101
|
Structural and functional basis of the selectivity filter as a gate in human TRPM2 channel. Cell Rep 2021; 37:110025. [PMID: 34788616 DOI: 10.1016/j.celrep.2021.110025] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/31/2021] [Accepted: 10/27/2021] [Indexed: 12/27/2022] Open
Abstract
Transient receptor potential melastatin 2 (TRPM2), a Ca2+-permeable cation channel, is gated by intracellular adenosine diphosphate ribose (ADPR), Ca2+, warm temperature, and oxidative stress. It is critically involved in physiological and pathological processes ranging from inflammation to stroke to neurodegeneration. At present, the channel's gating and ion permeation mechanisms, such as the location and identity of the selectivity filter, remain ambiguous. Here, we report the cryo-electron microscopy (cryo-EM) structure of human TRPM2 in nanodisc in the ligand-free state. Cryo-EM map-guided computational modeling and patch-clamp recording further identify a quadruple-residue motif as the ion selectivity filter, which adopts a restrictive conformation in the closed state and acts as a gate, profoundly contrasting with its widely open conformation in the Nematostella vectensis TRPM2. Our study reveals the gating of human TRPM2 by the filter and demonstrates the feasibility of using cryo-EM in conjunction with computational modeling and functional studies to garner structural information for intrinsically dynamic but functionally important domains.
Collapse
|
102
|
The Protective Role of E-64d in Hippocampal Excitotoxic Neuronal Injury Induced by Glutamate in HT22 Hippocampal Neuronal Cells. Neural Plast 2021; 2021:7174287. [PMID: 34721570 PMCID: PMC8550833 DOI: 10.1155/2021/7174287] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/14/2021] [Accepted: 10/01/2021] [Indexed: 12/25/2022] Open
Abstract
Epilepsy is the most common childhood neurologic disorder. Status epilepticus (SE), which refers to continuous epileptic seizures, occurs more frequently in children than in adults, and approximately 40–50% of all cases occur in children under 2 years of age. Conventional antiepileptic drugs currently used in clinical practice have a number of adverse side effects. Drug-resistant epilepsy (DRE) can progressively develop in children with persistent SE, necessitating the development of novel therapeutic drugs. During SE, the persistent activation of neurons leads to decreased glutamate clearance with corresponding glutamate accumulation in the synaptic extracellular space, increasing the chance of neuronal excitotoxicity. Our previous study demonstrated that after developmental seizures in rats, E-64d exerts a neuroprotective effect on the seizure-induced brain damage by modulating lipid metabolism enzymes, especially ApoE and ApoJ/clusterin. In this study, we investigated the impact and mechanisms of E-64d administration on neuronal excitotoxicity. To test our hypothesis that E-64d confers neuroprotective effects by regulating autophagy and mitochondrial pathway activity, we simulated neuronal excitotoxicity in vitro using an immortalized hippocampal neuron cell line (HT22). We found that E-64d improved cell viability while reducing oxidative stress and neuronal apoptosis. In addition, E-64d treatment regulated mitochondrial pathway activity and inhibited chaperone-mediated autophagy in HT22 cells. Our findings indicate that E-64d may alleviate glutamate-induced damage via regulation of mitochondrial fission and apoptosis, as well as inhibition of chaperone-mediated autophagy. Thus, E-64d may be a promising therapeutic treatment for hippocampal injury associated with SE.
Collapse
|
103
|
Hoffmann L, Waclawczyk MS, Tang S, Hanschmann EM, Gellert M, Rust MB, Culmsee C. Cofilin1 oxidation links oxidative distress to mitochondrial demise and neuronal cell death. Cell Death Dis 2021; 12:953. [PMID: 34657120 PMCID: PMC8520533 DOI: 10.1038/s41419-021-04242-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 09/03/2021] [Accepted: 09/27/2021] [Indexed: 12/24/2022]
Abstract
Many cell death pathways, including apoptosis, regulated necrosis, and ferroptosis, are relevant for neuronal cell death and share common mechanisms such as the formation of reactive oxygen species (ROS) and mitochondrial damage. Here, we present the role of the actin-regulating protein cofilin1 in regulating mitochondrial pathways in oxidative neuronal death. Cofilin1 deletion in neuronal HT22 cells exerted increased mitochondrial resilience, assessed by quantification of mitochondrial ROS production, mitochondrial membrane potential, and ATP levels. Further, cofilin1-deficient cells met their energy demand through enhanced glycolysis, whereas control cells were metabolically impaired when challenged by ferroptosis. Further, cofilin1 was confirmed as a key player in glutamate-mediated excitotoxicity and associated mitochondrial damage in primary cortical neurons. Using isolated mitochondria and recombinant cofilin1, we provide a further link to toxicity-related mitochondrial impairment mediated by oxidized cofilin1. Our data revealed that the detrimental impact of cofilin1 on mitochondria depends on the oxidation of cysteine residues at positions 139 and 147. Overall, our findings show that cofilin1 acts as a redox sensor in oxidative cell death pathways of ferroptosis, and also promotes glutamate excitotoxicity. Protective effects by cofilin1 inhibition are particularly attributed to preserved mitochondrial integrity and function. Thus, interfering with the oxidation and pathological activation of cofilin1 may offer an effective therapeutic strategy in neurodegenerative diseases.
Collapse
Affiliation(s)
- Lena Hoffmann
- Institute for Pharmacology and Clinical Pharmacy, Biochemical-Pharmacological Center Marburg, University of Marburg, Karl-von Frisch Straße 2, 35043, Marburg, Germany.,Center for Mind, Brain and Behavior-CMBB, Hans-Meerwein-Straße 6, 35032, Marburg, Germany
| | - Marcel S Waclawczyk
- Department of Neurology, Heinrich-Heine University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Stephan Tang
- Institute for Pharmacology and Clinical Pharmacy, Biochemical-Pharmacological Center Marburg, University of Marburg, Karl-von Frisch Straße 2, 35043, Marburg, Germany.,Center for Mind, Brain and Behavior-CMBB, Hans-Meerwein-Straße 6, 35032, Marburg, Germany
| | - Eva-Maria Hanschmann
- Department of Neurology, Heinrich-Heine University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Manuela Gellert
- Institute for Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475, Greifswald, Germany
| | - Marco B Rust
- Center for Mind, Brain and Behavior-CMBB, Hans-Meerwein-Straße 6, 35032, Marburg, Germany.,Molecular Neurobiology Group, Institute of Physiological Chemistry, Biochemical-Pharmacological Center Marburg, University of Marburg, Karl-von Frisch Straße 2, 35043, Marburg, Germany.,DFG Research Training Group "Membrane Plasticity in Tissue Development and Remodeling", GRK 2213, University of Marburg, 35032, Marburg, Germany
| | - Carsten Culmsee
- Institute for Pharmacology and Clinical Pharmacy, Biochemical-Pharmacological Center Marburg, University of Marburg, Karl-von Frisch Straße 2, 35043, Marburg, Germany. .,Center for Mind, Brain and Behavior-CMBB, Hans-Meerwein-Straße 6, 35032, Marburg, Germany. .,Third Affiliated Hospital, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
104
|
Preclinical validation of a novel oral Edaravone formulation for treatment of frontotemporal dementia. Neurotox Res 2021; 39:1689-1707. [PMID: 34599751 DOI: 10.1007/s12640-021-00405-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 10/20/2022]
Abstract
Oxidative stress is a key factor in the pathogenesis of several neurodegenerative disorders and is involved in the accumulation of amyloid beta plaques and Tau inclusions. Edaravone (EDR) is a free radical scavenger that is approved for motor neuron disease and acute ischemic stroke. EDR alleviates pathologies and cognitive impairment of AD via targeting multiple key pathways in transgenic mice. Herein, we aimed to study the effect of EDR on Tau pathology in P301L mice; an animal model of frontotemporal dementia (FTD), at two age time points representing the early and late stages of the disease. A novel EDR formulation was utilized in the study and the drug was delivered orally in drinking water for 3 months. Then, behavioral tests were conducted followed by animal sacrifice and brain dissection. Treatment with EDR improved the reference memory and accuracy in the probe trial as evaluated in Morris water maze, as well as novel object recognition and significantly alleviated motor deficits in these mice. EDR also reduced the levels of 4-hydroxy-2-nonenal and 3-nitrotyrosine adducts. In addition, immunohistochemistry showed that EDR reduced tau phosphorylation and neuroinflammation and partially rescued neurons against oxidative neurotoxicity. Moreover, EDR attenuated downstream pathologies involved in Tau hyperphosphorylation. These results suggest that EDR may be a potential therapeutic agent for the treatment of FTD.
