101
|
Simonds SE, Cowley MA. Hypertension in obesity: is leptin the culprit? Trends Neurosci 2013; 36:121-32. [PMID: 23333346 DOI: 10.1016/j.tins.2013.01.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 01/07/2013] [Indexed: 01/15/2023]
Abstract
The number of obese or overweight humans continues to increase worldwide. Hypertension is a serious disease that often develops in obesity, but it is not clear how obesity increases the risk of hypertension. However, both obesity and hypertension increase the risk of cardiovascular diseases (CVD). In this review, we examine how obesity may increase the risk of developing hypertension. Specifically, we discuss how the adipose-derived hormone leptin influences the sympathetic nervous system (SNS), through actions in the brain to elevate energy expenditure (EE) while also contributing to hypertension in obesity.
Collapse
Affiliation(s)
- Stephanie E Simonds
- Monash Obesity & Diabetes Institute, Department of Physiology, Monash University, Clayton, VIC, Australia
| | | |
Collapse
|
102
|
Bi S, Kim YJ, Zheng F. Dorsomedial hypothalamic NPY and energy balance control. Neuropeptides 2012; 46:309-14. [PMID: 23083763 PMCID: PMC3508095 DOI: 10.1016/j.npep.2012.09.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 09/04/2012] [Accepted: 09/11/2012] [Indexed: 12/15/2022]
Abstract
Neuropeptide Y (NPY) is a potent hypothalamic orexigenic peptide. Within the hypothalamus, Npy is primarily expressed in the arcuate nucleus (ARC) and the dorsomedial hypothalamus (DMH). While the actions of ARC NPY in energy balance control have been well studied, a role for DMH NPY is still being unraveled. In contrast to ARC NPY that serves as one of downstream mediators of actions of leptin in maintaining energy homeostasis, DMH NPY is not under the control of leptin. Npy gene expression in the DMH is regulated by brain cholecystokinin (CCK) and other yet to be identified molecules. The findings of DMH NPY overexpression or induction in animals with increased energy demands and in certain rodent models of obesity implicate a role for DMH NPY in maintaining energy homeostasis. In support of this view, adeno-associated virus (AAV)-mediated overexpression of NPY in the DMH causes increases in food intake and body weight and exacerbates high-fat diet-induced hyperphagia and obesity. Knockdown of NPY in the DMH via AAV-mediated RNAi ameliorates hyperphagia, obesity and glucose intolerance of Otsuka Long-Evans Tokushima Fatty rats in which DMH NPY overexpression has been proposed to play a causal role. NPY knockdown in the DMH also prevents high-fat diet-induced hyperphagia, obesity and impaired glucose homeostasis. A detailed examination of actions of DMH NPY reveals that DMH NPY specifically affects nocturnal meal size and produces an inhibitory action on within meal satiety signals. In addition, DMH NPY modulates energy expenditure likely through affecting brown adipocyte formation and thermogenic activity. Overall, the recent findings provide clear evidence demonstrating critical roles for DMH NPY in energy balance control, and also imply a potential role for DMH NPY in maintaining glucose homeostasis.
Collapse
Affiliation(s)
- Sheng Bi
- Department of Psychiatry and Behavioral Science, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | | | |
Collapse
|
103
|
Abstract
Over the past 20 years, genetic studies have illuminated critical pathways in the hypothalamus and brainstem mediating energy homeostasis, such as the melanocortin, leptin, 5-hydroxytryptamine and brain-derived neurotrophic factor signaling axes. The identification of these pathways necessary for appropriate appetitive responses to energy state has yielded insight into normal homeostatic processes. Although monogenic alterations in each of these axes result in severe obesity, such cases remain rare. The major burden of disease is carried by those with common obesity, which has so far resisted yielding meaningful biological insights. Recent progress into the etiology of common obesity has been made with genome-wide association studies. Such studies now reveal more than 32 different candidate obesity genes, most of which are highly expressed or known to act in the CNS, emphasizing, as in rare monogenic forms of obesity, the role of the brain in predisposition to obesity.
Collapse
|
104
|
Elias CF, Purohit D. Leptin signaling and circuits in puberty and fertility. Cell Mol Life Sci 2012; 70:841-62. [PMID: 22851226 PMCID: PMC3568469 DOI: 10.1007/s00018-012-1095-1] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 07/05/2012] [Accepted: 07/09/2012] [Indexed: 12/22/2022]
Abstract
Leptin is an adipocyte-derived hormone involved in a myriad of physiological process, including the control of energy balance and several neuroendocrine axes. Leptin-deficient mice and humans are obese, diabetic, and display a series of neuroendocrine and autonomic abnormalities. These individuals are infertile due to a lack of appropriate pubertal development and inadequate synthesis and secretion of gonadotropins and gonadal steroids. Leptin receptors are expressed in many organs and tissues, including those related to the control of reproductive physiology (e.g., the hypothalamus, pituitary gland, and gonads). In the last decade, it has become clear that leptin receptors located in the brain are major players in most leptin actions, including reproduction. Moreover, the recent development of molecular techniques for brain mapping and the use of genetically modified mouse models have generated crucial new findings for understanding leptin physiology and the metabolic influences on reproductive health. In the present review, we will highlight the new advances in the field, discuss the apparent contradictions, and underline the relevance of this complex physiological system to human health. We will focus our review on the hypothalamic circuitry and potential signaling pathways relevant to leptin’s effects in reproductive control, which have been identified with the use of cutting-edge technologies of molecular mapping and conditional knockouts.
Collapse
Affiliation(s)
- Carol F Elias
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Y6-220B, Dallas, TX, 75390-9077, USA.
| | | |
Collapse
|
105
|
Harwood HJ. The adipocyte as an endocrine organ in the regulation of metabolic homeostasis. Neuropharmacology 2012; 63:57-75. [DOI: 10.1016/j.neuropharm.2011.12.010] [Citation(s) in RCA: 185] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 11/28/2011] [Accepted: 12/09/2011] [Indexed: 02/06/2023]
|
106
|
Nguyen AD, Mitchell NF, Lin S, Macia L, Yulyaningsih E, Baldock PA, Enriquez RF, Zhang L, Shi YC, Zolotukhin S, Herzog H, Sainsbury A. Y1 and Y5 receptors are both required for the regulation of food intake and energy homeostasis in mice. PLoS One 2012; 7:e40191. [PMID: 22768253 PMCID: PMC3387009 DOI: 10.1371/journal.pone.0040191] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 06/02/2012] [Indexed: 01/30/2023] Open
Abstract
Neuropeptide Y (NPY) acting in the hypothalamus is one of the most powerful orexigenic agents known. Of the five known Y receptors, hypothalamic Y1 and Y5 have been most strongly implicated in mediating hyperphagic effects. However, knockout of individual Y1 or Y5 receptors induces late-onset obesity – and Y5 receptor knockout also induces hyperphagia, possibly due to redundancy in functions of these genes. Here we show that food intake in mice requires the combined actions of both Y1 and Y5 receptors. Germline Y1Y5 ablation in Y1Y5−/− mice results in hypophagia, an effect that is at least partially mediated by the hypothalamus, since mice with adult-onset Y1Y5 receptor dual ablation targeted to the paraventricular nucleus (PVN) of the hypothalamus (Y1Y5Hyp/Hyp) also exhibit reduced spontaneous or fasting-induced food intake when fed a high fat diet. Interestingly, despite hypophagia, mice with germline or hypothalamus-specific Y1Y5 deficiency exhibited increased body weight and/or increased adiposity, possibly due to compensatory responses to gene deletion, such as the decreased energy expenditure observed in male Y1Y5−/− animals relative to wildtype values. While Y1 and Y5 receptors expressed in other hypothalamic areas besides the PVN – such as the dorsomedial nucleus and the ventromedial hypothalamus – cannot be excluded from having a role in the regulation of food intake, these studies demonstrate the pivotal, combined role of both Y1 and Y5 receptors in the mediation of food intake.
Collapse
Affiliation(s)
- Amy D. Nguyen
- Neuroscience Research Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
| | - Natalie F. Mitchell
- Neuroscience Research Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
| | - Shu Lin
- Neuroscience Research Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
| | - Laurence Macia
- Neuroscience Research Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
| | - Ernie Yulyaningsih
- Neuroscience Research Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
| | - Paul A. Baldock
- Bone and Mineral Research Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
| | - Ronaldo F. Enriquez
- Bone and Mineral Research Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
| | - Lei Zhang
- Neuroscience Research Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
| | - Yan-Chuan Shi
- Neuroscience Research Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
| | - Serge Zolotukhin
- Division of Cell and Molecular Therapy, University of Florida, Gainesville, Florida, United States of America
| | - Herbert Herzog
- Neuroscience Research Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
- Faculty of Medicine, University of New South Wales, Kensington, Sydney, New South Wales, Australia
| | - Amanda Sainsbury
- Neuroscience Research Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
- School of Medical Sciences, University of New South Wales, Kensington, Sydney, New South Wales, Australia
- Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|
107
|
Abstract
The past decade has seen a significant expansion of our understanding of the interaction between the neural system and bone. While innervation of bone was long appreciated, the discovery of central relays from the hypothalamus to the cells of bone has seen the identification of a number of efferent neural pathways to bone. The neuropeptide Y (NPY) system has proven to represent a major central pathway, regulating the activity of osteoblasts and osteoclasts, through signaling of central and peripheral ligands, through specific receptors within the hypothalamus and the osteoblast. Moreover, this pathway is now recognized as acting to coordinate both skeletal and energy homeostasis. This review examines the mechanism and actions of the NPY pathway to regulate bone mass and bone cell activity.
