjusted p-value <0.001; Enrichr Database). DISCUSSION A data-driven analysis of AD tissues revealed IFITM3 gene signatures both in the CNS and in peripheral immune cells. GSEA revealed that an IFITM3 derived gene signature extracted from EC/NFT neurons overlapped with those extracted from publicly available viral infection datasets, including SARS-CoV-2. Our results are in line with currently emerging evidence on IFITM3's role in AD, and SARS-CoV-2's potential contribution in the setting of an expanded antimicrobial protection hypothesis.
Collapse
Affiliation(s)
- George D. Vavougios
- Neuroimmunology Laboratory, Department of Neurology, Athens Naval Hospital, P.C., 115 21, Athens, Greece
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, Biopolis, P.C., 41500, Larissa, Greece
- Department of Computer Science and Telecommunications, University of Thessaly, Papasiopoulou 2 – 4, P.C., 35 131, Galaneika, Lamia, Greece
| | - Christiane Nday
- Laboratory of Medical Physics, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, P.C., 5414, Thessaloniki, Greece
| | | | - Konstantinos I. Gourgoulianis
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, Biopolis, P.C., 41500, Larissa, Greece
| | - George Stamoulis
- Department of Electrical and Computer Engineering, University of Thessaly, 37 Glavani – 28th October Str, Deligiorgi Building, 4th Floor, P.C., 382 21, Volos, Greece
- Department of Computer Science and Telecommunications, University of Thessaly, Papasiopoulou 2 – 4, P.C., 35 131, Galaneika, Lamia, Greece
| | - Triantafyllos Doskas
- Neuroimmunology Laboratory, Department of Neurology, Athens Naval Hospital, P.C., 115 21, Athens, Greece
| | - Sotirios G. Zarogiannis
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, Larissa, 41500, Greece
| |
Collapse
|
108
|
Itzhaki RF. Overwhelming Evidence for a Major Role for Herpes Simplex Virus Type 1 (HSV1) in Alzheimer's Disease (AD); Underwhelming Evidence against. Vaccines (Basel) 2021; 9:679. [PMID: 34205498 PMCID: PMC8234998 DOI: 10.3390/vaccines9060679] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 12/18/2022] Open
Abstract
This review describes investigations of specific topics that lie within the general subject of HSV1's role in AD/dementia, published in the last couple of years. They include studies on the following: relationship of HSV1 to AD using neural stem cells; the apparent protective effects of treatment of HSV1 infection or of VZV infection with antivirals prior to the onset of dementia; the putative involvement of VZV in AD/dementia; the possible role of human herpes virus 6 (HHV6) in AD; the seemingly reduced risk of dementia after vaccination with diverse types of vaccine, and the association shown in some vaccine studies with reduced frequency of HSV1 reactivation; anti-HSV serum antibodies supporting the linkage of HSV1 in brain with AD in APOE-ε4 carriers, and the association between APOE and cognition, and association of APOE and infection with AD/dementia. The conclusions are that there is now overwhelming evidence for HSV1's role-probably causal-in AD, when it is present in brain of APOE-ε4 carriers, and that further investigations should be made on possible prevention of the disease by vaccination, or by prolonged antiviral treatment of HSV1 infection in APOE-ε4 carriers, before disease onset.
Collapse
Affiliation(s)
- Ruth F Itzhaki
- Institute of Population Ageing, University of Oxford, 66 Banbury Road, Oxford OX2 6PR, UK
| |
Collapse
|
109
|
Hemmingsson E, Hjelmare E, Weidung B, Olsson J, Josefsson M, Adolfsson R, Nyberg L, Elgh F, Lövheim H. Antiviral treatment associated with reduced risk of clinical Alzheimer's disease-A nested case-control study. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2021; 7:e12187. [PMID: 34136638 PMCID: PMC8190532 DOI: 10.1002/trc2.12187] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/25/2021] [Accepted: 05/06/2021] [Indexed: 12/26/2022]
Abstract
INTRODUCTION In this nested case-control study, we investigated if antiviral treatment given prior to onset of Alzheimer's disease (AD) could influence incident AD. METHODS From a large population-based cohort study in northern Sweden, 262 individuals that later developed AD were compared to a non-AD matched control group with respect to prescriptions of herpes antiviral treatment. All included subjects were herpes simplex virus 1 (HSV1) carriers and the matching criteria were age, sex, apolipoprotein E genotype (ε4 allele carriership), and study sample start year. RESULTS Among those who developed AD, 6 prescriptions of antivirals were found, compared to 20 among matched controls. Adjusted for length of follow-up, a conditional logistic regression indicated a difference in the risk for AD development between groups (odds ratio for AD with an antiviral prescription 0.287, P = .018). DISCUSSION Antiviral treatment might possibly reduce the risk for later development of HSV1-associated AD.
Collapse
Affiliation(s)
- Eva‐Stina Hemmingsson
- Department of Community Medicine and RehabilitationGeriatric Medicine, Umeå UniversityUmeåSweden
| | - Ellen Hjelmare
- Department of Community Medicine and RehabilitationGeriatric Medicine, Umeå UniversityUmeåSweden
| | - Bodil Weidung
- Department of Community Medicine and RehabilitationGeriatric Medicine, Umeå UniversityUmeåSweden
- Department of Public Health and Caring SciencesGeriatric Medicine, Uppsala UniversityUppsalaSweden
| | - Jan Olsson
- Department of Clinical MicrobiologyVirology, Umeå UniversityUmeåSweden
| | - Maria Josefsson
- Department of StatisticsUSBE, Umeå UniversityUmeåSweden
- Centre for Demographic and Ageing ResearchUmeå UniversityUmeåSweden
- Umeå Centre for Functional Brain Imaging (UFBI)Umeå, UniversityUmeåSweden
| | - Rolf Adolfsson
- Department of Clinical SciencesPsychiatry, Umeå UniversityUmeåSweden
| | - Lars Nyberg
- Umeå Centre for Functional Brain Imaging (UFBI)Umeå, UniversityUmeåSweden
- Department of Radiation SciencesUmeå UniversityUmeåSweden
- Department of Integrative Medical BiologyUmeå UniversityUmeåSweden
- Wallenberg Centre for Molecular Medicine (WCMM)Umeå UniversityUmeåSweden
| | - Fredrik Elgh
- Department of Clinical MicrobiologyVirology, Umeå UniversityUmeåSweden
| | - Hugo Lövheim
- Department of Community Medicine and RehabilitationGeriatric Medicine, Umeå UniversityUmeåSweden
- Wallenberg Centre for Molecular Medicine (WCMM)Umeå UniversityUmeåSweden
| |
Collapse
|
110
|
Shi W, Dong P, Kuss MA, Gu L, Kievit F, Kim HJ, Duan B. Design and Evaluation of an In Vitro Mild Traumatic Brain Injury Modeling System Using 3D Printed Mini Impact Device on the 3D Cultured Human iPSC Derived Neural Progenitor Cells. Adv Healthc Mater 2021; 10:e2100180. [PMID: 33890428 PMCID: PMC8222191 DOI: 10.1002/adhm.202100180] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/15/2021] [Indexed: 12/13/2022]
Abstract
Despite significant progress in understanding the disease mechanism of traumatic brain injury (TBI), promising preclinical therapeutics have seldom been translated into successful clinical outcomes, partially because the model animals have physiological and functional differences in the central nervous system (CNS) compared to humans. Human relevant models are thus urgently required. Here, an in vitro mild TBI (mTBI) modeling system is reported based on 3D cultured human induced pluripotent stem cells (iPSC) derived neural progenitor cells (iPSC-NPCs) to evaluate consequences of single and repetitive mTBI using a 3D printed mini weight-drop impact device. Computational simulation is performed to understand the single/cumulative effects of weight-drop impact on the NPC differentiated neurospheres. Experimental results reveal that neurospheres show reactive astrogliosis and glial scar formation after repetitive (10 hits) mild impacts, while no astrocyte activation is found after one or two mild impacts. A 3D co-culture model of human microglia cells with neurospheres is further developed. It is found that astrocyte response is promoted even after two mild impacts, possibly caused by the chronic neuroinflammation after microglia activation. The in vitro mTBI modeling system recapitulates several hallmarks of the brain impact injury and might serve as a good platform for future drug screening.
Collapse
Affiliation(s)
- Wen Shi
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska, Medical Center, Omaha, NE, 68198, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska, Medical Center, Omaha, NE, 68198, USA
| | - Pengfei Dong
- Department of Biomedical and Chemical Engineering and Science, Florida Institute of Technology, Melbourne, FL, 32901, USA
| | - Mitchell A Kuss
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska, Medical Center, Omaha, NE, 68198, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska, Medical Center, Omaha, NE, 68198, USA
| | - Linxia Gu
- Department of Biomedical and Chemical Engineering and Science, Florida Institute of Technology, Melbourne, FL, 32901, USA
| | - Forrest Kievit
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Hyung Joon Kim
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska, Medical Center, Omaha, NE, 68198, USA
- Eppley Institute, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Bin Duan
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska, Medical Center, Omaha, NE, 68198, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska, Medical Center, Omaha, NE, 68198, USA
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Department of Mechanical Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| |
Collapse
|
111
|
de Erausquin GA, Snyder H, Carrillo M, Hosseini AA, Brugha TS, Seshadri S. The chronic neuropsychiatric sequelae of COVID-19: The need for a prospective study of viral impact on brain functioning. Alzheimers Dement 2021; 17:1056-1065. [PMID: 33399270 PMCID: PMC10431934 DOI: 10.1002/alz.12255] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/04/2020] [Indexed: 12/17/2022]
Abstract
INTRODUCTION The increasing evidence of SARS-CoV-2 impact on the central nervous system (CNS) raises key questions on its impact for risk of later life cognitive decline, Alzheimer's disease (AD), and other dementia. METHODS The Alzheimer's Association and representatives from more than 30 countries-with technical guidance from the World Health Organization-have formed an international consortium to study the short-and long-term consequences of SARS-CoV-2 on the CNS-including the underlying biology that may contribute to AD and other dementias. This consortium will link teams from around the world covering more than 22 million COVID-19 cases to enroll two groups of individuals including people with disease, to be evaluated for follow-up evaluations at 6, 9, and 18 months, and people who are already enrolled in existing international research studies to add additional measures and markers of their underlying biology. CONCLUSIONS The increasing evidence and understanding of SARS-CoV-2's impact on the CNS raises key questions on the impact for risk of later life cognitive decline, AD, and other dementia. This program of studies aims to better understand the long-term consequences that may impact the brain, cognition, and functioning-including the underlying biology that may contribute to AD and other dementias.