Collapse
|
105
|
Gravandi MM, Fakhri S, Zarneshan SN, Yarmohammadi A, Khan H. Flavonoids modulate AMPK/PGC-1α and interconnected pathways toward potential neuroprotective activities. Metab Brain Dis 2021; 36:1501-1521. [PMID: 33988807 DOI: 10.1007/s11011-021-00750-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/30/2021] [Indexed: 01/29/2023]
Abstract
As progressive, chronic, incurable and common reasons for disability and death, neurodegenerative diseases (NDDs) are significant threats to human health. Besides, the increasing prevalence of neuronal gradual degeneration and death during NDDs has made them a global concern. Since yet, no effective treatment has been developed to combat multiple dysregulated pathways/mediators and related complications in NDDs. Therefore, there is an urgent need to create influential and multi-target factors to combat neuronal damages. Accordingly, the plant kingdom has drawn a bright future. Among natural entities, flavonoids are considered a rich source of drug discovery and development with potential biological and medicinal activities. Growing studies have reported multiple dysregulated pathways in NDDs, which among those mediator AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α) play critical roles. In this line, critical role of flavonoids in the upregulation of AMPK/PGC-1α pathway seems to pave the road in the treatment of Alzheimer's disease (AD), Parkinson's disease (PD), aging, central nervous system (brain/spinal cord) damages, stroke, and other NDDs. In the present study, the regulatory role of flavonoids in managing various NDDs has been shown to pass through AMPK/PGC-1α signaling pathway.
Collapse
Affiliation(s)
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | | | - Akram Yarmohammadi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan.
| |
Collapse
|
106
|
Molecular networking-based chemical profiling and anti-influenza viral and neuroprotective effects of Elaeocarpus hygrophilus Kurz. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01723-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
107
|
Neuroprotective Effects against Glutamate-Induced HT-22 Hippocampal Cell Damage and Caenorhabditis elegans Lifespan/Healthspan Enhancing Activity of Auricularia polytricha Mushroom Extracts. Pharmaceuticals (Basel) 2021; 14:ph14101001. [PMID: 34681226 PMCID: PMC8539790 DOI: 10.3390/ph14101001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress is associated with several diseases, particularly neurodegenerative diseases, commonly found in the elderly. The attenuation of oxidative status is one of the alternatives for neuroprotection and anti-aging. Auricularia polytricha (AP), an edible mushroom, contains many therapeutic properties, including antioxidant properties. Herein, we report the effects of AP extracts on antioxidant, neuroprotective, and anti-aging activities. The neuroprotective effect of AP extracts against glutamate-induced HT-22 neuronal damage was determined by evaluating the cytotoxicity, intracellular reactive oxygen species (ROS) accumulation, and expression of antioxidant enzyme genes. Lifespan and healthspan assays were performed to examine the effects of AP extracts from Caenorhabditis elegans. We found that ethanolic extract (APE) attenuated glutamate-induced HT-22 cytotoxicity and increased the expression of antioxidant enzyme genes. Moreover, APE promoted in the longevity and health of the C. elegans. Chemical analysis of the extracts revealed that APE contains the highest quantity of flavonoids and a reasonable percentage of phenols. The lipophilic compounds in APE were identified by gas chromatography/mass spectrometry (GC/MS), revealing that APE mainly contains linoleic acid. Interestingly, linoleic acid suppressed neuronal toxicity and ROS accumulation from glutamate induction. These results indicate that AP could be an exciting natural source that may potentially serves as neuroprotective and anti-aging agents.
Collapse
|
108
|
Bao X, Yao Y, Xu Y, Shen Y, Lv G, Zhao D, Li C. Hypochlorous Acid Activating MB‐O to Release Methylene Blue for Photodegrading of Aβ Aggregates. Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202100253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xinlu Bao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Zhejiang Normal University Jinhua 321004 Zhejiang P. R. China
| | - Yusi Yao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Zhejiang Normal University Jinhua 321004 Zhejiang P. R. China
| | - Yunze Xu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Zhejiang Normal University Jinhua 321004 Zhejiang P. R. China
| | - Yang Shen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Zhejiang Normal University Jinhua 321004 Zhejiang P. R. China
| | - Guanglei Lv
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Zhejiang Normal University Jinhua 321004 Zhejiang P. R. China
| | - Dian Zhao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Zhejiang Normal University Jinhua 321004 Zhejiang P. R. China
| | - Chunxia Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Zhejiang Normal University Jinhua 321004 Zhejiang P. R. China
- Institute of Molecular Sciences and Engineering Shandong University Qingdao 266237 Shandong P. R. China
| |
Collapse
|
109
|
Salama A, Elgohary R. L-carnitine and Co Q10 ameliorate potassium dichromate -induced acute brain injury in rats targeting AMPK/AKT/NF-κβ. Int Immunopharmacol 2021; 101:107867. [PMID: 34489184 DOI: 10.1016/j.intimp.2021.107867] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/24/2021] [Accepted: 06/06/2021] [Indexed: 11/30/2022]
Abstract
Adenosine monophosphate-activated protein kinase (AMPK) has a crucial role in neuroprotection. It phosphorylates serine/threonine kinase (Akt) Substrate inhibiting the inflammatory responses induced by the nuclear factor-κB (NF-κB). Exposure to chromium VI dust among workers has been reported and induced brain injury, as the absorption of chromium through the nasal membrane has been found to deliver it directly to the brain. The study aimed to investigate the influence of administration of L-carnitine or/and Co Q10 as theraputic agents against potassium dichromate (PD)-induced brain injury via AMPK/AKT/NF-κβ signaling pathway. Brain injury was induced by PD intranasally as a single dose of 2 mg/kg, 24 h latter rats received L-carnitine (100 mg/kg; orally), Co Q10 (50 mg/kg; orally) and L-carnitine (50 mg/kg; orally) + Co Q10 (25 mg/kg; orally) respectively for 3 days. Locomotor activity was assessed before and at the end of the experiment, then, biochemical and histopathological investigations were assessed in brain homogenate. The exposure of rats to PD promoted oxidative stress and inflammation via an increase in MDA and a decrease in GSH serum contents with an increase in brain contents of TNF-α, IL-6, and NF-kβ and reduced AMPK and AKT brain contents as compared to the control group. Treatment with L-carnitine + Co Q10 ameliorated cognitive impairment and oxidative stress, decreased the brain contents of inflammatory mediators; TNF-α, IL-6, and NF-κβ elevated AMPK and AKT, as compared to each drug. Also, L-carnitine + Co Q10 administration restored morphological changes as degenerated neurons and necrosis. L-carnitine + Co Q10 play important role in AMPK/AKT/NF-κβ pathway that responsible for their antioxidant and anti-inflammatory effects against PD-induced brain injury in rats.
Collapse
Affiliation(s)
- Abeer Salama
- Pharmacology Department, National Research Centre, El- Buhouth St., Dokki, Cairo 12622, Egypt
| | - Rania Elgohary
- Narcotics, Ergogenics and Poisons Department, National Research Centre, El- Buhouth St., Dokki, Cairo 12622, Egypt.
| |
Collapse
|
110
|
Zhang J, Li X, Shen L, Khan NU, Zhang X, Chen L, Zhao H, Luo P. Trace elements in children with autism spectrum disorder: A meta-analysis based on case-control studies. J Trace Elem Med Biol 2021; 67:126782. [PMID: 34049201 DOI: 10.1016/j.jtemb.2021.126782] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 03/30/2021] [Accepted: 05/10/2021] [Indexed: 12/25/2022]
Abstract
Autism spectrum disorder (ASD) is a common childhood neurodevelopmental disorder that may be related to trace elements. However, reports on the relationship between them are still inconsistent. In this article, we conducted a meta-analysis on this issue. We searched the PubMed, EMBASE, and Cochrane databases as of November 15, 2019. A random-effects model was used, and subgroups of studies were analyzed using samples of different measurements. Twenty-two original articles were identified (18 trace elements, including a total of 1014 children with ASD and 999 healthy controls). In autistic children, the overall levels of barium (Ba), mercury (Hg), lithium (Li), and lead (Pb) were higher. There were significant differences in the levels of copper (Cu) in the hair and serum between autistic children and the control group. The levels of Hg, Li, Pb and selenium (Se) in the hair of autistic children were higher than those of healthy children, while the levels of zinc (Zn) in the blood were lower. Excessive exposure to toxic heavy metals and inadequate intake of essential metal elements may be associated with ASD. Preventing excessive exposure to toxic metals and correcting poor dietary behaviors may be beneficial for the prevention and treatment of the disease.
