101
|
Abstract
OBJECTIVE The aim of this study was to determine whether downstream [peroxisome proliferator-activated-receptor alpha (PPARα) and the G-protein coupled receptor, GPR119] and upstream (a fatty acid translocase, CD36) signaling targets of N-oleoylethanolamide (OEA) were necessary for weight loss, metabolic improvements, and diet preference following vertical sleeve gastrectomy (VSG). SUMMARY BACKGROUND DATA OEA is an anorectic N-acylethanolamine produced from dietary fats within the intestinal lumen that can modulate lipid metabolism, insulin secretion, and energy expenditure by activating targets such as PPARα and GPR119. METHODS Diet-induced obese mice, including wild-type or whole body knockout (KO) of PPARα, GPR119, and CD36, were stratified to either VSG or sham surgery before body weight, body composition, diet preference, and glucose and lipid metabolic endpoints were assessed. RESULTS We found increased duodenal production of OEA and expression of both GPR119 and CD36 were upregulated in wild-type mice after VSG. However, weight loss and glucose tolerance were improved in response to VSG in PPARαKO, GPR119KO, and CD36KO mice. In fact, VSG corrected hepatic triglyceride dysregulation in CD36KO mice, and circulating triglyceride and cholesterol levels in PPARαKO mice. Lastly, we found PPARα-mediated signaling contributes to macronutrient preference independent of VSG, while removal of CD36 signaling blunts the VSG-induced shift toward carbohydrate preference. CONCLUSIONS In the search for more effective and less invasive therapies to help reverse the global acceleration of obesity and obesity-related disease OEA is a promising candidate; however, our data indicate that it is not an underlying mechanism of the effectiveness of VSG.
Collapse
|
102
|
Zimmerman CA, Knight ZA. Layers of signals that regulate appetite. Curr Opin Neurobiol 2020; 64:79-88. [PMID: 32311645 DOI: 10.1016/j.conb.2020.03.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/14/2020] [Accepted: 03/16/2020] [Indexed: 12/20/2022]
Abstract
All meals come to an end. This is because eating and drinking generate feedback signals that communicate to the brain what and how much has been consumed. Here we review our current understanding of how these feedback signals regulate appetite. We first describe classic studies that surgically manipulated the gastrointestinal tract and measured the effects on behavior. We then highlight recent experiments that have used in vivo neural recordings to directly observe how ingestion modulates circuit dynamics in the brain. A general theme emerging from this work is that eating and drinking generate layers of feedback signals, arising sequentially from different tissues in the body, that converge on individual neurons in the forebrain to regulate hunger and thirst.
Collapse
Affiliation(s)
- Christopher A Zimmerman
- Department of Physiology, University of California San Francisco, San Francisco, CA, USA; Kavli Institute for Fundamental Neuroscience, University of California San Francisco, San Francisco, CA, USA; Neuroscience Graduate Program, University of California San Francisco, San Francisco, CA, USA
| | - Zachary A Knight
- Department of Physiology, University of California San Francisco, San Francisco, CA, USA; Kavli Institute for Fundamental Neuroscience, University of California San Francisco, San Francisco, CA, USA; Neuroscience Graduate Program, University of California San Francisco, San Francisco, CA, USA; Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
103
|
Guan Y, Deng Q, Li G, Si L, Long L, Soleimani Damaneh M, Huang J. Development, validation and comparison of three LC-MS/MS methods for determination of endogenous striatal oleoyl ethanolamine in mice. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1142:122041. [DOI: 10.1016/j.jchromb.2020.122041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/16/2020] [Accepted: 02/24/2020] [Indexed: 01/31/2023]
|
104
|
Abstract
AbstractThe increasing availability of ultra-processed, energy dense food is contributing to the spread of the obesity pandemic, which is a serious health threat in today’s world. One possible cause for this association arises from the fact that the brain is wired to derive pleasure from eating. Specifically, food intake activates reward pathways involving dopamine receptor signalling. The reinforcing value of specific food items results from the interplay between taste and nutritional properties. Increasing evidence suggests that nutritional value is sensed in the gut by chemoreceptors in the intestinal tract and the hepatic portal vein, and conveyed to the brain through neuronal and endocrine pathways to guide food selection behaviour. Ultra-processed food is designed to potentiate the reward response through a combination of high fat and high sugar, therebye seeming highly appetizing. There is increasing evidence that overconsumption of processed food distorts normal reward signalling, leading to compulsive eating behaviour and obesity. Hence, it is essential to understand food reward and gut-brain signalling to find an effective strategy to combat the obesity pandemic.
Collapse
Affiliation(s)
| | - Marc Tittgemeyer
- Max Planck Institute for Metabolism ResearchGleueler Strasse 50, 50931 CologneCologneGermany
| |
Collapse
|
105
|
Tutunchi H, Saghafi-Asl M, Ostadrahimi A. A systematic review of the effects of oleoylethanolamide, a high-affinity endogenous ligand of PPAR-α, on the management and prevention of obesity. Clin Exp Pharmacol Physiol 2020; 47:543-552. [PMID: 31868943 DOI: 10.1111/1440-1681.13238] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/23/2019] [Accepted: 12/17/2019] [Indexed: 02/06/2023]
Abstract
Along with an increase in overweight and obesity among all age groups, the development of efficacious and safe anti-obesity strategies for patients, as well as health systems, is critical. Oleoylethanolamide (OEA), a high-affinity endogenous ligand of nuclear receptor peroxisome proliferator-activated receptor alpha (PPAR-α), plays important physiological and metabolic actions. OEA is derived from oleic acid, a monounsaturated fatty acid, which has beneficial effects on body composition and regional fat distribution. The role of OEA in the modulation of food consumption and weight management makes it an attractive molecule requiring further exploration in obesogenic environments. This systematic review was conducted to assess the effects of OEA on the obesity management, with emphasizing on its physiological roles and possible mechanisms of action in energy homeostasis. We searched PubMed/Medline, Google Scholar, ScienceDirect, Scopus, ProQuest, and EMBASE up until September 2019. Out of 712 records screened, 30 articles met the study criteria. The evidence reviewed here indicates that OEA, an endocannabinoid-like compound, leads to satiation or meal termination through PPAR-α activation and fatty acid translocase (FAT)/CD36. Additionally, the lipid-amide OEA stimulates fatty acid uptake, lipolysis, and beta-oxidation, and also promotes food intake control. OEA also exerts satiety-inducing effects by activating the hedonic dopamine pathways and increasing homeostatic oxytocin and brain histamine. In conclusion, OEA may be a key component of the physiological system involved in the regulation of dietary fat consumption and energy homeostasis; therefore, it is suggested as a possible therapeutic agent for the management of obesity.
Collapse
Affiliation(s)
- Helda Tutunchi
- Student Research Committee, Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Saghafi-Asl
- Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Ostadrahimi
- Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
106
|
Abstract
The conscious perception of the hedonic sensory properties of caloric foods is commonly believed to guide our dietary choices. Current and traditional models implicate the consciously perceived hedonic qualities of food as driving overeating, whereas subliminal signals arising from the gut would curb our uncontrolled desire for calories. Here we review recent animal and human studies that support a markedly different model for food reward. These findings reveal in particular the existence of subcortical body-to-brain neural pathways linking gastrointestinal nutrient sensors to the brain's reward regions. Unexpectedly, consciously perceptible hedonic qualities appear to play a less relevant, and mostly transient, role in food reinforcement. In this model, gut-brain reward pathways bypass cranial taste and aroma sensory receptors and the cortical networks that give rise to flavor perception. They instead reinforce behaviors independently of the cognitive processes that support overt insights into the nature of our dietary decisions.
Collapse
Affiliation(s)
- Ivan E. de Araujo
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Modern Diet and Physiology Research Center, Yale University, New Haven, Connecticut 06511, USA
| | - Mark Schatzker
- Modern Diet and Physiology Research Center, Yale University, New Haven, Connecticut 06511, USA
| | - Dana M. Small
- Modern Diet and Physiology Research Center, Yale University, New Haven, Connecticut 06511, USA
- Departments of Psychiatry and Psychology, Yale University, New Haven, Connecticut 06511, USA
| |
Collapse
|
107
|
Teckentrup V, Neubert S, Santiago JCP, Hallschmid M, Walter M, Kroemer NB. Non-invasive stimulation of vagal afferents reduces gastric frequency. Brain Stimul 2019; 13:470-473. [PMID: 31884186 DOI: 10.1016/j.brs.2019.12.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/27/2019] [Accepted: 12/15/2019] [Indexed: 12/18/2022] Open
Abstract
Metabolic feedback between the gut and the brain relayed via the vagus nerve contributes to energy homeostasis. We investigated in healthy adults whether non-invasive stimulation of vagal afferents impacts energy homeostasis via efferent effects on metabolism or digestion. In a randomized crossover design, we applied transcutaneous auricular vagus nerve stimulation (taVNS) while recording efferent metabolic effects using simultaneous electrogastrography (EGG) and indirect calorimetry. We found that taVNS reduced gastric myoelectric frequency (p = .008), but did not alter resting energy expenditure. We conclude that stimulating vagal afferents induces gastric slowing via vagal efferents without acutely affecting net energy expenditure at rest. Collectively, this highlights the potential of taVNS to modulate digestion by activating the dorsal vagal complex. Thus, taVNS-induced changes in gastric frequency are an important peripheral marker of brain stimulation effects.
Collapse
Affiliation(s)
- Vanessa Teckentrup
- University of Tübingen, Department of Psychiatry and Psychotherapy, Germany.
| | - Sandra Neubert
- University of Tübingen, Department of Psychiatry and Psychotherapy, Germany
| | - João C P Santiago
- University of Tübingen, Department of Medical Psychology and Behavioral Neurobiology, Germany; German Center for Diabetes Research (DZD), Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the Eberhard Karls University Tübingen, Tübingen, Germany
| | - Manfred Hallschmid
- University of Tübingen, Department of Medical Psychology and Behavioral Neurobiology, Germany; German Center for Diabetes Research (DZD), Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the Eberhard Karls University Tübingen, Tübingen, Germany
| | - Martin Walter
- University of Tübingen, Department of Psychiatry and Psychotherapy, Germany; University of Magdeburg, Department of Psychiatry and Psychotherapy, Germany; Leibniz Institute for Neurobiology, Magdeburg, Germany; University of Jena, Department of Psychiatry and Psychotherapy, Germany
| | - Nils B Kroemer
- University of Tübingen, Department of Psychiatry and Psychotherapy, Germany.
| |
Collapse
|
108
|
Mochida T, Take K, Maki T, Nakakariya M, Adachi R, Sato K, Kitazaki T, Takekawa S. Inhibition of MGAT2 modulates fat-induced gut peptide release and fat intake in normal mice and ameliorates obesity and diabetes in ob/ob mice fed on a high-fat diet. FEBS Open Bio 2019; 10:316-326. [PMID: 31837122 PMCID: PMC7050258 DOI: 10.1002/2211-5463.12778] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/12/2019] [Accepted: 12/11/2019] [Indexed: 11/29/2022] Open
Abstract
Monoacylglycerol O‐acyltransferase 2 (MGAT2) is one of the key enzymes responsible for triglyceride (TG) re‐synthesis in the small intestine. We have previously demonstrated that pharmacological inhibition of MGAT2 has beneficial effects on obesity and metabolic disorders in mice. Here, we further investigate the effects of MGAT2 inhibition on (a) fat‐induced gut peptide release and fat intake in normal mice and (b) metabolic disorders in high‐fat diet (HFD)‐fed ob/ob mice, a model of severe obesity and type 2 diabetes mellitus, using an orally bioavailable MGAT2 inhibitor Compound B (CpdB). CpdB inhibited elevation of plasma TG in mice challenged with an oil‐supplemented liquid meal. Oil challenge stimulated the secretion of two gut anorectic hormones (peptide tyrosine–tyrosine and glucagon‐like peptide‐1) into the bloodstream, and these responses were augmented in mice pretreated with CpdB. In a two‐choice test using an HFD and a low‐fat diet, CpdB selectively inhibited intake of the HFD in normal mice. Administration of CpdB to HFD‐fed ob/ob mice for 5 weeks suppressed food intake and body weight gain and inhibited elevation of glycated hemoglobin. These results indicate that pharmacological MGAT2 inhibition modulates fat‐induced gut peptide release and fat intake in normal mice and improves obesity and diabetes in HFD‐fed ob/ob mice and thus may have potential for development into a treatment of obesity and its related metabolic diseases.