Collapse
Affiliation(s)
- Gabriel A. de Erausquin
- The Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, UTHSA, San Antonio, Texas, USA
| | | | | | - Akram A. Hosseini
- Neurology Department, Nottingham University Hospitals NHS Trust, Queen’s Medical Centre, Nottingham, UK
| | - Traolach S. Brugha
- Social and Epidemiological Psychiatry Research Group, Department of Health Sciences, University of Leicester, Leicester, UK
| | - Sudha Seshadri
- The Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, UTHSA, San Antonio, Texas, USA
| | | |
Collapse
|
112
|
Bocharova O, Pandit NP, Molesworth K, Fisher A, Mychko O, Makarava N, Baskakov IV. Alzheimer's disease-associated β-amyloid does not protect against herpes simplex virus 1 infection in the mouse brain. J Biol Chem 2021; 297:100845. [PMID: 34052228 PMCID: PMC8214219 DOI: 10.1016/j.jbc.2021.100845] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/13/2021] [Accepted: 05/26/2021] [Indexed: 12/17/2022] Open
Abstract
Alzheimer’s disease (AD) is a devastating fatal neurodegenerative disease. An alternative to the amyloid cascade hypothesis is that a viral infection is key to the etiology of late-onset AD, with β-amyloid (Aβ) peptides playing a protective role. In the current study, young 5XFAD mice that overexpress mutant human amyloid precursor protein with the Swedish, Florida, and London familial AD mutations were infected with one of two strains of herpes simplex virus 1 (HSV-1), 17syn+ and McKrae, at three different doses. Contrary to previous work, 5XFAD genotype failed to protect mice against HSV-1 infection. The region- and cell-specific tropisms of HSV-1 were not affected by the 5XFAD genotype, indicating that host–pathogen interactions were not altered. Seven- to ten-month-old 5XFAD animals in which extracellular Aβ aggregates were abundant showed slightly better survival rate relative to their wild-type (WT) littermates, although the difference was not statistically significant. In these 5XFAD mice, HSV-1 replication centers were partially excluded from the brain areas with high densities of Aβ aggregates. Aβ aggregates were free of HSV-1 viral particles, and the limited viral invasion to areas with a high density of Aβ aggregates was attributed to phagocytic activity of reactive microglia. In the oldest mice (12–15 months old), the survival rate did not differ between 5XFAD and WT littermates. While the current study questions the antiviral role of Aβ, it neither supports nor refutes the viral etiology hypothesis of late-onset AD.
Collapse
Affiliation(s)
- Olga Bocharova
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Narayan P Pandit
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Kara Molesworth
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Aidan Fisher
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Olga Mychko
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Natallia Makarava
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Ilia V Baskakov
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
113
|
Zilberman A, Cornelison RC. Microphysiological models of the central nervous system with fluid flow. Brain Res Bull 2021; 174:72-83. [PMID: 34029679 DOI: 10.1016/j.brainresbull.2021.05.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 05/08/2021] [Accepted: 05/17/2021] [Indexed: 12/11/2022]
Abstract
There are over 1,000 described neurological and neurodegenerative disorders affecting nearly 100 million Americans - roughly one third of the U.S. population. Collectively, treatment of neurological conditions is estimated to cost $800 billion every year. Lowering this societal burden will require developing better model systems in which to study these diverse disorders. Microphysiological systems are promising tools for modeling healthy and diseased neural tissues to study mechanisms and treatment of neuropathology. One major benefit of microphysiological systems is the ability to incorporate biophysical forces, namely the forces derived from biological fluid flow. Fluid flow in the central nervous system (CNS) is a complex but important element of physiology, and pathologies as diverse as traumatic or ischemic injury, cancer, neurodegenerative disease, and natural aging have all been found to alter flow pathways. In this review, we summarize recent advances in three-dimensional microphysiological systems for studying the biology and therapy of CNS disorders and highlight the ability and growing need to incorporate biological fluid flow in these miniaturized model systems.
Collapse
Affiliation(s)
- Aleeza Zilberman
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, United States
| | - R Chase Cornelison
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, United States.
| |
Collapse
|
114
|
Lopatko Lindman K, Weidung B, Olsson J, Josefsson M, Johansson A, Eriksson S, Hallmans G, Elgh F, Lövheim H. Plasma Amyloid-β in Relation to Antibodies Against Herpes Simplex Virus, Cytomegalovirus, and Chlamydophila pneumoniae. J Alzheimers Dis Rep 2021; 5:229-235. [PMID: 34113780 PMCID: PMC8150254 DOI: 10.3233/adr-210008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background: Amyloid-β (Aβ), the key constituent of Alzheimer’s disease (AD) plaques, has antimicrobial properties. Objective: To investigate the association between plasma Aβ and antibodies against the AD-related pathogens herpes simplex virus (HSV), cytomegalovirus (CMV), and C. pneumoniae. Methods: Plasma from 339 AD cases, obtained on average 9.4 years (±4.00) before diagnosis, and their matched controls were analyzed for Aβ40 and Aβ42 concentrations with Luminex xMAP technology and INNOBIA plasma Aβ-form assays. Enzyme-linked immunosorbent assays were utilized for analyses of anti-HSV immunoglobulin (Ig) G, anti-HSV1 IgG, anti-HSV2 IgG, anti-CMV IgG, and anti-C. pneumoniae IgG. Follow-up samples were available for 150 of the cases. Results: Presence and levels of anti-HSV1 IgG, anti-HSV2 IgG, anti-CMV IgG, and anti-C. pneumoniae IgG did not correlate with concentrations of Aβ42 or Aβ40 in cases or controls. Conclusion: Levels of plasma Aβ were not associated with antibodies against different AD-related pathogens.
Collapse
Affiliation(s)
- Karin Lopatko Lindman
- Department of Community Medicine and Rehabilitation, Geriatric Medicine, Umeå University, Umeå, Sweden
| | - Bodil Weidung
- Department of Community Medicine and Rehabilitation, Geriatric Medicine, Umeå University, Umeå, Sweden.,Department of Public Health and Caring Sciences, Geriatric Medicine, Uppsala University, Uppsala, Sweden
| | - Jan Olsson
- Department of Clinical Microbiology, Virology, Umeå University, Umeå, Sweden
| | - Maria Josefsson
- Centre for Demographic and Ageing Research, Umeå University, Umeå, Sweden
| | - Anders Johansson
- Department of Odontology, Umeå University, Umeå, Sweden.,Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Sture Eriksson
- Department of Community Medicine and Rehabilitation, Geriatric Medicine, Umeå University, Umeå, Sweden.,Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Göran Hallmans
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Fredrik Elgh
- Department of Clinical Microbiology, Virology, Umeå University, Umeå, Sweden
| | - Hugo Lövheim
- Department of Community Medicine and Rehabilitation, Geriatric Medicine, Umeå University, Umeå, Sweden.,Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| |
Collapse
|
115
|
Laval K, Enquist LW. The Potential Role of Herpes Simplex Virus Type 1 and Neuroinflammation in the Pathogenesis of Alzheimer's Disease. Front Neurol 2021; 12:658695. [PMID: 33889129 PMCID: PMC8055853 DOI: 10.3389/fneur.2021.658695] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease affecting ~50 million people worldwide. To date, there is no cure and current therapies have not been effective in delaying disease progression. Therefore, there is an urgent need for better understanding of the pathogenesis of AD and to rethink possible therapies. Herpes simplex virus type 1 (HSV1) has recently received growing attention for its potential role in sporadic AD. The virus is a ubiquitous human pathogen that infects mucosal epithelia and invades the peripheral nervous system (PNS) of its host to establish a reactivable, latent infection. Upon reactivation, HSV1 spreads back to the epithelium and initiates a new infection, causing epithelial lesions. Occasionally, the virus spreads from the PNS to the brain after reactivation. In this review, we discuss current work on the pathogenesis of AD and summarize research results that support a potential role for HSV1 in the infectious hypothesis of AD. We also highlight recent findings on the neuroinflammatory response, which has been proposed to be the main driving force of AD, starting early in the course of the disease. Relevant rodent models to study neuroinflammation in AD and novel therapeutic approaches are also discussed. Throughout this review, we focus on several aspects of HSV1 pathogenesis, including its primary role as an invader of the PNS, that should be considered in the etiology of AD. We also point out some of the contradictory data and remaining knowledge gaps that require further research to finally fully understand the cause of AD in humans.
Collapse
Affiliation(s)
- Kathlyn Laval
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States
| | | |
Collapse
|
116
|
Baxter BD, Larson ED, Merle L, Feinstein P, Polese AG, Bubak AN, Niemeyer CS, Hassell J, Shepherd D, Ramakrishnan VR, Nagel MA, Restrepo D. Transcriptional profiling reveals potential involvement of microvillous TRPM5-expressing cells in viral infection of the olfactory epithelium. BMC Genomics 2021; 22:224. [PMID: 33781205 PMCID: PMC8007386 DOI: 10.1186/s12864-021-07528-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 03/12/2021] [Indexed: 02/07/2023] Open
Abstract
Background Understanding viral infection of the olfactory epithelium is essential because the olfactory nerve is an important route of entry for viruses to the central nervous system. Specialized chemosensory epithelial cells that express the transient receptor potential cation channel subfamily M member 5 (TRPM5) are found throughout the airways and intestinal epithelium and are involved in responses to viral infection. Results Herein we performed deep transcriptional profiling of olfactory epithelial cells sorted by flow cytometry based on the expression of mCherry as a marker for olfactory sensory neurons and for eGFP in OMP-H2B::mCherry/TRPM5-eGFP transgenic mice (Mus musculus). We find profuse expression of transcripts involved in inflammation, immunity and viral infection in TRPM5-expressing microvillous cells compared to olfactory sensory neurons. Conclusion Our study provides new insights into a potential role for TRPM5-expressing microvillous cells in viral infection of the olfactory epithelium. We find that, as found for solitary chemosensory cells (SCCs) and brush cells in the airway epithelium, and for tuft cells in the intestine, the transcriptome of TRPM5-expressing microvillous cells indicates that they are likely involved in the inflammatory response elicited by viral infection of the olfactory epithelium. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07528-y.