Collapse
Affiliation(s)
- Jun Zhang
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring Control Ministry of Education, Guizhou Medical University, 550025, PR China
| | - Xi Li
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring Control Ministry of Education, Guizhou Medical University, 550025, PR China
| | - Liming Shen
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, PR China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, PR China.
| | - Naseer Ullah Khan
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, PR China
| | - Xiao Zhang
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring Control Ministry of Education, Guizhou Medical University, 550025, PR China
| | - Lulu Chen
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring Control Ministry of Education, Guizhou Medical University, 550025, PR China
| | - Huan Zhao
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring Control Ministry of Education, Guizhou Medical University, 550025, PR China
| | - Peng Luo
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring Control Ministry of Education, Guizhou Medical University, 550025, PR China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, PR China.
| |
Collapse
|
111
|
Srivastava R, Choudhury PK, Dev SK, Rathore V. Neuroprotective effect of α-pinene self-emulsifying nanoformulation against 6-OHDA induced neurotoxicity on human SH-SY5Y cells and its in vivo validation for anti-Parkinson's effect. J Biochem Mol Toxicol 2021; 35:e22902. [PMID: 34464010 DOI: 10.1002/jbt.22902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 08/15/2021] [Accepted: 08/20/2021] [Indexed: 11/07/2022]
Abstract
Oxidative stress (OS) is involved in the multifaceted pathogenic paradigm of neurodegenerative diseases like Parkinson's disease (PD). Monoterpenes like α-pinene (ALP) is considered to be a therapeutically potent antioxidant agent able to attenuate and scavenge various reactive oxygen species and reactive nitrogen species. The present study aimed to evaluate the in vitro and in vivo neuroprotective effect of α-pinene self-emulsifying nanoformulation (ALP-SENF) for PD. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay was done to evaluate the neurotoxic dose of the ALP-SENF; however, the neuroprotective effect was assessed by 6-hydroxydopamine (6-OHDA) induced neurotoxicity model on SH-SY5Y taking NAC (N-acetyl-l-cysteine) as standard. The in vivo anti-Parkinson's activity of the ALP-SENF was compared with that of the plain ALP suspension by using reserpine antagonism and haloperidol-induced Parkinsonism model in rats. Various behavioral tests and biochemical antioxidant enzymes were estimated. The in vitro results revealed that treatment with ALP-SENF at a concentration of 100 and 200 µM was found to show significant neuronal SH-SY5Y cell viability against 50 µM 6-OHDA. ALP-SENF treated animals have seen significant neurobehavioral improvement. Furthermore, the levels of antioxidative enzymes in biochemical test reveals a marked enhancement in the expression of antioxidant enzymes that significantly attenuated the OS induced neurodegeneration. Due to the mechanisms of their antioxidant action, it was probably due to the scavenging of free radicals and the expression of antioxidant enzymes. It also improved neurobehavioral changes induced by reserpine and haloperidol.
Collapse
Affiliation(s)
- Rajnish Srivastava
- Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, Udaipur, India
| | - Pratim K Choudhury
- Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, Udaipur, India
| | - Suresh K Dev
- Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, Udaipur, India
| | - Vaibhav Rathore
- Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, Udaipur, India
| |
Collapse
|
112
|
Liu Q, Li J, Liu X, Yuan L, Zhao L, Chang YT, Liu X, Peng J. The screening of drug-induced nephrotoxicity using gold nanocluster-based ratiometric fluorescent probes. NANOSCALE 2021; 13:13835-13844. [PMID: 34477658 DOI: 10.1039/d1nr01006a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Herbal medicines are potential candidates for the treatment of various diseases, but their medication safety remains poorly regulated. Current screening methods for the herbal medicine-induced nephrotoxic effects include histological and serological assessments, which often fail to reflect the kidney dysfunction instantly. Here we report a ratiometric fluorescence approach for the rapid and facile screening of drug-induced acute kidney injury using chromophore-modified gold nanoclusters. These gold nanoclusters are highly sensitive to reactive oxygen species (ROS), with a detection limit of 14 nM for ˙OH. After passing through the glomerular filtration barrier, the gold nanocluster-based probes can quantify the fluctuation of the ROS level in the kidneys and evaluate the risk of drug-induced nephrotoxicity. We further employed nephrotoxic triptolide as the model drug and the screening of drug-induced early renal injury was demonstrated using the nanoprobes, which is unattainable by conventional diagnostic approaches. Our fluorescent probes also allow the identification of other nephrotoxic components from herbal medicine such as aristolochine, providing a high-throughput strategy for the screening of herbal supplement-induced nephrotoxicity.
Collapse
Affiliation(s)
- Qin Liu
- State Key Laboratory of Natural Medicine, the School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China.
| | | | | | | | | | | | | | | |
Collapse
|
113
|
Park HR, Yang EJ. Oxidative Stress as a Therapeutic Target in Amyotrophic Lateral Sclerosis: Opportunities and Limitations. Diagnostics (Basel) 2021; 11:diagnostics11091546. [PMID: 34573888 PMCID: PMC8465946 DOI: 10.3390/diagnostics11091546] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/14/2021] [Accepted: 08/25/2021] [Indexed: 12/20/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS), also known as motor neuron disease (MND) and Lou Gehrig’s disease, is characterized by a loss of the lower motor neurons in the spinal cord and the upper motor neurons in the cerebral cortex. Due to the complex and multifactorial nature of the various risk factors and mechanisms that are related to motor neuronal degeneration, the pathological mechanisms of ALS are not fully understood. Oxidative stress is one of the known causes of ALS pathogenesis. This has been observed in patients as well as in cellular and animal models, and is known to induce mitochondrial dysfunction and the loss of motor neurons. Numerous therapeutic agents have been developed to inhibit oxidative stress and neuroinflammation. In this review, we describe the role of oxidative stress in ALS pathogenesis, and discuss several anti-inflammatory and anti-oxidative agents as potential therapeutics for ALS. Although oxidative stress and antioxidant fields are meaningful approaches to delay disease progression and prolong the survival in ALS, it is necessary to investigate various animal models or humans with different subtypes of sporadic and familial ALS.
Collapse
|
114
|
Bastaki SMA, Ojha S, Kalasz H, Adeghate E. Chemical constituents and medicinal properties of Allium species. Mol Cell Biochem 2021; 476:4301-4321. [PMID: 34420186 DOI: 10.1007/s11010-021-04213-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 06/21/2021] [Indexed: 11/24/2022]
Abstract
Allium species, belonging to Alliaceae family, are among the oldest cultivated vegetables used as food. Garlic, onions, leeks and chives, which belong to this family, have been reported to have medicinal properties. The Allium species constituents have been shown to have antibacterial and antioxidant activities, and, in addition, other biological properties. These activities are related to their rich organosulfur compounds. These organosulfur compounds are believed to prevent the development of cancer, cardiovascular, neurological, diabetes, liver diseases as well as allergy and arthritis. There have also been reports on toxicities of these compounds. The major active compounds of Allium species includes, diallyl disulfide, diallyl trisulfide, diallyl sulfide, dipropyl disulfide, dipropyl trisulfide, 1-propenylpropyl disulfide, allyl methyl disulfide and dimethyl disulfide. The aim of this review is to focus on a variety of experimental and clinical reports on the effectiveness, toxicities and possible mechanisms of actions of the active compounds of garlic, onions, leek and chives.
Collapse
Affiliation(s)
- Salim M A Bastaki
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, UAE University, P.O. Box 17666, Al Ain, Abu Dhabi, UAE.
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, UAE University, P.O. Box 17666, Al Ain, Abu Dhabi, UAE
| | - Huba Kalasz
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1445 Budapest, Hungary
| | - E Adeghate
- Department of Anatomy, College of Medicine and Health Sciences, UAE University, P.O. Box 17666, Al Ain, UAE
| |
Collapse
|
115
|
Inampudi C, Ciccotosto GD, Cappai R, Crack PJ. Genetic Modulators of Traumatic Brain Injury in Animal Models and the Impact of Sex-Dependent Effects. J Neurotrauma 2021; 37:706-723. [PMID: 32027210 DOI: 10.1089/neu.2019.6955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Traumatic brain injury (TBI) is a major health problem causing disability and death worldwide. There is no effective treatment, due in part to the complexity of the injury pathology and factors affecting its outcome. The extent of brain injury depends on the type of insult, age, sex, lifestyle, genetic risk factors, socioeconomic status, other co-injuries, and underlying health problems. This review discusses the genes that have been directly tested in TBI models, and whether their effects are known to be sex-dependent. Sex differences can affect the incidence, symptom onset, pathology, and clinical outcomes following injury. Adult males are more susceptible at the acute phase and females show greater injury in the chronic phase. TBI is not restricted to a single sex; despite variations in the degree of symptom onset and severity, it is important to consider both female and male animals in TBI pre-clinical research studies.
