101
|
Ha GH, Baek KH, Kim HS, Jeong SJ, Kim CM, McKeon F, Lee CW. p53 Activation in Response to Mitotic Spindle Damage Requires Signaling via BubR1-Mediated Phosphorylation. Cancer Res 2007; 67:7155-64. [PMID: 17671183 DOI: 10.1158/0008-5472.can-06-3392] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The mitotic spindle checkpoint plays a crucial role in regulating accurate chromosome segregation and preventing the adaptation of multiploid progeny cells. Recent reports have indicated that the induction of p53 by mitotic checkpoint activation is essential for protecting cells from abnormal chromosome ploidization caused by mitotic failure. However, although studies have shown that p53 deficiencies arrest mitosis, compromise apoptosis, and may cause profound aneuploidy, the molecular mechanisms leading to p53 induction following mitotic checkpoint activation remain unknown. Here, we show that the BubR1 mitotic checkpoint kinase interacts with p53 both in vitro and in vivo, with higher levels of interaction in mitotic cells. This interaction contributes to p53 phosphorylation. Silencing of BubR1 expression reduces the phosphorylation and stability of p53, whereas exogenous introduction of BubR1 proteins into BubR1-depleted cells recovers p53 stability. In addition, inhibition of BubR1 expression in the presence of a microtubule inhibitor accelerates chromosomal instability and polyploidy in p53-null cells. These results collectively suggest that p53 activation in response to mitotic spindle damage requires signaling via BubR1-mediated phosphorylation.
Collapse
Affiliation(s)
- Geun-Hyoung Ha
- Department of Molecular Cell Biology, Center for Molecular Medicine, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Korea
| | | | | | | | | | | | | |
Collapse
|
102
|
Talos F, Nemajerova A, Flores ER, Petrenko O, Moll UM. p73 Suppresses Polyploidy and Aneuploidy in the Absence of Functional p53. Mol Cell 2007; 27:647-59. [PMID: 17707235 DOI: 10.1016/j.molcel.2007.06.036] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Revised: 02/19/2007] [Accepted: 06/25/2007] [Indexed: 11/25/2022]
Abstract
Previous studies showed that p53 plays a central role in G1 and DNA damage checkpoints, thus contributing to genomic stability. We show here that p73 also plays a role in genomic integrity but this mechanism is manifest only when p53 is lost. Isolated p73 loss in primary cells does not induce genomic instability. Instead, it results in impaired proliferation and premature senescence due to compensatory activation of p53. Combined loss of p73 and p53 rescues these defects, but at the expense of exacerbated genomic instability. This leads to rapid increase in polyploidy and aneuploidy, markedly exceeding that of p53 loss alone. Constitutive deregulation of cyclin-Cdk activities and excess failure of the G2/M DNA damage checkpoint appear to fuel increased ploidy abnormalities upon p53/p73 loss, while primary mitotic defects do not play a causal role. These data indicate that p73 is essential for suppressing polyploidy and aneuploidy when p53 is inactivated.
Collapse
Affiliation(s)
- Flaminia Talos
- Department of Pathology, Health Science Center, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
| | | | | | | | | |
Collapse
|
103
|
Li L, Zhou Y, Sun L, Xing G, Tian C, Sun J, Zhang L, He F. NuSAP is degraded by APC/C-Cdh1 and its overexpression results in mitotic arrest dependent of its microtubules' affinity. Cell Signal 2007; 19:2046-55. [PMID: 17618083 DOI: 10.1016/j.cellsig.2007.05.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Accepted: 05/28/2007] [Indexed: 11/18/2022]
Abstract
Microtubule associated proteins are involved in regulation of microtubule dynamics. Its mutation and dysregulation result in severe consequences such as mitotic block and apoptosis. NuSAP has been reported as a microtubule associated protein, depletion of which by RNAi results in spindle deficiency and cytokinesis failure. However, its role in regulation of cell cycle and how NuSAP protein is controlled during cell cycle progression still remains unclear. Here we show that NuSAP can be ubiquitinated and degraded by APC/C-hCdh1 E3 ligase. Evolutionally conserved KEN box functions as the degron of NuSAP. Overexpression of NuSAP induces mitotic arrest and the microtubule associated domain and nuclear localization are both required for NuSAP to induce mitotic arrest. Furthermore, overexpression of NuSAP results in cells accumulation with microtubule bundling and spindle deficiency. Thus, our results give evidence for the first time that NuSAP protein level is tightly regulated by the APC/C ubiquitin ligase complex and NuSAP induces mitotic arrest dependent of its microtubule affinity.
Collapse
Affiliation(s)
- Lu Li
- State Key Laboratory of Proteomics, Department of Genomics and Proteomics, Beijing Institute of Radiation Medicine, Beijing Proteome Research Center, 27 Taiping Road, Beijing 100850, China
| | | | | | | | | | | | | | | |
Collapse
|
104
|
Takeuchi M, Takeuchi K, Kohara A, Satoh M, Shioda S, Ozawa Y, Ohtani A, Morita K, Hirano T, Terai M, Umezawa A, Mizusawa H. Chromosomal instability in human mesenchymal stem cells immortalized with human papilloma virus E6, E7, and hTERT genes. In Vitro Cell Dev Biol Anim 2007; 43:129-38. [PMID: 17514511 DOI: 10.1007/s11626-007-9021-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Accepted: 03/27/2007] [Indexed: 12/13/2022]
Abstract
Human mesenchymal stem cells (hMSCs) are expected to be an enormous potential source for future cell therapy, because of their self-renewing divisions and also because of their multiple-lineage differentiation. The finite lifespan of these cells, however, is a hurdle for clinical application. Recently, several hMSC lines have been established by immortalized human telomerase reverse transcriptase gene (hTERT) alone or with hTERT in combination with human papillomavirus type 16 E6/E7 genes (E6/E7) and human proto-oncogene, Bmi-1, but have not so much been characterized their karyotypic stability in detail during extended lifespan under in vitro conditions. In this report, the cells immortalized with the hTERT gene alone exhibited little change in karyotype, whereas the cells immortalized with E6/E7 plus hTERT genes or Bmi-1, E6 plus hTERT genes were unstable regarding chromosome numbers, which altered markedly during prolonged culture. Interestingly, one unique chromosomal alteration was the preferential loss of chromosome 13 in three cell lines, observed by fluorescence in situ hybridization (FISH) and comparative-genomic hybridization (CGH) analysis. The four cell lines all maintained the ability to differentiate into both osteogenic and adipogenic lineages, and two cell lines underwent neuroblastic differentiation. Thus, our results were able to provide a step forward toward fulfilling the need for a sufficient number of cells for new therapeutic applications, and substantiate that these cell lines are a useful model for understanding the mechanisms of chromosomal instability and differentiation of hMSCs.
Collapse
Affiliation(s)
- Masao Takeuchi
- Division of Bioresources, National Institute of Biomedical Innovation, Osaka, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Gui Y, Yin H, He JY, Yang SH, Walsh MP, Zheng XL. Endoreduplication of human smooth muscle cells induced by 2-methoxyestradiol: a role for cyclin-dependent kinase 2. Am J Physiol Heart Circ Physiol 2007; 292:H1313-20. [PMID: 17056669 DOI: 10.1152/ajpheart.00867.2006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Endoreduplication has been suggested to contribute to the development of hypertrophy of smooth muscle cells (SMCs) in hypertension. However, endoreduplication in vascular SMCs and the underlying molecular mechanisms are not clear. Treatment of human SMCs with 10 μM 2-methoxyestradiol (2-ME) for 24 h induces accumulation of cells with ≥4N DNA content, and some polyploid/aneuploid cells actively synthesize their DNA, suggesting the occurrence of endoreduplication. In addition, 2-ME treatment upregulates the expression of cyclin-dependent kinase 2 (Cdk2). The present study was designed to characterize endoreduplication of human SMCs and explore the potential roles of Cdk2 in endoreduplication induced by 2-ME. Treatment with 2-ME (10 μM) for 2–4 days not only caused increases in >4N cells and their reentry into S phase but also induced overduplication of chromosomes. Furthermore, 2-ME increased the kinase activity of Cdk2 and its interaction with cyclin E. Inducible overexpression of dominant-negative Cdk2 in human SMCs inhibited both DNA synthesis of >4N cells and the accumulation of >4N cells induced by 2-ME. We conclude that 2-ME induces endoreduplication of human SMCs and Cdk2 plays an important role in endoreduplication in response to 2-ME.
Collapse
Affiliation(s)
- Yu Gui
- Smooth Muscle Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, Univ of Calgary, Calgary, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
106
|
Barton MC, Akli S, Keyomarsi K. Deregulation of cyclin E meets dysfunction in p53: closing the escape hatch on breast cancer. J Cell Physiol 2007; 209:686-94. [PMID: 17001684 DOI: 10.1002/jcp.20818] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In this review, we focus on pathways intersecting through p53 and cyclin E, highlighting how oncogenic effects of cyclin E deregulation, especially overexpression of shortened or low molecular weight (LMW) forms of cyclin E protein, are amplified by loss of regulatory control through p53 to promote tumor development. Expression of cyclin E protein promotes progression into S-phase, an activity opposed by p53-regulated activation of checkpoint controls or apoptosis. Loss of p53 function is an escape hatch by which tumor cells, initiated by a number of means including cyclin E deregulation, can avoid cell cycle arrest or cell death and progress through further stages of unchecked deregulation and growth. To determine how this escape hatch is opened and, ultimately, how to close it, we must understand the networks of normal signaling and processing in a cell and where they intersect.
Collapse
Affiliation(s)
- Michelle Craig Barton
- Department of Biochemistry and Molecular Biology, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | |
Collapse
|
107
|
Mao JH, Wu D, Perez-Losada J, Jiang T, Li Q, Neve RM, Gray JW, Cai WW, Balmain A. Crosstalk between Aurora-A and p53: frequent deletion or downregulation of Aurora-A in tumors from p53 null mice. Cancer Cell 2007; 11:161-73. [PMID: 17292827 PMCID: PMC2730519 DOI: 10.1016/j.ccr.2006.11.025] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2006] [Revised: 09/22/2006] [Accepted: 11/28/2006] [Indexed: 10/23/2022]
Abstract
The Aurora-A kinase gene is amplified in a subset of human tumors and in radiation-induced lymphomas from p53 heterozygous mice. Normal tissues from p53-/- mice have increased Aurora-A protein levels, but lymphomas from these mice exhibit heterozygous deletions of Aurora-A and/or reduced protein expression. A similar correlation between low p53 levels and Aurora-A gene deletions and expression is found in human breast cancer cell lines. In vitro studies using mouse embryo fibroblasts demonstrate that inhibition of Aurora-A can have either positive or negative effects on cell growth as a function of p53 status. These data have implications for the design of approaches to targeted cancer therapy involving the crosstalk between Aurora-A kinase and p53 pathways.