Collapse
Affiliation(s)
- B Dnate' Baxter
- Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.,Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Eric D Larson
- Department of Otolaryngology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Laetitia Merle
- Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.,Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Paul Feinstein
- The Graduate Center Biochemistry, Biology and CUNY-Neuroscience-Collaborative Programs and Biological Sciences Department, Hunter College, City University of New York, New York, NY, 10065, USA
| | - Arianna Gentile Polese
- Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.,Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Andrew N Bubak
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Christy S Niemeyer
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - James Hassell
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Doug Shepherd
- Department of Pharmacology, University of Colorado Anschutz Medical Campus and Center for Biological Physics and Department of Physics, Arizona State University, Tempe, USA
| | - Vijay R Ramakrishnan
- Department of Otolaryngology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Maria A Nagel
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Diego Restrepo
- Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA. .,Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
117
|
LAMP2 deficiency attenuates the neurodegeneration markers induced by HSV-1 infection. Neurochem Int 2021; 146:105032. [PMID: 33781848 DOI: 10.1016/j.neuint.2021.105032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 11/22/2022]
Abstract
Mounting evidence suggests a major role of infectious agents in the pathogenesis of sporadic Alzheimer's disease (AD). Among them, herpes simplex virus type 1 (HSV-1) infection has emerged as a major factor in the etiology of AD. HSV-1 is able to induce some of the main alterations of the disease such as hyperphosphorylation of tau protein and accumulation of amyloid-β peptide. Functional genomic analysis of a cell model of HSV-1 infection and oxidative stress developed in our laboratory revealed lysosomal system to be the main pathway altered, and the lysosome-associated membrane protein 2 (LAMP2) gene one of the most strongly modulated genes. The aim of this work is to study LAMP2 as an AD candidate gene and to investigate its role in the neurodegeneration induced by HSV-1 using a LAMP2 knockdown cell model. LAMP2 deficiency led to a significant reduction of viral DNA replication and formation of infectious particles. In addition, tau hyperphosphorylation and inhibition of Aβ secretion induced by the virus were attenuated by the absence of LAMP2. Finally, genetic association studies revealed LAMP2 genetic variants to be associated with AD risk. In summary, our data indicate that LAMP2 could be a suitable candidate to mediate the AD-like phenotype caused by HSV-1.
Collapse
|
118
|
Schnier C, Janbek J, Williams L, Wilkinson T, Laursen TM, Waldemar G, Richter H, Kostev K, Lathe R, G Haas J. Antiherpetic medication and incident dementia: Observational cohort studies in four countries. Eur J Neurol 2021; 28:1840-1848. [PMID: 33657269 DOI: 10.1111/ene.14795] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/27/2021] [Accepted: 02/27/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND PURPOSE Several epidemiological studies from Taiwan, all using the same data resource, found significant associations between herpes virus infection, antiherpetic medication, and subsequent dementia. We conducted a multicenter observational cohort study using health registry data from Wales, Germany, Scotland, and Denmark to investigate potential associations between antiherpetic medication and incident dementia, and also to comprehensively investigate such associations broken down according to medication type and dose, type of herpes virus, and dementia subtype. METHODS A total of 2.5 million individuals aged 65 years or more were followed up using linked electronic health records in four national observational cohort studies. Exposure and outcome were classified using coded data from primary and secondary care. Data were analyzed using survival analysis with time-dependent covariates. RESULTS Results were heterogeneous, with a tendency toward decreased dementia risk in individuals exposed to antiherpetic medication. Associations were not affected by treatment number, herpes subtype, dementia subtype, or specific medication. In one cohort, individuals diagnosed with herpes but not exposed to antiherpetic medication were at higher dementia risk. CONCLUSIONS Short-term antiherpetic medication is not markedly associated with incident dementia. Because neither dementia subtype nor herpes subtype modified the association, the small but significant decrease in dementia incidence with antiherpetic administration may reflect confounding and misclassification.
Collapse
Affiliation(s)
- Christian Schnier
- Division of Infection Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Janet Janbek
- Danish Dementia Research Center, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Linda Williams
- Usher Institute, Edinburgh University, Bioquarter, Edinburgh, United Kingdom
| | - Tim Wilkinson
- Centre for Clinical Brain Sciences, Edinburgh University, Edinburgh, United Kingdom
| | - Thomas M Laursen
- National Center for Register-Based Research, Department of Economics and Business Economics, Aarhus BSS, Aarhus University, Aarhus, Denmark
| | - Gunhild Waldemar
- National Center for Register-Based Research, Department of Economics and Business Economics, Aarhus BSS, Aarhus University, Aarhus, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Richard Lathe
- Division of Infection Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Jürgen G Haas
- Division of Infection Medicine, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
119
|
Costamagna G, Comi GP, Corti S. Advancing Drug Discovery for Neurological Disorders Using iPSC-Derived Neural Organoids. Int J Mol Sci 2021; 22:ijms22052659. [PMID: 33800815 PMCID: PMC7961877 DOI: 10.3390/ijms22052659] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 12/15/2022] Open
Abstract
In the last decade, different research groups in the academic setting have developed induced pluripotent stem cell-based protocols to generate three-dimensional, multicellular, neural organoids. Their use to model brain biology, early neural development, and human diseases has provided new insights into the pathophysiology of neuropsychiatric and neurological disorders, including microcephaly, autism, Parkinson’s disease, and Alzheimer’s disease. However, the adoption of organoid technology for large-scale drug screening in the industry has been hampered by challenges with reproducibility, scalability, and translatability to human disease. Potential technical solutions to expand their use in drug discovery pipelines include Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) to create isogenic models, single-cell RNA sequencing to characterize the model at a cellular level, and machine learning to analyze complex data sets. In addition, high-content imaging, automated liquid handling, and standardized assays represent other valuable tools toward this goal. Though several open issues still hamper the full implementation of the organoid technology outside academia, rapid progress in this field will help to prompt its translation toward large-scale drug screening for neurological disorders.
Collapse
Affiliation(s)
- Gianluca Costamagna
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), Neuroscience Section, University of Milan, 20122 Milan, Italy; (G.C.); (G.P.C.)
- IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Giacomo Pietro Comi
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), Neuroscience Section, University of Milan, 20122 Milan, Italy; (G.C.); (G.P.C.)
- IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Stefania Corti
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), Neuroscience Section, University of Milan, 20122 Milan, Italy; (G.C.); (G.P.C.)
- IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit, Via Francesco Sforza 35, 20122 Milan, Italy
- Correspondence:
| |
Collapse
|
120
|
Park Y, Franz CK, Ryu H, Luan H, Cotton KY, Kim JU, Chung TS, Zhao S, Vazquez-Guardado A, Yang DS, Li K, Avila R, Phillips JK, Quezada MJ, Jang H, Kwak SS, Won SM, Kwon K, Jeong H, Bandodkar AJ, Han M, Zhao H, Osher GR, Wang H, Lee K, Zhang Y, Huang Y, Finan JD, Rogers JA. Three-dimensional, multifunctional neural interfaces for cortical spheroids and engineered assembloids. SCIENCE ADVANCES 2021; 7:7/12/eabf9153. [PMID: 33731359 PMCID: PMC7968849 DOI: 10.1126/sciadv.abf9153] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/27/2021] [Indexed: 05/23/2023]
Abstract
Three-dimensional (3D), submillimeter-scale constructs of neural cells, known as cortical spheroids, are of rapidly growing importance in biological research because these systems reproduce complex features of the brain in vitro. Despite their great potential for studies of neurodevelopment and neurological disease modeling, 3D living objects cannot be studied easily using conventional approaches to neuromodulation, sensing, and manipulation. Here, we introduce classes of microfabricated 3D frameworks as compliant, multifunctional neural interfaces to spheroids and to assembloids. Electrical, optical, chemical, and thermal interfaces to cortical spheroids demonstrate some of the capabilities. Complex architectures and high-resolution features highlight the design versatility. Detailed studies of the spreading of coordinated bursting events across the surface of an isolated cortical spheroid and of the cascade of processes associated with formation and regrowth of bridging tissues across a pair of such spheroids represent two of the many opportunities in basic neuroscience research enabled by these platforms.
Collapse
Affiliation(s)
- Yoonseok Park
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
| | - Colin K Franz
- Regenerative Neurorehabilitation Laboratory, Shirley Ryan AbilityLab, Chicago, IL 60611, USA
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- The Ken&Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Hanjun Ryu
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Haiwen Luan
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Kristen Y Cotton
- Regenerative Neurorehabilitation Laboratory, Shirley Ryan AbilityLab, Chicago, IL 60611, USA
| | - Jong Uk Kim
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Ted S Chung
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Shiwei Zhao
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
- School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, P. R. China
| | - Abraham Vazquez-Guardado
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
| | - Da Som Yang
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
| | - Kan Li
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK
| | - Raudel Avila
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Jack K Phillips
- Department of Neurosurgery, NorthShore University HealthSystem, Evanston, IL 60201, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Maria J Quezada
- Regenerative Neurorehabilitation Laboratory, Shirley Ryan AbilityLab, Chicago, IL 60611, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Hokyung Jang
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sung Soo Kwak
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Sang Min Won
- Department of Electrical and Computer Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Kyeongha Kwon
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Hyoyoung Jeong
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
| | - Amay J Bandodkar
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
| | - Mengdi Han
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
| | - Hangbo Zhao
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Gabrielle R Osher
- Department of Neurosurgery, NorthShore University HealthSystem, Evanston, IL 60201, USA
| | - Heling Wang
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - KunHyuck Lee
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
| | - Yihui Zhang
- Applied Mechanics Laboratory, Department of Engineering Mechanics; Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
| | - Yonggang Huang
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA.
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - John D Finan
- Department of Neurosurgery, NorthShore University HealthSystem, Evanston, IL 60201, USA.
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - John A Rogers
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA.
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
121
|
Zhou X, Fu AK, Ip NY. APOE signaling in neurodegenerative diseases: an integrative approach targeting APOE coding and noncoding variants for disease intervention. Curr Opin Neurobiol 2021; 69:58-67. [PMID: 33647674 DOI: 10.1016/j.conb.2021.02.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/05/2021] [Accepted: 02/05/2021] [Indexed: 10/22/2022]
Abstract
APOE (apolipoprotein E) is a key regulator of lipid metabolism and a leading genetic risk factor for Alzheimer's disease. While APOE participates in multiple biological pathways, its roles in diseases are largely due to the mutant protein encoded by APOE-ε4. However, emerging evidence suggests that some noncoding Alzheimer's disease risk variants residing in APOE and its nearby regions exert APOE-ε4-independent risks and modify APOE gene expression. Moreover, intervention strategies targeting APOE are being explored. In this review, we summarize the literature on the genetic risks and roles of APOE in biological systems. Moreover, we propose an integrative approach to evaluate disease risk and tailor interventions to aid research on APOE-associated diseases.