Collapse
Affiliation(s)
- Chaitanya Inampudi
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia
| | - Giuseppe D Ciccotosto
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia
| | - Roberto Cappai
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia
| | - Peter J Crack
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
116
|
Bai MY, Lovejoy DB, Guillemin GJ, Kozak R, Stone TW, Koola MM. Galantamine-Memantine Combination and Kynurenine Pathway Enzyme Inhibitors in the Treatment of Neuropsychiatric Disorders. Complex Psychiatry 2021; 7:19-33. [PMID: 35141700 PMCID: PMC8443947 DOI: 10.1159/000515066] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/04/2021] [Indexed: 12/25/2022] Open
Abstract
The kynurenine pathway (KP) is a major route for L-tryptophan (L-TRP) metabolism, yielding a variety of bioactive compounds including kynurenic acid (KYNA), 3-hydroxykynurenine (3-HK), quinolinic acid (QUIN), and picolinic acid (PIC). These tryptophan catabolites are involved in the pathogenesis of many neuropsychiatric disorders, particularly when the KP becomes dysregulated. Accordingly, the enzymes that regulate the KP such as indoleamine 2,3-dioxygenase (IDO)/tryptophan 2,3-dioxygenase, kynurenine aminotransferases (KATs), and kynurenine 3-monooxygenase (KMO) represent potential drug targets as enzymatic inhibition can favorably rebalance KP metabolite concentrations. In addition, the galantamine-memantine combination, through its modulatory effects at the alpha7 nicotinic acetylcholine receptors and N-methyl-D-aspartate receptors, may counteract the effects of KYNA. The aim of this review is to highlight the effectiveness of IDO-1, KAT II, and KMO inhibitors, as well as the galantamine-memantine combination in the modulation of different KP metabolites. KAT II inhibitors are capable of decreasing the KYNA levels in the rat brain by a maximum of 80%. KMO inhibitors effectively reduce the central nervous system (CNS) levels of 3-HK, while markedly boosting the brain concentration of KYNA. Emerging data suggest that the galantamine-memantine combination also lowers L-TRP, kynurenine, KYNA, and PIC levels in humans. Presently, there are only 2 pathophysiological mechanisms (cholinergic and glutamatergic) that are FDA approved for the treatment of cognitive dysfunction for which purpose the galantamine-memantine combination has been designed for clinical use against Alzheimer's disease. The alpha7 nicotinic-NMDA hypothesis targeted by the galantamine-memantine combination has been implicated in the pathophysiology of various CNS diseases. Similarly, KYNA is well capable of modulating the neuropathophysiology of these disorders. This is known as the KYNA-centric hypothesis, which may be implicated in the management of certain neuropsychiatric conditions. In line with this hypothesis, KYNA may be considered as the "conductor of the orchestra" for the major pathophysiological mechanisms underlying CNS disorders. Therefore, there is great opportunity to further explore and compare the biological effects of these therapeutic modalities in animal models with a special focus on their effects on KP metabolites in the CNS and with the ultimate goal of progressing to clinical trials for many neuropsychiatric diseases.
Collapse
Affiliation(s)
- Michael Y. Bai
- Department of Biomedical Sciences, Neuroinflammation Group, Macquarie University Centre for Motor Neuron Disease Research, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - David B. Lovejoy
- Department of Biomedical Sciences, Neuroinflammation Group, Macquarie University Centre for Motor Neuron Disease Research, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Gilles J. Guillemin
- Department of Biomedical Sciences, Neuroinflammation Group, Macquarie University Centre for Motor Neuron Disease Research, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Rouba Kozak
- Neuroscience Drug Discovery Unit, Takeda Pharmaceuticals International Co, Cambridge, Massachusetts, USA
| | - Trevor W. Stone
- Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
| | - Maju Mathew Koola
- Department of Psychiatry and Behavioral Health, Stony Brook University Renaissance School of Medicine, Stony Brook, Stony Brook, New York, USA
| |
Collapse
|
117
|
Lee S, Lim JS, Yun HS, Kim Y, Jeong S, Hwang SD, Kim JW, Oh J, Kim JS. Dietary supplementation with Ceriporia lacerata improves learning and memory in a scopolamine-induced amnesia mouse model. Food Sci Biotechnol 2021; 30:1107-1116. [PMID: 34471564 PMCID: PMC8364576 DOI: 10.1007/s10068-021-00945-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/22/2021] [Accepted: 07/05/2021] [Indexed: 12/25/2022] Open
Abstract
Ceriporia lacerata (CL) is a species of white rot fungi. In this study, we have examined the beneficial effect of CL on scopolamine-induced memory impairment in mice. A freeze-dried CL mycelial culture broth was dissolved and orally administered to scopolamine-treated C57BL/6J mice followed by behavioral tests using the Y-maze, passive avoidance, and Morris water maze tasks. CL administration at a daily dose of 200 mg/kg body weight resulted in restoration of exploration reduction and improvement of associative and spatial learning and memory impairment in scopolamine-treated mice. Concomitantly, heme oxygenase-1 was highly expressed in the hippocampal region of CL-administered mice. Moreover, the ethanolic extract of CL significantly increased the transcriptional activity of antioxidant response element and attenuated the glutamate-induced cytotoxicity in HT22 mouse hippocampal neuronal cells. These findings suggest that the CL intake can confer a beneficial effect on learning and memory presumably through protecting hippocampal neuronal cells from oxidative stress-induced damage. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10068-021-00945-5.
Collapse
Affiliation(s)
- Sujin Lee
- School of Food Science and Technology, Kyungpook National University, Daegu, 41566 Republic of Korea
| | - Ji Sun Lim
- Institute of Agricultural Science and Technology, Kyungpook National University, Daegu, 41566 Republic of Korea
| | - Hyun Seok Yun
- School of Food Science and Technology, Kyungpook National University, Daegu, 41566 Republic of Korea
| | - Yoonsu Kim
- School of Food Science and Technology, Kyungpook National University, Daegu, 41566 Republic of Korea
| | - Soojung Jeong
- School of Food Science and Technology, Kyungpook National University, Daegu, 41566 Republic of Korea
| | - Seong Deok Hwang
- Fugencelltech Co., Ltd., Gyeongsangbuk-do, 37272 Republic of Korea
| | - Jong Won Kim
- Fugenbio Co., Ltd., Seoul, 06746 Republic of Korea
| | - Jisun Oh
- Institute of Agricultural Science and Technology, Kyungpook National University, Daegu, 41566 Republic of Korea
| | - Jong-Sang Kim
- School of Food Science and Technology, Kyungpook National University, Daegu, 41566 Republic of Korea
- Institute of Agricultural Science and Technology, Kyungpook National University, Daegu, 41566 Republic of Korea
| |
Collapse
|
118
|
Zhang F, Tang Y, Jiang H, Yang X, Huang W. Harpagide Inhibits Microglial Activation and Protects Dopaminergic Neurons as Revealed by Nanoelectrode Amperometry
†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Fu‐Li Zhang
- College of Chemistry and Molecular Sciences Wuhan University Wuhan Hubei 430072 China
| | - Yun Tang
- College of Chemistry and Molecular Sciences Wuhan University Wuhan Hubei 430072 China
| | - Hong Jiang
- College of Chemistry and Molecular Sciences Wuhan University Wuhan Hubei 430072 China
| | - Xiao‐Ke Yang
- College of Chemistry and Molecular Sciences Wuhan University Wuhan Hubei 430072 China
| | - Wei‐Hua Huang
- College of Chemistry and Molecular Sciences Wuhan University Wuhan Hubei 430072 China
| |
Collapse
|
119
|
El-Hawary SS, Sayed AM, Issa MY, Ebrahim HS, Alaaeldin R, Elrehany MA, Abd El-Kadder EM, Abdelmohsen UR. Anti-Alzheimer chemical constituents of Morus macroura Miq.: chemical profiling, in silico and in vitro investigations. Food Funct 2021; 12:8078-8089. [PMID: 34286787 DOI: 10.1039/d1fo01177d] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Herein, we investigated both fruits and leaves of Morus macroura Miq. as a potential source of bioactive compounds against Alzheimer's disease (AD). LC-HRMS-assisted chemical profiling of its extracts showed that they are a rich source of diverse phytochemicals. Among the 29 identified compounds in both the fruit and leaf extracts, moracin D, chrysin, resveratrol, and ferulic acid were predicted to pass the human blood-brain barrier (BBB), and hence, reach their therapeutic targets in the brain. Subsequently, these compounds were subjected to a comprehensive pharmacophore-based screening for their protein targets relevant to AD using two independent software programs (i.e. Swiss Target Prediction and PharmMapper). The results of this initial virtual screening were further refined by a number of docking and molecular dynamic simulation experiments to suggest a number of crucial AD-related proteins (e.g. acetylcholine esterase, β-secretase, and monoamine oxidase) as potential targets for these compounds. Finally, in vitro testing was performed to validate the in silico investigation's results, where chrysin, resveratrol, and ferulic acid were found to inhibit the predicted AD-related enzymes with IC50 values comparable with those of the reference inhibitors. Additionally, they were able to inhibit the aggregation of amyloid-beta, one of the hallmarks in AD pathogenesis, and to exhibit considerable antioxidant capacity. Our results highlighted Morus macroura compounds as future anti-Alzheimer chemical leads.