Collapse
Affiliation(s)
- Jian-Hua Mao
- Cancer Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Di Wu
- Cancer Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jesus Perez-Losada
- Cancer Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Tao Jiang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Qian Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Richard M. Neve
- Department of Laboratory Medicine and Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94270, USA
| | - Joe W. Gray
- Department of Laboratory Medicine and Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94270, USA
| | - Wei-Wen Cai
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Allan Balmain
- Cancer Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
108
|
Grove LE, Ghosh RN. Quantitative characterization of mitosis-blocked tetraploid cells using high content analysis. Assay Drug Dev Technol 2007; 4:421-42. [PMID: 16945015 DOI: 10.1089/adt.2006.4.421] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A range of cellular evidence supporting a G1 tetraploidy checkpoint was obtained from different assay methods including flow cytometry, immunoblotting, and microscopy. Cancer research would benefit if these cellular properties could instead be measured by a single, quantitative, automated assay method, such as high content analysis (HCA). Thus, nocodazole-treated cells were fluorescently labeled for different cell cycle-associated properties, including DNA content, retinoblastoma (Rb) and histone H3 phosphorylation, p53 and p21(WAF1) expression, nuclear and cell sizes, and cell morphology, and automatically imaged, analyzed, and correlated using HCA. HCA verified that nocodazole-induced mitosis block resulted in tetraploid cells. Rb and histone H3 were maximally hyperphosphorylated by 24 h of nocodazole treatment, accompanied by cell and nuclear size decreases and cellular rounding. Cells remained tetraploid and mononucleated with longer treatments, but other targets reverted to G1 levels, including Rb and histone H3 dephosphorylation accompanied by cellular respreading. This was accompanied by increased p53 and p21(WAF1) expression levels. The range of effects accompanying nocodazole-induced block of mitosis and the resulting tetraploid cells' reversal to a pseudo-G1 state can be quantitatively measured by HCA in an automated manner, recommending this assay method for the large-scale biology challenges of modern cancer drug discovery.
Collapse
|
109
|
Rajaraman R, Guernsey DL, Rajaraman MM, Rajaraman SR. Stem cells, senescence, neosis and self-renewal in cancer. Cancer Cell Int 2006; 6:25. [PMID: 17092342 PMCID: PMC1664585 DOI: 10.1186/1475-2867-6-25] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2006] [Accepted: 11/08/2006] [Indexed: 12/20/2022] Open
Abstract
We describe the basic tenets of the current concepts of cancer biology, and review the recent advances on the suppressor role of senescence in tumor growth and the breakdown of this barrier during the origin of tumor growth. Senescence phenotype can be induced by (1) telomere attrition-induced senescence at the end of the cellular mitotic life span (MLS*) and (2) also by replication history-independent, accelerated senescence due to inadvertent activation of oncogenes or by exposure of cells to genotoxins. Tumor suppressor genes p53/pRB/p16INK4A and related senescence checkpoints are involved in effecting the onset of senescence. However, senescence as a tumor suppressor mechanism is a leaky process and senescent cells with mutations or epimutations in these genes escape mitotic catastrophe-induced cell death by becoming polyploid cells. These polyploid giant cells, before they die, give rise to several cells with viable genomes via nuclear budding and asymmetric cytokinesis. This mode of cell division has been termed neosis and the immediate neotic offspring the Raju cells. The latter inherit genomic instability and transiently display stem cell properties in that they differentiate into tumor cells and display extended, but, limited MLS, at the end of which they enter senescent phase and can undergo secondary/tertiary neosis to produce the next generation of Raju cells. Neosis is repeated several times during tumor growth in a non-synchronized fashion, is the mode of origin of resistant tumor growth and contributes to tumor cell heterogeneity and continuity. The main event during neosis appears to be the production of mitotically viable daughter genome after epigenetic modulation from the non-viable polyploid genome of neosis mother cell (NMC). This leads to the growth of resistant tumor cells. Since during neosis, spindle checkpoint is not activated, this may give rise to aneuploidy. Thus, tumor cells also are destined to die due to senescence, but may escape senescence due to mutations or epimutations in the senescent checkpoint pathway. A historical review of neosis-like events is presented and implications of neosis in relation to the current dogmas of cancer biology are discussed. Genesis and repetitive re-genesis of Raju cells with transient "stemness" via neosis are of vital importance to the origin and continuous growth of tumors, a process that appears to be common to all types of tumors. We suggest that unlike current anti-mitotic therapy of cancers, anti-neotic therapy would not cause undesirable side effects. We propose a rational hypothesis for the origin and progression of tumors in which neosis plays a major role in the multistep carcinogenesis in different types of cancers. We define cancers as a single disease of uncontrolled neosis due to failure of senescent checkpoint controls.
Collapse
Affiliation(s)
- Rengaswami Rajaraman
- Department of Medicine, Division of Hematology, Dalhousie University, Halifax NS. B3H 1X5
| | - Duane L Guernsey
- Department of Pathology, Dalhousie University, Halifax NS. B3H 1X5, Canada
| | - Murali M Rajaraman
- Nova Scotia Cancer Centre, Department of Radiation Oncology, QEII Health Sciences Center, Dalhousie University, Halifax NS. B3H 1X5, Canada
| | | |
Collapse
|
110
|
Giono LE, Manfredi JJ. The p53 tumor suppressor participates in multiple cell cycle checkpoints. J Cell Physiol 2006; 209:13-20. [PMID: 16741928 DOI: 10.1002/jcp.20689] [Citation(s) in RCA: 219] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The process of cell division is highly ordered and regulated. Checkpoints exist to delay progression into the next cell cycle phase only when the previous step is fully completed. The ultimate goal is to guarantee that the two daughter cells inherit a complete and faithful copy of the genome. Checkpoints can become activated due to DNA damage, exogenous stress signals, defects during the replication of DNA, or failure of chromosomes to attach to the mitotic spindle. Abrogation of cell cycle checkpoints can result in death for a unicellular organism or uncontrolled proliferation and tumorigenesis in metazoans (Nyberg et al., 2002). The tumor suppressor p53 plays a critical role in each of these cell cycle checkpoints and is reviewed here.
Collapse
Affiliation(s)
- Luciana E Giono
- Department of Oncological Sciences, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | |
Collapse
|
111
|
Agarwal MK, Hastak K, Jackson MW, Breit SN, Stark GR, Agarwal ML. Macrophage inhibitory cytokine 1 mediates a p53-dependent protective arrest in S phase in response to starvation for DNA precursors. Proc Natl Acad Sci U S A 2006; 103:16278-83. [PMID: 17050687 PMCID: PMC1637573 DOI: 10.1073/pnas.0607210103] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
p53 is essential for the cellular responses to DNA damage that help to maintain genomic stability. Protective p53-dependent cell-cycle checkpoints are activated in response to a wide variety of stresses, including not only DNA damage but also arrest of DNA synthesis and of mitosis. In addition to its role in activating the G(1) and G(2) checkpoints, p53 also helps to protect cells in S phase when they are starved for DNA precursors by treatment with the specific aspartate transcarbamylase inhibitor N-phosphonacetyl-l-aspartate (PALA), which blocks the synthesis of pyrimidine nucleotides. Even though p53 is activated, PALA-treated cells expressing low levels of p53 or lacking expression of p21 do not arrest in G(1) or G(2) but are blocked in S phase instead. In the complete absence of p53, PALA-treated cells continue to synthesize DNA slowly and eventually progress through S phase, suffering severe DNA damage that in turn triggers apoptosis. Expression of the secreted protein macrophage inhibitory cytokine 1 (MIC-1), a member of the TGF-beta superfamily, increases substantially after PALA treatment, and application of exogenous MIC-1 or its constitutive expression from a cDNA provides remarkable protection of p53-null cells from PALA-mediated apoptosis, arguing that the p53-dependent secretion of MIC-1 provides a major part of such protection. Stimulation of MIC-1-dependent S phase arrest in normal gut epithelial cells might help to revitalize the clinical use of PALA, which has been limited by gut toxicity.
Collapse
Affiliation(s)
- Mukesh K Agarwal
- Department of Genetics, Case Western Reserve University, Cleveland, OH 44106, USA.
| | | | | | | | | | | |
Collapse
|
112
|
Yang H, Guo X. Tetraploid induction by inhibiting mitosis I with heat shock, cold shock, and nocodazole in the hard clam Mercenaria mercenaria (Linnaeus, 1758). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2006; 8:501-10. [PMID: 16761195 DOI: 10.1007/s10126-005-6183-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Revised: 02/21/2006] [Indexed: 05/10/2023]
Abstract
Tetraploid induction by inhibiting mitosis I with heat shock (32, 35, and 38 degrees C), cold shock (1, 4, and 7 degrees C), and nocodazole (0.02 to 1.6 mg/L) was investigated in the hard clam Mercenaria mercenaria. All treatments were applied to fertilized eggs about 5 min before the first cell division at 22 to 23 degrees C, and lasted for 10, 15, and 20 min. Three replicates were produced for each treatment with different parents. The ploidy of resultant larvae and juveniles was determined with flow cytometry. Heat shock of 35 and 38 degrees C was effective in inhibiting mitosis I, producing 54% to 89% tetraploid larvae. Heat shock of 32 degrees C accelerated embryonic development without inhibiting mitosis or producing tetraploids. In all heat-shock groups, the survival to D-stage larvae was lower than in controls, suggesting that heat-shock treatments and tetraploidy were detrimental to larval development. At the juvenile stage, survivors from heat-shock groups contained no tetraploids. Cold shocks suspended the first cell division during the treatment, but produced no tetraploids in the 4 degrees C and 7 degrees C treatment groups. Cold shock of 1 degrees C produced 31% tetraploid larvae in one replicate, with none surviving to juvenile stage. Nocodazole inhibited mitosis I at concentrations of 0.04 mg/L or higher, but did not produce tetraploids. This study indicates that heat shock is most effective in inducing tetraploids through mitosis I inhibition, although none of the induced tetraploids survived to juvenile stage.
Collapse
Affiliation(s)
- Huiping Yang
- Haskin Shellfish Research Laboratory, Institute of Marine and Coastal Sciences, Rutgers University, Port Norris, NJ 08349, USA
| | | |
Collapse
|
113
|
Castedo M, Coquelle A, Vivet S, Vitale I, Kauffmann A, Dessen P, Pequignot MO, Casares N, Valent A, Mouhamad S, Schmitt E, Modjtahedi N, Vainchenker W, Zitvogel L, Lazar V, Garrido C, Kroemer G. Apoptosis regulation in tetraploid cancer cells. EMBO J 2006; 25:2584-95. [PMID: 16675948 PMCID: PMC1478174 DOI: 10.1038/sj.emboj.7601127] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2005] [Accepted: 04/11/2006] [Indexed: 12/13/2022] Open
Abstract
Tetraploidy can result in cancer-associated aneuploidy. As shown here, freshly generated tetraploid cells arising due to mitotic slippage or failed cytokinesis are prone to undergo Bax-dependent mitochondrial membrane permeabilization and subsequent apoptosis. Knockout of Bax or overexpression of Bcl-2 facilitated the survival of tetraploid cells at least as efficiently as the p53 or p21 knockout. When tetraploid cells were derived from diploid p53 and Bax-proficient precursors, such cells exhibited an enhanced transcription of p53 target genes. Tetraploid cells exhibited an enhanced rate of spontaneous apoptosis that could be suppressed by inhibition of p53 or by knockdown of proapoptotic p53 target genes such as BBC3/Puma, GADD45A and ferredoxin reductase. Unexpectedly, tetraploid cells were more resistant to DNA damaging agents (cisplatin, oxaliplatin and camptothecin) than their diploid counterparts, and this difference disappeared upon inhibition of p53 or knockdown of p53-inducible ribonucleotide reductase. Tetraploid cells were also more resistant against UVC and gamma-irradiation. These data indicate the existence of p53-dependent alterations in apoptosis regulation in tetraploid cells.