Collapse
Affiliation(s)
- Taisuke Mochida
- Cardiovascular and Metabolic Drug Discovery Unit, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Kazumi Take
- Cardiovascular and Metabolic Drug Discovery Unit, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Toshiyuki Maki
- Cardiovascular and Metabolic Drug Discovery Unit, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Masanori Nakakariya
- Drug Metabolism and Pharmacokinetics Research Laboratories, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Ryutaro Adachi
- Biomolecular Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Kenjiro Sato
- Cardiovascular and Metabolic Drug Discovery Unit, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Tomoyuki Kitazaki
- Cardiovascular and Metabolic Drug Discovery Unit, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Shiro Takekawa
- Cardiovascular and Metabolic Drug Discovery Unit, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| |
Collapse
|
109
|
Grevengoed TJ, Trammell SAJ, McKinney MK, Petersen N, Cardone RL, Svenningsen JS, Ogasawara D, Nexøe-Larsen CC, Knop FK, Schwartz TW, Kibbey RG, Cravatt BF, Gillum MP. N-acyl taurines are endogenous lipid messengers that improve glucose homeostasis. Proc Natl Acad Sci U S A 2019; 116:24770-24778. [PMID: 31740614 PMCID: PMC6900532 DOI: 10.1073/pnas.1916288116] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Fatty acid amide hydrolase (FAAH) degrades 2 major classes of bioactive fatty acid amides, the N-acylethanolamines (NAEs) and N-acyl taurines (NATs), in central and peripheral tissues. A functional polymorphism in the human FAAH gene is linked to obesity and mice lacking FAAH show altered metabolic states, but whether these phenotypes are caused by elevations in NAEs or NATs is unknown. To overcome the problem of concurrent elevation of NAEs and NATs caused by genetic or pharmacological disruption of FAAH in vivo, we developed an engineered mouse model harboring a single-amino acid substitution in FAAH (S268D) that selectively disrupts NAT, but not NAE, hydrolytic activity. The FAAH-S268D mice accordingly show substantial elevations in NATs without alterations in NAE content, a unique metabolic profile that correlates with heightened insulin sensitivity and GLP-1 secretion. We also show that N-oleoyl taurine (C18:1 NAT), the most abundant NAT in human plasma, decreases food intake, improves glucose tolerance, and stimulates GPR119-dependent GLP-1 and glucagon secretion in mice. Together, these data suggest that NATs act as a class of lipid messengers that improve postprandial glucose regulation and may have potential as investigational metabolites to modify metabolic disease.
Collapse
Affiliation(s)
- Trisha J Grevengoed
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Samuel A J Trammell
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Michele K McKinney
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037
| | - Natalia Petersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Rebecca L Cardone
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06519
| | - Jens S Svenningsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Daisuke Ogasawara
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037
| | - Christina C Nexøe-Larsen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, 2900 Hellerup, Denmark
| | - Filip K Knop
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, 2900 Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Clinical Metabolic Physiology, Steno Diabetes Center Copenhagen, Gentofte, 2820 Hellerup, Denmark
| | - Thue W Schwartz
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Richard G Kibbey
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06519
| | - Benjamin F Cravatt
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037;
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037
| | - Matthew P Gillum
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark;
| |
Collapse
|
110
|
Brutman JN, Sirohi S, Davis JF. Recent Advances in the Neurobiology of Altered Motivation Following Bariatric Surgery. Curr Psychiatry Rep 2019; 21:117. [PMID: 31707546 DOI: 10.1007/s11920-019-1084-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE OF REVIEW There is compelling evidence in the clinical population that long-term weight loss secondary to bariatric surgery is mitigated by the reemergence of maladaptive feeding behaviors and in some cases new onset substance abuse. RECENT FINDINGS A review of the current literature suggests that physical restructuring of the GI tract during WLS alters secretion of feeding peptides and nutrient-sensing mechanisms that directly target the brain's endogenous reward system, the mesolimbic dopamine system. Post-surgical changes in GI physiology augment activation of the mesolimbic system. In some patients, this process may contribute to a reduced appetite for palatable food whereas in others it may support maladaptive motivated behavior for food and chemical drugs. It is concluded that future studies are required to detail the timing and duration of surgical-induced changes in GI-mesolimbic communication to more fully understand this phenomenon.
Collapse
Affiliation(s)
- Julianna N Brutman
- Department of Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, 1815 Ferdinand's Lane, Pullman, WA, 99164, USA
| | - Sunil Sirohi
- Laboratory of Endocrine and Neuropsychiatric Disorders, Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA, USA
| | - Jon F Davis
- Department of Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, 1815 Ferdinand's Lane, Pullman, WA, 99164, USA.
| |
Collapse
|
111
|
Affiliation(s)
- Dana M Small
- Modern Diet and Physiology Research Center, Department of Psychiatry, Yale University School of Medicine, Suite 6A, 1 Church Street, New Haven, CT 06510, USA.
| | - Alexandra G DiFeliceantonio
- Modern Diet and Physiology Research Center, Department of Psychiatry, Yale University School of Medicine, Suite 6A, 1 Church Street, New Haven, CT 06510, USA
| |
Collapse
|
112
|
Leite F, Ribeiro L. Dopaminergic Pathways in Obesity-Associated Inflammation. J Neuroimmune Pharmacol 2019; 15:93-113. [PMID: 31317376 DOI: 10.1007/s11481-019-09863-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 07/02/2019] [Indexed: 12/11/2022]
|
113
|
Sihag J, Jones PJH. Dietary fatty acid profile influences circulating and tissue fatty acid ethanolamide concentrations in a tissue-specific manner in male Syrian hamsters. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:1563-1579. [PMID: 31301433 DOI: 10.1016/j.bbalip.2019.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/04/2019] [Accepted: 07/07/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND The discovery of N‑acylethanolamines (NAEs) has prompted an increase in research aimed at understanding their biological roles including regulation of appetite and energy metabolism. However, a knowledge gap remains to understand the effect of dietary components on NAE levels, in particular, heterogeneity in dietary fatty acid (DFA) profile, on NAE levels across various organs. OBJECTIVE To identify and elucidate the impact of diet on NAE levels in seven different tissues/organs of male hamsters, with the hypothesis that DFA will act as precursors for NAE synthesis in golden Syrian male hamsters. METHOD A two-month feeding trial was performed, wherein hamsters were fed various dietary oil blends with different composition of 18-C fatty acid (FA). RESULTS DFA directly influences tissue FA and NAE levels. After C18:1n9-enriched dietary treatments, marked increases were observed in duodenal C18:1n9 and oleoylethanolamide (OEA) concentrations. Among all tissues; adipose tissue brown, adipose tissue white, brain, heart, intestine-duodenum, intestine-jejunum, and liver, a negative correlation was observed between gut-brain OEA concentrations and body weight. CONCLUSION DFA composition influences FA and NAE levels across all tissues, leading to significant shifts in intestinal-brain OEA concentrations. The endogenously synthesized increased OEA levels in these tissues enable the gut-brain-interrelationship. Henceforth, we summarize that the brain transmits anorexic properties mediated via neuronal signalling, which may contribute to the maintenance of healthy body weight. Thus, the benefits of OEA can be enhanced by the inclusion of C18:1n9-enriched diets, pointing to the possible nutritional use of this naturally occurring bioactive lipid-amide in the management of obesity.
Collapse
Affiliation(s)
- Jyoti Sihag
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada; Richardson Centre for Functional Foods and Nutraceuticals (RCFFN), University of Manitoba, Winnipeg, Manitoba, Canada
| | - Peter J H Jones
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada; Richardson Centre for Functional Foods and Nutraceuticals (RCFFN), University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
114
|
Tutunchi H, Ostadrahimi A, Saghafi-Asl M, Maleki V. The effects of oleoylethanolamide, an endogenous PPAR-α agonist, on risk factors for NAFLD: A systematic review. Obes Rev 2019; 20:1057-1069. [PMID: 31111657 DOI: 10.1111/obr.12853] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/04/2019] [Accepted: 03/04/2019] [Indexed: 12/15/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease. Recently, some novel compounds have been investigated for the prevention and treatment of NAFLD. Oleoylethanolamide (OEA), an endogenous PPAR-α agonist, has exhibited a plethora of pharmacological properties for the treatment of obesity and other obesity-associated metabolic complications. This systematic review was performed with a focus on the effects of OEA on the risk factors for NAFLD. PubMed, Scopus, Embase, ProQuest, and Google Scholar databases were searched up to December 2018 using relevant keywords. All articles written in English evaluating the effects of OEA on the risk factors for NAFLD were eligible for the review. The evidence reviewed in this article illustrates that OEA regulates multiple biological processes associated with NAFLD, including lipid metabolism, inflammation, oxidative stress, and energy homeostasis through different mechanisms. In summary, many beneficial effects of OEA have led to the understanding that OEA may be an effective therapeutic strategy for the management of NAFLD. Although a wide range of studies have demonstrated the most useful effects of OEA on NAFLD and the associated risk factors, further clinical trials, from both in vivo studies and in vitro experiments, are warranted to verify these outcomes.
Collapse
Affiliation(s)
- Helda Tutunchi
- Student Research Committee, Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Ostadrahimi
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Saghafi-Asl
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Maleki
- Student Research Committee, Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
115
|
Chen W, Li J, Liu J, Wang D, Hou L. Aerobic Exercise Improves Food Reward Systems in Obese Rats via Insulin Signaling Regulation of Dopamine Levels in the Nucleus Accumbens. ACS Chem Neurosci 2019; 10:2801-2808. [PMID: 31009571 DOI: 10.1021/acschemneuro.9b00022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The dopaminergic pathway, comprising projections from the ventral tegmental area to the nucleus accumbens, constitutes the core of the brain reward system. Insufficient food reward caused by dopamine signaling dysfunction in the nucleus accumbens is an important contributor to obesity and may be associated with insulin signaling. Aerobic exercise has a positive effect on both preventing and treating obesity. In addition, physical exercise is important in striatal dopamine homeostasis and improves insulin sensitivity in the peripheral and central nervous system. Therefore, we hypothesized that aerobic exercise may increase dopamine levels in the nucleus accumbens through insulin signaling, thus improving food reward in obesity. In the present study, we used a rat model of obesity, induced by high fat diet. Obese rats exhibited lower basic dopamine concentration in the nucleus accumbens induced by eating or extracellular insulin, attenuated insulin signaling, and increased fat preference. Interestingly, an 8-week aerobic exercise regimen reversed these symptoms. In addition, we noted a significant increase in insulin Akt/GSK3-β signal transduction in the nucleus accumbens. These data demonstrate that aerobic exercise promotes dopamine levels in the nucleus accumbens through insulin signal transduction, which may constitute an important neurobiological mechanism of exercise against obesity.