Collapse
Affiliation(s)
- Ee Cheng Khor
- Bone Regulation, Neuroscience Research Program, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW, 2010, Australia.
| | | |
Collapse
|
108
|
Israel DD, Sheffer-Babila S, de Luca C, Jo YH, Liu SM, Xia Q, Spergel DJ, Dun SL, Dun NJ, Chua SC. Effects of leptin and melanocortin signaling interactions on pubertal development and reproduction. Endocrinology 2012; 153:2408-19. [PMID: 22408174 PMCID: PMC3381095 DOI: 10.1210/en.2011-1822] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Leptin and melanocortin signaling control ingestive behavior, energy balance, and substrate utilization, but only leptin signaling defects cause hypothalamic hypogonadism and infertility. Although GnRH neurons do not express leptin receptors, leptin influences GnRH neuron activity via regulation of immediate downstream mediators including the neuropeptides neuropeptide Y and the melanocortin agonist and antagonist, α-MSH, agouti-related peptide, respectively. Here we show that modulation of melanocortin signaling in female db/db mice through ablation of agouti-related peptide, or heterozygosity of melanocortin 4 receptor, restores the timing of pubertal onset, fertility, and lactation. Additionally, melanocortin 4 receptor activation increases action potential firing and induces c-Fos expression in GnRH neurons, providing further evidence that melanocortin signaling influences GnRH neuron activity. These studies thus establish melanocortin signaling as an important component in the leptin-mediated regulation of GnRH neuron activity, initiation of puberty and fertility.
Collapse
Affiliation(s)
- Davelene D Israel
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Hu S, Huang Y, Deshpande M, Luo G, Bruce MA, Chen L, Mattson G, Iben LG, Zhang J, Russell JW, Clarke WJ, Hogan J, Ortiz A, Flint O, Henwood A, Gao Q, Antal-Zimanyi I, Poindexter GS. Discovery of a Novel Class of Bicyclo[3.1.0]hexanylpiperazines as Noncompetitive Neuropeptide Y Y1 Antagonists. ACS Med Chem Lett 2012; 3:222-6. [PMID: 24900458 PMCID: PMC4025839 DOI: 10.1021/ml200265m] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 01/04/2012] [Indexed: 11/30/2022] Open
Abstract
A novel class of bicyclo[3.1.0]hexanylpiperazine neuropeptide Y (NPY) Y1 antagonists has been designed and synthesized. Scatchard binding analysis showed these compounds to be noncompetitive with [(125)I]PYY binding to the Y1 receptor. The most potent member, 1-((1α,3α,5α,6β)-6-(3-ethoxyphenyl)-3-methylbicyclo[3.1.0]hexan-6-yl)-4-phenylpiperazine (2) had an IC50 = 62 nM and displayed excellent oral bioavailability in rat (% F po = 80), as well as good brain penetration (B/P ratio = 0.61). In a spontaneous nocturnal feeding study with male Sprague-Dawley rats, 2 significantly reduced food intake during a 12 h period.
Collapse
Affiliation(s)
- Shuanghua Hu
- Research
& Development, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Yazhong Huang
- Research
& Development, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Milind Deshpande
- Research
& Development, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Guanglin Luo
- Research
& Development, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Marc A. Bruce
- Research
& Development, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Ling Chen
- Research
& Development, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Gail Mattson
- Research
& Development, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Lawrence G. Iben
- Research
& Development, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Jie Zhang
- Research
& Development, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - John W. Russell
- Research
& Development, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Wendy J. Clarke
- Research
& Development, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - John
B. Hogan
- Research
& Development, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Astrid Ortiz
- Research
& Development, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Oliver Flint
- Research
& Development, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Andrew Henwood
- Research
& Development, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Qi Gao
- Research
& Development, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Ildiko Antal-Zimanyi
- Research
& Development, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Graham S. Poindexter
- Research
& Development, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| |
Collapse
|
110
|
Hausman GJ, Barb CR, Lents CA. Leptin and reproductive function. Biochimie 2012; 94:2075-81. [PMID: 22980196 DOI: 10.1016/j.biochi.2012.02.022] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 02/17/2012] [Indexed: 12/15/2022]
Abstract
Adipose tissue plays a dynamic role in whole-body energy homeostasis by acting as an endocrine organ. Collective evidence indicates a strong link between neural influences and adipocyte expression and secretion of leptin. Developmental changes in these relationships are considered important for pubertal transition in reproductive function. Leptin augments secretion of gonadotropin hormones, which are essential for initiation and maintenance of normal reproductive function, by acting centrally at the hypothalamus to regulate gonadotropin-releasing hormone (GnRH) neuronal activity and secretion. The effects of leptin on GnRH are mediated through interneuronal pathways involving neuropeptide-Y, proopiomelanocortin and kisspeptin. Increased infertility associated with diet induced obesity or central leptin resistance are likely mediated through the kisspeptin-GnRH pathway. Furthermore, Leptin regulates reproductive function by altering the sensitivity of the pituitary gland to GnRH and acting at the ovary to regulate follicular and luteal steroidogenesis. Thus leptin serves as a putative signal that links metabolic status with the reproductive axis. The intent of this review is to examine the biological role of leptin with energy metabolism, and reproduction.
Collapse
Affiliation(s)
- Gary J Hausman
- USDA, ARS, Richard B. Russell Research Center, RRC, 950 College Station Rd, Athens, GA 30605, USA.
| | | | | |
Collapse
|
111
|
Sainsbury A, Zhang L. Role of the hypothalamus in the neuroendocrine regulation of body weight and composition during energy deficit. Obes Rev 2012; 13:234-57. [PMID: 22070225 DOI: 10.1111/j.1467-789x.2011.00948.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Energy deficit in lean or obese animals or humans stimulates appetite, reduces energy expenditure and possibly also decreases physical activity, thereby contributing to weight regain. Often overlooked in weight loss trials for obesity, however, is the effect of energy restriction on neuroendocrine status. Negative energy balance in lean animals and humans consistently inhibits activity of the hypothalamo-pituitary-thyroid, -gonadotropic and -somatotropic axes (or reduces circulating insulin-like growth factor-1 levels), while concomitantly activating the hypothalamo-pituitary-adrenal axis, with emerging evidence of similar changes in overweight and obese people during lifestyle interventions for weight loss. These neuroendocrine changes, which animal studies show may result in part from hypothalamic actions of orexigenic (e.g. neuropeptide Y, agouti-related peptide) and anorexigenic peptides (e.g. alpha-melanocyte-stimulating hormone, and cocaine and amphetamine-related transcript), can adversely affect body composition by promoting the accumulation of adipose tissue (particularly central adiposity) and stimulating the loss of lean body mass and bone. As such, current efforts to maximize loss of excess body fat in obese people may inadvertently be promoting long-term complications such as central obesity and associated health risks, as well as sarcopenia and osteoporosis. Future weight loss trials would benefit from assessment of the effects on body composition and key hormonal regulators of body composition using sensitive techniques.
Collapse
Affiliation(s)
- A Sainsbury
- Neuroscience Research Program, Garvan Institute of Medical Research, Sydney, NSW, Australia.
| | | |
Collapse
|
112
|
AgRP neurons: the foes of reproduction in leptin-deficient obese subjects. Proc Natl Acad Sci U S A 2012; 109:2699-700. [PMID: 22323603 DOI: 10.1073/pnas.1121355109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
113
|
Shi YC, Baldock PA. Central and peripheral mechanisms of the NPY system in the regulation of bone and adipose tissue. Bone 2012; 50:430-6. [PMID: 22008645 DOI: 10.1016/j.bone.2011.10.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 10/02/2011] [Accepted: 10/03/2011] [Indexed: 12/24/2022]
Abstract
Skeletal research is currently undergoing a period of marked expansion. The boundaries of "bone" research are being re-evaluated and with this, a growing recognition of a more complex and interconnected biology than previously considered. One aspect that has become the focus of particular attention is the relationship between bone and fat homeostasis. Evidence from a number of avenues indicates that bone and adipose regulation are both related and interdependent. This review examines the neuropeptide Y (NPY) system, known to exert powerful control over both bone and fat tissue. The actions of this system are characterized by signaling both within specific nuclei of the hypothalamus and also the target tissues, mediated predominantly through two G-protein coupled receptors (Y1 and Y2). In bone tissue, elevated NPY levels act consistently to repress osteoblast activity. Moreover, both central Y2 receptor and osteoblastic Y1 receptor signaling act similarly to repress bone formation. Conversely, loss of NPY expression or receptor signaling induces increased osteoblast activity and bone mass in both cortical and cancellous envelopes. In fat tissue, NPY action is more complex. Energy homeostasis is powerfully altered by elevations in hypothalamic NPY, resulting in increases in fat accretion and body-wide energy conservation, through the action of locally expressed Y1 receptors, while local Y2 receptors act to inhibit NPY-ergic tone. Loss of central NPY expression has a markedly reduced effect, consistent with a physiological drive to promote fat accretion. In fat tissue, NPY and Y1 receptors act to promote lipogenesis, consistent with their roles in the brain. Y2 receptors expressed in adipocytes also act in this manner, showing an opposing action to their role in the hypothalamus. While direct investigation of these processes has yet to be completed, these responses appear to be interrelated to some degree. The starvation-based signal of elevated central NPY inducing marked inhibition of osteoblast activity, whilst promoting fat accretion, indicating skeletal tissue is a component of the energy conservation system. Moreover, when NPY expression is reduced, consistent with high calorie intake and weight gain, bone formation is stimulated, strengthening the skeleton. In conclusion, NPY acts to regulate both bone and fat tissue in a coordinated manner, and remains a strong candidate for mediating interactions between these two tissues.