Collapse
Affiliation(s)
- Xiaopu Zhou
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, China; Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong, China; Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, Hong Kong University of Science and Technology Shenzhen Research Institute, Shenzhen-Hong Kong Institute of Brain Science, 518057 Shenzhen, Guangdong, China
| | - Amy Ky Fu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, China; Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong, China; Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, Hong Kong University of Science and Technology Shenzhen Research Institute, Shenzhen-Hong Kong Institute of Brain Science, 518057 Shenzhen, Guangdong, China
| | - Nancy Y Ip
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, China; Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong, China; Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, Hong Kong University of Science and Technology Shenzhen Research Institute, Shenzhen-Hong Kong Institute of Brain Science, 518057 Shenzhen, Guangdong, China.
| |
Collapse
|
122
|
Lopatko Lindman K, Hemmingsson E, Weidung B, Brännström J, Josefsson M, Olsson J, Elgh F, Nordström P, Lövheim H. Herpesvirus infections, antiviral treatment, and the risk of dementia-a registry-based cohort study in Sweden. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2021; 7:e12119. [PMID: 33614892 PMCID: PMC7882534 DOI: 10.1002/trc2.12119] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 11/04/2020] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Herpesviruses, including Herpes simplex virus type 1 (HSV1) and varicella zoster-virus (VZV), have been implicated in Alzheimer's disease (AD) development. Likewise, antiviral treatment has been suggested to protect against dementia development in herpes-infected individuals. METHODS The study enrolled 265,172 subjects aged ≥ 50 years, with diagnoses of VZV or HSV, or prescribed antiviral drugs between 31 December 2005 and 31 December 2017. Controls were matched in a 1:1 ratio by sex and birth year. RESULTS Antiviral treatment was associated with decreased risk of dementia (adjusted hazard ratio [HR] 0.89, 95% confidence interval [CI] 0.86 to 0.92), while herpes infection without antiviral drugs increased the risk of dementia (adjusted HR 1.50, 95% CI 1.29 to 1.74). DISCUSSION Antiviral treatment was associated with a reduced long-term risk of dementia among individuals with overt signs of herpes infection. This is consistent with earlier findings indicating that herpesviruses are involved in the pathogenesis of AD.
Collapse
Affiliation(s)
- Karin Lopatko Lindman
- Department of Community Medicine and Rehabilitation, Geriatric MedicineUmeå UniversityUmeåSweden
| | - Eva‐Stina Hemmingsson
- Department of Community Medicine and Rehabilitation, Geriatric MedicineUmeå UniversityUmeåSweden
| | - Bodil Weidung
- Department of Community Medicine and Rehabilitation, Geriatric MedicineUmeå UniversityUmeåSweden
- Department of Public Health and Caring Sciences, Geriatric MedicineUppsala UniversityUppsalaSweden
| | - Jon Brännström
- Department of Community Medicine and Rehabilitation, Geriatric MedicineUmeå UniversityUmeåSweden
| | - Maria Josefsson
- Centre for Demographic and Ageing ResearchUmeå UniversityUmeåSweden
| | - Jan Olsson
- Department of Clinical Microbiology, VirologyUmeå UniversityUmeåSweden
| | - Fredrik Elgh
- Department of Clinical Microbiology, VirologyUmeå UniversityUmeåSweden
| | - Peter Nordström
- Department of Community Medicine and Rehabilitation, Geriatric MedicineUmeå UniversityUmeåSweden
| | - Hugo Lövheim
- Department of Community Medicine and Rehabilitation, Geriatric MedicineUmeå UniversityUmeåSweden
- Wallenberg Centre for Molecular Medicine (WCMM)Umeå UniversityUmeåSweden
| |
Collapse
|
123
|
Ramani A, Pranty AI, Gopalakrishnan J. Neurotropic Effects of SARS-CoV-2 Modeled by the Human Brain Organoids. Stem Cell Reports 2021; 16:373-384. [PMID: 33631123 PMCID: PMC7879157 DOI: 10.1016/j.stemcr.2021.02.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/13/2022] Open
Abstract
COVID-19, caused by SARS-CoV-2, is a socioeconomic burden, which exhibits respiratory illness along with unexpected neurological complications. Concerns have been raised about whether the observed neurological symptoms are due to direct effects on CNS or associated with the virus's systemic effect. Recent SARS-CoV-2 infection studies using human brain organoids revealed that SARS-CoV-2 targets human neurons. Human brain organoids are stem cell-derived reductionist experimental systems that have highlighted the neurotropic effects of SARS-CoV-2. Here, we summarize the neurotoxic effects of SARS-CoV-2 using brain organoids and comprehensively discuss how brain organoids could further improve our understanding when they are fine-tuned.
Collapse
Affiliation(s)
- Anand Ramani
- Institute of Human Genetics, Universitätsklinikum Heinrich-Heine-Universität Düsseldorf, Universität Street 1, 40225 Düsseldorf, Germany
| | - Abida-Islam Pranty
- Institute of Human Genetics, Universitätsklinikum Heinrich-Heine-Universität Düsseldorf, Universität Street 1, 40225 Düsseldorf, Germany
| | - Jay Gopalakrishnan
- Institute of Human Genetics, Universitätsklinikum Heinrich-Heine-Universität Düsseldorf, Universität Street 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
124
|
Abstract
Alzheimer's disease is a progressive neurodegenerative disease characterized neuropathologically by presence of extracellular amyloid plaques composed of fibrillar amyloid beta (Aβ) peptides and intracellular neurofibrillary tangles. Post-mortem and in vivo studies implicate HSV-1 infection in the brain as a precipitating factor in disease/pathology initiation. HSV-1 infection of two-dimensional (2D) neuronal cultures causes intracellular accumulation of Aβ42 peptide, but these 2D models do not recapitulate the three-dimensional (3D) architecture of brain tissue.We employed human induced pluripotent stem cells (hiPSCs) to compare patterns of Aβ42 accumulation in HSV-1 infected 2D (neuronal monolayers) and 3D neuronal cultures (brain organoids). Akin to prior studies, HSV-1-infected 2D cultures showed Aβ42 immunoreactivity in cells expressing the HSV-1 antigen ICP4 (ICP4+). Conversely, accumulation of Aβ42 in ICP4+ cells in infected organoids was rarely observed. These results highlight the importance of considering 3D cultures to model host-pathogen interaction.IMPORTANCE The "pathogen" hypothesis of Alzheimer's disease (AD) proposes that brain HSV-1 infection could be an initial source of amyloid beta (Aβ) peptide-containing amyloid plaque development. Aβ accumulation was reported in HSV-1-infected 2D neuronal cultures and neural stem cell cultures, as well as in HSV-1-infected 3D neuronal culture models.The current study extends these findings by showing different patterns of Aβ42 accumulation following HSV-1 infection of 2D compared to 3D neuronal cultures (brain organoids). Specifically, 2D neuronal cultures showed Aβ42-immunoreactivity mainly in HSV-1-infected cells and only rarely in uninfected cells or infected cells exposed to antivirals. Conversely, 3D brain organoids showed accumulation of Aβ42 mainly in non-infected cells surrounding HSV-1-infected cells. We suggest that because brain organoids better recapitulate architectural features of a developing brain than 2D cultures, they may be a more suitable model to investigate the involvement of HSV-1 in the onset of AD pathology.
Collapse
|
125
|
Advances in modelling the human microbiome-gut-brain axis in vitro. Biochem Soc Trans 2021; 49:187-201. [PMID: 33544117 PMCID: PMC7924999 DOI: 10.1042/bst20200338] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/23/2020] [Accepted: 01/15/2021] [Indexed: 02/06/2023]
Abstract
The human gut microbiome has emerged as a key player in the bidirectional communication of the gut–brain axis, affecting various aspects of homeostasis and pathophysiology. Until recently, the majority of studies that seek to explore the mechanisms underlying the microbiome–gut–brain axis cross-talk, relied almost exclusively on animal models, and particularly gnotobiotic mice. Despite the great progress made with these models, various limitations, including ethical considerations and interspecies differences that limit the translatability of data to human systems, pushed researchers to seek for alternatives. Over the past decades, the field of in vitro modelling of tissues has experienced tremendous growth, thanks to advances in 3D cell biology, materials, science and bioengineering, pushing further the borders of our ability to more faithfully emulate the in vivo situation. The discovery of stem cells has offered a new source of cells, while their use in generating gastrointestinal and brain organoids, among other tissues, has enabled the development of novel 3D tissues that better mimic the native tissue structure and function, compared with traditional assays. In parallel, organs-on-chips technology and bioengineered tissues have emerged as highly promising alternatives to animal models for a wide range of applications. Here, we discuss how recent advances and trends in this area can be applied in host–microbe and host–pathogen interaction studies. In addition, we highlight paradigm shifts in engineering more robust human microbiome-gut-brain axis models and their potential to expand our understanding of this complex system and hence explore novel, microbiome-based therapeutic approaches.
Collapse
|
126
|
Affiliation(s)
- Gonzalo Flores
- Laboratorio de Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| |
Collapse
|
127
|
Collados Rodríguez M. The Fate of Speckled Protein 100 (Sp100) During Herpesviruses Infection. Front Cell Infect Microbiol 2021; 10:607526. [PMID: 33598438 PMCID: PMC7882683 DOI: 10.3389/fcimb.2020.607526] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/14/2020] [Indexed: 12/27/2022] Open
Abstract
The constitutive expression of Speckled-100 (Sp100) is known to restrict the replication of many clinically important DNA viruses. This pre-existing (intrinsic) immune defense to virus infection can be further upregulated upon interferon (IFN) stimulation as a component of the innate immune response. In humans, Sp100 is encoded by a single gene locus, which can produce alternatively spliced isoforms. The widely studied Sp100A, Sp100B, Sp100C and Sp100HMG have functions associated with the transcriptional regulation of viral and cellular chromatin, either directly through their characteristic DNA-binding domains, or indirectly through post-translational modification (PTM) and associated protein interaction networks. Sp100 isoforms are resident component proteins of promyelocytic leukemia-nuclear bodies (PML-NBs), dynamic nuclear sub-structures which regulate host immune defenses against many pathogens. In the case of human herpesviruses, multiple protein antagonists are expressed to relieve viral DNA genome transcriptional silencing imposed by PML-NB and Sp100-derived proteinaceous structures, thereby stimulating viral propagation, pathogenesis, and transmission to new hosts. This review details how different Sp100 isoforms are manipulated during herpesviruses HSV1, VZV, HCMV, EBV, and KSHV infection, identifying gaps in our current knowledge, and highlighting future areas of research.