Collapse
Affiliation(s)
- Seham S El-Hawary
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | | | | | | | | | | | | | | |
Collapse
|
120
|
Molecular Basis of Late-Life Depression. Int J Mol Sci 2021; 22:ijms22147421. [PMID: 34299040 PMCID: PMC8303929 DOI: 10.3390/ijms22147421] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/05/2021] [Accepted: 07/08/2021] [Indexed: 12/14/2022] Open
Abstract
Late-life depression (LLD), compared to depression at a young age, is more likely to have poor prognosis and high risk of progression to dementia. A recent systemic review and meta-analysis of the present antidepressants for LLD showed that the treatment response rate was 48% and the remission rate was only 33.7%, thus implying the need to improve the treatment with other approaches in the future. Recently, agents modulating the glutamatergic system have been tested for mental disorders such as schizophrenia, dementia, and depressive disorder. Ketamine, a noncompetitive NMDA receptor (NMDAR) antagonist, requires more evidence from randomized clinical trials (RCTs) to prove its efficacy and safety in treating LLD. The metabotropic receptors (mGluRs) of the glutamatergic system are family G-protein-coupled receptors, and inhibition of the Group II mGluRs subtypes (mGlu2 and mGlu3) was found to be as effective as ketamine in exerting rapid antidepressant activity in some animal studies. Inflammation has been thought to contribute to depression for a long time. The cytokine levels not only increase with age but also decrease serotonin. Regarding LLD, interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α) released in vivo are likely to contribute to the reduced serotonin level. Brain-derived neurotrophic factor (BDNF), a growth factor and a modulator in the tropomyosin receptor kinase (Trk) family of tyrosine kinase receptors, probably declines quantitatively with age. Recent studies suggest that BDNF/TrkB decrement may contribute to learning deficits and memory impairment. In the process of aging, physiological changes in combination with geriatric diseases such as vascular diseases result in poorer prognosis of LLD in comparison with that of young-age depression. Treatments with present antidepressants have been generally unsatisfactory. Novel treatments such as anti-inflammatory agents or NMDAR agonists/antagonists require more studies in LLD. Last but not least, LLD and dementia, which share common pathways and interrelate reciprocally, are a great concern. If it is possible to enhance the treatment of LDD, dementia can be prevented or delated.
Collapse
|
121
|
Li X, Wen W, Li P, Fu Y, Chen H, Wang F, Dai Y, Xu S. Mitochondrial Protection and Against Glutamate Neurotoxicity via Shh/Ptch1 Signaling Pathway to Ameliorate Cognitive Dysfunction by Kaixin San in Multi-Infarct Dementia Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5590745. [PMID: 34306310 PMCID: PMC8285175 DOI: 10.1155/2021/5590745] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/17/2021] [Indexed: 12/05/2022]
Abstract
Multi-infarct dementia (MID), a prominent subtype of vascular dementia (VD), is responsible for at least 15 to 20 percent of dementia in the elderly. Mitochondrial dysfunctions and glutamate neurotoxicity due to chronic hypoperfusion and oxidative stress were regarded as the major risk factors in the pathogenesis. Kaixin San (KXS), a classic prescription of Beiji Qianjin Yaofang, was applied to treatment for "amnesia" and has been demonstrated to alleviate the cognitive deficit in a variety of dementias, including MID. However, little is known whether mitochondria and glutamate are associated with the protection of KXS in MID treatment. The aim of this study was to investigate the role of KXS in improving the cognitive function of MID rats through strengthening mitochondrial functions and antagonizing glutamate neurotoxicity via the Shh/Ptch1 signaling pathway. Our data showed that KXS significantly ameliorated memory impairment and hippocampal neuron damage in MID rats. Moreover, KXS improved hippocampal mitochondrial functions by reducing the degree of mitochondrial swelling, increasing the mitochondrial membrane potential (MMP), and elevating the energy charge (EC) and ATP content in MID rats. As expected, the concentration of glutamate and the expression of p-NMDAR1 were significantly reduced by KXS in the brain tissue of MID rats. Furthermore, our results showed that KXS noticeably activated the Shh/Ptch1 signaling pathway which was demonstrated by remarkable elevations of Ptch1, Smo, and Gli1 protein levels in the brain tissue of MID rats. Intriguingly, the inhibition of the Shh signaling pathway with cyclopamine significantly inhibited the protective effects of KXS on glutamate-induced neurotoxicity in PC12 cells. To sum up, these findings suggested that KXS protected MID rats from memory loss by rescuing mitochondrial functions as well as against glutamate neurotoxicity through activating Shh/Ptch1 signaling pathway.
Collapse
Affiliation(s)
- Xiaoqiong Li
- Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Wen Wen
- Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Ping Li
- Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Ying Fu
- Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Hao Chen
- Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Fushun Wang
- Institute of Brain and Psychological Science, Sichuan Normal University, Chengdu 610060, China
| | - Yuan Dai
- Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - Shijun Xu
- Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, Sichuan 611137, China
| |
Collapse
|
122
|
Kovács Z, Brunner B, Ari C. Beneficial Effects of Exogenous Ketogenic Supplements on Aging Processes and Age-Related Neurodegenerative Diseases. Nutrients 2021; 13:nu13072197. [PMID: 34206738 PMCID: PMC8308443 DOI: 10.3390/nu13072197] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/20/2022] Open
Abstract
Life expectancy of humans has increased continuously up to the present days, but their health status (healthspan) was not enhanced by similar extent. To decrease enormous medical, economical and psychological burden that arise from this discrepancy, improvement of healthspan is needed that leads to delaying both aging processes and development of age-related diseases, thereby extending lifespan. Thus, development of new therapeutic tools to alleviate aging processes and related diseases and to increase life expectancy is a topic of increasing interest. It is widely accepted that ketosis (increased blood ketone body levels, e.g., β-hydroxybutyrate) can generate neuroprotective effects. Ketosis-evoked neuroprotective effects may lead to improvement in health status and delay both aging and the development of related diseases through improving mitochondrial function, antioxidant and anti-inflammatory effects, histone and non-histone acetylation, β-hydroxybutyrylation of histones, modulation of neurotransmitter systems and RNA functions. Administration of exogenous ketogenic supplements was proven to be an effective method to induce and maintain a healthy state of nutritional ketosis. Consequently, exogenous ketogenic supplements, such as ketone salts and ketone esters, may mitigate aging processes, delay the onset of age-associated diseases and extend lifespan through ketosis. The aim of this review is to summarize the main hallmarks of aging processes and certain signaling pathways in association with (putative) beneficial influences of exogenous ketogenic supplements-evoked ketosis on lifespan, aging processes, the most common age-related neurodegenerative diseases (Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis), as well as impaired learning and memory functions.
Collapse
Affiliation(s)
- Zsolt Kovács
- Department of Biology, Savaria University Centre, ELTE Eötvös Loránd University, Károlyi Gáspár tér 4., 9700 Szombathely, Hungary; (Z.K.); (B.B.)
| | - Brigitta Brunner
- Department of Biology, Savaria University Centre, ELTE Eötvös Loránd University, Károlyi Gáspár tér 4., 9700 Szombathely, Hungary; (Z.K.); (B.B.)
- Faculty of Sciences, Institute of Biology, University of Pécs, Ifjúság Str. 6, 7624 Pécs, Hungary
| | - Csilla Ari
- Behavioral Neuroscience Research Laboratory, Department of Psychology, University of South Florida, 4202 E. Fowler Ave, PCD 3127, Tampa, FL 33620, USA
- Ketone Technologies LLC, 2780 E. Fowler Ave. #226, Tampa, FL 33612, USA
- Correspondence: ; Tel.: +1-(813)-2409925
| |
Collapse
|
123
|
Abstract
OBJECTIVES Gout, characterised by hyperuricaemia with monosodium urate crystal formation and inflammation, is the most common inflammatory arthritis in adults. Recent studies have found that elevated uric acid levels are related to the occurrence of dementia. We conducted a study to investigate the association between dementia and gout or hyperuricaemia. DESIGN Systematic review and meta-analysis of cohort studies. DATA SOURCES Studies were screened from inception to 28 June 2019 by searching Medline, Embase and the Cochrane Library databases. ELIGIBILITY CRITERIA Cohort studies comparing the risk of dementia in patients with gout and hyperuricaemia versus non-gout and non-hyperuricaemia controls were enrolled. DATA EXTRACTION AND ANALYSIS Two reviewers separately selected studies and extracted data using the Medical Subject Headings without restriction on languages or countries. The adjusted HRs were pooled using the DerSimonian and Laird random effects model. Sensitivity analyses were conducted to evaluate the stability of the results. Publication bias was evaluated using Egger's and Begg's tests. Quality assessment was performed according to the Newcastle-Ottawa Scale. RESULTS Four cohort studies that met the inclusion criteria were included in our meta-analysis. We found that gout and hyperuricaemia did not increase the risk of dementia, with a pooled HR of 0.94 (95% CI 0.69 to 1.28), but might decrease the risk of Alzheimer's disease (AD), with a pooled HR of 0.78 (95% CI 0.64 to 0.95). There was little evidence of publication bias. Quality assessment of the included studies was high (range: 6-8 points). CONCLUSIONS Our study shows that gout and hyperuricaemia do not increase the risk of dementia. However, gout and hyperuricaemia might have a protective effect against AD. Due to the limited number of research articles, more investigations are needed to demonstrate the potential relationship between dementia and gout or hyperuricaemia.