Collapse
Affiliation(s)
- Maria Castedo
- CNRS, UMR8125, Institut Gustave Roussy, Villejuif, France
| | | | - Sonia Vivet
- CNRS, UMR8125, Institut Gustave Roussy, Villejuif, France
| | - Ilio Vitale
- CNRS, UMR8125, Institut Gustave Roussy, Villejuif, France
| | | | | | | | - Noelia Casares
- CNRS, UMR8125, Institut Gustave Roussy, Villejuif, France
| | - Alexandre Valent
- Unité de Génomique Fonctionnelle, Institut Gustave Roussy, Villejuif, France
| | | | - Elise Schmitt
- INSERM U-517, Faculty of Medicine and Pharmacy, Dijon, France
| | | | | | | | - Vladimir Lazar
- Unité de Génomique Fonctionnelle, Institut Gustave Roussy, Villejuif, France
| | - Carmen Garrido
- INSERM U-517, Faculty of Medicine and Pharmacy, Dijon, France
| | - Guido Kroemer
- CNRS, UMR8125, Institut Gustave Roussy, Villejuif, France
| |
Collapse
|
114
|
Bodey B, Bodey B, Siegel SE. Mechanisms and markers of carcinogenesis and neoplastic progression. Expert Opin Biol Ther 2006; 5:1317-32. [PMID: 16197337 DOI: 10.1517/14712598.5.10.1317] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Neoplastic transformation evolves over a period of time involving the progression of the cellular immunophenotype (IP) from normal to hyperplastic to dysplastic, and finally, to fully malignant IPs. Superimposed on these changes is the interaction of the initiated cell with its microenvironment, whereby the neoplastically transformed cells, through the regulation or dysregulation of cytoskeletal, integrin, protease and adhesion molecules, develop a novel manner of relation with their surrounding microenvironment. Studies of the neuroendocrine-immune network revealed that the hormonal and cytokine milieu plays an important role impacting the growth and dedifferentiation capabilities of neoplastic cells. This is further affected by the tumour cells themselves determining the constitution of this hormonal microenvironment, allowing the most aggressive and invasive of neoplastically transformed cell clones to promote their own growth and dissemination. The elucidation of the steps of the progression of cancer from premalignant to metastatic and invasive forms is of utmost importance in the differential diagnosis of neoplasms and in the establishment of more efficacious therapeutic regimens. These regimens will certainly begin to take on a more individualised form. The functional characterisation of various human malignancies as to the neoplastically transformed cells' IP, the bases of their interaction with tissue stromal elements, and the molecules involved in the humoral microenvironment of the particular stage of tumour will certainly allow for the better diagnosis, staging, prognostication and treatment of cancers in the future. This paper reviews carcinogenesis from nutritional, genetic and molecular, and humoral aspects, and discusses the importance of tumour markers in the diagnosis and therapeutic management of human cancer.
Collapse
Affiliation(s)
- Bela Bodey
- Department of Pathology, University of Southern California, Keck School of Medicine, Reseda, Los Angeles, CA 91335, USA.
| | | | | |
Collapse
|
115
|
Incassati A, Patel D, McCance DJ. Induction of tetraploidy through loss of p53 and upregulation of Plk1 by human papillomavirus type-16 E6. Oncogene 2006; 25:2444-51. [PMID: 16369493 DOI: 10.1038/sj.onc.1209276] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2005] [Revised: 09/28/2005] [Accepted: 10/19/2005] [Indexed: 11/09/2022]
Abstract
Cancer cells are insensitive to many signals that inhibit growth of untransformed cells. Here, we show that primary human epithelial cells expressing human papillomavirus (HPV) type-16 E6/E7 bypass arrest caused by the DNA-damaging drug adriamycin and become tetraploid. To determine the contribution of E6 in the context of E7 to the resistance of arrest and induction of tetraploidy, we used an E6 mutant unable to degrade p53 or RNAi targeting p53 for knockdown. The E6 mutant fails to generate tetraploidy; however, the presence of E7 is sufficient to bypass arrest while the p53 RNAi permits both arrest insensitivity and tetraploidy. We published previously that polo-like kinase 1 (Plk1) is upregulated in E6/E7-expressing cells. We observe here that abnormal expression of Plk1 protein correlates with tetraploidy. Using the p53 binding-defective mutant of E6 and p53 RNAi, we show that p53 represses Plk1, suggesting that loss of p53 results in tetraploidy through upregulation of Plk1. Consistent with this hypothesis, overexpression of Plk1 in cells generates tetraploidy but does not confer resistance to arrest. These results support a model for transformation caused by HPV-16 where bypass of arrest and tetraploidy are separable consequences of p53 loss with Plk1 required only for the latter effect.
Collapse
Affiliation(s)
- A Incassati
- Department of Biomedical Genetics, University of Rochester, Rochester, NY 14642, USA
| | | | | |
Collapse
|
116
|
Abstract
The p53 tumor suppressor gene (TP53) is the most frequently altered gene in human cancer and is also found mutated in several types of brain tumors. Loss of p53 function plays a central role in the development of cancer. The characterization of the biochemical pathways by which p53 alteration triggers tumorigenesis is the foundation for the design of novel therapeutic approaches. Investigations of the intracellular mechanisms at the origin of p53 tumor suppressive functions have shown that p53 is a transcription factor able to sense a variety of cellular insults and induce a dual response: cell growth arrest/senescence or apoptosis. Less well studied are p53's influences on extracellular events such as tumor angiogenesis, immunology and invasion. Here, we review these findings and specifically discuss their implications for brain tumor genesis, molecular diagnosis and prognosis. Of clinical importance are the findings that brain tumors with wild type (wt) or mutant p53 status may respond differently to radiation therapy and that novel therapeutic strategies using TP53 gene transfer or specifically targeting tumor cells with mutated p53 are being evaluated in clinical trials.
Collapse
Affiliation(s)
- Giulia Fulci
- Laboratory of Tumor Biology and Genetics, Neurosurgery Dept., University Hospital (CHUV), 1011 Lausanne, Switzerland
- Laboratory of Molecular Neuro‐Oncology, Department of Neurological Surgery and Winship Cancer Center, Emory University, Atlanta, Georgia 30322, USA
| | - Nobuaki Ishii
- Laboratory of Tumor Biology and Genetics, Neurosurgery Dept., University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - Erwin G. Van Meir
- Laboratory of Tumor Biology and Genetics, Neurosurgery Dept., University Hospital (CHUV), 1011 Lausanne, Switzerland
- Laboratory of Molecular Neuro‐Oncology, Department of Neurological Surgery and Winship Cancer Center, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
117
|
Mori T, Kinoshita Y, Watanabe A, Yamaguchi T, Hosokawa K, Honjo H. Retention of paclitaxel in cancer cells for 1 week in vivo and in vitro. Cancer Chemother Pharmacol 2006; 58:665-72. [PMID: 16534615 DOI: 10.1007/s00280-006-0209-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2005] [Accepted: 02/03/2006] [Indexed: 12/01/2022]
Abstract
PURPOSE Clinically, the administration of paclitaxel for ovarian cancer on a dose-dense weekly schedule, rather than the conventional every-3-week schedule, might demonstrate greater tumor-cell death. Here, we investigate the pharmacokinetics and the pharmacodynamics of weekly paclitaxel in cancer cells in vivo and in vitro. EXPERIMENTAL DESIGN Paclitaxel concentrations were measured by HPLC, and apoptotic cells were detected by TUNEL assay in paclitaxel-pretreated cervical cancer cells treated with paclitaxel (10 ng/ml) and in the tissues of cervical cancer patients treated with weekly paclitaxel (60 mg/m2/week). Polymerized tubulin was detected with a tubulin polymerization assay, and the BrdU cell proliferation assay was used to assess the effect of paclitaxel. RESULTS Paclitaxel remained in the cancer tissues of six patients for 6 days after the last medication. In vitro, paclitaxel was retained in all cell lines for 24 h after its removal from the medium, and paclitaxel was still detectable in CaSki cells on day 7. Simultaneous treatment with depolymerizing drugs inhibited the retention of paclitaxel in cells and paclitaxel-induced polymerization of tubulin. After paclitaxel treatment, apoptotic cells were detected in cancer tissues and CaSki cells for 1 week. Under high magnification, apoptotic cells on day 7 after paclitaxel treatment showed multinucleation. CONCLUSIONS Paclitaxel is unusual in that it accumulates especially in cancer cells and induces apoptosis for 1 week in vivo and in vitro. On the other hand, paclitaxel could not be detected in cancer tissues after 2 weeks. The administration of paclitaxel on a weekly schedule, rather than the standard every-3-week schedule, might produce greater tumor-cell death.
Collapse
Affiliation(s)
- Taisuke Mori
- Department of Obstetrics and Gynecology, Kyoto Prefectural University of Medicine, Kawaramachi Hirokoji, Kamigyo-Ku, 602-8566, Kyoto, Japan
| | | | | | | | | | | |
Collapse
|
118
|
Fukushima T, Zapata JM, Singha NC, Thomas M, Kress CL, Krajewska M, Krajewski S, Ronai Z, Reed JC, Matsuzawa SI. Critical function for SIP, a ubiquitin E3 ligase component of the beta-catenin degradation pathway, for thymocyte development and G1 checkpoint. Immunity 2006; 24:29-39. [PMID: 16413921 DOI: 10.1016/j.immuni.2005.12.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2005] [Revised: 11/21/2005] [Accepted: 12/14/2005] [Indexed: 12/28/2022]
Abstract
Beta-catenin has been implicated in thymocyte development because of its function as a coactivator of Tcf/LEF-family transcription factors. Previously, we discovered a novel pathway for p53-induced beta-catenin degradation through a ubiquitin E3 ligase complex involving Siah1, SIP (CacyBP), Skp1, and Ebi. To gain insights into the physiological relevance of this new degradation pathway in vivo, we generated mutant mice lacking SIP. We demonstrate here that SIP-/- thymocytes have an impaired pre-TCR checkpoint with failure of TCRbeta gene rearrangement and increased apoptosis, resulting in reduced cellularity of the thymus. Moreover, the degradation of beta-catenin in response to DNA damage is significantly impaired in SIP-/- cells. SIP-/- embryonic fibroblasts show a growth-rate increase resulting from defects in G1 arrest. Thus, the beta-catenin degradation pathway mediated by SIP defines an essential checkpoint for thymocyte development and cell-cycle progression.