Collapse
|
128
|
Moysidou CM, Barberio C, Owens RM. Advances in Engineering Human Tissue Models. Front Bioeng Biotechnol 2021; 8:620962. [PMID: 33585419 PMCID: PMC7877542 DOI: 10.3389/fbioe.2020.620962] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 12/22/2020] [Indexed: 12/11/2022] Open
Abstract
Research in cell biology greatly relies on cell-based in vitro assays and models that facilitate the investigation and understanding of specific biological events and processes under different conditions. The quality of such experimental models and particularly the level at which they represent cell behavior in the native tissue, is of critical importance for our understanding of cell interactions within tissues and organs. Conventionally, in vitro models are based on experimental manipulation of mammalian cells, grown as monolayers on flat, two-dimensional (2D) substrates. Despite the amazing progress and discoveries achieved with flat biology models, our ability to translate biological insights has been limited, since the 2D environment does not reflect the physiological behavior of cells in real tissues. Advances in 3D cell biology and engineering have led to the development of a new generation of cell culture formats that can better recapitulate the in vivo microenvironment, allowing us to examine cells and their interactions in a more biomimetic context. Modern biomedical research has at its disposal novel technological approaches that promote development of more sophisticated and robust tissue engineering in vitro models, including scaffold- or hydrogel-based formats, organotypic cultures, and organs-on-chips. Even though such systems are necessarily simplified to capture a particular range of physiology, their ability to model specific processes of human biology is greatly valued for their potential to close the gap between conventional animal studies and human (patho-) physiology. Here, we review recent advances in 3D biomimetic cultures, focusing on the technological bricks available to develop more physiologically relevant in vitro models of human tissues. By highlighting applications and examples of several physiological and disease models, we identify the limitations and challenges which the field needs to address in order to more effectively incorporate synthetic biomimetic culture platforms into biomedical research.
Collapse
Affiliation(s)
| | | | - Róisín Meabh Owens
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
129
|
Dingle YTL, Bonzanni M, Liaudanskaya V, Nieland TJ, Kaplan DL. Integrated functional neuronal network analysis of 3D silk-collagen scaffold-based mouse cortical culture. STAR Protoc 2021; 2:100292. [PMID: 33537680 PMCID: PMC7841403 DOI: 10.1016/j.xpro.2020.100292] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Bioengineered 3D tunable neuronal constructs are a versatile platform for studying neuronal network functions, offering numerous advantages over existing technologies and providing for the discovery of new biological insights. Functional neural networks can be evaluated using calcium imaging and quantitatively described using network science. This protocol includes instructions for fabricating protein-based composite scaffolds, 3D in vitro culture of embryonic mouse cortical neurons, virally induced expression of GCaMP6f, wide-field calcium imaging, and computational analysis with open-source software and custom MATLAB code. For complete details on the use and execution of this protocol, please refer to Dingle et al. (2020).
Collapse
Affiliation(s)
- Yu-Ting L. Dingle
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
- Corresponding author
| | - Mattia Bonzanni
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Volha Liaudanskaya
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Thomas J.F. Nieland
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
- Corresponding author
| |
Collapse
|
130
|
Role of Melatonin on Virus-Induced Neuropathogenesis-A Concomitant Therapeutic Strategy to Understand SARS-CoV-2 Infection. Antioxidants (Basel) 2021; 10:antiox10010047. [PMID: 33401749 PMCID: PMC7823793 DOI: 10.3390/antiox10010047] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/23/2020] [Accepted: 12/29/2020] [Indexed: 12/12/2022] Open
Abstract
Viral infections may cause neurological disorders by directly inducing oxidative stress and interrupting immune system function, both of which contribute to neuronal death. Several reports have described the neurological manifestations in Covid-19 patients where, in severe cases of the infection, brain inflammation and encephalitis are common. Recently, extensive research-based studies have revealed and acknowledged the clinical and preventive roles of melatonin in some viral diseases. Melatonin has been shown to have antiviral properties against several viral infections which are accompanied by neurological symptoms. The beneficial properties of melatonin relate to its properties as a potent antioxidant, anti-inflammatory, and immunoregulatory molecule and its neuroprotective effects. In this review, what is known about the therapeutic role of melatonin in virus-induced neuropathogenesis is summarized and discussed.
Collapse
|
131
|
Sommer AP, Försterling HD, Sommer KE. Tutankhamun's Antimalarial Drug for Covid-19. Drug Res (Stuttg) 2021; 71:4-9. [PMID: 33128226 PMCID: PMC7869223 DOI: 10.1055/a-1274-1264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 09/28/2020] [Indexed: 12/19/2022]
Abstract
Drug repositioning is a strategy that identifies new uses of approved drugs to treat conditions different from their original purpose. Current efforts to treat Covid-19 are based on this strategy. The first drugs used in patients infected with SARS-CoV-2 were antimalarial drugs. It is their mechanism of action, i. e., rise in endosomal pH, which recommends them against the new coronavirus. Disregarding their side effects, the study of their antiviral activity provides valuable hints for the choice and design of drugs against SARS-CoV-2. One prominent drug candidate is thymoquinone, an antimalarial substance contained in Nigella sativa - most likely one of the first antimalarial drugs in human history. Since the outbreak of the pandemic, the number of articles relating thymoquinone to Covid-19 continuously increases. Here, we use it as an exemplary model drug, compare its antiviral mechanism with that of conventional antimalarial drugs and establish an irreducible parametric scheme for the identification of drugs with a potential in Covid-19.Translation into the laboratory is simple. Starting with the discovery of Nigella sativa seeds in the tomb of Pharaoh Tutankhamun, we establish a physicochemical model for the interaction of thymoquinone with both coronavirus and cells. Exploiting the predictive capability of the model, we provide a generalizable scheme for the systematic choice and design of drugs for Covid-19. An unexpected offshoot of our research is that Tutankhamun could not have died of malaria, a finding contrary to the mainstream theory.
Collapse
|
132
|
Cenini G, Hebisch M, Iefremova V, Flitsch LJ, Breitkreuz Y, Tanzi RE, Kim DY, Peitz M, Brüstle O. Dissecting Alzheimer's disease pathogenesis in human 2D and 3D models. Mol Cell Neurosci 2021; 110:103568. [DOI: 10.1016/j.mcn.2020.103568] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/30/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023] Open
|
133
|
Neuroimaging Advances in Diagnosis and Differentiation of HIV, Comorbidities, and Aging in the cART Era. Curr Top Behav Neurosci 2021; 50:105-143. [PMID: 33782916 DOI: 10.1007/7854_2021_221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In the "cART era" of more widely available and accessible treatment, aging and HIV-related comorbidities, including symptoms of brain dysfunction, remain common among HIV-infected individuals on suppressive treatment. A better understanding of the neurobiological consequences of HIV infection is essential for developing thorough treatment guidelines and for optimizing long-term neuropsychological outcomes and overall brain health. In this chapter, we first summarize magnetic resonance imaging (MRI) methods used in over two decades of neuroHIV research. These methods evaluate brain volumetric differences and circuitry disruptions in adults living with HIV, and help map clinical correlations with brain function and tissue microstructure. We then introduce and discuss aging and associated neurological complications in people living with HIV, and processes by which infection may contribute to the risk for late-onset dementias. We describe how new technologies and large-scale international collaborations are helping to disentangle the effect of genetic and environmental risk factors on brain aging and neurodegenerative diseases. We provide insights into how these advances, which are now at the forefront of Alzheimer's disease research, may advance the field of neuroHIV. We conclude with a summary of how we see the field of neuroHIV research advancing in the decades to come and highlight potential clinical implications.
Collapse
|
134
|
Brown MR, Radford SE, Hewitt EW. Modulation of β-Amyloid Fibril Formation in Alzheimer's Disease by Microglia and Infection. Front Mol Neurosci 2020; 13:609073. [PMID: 33324164 PMCID: PMC7725705 DOI: 10.3389/fnmol.2020.609073] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/03/2020] [Indexed: 01/06/2023] Open
Abstract
Amyloid plaques are a pathological hallmark of Alzheimer's disease. The major component of these plaques are highly ordered amyloid fibrils formed by amyloid-β (Aβ) peptides. However, whilst Aβ amyloid fibril assembly has been subjected to detailed and extensive analysis in vitro, these studies may not reproduce how Aβ fibrils assemble in the brain. This is because the brain represents a highly complex and dynamic environment, and in Alzheimer's disease multiple cofactors may affect the assembly of Aβ fibrils. Moreover, in vivo amyloid plaque formation will reflect the balance between the assembly of Aβ fibrils and their degradation. This review explores the roles of microglia as cofactors in Aβ aggregation and in the clearance of amyloid deposits. In addition, we discuss how infection may be an additional cofactor in Aβ fibril assembly by virtue of the antimicrobial properties of Aβ peptides. Crucially, by understanding the roles of microglia and infection in Aβ amyloid fibril assembly it may be possible to identify new therapeutic targets for Alzheimer's disease.
Collapse
Affiliation(s)
- Madeleine R Brown
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Sheena E Radford
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Eric W Hewitt
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
135
|
Rõlova T, Lehtonen Š, Goldsteins G, Kettunen P, Koistinaho J. Metabolic and immune dysfunction of glia in neurodegenerative disorders: Focus on iPSC models. Stem Cells 2020; 39:256-265. [PMID: 33270954 DOI: 10.1002/stem.3309] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022]
Abstract
The research on neurodegenerative disorders has long focused on neuronal pathology and used transgenic mice as disease models. However, our understanding of the chronic neurodegenerative process in the human brain is still very limited. It is increasingly recognized that neuronal loss is not caused solely by intrinsic degenerative processes but rather via impaired interactions with surrounding glia and other brain cells. Dysfunctional astrocytes do not provide sufficient nutrients and antioxidants to the neurons, while dysfunctional microglia cannot efficiently clear pathogens and cell debris from extracellular space, thus resulting in chronic inflammatory processes in the brain. Importantly, human glia, especially the astrocytes, differ significantly in morphology and function from their mouse counterparts, and therefore more human-based disease models are needed. Recent advances in stem cell technology make it possible to reprogram human patients' somatic cells to induced pluripotent stem cells (iPSC) and differentiate them further into patient-specific glia and neurons, thus providing a virtually unlimited source of human brain cells. This review summarizes the recent studies using iPSC-derived glial models of Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis and discusses the applicability of these models to drug testing. This line of research has shown that targeting glial metabolism can improve the survival and function of cocultured neurons and thus provide a basis for future neuroprotective treatments.
Collapse
Affiliation(s)
- Taisia Rõlova
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Šárka Lehtonen
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland.,A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Gundars Goldsteins
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Pinja Kettunen
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Jari Koistinaho
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland.,A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
136
|
Komaroff AL, Pellett PE, Jacobson S. Human Herpesviruses 6A and 6B in Brain Diseases: Association versus Causation. Clin Microbiol Rev 2020; 34:e00143-20. [PMID: 33177186 PMCID: PMC7667666 DOI: 10.1128/cmr.00143-20] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Human herpesvirus 6A (HHV-6A) and human herpesvirus 6B (HHV-6B), collectively termed HHV-6A/B, are neurotropic viruses that permanently infect most humans from an early age. Although most people infected with these viruses appear to suffer no ill effects, the viruses are a well-established cause of encephalitis in immunocompromised patients. In this review, we summarize the evidence that the viruses may also be one trigger for febrile seizures (including febrile status epilepticus) in immunocompetent infants and children, mesial temporal lobe epilepsy, multiple sclerosis (MS), and, possibly, Alzheimer's disease. We propose criteria for linking ubiquitous infectious agents capable of producing lifelong infection to any neurologic disease, and then we examine to what extent these criteria have been met for these viruses and these diseases.