Collapse
Affiliation(s)
- Wei Chen
- Key Laboratory of Measurement and Evaluation in Human Movement and Bioinformation, Physical Education College, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Juan Li
- Key Laboratory of Measurement and Evaluation in Human Movement and Bioinformation, Physical Education College, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Jun Liu
- Department of Health Science, Xi’an Sport University, Xi’an 817006, China
| | - Dalei Wang
- Institute of Military Basic Education, National University of Defense Technology, Changsha, Hunan 410073, China
| | - Lijuan Hou
- College of Physical Education and Sports, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
116
|
Ramer R, Schwarz R, Hinz B. Modulation of the Endocannabinoid System as a Potential Anticancer Strategy. Front Pharmacol 2019; 10:430. [PMID: 31143113 PMCID: PMC6520667 DOI: 10.3389/fphar.2019.00430] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/04/2019] [Indexed: 12/16/2022] Open
Abstract
Currently, the involvement of the endocannabinoid system in cancer development and possible options for a cancer-regressive effect of cannabinoids are controversially discussed. In recent decades, a number of preclinical studies have shown that cannabinoids have an anticarcinogenic potential. Therefore, especially against the background of several legal simplifications with regard to the clinical application of cannabinoid-based drugs, an extended basic knowledge about the complex network of the individual components of the endocannabinoid system is required. The canonical endocannabinoid system consists of the endocannabinoids N-arachidonoylethanolamine (anandamide) and 2-arachidonoylglycerol as well as the Gi/o protein-coupled transmembrane cannabinoid receptors CB1 and CB2. As a result of extensive studies on the broader effect of these factors, other fatty acid derivatives, transmembrane and intracellular receptors, enzymes and lipid transporters have been identified that contribute to the effect of endocannabinoids when defined in the broad sense as “extended endocannabinoid system.” Among these additional components, the endocannabinoid-degrading enzymes fatty acid amide hydrolase and monoacylglycerol lipase, lipid transport proteins of the fatty acid-binding protein family, additional cannabinoid-activated G protein-coupled receptors such as GPR55, members of the transient receptor family, and peroxisome proliferator-activated receptors were identified as targets for possible strategies to combat cancer progression. Other endocannabinoid-related fatty acids such as 2-arachidonoyl glyceryl ether, O-arachidonoylethanolamine, N-arachidonoyldopamine and oleic acid amide showed an effect via cannabinoid receptors, while other compounds such as endocannabinoid-like substances exert a permissive action on endocannabinoid effects and act via alternative intracellular target structures. This review gives an overview of the modulation of the extended endocannabinoid system using the example of anticancer cannabinoid effects, which have been described in detail in preclinical studies.
Collapse
Affiliation(s)
- Robert Ramer
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Rostock, Germany
| | - Rico Schwarz
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Rostock, Germany
| | - Burkhard Hinz
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
117
|
Romero-Sanchiz P, Nogueira-Arjona R, Pastor A, Araos P, Serrano A, Boronat A, Garcia-Marchena N, Mayoral F, Bordallo A, Alen F, Suárez J, de la Torre R, Pavón FJ, Rodríguez de Fonseca F. Plasma concentrations of oleoylethanolamide in a primary care sample of depressed patients are increased in those treated with selective serotonin reuptake inhibitor-type antidepressants. Neuropharmacology 2019; 149:212-220. [DOI: 10.1016/j.neuropharm.2019.02.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 02/03/2019] [Accepted: 02/21/2019] [Indexed: 11/15/2022]
|
118
|
Qu T, Han W, Niu J, Tong J, de Araujo IE. On the roles of the Duodenum and the Vagus nerve in learned nutrient preferences. Appetite 2019; 139:145-151. [PMID: 31029689 DOI: 10.1016/j.appet.2019.04.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/17/2019] [Accepted: 04/22/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND AND AIM In most species, including humans, food preference is primarily controlled by nutrient value. However, the gut-brain pathways involved in preference learning remain elusive. The aim of the present study, performed in C57BL6/J mice, was to characterize the roles in nutrient preference of two critical elements of gut-brain pathways, i.e. the duodenum and vagal gut innervation. METHODS Adult wild-type C57BL6/J mice from a normal-weight cohort sustained one of the following three procedures: duodenal-jejunal bypass intestinal rerouting (DJB), total subdiaphragmatic vagotomy (SDV), or sham surgery. Mice were assessed in short-term two-bottle preference tests before and after 24 h s exposures to solutions containing one of glutamate, lipids, sodium, or glucose. RESULTS DJB and SDV interfered in preference formation in a nutrient-specific manner: whereas normal preference learning for lipids and glutamate was disrupted by both DJB and SDV, these interventions did not alter the formation of preferences for glucose. Interestingly, sodium preferences were abrogated by DJB but not by SDV. CONCLUSIONS Different macronutrients make use of distinct gut-brain pathways to influence food preferences, thereby mirroring nutrient-specific processes of food digestion. Specifically, whereas both vagal innervation and duodenal sensing appear critical for generating responses to fats and protein, glucose preferences recruit post-duodenal, vagal-independent pathways in pair with the control of glucose homeostasis. Overall, our data suggest that the physiological processes involved in digesting and absorbing fats, amino acids, and glucose overlap with those mediating learned preferences for each of these nutrients.
Collapse
Affiliation(s)
- Taoran Qu
- Laboratory of Oral Biomedical Science and Translational Medicine, School of Stomatology, Tongji University, Shanghai, China; The John B Pierce Laboratory, New Haven, CT, USA
| | - Wenfei Han
- The John B Pierce Laboratory, New Haven, CT, USA; Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jingjing Niu
- The John B Pierce Laboratory, New Haven, CT, USA; Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Jenny Tong
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Ivan E de Araujo
- The John B Pierce Laboratory, New Haven, CT, USA; Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Physiology, Yale University School of Arts and Sciences, New Haven, CT, USA.
| |
Collapse
|
119
|
Dunn JP, Abumrad NN, Patterson BW, Kessler RM, Tamboli RA. Brief communication: β-cell function influences dopamine receptor availability. PLoS One 2019; 14:e0212738. [PMID: 30849082 PMCID: PMC6407783 DOI: 10.1371/journal.pone.0212738] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 02/10/2019] [Indexed: 11/19/2022] Open
Abstract
We aim to identify physiologic regulators of dopamine (DA) signaling in obesity but previously did not find a compelling relationship with insulin sensitivity measured by oral-minimal model (OMM) and DA subtype 2 and 3 receptor (D2/3R) binding potential (BPND). Reduced disposition index (DI), a β-cell function metric that can also be calculated by OMM, was shown to predict a negative reward behavior that occurs in states of lower endogenous DA. We hypothesized that reduced DI would occur with higher D2/3R BPND, reflecting lower endogenous DA. Participants completed PET scanning, with a displaceable radioligand to measure D2/3R BPND, and a 5-hour oral glucose tolerance test to measure DI by OMM. We studied 26 age-similar females without (n = 8) and with obesity (n = 18) (22 vs 39 kg/m2). Reduced DI predicted increased striatal D2/3R BPND independent of BMI. By accounting for β-cell function, we were able to determine that the state of insulin and glucose metabolism is pertinent to striatal D2/3R BPND in obesity. Clinical Trial Registration Number: NCT00802204.
Collapse
Affiliation(s)
- Julia P. Dunn
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Veterans Administration St. Louis Health Care System, St. Louis, Missouri, United States of America
- * E-mail:
| | - Naji N. Abumrad
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Bruce W. Patterson
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Robert M. Kessler
- Department of Radiology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Robyn A. Tamboli
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| |
Collapse
|
120
|
Thanarajah SE, Backes H, DiFeliceantonio AG, Albus K, Cremer AL, Hanssen R, Lippert RN, Cornely OA, Small DM, Brüning JC, Tittgemeyer M. Food Intake Recruits Orosensory and Post-ingestive Dopaminergic Circuits to Affect Eating Desire in Humans. Cell Metab 2019; 29:695-706.e4. [PMID: 30595479 DOI: 10.1016/j.cmet.2018.12.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 05/18/2018] [Accepted: 12/04/2018] [Indexed: 01/07/2023]
Abstract
Pleasant taste and nutritional value guide food selection behavior. Here, orosensory features of food may be secondary to its nutritional value in underlying reinforcement, but it is unclear how the brain encodes the reward value of food. Orosensory and peripheral physiological signals may act together on dopaminergic circuits to drive food intake. We combined fMRI and a novel [11C]raclopride PET method to assess systems-level activation and dopamine release in response to palatable food intake in humans. We identified immediate orosensory and delayed post-ingestive dopamine release. Both responses recruit segregated brain regions: specialized integrative pathways and higher cognitive centers. Furthermore, we identified brain areas where dopamine release reflected the subjective desire to eat. Immediate dopamine release in these wanting-related regions was inversely correlated with, and presumably inhibited, post-ingestive release in the dorsal striatum. Our results highlight the role of brain and periphery in interacting to reinforce food intake in humans.
Collapse
Affiliation(s)
- Sharmili Edwin Thanarajah
- Max Planck Institute for Metabolism Research, Cologne, Germany; Department of Neurology, University Hospital of Cologne, Cologne, Germany
| | - Heiko Backes
- Max Planck Institute for Metabolism Research, Cologne, Germany.
| | - Alexandra G DiFeliceantonio
- Max Planck Institute for Metabolism Research, Cologne, Germany; Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; Modern Diet and Physiology Research Center, New Haven, CT, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kerstin Albus
- Cologne Cluster of Excellence in Cellular Stress and Aging-Associated Disease (CECAD), Cologne, Germany
| | | | - Ruth Hanssen
- Max Planck Institute for Metabolism Research, Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEPD), University Hospital of Cologne, Cologne, Germany
| | | | - Oliver A Cornely
- Cologne Cluster of Excellence in Cellular Stress and Aging-Associated Disease (CECAD), Cologne, Germany; Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany; Clinical Trials Centre Cologne (ZKS Köln), University of Cologne, Cologne, Germany
| | - Dana M Small
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; Department of Psychology, Yale University, New Haven, CT, USA; Modern Diet and Physiology Research Center, New Haven, CT, USA
| | - Jens C Brüning
- Max Planck Institute for Metabolism Research, Cologne, Germany; Cologne Cluster of Excellence in Cellular Stress and Aging-Associated Disease (CECAD), Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEPD), University Hospital of Cologne, Cologne, Germany
| | - Marc Tittgemeyer
- Max Planck Institute for Metabolism Research, Cologne, Germany; Cologne Cluster of Excellence in Cellular Stress and Aging-Associated Disease (CECAD), Cologne, Germany; Modern Diet and Physiology Research Center, New Haven, CT, USA
| |
Collapse
|
121
|
Mennella I, Boudry G, Val-Laillet D. Ethanolamine Produced from Oleoylethanolamide Degradation Contributes to Acetylcholine/Dopamine Balance Modulating Eating Behavior. J Nutr 2019; 149:362-365. [PMID: 30722047 DOI: 10.1093/jn/nxy281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/14/2018] [Accepted: 10/11/2018] [Indexed: 11/15/2022] Open
Abstract
Oleoylethanolamide is a well-recognized anorectic compound which also has noteworthy effects on food-reward, influencing the acetylcholine (ACh)/dopamine (DA) balance in the cholinergic system. After its administration, oleoylethanolamide is quickly degraded into oleic acid and ethanolamine. The effect of oleic acid on the gut-brain axis has been extensively investigated, whereas ethanolamine has received scarce attention. However, there is scattered evidence from old and recent research that has underlined the influence of ethanolamine on the cholinergic system. In the present article, we propose a model by which the released ethanolamine contributes to the overall balance between DA and ACh after oleoylethanolamide administration.