Collapse
Affiliation(s)
- Toru Fukushima
- Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Cristi E, Perrone G, Toscano G, Verzì A, Nori S, Santini D, Tonini G, Vetrani A, Fabiano A, Rabitti C. Tumour proliferation, angiogenesis, and ploidy status in human colon cancer. J Clin Pathol 2006; 58:1170-4. [PMID: 16254106 PMCID: PMC1770760 DOI: 10.1136/jcp.2004.025536] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AIMS Tumour angiogenesis is essential for carcinogenesis and facilitates the process of tumour development and metastasis. Vascular endothelial growth factor (VEGF) is a well characterised angiogenetic factor and is known to play a crucial role in new vessel development. To gain further insight into the effects of microvessel density and VEGF expression in colon cancer, their relation with tumour proliferation, ploidy status, and p53 expression was investigated in colon cancer. METHODS Tissue samples of 50 archived colon cancers were analysed by immunohistochemistry for VEGF, p53, and the endothelial cell marker, von Willebrand factor (VWF), using specific antibodies. The same samples were re-cut for flow cytometric studies to obtain S phase fraction (SPF) and ploidy status. RESULTS A positive significant correlation was found between SPF and angiogenesis. The median microvessel count in high SPF tumours was significantly higher than in low SPF ones. No association was found between VEGF expression and SPF. A positive correlation was found between ploidy status and p53 expression and microvessel count. Furthermore, a positive correlation was established between DNA ploidy, VEGF expression, and microvessel count. CONCLUSION This study provides evidence that in colon cancer, tumour growth may be stimulated by vascular supply, and the lack of a correlation between tumour cell proliferation and VEGF expression indicates that these two parameters may be regulated by separate mechanisms. Furthermore, the positive correlation between microvessel density, VEGF expression, and ploidy status provides more evidence that genetic alterations are involved in tumour angiogenesis.
Collapse
Affiliation(s)
- E Cristi
- Surgical Pathology, Campus Bio-Medico University, Via Emilio Longoni, Rome 83 00155, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Shen KC, Heng H, Wang Y, Lu S, Liu G, Deng CX, Brooks SC, Wang YA. ATM and p21 cooperate to suppress aneuploidy and subsequent tumor development. Cancer Res 2005; 65:8747-53. [PMID: 16204044 DOI: 10.1158/0008-5472.can-05-1471] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The DNA damage checkpoint protein kinase mutated in ataxia telangiectasia (ATM) is involved in sensing and transducing DNA damage signals by phosphorylating and activating downstream target proteins that are implicated in the regulation of cell cycle progression and DNA repair. Atm-/- cells are defective in cellular proliferation mediated by the Arf/p53/p21 pathway. In this report, we show that increased expression of p21 (also known as Waf1 or CDKN1a) in Atm-/- cells serves as a cellular defense mechanism to suppress further chromosomal instability (CIN) and tumor development because Atm-/- p21-/- mice are predisposed to carcinomas and sarcomas with intratumoral heterogeneity. It was found that Atm-deficient cells are defective in metaphase-anaphase transition leading to abnormal karyokinesis. Moreover, Atm-/- p21-/- primary embryonic fibroblasts exhibit increased CIN compared with either Atm-/- or p21-/- cells. The increased CIN is manifested at the cellular level by increased chromatid breaks and elevated aneuploid genome in Atm-/- p21-/- cells. Finally, we showed that the role of p21 in a CIN background induced by loss of Atm is to suppress numerical CIN but not structural CIN. Our data suggest that the development of aneuploidy precedes tumor formation and implicates p21 as a major tumor suppressor in a genome instability background.
Collapse
Affiliation(s)
- Kate C Shen
- Barbara Ann Karmanos Cancer Institute, Detroit, Michigan 48201, USA
| | | | | | | | | | | | | | | |
Collapse
|
121
|
Rogulski K, Li Y, Rothermund K, Pu L, Watkins S, Yi F, Prochownik EV. Onzin, a c-Myc-repressed target, promotes survival and transformation by modulating the Akt-Mdm2-p53 pathway. Oncogene 2005; 24:7524-41. [PMID: 16170375 DOI: 10.1038/sj.onc.1208897] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The c-Myc oncoprotein is a general transcription factor whose target genes dictate the c-Myc phenotype. One such target of c-Myc, 'onzin', is normally expressed at high levels in myeloid cells and is dramatically downregulated in response to c-Myc overexpression. We show here that short hairpin interfering RNA-mediated knockdown of endogenous onzin results in a reduced growth rate and a proapoptotic phenotype. In contrast, onzin overexpression in fibroblasts is associated with an increased growth rate, resistance to apoptotic stimuli, loss of the G2/M checkpoint, and tumorigenic conversion. Onzin-overexpressing cells fail to induce p53 in response to apoptotic stimuli and contain higher levels of the active, phosphorylated forms of Akt1 and, more strikingly, of Mdm2. Using yeast two-hybrid and coimmunoprecipitation assays, we show that onzin directly interacts with both proteins. Green fluorescent protein tagging also confirms directly that Akt1 and Mdm2 colocalize with onzin, although the precise subcellular distribution of each protein is dependent on its relative abundance. Collectively, our results identify onzin as a novel regulator of several p53-dependent aspects of the c-Myc phenotype via its dramatic effect on Mdm2. This is reminiscent of the c-Myc --> p19(ARF)--mid R: Mdm2 pathway and might function as a complementary arm to ensure the proper cellular response to oncogenic and/or apoptotic stimuli.
Collapse
Affiliation(s)
- Kenneth Rogulski
- Section of Hematology/Oncology, Children's Hospital of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | |
Collapse
|
122
|
Latonen L, Laiho M. Cellular UV damage responses--functions of tumor suppressor p53. Biochim Biophys Acta Rev Cancer 2005; 1755:71-89. [PMID: 15921859 DOI: 10.1016/j.bbcan.2005.04.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2004] [Revised: 04/07/2005] [Accepted: 04/21/2005] [Indexed: 02/06/2023]
Abstract
DNA damage, provoked by ultraviolet (UV) radiation, evokes a cellular damage response composed of activation of stress signaling and DNA checkpoint functions. These are translated to responses of replicative arrest, damage repair, and apoptosis aimed at cellular recovery from the damage. p53 tumor suppressor is a central stress response protein, activated by multiple endogenous and environmental insults, including UV radiation. The significance of p53 in the DNA damage responses has frequently been reviewed in the context of ionizing radiation or other double strand break (DSB)-inducing agents. Despite partly similar patterns, the molecular events following UV radiation are, however, distinct from the responses induced by DSBs and are profoundly coupled with transcriptional stress. These are illustrated, e.g., by the UV damage-specific translocations of Mdm2, promyelocytic leukemia protein, and nucleophosmin and their interactions with p53. In this review, we discuss UV damage-provoked cellular responses and the functions of p53 in damage recovery and cell death.
Collapse
Affiliation(s)
- Leena Latonen
- Molecular and Cancer Biology Program and Haartman Institute, University of Helsinki, PO Box 63, FIN-00014 Helsinki, Finland
| | | |
Collapse
|
123
|
Duensing A, Duensing S. Guilt by association? p53 and the development of aneuploidy in cancer. Biochem Biophys Res Commun 2005; 331:694-700. [PMID: 15865924 DOI: 10.1016/j.bbrc.2005.03.157] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2005] [Indexed: 02/07/2023]
Abstract
Aneuploidy is one of the most frequent genetic alterations in solid tumors. It is commonly caused by cell division errors that are induced by oncogene activation or loss of tumor suppressor functions. In addition, certain viral oncoproteins have been implicated in the induction of chromosome copy number changes. Aneuploidy and inactivation of p53 frequently coincide in human cancers but there is increasing evidence that loss of p53 by itself is not a primary cause of aneuploidy. Nonetheless, p53 inactivation synergizes with additional oncogenic events to promote aneuploidy and may facilitate chromosomal imbalances through indirect mechanisms. This review summarizes the current knowledge about the association between aneuploidy and p53, and discusses two of the most controversial mechanisms that have been implicated in genomic instability associated with loss of p53: subversion of ploidy control and aberrant centrosome duplication.
Collapse
Affiliation(s)
- Anette Duensing
- Molecular Virology Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA
| | | |
Collapse
|
124
|
Oikawa T, Okuda M, Ma Z, Goorha R, Tsujimoto H, Inokuma H, Fukasawa K. Transcriptional control of BubR1 by p53 and suppression of centrosome amplification by BubR1. Mol Cell Biol 2005; 25:4046-61. [PMID: 15870277 PMCID: PMC1087701 DOI: 10.1128/mcb.25.10.4046-4061.2005] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Elimination of the regulatory mechanism underlying numeral homeostasis of centrosomes, as seen in cells lacking p53, results in abnormal amplification of centrosomes, which increases the frequency of chromosome segregation errors, and thus contributes to the chromosome instability frequently observed in cancer cells. We have previously reported that p53(-/-) mouse cells in prolonged culture undergo genomic convergence similar to that observed during tumor progression; early-passage p53(-/-) cells are karyotypically heterogeneous due to extensive chromosome instability associated with centrosome amplification, while late-passage p53(-/-) cells are aneuploid yet karyotypically homogeneous and chromosomally stable. Moreover, they contain numerically normal centrosomes. Through the microarray analysis of early- and late-passage p53(-/-) cells, we identified the BubR1 spindle checkpoint protein, which plays a critical role in suppression of centrosome amplification and stabilization of chromosomes in late-passage p53(-/-) cells. Up-regulation of BubR1 augments the checkpoint function, which effectively senses the spindle/chromosome aberrations associated with centrosome amplification. We further found that BubR1 transcription is largely controlled by p53. In early-passage p53(-/-) cells, BubR1 expression is low and the checkpoint function in response to microtubule toxin is considerably compromised. In late-passage cells, however, regaining of BubR1 expression restores the checkpoint function to mitotic aberrations caused by microtubule toxin. Our studies demonstrate the molecular aspect of genomic convergence in cultured cells, providing critical information for understanding the stepwise progression of tumors.