Collapse
Affiliation(s)
- Anthony L Komaroff
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Philip E Pellett
- Department of Microbiology and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Steven Jacobson
- Virology/Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
137
|
Rutsch A, Kantsjö JB, Ronchi F. The Gut-Brain Axis: How Microbiota and Host Inflammasome Influence Brain Physiology and Pathology. Front Immunol 2020; 11:604179. [PMID: 33362788 PMCID: PMC7758428 DOI: 10.3389/fimmu.2020.604179] [Citation(s) in RCA: 381] [Impact Index Per Article: 76.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/11/2020] [Indexed: 12/13/2022] Open
Abstract
The human microbiota has a fundamental role in host physiology and pathology. Gut microbial alteration, also known as dysbiosis, is a condition associated not only with gastrointestinal disorders but also with diseases affecting other distal organs. Recently it became evident that the intestinal bacteria can affect the central nervous system (CNS) physiology and inflammation. The nervous system and the gastrointestinal tract are communicating through a bidirectional network of signaling pathways called the gut-brain axis, which consists of multiple connections, including the vagus nerve, the immune system, and bacterial metabolites and products. During dysbiosis, these pathways are dysregulated and associated with altered permeability of the blood-brain barrier (BBB) and neuroinflammation. However, numerous mechanisms behind the impact of the gut microbiota in neuro-development and -pathogenesis remain poorly understood. There are several immune pathways involved in CNS homeostasis and inflammation. Among those, the inflammasome pathway has been linked to neuroinflammatory conditions such as multiple sclerosis, Alzheimer's and Parkinson's diseases, but also anxiety and depressive-like disorders. The inflammasome complex assembles upon cell activation due to exposure to microbes, danger signals, or stress and lead to the production of pro-inflammatory cytokines (interleukin-1β and interleukin-18) and to pyroptosis. Evidences suggest that there is a reciprocal influence of microbiota and inflammasome activation in the brain. However, how this influence is precisely working is yet to be discovered. Herein, we discuss the status of the knowledge and the open questions in the field focusing on the function of intestinal microbial metabolites or products on CNS cells during healthy and inflammatory conditions, such as multiple sclerosis, Alzheimer's and Parkinson's diseases, and also neuropsychiatric disorders. In particular, we focus on the innate inflammasome pathway as immune mechanism that can be involved in several of these conditions, upon exposure to certain microbes.
Collapse
Affiliation(s)
| | | | - Francesca Ronchi
- Maurice Müller Laboratories, Department of Biomedical Research, Universitätsklinik für Viszerale Chirurgie und Medizin Inselspital, University of Berne, Berne, Switzerland
| |
Collapse
|
138
|
Baxter BD, Larson ED, Merle L, Feinstein P, Polese AG, Bubak AN, Niemeyer CS, Hassell J, Shepherd D, Ramakrishnan VR, Nagel MA, Restrepo D. Transcriptional profiling reveals potential involvement of microvillous TRPM5-expressing cells in viral infection of the olfactory epithelium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 32511400 DOI: 10.1101/2020.05.14.096016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Understanding viral infection of the olfactory epithelium is essential because the olfactory nerve is an important route of entry for viruses to the central nervous system. Specialized chemosensory epithelial cells that express the transient receptor potential cation channel subfamily M member 5 (TRPM5) are found throughout the airways and intestinal epithelium and are involved in responses to viral infection. Results Herein we performed deep transcriptional profiling of olfactory epithelial cells sorted by flow cytometry based on the expression of mCherry as a marker for olfactory sensory neurons and for eGFP in OMP-H2B::mCherry/TRPM5-eGFP transgenic mice ( Mus musculus ). We find profuse expression of transcripts involved in inflammation, immunity and viral infection in TRPM5-expressing microvillous cells. Conclusion Our study provides new insights into a potential role for TRPM5-expressing microvillous cells in viral infection of the olfactory epithelium. We find that, as found for solitary chemosensory cells (SCCs) and brush cells in the airway epithelium, and for tuft cells in the intestine, the transcriptome of TRPM5-expressing microvillous cells indicates that they are likely involved in the inflammatory response elicited by viral infection of the olfactory epithelium.
Collapse
|
139
|
Moskalev A, Stambler I, Caruso C. Innate and Adaptive Immunity in Aging and Longevity: The Foundation of Resilience. Aging Dis 2020; 11:1363-1373. [PMID: 33269094 PMCID: PMC7673842 DOI: 10.14336/ad.2020.0603] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/03/2020] [Indexed: 12/15/2022] Open
Abstract
The interrelation of the processes of immunity and senescence now receives an unprecedented emphasis during the COVID-19 pandemic, which brings to the fore the critical need to combat immunosenescence and improve the immune function and resilience of older persons. Here we review the historical origins and the current state of the science of innate and adaptive immunity in aging and longevity. From the modern point of view, innate and adaptive immunity are not only affected by aging but also are important parts of its underlying mechanisms. Excessive levels or activity of antimicrobial peptides, C-reactive protein, complement system, TLR/NF-κB, cGAS/STING/IFN 1,3 and AGEs/RAGE pathways, myeloid cells and NLRP3 inflammasome, declined levels of NK cells in innate immunity, thymus involution and decreased amount of naive T-cells in adaptive immunity, are biomarkers of aging and predisposition factors for cellular senescence and aging-related pathologies. Long-living species, human centenarians, and women are characterized by less inflamm-aging and decelerated immunosenescence. Despite recent progress in understanding, the harmonious theory of immunosenescence is still developing. Geroprotectors targeting these mechanisms are just emerging and are comprehensively discussed in this article.
Collapse
Affiliation(s)
- Alexey Moskalev
- Institute of Biology of FRC of Komi Scientific Center of Ural Branch of Russian Academy of Sciences, Syktyvkar, 167982, Russia.
| | - Ilia Stambler
- Vetek (Seniority), The Movement for Longevity and Quality of Life, Israel.
| | - Calogero Caruso
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| |
Collapse
|
140
|
Nyberg L, Boraxbekk CJ, Sörman DE, Hansson P, Herlitz A, Kauppi K, Ljungberg JK, Lövheim H, Lundquist A, Adolfsson AN, Oudin A, Pudas S, Rönnlund M, Stiernstedt M, Sundström A, Adolfsson R. Biological and environmental predictors of heterogeneity in neurocognitive ageing: Evidence from Betula and other longitudinal studies. Ageing Res Rev 2020; 64:101184. [PMID: 32992046 DOI: 10.1016/j.arr.2020.101184] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/04/2020] [Accepted: 09/15/2020] [Indexed: 12/15/2022]
Abstract
Individual differences in cognitive performance increase with advancing age, reflecting marked cognitive changes in some individuals along with little or no change in others. Genetic and lifestyle factors are assumed to influence cognitive performance in ageing by affecting the magnitude and extent of age-related brain changes (i.e., brain maintenance or atrophy), as well as the ability to recruit compensatory processes. The purpose of this review is to present findings from the Betula study and other longitudinal studies, with a focus on clarifying the role of key biological and environmental factors assumed to underlie individual differences in brain and cognitive ageing. We discuss the vital importance of sampling, analytic methods, consideration of non-ignorable dropout, and related issues for valid conclusions on factors that influence healthy neurocognitive ageing.
Collapse
Affiliation(s)
- Lars Nyberg
- Department of Radiation Sciences, Umeå University, S-90187 Umeå, Sweden; Umeå Center for Functional Brain Imaging (UFBI), Umeå University, S-90187 Umeå, Sweden; Department of Integrative Medical Biology, Umeå University, S-90187 Umeå, Sweden.
| | - Carl-Johan Boraxbekk
- Department of Radiation Sciences, Umeå University, S-90187 Umeå, Sweden; Umeå Center for Functional Brain Imaging (UFBI), Umeå University, S-90187 Umeå, Sweden; Danish Research Centre for Magnetic Resonance (DRCMR), Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark; Institute of Sports Medicine Copenhagen (ISMC), Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| | - Daniel Eriksson Sörman
- Department of Human Work Science, Luleå University of Technology, SE-97187 Luleå, Sweden
| | - Patrik Hansson
- Department of Psychology, Umeå University, S-90187 Umeå, Sweden
| | - Agneta Herlitz
- Department of Clinical Neuroscience, Division of Psychology, Karolinska Institutet, S-17177 Stockholm, Sweden
| | - Karolina Kauppi
- Department of Integrative Medical Biology, Umeå University, S-90187 Umeå, Sweden; Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Jessica K Ljungberg
- Department of Human Work Science, Luleå University of Technology, SE-97187 Luleå, Sweden
| | - Hugo Lövheim
- Department of Community Medicine and Rehabilitation, Geriatric Medicine, Umeå University, Umeå, Sweden; Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, Umeå, Sweden
| | - Anders Lundquist
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, S-90187 Umeå, Sweden; Department of Statistics, USBE, Umeå University, 901 87 Umeå, Sweden
| | | | - Anna Oudin
- Department of Public Health and Clinical Medicine, Umeå University, S-90187 Umeå, Sweden; Environment Society and Health, Occupational and Environmental Medicine, Lund University
| | - Sara Pudas
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, S-90187 Umeå, Sweden; Department of Integrative Medical Biology, Umeå University, S-90187 Umeå, Sweden
| | | | - Mikael Stiernstedt
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, S-90187 Umeå, Sweden; Department of Integrative Medical Biology, Umeå University, S-90187 Umeå, Sweden
| | - Anna Sundström
- Department of Psychology, Umeå University, S-90187 Umeå, Sweden; Centre for Demographic and Ageing Research (CEDAR), Umeå University, Umeå, S-90187, Sweden
| | - Rolf Adolfsson
- Department of Clinical Sciences, Umeå University, S-90187 Umeå, Sweden
| |
Collapse
|
141
|
Roy ER, Cao W. Antiviral Immune Response in Alzheimer's Disease: Connecting the Dots. Front Neurosci 2020; 14:577744. [PMID: 33132831 PMCID: PMC7561672 DOI: 10.3389/fnins.2020.577744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/08/2020] [Indexed: 11/15/2022] Open
Abstract
Alzheimer’s disease (AD) represents an enormous public health challenge currently and with increasing urgency in the coming decades. Our understanding of the etiology and pathogenesis of AD is rather incomplete, which is manifested in stagnated therapeutic developments. Apart from the well-established Amyloid Hypothesis of AD, gaining traction in recent years is the Pathogen Hypothesis, which postulates a causal role of infectious agents in the development of AD. Particularly, infection by viruses, among a diverse range of microorganisms, has been implicated. Recently, we described a prominent antiviral immune response in human AD brains as well as murine amyloid beta models, which has consequential effects on neuropathology. Such findings expectedly allude to the question about viral infections and AD. In this Perspective, we would like to discuss the molecular mechanism underlying the antiviral immune response, highlight how such pathway directly promotes AD pathogenesis, and depict a multilayered connection between antiviral immune response and other agents and factors relevant to AD. By tying together these threads of evidence, we provide a cohesive perspective on the uprising of antiviral immune response in AD.