Collapse
Affiliation(s)
- Yan-Chuan Shi
- Neuroscience Research Program, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst NSW 2010, Australia
| | | |
Collapse
|
114
|
Omori N, Kouyama N, Yukimasa A, Watanabe K, Yokota Y, Tanioka H, Nambu H, Yukioka H, Sato N, Tanaka Y, Sekiguchi K, Okuno T. Hit to lead SAR study on benzoxazole derivatives for an NPY Y5 antagonist. Bioorg Med Chem Lett 2012; 22:2020-3. [PMID: 22300657 DOI: 10.1016/j.bmcl.2012.01.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 01/06/2012] [Accepted: 01/10/2012] [Indexed: 01/03/2023]
Abstract
We report a hit to lead study on a novel benzoxazole NPY Y5 antagonist. Starting from HTS hit 1, structure-activity relationships were developed. Compound 12 showed reduction of food intake and a tendency to suppress body weight gain over the 21-day experimental period.
Collapse
Affiliation(s)
- Naoki Omori
- Medicinal Research Laboratories, Shionogi & Co., Ltd, 1-1, Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Ablation of neurons expressing agouti-related protein, but not melanin concentrating hormone, in leptin-deficient mice restores metabolic functions and fertility. Proc Natl Acad Sci U S A 2012; 109:3155-60. [PMID: 22232663 DOI: 10.1073/pnas.1120501109] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Leptin-deficient (Lep(ob/ob)) mice are obese, diabetic, and infertile. Ablation of neurons that make agouti-related protein (AgRP) in moderately obese adult Lep(ob/ob) mice caused severe anorexia. The mice stopped eating for 2 wk and then gradually recovered. Their body weight fell to within a normal range for WT mice, at which point food intake and glucose tolerance were restored to that of WT mice. Remarkably, both male and female Lep(ob/ob) mice became fertile. Ablation of neurons that express melanin-concentrating hormone (MCH) in adult Lep(ob/ob) mice had no effect on food intake, body weight, or fertility, but resulted in improved glucose tolerance. We conclude that AgRP-expressing neurons play a critical role in mediating the metabolic syndrome and infertility of Lep(ob/ob) mice, whereas MCH-expressing neurons have only a minor role.
Collapse
|
116
|
Abstract
The hormone leptin, secreted predominantly from adipose tissue, plays a crucial role in the regulation of numerous neuroendocrine functions, from energy homeostasis to reproduction. Genetic deficiency as a consequence of leptin or leptin receptor mutations, although rare in humans, leads to early onset of chronic hyperphagia and massive obesity. In most human obesity, however, leptin levels are chronically elevated. Under these conditions of persistent hyperleptinaemia, and particularly when obesity is associated with a high-fat diet, leptin resistance develops, and signalling through the leptin receptor is curtailed, fuelling further weight gain. Here, we review the role of leptin receptors in the regulation of feeding and obesity development. Leptin receptors are found in each of the major components of the CNS "feeding" circuitry-the brainstem, hypothalamus and distributed reward centres. Through these receptors, leptin exerts influences on signalling and integration within these circuits to alter feeding behaviours. Although some progress is now being made with peptide analogues, the leptin receptor has not proved to be amenable to small molecule pharmacological intervention to date. Where clinical benefit from recombinant leptin administration has been achieved, this has been under circumstances of complete endogenous leptin deficiency or relative hypoleptinaemia such as in lipodystrophy.
Collapse
Affiliation(s)
- Elizabeth C Cottrell
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Scotland, EH16 4TH, UK
| | | |
Collapse
|
117
|
Abstract
When administered into the brain, NPY acts at Y1 and Y5 receptors to increase food intake. The response occurs with a short latency and is quite robust, such that exogenous NPY is generally considered to be the most potent of a growing list of orexigenic compounds that act in the brain. The role of endogenous NPY is not so straightforward, however. Evidence from diverse types of experiments suggests that rather than initiating behavioral eating per se, endogenous NPY elicits autonomic responses that prepare the individual to better cope with consuming a calorically large meal.
Collapse
Affiliation(s)
- Adam P Chambers
- Departments of Medicine, University of Cincinnati, OH 45237, USA
| | | |
Collapse
|
118
|
Vella KR, Ramadoss P, Lam FS, Harris JC, Ye FD, Same PD, O'Neill NF, Maratos-Flier E, Hollenberg AN. NPY and MC4R signaling regulate thyroid hormone levels during fasting through both central and peripheral pathways. Cell Metab 2011; 14:780-90. [PMID: 22100407 PMCID: PMC3261758 DOI: 10.1016/j.cmet.2011.10.009] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 08/25/2011] [Accepted: 10/14/2011] [Indexed: 10/15/2022]
Abstract
Fasting-induced suppression of the hypothalamic-pituitary-thyroid (HPT) axis is an adaptive response to decrease energy expenditure during food deprivation. Previous studies demonstrate that leptin communicates nutritional status to the HPT axis through thyrotropin-releasing hormone (TRH) in the paraventricular nucleus (PVN) of the hypothalamus. Leptin targets TRH neurons either directly or indirectly via the arcuate nucleus through pro-opiomelanocortin (POMC) and agouti-related peptide/neuropeptide Y (AgRP/NPY) neurons. To evaluate the role of these pathways in vivo, we developed double knockout mice that lack both the melanocortin 4 receptor (MC4R) and NPY. We show that NPY is required for fasting-induced suppression of Trh expression in the PVN. However, both MC4R and NPY are required for activation of hepatic pathways that metabolize T(4) during the fasting response. Thus, these signaling pathways play a key role in the communication of fasting signals to reduce thyroid hormone levels both centrally and through a peripheral hepatic circuit.
Collapse
Affiliation(s)
- Kristen R Vella
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Andrews ZB. Central mechanisms involved in the orexigenic actions of ghrelin. Peptides 2011; 32:2248-55. [PMID: 21619904 DOI: 10.1016/j.peptides.2011.05.014] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 05/09/2011] [Accepted: 05/10/2011] [Indexed: 02/04/2023]
Abstract
Ghrelin is a stomach hormone, secreted into the bloodstream, that initiates food intake by activating NPY/AgRP neurons in the hypothalamic acruate nucleus. This review focuses on recent evidence that details the mechanisms through which ghrelin activate receptors on NPY neurons and downstream signaling within NPY neurons. The downstream signaling involves a novel CaMKK-AMPK-CPT1-UCP2 pathway that enhances mitochondrial efficiency and buffers reactive oxygen species in order to maintain an appropriate firing response in NPY. Recent evidence that shows metabolic status affects ghrelin signaling in NPY is also described. In particular, ghrelin does not activate NPY neurons in diet-induced obese mice and ghrelin does not increase food intake. The potential mechanisms and implications of ghrelin resistance are discussed.
Collapse
Affiliation(s)
- Zane B Andrews
- Department of Physiology, Monash University, Clayton, Victoria 3183, Australia.
| |
Collapse
|
120
|
Raciti GA, Bera TK, Gavrilova O, Pastan I. Partial inactivation of Ankrd26 causes diabetes with enhanced insulin responsiveness of adipose tissue in mice. Diabetologia 2011; 54:2911-22. [PMID: 21842266 PMCID: PMC3881194 DOI: 10.1007/s00125-011-2263-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 07/04/2011] [Indexed: 01/05/2023]
Abstract
AIMS/HYPOTHESIS ANKRD26 is a newly described gene located at 10p12 in humans, a locus that has been identified with some forms of hereditary obesity. Previous studies have shown that partial inactivation of Ankrd26 in mice causes hyperphagia, obesity and gigantism. Hypothesising that Ankrd26 mutant (MT) mice could develop diabetes, we sought to establish whether the observed phenotype could be (1) solely related to the development of obesity or (2) caused by a direct action of ankyrin repeat domain 26 (ANKRD26) in peripheral tissues. METHODS To test the hypothesis, we did a full metabolic characterisation of Ankrd26 MT mice that had free access to chow or were placed under two different energy-restricted dietary regimens. RESULTS Highly obese Ankrd26 MT mice developed an unusual form of diabetes in which white adipose tissue is insulin-sensitive, while other tissues are insulin-resistant. When obese MT mice were placed on a food-restricted diet, their weight and glucose homeostasis returned to normal. In addition, when young MT mice were placed on a pair-feeding diet with normal mice, they maintained normal body weight, but showed better glucose tolerance than normal mice, an increased responsiveness of white adipose tissue to insulin and enhanced phosphorylation of the insulin receptor. CONCLUSIONS/INTERPRETATION These findings show that the ANKRD26 protein has at least two functions in mice. One is to control the response of white adipose tissue to insulin; the other is to control appetite, which when Ankrd26 is mutated, leads to hyperphagia and diabetes in an obesity-dependent manner.