Collapse
Affiliation(s)
- Shu-Yue Pan
- Department of Rheumatology and Immunology, Sichuan University West China Hospital, Chengdu, Sichuan, China
- Department of Rheumatology and Immunology, Chengdu Fifth People's Hospital, Chengdu, Sichuan, China
| | - Rui-Juan Cheng
- Department of Rheumatology and Immunology, Sichuan University West China Hospital, Chengdu, Sichuan, China
| | - Zi-Jing Xia
- Department of Rheumatology and Immunology, Sichuan University West China Hospital, Chengdu, Sichuan, China
| | - Qiu-Ping Zhang
- Department of Rheumatology and Immunology, Sichuan University West China Hospital, Chengdu, Sichuan, China
| | - Yi Liu
- Department of Rheumatology and Immunology, Sichuan University West China Hospital, Chengdu, Sichuan, China
| |
Collapse
|
124
|
Yoo SK, Kim JM, Lee U, Kang JY, Park SK, Han HJ, Park HW, Kim HJ, Kim CW, Kim MJ, Heo HJ. Immature Persimmon Suppresses Amyloid Beta (Aβ) Mediated Cognitive Dysfunction via Tau Pathology in ICR Mice. Curr Issues Mol Biol 2021; 43:405-422. [PMID: 34205542 PMCID: PMC8928982 DOI: 10.3390/cimb43010033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/18/2021] [Accepted: 06/18/2021] [Indexed: 11/16/2022] Open
Abstract
This study confirmed the ameliorating effect of immature persimmon (Diospyros kaki) ethanolic extract (IPEE) on neuronal cytotoxicity in amyloid beta (Aβ)1-42-induced ICR mice. The administration of IPEE ameliorated the cognitive dysfunction in Aβ1-42-induced mice by improving the spatial working memory, the short-term and long-term memory functions. IPEE protected the cerebral cholinergic system, such as the acetylcholine (ACh) level and acetylcholinesterase (AChE) activity, and antioxidant system, such as the superoxide dismutase (SOD), reduced glutathione (GSH) and malondialdehyde (MDA) contents. In addition, mitochondrial dysfunction against Aβ1-42-induced toxicity was reduced by regulating the reactive oxygen species (ROS), mitochondrial membrane potential and ATP contents. In addition, IPEE regulated the expression levels of tau signaling, such as TNF-α, p-JNK, p-Akt, p-GSK3β, p-tau, p-NF-κB, BAX and caspase 3. Finally, gallic acid, ellagic acid and quercetin 3-O-(6″-acetyl-glucoside) were identified as the physiological compounds of IPEE using ultra-performance liquid chromatography ion mobility separation quadrupole time-of-flight/tandem mass spectrometry (UPLC IMS Q-TOF/MS2).
Collapse
Affiliation(s)
- Seul-Ki Yoo
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea; (S.-K.Y.); (J.-M.K.); (J.-Y.K.); (S.-K.P.); (H.-J.H.); (H.-J.K.)
| | - Jong-Min Kim
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea; (S.-K.Y.); (J.-M.K.); (J.-Y.K.); (S.-K.P.); (H.-J.H.); (H.-J.K.)
| | - Uk Lee
- Division of Special Forest Resources, National Institute of Forest Science, Suwon 16631, Korea; (U.L.); (H.-W.P.); (C.-W.K.); (M.-J.K.)
| | - Jin-Yong Kang
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea; (S.-K.Y.); (J.-M.K.); (J.-Y.K.); (S.-K.P.); (H.-J.H.); (H.-J.K.)
| | - Seon-Kyeong Park
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea; (S.-K.Y.); (J.-M.K.); (J.-Y.K.); (S.-K.P.); (H.-J.H.); (H.-J.K.)
| | - Hye-Ju Han
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea; (S.-K.Y.); (J.-M.K.); (J.-Y.K.); (S.-K.P.); (H.-J.H.); (H.-J.K.)
| | - Hyo-Won Park
- Division of Special Forest Resources, National Institute of Forest Science, Suwon 16631, Korea; (U.L.); (H.-W.P.); (C.-W.K.); (M.-J.K.)
| | - Hyun-Jin Kim
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea; (S.-K.Y.); (J.-M.K.); (J.-Y.K.); (S.-K.P.); (H.-J.H.); (H.-J.K.)
| | - Chul-Woo Kim
- Division of Special Forest Resources, National Institute of Forest Science, Suwon 16631, Korea; (U.L.); (H.-W.P.); (C.-W.K.); (M.-J.K.)
| | - Mahn-Jo Kim
- Division of Special Forest Resources, National Institute of Forest Science, Suwon 16631, Korea; (U.L.); (H.-W.P.); (C.-W.K.); (M.-J.K.)
| | - Ho-Jin Heo
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea; (S.-K.Y.); (J.-M.K.); (J.-Y.K.); (S.-K.P.); (H.-J.H.); (H.-J.K.)
| |
Collapse
|
125
|
17-β Estradiol Rescued Immature Rat Brain against Glutamate-Induced Oxidative Stress and Neurodegeneration via Regulating Nrf2/HO-1 and MAP-Kinase Signaling Pathway. Antioxidants (Basel) 2021; 10:antiox10060892. [PMID: 34206065 PMCID: PMC8229583 DOI: 10.3390/antiox10060892] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/20/2021] [Accepted: 05/27/2021] [Indexed: 12/14/2022] Open
Abstract
Dysregulated glutamate signaling, leading to neuronal excitotoxicity and death, has been associated with neurodegenerative pathologies. 17β-estradiol (E2) is a human steroid hormone having a role in reproduction, sexual maturation, brain health and biological activities. The study aimed to explain the neuroprotective role of E2 against glutamate-induced ROS production, MAP kinase-dependent neuroinflammation, synaptic dysfunction and neurodegeneration in the cortex and hippocampus of postnatal day 7 rat brain. Biochemical and immunofluorescence analyses were applied. Our results showed that a single subcutaneous injection of glutamate (10 mg/kg) induced brain oxidative stress after 4 h by disturbing the homeostasis of glutathione (GSH) and revealed an upsurge in ROS and LPO levels and downregulated the expression of Nrf2 and HO-1 antioxidant protein. The glutamate-exposed P7 pups illustrated increased phosphorylation of stress-activated c-Jun N-terminal kinase (JNK) and p38 kinase (p38) and downregulated expression of P-Erk1/2. This was accompanied by pathological neuroinflammation as revealed by enhanced gliosis with upregulated expression of GFAP and Iba-1, and the activation of proinflammatory cytokines (TNF-α) in glutamate-injected P7 pups. Moreover, exogenous glutamate also reduced the expression of synaptic markers (PSD-95, SYP) and induced apoptotic neurodegeneration in the cortical and hippocampal regions by dysregulating the expression of Bax, Bcl-2 and caspase-3 in the developing rat brain. On the contrary, co-treatment of E2 (10 mg/kg) with glutamate significantly abrogated brain neuroinflammation, neurodegeneration and synapse loss by alleviating brain oxidative stress by upregulating the Nrf2/HO-1 antioxidant pathway and by deactivating pro-apoptotic P-JNK/P-p38 and activation of pro-survival P-Erk1/2 MAP kinase pathways. In brief, the data demonstrate the neuroprotective role of E2 against glutamate excitotoxicity-induced neurodegeneration. The study also encourages future studies investigating if E2 may be a potent neuroprotective and neurotherapeutic agent in different neurodegenerative diseases.
Collapse
|
126
|
Shi Y, Qi H. Effects of Different Seaweed Bioactive Compounds on Neurodegenerative Disorders, Potential Uses on Insomnia: A Mini-review. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1929301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Yixin Shi
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian, P. R. China
| | - Hang Qi
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian, P. R. China
| |
Collapse
|
127
|
New epigenetic players in stroke pathogenesis: From non-coding RNAs to exosomal non-coding RNAs. Biomed Pharmacother 2021; 140:111753. [PMID: 34044272 PMCID: PMC8222190 DOI: 10.1016/j.biopha.2021.111753] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/22/2021] [Accepted: 05/19/2021] [Indexed: 12/17/2022] Open
Abstract
Non-coding RNAs (ncRNAs) have critical role in the pathophysiology as well as recovery after ischemic stroke. ncRNAs, particularly microRNAs, and the long non-coding RNAs (lncRNAs) are critical for angiogenesis and neuroprotection, and they have been suggested to be therapeutic, diagnostic and prognostic tools in cerebrovascular diseases, including stroke. Moreover, exosomes have been considered as nanocarriers capable of transferring various cargos, such as lncRNAs and miRNAs to recipient cells, with prominent inter-cellular roles in the mediation of neuro-restorative events following strokes and neural injuries. In this review, we summarize the pathogenic role of ncRNAs and exosomal ncRNAs in the stroke.