Collapse
Affiliation(s)
- Tatsuo Oikawa
- Laboratory of Veterinary Internal Medicine, Faculty of Agriculture, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| | | | | | | | | | | | | |
Collapse
|
125
|
Landen JW, Hau V, Wang M, Davis T, Ciliax B, Wainer BH, Van Meir EG, Glass JD, Joshi HC, Archer DR. Noscapine crosses the blood-brain barrier and inhibits glioblastoma growth. Clin Cancer Res 2005; 10:5187-201. [PMID: 15297423 DOI: 10.1158/1078-0432.ccr-04-0360] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The opium alkaloid noscapine is a commonly used antitussive agent available in Europe, Asia, and South America. Although the mechanism by which it suppresses coughing is currently unknown, it is presumed to involve the central nervous system. In addition to its antitussive action, noscapine also binds to tubulin and alters microtubule dynamics in vitro and in vivo. In this study, we show that noscapine inhibits the proliferation of rat C6 glioma cells in vitro (IC(50) = 100 microm) and effectively crosses the blood-brain barrier at rates similar to the ones found for agents such as morphine and [Met]enkephalin that have potent central nervous system activity (P < or = 0.05). Daily oral noscapine treatment (300 mg/kg) administered to immunodeficient mice having stereotactically implanted rat C6 glioblasoma into the striatum revealed a significant reduction of tumor volume (P < or = 0.05). This was achieved with no identifiable toxicity to the duodenum, spleen, liver, or hematopoietic cells as determined by pathological microscopic examination of these tissues and flow cytometry. Furthermore, noscapine treatment resulted in little evidence of toxicity to dorsal root ganglia cultures as measured by inhibition of neurite outgrowth and yielded no evidence of peripheral neuropathy in animals. However, evidence of vasodilation was observed in noscapine-treated brain tissue. These unique properties of noscapine, including its ability to cross the blood-brain barrier, interfere with microtubule dynamics, arrest tumor cell division, reduce tumor growth, and minimally affect other dividing tissues and peripheral nerves, warrant additional investigation of its therapeutic potential.
Collapse
Affiliation(s)
- Jaren W Landen
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Sengupta S, Harris CC. p53: traffic cop at the crossroads of DNA repair and recombination. Nat Rev Mol Cell Biol 2005; 6:44-55. [PMID: 15688066 DOI: 10.1038/nrm1546] [Citation(s) in RCA: 390] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
p53 mutants that lack DNA-binding activities, and therefore, transcriptional activities, are among the most common mutations in human cancer. Recently, a new role for p53 has come to light, as the tumour suppressor also functions in DNA repair and recombination. In cooperation with its function in transcription, the transcription-independent roles of p53 contribute to the control and efficiency of DNA repair and recombination.
Collapse
Affiliation(s)
- Sagar Sengupta
- Laboratory of Human Carcinogenesis, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Building 37, Room 3068, Bethesda, Maryland, 20892-4255, USA
| | | |
Collapse
|
127
|
Abstract
How cells behave as they divide in the presence of chromosome (DNA) damage is only just beginning to be explored. It appears to depend on the cell type and organism, the stage of development, how extensive the damage is and when it occurs. The existing data support the conclusion that vertebrate somatic cells lack a conventional DNA damage checkpoint during mitosis, and that when damaged DNA does prolong mitosis it is mediated by the spindle assembly checkpoint. As a rule, in the presence of DNA damage cells ultimately undergo an aberrant mitosis and enter the ensuing G1. They then either die, via apoptosis or mitotic catastrophe, or survive with an altered genome. To avoid these outcomes, cells with DNA damage are normally prevented from entering mitosis by a number of G2 checkpoint control pathways.
Collapse
Affiliation(s)
- Ciaran Morrison
- Department of Biochemistry/NCBES, National University of Ireland-Galway, University Road, Galway, Ireland.
| | | |
Collapse
|
128
|
Abstract
Primary leiomyosarcoma (LMS) of bone is an exceedingly rare entity on which to date no molecular data have been reported. In a series of 6 tumors (5 grade IIB, 1 grade IIA), we assessed the prevailing genetic stability by microsatellite analysis at 7 loci. The IIB tumors demonstrated a rate of genomic loss as high as 90%, accompanied by an intratumoral heterogeneity in 30% of conspicuous markers. High microsatellite instability in the severe type was not observed, although hMLH1 immunostaining was consistently negative. We assume that intraosseous LMS pertains to "deletor phenotype" tumors. We did observe a locus-specific MSI in our marker linked with hMSH2. Immunostaining and allelotyping indicated a knock-out of pRb in all cases, confirming its major role in sarcomas. Only the stage IIB tumors (4 of 5) pointed to p53 inactivation. In addition, the human telomerase subunit-linked markers exhibited high rates of chromosomal loss. The stage IIA tumor still confined to the bone displayed no genetic instability. Moreover, the proliferation index made a clear distinction between the IIA and IIB tumors (5% vs 30%). We propose to further investigate the usefulness of loss of heterozygosity as a progression marker in this entity.
Collapse
Affiliation(s)
- Sven J G Verelst
- Flinders Department of Anatomical Pathology, Flinders Medical Centre, Adelaide, Australia
| | | | | | | |
Collapse
|
129
|
Jee YH, Jeong WI, Kim TH, Hwang IS, Ahn MJ, Joo HG, Hong SH, Jeong KS. p53 and cell-cycle-regulated protein expression in small intestinal cells after fast-neutron irradiation in mice. Mol Cell Biochem 2005; 270:21-8. [PMID: 15792350 DOI: 10.1007/s11010-005-3440-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The involvement of the p53 gene in apoptosis of many cell types towards y-radiation is well established. However, little information is available on the relationship between p53 status and cells' ability to undergo apoptosis following exposure to fast neutrons. The aim of this study was to characterize the apoptotic pathway traveled by neutrons in mouse intestinal crypt cells. Each mouse received whole body doses of 0.25-8 Gy fast neutrons and were sacrificed 0, 4, 6, 12, 24, 48, and 72 h, respectively, after irradiation. Apoptosis of crypt cells and expression of p53, cyclin A, cyclin B, cyclin D, and cyclin E were measured. The apoptosis in crypt cells was maximal at 4 and 6 h after irradiation, showing a gradual decline at 24 h. The highest frequency of apoptosis was seen at a 1 Gy dose and then declined gradually beyond a 2 Gy dose with high levels of damage. In immunoblot analysis, apoptosis was confirmed to be dependent on p53 function after fast-neutron irradiation. In addition, cyclin B1, cyclin D, and cyclin E were overexpressed in intestinal cells after fast-neutron irradiation and their immunoreactivities were increased strongly in round and oval cells of laminar propria in villi core and crypts. The results of the current study suggest that apoptosis in crypt cells shows a time- and dose-dependent increase after fast-neutron irradiation. In addition, fast-neutron-induced apoptosis in mouse intestinal crypt cells appears to be related to the increase in functional p53 proteins to a level sufficient to initiate apoptosis and up-regulation of cell-cycle-regulated proteins, which may lead to resistance to DNA damage through cell cycle arrest, is involved deeply in protection of gastrointestinal cells after low doses of fast-neutron irradiation.
Collapse
Affiliation(s)
- Young-Heun Jee
- Department of Veterinary Medicine, Cheju National University, Cheju, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
130
|
Węsierska-Gądek J, Gueorguieva M, Horky M. Roscovitine-induced up-regulation of p53AIP1 protein precedes the onset of apoptosis in human MCF-7 breast cancer cells. Mol Cancer Ther 2005. [DOI: 10.1158/1535-7163.113.4.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
We reported recently that roscovitine arrested human MCF-7 cancer cells at G2-M phase of the cell cycle and concomitantly induced apoptosis. After roscovitine treatment, the level of wild-type p53 protein strongly increased and p53 was accumulated in the nucleus. Here, we raised the question of which pathway would be involved in roscovitine-induced apoptosis in MCF-7 cells, which are known to be caspase-3-deficient, and whether roscovitine-mediated activation of p53 protein might positively affect the execution of cell death. Roscovitine induced a depolarization of mitochondrial potential beginning at 6 hours posttreatment as evidenced by changes in J-aggregate formation and release of the mitochondrial proteins cytochrome c and apoptosis-inducing factor. Interestingly, roscovitine stimulated a site-specific phosphorylation of wild-type p53 protein in a time-dependent manner. p53 protein was specifically phosphorylated at Ser46. P-Ser46-activated wild-type p53 tumor suppressor up-regulated p53AIP1 protein, its downstream target known to mediate the depolarization of mitochondria. The onset of phosphorylation of p53 at Ser46 preceded the up-regulation of p53AIP1 protein and the depolarization of mitochondrial potential. We compared the kinetics of roscovitine-mediated p53 activation between caspase-3-deficient parental MCF-7 cells and cells reconstituted with caspase-3. The kinetics and the extent of p53 protein activation in caspase-3-proficient cells differed from those observed in caspase-3-deficient parental cells. Remarkably, roscovitine failed to induce phosphorylation at Ser46 in caspase-3-reconstituted MCF-7 cells. Our results indicate that, depending on the status of caspase-3 in MCF-7 cells, different apoptotic pathways were initialized.
Collapse
Affiliation(s)
- Józefa Węsierska-Gądek
- 1Cell Cycle Regulation Group, Institute of Cancer Research, Medical University of Vienna, Vienna, Austria and
- 2Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Marieta Gueorguieva
- 1Cell Cycle Regulation Group, Institute of Cancer Research, Medical University of Vienna, Vienna, Austria and
- 2Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Marcel Horky
- 1Cell Cycle Regulation Group, Institute of Cancer Research, Medical University of Vienna, Vienna, Austria and
- 2Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
131
|
Zhou J, O'brate A, Zelnak A, Giannakakou P. Survivin Deregulation in β-Tubulin Mutant Ovarian Cancer Cells Underlies Their Compromised Mitotic Response to Taxol. Cancer Res 2004; 64:8708-14. [PMID: 15574781 DOI: 10.1158/0008-5472.can-04-2538] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Taxol is one of the most successful drugs for the treatment of cancer because of its ability to target tubulin, block cell cycle progression at mitosis, and induce apoptosis. Despite the success of Taxol, the development of drug resistance hampers its clinical applicability. Herein we report that β-tubulin mutant, Taxol-resistant ovarian cancer cells exhibit defective mitotic response to Taxol, even at high concentrations that are sufficient to trigger apoptosis. This mitotic response-defective phenotype is independent of p53 status. We have found that survivin, the mitosis regulator and inhibitor of apoptosis protein, is deregulated in these Taxol-resistant cancer cells; Taxol fails to induce survivin levels and survivin phosphorylation in these cells, in contrast to their parental drug-sensitive counterparts. Exogenous expression of wild-type survivin is able to restore the mitotic response of the resistant cells to Taxol treatment. On the other hand, exogenous expression of dominant-negative survivin abrogates the Taxol-induced mitotic response in drug-sensitive cancer cells. We have also found that overexpression of the mitotic kinase Cdk1, which phosphorylates survivin, is unable to restore the Taxol-induced mitotic response in the resistant cells. Our results show the importance of survivin for the mitotic response in the context of Taxol resistance and provide novel insights into the mechanisms of mitotic arrest and apoptosis induced by microtubule-targeting agents.