Collapse
Affiliation(s)
- G. A. Raciti
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - T. K. Bera
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - O. Gavrilova
- Mouse Metabolism Core, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - I. Pastan
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
- Corresponding author: Laboratory of Molecular Biology, National Cancer Institute, 37 Convent Drive, Room 5106, Bethesda, MD 20892-4264 USA, Tel: (301) 496-4797; Fax: (301) 402-1344;
| |
Collapse
|
121
|
Huang J, Jia Y, Fu T, Viswakarma N, Bai L, Rao MS, Zhu Y, Borensztajn J, Reddy JK. Sustained activation of PPARα by endogenous ligands increases hepatic fatty acid oxidation and prevents obesity in ob/ob mice. FASEB J 2011; 26:628-38. [PMID: 22009939 DOI: 10.1096/fj.11-194019] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Obesity, a major health concern, results from an imbalance between energy intake and expenditure. Leptin-deficient ob/ob mice are paradigmatic of obesity, resulting from excess energy intake and storage. Mice lacking acyl-CoA oxidase 1 (Acox1), the first enzyme of the peroxisomal fatty acid β-oxidation system, are characterized by increased energy expenditure and a lean body phenotype caused by sustained activation of peroxisome proliferator-activated receptor α (PPARα) by endogenous ligands in liver that remain unmetabolized in the absence of Acox1. We generated ob/ob mice deficient in Acox1 (Acox1(-/-)) to determine how the activation of PPARα by endogenous ligands might affect the obesity of ob/ob mice. In contrast to Acox1(-/-) (14.3±1.2 g at 6 mo) and the Acox1-deficient (ob/ob) double-mutant mice (23.8±4.6 g at 6 mo), the ob/ob mice are severely obese (54.3±3.2 g at 6 mo) and had significantly more (P<0.01) epididymal fat content. The resistance of Acox1(-/-)/ob/ob mice to obesity is due to increased PPARα-mediated up-regulation of genes involved in fatty acid oxidation in liver. Activation of PPARα in Acox1-deficient ob/ob mice also reduces serum glucose and insulin (P<0.05) and improves glucose tolerance and insulin sensitivity. Further, PPARα activation reduces hepatic steatosis and increases hepatocellular regenerative response in Acox1(-/-)/ob/ob mice at a more accelerated pace than in mice lacking only Acox1. However, Acox1(-/-)/ob/ob mice manifest hepatic endoplasmic reticulum (ER) stress and also develop hepatocellular carcinomas (8 of 8 mice) similar to those observed in Acox1(-/-) mice (10 of 10 mice), but unlike in ob/ob (0 of 14 mice) and OB/OB (0 of 6 mice) mice, suggesting that superimposed ER stress and PPARα activation contribute to carcinogenesis in a fatty liver. Finally, absence of Acox1 in ob/ob mice can impart resistance to high-fat diet (60% fat)-induced obesity, and their liver had significantly (P<0.01) more cell proliferation. These studies with Acox1(-/-)/ob/ob mice indicate that sustained activation of lipid-sensing nuclear receptor PPARα attenuates obesity and restores glucose homeostasis by ameliorating insulin resistance but increases the risk for liver cancer development, in part related to excess energy combustion.
Collapse
Affiliation(s)
- Jiansheng Huang
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Mercer RE, Chee MJS, Colmers WF. The role of NPY in hypothalamic mediated food intake. Front Neuroendocrinol 2011; 32:398-415. [PMID: 21726573 DOI: 10.1016/j.yfrne.2011.06.001] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 05/17/2011] [Accepted: 06/13/2011] [Indexed: 12/29/2022]
Abstract
Neuropeptide Y (NPY) is a highly conserved neuropeptide with orexigenic actions in discrete hypothalamic nuclei that plays a role in regulating energy homeostasis. NPY signals via a family of high affinity receptors that mediate the widespread actions of NPY in all hypothalamic nuclei. These actions are also subject to tight, intricate regulation by numerous peripheral and central energy balance signals. The NPY system is embedded within a densely-redundant network designed to ensure stable energy homeostasis. This redundancy may underlie compensation for the loss of NPY or its receptors in germline knockouts, explaining why conventional knockouts of NPY or its receptors rarely yield a marked phenotypic change. We discuss insights into the hypothalamic role of NPY from studies of its physiological actions, responses to genetic manipulations and interactions with other energy balance signals. We conclude that numerous approaches must be employed to effectively study different aspects of NPY action.
Collapse
Affiliation(s)
- Rebecca E Mercer
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada T6G 2H7
| | | | | |
Collapse
|
123
|
Comparison of adipocyte-specific gene expression from WNIN/Ob mutant obese rats, lean control, and parental control. Mol Cell Biochem 2011; 357:217-25. [PMID: 21633899 DOI: 10.1007/s11010-011-0892-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 05/17/2011] [Indexed: 10/18/2022]
Abstract
Adipose tissue development is a highly regulated phenomenon orchestrated by several check points (recruitment of mesenchymal stem cells and their lineage commitment) to form mature adipocytes. Once committed to obesity, expansion of adipose tissue occurs either by hypertrophy or hyperplasia or by both resulting in an altered physiological status. This precipitates as inflammatory responses, leading to endoplasmic reticulum and oxidative stress altering the gene expression of adipose tissue in a depot-specific manner. However, such studies reporting a phased gene expression profile in conditions of rodent obesity are not reported so far. WNIN/Ob mutant obese rat, developed at our institute is an excellent model to study the pathophysiological changes underlying obesity. Here, we report the gene expression profile of this mutant rat (obese and lean), compared with the parental control, with reference to markers of embryonic stem cells, adipogenesis, inflammation, and senescence in both subcutaneous (SCAT) and retroperitoneal (RPAT) adipose depots representing abdominal fat. We demonstrate an upregulation of genes such as Sox-2, Pref-1, PPARγ2, LPL, IRS-1, GLUT-4, IL-6, TNFα, and telomerase in SCAT and RPAT depots of the obese rat compared to its lean counterpart indicating no difference in fat depots at different locations. This is suggestive of a similar phenotypic expression of mutant gene. Data form the phased gene expression changes of adipogenesis (embryonic/adipogenic/inflammatory) in the present obese rat model system advocate for inflammatory mediated response(s) associated with obesity-a condition often seen in humans.
Collapse
|
124
|
Both overexpression of agouti-related peptide or neuropeptide Y in the paraventricular nucleus or lateral hypothalamus induce obesity in a neuropeptide- and nucleus specific manner. Eur J Pharmacol 2011; 660:148-55. [DOI: 10.1016/j.ejphar.2010.12.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 11/18/2010] [Accepted: 12/11/2010] [Indexed: 10/18/2022]
|
125
|
Ando H, Kumazaki M, Motosugi Y, Ushijima K, Maekawa T, Ishikawa E, Fujimura A. Impairment of peripheral circadian clocks precedes metabolic abnormalities in ob/ob mice. Endocrinology 2011; 152:1347-54. [PMID: 21285316 DOI: 10.1210/en.2010-1068] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recent studies have demonstrated relationships between the dysfunction of circadian clocks and the development of metabolic abnormalities, but the chicken-and-egg question remains unresolved. To address this issue, we investigated the cause-effect relationship in obese, diabetic ob/ob mice. Compared with control C57BL/6J mice, the daily mRNA expression profiles of the clock and clock-controlled genes Clock, Bmal1, Cry1, Per1, Per2, and Dbp were substantially dampened in the liver and adipose tissue, but not the hypothalamic suprachiasmatic nucleus, of 10-wk-old ob/ob mice. Four-week feeding of a low-calorie diet and administration of leptin over a 7-d period attenuated, to a significant and comparable extent, the observed metabolic abnormalities (obesity, hyperglycemia, hyperinsulinemia, and hypercholesterolemia) in the ob/ob mice. However, only leptin treatment improved the impaired peripheral clocks. In addition, clock function, assessed by measuring levels of Per1, Per2, and Dbp mRNA at around peak times, was also reduced in the peripheral tissues of 3-wk-old ob/ob mice without any overt metabolic abnormalities. Collectively these results indicate that the impairment of peripheral clocks in ob/ob mice does not result from metabolic abnormalities but may instead be at least partially caused by leptin deficiency itself. Further studies are needed to clarify how leptin deficiency affects peripheral clocks.
Collapse
Affiliation(s)
- Hitoshi Ando
- Division of Clinical Pharmacology, Department of Pharmacology, School of Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | | | | | | | | | | | | |
Collapse
|
126
|
Luo N, Marcelin G, Liu SM, Schwartz G, Chua S. Neuropeptide Y and agouti-related peptide mediate complementary functions of hyperphagia and reduced energy expenditure in leptin receptor deficiency. Endocrinology 2011; 152:883-9. [PMID: 21285324 PMCID: PMC3040058 DOI: 10.1210/en.2010-1135] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Neuropeptide Y (NPY) and agouti-related peptide (AGRP) can produce hyperphagia, reduce energy expenditure, and promote triglyceride deposition in adipose depots. As these two neuropeptides are coexpressed within the hypothalamic arcuate nucleus and mediate a major portion of the obesity caused by leptin signaling deficiency, we sought to determine whether the two neuropeptides mediated identical or complementary actions. Because of separate neuropeptide receptors and signal transduction mechanisms, there is a possibility of distinct encoding systems for the feeding and energy expenditure aspects of leptin-regulated metabolism. We have genetically added NPY deficiency and/or AGRP deficiency to LEPR deficiency isolated to AGRP cells. Our results indicate that the obesity of LEPR deficiency in AGRP/NPY neurons can produce obesity with either AGRP or NPY alone with AGRP producing hyperphagia while NPY promotes reduced energy expenditure. The absence of both NPY and AGRP prevents the development of obesity attributable to isolated LEPR deficiency in AGRP/NPY neurons. Operant behavioral testing indicated that there were no alterations in the reward for a food pellet from the AGRP-specific LEPR deficiency.