Collapse
Affiliation(s)
- Ilario Mennella
- INRA, INSERM, Université de Rennes, Nutrition, Metabolisms and Cancer (NuMeCan), Rennes, France
| | - Gaëlle Boudry
- INRA, INSERM, Université de Rennes, Nutrition, Metabolisms and Cancer (NuMeCan), Rennes, France
| | - David Val-Laillet
- INRA, INSERM, Université de Rennes, Nutrition, Metabolisms and Cancer (NuMeCan), Rennes, France
| |
Collapse
|
122
|
Rivera P, Silva-Peña D, Blanco E, Vargas A, Arrabal S, Serrano A, Pavón FJ, Bindila L, Lutz B, Rodríguez de Fonseca F, Suárez J. Oleoylethanolamide restores alcohol-induced inhibition of neuronal proliferation and microglial activity in striatum. Neuropharmacology 2019; 146:184-197. [DOI: 10.1016/j.neuropharm.2018.11.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 11/08/2018] [Accepted: 11/25/2018] [Indexed: 01/19/2023]
|
123
|
Stice E, Burger K. Neural vulnerability factors for obesity. Clin Psychol Rev 2019; 68:38-53. [PMID: 30587407 PMCID: PMC6397091 DOI: 10.1016/j.cpr.2018.12.002] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 10/05/2018] [Accepted: 12/17/2018] [Indexed: 01/09/2023]
Abstract
Multiple theories identify neural vulnerability factors that may increase risk for overeating and weight gain. Early cross-sectional neuroimaging studies were unable to determine whether aberrant neural responsivity was a risk factor for or a consequence of overeating. More recent obesity risk, prospective, repeated-measures, and experimental neuroimaging studies with humans have advanced knowledge of etiologic processes and neural plasticity resulting from overeating. Herein, we review evidence from these more rigorous human neuroimaging studies, in conjunction with behavioral measures reflecting neural function, as well as experiments with animals that investigated neural vulnerability theories for overeating. Findings provide support for the reward surfeit theory that posits that individuals at risk for obesity initially show hyper-responsivity of reward circuitry to high-calorie food tastes, which theoretically drives elevated intake of such foods. However, findings provide little support for the reward deficit theory that postulates that individuals at risk for obesity show an initial hypo-responsivity of reward circuitry that motives overeating. Further, results provide support for the incentive sensitization and dynamic vulnerability theories that propose that overconsumption of high-calorie foods results in increased reward and attention region responsivity to cues that are associated with hedonic reward from intake of these high-calorie foods via conditioning, as well as a simultaneous decrease in reward region responsivity to high-calorie food tastes. However, there is little evidence that this induced reduction in reward region response to high-calorie food tastes drives an escalation in overeating. Finally, results provide support for the theory that an initial deficit in inhibitory control and a bias for immediate reward contribute to overconsumption of high-calorie foods. Findings imply that interventions that reduce reward and attention region responsivity to food cues and increase inhibitory control should reduce overeating and excessive weight gain, an intervention theory that is receiving support in randomized trials.
Collapse
Affiliation(s)
- Eric Stice
- Oregon Research Institute, Eugene, OR, USA.
| | - Kyle Burger
- University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
124
|
Intestinal epithelial N-acylphosphatidylethanolamine phospholipase D links dietary fat to metabolic adaptations in obesity and steatosis. Nat Commun 2019; 10:457. [PMID: 30692526 PMCID: PMC6349942 DOI: 10.1038/s41467-018-08051-7] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 12/12/2018] [Indexed: 12/17/2022] Open
Abstract
Variations in N-acylethanolamines (NAE) levels are associated with obesity and metabolic comorbidities. Their role in the gut remains unclear. Therefore, we generated a mouse model of inducible intestinal epithelial cell (IEC)-specific deletion of N-acylphosphatidylethanolamine phospholipase D (NAPE-PLD), a key enzyme involved in NAE biosynthesis (Napepld∆IEC). We discovered that Napepld∆IEC mice are hyperphagic upon first high-fat diet (HFD) exposure, and develop exacerbated obesity and steatosis. These mice display hypothalamic Pomc neurons dysfunctions and alterations in intestinal and plasma NAE and 2-acylglycerols. After long-term HFD, Napepld∆IEC mice present reduced energy expenditure. The increased steatosis is associated with higher gut and liver lipid absorption. Napepld∆IEC mice display altered gut microbiota. Akkermansia muciniphila administration partly counteracts the IEC NAPE-PLD deletion effects. In conclusion, intestinal NAPE-PLD is a key sensor in nutritional adaptation to fat intake, gut-to-brain axis and energy homeostasis and thereby constitutes a novel target to tackle obesity and related disorders. Obesity is associated with altered N-acylethanolamine levels (NAE). Here the authors show that deletion of the gene encoding N-acylphosphatidylethanolamine phospholipase D, a key enzyme for NAE synthesis, in intestinal cells of mice leads to the development of obesity and hepatic steatosis via a mechanism involving the gut-brain axis.
Collapse
|
125
|
Fedele S, Arnold M, Krieger JP, Wolfstädter B, Meyer U, Langhans W, Mansouri A. Oleoylethanolamide-induced anorexia in rats is associated with locomotor impairment. Physiol Rep 2019; 6. [PMID: 29388342 PMCID: PMC5817840 DOI: 10.14814/phy2.13517] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 11/01/2017] [Indexed: 11/24/2022] Open
Abstract
The endogenous peroxisome proliferator‐activated receptor alpha (PPAR‐α) agonist Oleoylethanolamide (OEA) inhibits eating in rodents, mainly by delaying the onset of meals. The underlying mechanisms of OEA‐induced anorexia, however, remain unclear. Animals treated with high OEA doses were shown to display signs of discomfort and impaired locomotion. Therefore, we first examined whether the impaired locomotion may contribute to OEA's anorectic effect. Second, it is controversial whether abdominal vagal afferents are necessary for OEA's anorectic effect. Thus, we explored alternative peripheral neural pathways mediating IP OEA's anorectic effect by performing a celiac‐superior mesenteric ganglionectomy (CGX) or a subdiaphragmatic vagal deafferentation (SDA) alone or in combination. Exogenously administered OEA at a commonly used dose (10 mg/kg BW, IP) concurrently reduced food intake and compromised locomotor activity. Attempts to dissociate both phenomena using the dopamine D2/D3 receptor agonist Quinpirole (1 mg/kg BW, SC) failed because Quinpirole antagonized both, OEA‐induced locomotor impairment and delay in eating onset. CGX attenuated the prolongation of the latency to eat by IP OEA, but neither SDA nor CGX prevented IP OEA‐induced locomotor impairment. Our results indicate that IP OEA's anorectic effect may be secondary to impaired locomotion rather than due to physiological satiety. They further confirm that vagal afferents do not mediate exogenous OEA's anorectic effects, but suggest a role for spinal afferents in addition to an alternative, nonneuronal signaling route.
Collapse
Affiliation(s)
- Shahana Fedele
- Physiology and Behavior Laboratory, ETH Zurich, Schwerzenbach, Switzerland
| | - Myrtha Arnold
- Physiology and Behavior Laboratory, ETH Zurich, Schwerzenbach, Switzerland
| | | | - Bernd Wolfstädter
- Laboratorium für Organische Chemie, ETH Zurich, Zürich, Switzerland.,Laboratory of Translational Nutrition Biology, ETH Zurich, Schwerzenbach, Switzerland
| | - Urs Meyer
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Wolfgang Langhans
- Physiology and Behavior Laboratory, ETH Zurich, Schwerzenbach, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Abdelhak Mansouri
- Physiology and Behavior Laboratory, ETH Zurich, Schwerzenbach, Switzerland
| |
Collapse
|
126
|
Time-dependent assessment of stimulus-evoked regional dopamine release. Nat Commun 2019; 10:336. [PMID: 30659189 PMCID: PMC6338792 DOI: 10.1038/s41467-018-08143-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 12/18/2018] [Indexed: 11/09/2022] Open
Abstract
To date, the spatiotemporal release of specific neurotransmitters at physiological levels in the human brain cannot be detected. Here, we present a method that relates minute-by-minute fluctuations of the positron emission tomography (PET) radioligand [11C]raclopride directly to subsecond dopamine release events. We show theoretically that synaptic dopamine release induces low frequency temporal variations of extrasynaptic extracellular dopamine levels, at time scales of one minute, that can evoke detectable temporal variations in the [11C]raclopride signal. Hence, dopaminergic activity can be monitored via temporal fluctuations in the [11C]raclopride PET signal. We validate this theory using fast-scan cyclic voltammetry and [11C]raclopride PET in mice during chemogenetic activation of dopaminergic neurons. We then apply the method to data from human subjects given a palatable milkshake and discover immediate and-for the first time-delayed food-induced dopamine release. This method enables time-dependent regional monitoring of stimulus-evoked dopamine release at physiological levels.
Collapse
|
127
|
Orio L, Alen F, Pavón FJ, Serrano A, García-Bueno B. Oleoylethanolamide, Neuroinflammation, and Alcohol Abuse. Front Mol Neurosci 2019; 11:490. [PMID: 30687006 PMCID: PMC6333756 DOI: 10.3389/fnmol.2018.00490] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/18/2018] [Indexed: 12/28/2022] Open
Abstract
Neuroinflammation is a complex process involved in the physiopathology of many central nervous system diseases, including addiction. Alcohol abuse is characterized by induction of peripheral inflammation and neuroinflammation, which hallmark is the activation of innate immunity toll-like receptors 4 (TLR4). In the last years, lipid transmitters have generated attention as modulators of parts of the addictive process. Specifically, the bioactive lipid oleoylethanolamide (OEA), which is an endogenous acylethanolamide, has shown a beneficial profile for alcohol abuse. Preclinical studies have shown that OEA is a potent anti-inflammatory and antioxidant compound that exerts neuroprotective effects in alcohol abuse. Exogenous administration of OEA blocks the alcohol-induced TLR4-mediated pro-inflammatory cascade, reducing the release of proinflammatory cytokines and chemokines, oxidative and nitrosative stress, and ultimately, preventing the neural damage in frontal cortex of rodents. The mechanisms of action of OEA are discussed in this review, including a protective action in the intestinal barrier. Additionally, OEA blocks cue-induced reinstatement of alcohol-seeking behavior and reduces the severity of withdrawal symptoms in animals, together with the modulation of alcohol-induced depression-like behavior and other negative motivational states associated with the abstinence, such as the anhedonia. Finally, exposure to alcohol induces OEA release in blood and brain of rodents. Clinical evidences will be highlighted, including the OEA release and the correlation of plasma OEA levels with TLR4-dependent peripheral inflammatory markers in alcohol abusers. In base of these evidences we hypothesize that the endogenous release of OEA could be a homeostatic signal to counteract the toxic action of alcohol and we propose the exploration of OEA-based pharmacotherapies to treat alcohol-use disorders.