Collapse
Affiliation(s)
- Jun Zhou
- Winship Cancer Institute and Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
132
|
Soloveva V, Linzer DIH. Differentiation of placental trophoblast giant cells requires downregulation of p53 and Rb. Placenta 2004; 25:29-36. [PMID: 15013636 DOI: 10.1016/s0143-4004(03)00215-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/05/2002] [Indexed: 12/16/2022]
Abstract
Trophoblast giant cells in the rodent placenta form the outermost layer of the extraembryonic compartment, establish direct contact with maternal cells, and produce a number of pregnancy-specific cytokine hormones. Giant cells differentiate from proliferative trophoblasts as they exit the cell cycle and enter a genome-amplifying endocycle, a process we show involves decreased expression of the G1 checkpoint proteins p53 and Rb. Although p53 mRNA levels are unchanged in proliferative compared to differentiated trophoblasts, p53 protein levels are markedly reduced in giant cells. Forced expression of wild type p53 in trophoblasts inhibits differentiation, and expression of a dominant negative p53 peptide stimulates differentiation. Consistent with the loss of p53 protein, differentiated trophoblasts become resistant to apoptosis-inducing agents. Decreased expression of Rb is also detected during differentiation, and overexpression of Rb in trophoblasts inhibits giant cell differentiation. Although an increase in E2F activity would be expected with the loss of Rb, what is observed is an overall decrease in E2F DNA-binding complexes, a shift to new complexes, and a decrease in E2F-dependent gene expression in differentiating trophoblasts. Overall, these results indicate that the combination of a decrease in p53 and Rb represents a functionally important part of the transition of trophoblasts from a proliferative cell cycle to an endocycle in the giant cell differentiation programme.
Collapse
Affiliation(s)
- V Soloveva
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, 2153 Sheridan Road, Evanston, IL 60208, USA
| | | |
Collapse
|
133
|
Abstract
Cells that fail to divide during cytokinesis often arrest in the next G1 phase by a mysterious mechanism that depends upon p53. What triggers this arrest is unclear. New studies, including a report in this issue (Uetake and Sluder, 2004) suggest that this arrest does not occur because cells are polyploid, are binucleate, have multiple centrosome, or have failed cytokinesis, making this phenomenon even more puzzling.
Collapse
Affiliation(s)
- P Todd Stukenberg
- Department of Biochemistry and Molecular Genetics, University of Virginia Medical School, Charlottesville, VA 22908, USA.
| |
Collapse
|
134
|
Watanabe A, Inokuchi K, Yamaguchi H, Mizuki T, Tanosaki S, Shimada T, Dan K. Near-triploidy and near-tetraploidy in hematological malignancies and mutation of the p53 gene. ACTA ACUST UNITED AC 2004; 26:25-30. [PMID: 14738434 DOI: 10.1111/j.0141-9854.2003.00574.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Hyperdiploidy of > or =58 chromosomes is reported in 0.5-3% of hematological malignancies, but reports of near-triploidy (58-80 chromosomes) and near-tetraploidy (81-103 chromosomes), are few. We examined these chromosome abnormalities and analyzed the relationship with the mutation of the p53 gene. Thirty-one of 979 adult patients (3.2%) with hematological malignancies were identified as having near-triploid or near-tetraploid (tri-/tetraploid) chromosomes. These included 11 with B-cell neoplasms, seven with Hodgkin's lymphoma, five with T-cell neoplasms, four with myelodysplastic syndromes and four with acute myeloid leukemias. All patients had concurrent complex chromosome aberrations. Deletion of one allele of the p53 gene was found in two patients and a point mutation of the p53 gene was detected in five patients. Although abnormalities of the p53 gene have been reported in about 10% of hematological malignancies, these were found in seven of 31 (23%) patients with tri-/tetraploidy. These findings suggest that the abnormality of the p53 gene may be closely related with tri-/tetraploidy. The four myelodysplastic syndrome (MDS) patients with tri-/tetraploidy had a significantly worse prognosis than those with diploid cytogenetics (n = 35; P < 0.002). In B-cell neoplasms (n = 3), triploidy was associated with a worse prognosis than tetraploidy (n = 8) and diploidy (n = 130; P < 0.02).
Collapse
Affiliation(s)
- A Watanabe
- Division of Hematology, Department of Internal Medicine, Nippon Medical School, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
135
|
Okada H, Bakal C, Shahinian A, Elia A, Wakeham A, Suh WK, Duncan GS, Ciofani M, Rottapel R, Zúñiga-Pflücker JC, Mak TW. Survivin loss in thymocytes triggers p53-mediated growth arrest and p53-independent cell death. ACTA ACUST UNITED AC 2004; 199:399-410. [PMID: 14757745 PMCID: PMC2211792 DOI: 10.1084/jem.20032092] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Because survivin-null embryos die at an early embryonic stage, the role of survivin in thymocyte development is unknown. We have investigated the role by deleting the survivin gene only in the T lineage and show here that loss of survivin blocks the transition from CD4− CD8− double negative (DN) thymocytes to CD4+ CD8+ double positive cells. Although the pre–T cell receptor signaling pathway is intact in survivin-deficient thymocytes, the cells cannot respond to its signals. In response to proliferative stimuli, cycling survivin-deficient DN cells exhibit cell cycle arrest, a spindle formation defect, and increased cell death. Strikingly, loss of survivin activates the tumor suppressor p53. However, the developmental defects caused by survivin deficiency cannot be rescued by p53 inactivation or introduction of Bcl-2. These lines of evidence indicate that developing thymocytes depend on the cytoprotective function of survivin and that this function is tightly coupled to cell proliferation but independent of p53 and Bcl-2. Thus, survivin plays a critical role in early thymocyte development.
Collapse
Affiliation(s)
- Hitoshi Okada
- Advanced Medical Discovery Institute, University of Toronto, 620 University Avenue, Suite 706, Ontario M5G 2C1, Canada.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
136
|
Kourea HP, Koutras AK, Scopa CD, Marangos MN, Tzoracoeleftherakis E, Koukouras D, Kalofonos HP. Expression of the cell cycle regulatory proteins p34cdc2, p21waf1, and p53 in node negative invasive ductal breast carcinoma. Mol Pathol 2004; 56:328-35. [PMID: 14645695 PMCID: PMC1187351 DOI: 10.1136/mp.56.6.328] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
AIMS To look for correlations between expression of cell cycle regulatory proteins p34(cdc2), p21(WAF1), and p53 in node negative invasive ductal breast carcinoma, or between these proteins and clinicopathological parameters, and to assess their prognostic value. METHODS Immunohistochemistry using formalin fixed, paraffin wax embedded sections from 94 breast carcinomas. Adjacent benign epithelial breast tissue was available in 74 cases. Median follow up was 72 months. RESULTS Nuclear and cytoplasmic p34(cdc2) expression was seen in 80 and 62 tumours, respectively; nuclear expression was seen in adjacent benign epithelium in 12 cases. p21(WAF1) and p53 were positive in 48 and 21 tumours, respectively. High expression of p34(cdc2) in neoplastic nuclei was associated with higher histological grade and p53 expression, but not with tumour size, steroid receptor status, patient age, menopausal status, recurrence, metastasis, disease free survival (DFS), or overall survival (OS). p34(cdc2) in tumour cytoplasm was associated with p34(cdc2) nuclear positivity, high tumour grade, and DFS in univariate but not multivariate analysis. In contrast, p34(cdc2) expression in benign tissue independently predicted DFS and OS in univariate and multivariate analysis. Expression of p53 was associated with high tumour grade and negative steroid receptors, but not with recurrence, metastasis, DFS, or OS. p21(WAF1) expression was not associated with the examined parameters. CONCLUSIONS p34(cdc2), p21(WAF1), and p53 expression does not predict outcome in node negative breast carcinoma, although p34(cdc2) expression in benign tissue is related to prognosis. The association between p34(cdc2) and p53 implicates p53 in G2-M cell cycle checkpoint control, possibly via mediators unrelated to p21(WAF1).
Collapse
Affiliation(s)
- H P Kourea
- Department of Pathology, University Hospital of Patras, Patras Medical School, Patras, Rion 26500, Greece.
| | | | | | | | | | | | | |
Collapse
|
137
|
Pawlik TM, Keyomarsi K. Role of cell cycle in mediating sensitivity to radiotherapy. Int J Radiat Oncol Biol Phys 2004; 59:928-42. [PMID: 15234026 DOI: 10.1016/j.ijrobp.2004.03.005] [Citation(s) in RCA: 783] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2003] [Revised: 03/01/2004] [Accepted: 03/08/2004] [Indexed: 02/09/2023]
Abstract
Multiple pathways are involved in maintaining the genetic integrity of a cell after its exposure to ionizing radiation. Although repair mechanisms such as homologous recombination and nonhomologous end-joining are important mammalian responses to double-strand DNA damage, cell cycle regulation is perhaps the most important determinant of ionizing radiation sensitivity. A common cellular response to DNA-damaging agents is the activation of cell cycle checkpoints. The DNA damage induced by ionizing radiation initiates signals that can ultimately activate either temporary checkpoints that permit time for genetic repair or irreversible growth arrest that results in cell death (necrosis or apoptosis). Such checkpoint activation constitutes an integrated response that involves sensor (RAD, BRCA, NBS1), transducer (ATM, CHK), and effector (p53, p21, CDK) genes. One of the key proteins in the checkpoint pathways is the tumor suppressor gene p53, which coordinates DNA repair with cell cycle progression and apoptosis. Specifically, in addition to other mediators of the checkpoint response (CHK kinases, p21), p53 mediates the two major DNA damage-dependent cellular checkpoints, one at the G(1)-S transition and the other at the G(2)-M transition, although the influence on the former process is more direct and significant. The cell cycle phase also determines a cell's relative radiosensitivity, with cells being most radiosensitive in the G(2)-M phase, less sensitive in the G(1) phase, and least sensitive during the latter part of the S phase. This understanding has, therefore, led to the realization that one way in which chemotherapy and fractionated radiotherapy may work better is by partial synchronization of cells in the most radiosensitive phase of the cell cycle. We describe how cell cycle and DNA damage checkpoint control relates to exposure to ionizing radiation.
Collapse
Affiliation(s)
- Timothy M Pawlik
- Department of Surgical Oncology, University of Texas M. D. Anderson Cancer Center, Box 66, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | | |
Collapse
|
138
|
Saito Y, Gopalan B, Mhashilkar AM, Roth JA, Chada S, Zumstein L, Ramesh R. Adenovirus-mediated PTEN treatment combined with caffeine produces a synergistic therapeutic effect in colorectal cancer cells. Cancer Gene Ther 2004; 10:803-13. [PMID: 14605666 DOI: 10.1038/sj.cgt.7700644] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The tumor suppressor phosphatase and tensin homologue deleted from chromosome 10 (PTEN) gene is a negative regulator of the phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt/PKB) signaling pathway. Overexpression of PTEN in cancer cells results in cell-cycle arrest and cell death through inhibition of PI3K. Caffeine, a xanthine analogue, is well known to enhance the cytocidal and growth-inhibitory effects of DNA-damaging agents such as radiation, UV light, and anticancer agents on tumor cells by abrogating DNA-damage checkpoints through inhibition of ataxia-telangiectasia-mutated (ATM), and ATM and Rad3-related (ATR) kinase activity. In this study, we demonstrate that treatment with a combination of adenovirus-mediated transfer of PTEN (Ad-PTEN) and caffeine synergistically suppressed cell growth and induced apoptosis in colorectal cancer cells but not in normal colorectal fibroblast cells. This synergistic effect was induced through abrogation of G(2)/M arrest, downregulation of the Akt pathway, and modulation of the p44/42MAPK pathway. Thus, combined treatment with Ad-PTEN and caffeine is a potential therapy for colorectal cancer.