Collapse
Affiliation(s)
- Na Luo
- Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 12401, USA
| | | | | | | | | |
Collapse
|
127
|
Dallman MF, Bhatnagar S. Chronic Stress and Energy Balance: Role of the Hypothalamo‐Pituitary‐Adrenal Axis. Compr Physiol 2011. [DOI: 10.1002/cphy.cp070410] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
128
|
Donato J, Cravo RM, Frazão R, Elias CF. Hypothalamic sites of leptin action linking metabolism and reproduction. Neuroendocrinology 2011; 93:9-18. [PMID: 21099209 PMCID: PMC3066240 DOI: 10.1159/000322472] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 10/26/2010] [Indexed: 12/31/2022]
Abstract
A critical amount of energy reserve is necessary for puberty initiation, for normal sexual maturation and maintenance of cyclicity and fertility in females of most species. Therefore, the existence of circulating metabolic cues which directly modulate the hypothalamus-pituitary-gonad axis is predictable. The adipocyte-derived hormone leptin is one of these cues having been studied extensively in the context of regulating the reproductive physiology. Humans and mice lacking leptin (ob/ob) or leptin receptor (LepR, db/db) are infertile. Leptin administration to leptin-deficient subjects and ob/ob mice induces puberty and restores fertility. LepR is expressed in brain, pituitary gland and gonads, but studies using genetically engineered mouse models determined that the brain plays a major role. Recently, it has been made clear that leptin acts indirectly on gonadotropin-releasing hormone (GnRH)-secreting cells via actions on interneurons. However, the exact site(s) of leptin action has been difficult to determine. In this review, we discuss the recent advances in the field focused on the identification of potential site(s) or specific neuronal populations involved in leptin's effects in the neuroendocrine reproductive axis.
Collapse
Affiliation(s)
- José Donato
- Department of Internal Medicine, Division of Hypothalamic Research, University of Texas Southwestern Medical Center, Dallas, TX 75390-9077, USA
| | | | | | | |
Collapse
|
129
|
Abstract
Inflammation perturbs normal bone homeostasis and is known to induce bone loss, as it promotes both local cartilage degradation and local and systemic bone destruction by osteoclasts, as well as inhibits bone formation by osteoblasts. Thus, not surprisingly, inflammatory autoimmune diseases often lead to local and/or general bone loss. However, the mechanisms that target the bone in autoimmune disease are complex and diverse, as they range from a direct attack on the bone and cartilage by the immune cells to indirect consequences of disturbances of the systemic control of bone remodeling. This Review discusses current understanding of the mechanisms of autoimmune-mediated bone loss in view of new insight from two new fields of research: osteoimmunology, which analyzes the direct effect of immune cells on bone, and the integrative metabolism approach, which established the existence of neuroendocrine loops that regulate bone remodeling.
Collapse
Affiliation(s)
- Georg Schett
- Department of Internal Medicine 3, Rheumatology and Immunology, University of Erlangen-Nuremberg, Krankenhausstraβe 12, D-91054 Erlangen, Germany
| | | |
Collapse
|
130
|
Donato J, Frazão R, Fukuda M, Vianna CR, Elias CF. Leptin induces phosphorylation of neuronal nitric oxide synthase in defined hypothalamic neurons. Endocrinology 2010; 151:5415-27. [PMID: 20881244 PMCID: PMC2954713 DOI: 10.1210/en.2010-0651] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Studies have indicated that the neurotransmitter nitric oxide (NO) mediates leptin's effects in the neuroendocrine reproductive axis. However, the neurons involved in these effects and their regulation by leptin is still unknown. We aimed to determine whether NO neurons are direct targets of leptin and by which mechanisms leptin may influence neuronal NO synthase (nNOS) activity. Nicotinamide adenine dinucleotide phosphate diaphorase activity and leptin-induced phosphorylation of signal transducer and activator of transcription-3 immunoreactivity were coexpressed in subsets of neurons of the medial preoptic area, the paraventricular nucleus of the thalamus, the arcuate nucleus (Arc), the dorsomedial nucleus of the hypothalamus (DMH), the posterior hypothalamic area, the ventral premammillary nucleus (PMV), the parabrachial nucleus, and the dorsal motor nucleus of the vagus nerve. Fasting blunted nNOS mRNA expression in the medial preoptic area, Arc, DMH, PMV, and posterior hypothalamic area, and this effect was not restored by acute leptin administration. No difference in the number of neurons expressing nNOS immunoreactivity was noticed comparing hypothalamic sections of fed (wild type and ob/ob), fasted, and fasted leptin-treated mice. However, we found that in states of low leptin levels, as in fasting, or lack of leptin, as in ob/ob mice, the number of neurons expressing the phosphorylated form of nNOS is decreased in the Arc, DMH, and PMV. Notably, acute leptin administration to fasted wild-type mice restored the number of phosphorylated form of nNOS neurons to that observed in fed wild-type mice. Herein we identified the first-order neurons potentially involved in NO-mediated effects of leptin and demonstrate that leptin regulates nNOS activity predominantly through posttranslational mechanisms.
Collapse
Affiliation(s)
- Jose Donato
- Department of Internal Medicine, Division of Hypothalamic Research, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | | | | | |
Collapse
|
131
|
Bhaskar LVKS, Thangaraj K, Pardhasaradhi G, Kumar KP, Singh L, Rao VR. Neuropeptide Y gene polymorphisms are not associated with obesity in a South Indian population. Eur J Clin Nutr 2010; 64:868-872. [PMID: 20531438 DOI: 10.1038/ejcn.2010.74] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2009] [Revised: 12/10/2009] [Accepted: 03/15/2010] [Indexed: 01/01/2023]
Abstract
BACKGROUND/OBJECTIVES Neuropeptide Y (NPY) gene has been shown to have a critical role in the regulation of satiety, reproduction, central endocrine and cardiovascular systems. Among the primary functions associated with NPY are its acute effects on feeding behavior and energy expenditure. The aim of this study is to evaluate the relationship between obesity and NPY gene polymorphisms in a South Indian Population. SUBJECTS/METHODS Three polymorphisms in NPY gene (Leu7Pro, Ser50Ser and A7735G) were analyzed in 263 individuals of an endogamous Kota population. On the basis of body mass index (BMI), they were divided into two groups. Associations were tested using logistic regression and haplotype analyses and linkage disequilibrium (LD). RESULTS There was no evidence of deviation from Hardy-Weinberg equilibrium. Logistic regression analysis did not reveal significant association with obesity and NPY single-nucleotide polymorphisms (SNPs) in the present study. All three SNPs were in weak LD with low r (2) values. Haplotype analysis also did not yield significant association between NPY gene and obesity (global P=0.756). CONCLUSIONS Our study did not validate the association between previously implicated SNPs in NPY gene and obesity in an Indian population. Population-specific validation of putative associations has far reaching implications for the future personal genomics medicine applications.
Collapse
Affiliation(s)
- L V K S Bhaskar
- [1] Centre for Cellular and Molecular Biology, Hyderabad, India [2] Department of Biomedical Sciences, Sri Ramachandra University, Chennai, India
| | | | | | | | | | | |
Collapse
|
132
|
Franquinho F, Liz MA, Nunes AF, Neto E, Lamghari M, Sousa MM. Neuropeptide Y and osteoblast differentiation - the balance between the neuro-osteogenic network and local control. FEBS J 2010; 277:3664-74. [DOI: 10.1111/j.1742-4658.2010.07774.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
133
|
Burns B, Schmidt K, Williams SR, Kim S, Girirajan S, Elsea SH. Rai1 haploinsufficiency causes reduced Bdnf expression resulting in hyperphagia, obesity and altered fat distribution in mice and humans with no evidence of metabolic syndrome. Hum Mol Genet 2010; 19:4026-42. [PMID: 20663924 DOI: 10.1093/hmg/ddq317] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Smith-Magenis syndrome (SMS) is a genetic disorder caused by haploinsufficiency of the retinoic acid induced 1 (RAI1) gene. In addition to intellectual disabilities, behavioral abnormalities and sleep disturbances, a majority of children with SMS also have significant early-onset obesity. To study the role of RAI1 in obesity, we investigated the growth and obesity phenotype in a mouse model haploinsufficient for Rai1. Data show that Rai1(+/-) mice are hyperphagic, have an impaired satiety response and have altered abdominal and subcutaneous fat distribution, with Rai1(+/-) female mice having a higher proportion of abdominal fat when compared with wild-type female mice. Expression analyses revealed that Bdnf (brain-derived neurotrophic factor), a gene previously associated with hyperphagia and obesity, is downregulated in the Rai1(+/-) mouse hypothalamus, and reporter studies show that RAI1 directly regulates the expression of BDNF. Even though the Rai1(+/-) mice are significantly obese, serum analyses do not reveal any evidence of metabolic syndrome. Supporting these findings, a caregiver survey revealed that even though a high incidence of abdominal obesity is observed in females with SMS, they did not exhibit a higher incidence of indicators of metabolic syndrome above the general population. We conclude that Rai1 haploinsufficiency represents a single-gene model of obesity with hyperphagia, abnormal fat distribution and altered hypothalamic gene expression associated with satiety, food intake, behavior and obesity. Linking RAI1 and BDNF provides a more thorough understanding of the role of Rai1 in growth and obesity and insight into the complex pathogenicity of obesity, behavior and sex-specific differences in adiposity.