Collapse
Affiliation(s)
- Laura Orio
- Department of Psychobiology and Methods in Behavioral Science, Faculty of Psychology, Complutense University of Madrid, Madrid, Spain.,Red de Trastornos Adictivos (RTA), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Francisco Alen
- Department of Psychobiology and Methods in Behavioral Science, Faculty of Psychology, Complutense University of Madrid, Madrid, Spain
| | - Francisco Javier Pavón
- Red de Trastornos Adictivos (RTA), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga-Universidad de Málaga, Málaga, Spain
| | - Antonia Serrano
- Red de Trastornos Adictivos (RTA), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga-Universidad de Málaga, Málaga, Spain
| | - Borja García-Bueno
- Department of Pharmacology and Toxicology, Faculty of Medicine, Complutense University of Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red de Salud Mental, IMAS and IUING, Madrid, Spain
| |
Collapse
|
128
|
Affiliation(s)
- Alexandra G DiFeliceantonio
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Modern Diet and PhysiologyResearch Center, YaleUniversity, New Haven, CT, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dana M Small
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA.
- Modern Diet and PhysiologyResearch Center, YaleUniversity, New Haven, CT, USA.
- Department of Psychology, Yale University, New Haven, CT, USA.
| |
Collapse
|
129
|
de Lartigue G, McDougle M. Dorsal striatum dopamine oscillations: Setting the pace of food anticipatory activity. Acta Physiol (Oxf) 2019; 225:e13152. [PMID: 29920950 DOI: 10.1111/apha.13152] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 06/08/2018] [Accepted: 06/11/2018] [Indexed: 12/15/2022]
Abstract
Predicting the uncertainties of the ever-changing environment provides a competitive advantage for animals. The need to anticipate food sources has provided a strong evolutionary drive for synchronizing behavioural and internal processes with daily circadian cycles. When food is restricted to a few hours per day, rodents exhibit increased wakefulness and foraging behaviour preceding the arrival of food. Interestingly, while the master clock located in the suprachiasmatic nucleus entrains daily rhythms to the light cycle, it is not necessary for this food anticipatory activity. This suggests the existence of a food-entrained oscillator located elsewhere. Based on the role of nigrostriatal dopamine in reward processing, motor function, working memory and internal timekeeping, we propose a working model by which food-entrained dopamine oscillations in the dorsal striatum can enable animals maintained on a restricted feeding schedule to anticipate food arrival. Finally, we summarize how metabolic signals in the gut are conveyed to the nigrostriatal pathway to suggest possible insight into potential input mechanisms for food anticipatory activity.
Collapse
Affiliation(s)
- Guillaume de Lartigue
- The John B. Pierce Laboratory; New Haven Connecticut
- Department of Cellular and Molecular Physiology; Yale Medical School; New Haven Connecticut
| | | |
Collapse
|
130
|
Laleh P, Yaser K, Alireza O. Oleoylethanolamide: A novel pharmaceutical agent in the management of obesity-an updated review. J Cell Physiol 2018; 234:7893-7902. [PMID: 30537148 DOI: 10.1002/jcp.27913] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 11/16/2018] [Indexed: 01/05/2023]
Abstract
Obesity as a multifactorial disorder has been shown a dramatically growing trend recently. Besides genetic and environmental factors, dysregulation of the endocannabinoid system tone is involved in the pathogenesis of obesity. This study reviewed the potential efficacy of Oleoylethanolamide (OEA) as an endocannabinoid-like compound in the energy homeostasis and appetite control in people with obesity. OEA as a lipid mediator and bioactive endogenous ethanolamide fatty acid is structurally similar to the endocannabinoid system compounds; nevertheless, it is unable to induce to the cannabinoid receptors. Unlike endocannabinoids, OEA negatively acts on the food intake and suppress appetite via various mechanisms. Indeed, OEA as a ligand of PPAR-α, GPR-119, and TRPV1 receptors participates in the regulation of energy intake and energy expenditure, feeding behavior, and weight gain control. OEA delays meal initiation, reduces meal size, and increases intervals between meals. Considering side effects of some approaches used for the management of obesity such as antiobesity drugs and surgery as well as based on sufficient evidence about the protective effects of OEA in the improvement of common abnormalities in people with obese, its supplementation as a novel efficient and FDA approved pharmaceutical agent can be recommended.
Collapse
Affiliation(s)
- Payahoo Laleh
- Department of Nutrition, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Khajebishak Yaser
- Talented Student Center, Student Research Committee, Nutrition Research Center, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ostadrahimi Alireza
- Department of Nutrition, Nutrition Research Center, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
131
|
Chianese R, Coccurello R, Viggiano A, Scafuro M, Fiore M, Coppola G, Operto FF, Fasano S, Laye S, Pierantoni R, Meccariello R. Impact of Dietary Fats on Brain Functions. Curr Neuropharmacol 2018; 16:1059-1085. [PMID: 29046155 PMCID: PMC6120115 DOI: 10.2174/1570159x15666171017102547] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 08/24/2017] [Accepted: 10/10/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Adequate dietary intake and nutritional status have important effects on brain functions and on brain health. Energy intake and specific nutrients excess or deficiency from diet differently affect cognitive processes, emotions, behaviour, neuroendocrine functions and synaptic plasticity with possible protective or detrimental effects on neuronal physiology. Lipids, in particular, play structural and functional roles in neurons. Here the importance of dietary fats and the need to understand the brain mechanisms activated by peripheral and central metabolic sensors. Thus, the manipulation of lifestyle factors such as dietary interventions may represent a successful therapeutic approach to maintain and preserve brain health along lifespan. METHODS This review aims at summarizing the impact of dietary fats on brain functions. RESULTS Starting from fat consumption, nutrient sensing and food-related reward, the impact of gut-brain communications will be discussed in brain health and disease. A specific focus will be on the impact of fats on the molecular pathways within the hypothalamus involved in the control of reproduction via the expression and the release of Gonadotropin-Releasing Hormone. Lastly, the effects of specific lipid classes such as polyunsaturated fatty acids and of the "fattest" of all diets, commonly known as "ketogenic diets", on brain functions will also be discussed. CONCLUSION Despite the knowledge of the molecular mechanisms is still a work in progress, the clinical relevance of the manipulation of dietary fats is well acknowledged and such manipulations are in fact currently in use for the treatment of brain diseases.
Collapse
Affiliation(s)
- Rosanna Chianese
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Roberto Coccurello
- Institute of Cell Biology and Neurobiology, National Research Council (C.N.R.), Rome, Italy.,Fondazione S. Lucia (FSL) IRCCS, Roma, Italy
| | - Andrea Viggiano
- Department of Medicine, Surgery and Scuola Medica Salernitana, University of Salerno, Baronissi, SA, Italy
| | - Marika Scafuro
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Marco Fiore
- Institute of Cell Biology and Neurobiology, National Research Council (C.N.R.), Rome, Italy.,Fondazione S. Lucia (FSL) IRCCS, Roma, Italy
| | - Giangennaro Coppola
- Department of Medicine, Surgery and Scuola Medica Salernitana, University of Salerno, Baronissi, SA, Italy.,UO Child and Adolescent Neuropsychiatry, Medical School, University of Salerno, Salerno, Italy
| | | | - Silvia Fasano
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Sophie Laye
- INRA, Bordeaux University, Nutrition and Integrative Neurobiology, UMR, Bordeaux, France
| | - Riccardo Pierantoni
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Rosaria Meccariello
- Department of Movement and Wellness Sciences, Parthenope University of Naples, Naples, Italy
| |
Collapse
|
132
|
Sclafani A. From appetite setpoint to appetition: 50years of ingestive behavior research. Physiol Behav 2018; 192:210-217. [PMID: 29305256 PMCID: PMC6019132 DOI: 10.1016/j.physbeh.2018.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/06/2017] [Accepted: 01/01/2018] [Indexed: 12/17/2022]
Abstract
I review the main themes of my 50-year research career in ingestive behavior as a graduate student at the University of Chicago and a professor at the City University of New York. A seminar course with my Ph.D. mentor, S. P. Grossman, sparked my interest in the hypothalamic obesity syndrome. I developed a wire knife to dissect the neuropathways and the functional disorder responsible for the syndrome. An elevated appetite setpoint that permitted the overconsumption of palatable foods appeared central to the hypothalamic syndrome. In brain-intact rats, providing an assortment of highly palatable foods (the cafeteria diet) stimulated diet-induced obesity that mimicked elements of hypothalamic obesity. Studies of the determinants of food palatability led to the discovery of a "new" carbohydrate taste (maltodextrin taste) and the confirmation of a fatty taste. In addition to oral taste receptors, gut nutrient sensors stimulated the intake/preference for carbohydrate- and fat-rich foods via an appetition process that stimulates brain reward systems. My research career greatly benefited from many diligent and creative students, collaborators and technicians and research support from my university and the National Institutes of Health.
Collapse
Affiliation(s)
- Anthony Sclafani
- Department of Psychology, Brooklyn College and the Graduate Center of the City University of New York, 2900 Bedford Ave, Brooklyn, NY 11210, USA.
| |
Collapse
|
133
|
Enhanced amphetamine-induced motor impulsivity and mild attentional impairment in the leptin-deficient rat model of obesity. Physiol Behav 2018; 192:134-144. [DOI: 10.1016/j.physbeh.2018.03.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/23/2018] [Accepted: 03/26/2018] [Indexed: 02/06/2023]
|
134
|
Hamilton J, Swenson S, Hajnal A, Thanos PK. Roux-en-Y gastric bypass surgery normalizes dopamine D1, D2, and DAT levels. Synapse 2018; 72. [PMID: 29992624 DOI: 10.1002/syn.22058] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 06/28/2018] [Accepted: 07/05/2018] [Indexed: 02/28/2024]
Abstract
Roux-en-Y gastric bypass surgery (RYGB) is one of the most effective treatments for morbid obesity. However, increased substance abuse following RYGB has been observed clinically. This study examined the effects of RYGB on the dopamine system to elucidate these observed changes in reward-related behavior. Rats were assigned to four groups: normal diet with sham surgery, ad libitum high fat (HF) diet with sham surgery, restricted HF diet with sham surgery, and HF diet with RYGB surgery. Following surgeries, rats were kept on their respective diets for 9 weeks before they were sacrificed. [3 H]SCH 23390, [3 H]Spiperone, and [3 H]WIN35 428 autoradiography was performed to quantify the effects of diet and RYGB surgery on dopamine type 1-like receptor (D1R)-like, dopamine type 2-like receptor (D2R)-like, and dopamine transporter (DAT) binding. Rats on a chronic HF diet became obese with reduced D1R-like binding within the ventrolateral striatum and the nucleus accumbens core, reduced D2R-like binding in all areas of the striatum and nucleus accumbens core and shell, and reduced DAT binding in the dorsomedial striatum. Restricted HF diet rats showed similar reductions in D1R-like and D2-R-like binding as the obese rats, and reduced DAT binding within all areas of the striatum. Both RYGB and restricted HF diet rats showed similar weight reductions, with RYGB rats showing no difference in binding compared to controls. The observed changes in binding between non-treated obese rats and RYGB rats demonstrates that HF dietary effects on the dopamine system were reversed by RYGB.