Collapse
Affiliation(s)
- Yuji Saito
- Department of Thoracic and Cardiovascular Surgery, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
139
|
Sak A, Wurm R, Elo B, Grehl S, Pöttgen C, Stüben G, Sinn B, Wolf G, Budach V, Stuschke M. Increased radiation-induced apoptosis and altered cell cycle progression of human lung cancer cell lines by antisense oligodeoxynucleotides targeting p53 and p21(WAF1/CIP1). Cancer Gene Ther 2004; 10:926-34. [PMID: 14712319 DOI: 10.1038/sj.cgt.7700649] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Lung cancer is difficult to control locally by radiotherapy and is known to have frequently p53 mutations. Previous results have shown that non-small-cell lung cancer (NSCLC) cell lines with nonfunctional p53 have a higher fraction of radiation-induced apoptosis and that apoptosis follows after the release from the G2/M arrest. The aim of the present work was to study whether inhibition of the p53 response in NSCLC cell lines can modulate the G2/M arrest and the induction of apoptosis after ionizing radiation. Antisense oligodeoxynucleotides (As-ODNs) were used to inhibit the p53 response in the cell lines H460 and A549 with functional p53. In addition, H661 with nonfunctional p53 was used. The results have shown that As-ODNs targeting mRNA of p53 and p21 downregulate radiation-induced expression of p53 and p21(WAF1/CIP1). Delayed apoptosis (35.7+/-4.2% in H460, 1.2+/-0.4% in A549 and 72.2+/-6.5% in H661) was observed after cell cycle progression beyond the G2 block, either in the late G2 phase of the same cell cycle being irradiated (H661) or in the G1 phase of the subsequent cell cycle (H460, A549). As-p53 significantly decreased the fraction of G2/M-arrested cells in H460 cells and increased radiation-induced apoptosis at 96 hours by 17.9+/-8.5 and 9.1+/-3.3% to 53.6+/-7.4 and 10.8+/-2.9% in H460 and A549 cells (P<.01), respectively, but had no effect in H661 cells with nonfunctional p53. In addition, As-p21 decreased the fraction of G2-arrested A549 and H460 cells and increased apoptosis by 23.8+/-5.2 and 31.6+/-7.3% to 59.4+/-3.1 and 32.8+/-7.3%, respectively (P<.01). In conclusion, these data show that radiation-induced G2 arrest is decreased in NSCLC cells and radiation-induced apoptosis is increased when p53-responsive pathways are blocked via As-ODN targeting p53 or p21(WAF1/CIP1) mRNA. In view of the fact that p53 and p21 As-ODN had similar effects on radiation-induced apoptosis normalized by their ability to inhibit radiation-induced p21 expression, we concluded that p21 is an important trigger of late ionizing radiation-induced apoptosis.
Collapse
Affiliation(s)
- Ali Sak
- Department of Radiotherapy, University Essen, 45122 Essen, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Kim KT, Ongusaha PP, Hong YK, Kurdistani SK, Nakamura M, Lu KP, Lee SW. Function of Drg1/Rit42 in p53-dependent mitotic spindle checkpoint. J Biol Chem 2004; 279:38597-602. [PMID: 15247272 DOI: 10.1074/jbc.m400781200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Mutations in the Drg1/RTP/Rit42 gene are commonly identified in hereditary neuropathies of the motor and sensory systems. This gene was also identified as a p53 target gene and a differentiation-related, putative metastatic suppressor gene in human colon and prostate cancer. In this study, we show that the Rit42 protein is a microtubule-associated protein that localizes to the centrosomes and participates in the spindle checkpoint in a p53-dependent manner. When ectopically expressed and exposed to spindle inhibitors, Rit42 inhibited polyploidy in several p53-deficient tumor cell lines and increased the population of cells in mitotic arrest. Blocking endogenous Rit42 expression by small interfering RNA in normal human mammary epithelial cells resulted in the disappearance of astral microtubules, and dividing spindle fiber formation was rarely detected. Moreover, these cells underwent microtubule inhibitor-induced reduplication, leading to a polyploidy state. Our findings imply that Rit42 plays a role in the regulation of microtubule dynamics and the maintenance of euploidy.
Collapse
Affiliation(s)
- Kyung-Tae Kim
- Cancer Biology Program, Hematology and Oncology Division, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
141
|
Wang Y, Theriault JR, He H, Gong J, Calderwood SK. Expression of a Dominant Negative Heat Shock Factor-1 Construct Inhibits Aneuploidy in Prostate Carcinoma Cells*. J Biol Chem 2004; 279:32651-9. [PMID: 15152009 DOI: 10.1074/jbc.m401475200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recent studies have implicated heat shock proteins (HSP) and heat shock transcription factor 1 (HSF1) in tumor progression. We have examined the role of HSF1 in the malignant phenotype of PC-3 prostate carcinoma cells. We have developed a dominant negative construct of HSF1 that antagonizes transcription from HSP promoters and results in the depletion of intracellular HSP 70. Our studies indicate that expression of DN-HSF1 dramatically alters the DNA content of PC-3 cells (derived from p53 null prostatic carcinoma) and inhibits aneuploidy in these cells. This effect is due to prolonged expression of DN-HSF1, and transient expression of the dominant negative factor from an inducible promoter failed to cause the effect. Inhibition of aneuploidy in p53 null PC-3 cells by DN-HSF1 expression was recapitulated by expression within the cells of wild type p53. Furthermore, cells expressing DN-HSF1 showed a profound inhibition in the development of aneuploidy when exposed to chemical agents that disrupt the mitotic spindle and prevent progression through metaphase. Inhibition of aneuploidy in PC-3 cells expressing DN-HSF1 was associated with delayed breakdown of cyclin B1 compared with controls, consistent with a role for wild type HSF1 in the regulation of cyclin B1 degradation, a key step in the control of mitosis. Our experiments therefore demonstrate that HSF1 plays a functional role in cancer cells under nonstress conditions and influences cell cycle behavior and progression through mitosis and promotes the development of the aneuploid state.
Collapse
MESH Headings
- Aneuploidy
- Antineoplastic Agents, Phytogenic/pharmacology
- Cell Cycle
- Cell Division
- Cell Line
- Cell Line, Tumor
- Cells, Cultured
- Cyclin B/metabolism
- Cyclin B1
- DNA/metabolism
- DNA-Binding Proteins/genetics
- Demecolcine/pharmacology
- Dose-Response Relationship, Drug
- Electrophoresis, Polyacrylamide Gel
- Genes, Dominant
- Genes, Reporter
- Genes, p53
- Genetic Vectors
- HSP72 Heat-Shock Proteins
- Heat Shock Transcription Factors
- Heat-Shock Proteins/metabolism
- Humans
- Immunoblotting
- Luciferases/metabolism
- Male
- Mitosis
- Mutation
- Phenotype
- Ploidies
- Promoter Regions, Genetic
- Prostatic Neoplasms/genetics
- Protein Structure, Tertiary
- Resting Phase, Cell Cycle
- Spectrometry, Fluorescence
- Transcription Factors
- Transfection
Collapse
Affiliation(s)
- Yiqun Wang
- Department of Adult Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
142
|
Yakovleva T, Kolesnikova L, Vukojević V, Gileva I, Tan-No K, Austen M, Lüscher B, Ekström TJ, Terenius L, Bakalkin G. YY1 binding to a subset of p53 DNA-target sites regulates p53-dependent transcription. Biochem Biophys Res Commun 2004; 318:615-24. [PMID: 15120643 DOI: 10.1016/j.bbrc.2004.04.065] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2004] [Indexed: 11/18/2022]
Abstract
The tumor suppressor protein p53 regulates gene transcription through binding to specific DNA-target sites. We here demonstrate that a subset of these sites is targeted by another DNA-binding factor. Binding specificity, reactivity with specific antibodies, and experiments with purified protein identified the factor as the multifunctional transcription regulator YY1. The YY1 core binding sequence ACAT is present in the center of p53-half-binding sites in the p21 and GADD45 genes regulating growth arrest and DNA repair, respectively, but is absent in those of the Bax gene critical for apoptosis. In transfection experiments YY1 inhibits p53-activated transcription from the p53-binding site that contains the ACAT sequence. YY1 and p53 are colocalized around the nucleoli and in discrete nuclear domains in PC12 cells undergoing apoptosis. YY1 might attenuate p53-dependent transcription from a subset of p53-target genes and this may be relevant for directing cells either to growth arrest or apoptosis upon p53 activation.
Collapse
Affiliation(s)
- Tatiana Yakovleva
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Jánossy J, Ubezio P, Apáti A, Magócsi M, Tompa P, Friedrich P. Calpain as a multi-site regulator of cell cycle. Biochem Pharmacol 2004; 67:1513-21. [PMID: 15041468 DOI: 10.1016/j.bcp.2003.12.021] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2003] [Accepted: 12/15/2003] [Indexed: 11/18/2022]
Abstract
Calpain has long been implicated in the regulation of cell cycle, mostly based on studies with inhibitors that lack strict specificity toward the enzyme. Further, previous work has primarily focused on one particular point, the G(1) checkpoint, and made no attempt at dissecting the full cycle in terms of calpain action. To extend and complement these findings, we tested the effect of a specific inhibitor, PD 150606, on granulocyte-macrophage-colony stimulating factor (GM-CSF)-stimulated human TF-1 cells by flow cytometry following single- and double labelling by propidium iodide and bromodeoxyuridine. Using a new algorithm of analysis, we determined the time-dependence of the absolute number of cells leaving G(1), S and G(2)M phases following the application of the inhibitor. Our results point to the simultaneous involvement of calpain activity in promoting the cycle at the G(1) checkpoint and somewhere in the G(2)M compartment. Furthermore, the inhibitor significantly impedes the progress of cells through the S phase, indicating calpain activity in S phase checkpoint signalling. Overall, our analysis suggests that calpain regulates the cell cycle at more points than previously thought.