Collapse
Affiliation(s)
- Brooke Burns
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | | | | | | | | |
Collapse
|
134
|
Kaiyala KJ, Morton GJ, Leroux BG, Ogimoto K, Wisse B, Schwartz MW. Identification of body fat mass as a major determinant of metabolic rate in mice. Diabetes 2010; 59:1657-66. [PMID: 20413511 PMCID: PMC2889765 DOI: 10.2337/db09-1582] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Analysis of energy expenditure (EE) in mice is essential to obesity research. Since EE varies with body mass, comparisons between lean and obese mice are confounded unless EE is normalized to account for body mass differences. We 1) assessed the validity of ratio-based EE normalization involving division of EE by either total body mass (TBM) or lean body mass (LBM), 2) compared the independent contributions of LBM and fat mass (FM) to EE, and 3) investigated whether leptin contributes to the link between FM and EE. RESEARCH DESIGN AND METHODS We used regression modeling of calorimetry and body composition data in 137 mice to estimate the independent contributions of LBM and FM to EE. Subcutaneous administration of leptin or vehicle to 28 obese ob/ob mice and 32 fasting wild-type mice was used to determine if FM affects EE via a leptin-dependent mechanism. RESULTS Division of EE by either TBM or LBM is confounded by body mass variation. The contribution of FM to EE is comparable to that of LBM in normal mice (expressed per gram of tissue) but is absent in leptin-deficient ob/ob mice. When leptin is administered at physiological doses, the plasma leptin concentration supplants FM as an independent determinant of EE in both ob/ob mice and normal mice rendered leptin-deficient by fasting. CONCLUSIONS The contribution of FM to EE is substantially greater than predicted from the metabolic cost of adipose tissue per se, and the mechanism underlying this effect is leptin dependent. Regression-based approaches that account for variation in both FM and LBM are recommended for normalization of EE in mice.
Collapse
Affiliation(s)
- Karl J Kaiyala
- Department of Dental Public Health Sciences, School of Dentistry, University of Washington, Seattle, Washington, USA.
| | | | | | | | | | | |
Collapse
|
135
|
Shi YC, Lin S, Wong IPL, Baldock PA, Aljanova A, Enriquez RF, Castillo L, Mitchell NF, Ye JM, Zhang L, Macia L, Yulyaningsih E, Nguyen AD, Riepler SJ, Herzog H, Sainsbury A. NPY neuron-specific Y2 receptors regulate adipose tissue and trabecular bone but not cortical bone homeostasis in mice. PLoS One 2010; 5:e11361. [PMID: 20613867 PMCID: PMC2894044 DOI: 10.1371/journal.pone.0011361] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 06/01/2010] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Y2 receptor signalling is known to be important in neuropeptide Y (NPY)-mediated effects on energy homeostasis and bone physiology. Y2 receptors are located post-synaptically as well as acting as auto receptors on NPY-expressing neurons, and the different roles of these two populations of Y2 receptors in the regulation of energy homeostasis and body composition are unclear. METHODOLOGY/PRINCIPAL FINDINGS We thus generated two conditional knockout mouse models, Y2(lox/lox) and NPYCre/+;Y2(lox/lox), in which Y2 receptors can be selectively ablated either in the hypothalamus or specifically in hypothalamic NPY-producing neurons of adult mice. Specific deletion of hypothalamic Y2 receptors increases food intake and body weight compared to controls. Importantly, specific ablation of hypothalamic Y2 receptors on NPY-containing neurons results in a significantly greater adiposity in female but not male mice, accompanied by increased hepatic triglyceride levels, decreased expression of liver carnitine palmitoyltransferase (CPT1) and increased expression of muscle phosphorylated acetyl-CoA carboxylase (ACC). While food intake, body weight, femur length, bone mineral content, density and cortical bone volume and thickness are not significantly altered, trabecular bone volume and number were significantly increased by hypothalamic Y2 deletion on NPY-expressing neurons. Interestingly, in situ hybridisation reveals increased NPY and decreased proopiomelanocortin (POMC) mRNA expression in the arcuate nucleus of mice with hypothalamus-specific deletion of Y2 receptors in NPY neurons, consistent with a negative feedback mechanism between NPY expression and Y2 receptors on NPY-ergic neurons. CONCLUSIONS/SIGNIFICANCE Taken together these data demonstrate the anti-obesogenic role of Y2 receptors in the brain, notably on NPY-ergic neurons, possibly via inhibition of NPY neurons and concomitant stimulation of POMC-expressing neurons in the arcuate nucleus of the hypothalamus, reducing lipogenic pathways in liver and/or skeletal muscle in females. These data also reveal as an anti-osteogenic effect of Y2 receptors on hypothalamic NPY-expressing neurons on trabecular but not on cortical bone.
Collapse
Affiliation(s)
- Yan-Chuan Shi
- Neuroscience Research Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Shu Lin
- Neuroscience Research Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Iris P. L. Wong
- Neuroscience Research Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Paul A. Baldock
- Neuroscience Research Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Aygul Aljanova
- Neuroscience Research Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Ronaldo F. Enriquez
- Neuroscience Research Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Lesley Castillo
- Neuroscience Research Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Natalie F. Mitchell
- Neuroscience Research Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Ji-Ming Ye
- Diabetes and Obesity Research Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Lei Zhang
- Neuroscience Research Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Laurence Macia
- Neuroscience Research Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Ernie Yulyaningsih
- Neuroscience Research Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Amy D. Nguyen
- Neuroscience Research Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Sabrina J. Riepler
- Neuroscience Research Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Herbert Herzog
- Neuroscience Research Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Amanda Sainsbury
- Neuroscience Research Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|
136
|
Harris AT, Morell D, Bajaj Y, Martin-Hirsch DP. A discussion of airway and respiratory complications along with general considerations in obese patients. Int J Clin Pract 2010; 64:802-6. [PMID: 20518954 DOI: 10.1111/j.1742-1241.2010.02350.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Obesity is defined as the degree of excess weight associated with adverse health consequences. Within Great Britain, it is reported that a quarter of men and women are obese; these rates have trebled over the past 20 years. In 2001, it was estimated that obesity cost the National Health Service at least half a billion pounds, with a further two billion pounds lost on lower productivity and lost output. Obesity poses a significant risk factor for diseases, such as coronary heart disease, diabetes mellitus and certain forms of cancer, amongst others. Obese individuals pose significant problems to the clinician because of airway and respiratory complications. Sleep apnoea, obesity-hypoventilation syndrome, pulmonary atelectasis are associated with obesity and tracheostomy insertion is made all the more difficult in these patients. This article aims to discuss some of these issues relevant to the clinician and examine present strategies for dealing with them.
Collapse
Affiliation(s)
- A T Harris
- Calderdale and Huddersfield NHS, Calderdale, UK.
| | | | | | | |
Collapse
|
137
|
Kirchner H, Tong J, Tschöp MH, Pfluger PT. Ghrelin and PYY in the regulation of energy balance and metabolism: lessons from mouse mutants. Am J Physiol Endocrinol Metab 2010; 298:E909-19. [PMID: 20179246 DOI: 10.1152/ajpendo.00191.2009] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Effective control of body weight and energy homeostasis requires stringent regulation of caloric intake and energy expenditure. Gut-brain interactions comprise a central axis for the control of energy homeostasis by integrating the intake of nutrients with an effective utilization of ingested calories either by storage or by expenditure as cellular fuel. Ghrelin, a stomach-derived peptide, is the only known circulating orexigenic hormone. It is acylated with a medium-chain fatty acid by the enzyme ghrelin O-acetyltransferase (GOAT) and displays a broad range of activity, from central control of food intake to peripheral functions such as gastric emptying and insulin secretion. PYY, a peptide produced by L cells of the small intestine and rectum, has been shown to inhibit gut motility and is proposed to stimulate a powerful central satiety response. In recent years, pharmacological studies in animals and clinical studies in humans have contributed to our knowledge of principal ghrelin and PYY actions. However, valuable findings from studies using ghrelin-deficient mice, ghrelin receptor [growth hormone secretagogue receptor-1a (GHSR1a)]-deficient mice, double-knockout mice (for ghrelin and GHSR), and GOAT-deficient or -overexpressor mice, as well as mice deficient for PYY or neuropeptide Y receptors have allowed better definition of the actual physiological functions of ghrelin and PYY. This review summarizes findings from mutant mouse studies with emphasis on respective gene knockout and transgenic animals and describes how these studies contribute to the current understanding of how endogenous ghrelin and PYY as two major representatives of endocrine gut-brain communications may regulate energy and glucose homeostasis.