Collapse
Affiliation(s)
- John Hamilton
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, University at Buffalo, Buffalo, New York
- Department of Psychology, University of Buffalo, Buffalo, New York
| | - Sabrina Swenson
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, University at Buffalo, Buffalo, New York
| | - Andras Hajnal
- Department of Neural and Behavioral Sciences, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Panayotis K Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, University at Buffalo, Buffalo, New York
- Department of Psychology, University of Buffalo, Buffalo, New York
| |
Collapse
|
135
|
Supra-Additive Effects of Combining Fat and Carbohydrate on Food Reward. Cell Metab 2018; 28:33-44.e3. [PMID: 29909968 DOI: 10.1016/j.cmet.2018.05.018] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 03/29/2018] [Accepted: 05/18/2018] [Indexed: 01/19/2023]
Abstract
Post-ingestive signals conveying information about the nutritive properties of food are critical for regulating ingestive behavior. Here, using an auction task concomitant to fMRI scanning, we demonstrate that participants are willing to pay more for fat + carbohydrate compared with equally familiar, liked, and caloric fat or carbohydrate foods and that this potentiated reward is associated with response in areas critical for reward valuation, including the dorsal striatum and mediodorsal thalamus. We also show that individuals are better able to estimate the energy density of fat compared with carbohydrate and fat + carbohydrate foods, an effect associated with functional connectivity between visual (fusiform gyrus) and valuation (ventromedial prefrontal cortex) areas. These results provide the first demonstration that foods high in fat and carbohydrate are, calorie for calorie, valued more than foods containing only fat or carbohydrate and that this effect is associated with greater recruitment of central reward circuits.
Collapse
|
136
|
Endocannabinoids in Body Weight Control. Pharmaceuticals (Basel) 2018; 11:ph11020055. [PMID: 29849009 PMCID: PMC6027162 DOI: 10.3390/ph11020055] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 05/17/2018] [Accepted: 05/28/2018] [Indexed: 12/15/2022] Open
Abstract
Maintenance of body weight is fundamental to maintain one's health and to promote longevity. Nevertheless, it appears that the global obesity epidemic is still constantly increasing. Endocannabinoids (eCBs) are lipid messengers that are involved in overall body weight control by interfering with manifold central and peripheral regulatory circuits that orchestrate energy homeostasis. Initially, blocking of eCB signaling by first generation cannabinoid type 1 receptor (CB1) inverse agonists such as rimonabant revealed body weight-reducing effects in laboratory animals and men. Unfortunately, rimonabant also induced severe psychiatric side effects. At this point, it became clear that future cannabinoid research has to decipher more precisely the underlying central and peripheral mechanisms behind eCB-driven control of feeding behavior and whole body energy metabolism. Here, we will summarize the most recent advances in understanding how central eCBs interfere with circuits in the brain that control food intake and energy expenditure. Next, we will focus on how peripheral eCBs affect food digestion, nutrient transformation and energy expenditure by interfering with signaling cascades in the gastrointestinal tract, liver, pancreas, fat depots and endocrine glands. To finally outline the safe future potential of cannabinoids as medicines, our overall goal is to address the molecular, cellular and pharmacological logic behind central and peripheral eCB-mediated body weight control, and to figure out how these precise mechanistic insights are currently transferred into the development of next generation cannabinoid medicines displaying clearly improved safety profiles, such as significantly reduced side effects.
Collapse
|
137
|
Coccurello R, Maccarrone M. Hedonic Eating and the "Delicious Circle": From Lipid-Derived Mediators to Brain Dopamine and Back. Front Neurosci 2018; 12:271. [PMID: 29740277 PMCID: PMC5928395 DOI: 10.3389/fnins.2018.00271] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 04/09/2018] [Indexed: 01/09/2023] Open
Abstract
Palatable food can be seductive and hedonic eating can become irresistible beyond hunger and negative consequences. This is witnessed by the subtle equilibrium between eating to provide energy intake for homeostatic functions, and reward-induced overeating. In recent years, considerable efforts have been devoted to study neural circuits, and to identify potential factors responsible for the derangement of homeostatic eating toward hedonic eating and addiction-like feeding behavior. Here, we examined recent literature on “old” and “new” players accountable for reward-induced overeating and possible liability to eating addiction. Thus, the role of midbrain dopamine is positioned at the intersection between selected hormonal signals involved in food reward information processing (namely, leptin, ghrelin, and insulin), and lipid-derived neural mediators such as endocannabinoids. The impact of high fat palatable food and dietary lipids on endocannabinoid formation is reviewed in its pathogenetic potential for the derangement of feeding homeostasis. Next, endocannabinoid signaling that regulates synaptic plasticity is discussed as a key mechanism acting both at hypothalamic and mesolimbic circuits, and affecting both dopamine function and interplay between leptin and ghrelin signaling. Outside the canonical hypothalamic feeding circuits involved in energy homeostasis and the notion of “feeding center,” we focused on lateral hypothalamus as neural substrate able to confront food-associated homeostatic information with food salience, motivation to eat, reward-seeking, and development of compulsive eating. Thus, the lateral hypothalamus-ventral tegmental area-nucleus accumbens neural circuitry is reexamined in order to interrogate the functional interplay between ghrelin, dopamine, orexin, and endocannabinoid signaling. We suggested a pivotal role for endocannabinoids in food reward processing within the lateral hypothalamus, and for orexin neurons to integrate endocrine signals with food reinforcement and hedonic eating. In addition, the role played by different stressors in the reinstatement of preference for palatable food and food-seeking behavior is also considered in the light of endocannabinoid production, activation of orexin receptors and disinhibition of dopamine neurons. Finally, type-1 cannabinoid receptor-dependent inhibition of GABA-ergic release and relapse to reward-associated stimuli is linked to ghrelin and orexin signaling in the lateral hypothalamus-ventral tegmental area-nucleus accumbens network to highlight its pathological potential for food addiction-like behavior.
Collapse
Affiliation(s)
- Roberto Coccurello
- Department of Biomedical Sciences, Institute of Cell Biology and Neurobiology, National Research Council, Rome, Italy.,Laboratory of Neurochemistry of Lipids, European Center for Brain Research (CERC), IRRCS Santa Lucia Foundation, Rome, Italy
| | - Mauro Maccarrone
- Laboratory of Neurochemistry of Lipids, European Center for Brain Research (CERC), IRRCS Santa Lucia Foundation, Rome, Italy.,Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy
| |
Collapse
|
138
|
Hansen HS, Vana V. Non-endocannabinoid N-acylethanolamines and 2-monoacylglycerols in the intestine. Br J Pharmacol 2018; 176:1443-1454. [PMID: 29473944 DOI: 10.1111/bph.14175] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/23/2018] [Accepted: 02/05/2018] [Indexed: 12/11/2022] Open
Abstract
This review focuses on recent findings of the physiological and pharmacological role of non-endocannabinoid N-acylethanolamines (NAEs) and 2-monoacylglycerols (2-MAGs) in the intestine and their involvement in the gut-brain signalling. Dietary fat suppresses food intake, and much research concerns the known gut peptides, for example, glucagon-like peptide-1 (GLP-1) and cholecystokinin (CCK). NAEs and 2-MAGs represent another class of local gut signals most probably involved in the regulation of food intake. We discuss the putative biosynthetic pathways and targets of NAEs in the intestine as well as their anorectic role and changes in intestinal levels depending on the dietary status. NAEs can activate the transcription factor PPARα, but studies to evaluate the role of endogenous NAEs are generally lacking. Finally, we review the role of diet-derived 2-MAGs in the secretion of anorectic gut peptides via activation of GPR119. Both PPARα and GPR119 have potential as pharmacological targets for the treatment of obesity and the former for treatment of intestinal inflammation. LINKED ARTICLES: This article is part of a themed section on 8th European Workshop on Cannabinoid Research. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.10/issuetoc.
Collapse
Affiliation(s)
- Harald S Hansen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Vasiliki Vana
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
139
|
Hankir MK, Seyfried F, Miras AD, Cowley MA. Brain Feeding Circuits after Roux-en-Y Gastric Bypass. Trends Endocrinol Metab 2018; 29:218-237. [PMID: 29475578 DOI: 10.1016/j.tem.2018.01.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/17/2018] [Accepted: 01/25/2018] [Indexed: 12/12/2022]
Abstract
Metabolic surgical procedures, such as Roux-en-Y gastric bypass (RYGB), uniquely reprogram feeding behavior and body weight in obese subjects. Clinical neuroimaging and animal studies are only now beginning to shed light on some of the underlying central mechanisms. We present here the roles of key brain neurotransmitter/neuromodulator systems in food choice, value, and intake at various stages after RYGB. In doing so, we elaborate on how known signals emanating from the reorganized gut, including peptide hormones and microbiota products, impinge on newly mapped homeostatic and hedonic brain feeding circuits. Continued progress in the rapidly evolving field of metabolic surgery will inform the design of more effective weight-loss compounds.
Collapse
Affiliation(s)
- Mohammed K Hankir
- Department of Experimental Surgery, University Hospital Wuerzburg, Wuerzburg, Bavaria 97080, Germany; German Research Foundation Collaborative Research Center in Obesity Mechanisms, University of Leipzig, Leipzig, Saxony 04103, Germany.
| | - Florian Seyfried
- Department of Experimental Surgery, University Hospital Wuerzburg, Wuerzburg, Bavaria 97080, Germany
| | - Alexander D Miras
- Department of Investigative Science, Imperial College London Academic Healthcare Centre, London W12 0NN, UK
| | - Michael A Cowley
- Metabolic Disease and Obesity Program, Biomedicine Discovery Institute, Monash University, Victoria 3800, Australia; Department of Physiology, Monash University, Victoria 3800, Australia
| |
Collapse
|
140
|
Garrido-Gil P, Rodriguez-Perez AI, Dominguez-Meijide A, Guerra MJ, Labandeira-Garcia JL. Bidirectional Neural Interaction Between Central Dopaminergic and Gut Lesions in Parkinson's Disease Models. Mol Neurobiol 2018; 55:7297-7316. [PMID: 29404956 DOI: 10.1007/s12035-018-0937-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 01/25/2018] [Indexed: 01/10/2023]
Abstract
The exact mechanism of gut dysfunction in Parkinson's disease and, conversely, the role of gut pathology in brain dopaminergic degeneration are controversial. We investigated the effects of nigral lesions on the colonic neurotransmission, the effect of gut inflammation on the nigrostriatal dopaminergic function, and the possible involvement of the vagus nerve and the local renin-angiotensin system (RAS). Nigrostriatal dopamine depletion was performed by bilateral injection 6-hydroxydopamine, and gut inflammation was induced by dextran sulfate sodium salt treatment in rats and mice, respectively, with or without vagal disruption. A decrease in central dopamine levels induced a decrease in colonic dopamine types 1 and 2 receptor expression together with an increase in the colonic levels of dopamine and a decrease in the levels of acetylcholine, which may explain a decrease in gut motility. Central dopaminergic depletion also induced an increase in the colonic levels of inflammatory and oxidative stress markers together with activation of the pro-inflammatory arm of the local RAS. Mice with acute (1 week) or subchronic (3 weeks) gut inflammation did not show a significant increase in colonic α-synuclein and phosphorylated α-synuclein expression during this relatively short survival period. Interestingly, we observed early changes in the nigrostriatal dopaminergic homeostasis, dopaminergic neuron death, and increased levels of nigral pro-inflammatory markers and RAS pro-inflammatory activity. The present results show that a dysregulation of the neural bidirectional gut-brain interaction may explain the early gut disturbances observed in parkinsonian patients, and also the increase in vulnerability of nigral dopaminergic neurons after gut inflammation.