Collapse
Affiliation(s)
- Ethan R Roy
- Huffington Center on Aging and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Wei Cao
- Huffington Center on Aging and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
142
|
Evidence for aggregation-independent, PrP C-mediated Aβ cellular internalization. Proc Natl Acad Sci U S A 2020; 117:28625-28631. [PMID: 33139554 DOI: 10.1073/pnas.2009238117] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Evidence linking amyloid beta (Aβ) cellular uptake and toxicity has burgeoned, and mechanisms underlying this association are subjects of active research. Two major, interconnected questions are whether Aβ uptake is aggregation-dependent and whether it is sequence-specific. We recently reported that the neuronal uptake of Aβ depends significantly on peptide chirality, suggesting that the process is predominantly receptor-mediated. Over the past decade, the cellular prion protein (PrPC) has emerged as an important mediator of Aβ-induced toxicity and of neuronal Aβ internalization. Here, we report that the soluble, nonfibrillizing Aβ (1-30) peptide recapitulates full-length Aβ stereoselective cellular uptake, allowing us to decouple aggregation from cellular, receptor-mediated internalization. Moreover, we found that Aβ (1-30) uptake is also dependent on PrPC expression. NMR-based molecular-level characterization identified the docking site on PrPC that underlies the stereoselective binding of Aβ (1-30). Our findings therefore identify a specific sequence within Aβ that is responsible for the recognition of the peptide by PrPC, as well as PrPC-dependent cellular uptake. Further uptake stereodifferentiation in PrPC-free cells points toward additional receptor-mediated interactions as likely contributors for Aβ cellular internalization. Taken together, our results highlight the potential of targeting cellular surface receptors to inhibit Aβ cellular uptake as an alternative route for future therapeutic development for Alzheimer's disease.
Collapse
|
143
|
Cao J, Wang M, Gong C, Amakye WK, Sun X, Ren J. Identification of Microbiota within Aβ Plaque in APP/PS1 Transgenic Mouse. J Mol Neurosci 2020; 71:953-962. [PMID: 33098544 DOI: 10.1007/s12031-020-01715-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/17/2020] [Indexed: 10/23/2022]
Abstract
Microbes like viruses, bacteria, and fungi have all been reported in the brain of Alzheimer's postmortem patients and/or AD mouse model; however, the relationship between brain microbes and Aβ plaque deposition remains to be elucidated. In the present study, we first analyzed bacteria populations in the brain of 4-, 5-, and 6-month-old APP/PS1 mice and then examined the Aβ-positive loads of APP/PS1 mouse at 9 months old to identify bacteria in the brain by 16S rDNA sequencing. Finally, blood-brain barrier permeability was measured by injecting dextrans through the tail vein. Surprisingly, the diversity of microbial community gradually decreased in APP/PS1 mouse while wild-type mouse showed no obvious regularity. Moreover, Aβ-positive deposits in the brain showed a significantly higher relative abundance of microbiota than Aβ-negative tissues and age-matched wild-type mouse brain tissues. In addition, an increase in blood-brain barrier permeability was also observed in APP/PS1 mouse. The present study revealed the exact location of microbes within the Aβ plaques in the brain and suggested the potential antimicrobial effect of the Aβ peptide. We strongly recommend that future research on microbiota-related AD pathology should focus on the migration route of microbiota into the brain and how the microbiota enhance AD progression.
Collapse
Affiliation(s)
- Jianing Cao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510641, People's Republic of China
| | - Min Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510641, People's Republic of China
| | - Congcong Gong
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510641, People's Republic of China
| | - William Kwame Amakye
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510641, People's Republic of China
| | - Xiaoyu Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510641, People's Republic of China
| | - Jiaoyan Ren
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510641, People's Republic of China. .,, Wushan Road 381, Guangzhou, 510641, China.
| |
Collapse
|
144
|
Qiao H, Guo M, Shang J, Zhao W, Wang Z, Liu N, Li B, Zhou Y, Wu Y, Chen P. Herpes simplex virus type 1 infection leads to neurodevelopmental disorder-associated neuropathological changes. PLoS Pathog 2020; 16:e1008899. [PMID: 33091073 PMCID: PMC7580908 DOI: 10.1371/journal.ppat.1008899] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 08/17/2020] [Indexed: 01/01/2023] Open
Abstract
Neonatal herpes simplex virus type 1 (HSV-1) infections contribute to various neurodevelopmental disabilities and the subsequent long-term neurological sequelae into the adulthood. However, further understanding of fetal brain development and the potential neuropathological effects of the HSV-1 infection are hampered by the limitations of existing neurodevelopmental models due to the dramatic differences between humans and other mammalians. Here we generated in vitro neurodevelopmental disorder models including human induced pluripotent stem cell (hiPSC)-based monolayer neuronal differentiation, three-dimensional (3D) neuroepithelial bud, and 3D cerebral organoid to study fetal brain development and the potential neuropathological effects induced by the HSV-1 infections. Our results revealed that the HSV-1-infected neural stem cells (NSCs) exhibited impaired neural differentiation. HSV-1 infection led to dysregulated neurogenesis in the fetal neurodevelopment. The HSV-1-infected brain organoids modelled the pathological features of the neurodevelopmental disorders in the human fetal brain, including the impaired neuronal differentiation, and the dysregulated cortical layer and brain regionalization. Furthermore, the 3D cerebral organoid model showed that HSV-1 infection promoted the abnormal microglial activation, accompanied by the induction of inflammatory factors, such as TNF-α, IL-6, IL-10, and IL-4. Overall, our in vitro neurodevelopmental disorder models reconstituted the neuropathological features associated with HSV-1 infection in human fetal brain development, providing the causal relationships that link HSV biology with the neurodevelopmental disorder pathogen hypothesis. HSV-1 is one of the most prevalent human pathogens that can spread into the fetal central nervous system by maternal-fetal transmission, and thus resulting in long-term neurological sequelae in adult, including cognitive dysfunction and learning disabilities. However, there is a very limited progress in understanding the role of HSV-1 on human fetal brain development due to limited access to fetal human brain tissue as well as the limitations of existing neurodevelopmental and infection models. Here, we generated the in vitro neurodevelopmental disorder models including hiPSC-based monolayer neuronal differentiation, three-dimensional (3D) neuroepithelial bud, and 3D cerebral organoid to study the neurodevelopmental disorder-associated neuropathological changes with HSV-1 infection in human fetal brain development. Our results revealed that HSV-1 infection led to impaired neural differentiation and dysregulated neurogenesis in the fetal neurodevelopment. Additionally, HSV-1 infection impaired neuronal differentiation and dysregulated brain regionalization in our cerebral organoid model. Furthermore, the cerebral organoid model showed that HSV-1 infection led to the abnormal microglial proliferation and activation, accompanied by the induction of inflammatory factors including TNF-α, IL-6, IL-10, and IL-4. Taken together, our study provides novel evidence that HSV-1 infection impaired human brain development and contributed to neurodevelopmental disorder pathogen hypothesis, and would have implications for raising the therapeutic opportunities for targeting of viral reservoirs relevant to neurodevelopmental disorder.
Collapse
Affiliation(s)
- Haowen Qiao
- Department of Biomedical Engineering, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei, China
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan, Hubei, China
| | - Moujian Guo
- State Key Laboratory of Virology, Wuhan University, Wuhan, Hubei, China
- Institute of Medical Virology, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei, China
| | - Jia Shang
- Department of Biomedical Engineering, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei, China
| | - Wen Zhao
- Department of Biomedical Engineering, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei, China
| | - Zhenyan Wang
- Department of Biomedical Engineering, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei, China
| | - Nian Liu
- Department of Biomedical Engineering, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei, China
| | - Bin Li
- Department of Biomedical Engineering, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei, China
| | - Ying Zhou
- Research Center for Medicine and Structural Biology of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Ying Wu
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan, Hubei, China
- State Key Laboratory of Virology, Wuhan University, Wuhan, Hubei, China
- Institute of Medical Virology, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei, China
- * E-mail: (YW); (PC)
| | - Pu Chen
- Department of Biomedical Engineering, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei, China
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan, Hubei, China
- State Key Laboratory of Virology, Wuhan University, Wuhan, Hubei, China
- * E-mail: (YW); (PC)
| |
Collapse
|
145
|
Shou Y, Liang F, Xu S, Li X. The Application of Brain Organoids: From Neuronal Development to Neurological Diseases. Front Cell Dev Biol 2020; 8:579659. [PMID: 33195219 PMCID: PMC7642488 DOI: 10.3389/fcell.2020.579659] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/17/2020] [Indexed: 12/13/2022] Open
Abstract
Brain organoids are derived from induced pluripotent stem cells and embryonic stem cells under three-dimensional culture condition. The generation of an organoid requires the self-assembly of stem cells, progenitor cells, and multiple types of differentiated cells. Organoids display structures that resemble defined brain regions and simulate specific changes of neurological disorders; thus, organoids have become an excellent model for investigating brain development and neurological diseases. In the present review, we have summarized recent advances of the methods of culturing brain organoids and the applications of brain organoids in investigating neurodevelopmental and neurodegenerative diseases.
Collapse
Affiliation(s)
- Yikai Shou
- The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, China.,National Clinical Research Center for Child Health, Hangzhou, China
| | - Feng Liang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shunliang Xu
- Department of Neurology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xuekun Li
- The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, China.,National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|
146
|
Ramani A, Müller L, Ostermann PN, Gabriel E, Abida-Islam P, Müller-Schiffmann A, Mariappan A, Goureau O, Gruell H, Walker A, Andrée M, Hauka S, Houwaart T, Dilthey A, Wohlgemuth K, Omran H, Klein F, Wieczorek D, Adams O, Timm J, Korth C, Schaal H, Gopalakrishnan J. SARS-CoV-2 targets neurons of 3D human brain organoids. EMBO J 2020; 39:e106230. [PMID: 32876341 PMCID: PMC7560208 DOI: 10.15252/embj.2020106230] [Citation(s) in RCA: 349] [Impact Index Per Article: 69.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023] Open
Abstract
COVID‐19 pandemic caused by SARS‐CoV‐2 infection is a public health emergency. COVID‐19 typically exhibits respiratory illness. Unexpectedly, emerging clinical reports indicate that neurological symptoms continue to rise, suggesting detrimental effects of SARS‐CoV‐2 on the central nervous system (CNS). Here, we show that a Düsseldorf isolate of SARS‐CoV‐2 enters 3D human brain organoids within 2 days of exposure. We identified that SARS‐CoV‐2 preferably targets neurons of brain organoids. Imaging neurons of organoids reveal that SARS‐CoV‐2 exposure is associated with altered distribution of Tau from axons to soma, hyperphosphorylation, and apparent neuronal death. Our studies, therefore, provide initial insights into the potential neurotoxic effect of SARS‐CoV‐2 and emphasize that brain organoids could model CNS pathologies of COVID‐19.