Collapse
|
128
|
Oyefeso FA, Muotri AR, Wilson CG, Pecaut MJ. Brain organoids: A promising model to assess oxidative stress-induced central nervous system damage. Dev Neurobiol 2021; 81:653-670. [PMID: 33942547 DOI: 10.1002/dneu.22828] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 12/13/2022]
Abstract
Oxidative stress (OS) is one of the most significant propagators of systemic damage with implications for widespread pathologies such as vascular disease, accelerated aging, degenerative disease, inflammation, and traumatic injury. OS can be induced by numerous factors such as environmental conditions, lifestyle choices, disease states, and genetic susceptibility. It is tied to the accumulation of free radicals, mitochondrial dysfunction, and insufficient antioxidant protection, which leads to cell aging and tissue degeneration over time. Unregulated systemic increase in reactive species, which contain harmful free radicals, can lead to diverse tissue-specific OS responses and disease. Studies of OS in the brain, for example, have demonstrated how this state contributes to neurodegeneration and altered neural plasticity. As the worldwide life expectancy has increased over the last few decades, the prevalence of OS-related diseases resulting from age-associated progressive tissue degeneration. Unfortunately, vital translational research studies designed to identify and target disease biomarkers in human patients have been impeded by many factors (e.g., limited access to human brain tissue for research purposes and poor translation of experimental models). In recent years, stem cell-derived three-dimensional tissue cultures known as "brain organoids" have taken the spotlight as a novel model for studying central nervous system (CNS) diseases. In this review, we discuss the potential of brain organoids to model the responses of human neural cells to OS, noting current and prospective limitations. Overall, brain organoids show promise as an innovative translational model to study CNS susceptibility to OS and elucidate the pathophysiology of the aging brain.
Collapse
Affiliation(s)
- Foluwasomi A Oyefeso
- Department of Biomedical Engineering Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Alysson R Muotri
- Department of Pediatrics/Cellular and Molecular Medicine, University of California San Diego, San Diego, CA, USA
| | - Christopher G Wilson
- Lawrence D. Longo, MD, Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Michael J Pecaut
- Department of Biomedical Engineering Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
129
|
Chen J, Chen Y, Zheng Y, Zhao J, Yu H, Zhu J, Li D. Neuroprotective Effects and Mechanisms of Procyanidins In Vitro and In Vivo. Molecules 2021; 26:molecules26102963. [PMID: 34067571 PMCID: PMC8155916 DOI: 10.3390/molecules26102963] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/30/2022] Open
Abstract
This study evaluated the neuroprotective effects and mechanisms of procyanidins (PCs). In vitro, rat pheochromocytoma cells (PC12 cells) were exposed to PCs (1, 2 or 4 μg/mL) or N-Acetyl-L-cysteine (NAC) (20 μM) for 24 h, and then incubated with 200 μM of H2O2 for 24 h. Compared with H2O2 alone, PCs significantly increased antioxidant activities (e.g., glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), catalase (CAT)), decreased levels of reactive oxygen species (ROS) and malondialdehyde (MDA), and increased nuclear factor-erythroid 2-related factor 2 (Nrf2) accumulation and increased the expression of quinone oxidoreductase 1 (NQO1), heme oxygenase 1 (HO-1), glutamate-cysteine ligase modifier subunit (GCLM), and glutamate-cysteine ligase catalytic subunit (GCLC). In vivo, zebrafish larvae (AB strain) 3 days post-fertilization (dpf) were exposed to NAC (30 μM) or PCs (4, 8 or 16 μg/mL) in the absence or presence of 300 μM of H2O2 for 4 days. Compared with H2O2 alone, PCs enhanced antioxidant activities (e.g., GSH-Px, CAT, and SOD), decreased levels of ROS and MDA, and enhanced Nrf2/ antioxidant response element (ARE) activation and raised expression levels of NQO1, HO-1, GCLM, and GCLC. In conclusion, these results indicated that PCs exerted neuroprotective effects via activating the Nrf2/ARE pathway and alleviating oxidative damage.
Collapse
Affiliation(s)
- Juan Chen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310000, China; (J.C.); (Y.C.); (Y.Z.); (J.Z.); (H.Y.); (D.L.)
| | - Yixuan Chen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310000, China; (J.C.); (Y.C.); (Y.Z.); (J.Z.); (H.Y.); (D.L.)
| | - Yangfan Zheng
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310000, China; (J.C.); (Y.C.); (Y.Z.); (J.Z.); (H.Y.); (D.L.)
| | - Jiawen Zhao
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310000, China; (J.C.); (Y.C.); (Y.Z.); (J.Z.); (H.Y.); (D.L.)
| | - Huilin Yu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310000, China; (J.C.); (Y.C.); (Y.Z.); (J.Z.); (H.Y.); (D.L.)
| | - Jiajin Zhu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310000, China; (J.C.); (Y.C.); (Y.Z.); (J.Z.); (H.Y.); (D.L.)
- Correspondence: ; Tel./Fax: +86–571-88982191
| | - Duo Li
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310000, China; (J.C.); (Y.C.); (Y.Z.); (J.Z.); (H.Y.); (D.L.)
- Institute of Nutrition & Health, Qingdao University, Qingdao 266000, China
| |
Collapse
|
130
|
Tripathi R, Aggarwal T, Fredriksson R. SLC38A10 Transporter Plays a Role in Cell Survival Under Oxidative Stress and Glutamate Toxicity. Front Mol Biosci 2021; 8:671865. [PMID: 34026845 PMCID: PMC8133219 DOI: 10.3389/fmolb.2021.671865] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/09/2021] [Indexed: 11/13/2022] Open
Abstract
Solute carrier (SLC) transporters regulate amino acids, glucose, ions, and metabolites that flow across cell membranes. In the brain, SLCs are the key regulators of neurotransmission, in particular, the glutamate/GABA-glutamine (GGG) cycle. Genetic mutations in SLCs are associated with various neurodevelopmental and neurodegenerative diseases. In this study, we have investigated the role of SLC38A10 under acute oxidative and glutamate stress in mouse primary cortical cells from SLC38A10 knockout (KO) mice. The ER/golgi localized transporter, SLC38A10, transports glutamate, glutamine, and alanine in brain cells, and the aim of this study was to determine the possible effects of removal of SLC38A10 in primary cortical cells under glutamate and oxidative challenges. Primary cortical neuronal cultures of wild-type (WT) cell and SLC38A10 KO mice were subjected to different concentrations of glutamate and hydrogen peroxide. There was no morphological change observed between KO and WT cortical neurons in culture. Interestingly, KO cells showed significantly lower cell viability and higher cell death compared to WT cells under both glutamate and hydrogen peroxide exposure. Further, we evaluated the possible role of p53 in neuronal cell apoptosis in KO cells. We found decreased intracellular p53 protein levels under glutamate and hydrogen peroxide treatment in KO cortical cells. In contrast, caspase 3/7 activity remains unaltered under all conditions. These results demonstrate an indirect relationship between the expression of SLC38A10 and p53 and a role in the cell defense mechanism against neurotoxicity.
Collapse
Affiliation(s)
- Rekha Tripathi
- Molecular Neuropharmacology, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Tanya Aggarwal
- Molecular Neuropharmacology, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Robert Fredriksson
- Molecular Neuropharmacology, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
131
|
Vallée A, Vallée JN, Lecarpentier Y. Potential role of cannabidiol in Parkinson's disease by targeting the WNT/β-catenin pathway, oxidative stress and inflammation. Aging (Albany NY) 2021; 13:10796-10813. [PMID: 33848261 PMCID: PMC8064164 DOI: 10.18632/aging.202951] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/26/2021] [Indexed: 04/11/2023]
Abstract
Parkinson's disease (PD) is a major neurodegenerative disease (ND), presenting a progressive degeneration of the nervous system characterized by a loss of dopamine in the substantia nigra pars compacta. Recent findings have shown that oxidative stress and inflammation play key roles in the development of PD. However, therapies remain uncertain and research for new treatment is of the utmost importance. This review focuses on the potential effects of using cannabidiol (CBD) as a potential therapeutic strategy for the treatment of PD and on some of the presumed mechanisms by which CBD provides its beneficial properties. CBD medication downregulates GSK-3β, the main inhibitor of the WNT/β-catenin pathway. Activation of the WNT/β-catenin could be associated with the control of oxidative stress and inflammation. Future prospective clinical trials should focus on CBD and its multiple interactions in the treatment of PD.