Collapse
Affiliation(s)
- Henriette Kirchner
- Obesity Research Centre, Department of Internal Medicine, University of Cincinnati College of Medicine, 2170 E. Galbraith Rd., Cincinnati, OH 45237, USA
| | | | | | | |
Collapse
|
138
|
Sainsbury A, Zhang L. Role of the arcuate nucleus of the hypothalamus in regulation of body weight during energy deficit. Mol Cell Endocrinol 2010; 316:109-19. [PMID: 19822185 DOI: 10.1016/j.mce.2009.09.025] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Revised: 09/21/2009] [Accepted: 09/28/2009] [Indexed: 12/14/2022]
Abstract
Acute or long-term energy deficit in lean or obese rodents or humans stimulates food intake or appetite and reduces metabolic rate or energy expenditure. These changes contribute to weight regain in post-obese animals and humans. Some studies show that the reduction in metabolic rate with energy deficit in overweight people is transient. Energy restriction has been shown in some but not all studies to reduce physical activity, and this may represent an additional energy-conserving adaptation. Energy restriction up-regulates expression of the orexigenic neuropeptide Y, agouti related peptide and opioids and down-regulates that of the anorexigenic alpha-melanocyte stimulating hormone or its precursor pro-opioomelanocortin and the co-expressed cocaine and amphetamine-regulated transcript in the arcuate nucleus of the hypothalamus. Recapitulating these hypothalamic changes in sated animals mimics the effects of energy deficit, namely increased food intake, reduced physical activity and reduced metabolic rate, suggesting that these energy-conserving adaptations are at least partially mediated by the hypothalamus.
Collapse
Affiliation(s)
- A Sainsbury
- Neuroscience Research Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia.
| | | |
Collapse
|
139
|
|
140
|
Baldock PA, Lee NJ, Driessler F, Lin S, Allison S, Stehrer B, Lin EJD, Zhang L, Enriquez RF, Wong IPL, McDonald MM, During M, Pierroz DD, Slack K, Shi YC, Yulyaningsih E, Aljanova A, Little DG, Ferrari SL, Sainsbury A, Eisman JA, Herzog H. Neuropeptide Y knockout mice reveal a central role of NPY in the coordination of bone mass to body weight. PLoS One 2009; 4:e8415. [PMID: 20027231 PMCID: PMC2794533 DOI: 10.1371/journal.pone.0008415] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Accepted: 10/15/2009] [Indexed: 12/20/2022] Open
Abstract
Changes in whole body energy levels are closely linked to alterations in body weight and bone mass. Here, we show that hypothalamic signals contribute to the regulation of bone mass in a manner consistent with the central perception of energy status. Mice lacking neuropeptide Y (NPY), a well-known orexigenic factor whose hypothalamic expression is increased in fasting, have significantly increased bone mass in association with enhanced osteoblast activity and elevated expression of bone osteogenic transcription factors, Runx2 and Osterix. In contrast, wild type and NPY knockout (NPY (-/-)) mice in which NPY is specifically over expressed in the hypothalamus (AAV-NPY+) show a significant reduction in bone mass despite developing an obese phenotype. The AAV-NPY+ induced loss of bone mass is consistent with models known to mimic the central effects of fasting, which also show increased hypothalamic NPY levels. Thus these data indicate that, in addition to well characterized responses to body mass, skeletal tissue also responds to the perception of nutritional status by the hypothalamus independently of body weight. In addition, the reduction in bone mass by AAV NPY+ administration does not completely correct the high bone mass phenotype of NPY (-/-) mice, indicating the possibility that peripheral NPY may also be an important regulator of bone mass. Indeed, we demonstrate the expression of NPY specifically in osteoblasts. In conclusion, these data identifies NPY as a critical integrator of bone homeostatic signals; increasing bone mass during times of obesity when hypothalamic NPY expression levels are low and reducing bone formation to conserve energy under 'starving' conditions, when hypothalamic NPY expression levels are high.
Collapse
Affiliation(s)
- Paul A. Baldock
- Osteoporosis and Bone Biology Program, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, Australia
- Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Nicola J. Lee
- Neuroscience Program, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, Australia
| | - Frank Driessler
- Osteoporosis and Bone Biology Program, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, Australia
| | - Shu Lin
- Neuroscience Program, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, Australia
| | - Susan Allison
- Osteoporosis and Bone Biology Program, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, Australia
| | - Bernhard Stehrer
- Neuroscience Program, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, Australia
| | - En-Ju D. Lin
- Department of Physiology and Biophysics, Georgetown University Medical Center, Washington, D. C., United States of America
| | - Lei Zhang
- Neuroscience Program, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, Australia
| | - Ronald F. Enriquez
- Osteoporosis and Bone Biology Program, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, Australia
| | - Iris P. L. Wong
- Osteoporosis and Bone Biology Program, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, Australia
| | - Michelle M. McDonald
- Department of Orthopaedic Research and Biotechnology, The Children's Hospital at Westmead, Sydney, Australia
| | - Matthew During
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Dominique D. Pierroz
- Service and Laboratory of Bone Diseases, Department of Rehabilitation and Geriatrics, Faculty of Medicine, Geneva University Hospital, Geneva, Switzerland
| | - Katy Slack
- Neuroscience Program, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, Australia
| | - Yan C. Shi
- Neuroscience Program, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, Australia
| | - Ernie Yulyaningsih
- Neuroscience Program, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, Australia
| | - Aygul Aljanova
- Neuroscience Program, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, Australia
| | - David G. Little
- Department of Orthopaedic Research and Biotechnology, The Children's Hospital at Westmead, Sydney, Australia
| | - Serge L. Ferrari
- Service and Laboratory of Bone Diseases, Department of Rehabilitation and Geriatrics, Faculty of Medicine, Geneva University Hospital, Geneva, Switzerland
| | - Amanda Sainsbury
- Neuroscience Program, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, Australia
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - John A. Eisman
- Osteoporosis and Bone Biology Program, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, Australia
| | - Herbert Herzog
- Neuroscience Program, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, Australia
- Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|
141
|
|
142
|
Functional requirement of AgRP and NPY neurons in ovarian cycle-dependent regulation of food intake. Proc Natl Acad Sci U S A 2009; 106:15932-7. [PMID: 19805233 DOI: 10.1073/pnas.0904747106] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In female mammals including rodents and humans, feeding decreases during the periovulatory period of the ovarian cycle, which coincides with a surge in circulating estrogen levels. Ovariectomy increases food intake, which can be normalized by estrogen treatment at a dose and frequency mimicking those during the estrous cycle. Furthermore, administration of estrogen to rodents potently inhibits food intake. Despite these well-known effects of estrogen, neuronal subtypes that mediate estrogen's anorexigenic effects have not been identified. In this study, we show that changes in hypothalamic expression of agouti-related protein (Agrp) and neuropeptide Y (Npy) coincide with the cyclic changes in feeding across the estrous cycle. These cyclic changes in feeding are abolished in mice with degenerated AgRP neurons even though these mice cycle normally. Central administration of 17beta-estradiol (E2) decreases food intake in controls but not in mice lacking the AgRP neurons. Furthermore, E2 treatment suppresses fasting-induced c-Fos activation in AgRP and NPY neurons and blunts the refeeding response. Surprisingly, although estrogen receptor alpha (ERalpha) is the key mediator of estrogen's anorexigenic effects, we find that expression of ERalpha is completely excluded from AgRP and NPY neurons in the mouse hypothalamus, suggesting that estrogen may regulate these neurons indirectly via presynaptic neurons that express ERalpha. This study indicates that neurons coexpressing AgRP and NPY are functionally required for the cyclic changes in feeding across estrous cycle and that AgRP and NPY neurons are essential mediators of estrogen's anorexigenic function.
Collapse
|
143
|
Obesity-blocking neurons in Drosophila. Neuron 2009; 63:329-41. [PMID: 19679073 DOI: 10.1016/j.neuron.2009.07.021] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Revised: 06/27/2009] [Accepted: 07/07/2009] [Indexed: 11/22/2022]
Abstract
In mammals, fat store levels are communicated by leptin and insulin signaling to brain centers that regulate food intake and metabolism. By using transgenic manipulation of neural activity, we report the isolation of two distinct neuronal populations in flies that perform a similar function, the c673a-Gal4 and fruitless-Gal4 neurons. When either of these neuronal groups is silenced, fat store levels increase. This change is mediated through an increase in food intake and altered metabolism in c673a-Gal4-silenced flies, while silencing fruitless-Gal4 neurons alters only metabolism. Hyperactivation of either neuronal group causes depletion of fat stores by increasing metabolic rate and decreasing fatty acid synthesis. Altering the activities of these neurons causes changes in expression of genes known to regulate fat utilization. Our results show that the fly brain measures fat store levels and can induce changes in food intake and metabolism to maintain them within normal limits.
Collapse
|
144
|
Abstract
The past decade has hosted a remarkable surge in research dedicated to the central control of homeostatic mechanisms. Evidence indicates that the brain, in particular the hypothalamus, directly senses hormones and nutrients to initiate behavioral and metabolic responses to control energy and nutrient homeostasis. Diabetes is chiefly characterized by hyperglycemia due to impaired glucose homeostatic regulation, and a primary therapeutic goal is to lower plasma glucose levels. As such, in this review, we highlight the role of the hypothalamus in the regulation of glucose homeostasis in particular and discuss the cellular and molecular mechanisms by which this neural pathway is orchestrated.