Collapse
Affiliation(s)
- Anand Ramani
- Institute of Human Genetics, University Hospital Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Lisa Müller
- Institute of Virology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Philipp N Ostermann
- Institute of Virology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Elke Gabriel
- Institute of Human Genetics, University Hospital Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Pranty Abida-Islam
- Institute of Human Genetics, University Hospital Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Andreas Müller-Schiffmann
- Institute of Neuropathology, University Hospital Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Aruljothi Mariappan
- Institute of Human Genetics, University Hospital Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Olivier Goureau
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Henning Gruell
- Institute of Virology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Andreas Walker
- Institute of Virology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Marcel Andrée
- Institute of Virology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Sandra Hauka
- Institute of Virology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Torsten Houwaart
- Institute of Medical Microbiology and Hygiene, University Hospital, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Alexander Dilthey
- Institute of Medical Microbiology and Hygiene, University Hospital, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Kai Wohlgemuth
- Department of General Pediatrics, University Children's Hospital Muenster, Muenster, Germany
| | - Heymut Omran
- Department of General Pediatrics, University Children's Hospital Muenster, Muenster, Germany
| | - Florian Klein
- Institute of Virology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany.,German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Dagmar Wieczorek
- Institute of Human Genetics, University Hospital Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Ortwin Adams
- Institute of Virology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Jörg Timm
- Institute of Virology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Carsten Korth
- Institute of Neuropathology, University Hospital Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Heiner Schaal
- Institute of Virology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Jay Gopalakrishnan
- Institute of Human Genetics, University Hospital Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany
| |
Collapse
|
147
|
Simpson L, Szeto GL, Boukari H, Good TA, Leach JB. Impact of Four Common Hydrogels on Amyloid-β (Aβ) Aggregation and Cytotoxicity: Implications for 3D Models of Alzheimer's Disease. ACS OMEGA 2020; 5:20250-20260. [PMID: 32832778 PMCID: PMC7439392 DOI: 10.1021/acsomega.0c02046] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 07/23/2020] [Indexed: 05/08/2023]
Abstract
The physiochemical properties of hydrogels utilized in 3D culture can be used to modulate cell phenotype and morphology with a striking resemblance to cellular processes that occur in vivo. Indeed, research areas including regenerative medicine, tissue engineering, in vitro cancer models, and stem cell differentiation have readily utilized 3D biomaterials to investigate cell biological questions. However, cells are only one component of this biomimetic milieu. In many models of disease such as Alzheimer's disease (AD) that could benefit from the in vivo-like cell morphology associated with 3D culture, other aspects of the disease such as protein aggregation have yet to be methodically considered in this 3D context. A hallmark of AD is the accumulation of the peptide amyloid-β (Aβ), whose aggregation is associated with neurotoxicity. We have previously demonstrated the attenuation of Aβ cytotoxicity when cells were cultured within type I collagen hydrogels versus on 2D substrates. In this work, we investigated the extent to which this phenomenon is conserved when Aβ is confined within hydrogels of varying physiochemical properties, notably mesh size and bioactivity. We investigated the Aβ structure and aggregation kinetics in solution and hydrogels composed of type I collagen, agarose, hyaluronic acid, and polyethylene glycol using fluorescence correlation spectroscopy and thioflavin T assays. Our results reveal that all hydrogels tested were associated with enhanced Aβ aggregation and Aβ cytotoxicity attenuation. We suggest that confinement itself imparts a profound effect, possibly by stabilizing Aβ structures and shifting the aggregate equilibrium toward larger species. If this phenomenon of altered protein aggregation in 3D hydrogels can be generalized to other contexts including the in vivo environment, it may be necessary to reevaluate aspects of protein aggregation disease models used for drug discovery.
Collapse
Affiliation(s)
- Laura
W. Simpson
- Department
of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Eng 314, Baltimore, Maryland 21250, United States
| | - Gregory L. Szeto
- Department
of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Eng 314, Baltimore, Maryland 21250, United States
- Marlene
and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, 22 S Greene Street, Baltimore, Maryland 21201, United
States
| | - Hacene Boukari
- Division
of Physical and Computational Sciences, Delaware State University, 1200 N. Dupont Highway, Dover, Delaware 19901, United States
| | - Theresa A. Good
- Division
of Molecular and Cellular Biosciences, National
Science Foundation, 2415 Eisenhower Avenue, E 12485, Alexandria, Virginia 22314, United States
| | - Jennie B. Leach
- Department
of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Eng 314, Baltimore, Maryland 21250, United States
| |
Collapse
|
148
|
Li D, Yang H, Xiong F, Xu X, Zeng WB, Zhao F, Luo MH. Anterograde Neuronal Circuit Tracers Derived from Herpes Simplex Virus 1: Development, Application, and Perspectives. Int J Mol Sci 2020; 21:E5937. [PMID: 32824837 PMCID: PMC7460661 DOI: 10.3390/ijms21165937] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/16/2020] [Accepted: 08/17/2020] [Indexed: 12/19/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) has great potential to be applied as a viral tool for gene delivery or oncolysis. The broad infection tropism of HSV-1 makes it a suitable tool for targeting many different cell types, and its 150 kb double-stranded DNA genome provides great capacity for exogenous genes. Moreover, the features of neuron infection and neuron-to-neuron spread also offer special value to neuroscience. HSV-1 strain H129, with its predominant anterograde transneuronal transmission, represents one of the most promising anterograde neuronal circuit tracers to map output neuronal pathways. Decades of development have greatly expanded the H129-derived anterograde tracing toolbox, including polysynaptic and monosynaptic tracers with various fluorescent protein labeling. These tracers have been applied to neuroanatomical studies, and have contributed to revealing multiple important neuronal circuits. However, current H129-derived tracers retain intrinsic drawbacks that limit their broad application, such as yet-to-be improved labeling intensity, potential nonspecific retrograde labeling, and high toxicity. The biological complexity of HSV-1 and its insufficiently characterized virological properties have caused difficulties in its improvement and optimization as a viral tool. In this review, we focus on the current H129-derived viral tracers and highlight strategies in which future technological development can advance its use as a tool.
Collapse
Affiliation(s)
- Dong Li
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (D.L.); (H.Y.); (F.X.); (W.-B.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Yang
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (D.L.); (H.Y.); (F.X.); (W.-B.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng Xiong
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (D.L.); (H.Y.); (F.X.); (W.-B.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangmin Xu
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA 92697-1275, USA;
| | - Wen-Bo Zeng
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (D.L.); (H.Y.); (F.X.); (W.-B.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fei Zhao
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Min-Hua Luo
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (D.L.); (H.Y.); (F.X.); (W.-B.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
149
|
Baggiani M, Dell’Anno MT, Pistello M, Conti L, Onorati M. Human Neural Stem Cell Systems to Explore Pathogen-Related Neurodevelopmental and Neurodegenerative Disorders. Cells 2020; 9:E1893. [PMID: 32806773 PMCID: PMC7464299 DOI: 10.3390/cells9081893] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/07/2020] [Accepted: 08/09/2020] [Indexed: 12/18/2022] Open
Abstract
Building and functioning of the human brain requires the precise orchestration and execution of myriad molecular and cellular processes, across a multitude of cell types and over an extended period of time. Dysregulation of these processes affects structure and function of the brain and can lead to neurodevelopmental, neurological, or psychiatric disorders. Multiple environmental stimuli affect neural stem cells (NSCs) at several levels, thus impairing the normal human neurodevelopmental program. In this review article, we will delineate the main mechanisms of infection adopted by several neurotropic pathogens, and the selective NSC vulnerability. In particular, TORCH agents, i.e., Toxoplasma gondii, others (including Zika virus and Coxsackie virus), Rubella virus, Cytomegalovirus, and Herpes simplex virus, will be considered for their devastating effects on NSC self-renewal with the consequent neural progenitor depletion, the cellular substrate of microcephaly. Moreover, new evidence suggests that some of these agents may also affect the NSC progeny, producing long-term effects in the neuronal lineage. This is evident in the paradigmatic example of the neurodegeneration occurring in Alzheimer's disease.
Collapse
Affiliation(s)
- Matteo Baggiani
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, 56126 Pisa, Italy;
| | - Maria Teresa Dell’Anno
- Cellular Engineering Laboratory, Fondazione Pisana per la Scienza ONLUS, 56017 Pisa, Italy;
| | - Mauro Pistello
- Retrovirus Center and Virology Section, Department of Translational Research, University of Pisa and Virology Division, Pisa University Hospital, 56100 Pisa, Italy;
| | - Luciano Conti
- Department of Cellular, Computational and Integrative Biology—CIBIO, University of Trento, 38122 Trento, Italy;
| | - Marco Onorati
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, 56126 Pisa, Italy;
| |
Collapse
|
150
|
The Viral Hypothesis in Alzheimer's Disease: Novel Insights and Pathogen-Based Biomarkers. J Pers Med 2020; 10:jpm10030074. [PMID: 32751069 PMCID: PMC7563893 DOI: 10.3390/jpm10030074] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023] Open
Abstract
Early diagnosis of Alzheimer’s disease (AD) and the identification of significant risk factors are necessary to better understand disease progression, and to develop intervention-based therapies prior to significant neurodegeneration. There is thus a critical need to establish biomarkers which can predict the risk of developing AD before the onset of cognitive decline. A number of studies have indicated that exposure to various microbial pathogens can accelerate AD pathology. Additionally, several studies have indicated that amyloid-β possess antimicrobial properties and may act in response to infection as a part of the innate immune system. These findings have led some to speculate that certain types of infections may play a significant role in AD pathogenesis. In this review, we will provide an overview of studies which suggest pathogen involvement in AD. Additionally, we will discuss a number of pathogen-associated biomarkers which may be effective in establishing AD risk. Infections that increase the risk of AD represent a modifiable risk factor which can be treated with therapeutic intervention. Pathogen-based biomarkers may thus be a valuable tool for evaluating and decreasing AD risk across the population.
Collapse
|