Collapse
Affiliation(s)
- Pablo Garrido-Gil
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, Faculty of Medicine, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Ana I Rodriguez-Perez
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, Faculty of Medicine, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Antonio Dominguez-Meijide
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, Faculty of Medicine, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Maria J Guerra
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, Faculty of Medicine, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Jose L Labandeira-Garcia
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, Faculty of Medicine, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain. .,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
| |
Collapse
|
141
|
Sihag J, Jones PJH. Oleoylethanolamide: The role of a bioactive lipid amide in modulating eating behaviour. Obes Rev 2018; 19:178-197. [PMID: 29124885 DOI: 10.1111/obr.12630] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/19/2017] [Accepted: 09/19/2017] [Indexed: 12/13/2022]
Abstract
Fatty acid ethanolamides are lipid mediators that regulate a plethora of physiological functions. One such bioactive lipid mediator, oleoylethanolamide (OEA), is a potent agonist of the peroxisome proliferator-activated receptor-alpha (PPAR-α), which modulates increased expression of the fatty acid translocase CD36 that enables the regulation of feeding behaviour. Consumption of dietary fat rich in oleic acid activates taste receptors in the gut activating specific enzymes that lead to the formation of OEA. OEA further combines with PPAR-α to enable fat oxidation in the liver, resulting in enhanced energy production. Evidence suggests that sustained ingestion of a high-fat diet abolishes the anorexic signal of OEA. Additionally, malfunction of the enterocyte that transforms oleic acid produced during fat digestion into OEA might be responsible for reduced satiety and hyperphagia, resulting in overweight and obesity. Thus, OEA anorectic signalling may be an essential element of the physiology and metabolic system regulating dietary fat intake and obesity. The evidence reviewed in this article indicates that intake of oleic acid, and thereby the resulting OEA imparting anorexic properties, is dependent on CD36, PPAR-α, enterocyte fat sensory receptors, histamine, oxytocin and dopamine; leading to increased fat oxidation and enhanced energy expenditure to induce satiety and increase feeding latency; and that a disruption in any of these systems will cease/curb fat-induced satiety.
Collapse
Affiliation(s)
- J Sihag
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.,Richardson Centre for Functional Foods and Nutraceuticals (RCFFN), University of Manitoba, Winnipeg, Manitoba, Canada
| | - P J H Jones
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.,Richardson Centre for Functional Foods and Nutraceuticals (RCFFN), University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
142
|
Hryhorczuk C, Sheng Z, Décarie-Spain L, Giguère N, Ducrot C, Trudeau LÉ, Routh VH, Alquier T, Fulton S. Oleic Acid in the Ventral Tegmental Area Inhibits Feeding, Food Reward, and Dopamine Tone. Neuropsychopharmacology 2018; 43:607-616. [PMID: 28857071 PMCID: PMC5770761 DOI: 10.1038/npp.2017.203] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 08/23/2017] [Accepted: 08/28/2017] [Indexed: 12/16/2022]
Abstract
Long-chain fatty acids (FAs) act centrally to decrease food intake and hepatic glucose production and alter hypothalamic neuronal activity in a manner that depends on FA type and cellular transport proteins. However, it is not known whether FAs are sensed by ventral tegmental area (VTA) dopamine (DA) neurons to control food-motivated behavior and DA neurotransmission. We investigated the impact of the monounsaturated FA oleate in the VTA on feeding, locomotion, food reward, and DA neuronal activity and DA neuron expression of FA-handling proteins and FA uptake. A single intra-VTA injection of oleate, but not of the saturated FA palmitate, decreased food intake and increased locomotor activity. Furthermore, intra-VTA oleate blunted the rewarding effects of high-fat/sugar food in an operant task and inhibited DA neuronal firing. Using sorted DA neuron preparations from TH-eGFP mice we found that DA neurons express FA transporter and binding proteins, and are capable of intracellular transport of long-chain FA. Finally, we demonstrate that a transporter blocker attenuates FA uptake into DA neurons and blocks the effects of intra-VTA oleate to decrease food-seeking and DA neuronal activity. Together, these results suggest that DA neurons detect FA and that oleate has actions in the VTA to suppress DA neuronal activity and food seeking following cellular incorporation. These findings highlight the capacity of DA neurons to act as metabolic sensors by responding not only to hormones but also to FA nutrient signals to modulate food-directed behavior.
Collapse
Affiliation(s)
- Cecile Hryhorczuk
- CRCHUM and Montreal Diabetes Research Center, Montréal, QC, Canada
- Department of Physiology, Université de Montréal, Montréal, QC, Canada
| | - Zhenyu Sheng
- Rutgers New Jersey Medical School, Department of Pharmacology, Physiology and Neuroscience, Rutgers University, Newark, NJ, USA
| | - Léa Décarie-Spain
- CRCHUM and Montreal Diabetes Research Center, Montréal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Nicolas Giguère
- Department of Pharmacology, Université de Montréal, Montréal, QC, Canada
| | - Charles Ducrot
- Department of Pharmacology, Université de Montréal, Montréal, QC, Canada
| | - Louis-Éric Trudeau
- Department of Pharmacology, Université de Montréal, Montréal, QC, Canada
| | - Vanessa H Routh
- Rutgers New Jersey Medical School, Department of Pharmacology, Physiology and Neuroscience, Rutgers University, Newark, NJ, USA
| | - Thierry Alquier
- CRCHUM and Montreal Diabetes Research Center, Montréal, QC, Canada
- Department of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Stephanie Fulton
- CRCHUM and Montreal Diabetes Research Center, Montréal, QC, Canada
- Department of Nutrition, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
143
|
Schwarz R, Ramer R, Hinz B. Targeting the endocannabinoid system as a potential anticancer approach. Drug Metab Rev 2018; 50:26-53. [PMID: 29390896 DOI: 10.1080/03602532.2018.1428344] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The endocannabinoid system is currently under intense investigation due to the therapeutic potential of cannabinoid-based drugs as treatment options for a broad variety of diseases including cancer. Besides the canonical endocannabinoid system that includes the cannabinoid receptors CB1 and CB2 and the endocannabinoids N-arachidonoylethanolamine (anandamide) and 2-arachidonoylglycerol, recent investigations suggest that other fatty acid derivatives, receptors, enzymes, and lipid transporters likewise orchestrate this system as components of the endocannabinoid system when defined as an extended signaling network. As such, fatty acids acting at cannabinoid receptors (e.g. 2-arachidonoyl glyceryl ether [noladin ether], N-arachidonoyldopamine) as well as endocannabinoid-like substances that do not elicit cannabinoid receptor activation (e.g. N-palmitoylethanolamine, N-oleoylethanolamine) have raised interest as anticancerogenic substances. Furthermore, the endocannabinoid-degrading enzymes fatty acid amide hydrolase and monoacylglycerol lipase, lipid transport proteins of the fatty acid binding protein family, additional cannabinoid-activated G protein-coupled receptors, members of the transient receptor potential family as well as peroxisome proliferator-activated receptors have been considered as targets of antitumoral cannabinoid activity. Therefore, this review focused on the antitumorigenic effects induced upon modulation of this extended endocannabinoid network.
Collapse
Affiliation(s)
- Rico Schwarz
- a Institute of Pharmacology and Toxicology , Rostock University Medical Center , Rostock , Germany
| | - Robert Ramer
- a Institute of Pharmacology and Toxicology , Rostock University Medical Center , Rostock , Germany
| | - Burkhard Hinz
- a Institute of Pharmacology and Toxicology , Rostock University Medical Center , Rostock , Germany
| |
Collapse
|
144
|
Luo S, Zhang Y, Ezrokhi M, Li Y, Tsai T, Cincotta AH. Circadian peak dopaminergic activity response at the biological clock pacemaker (suprachiasmatic nucleus) area mediates the metabolic responsiveness to a high-fat diet. J Neuroendocrinol 2018; 30:e12563. [PMID: 29224246 PMCID: PMC5817247 DOI: 10.1111/jne.12563] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 11/28/2017] [Accepted: 12/04/2017] [Indexed: 12/24/2022]
Abstract
Among vertebrate species of the major vertebrate classes in the wild, a seasonal rhythm of whole body fuel metabolism, oscillating from a lean to obese condition, is a common biological phenomenon. This annual cycle is driven in part by annual changes in the circadian dopaminergic signalling at the suprachiasmatic nuclei (SCN), with diminution of circadian peak dopaminergic activity at the SCN facilitating development of the seasonal obese insulin-resistant condition. The present study investigated whether such an ancient circadian dopamine-SCN activity system for expression of the seasonal obese, insulin-resistant phenotype may be operative in animals made obese amd insulin resistant by high-fat feeding and, if so, whether reinstatement of the circadian dopaminergic peak at the SCN would be sufficient to reverse the adverse metabolic impact of the high-fat diet without any alteration of caloric intake. First, we identified the supramammillary nucleus as a novel site providing the majority of dopaminergic neuronal input to the SCN. We further identified dopamine D2 receptors within the peri-SCN region as being functional in mediating SCN responsiveness to local dopamine. In lean, insulin-sensitive rats, the peak in the circadian rhythm of dopamine release at the peri-SCN coincided with the daily peak in SCN electrophysiological responsiveness to local dopamine administration. However, in rats made obese and insulin resistant by high-fat diet (HFD) feeding, these coincident circadian peak activities were both markedly attenuated or abolished. Reinstatement of the circadian peak in dopamine level at the peri-SCN by its appropriate circadian-timed daily microinjection to this area (but not outside this circadian time-interval) abrogated the obese, insulin-resistant condition without altering the consumption of the HFD. These findings suggest that the circadian peak of dopaminergic activity at the peri-SCN/SCN is a key modulator of metabolism and the responsiveness to adverse metabolic consequences of HFD consumption.
Collapse
Affiliation(s)
- S. Luo
- VeroScience LLCTivertonRIUSA
| | | | | | - Y. Li
- VeroScience LLCTivertonRIUSA
| | | | | |
Collapse
|
145
|
Sihag J, Jones PJH. Dietary fatty acid composition impacts plasma fatty acid ethanolamide levels and body composition in golden Syrian hamsters. Food Funct 2018; 9:3351-3362. [DOI: 10.1039/c8fo00621k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Fatty acid ethanolamides (FAEs) are a class of lipid amides that regulate numerous pathophysiological functions.