Collapse
Affiliation(s)
- Carol K L Lam
- Toronto General Research Institute, University Health Network, Toronto, Canada
| | | | | |
Collapse
|
145
|
Ando M, Sato N, Nagase T, Nagai K, Ishikawa S, Takahashi H, Ohtake N, Ito J, Hirayama M, Mitobe Y, Iwaasa H, Gomori A, Matsushita H, Tadano K, Fujino N, Tanaka S, Ohe T, Ishihara A, Kanatani A, Fukami T. Discovery of pyridone-containing imidazolines as potent and selective inhibitors of neuropeptide Y Y5 receptor. Bioorg Med Chem 2009; 17:6106-22. [DOI: 10.1016/j.bmc.2009.05.069] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Revised: 05/27/2009] [Accepted: 05/28/2009] [Indexed: 11/16/2022]
|
146
|
Cho K, Ando M, Kobayashi K, Miyazoe H, Tsujino T, Ito S, Suzuki T, Tanaka T, Tokita S, Sato N. Design, synthesis and evaluation of a novel cyclohexanamine class of neuropeptide Y Y1 receptor antagonists. Bioorg Med Chem Lett 2009; 19:4781-5. [DOI: 10.1016/j.bmcl.2009.06.050] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Revised: 06/10/2009] [Accepted: 06/12/2009] [Indexed: 11/29/2022]
|
147
|
Greene M, Thackeray JT, Kenk M, Thorn SL, Bevilacqua L, Harper ME, Beanlands RS, Dasilva JN. Reduced in vivo phosphodiesterase-4 response to acute noradrenaline challenge in diet-induced obese rats. Can J Physiol Pharmacol 2009; 87:196-202. [PMID: 19295660 DOI: 10.1139/y09-001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Altered sympathetic nervous activity has been linked to the development and persistence of obesity, partly relating to overfeeding. Binding of the selective, positron-emitting phosphodiesterase-4 (PDE4) inhibitor (R)-[11C]rolipram provides a direct index of the cAMP-hydrolyzing enzyme PDE4. This study examines progressive alterations in PDE4 in a high-fat-fed obese animal model. (R)-[11C]Rolipram was injected into diet-induced obese (DIO) and diet-resistant (DR) rats; the animals were killed after 45 min, tissues were extracted, and radioactivity was quantified. Responsiveness of PDE4 to acute noradrenaline (NA) stimulation was determined by 3 h pretreatment with the NA reuptake inhibitor desipramine. There was minimal variance in caloric intake, weight gain, fasting glucose, insulin, and energy expenditure (indirect calorimetry) measures. Basal (R)-[11C]rolipram binding was comparable between DIO and DR rats at 2 or 8 weeks of feeding. The normal increase of PDE4 levels in response to elevated NA by desipramine pretreatment was ablated in PDE4-rich tissues, including brain, heart, and skeletal muscle, of DIO animals after 8 weeks of high-fat diet. Lean DR rats maintained PDE4 responsiveness indicative of a normal NA signal transduction.
Collapse
Affiliation(s)
- Michael Greene
- National Cardiac PET Centre, Division of Cardiology, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y4W7, Canada; and Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
148
|
Ross AW, Johnson CE, Bell LM, Reilly L, Duncan JS, Barrett P, Heideman PD, Morgan PJ. Divergent regulation of hypothalamic neuropeptide Y and agouti-related protein by photoperiod in F344 rats with differential food intake and growth. J Neuroendocrinol 2009; 21:610-9. [PMID: 19490367 DOI: 10.1111/j.1365-2826.2009.01878.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hypothalamic genes involved in food intake and growth regulation were studied in F344 rats in response to photoperiod. Two sub-strains were identified: F344/NHsd (F344/N) and F344/NCrHsd (F344/NCr); sensitive and relatively insensitive to photoperiod respectively. In F344/N rats, marked, but opposite, changes in the genes for neuropeptide Y (NPY) (+97.5%) and agouti-related protein (AgRP) (-39.3%) expression in the arcuate nucleus were observed in response to short (8 : 16 h light/dark cycle, SD) relative to long (16 : 8 h light/dark cycle, LD) day photoperiods. Changes were associated with both reduced food intake and growth. Expression of the genes for cocaine and amphetamine-regulated transcript (CART) and pro-opiomelanocortin (POMC) in the arcuate nucleus was unchanged by photoperiod. POMC in the ependymal layer around the third ventricle was markedly inhibited by SD. Parallel decreases in the genes for growth hormone-releasing hormone (GHRH) and somatostatin (Somatostatin) mRNA in the arcuate nucleus and Somatostatin in the periventricular nucleus were observed in SD. Serum levels of insulin-like growth factor (IGF)-1 and insulin were lower in F344/N rats in SD, whereas neither leptin nor corticosterone levels were affected. By contrast, F344/NCr rats that show only minor food intake and growth rate changes showed minimal responses in these genes and hormones. Thus, NPY/AgRP neurones may be pivotal to the photoperiodic regulation of food intake and growth. Potentially, the SD increase in NPY expression may inhibit growth by decreasing GHRH and Somatostatin expression, whereas the decrease in AgRP expression probably leads to reduced food intake. The present study reveals an atypical and divergent regulation of NPY and AgRP, which may relate to their separate roles with respect to growth and food intake, respectively.
Collapse
Affiliation(s)
- A W Ross
- University of Aberdeen Rowett Institute of Nutrition and Health, Bucksburn, Aberdeen, Scotland, UK
| | | | | | | | | | | | | | | |
Collapse
|
149
|
Quennell JH, Mulligan AC, Tups A, Liu X, Phipps SJ, Kemp CJ, Herbison AE, Grattan DR, Anderson GM. Leptin indirectly regulates gonadotropin-releasing hormone neuronal function. Endocrinology 2009; 150:2805-12. [PMID: 19179437 PMCID: PMC2732287 DOI: 10.1210/en.2008-1693] [Citation(s) in RCA: 273] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The adipose-derived hormone leptin communicates information about metabolic status to the hypothalamic GnRH neuronal system. It is unclear whether leptin can act directly on GnRH neurons. To examine this, we used three approaches. First, the presence of leptin-induced signal transducer and activator of transcription-3 activation was examined in GnRH neurons in male and female rats. Intracerebroventricular treatment with 4 mug leptin-induced robust signal transducer and activator of transcription-3 expression within the anteroventral periventricular nucleus but not in GnRH neurons. Second, fertility was assessed in male and female CRE-loxP transgenic mice with conditional leptin receptor (Lepr) deletion from either all forebrain neurons or GnRH neurons only. Forebrain neuron LEPR deletion prevented the onset of puberty resulting in infertility in males and females and blocked estradiol-induced LH surge. However, mice with GnRH neuron-selective Lepr deletion exhibited normal fertility apart from a slight puberty delay in males. Lastly, the highly sensitive technique of single-cell nested PCR was used to test for Lepr transcript presence in individual GnRH neurons, identified in situ using GnRH-green fluorescent protein transgenics. Whereas 75% of positive control (proopiomelanocortin) neurons contained Lepr mRNA, no (none of 18) GnRH neurons were Lepr mRNA positive. Collectively, these results show that leptin does not act directly on GnRH neurons in rats and mice. Leptin appears to regulate GnRH function via forebrain neurons that are afferent to GnRH because forebrain neuronal LEPR deletion caused infertility. The location and phenotype of these leptin-responsive neurons remains to be elucidated.
Collapse
Affiliation(s)
- Janette H Quennell
- Department of Anatomy and Structural Biology, Centre for Neuroendocrinology, University of Otago School of Medical Sciences, Dunedin, New Zealand
| | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Kameda M, Kobayashi K, Ito H, Miyazoe H, Tsujino T, Nakama C, Kawamoto H, Ando M, Ito S, Suzuki T, Kanno T, Tanaka T, Tahara Y, Tani T, Tanaka S, Tokita S, Sato N. Optimization of a series of 2,4-diaminopyridines as neuropeptide Y Y1 receptor antagonists with reduced hERG activity. Bioorg Med Chem Lett 2009; 19:4325-9. [PMID: 19487123 DOI: 10.1016/j.bmcl.2009.05.069] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Revised: 05/19/2009] [Accepted: 05/20/2009] [Indexed: 10/20/2022]
Abstract
The synthesis and evaluation of a series of 2,4-diaminopyridine-based neuropeptide Y Y1 (NPY Y1) receptor antagonists are described. Compound 1 was previously reported by our laboratory to be a potent and selective Y1 antagonist; however, 1 was also found to have potent hERG inhibitory activity. The main focus of this communication is structure-activity relationship development aimed at eliminating the hERG activity of 1. This resulted in the identification of compound 3d as a potent and selective NPY Y1 antagonist with reduced hERG liability.
Collapse
Affiliation(s)
- Minoru Kameda
- Department of Medicinal Chemistry, Tsukuba Research Institute, Merck Research Laboratories, Banyu Pharmaceutical Co., Ltd, Okubo 3, Tsukuba, Ibaraki 300-2611, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|