Collapse
Affiliation(s)
- Judit Jánossy
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, Budapest, Hungary.
| | | | | | | | | | | |
Collapse
|
144
|
Cheema ZF, Santillano DR, Wade SB, Newman JM, Miranda RC. The extracellular matrix, p53 and estrogen compete to regulate cell-surface Fas/Apo-1 suicide receptor expression in proliferating embryonic cerebral cortical precursors, and reciprocally, Fas-ligand modifies estrogen control of cell-cycle proteins. BMC Neurosci 2004; 5:11. [PMID: 15038834 PMCID: PMC395829 DOI: 10.1186/1471-2202-5-11] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2003] [Accepted: 03/23/2004] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Apoptosis is important for normal cerebral cortical development. We previously showed that the Fas suicide receptor was expressed within the developing cerebral cortex, and that in vitro Fas activation resulted in caspase-dependent death. Alterations in cell-surface Fas expression may significantly influence cortical development. Therefore, in the following studies, we sought to identify developmentally relevant cell biological processes that regulate cell-surface Fas expression and reciprocal consequences of Fas receptor activation. RESULTS Flow-cytometric analyses identified two distinct neural sub-populations that expressed Fas on their cell surface at high (FasHi) or moderate (FasMod) levels. The anti-apoptotic protein FLIP further delineated a subset of Fas-expressing cells with potential apoptosis-resistance. FasMod precursors were mainly in G0, while FasHi precursors were largely apoptotic. However, birth-date analysis indicated that neuroblasts express the highest levels of cell-surface Fas at the end of S-phase, or after their final round of mitosis, suggesting that Fas expression is induced at cell cycle checkpoints or during interkinetic nuclear movements. FasHi expression was associated with loss of cell-matrix adhesion and anoikis. Activation of the transcription factor p53 was associated with induction of Fas expression, while the gonadal hormone estrogen antagonistically suppressed cell-surface Fas expression. Estrogen also induced entry into S-phase and decreased the number of Fas-expressing neuroblasts that were apoptotic. Concurrent exposure to estrogen and to soluble Fas-ligand (sFasL) suppressed p21/waf-1 and PCNA. In contrast, estrogen and sFasL, individually and together, induced cyclin-A expression, suggesting activation of compensatory survival mechanisms. CONCLUSIONS Embryonic cortical neuronal precursors are intrinsically heterogeneous with respect to Fas suicide-sensitivity. Competing intrinsic (p53, cell cycle, FLIP expression), proximal (extra-cellular matrix) and extrinsic factors (gonadal hormones) collectively regulate Fas suicide-sensitivity either during neurogenesis, or possibly during neuronal migration, and may ultimately determine which neuroblasts successfully contribute neurons to the differentiating cortical plate.
Collapse
Affiliation(s)
- Zulfiqar F Cheema
- Department of Human Anatomy & Medical Neurobiology, & Center for Environmental and Rural Health, 228 Reynolds Medical Bldg., Texas A&M University System Health Science Center, College Station, TX 77843-1114, USA
- Department of General Surgery, William Beaumont Hospital, Royal Oaks, MI 48073, USA
| | - Daniel R Santillano
- Department of Human Anatomy & Medical Neurobiology, & Center for Environmental and Rural Health, 228 Reynolds Medical Bldg., Texas A&M University System Health Science Center, College Station, TX 77843-1114, USA
| | - Stephen B Wade
- Department of Human Anatomy & Medical Neurobiology, & Center for Environmental and Rural Health, 228 Reynolds Medical Bldg., Texas A&M University System Health Science Center, College Station, TX 77843-1114, USA
- Pediatrics, Wake Forest University Baptist Medical Center, Medical Center Boulevard, Winston Salem, NC 27157, USA
| | - Joseph M Newman
- Department of Human Anatomy & Medical Neurobiology, & Center for Environmental and Rural Health, 228 Reynolds Medical Bldg., Texas A&M University System Health Science Center, College Station, TX 77843-1114, USA
| | - Rajesh C Miranda
- Department of Human Anatomy & Medical Neurobiology, & Center for Environmental and Rural Health, 228 Reynolds Medical Bldg., Texas A&M University System Health Science Center, College Station, TX 77843-1114, USA
| |
Collapse
|
145
|
Abstract
PURPOSE We surveyed fundamental concepts of the cell cycle to help the average urologist better understand the molecular basis for specific aspects of urological disease. MATERIALS AND METHODS Important publications that have shaped our current understanding of the cell cycle were selected for review. Definitions of key terms are provided in a glossary. RESULTS Cell proliferation, survival and programmed cell death (apoptosis) are the net result of a complex interaction of molecular signals that regulate DNA and protein synthesis. Many of the abnormal patterns of cell behavior that contribute to the pathology of malignant urological disease arise from disruptions in the molecular controls that normally regulate the cell cycle. Benign urological conditions, including cystic diseases and hypertrophy, also reflect abnormal growth that results from the disruption of cell cycle controls. CONCLUSIONS This review is designed for the clinician and for the nonspecialist who is interested in the science of the cell cycle and its regulation as it broadly pertains to urological disease. Recent advances in the understanding of cell cycle regulation are presented with clinical correlations illustrating how these processes are involved in coordinating cell growth and cell death at the molecular level.
Collapse
Affiliation(s)
- William C DeWolf
- Division of Urology, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA
| | | |
Collapse
|
146
|
Yoshihara T, Ishida M, Kinomura A, Katsura M, Tsuruga T, Tashiro S, Asahara T, Miyagawa K. XRCC3 deficiency results in a defect in recombination and increased endoreduplication in human cells. EMBO J 2004; 23:670-80. [PMID: 14749735 PMCID: PMC1271813 DOI: 10.1038/sj.emboj.7600087] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2003] [Accepted: 12/22/2003] [Indexed: 12/24/2022] Open
Abstract
XRCC3 was inactivated in human cells by gene targeting. Consistent with its role in homologous recombination, XRCC3(-/-) cells showed a two-fold sensitivity to DNA cross-linking agents, a mild reduction in sister chromatid exchange, impaired Rad51 focus formation and elevated chromosome aberrations. Furthermore, endoreduplication was increased five- seven-fold in the mutants. The T241M variant of XRCC3 has been associated with an increased cancer risk. Expression of the wild-type cDNA restored this phenotype, while expression of the variant restored the defective recombinational repair, but not the increased endoreduplication. RPA, a protein essential for homologous recombination and DNA replication, is associated with XRCC3 and Rad52. Overexpression of RPA promoted endoreduplication, which was partially complemented by overexpression of the wild-type XRCC3 protein, but not by overexpression of the variant protein. Overexpression of Rad52 prevented endoreduplication in RPA-overexpressing cells, in XRCC3(-/-) cells and in the variant-expressing cells, suggesting that deregulated RPA was responsible for the increased endoreduplication. These observations offer the first genetic evidence for the association between homologous recombination and replication initiation having a role in cancer susceptibility.
Collapse
Affiliation(s)
- Takashi Yoshihara
- Department of Human Genetics, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
- Department of Surgery, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | - Mari Ishida
- Department of Human Genetics, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Aiko Kinomura
- Department of Human Genetics, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Mari Katsura
- Department of Human Genetics, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Takanori Tsuruga
- Department of Human Genetics, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Satoshi Tashiro
- Department of Biochemistry, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | - Toshimasa Asahara
- Department of Surgery, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | - Kiyoshi Miyagawa
- Department of Human Genetics, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
- Department of Human Genetics, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan. Tel.: +81 82 257 5828; Fax: +81 82 256 7102; E-mail:
| |
Collapse
|
147
|
Abstract
p53 mutation is the most common genetic abnormality found so far in human cancer, and in breast cancer p53 mutation/alteration is seen in up to 50% of primary carcinomas. Together with the increasing knowledge of the characteristics and understanding of the role of p53 over the last two decades, attention in recent years has been focused on how this knowledge can be used in clinical settings for patient care and management in terms of analyzing p53 as a potential marker for studying the relationship between p53 expression and tumour development, progression and outcome; and designing alternative treatment strategies specifically aimed at restoring normal p53 function.
Collapse
Affiliation(s)
- D Ziyaie
- Department of Surgery and Molecular Oncology, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK.
| | | | | |
Collapse
|
148
|
Matsuno A, Nagashima T. A Novel Strategy for Growth Suppression of Glioma Cells: Targeting Microtubules. Acta Histochem Cytochem 2004. [DOI: 10.1267/ahc.37.153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Akira Matsuno
- Department of Neurosurgery, Teikyo University Ichihara Hospital
| | | |
Collapse
|
149
|
Miki R, Okuda M, Oikawa T, Watanabe M, Ma Z, Matsumoto K, Iwata H, Inokuma H. Centrosome Amplification and Chromosomal Instability in Feline Lymphoma Cell Lines. J Vet Med Sci 2004; 66:797-805. [PMID: 15297751 DOI: 10.1292/jvms.66.797] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
To evaluate the presence of centrosome amplification and the resulting chromosomal instability in cat tumors, a newly established feline lymphoma cell line and four already established feline lymphoma cell lines were examined using immunohistochemical analysis of centrosomes. The number of chromosomes were subsequently counted by metaphase spread. Moreover, to explore whether mutational inactivation of the p53 gene or inactivation of the P53 protein caused by mdm2 gene overexpression, occurred in the feline lymphoma cell lines, mutational analysis of the feline p53 gene was carried out. The expression of feline mdm2 mRNA was evaluated by reverse transcriptase-polymerase chain reaction (RT-PCR). Centrosome amplification and chromosomal instability was observed in three out of the five feline lymphoma cell lines. Of these three feline lymphoma cell lines, one had aberrations in the P53 amino-acid sequence, whereas the others had none. There was no significant difference in the expression of mdm2 mRNA between peripheral blood mononuclear cells (PBMC) obtained from a normal cat and that of the five feline lymphoma cell lines. These findings indicate that centrosome amplification also occurs in cat tumors and is strongly correlated with chromosomal instability, suggesting that the immunostaining of centrosomes could be an alternative method for the examination of the chromosomal instability. Furthermore, this study suggests the presence of unknown mechanism that leads to the centrosome amplification in feline lymphomas.
Collapse
Affiliation(s)
- Ryuta Miki
- Laboratory of Veterinary Internal Medicine, Faculty of Agriculture, Yamaguchi University, Japan
| | | | | | | | | | | | | | | |
Collapse
|
150
|
Abstract
p53 regulates a number of genes through transcriptional activation and repression. p53-dependent mitotic checkpoint has been described, but the underlying mechanism is still obscure. Here we examined the effect of p53 on the expression of a human mitotic checkpoint protein, Mitosis Arrest Deficiency 1 (MAD1), in cultured human cells. The expression of MAD1 was reduced when the cells were overexpressing exogenously introduced wild-type p53. The same reduction was also observed when the cells were treated with anticancer agents 5-fluorouracil and cisplatin or were irradiated with UV. Consistently, MAD1 promoter activity diminished in a dose-dependent manner when induced by p53, indicating that p53 repressed MAD1 at a transcriptional level. Intriguingly, several tumor hot spot mutations in p53 (V143A, R175H, R248W, and R273H) did not abolish the ability of p53 to repress MAD1 expression. By serial truncation of the MAD1 promoter, we confined the p53-responsive element to a 38-bp region that represents a novel sequence distinct from the known p53 consensus binding site. Trichostatin A, a histone deacetylase inhibitor, relieved the p53 transrepression activity on MAD1. Chromatin immunoprecipitation assay revealed that p53, histone deacetylase 1, and co-repressor mSin3a associated with the MAD1 promoter in vivo. Taken together, our findings suggest a regulatory mechanism for the mitotic checkpoint in which MAD1 is inhibited by p53.
Collapse
Affiliation(s)
- Abel C S Chun
- Department of Biochemistry, the University of Hong Kong, Hong Kong, China
| | | |
Collapse
|