Collapse
Affiliation(s)
- Jyoti Sihag
- Department of Food and Human Nutritional Sciences
- University of Manitoba
- Winnipeg
- Canada
- Richardson Centre for Functional Foods and Nutraceuticals (RCFFN)
| | - Peter J. H. Jones
- Department of Food and Human Nutritional Sciences
- University of Manitoba
- Winnipeg
- Canada
- Richardson Centre for Functional Foods and Nutraceuticals (RCFFN)
| |
Collapse
|
146
|
Delbès AS, Castel J, Denis RGP, Morel C, Quiñones M, Everard A, Cani PD, Massiera F, Luquet SH. Prebiotics Supplementation Impact on the Reinforcing and Motivational Aspect of Feeding. Front Endocrinol (Lausanne) 2018; 9:273. [PMID: 29896158 PMCID: PMC5987188 DOI: 10.3389/fendo.2018.00273] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 05/09/2018] [Indexed: 11/25/2022] Open
Abstract
Energy homeostasis is tightly regulated by the central nervous system which responds to nervous and circulating inputs to adapt food intake and energy expenditure. However, the rewarding and motivational aspect of food is tightly dependent of dopamine (DA) release in mesocorticolimbic (MCL) system and could be operant in uncontrolled caloric intake and obesity. Accumulating evidence indicate that manipulating the microbiota-gut-brain axis through prebiotic supplementation can have beneficial impact of the host appetite and body weight. However, the consequences of manipulating the implication of the microbiota-gut-brain axis in the control motivational and hedonic/reinforcing aspects of food are still underexplored. In this study, we investigate whether and how dietary prebiotic fructo-oligosaccharides (FOS) could oppose, or revert, the change in hedonic and homeostatic control of feeding occurring after a 2-months exposure to high-fat high-sugar (HFHS) diet. The reinforcing and motivational components of food reward were assessed using a two-food choice paradigm and a food operant behavioral test in mice exposed to FOS either during or after HFHS exposure. We also performed mRNA expression analysis for key genes involved in limbic and hypothalamic control of feeding. We show in a preventive-like approach, FOS addition of HFHS diet had beneficial impact of hypothalamic neuropeptides, and decreased the operant performance for food but only after an overnight fast while it did not prevent the imbalance in mesolimbic markers for DA signaling induced by palatable diet exposure nor the spontaneous tropism for palatable food when given the choice. However, when FOS was added to control diet after chronic HFHS exposure, although it did not significantly alter body weight loss, it greatly decreased palatable food tropism and consumption and was associated with normalization of MCL markers for DA signaling. We conclude that the nature of the diet (regular chow or HFHS) as well as the timing at which prebiotic supplementation is introduced (preventive or curative) greatly influence the efficacy of the gut-microbiota-brain axis. This crosstalk selectively alters the hedonic or motivational drive to eat and triggers molecular changes in neural substrates involved in the homeostatic and non-homeostatic control of body weight.
Collapse
Affiliation(s)
- Anne-Sophie Delbès
- Université Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, Paris, France
| | - Julien Castel
- Université Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, Paris, France
| | - Raphaël G. P. Denis
- Université Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, Paris, France
| | - Chloé Morel
- Université Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, Paris, France
| | - Mar Quiñones
- Université Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, Paris, France
| | - Amandine Everard
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Patrice D. Cani
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Florence Massiera
- Laboratoire de Recherche Nutritionnelle KOT CEPRODI SA, Paris, France
| | - Serge H. Luquet
- Université Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, Paris, France
- *Correspondence: Serge H. Luquet,
| |
Collapse
|
147
|
Raghow R. Gut-brain crosstalk regulates craving for fatty food. World J Diabetes 2017; 8:484-488. [PMID: 29290921 PMCID: PMC5740093 DOI: 10.4239/wjd.v8.i12.484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 07/20/2017] [Accepted: 09/04/2017] [Indexed: 02/05/2023] Open
Abstract
Patients undergoing Roux-en-Y gastric bypass (RYGB) surgery elicit striking loss of body weight. Anatomical re-structuring of the gastrointestinal (GI) tract, leading to reduced caloric intake and changes in food preference, are thought to be the primary drivers of weight loss in bariatric surgery patients. However, the mechanisms by which RYGB surgery causes a reduced preference for fatty foods remain elusive. In a recent report, Hankir et al described how RYGB surgery modulated lipid nutrient signals in the intestine of rats to blunt their craving for fatty food. The authors reported that RYGB surgery restored an endogenous fat-satiety signaling pathway, mediated via oleoylethanolamide (OEA), that was greatly blunted in obese animals. In RYGB rats, high fat diet (HFD) led to increased production of OEA that activated the intestinal peroxisome proliferation activator receptors-α (PPARα). In RYGB rats, activation of PPARα by OEA was accompanied by enhanced dopamine neurotransmission in the dorsal striatum and reduced preference for HFD. The authors showed that OEA-mediated signals to the midbrain were transmitted via the vagus nerve. Interfering with either the production of OEA in enterocytes, or blocking of vagal and striatal D1 receptors signals eliminated the decreased craving for fat in RYGB rats. These studies demonstrated that bariatric surgery led to alterations in the reward circuitry of the brain in RYGB rats and reduced their preference for HFD.
Collapse
Affiliation(s)
- Rajendra Raghow
- Department of Veterans Affairs Medical Center, Memphis, TN 38104, United States
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| |
Collapse
|
148
|
|
149
|
Beutler LR, Chen Y, Ahn JS, Lin YC, Essner RA, Knight ZA. Dynamics of Gut-Brain Communication Underlying Hunger. Neuron 2017; 96:461-475.e5. [PMID: 29024666 DOI: 10.1016/j.neuron.2017.09.043] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/04/2017] [Accepted: 09/25/2017] [Indexed: 11/15/2022]
Abstract
Communication between the gut and brain is critical for homeostasis, but how this communication is represented in the dynamics of feeding circuits is unknown. Here we describe nutritional regulation of key neurons that control hunger in vivo. We show that intragastric nutrient infusion rapidly and durably inhibits hunger-promoting AgRP neurons in awake, behaving mice. This inhibition is proportional to the number of calories infused but surprisingly independent of macronutrient identity or nutritional state. We show that three gastrointestinal signals-serotonin, CCK, and PYY-are necessary or sufficient for these effects. In contrast, the hormone leptin has no acute effect on dynamics of these circuits or their sensory regulation but instead induces a slow modulation that develops over hours and is required for inhibition of feeding. These findings reveal how layers of visceral signals operating on distinct timescales converge on hypothalamic feeding circuits to generate a central representation of energy balance.
Collapse
Affiliation(s)
- Lisa R Beutler
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA; Kavli Center for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yiming Chen
- Kavli Center for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jamie S Ahn
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Kavli Center for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yen-Chu Lin
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Kavli Center for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Rachel A Essner
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Kavli Center for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Zachary A Knight
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Kavli Center for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
150
|
Garcia-Marchena N, Pavon FJ, Pastor A, Araos P, Pedraz M, Romero-Sanchiz P, Calado M, Suarez J, Castilla-Ortega E, Orio L, Boronat A, Torrens M, Rubio G, de la Torre R, Rodriguez de Fonseca F, Serrano A. Plasma concentrations of oleoylethanolamide and other acylethanolamides are altered in alcohol-dependent patients: effect of length of abstinence. Addict Biol 2017; 22:1366-1377. [PMID: 27212249 DOI: 10.1111/adb.12408] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 03/14/2016] [Accepted: 04/06/2016] [Indexed: 10/21/2022]
Abstract
Acylethanolamides are a family of endogenous lipid mediators that are involved in physiological and behavioral processes associated with addiction. Recently, oleoylethanolamide (OEA) has been reported to reduce alcohol intake and relapse in rodents but the contribution of OEA and other acylethanolamides in alcohol addiction in humans is unknown. The present study is aimed to characterize the plasma acylethanolamides in alcohol dependence. Seventy-nine abstinent alcohol-dependent subjects (27 women) recruited from outpatient treatment programs and age-/sex-/body mass-matched healthy volunteers (28 women) were clinically assessed with the diagnostic interview PRISM according to the DSM-IV-TR after blood extraction for quantification of acylethanolamide concentrations in the plasma. Our results indicate that all acylethanolamides were significantly increased in alcohol-dependent patients compared with control subjects (p < 0.001). A logistic model based on these acylethanolamides was developed to distinguish alcohol-dependent patients from controls and included OEA, arachidonoylethanolamide (AEA) and docosatetraenoylethanolamide (DEA), providing a high discriminatory power according to area under the curve [AUC = 0.92 (95%CI: 0.87-0.96), p < 0.001]. Additionally, we found a significant effect of the duration of alcohol abstinence on the concentrations of OEA, AEA and DEA using a regression model (p < 0.05, p < 0.01 and p < 0.001, respectively), which was confirmed by a negative correlation (rho = -0.31, -0.40 and -0.44, respectively). However, acylethanolamides were not influenced by the addiction alcohol severity, duration of problematic alcohol use or diagnosis of psychiatric comorbidity. Our results support the preclinical studies and suggest that OEA, AEA and DEA are altered in alcohol-dependence during abstinence and that might act as potential markers for predicting length of alcohol abstinence.
Collapse
Affiliation(s)
- Nuria Garcia-Marchena
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA); Hospital Regional Universitario de Málaga; Spain
| | - Francisco J. Pavon
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA); Hospital Regional Universitario de Málaga; Spain
| | - Antoni Pastor
- Grup de Recerca en Farmacología Integrada i Neurociencia de Sistemes, Programa de Recerca en Neurociencia; IMIM (Hospital del Mar Medical Research Institute); Spain
- Department de Farmacologia, Toxicologia i Terapeutica, Facultat de Medicina; Universitat Autonoma de Barcelona; Spain
- CIBER Fisiopatologia Obesidad y Nutricion (CIBERObn); ISCIII; Spain
| | - Pedro Araos
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA); Hospital Regional Universitario de Málaga; Spain
| | - Maria Pedraz
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA); Hospital Regional Universitario de Málaga; Spain
| | - Pablo Romero-Sanchiz
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA); Hospital Regional Universitario de Málaga; Spain
| | - Montserrat Calado
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA); Hospital Regional Universitario de Málaga; Spain
| | - Juan Suarez
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA); Hospital Regional Universitario de Málaga; Spain
| | - Estela Castilla-Ortega
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA); Hospital Regional Universitario de Málaga; Spain
| | - Laura Orio
- Departamento de Psicobiología, Facultad de Psicología; Universidad Complutense; Spain
| | - Anna Boronat
- Grup de Recerca en Farmacología Integrada i Neurociencia de Sistemes, Programa de Recerca en Neurociencia; IMIM (Hospital del Mar Medical Research Institute); Spain
- Department de Farmacologia, Toxicologia i Terapeutica, Facultat de Medicina; Universitat Autonoma de Barcelona; Spain
- CIBER Fisiopatologia Obesidad y Nutricion (CIBERObn); ISCIII; Spain
| | - Marta Torrens
- Institut de Neuropsiquiatria i Adiccions (INAD) del Parc de Salut MAR; Spain
- IMIM (Hospital del Mar Medical Research Institute); Barcelona Spain
- Department of Psychiatry; Univ Autonoma de Barcelona; Spain
| | - Gabriel Rubio
- Departamento de Psiquiatria, Facultad de Medicina; Universidad Complutense; Spain
- Instituto de Investigación Hospital 12 de Octubre; Spain
| | - Rafael de la Torre
- Grup de Recerca en Farmacología Integrada i Neurociencia de Sistemes, Programa de Recerca en Neurociencia; IMIM (Hospital del Mar Medical Research Institute); Spain
- CIBER Fisiopatologia Obesidad y Nutricion (CIBERObn); ISCIII; Spain
- Facultat de Ciencies de la Salut i de la Vida; Universidat Pompeu Fabra (CEXS-UPF); Spain
| | - Fernando Rodriguez de Fonseca
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA); Hospital Regional Universitario de Málaga; Spain
| | - Antonia Serrano
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA); Hospital Regional Universitario de Málaga; Spain
| |
Collapse
|