Collapse
Affiliation(s)
- Alexandre Vallée
- Department of Clinical Research and Innovation (DRCI), Foch Hospital, Suresnes 92150, France
| | - Jean-Noël Vallée
- Centre Hospitalier Universitaire (CHU) Amiens Picardie, Université Picardie Jules Verne (UPJV), Amiens 80054, France
- Laboratoire de Mathématiques et Applications (LMA), UMR CNRS 7348, Université de Poitiers, Poitiers 86000, France
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l’Est Francilien (GHEF), Meaux 77100, France
| |
Collapse
|
132
|
Rehman IU, Ahmad R, Khan I, Lee HJ, Park J, Ullah R, Choi MJ, Kang HY, Kim MO. Nicotinamide Ameliorates Amyloid Beta-Induced Oxidative Stress-Mediated Neuroinflammation and Neurodegeneration in Adult Mouse Brain. Biomedicines 2021; 9:biomedicines9040408. [PMID: 33920212 PMCID: PMC8070416 DOI: 10.3390/biomedicines9040408] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/22/2021] [Accepted: 04/06/2021] [Indexed: 01/02/2023] Open
Abstract
Alzheimer’s disease (AD) is the most predominant age-related neurodegenerative disease, pathologically characterized by the accumulation of aggregates of amyloid beta Aβ1–42 and tau hyperphosphorylation in the brain. It is considered to be the primary cause of cognitive dysfunction. The aggregation of Aβ1–42 leads to neuronal inflammation and apoptosis. Since vitamins are basic dietary nutrients that organisms need for their growth, survival, and other metabolic functions, in this study, the underlying neuroprotective mechanism of nicotinamide (NAM) Vitamin B3 against Aβ1–42 -induced neurotoxicity was investigated in mouse brains. Intracerebroventricular (i.c.v.) Aβ1–42 injection elicited neuronal dysfunctions that led to memory impairment and neurodegeneration in mouse brains. After 24 h after Aβ1–42 injection, the mice were treated with NAM (250 mg/kg intraperitoneally) for 1 week. For biochemical and Western blot studies, the mice were directly sacrificed, while for confocal and “immunohistochemical staining”, mice were perfused transcardially with 4% paraformaldehyde. Our biochemical, immunofluorescence, and immunohistochemical results showed that NAM can ameliorate neuronal inflammation and apoptosis by reducing oxidative stress through lowering malondialdehyde and 2,7-dichlorofluorescein levels in an Aβ1–42-injected mouse brains, where the regulation of p-JNK further regulated inflammatory marker proteins (TNF-α, IL-1β, transcription factor NF-kB) and apoptotic marker proteins (Bax, caspase 3, PARP1). Furthermore, NAM + Aβ treatment for 1 week increased the amount of survival neurons and reduced neuronal cell death in Nissl staining. We also analyzed memory dysfunction via behavioral studies and the analysis showed that NAM could prevent Aβ1–42 -induced memory deficits. Collectively, the results of this study suggest that NAM may be a potential preventive and therapeutic candidate for Aβ1–42 -induced reactive oxygen species (ROS)-mediated neuroinflammation, neurodegeneration, and neurotoxicity in an adult mouse model.
Collapse
Affiliation(s)
- Inayat Ur Rehman
- Division of Life Sciences and Applied Life Science (BK 21 Four), College of Natural Science, Gyeongsang National University, Jinju 52828, Korea; (I.U.R.); (R.A.); (I.K.); (H.J.L.); (J.P.); (R.U.)
| | - Riaz Ahmad
- Division of Life Sciences and Applied Life Science (BK 21 Four), College of Natural Science, Gyeongsang National University, Jinju 52828, Korea; (I.U.R.); (R.A.); (I.K.); (H.J.L.); (J.P.); (R.U.)
| | - Ibrahim Khan
- Division of Life Sciences and Applied Life Science (BK 21 Four), College of Natural Science, Gyeongsang National University, Jinju 52828, Korea; (I.U.R.); (R.A.); (I.K.); (H.J.L.); (J.P.); (R.U.)
| | - Hyeon Jin Lee
- Division of Life Sciences and Applied Life Science (BK 21 Four), College of Natural Science, Gyeongsang National University, Jinju 52828, Korea; (I.U.R.); (R.A.); (I.K.); (H.J.L.); (J.P.); (R.U.)
| | - Jungsung Park
- Division of Life Sciences and Applied Life Science (BK 21 Four), College of Natural Science, Gyeongsang National University, Jinju 52828, Korea; (I.U.R.); (R.A.); (I.K.); (H.J.L.); (J.P.); (R.U.)
| | - Rahat Ullah
- Division of Life Sciences and Applied Life Science (BK 21 Four), College of Natural Science, Gyeongsang National University, Jinju 52828, Korea; (I.U.R.); (R.A.); (I.K.); (H.J.L.); (J.P.); (R.U.)
| | - Myeong Jun Choi
- Research and Development Center, Axceso Bio-pharma co, Anyang 14056, Korea;
| | - Hee Young Kang
- Department of Neurology, Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, Jinju 52828, Korea;
| | - Myeong Ok Kim
- Division of Life Sciences and Applied Life Science (BK 21 Four), College of Natural Science, Gyeongsang National University, Jinju 52828, Korea; (I.U.R.); (R.A.); (I.K.); (H.J.L.); (J.P.); (R.U.)
- Correspondence: ; Tel.: +82-55-772-1345; Fax: +82-55-772-2656
| |
Collapse
|
133
|
Tonsomboon A, Prasanth MI, Plaingam W, Tencomnao T. Kaempferia parviflora Rhizome Extract Inhibits Glutamate-Induced Toxicity in HT-22 Mouse Hippocampal Neuronal Cells and Extends Longevity in Caenorhabditis elegans. BIOLOGY 2021; 10:264. [PMID: 33810282 PMCID: PMC8066628 DOI: 10.3390/biology10040264] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/26/2022]
Abstract
Kaempferia parviflora Wall. ex Baker (KP) or "Kra-chai-dam" has been shown to exhibit several pharmacological effects including anti-inflammation, antimicrobial, and sexual-enhancing activity. The objectives of this study included an investigation of the effect of KP rhizome extract against glutamate-induced toxicity in mouse hippocampal HT-22 neuronal cells, determination of the underlying mechanism of neuroprotection, and an evaluation of the effect of KP extract on the longevity of Caenorhabditis elegans. HT-22 cells were co-treated with glutamate (5 mM) and KP extract (25, 50, and 75 μg/mL) for 14 h. Cell viability, intracellular reactive oxygen species (ROS) assay, fluorescence-activated cell sorting (FACS) analysis, and Western blotting were performed. The longevity effect of KP extract on C. elegans was studied by lifespan measurement. In HT-22 cells, co-treatment of glutamate with KP extract significantly inhibited glutamate-mediated cytotoxicity and decreased intracellular ROS production. Additionally, the glutamate-induced apoptosis and apoptotic-inducing factor (AIF) translocation were blocked by KP extract co-treatment. Western blot analysis also demonstrated that KP extract significantly diminished extracellular signal-regulated kinase (ERK) phosphorylation induced by glutamate, and brain-derived neurotrophic factor (BDNF) was recovered to the control. Moreover, this KP extract treatment prolonged the lifespan of C. elegans. Altogether, this study suggested that KP extract possesses both neuroprotective and longevity-inducing properties, thus serving as a promising candidate for development of innovative health products.
Collapse
Affiliation(s)
- Aunchalee Tonsomboon
- Interdisciplinary Program of Biomedical Sciences, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Mani Iyer Prasanth
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand;
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Waluga Plaingam
- College of Oriental Medicine, Rangsit University, 52/347 Muang Ake, Paholyothin Road, Lakhok, Pathum Thani 12000, Thailand;
| | - Tewin Tencomnao
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand;
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
134
|
Duggan MR, Mohseni Ahooyi T, Parikh V, Khalili K. Neuromodulation of BAG co-chaperones by HIV-1 viral proteins and H 2O 2: implications for HIV-associated neurological disorders. Cell Death Discov 2021; 7:60. [PMID: 33771978 PMCID: PMC7997901 DOI: 10.1038/s41420-021-00424-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/04/2021] [Accepted: 01/30/2021] [Indexed: 11/08/2022] Open
Abstract
Despite increasing numbers of aged individuals living with HIV, the mechanisms underlying HIV-associated neurological disorders (HANDs) remain elusive. As HIV-1 pathogenesis and aging are characterized by oxidative stress as well as altered protein quality control (PQC), reactive oxygen species (ROS) themselves might constitute a molecular mediator of neuronal PQC by modulating BCL-2 associated athanogene (BAG) family members. Present results reveal H2O2 replicated and exacerbated a reduction in neuronal BAG3 induced by the expression of HIV-1 viral proteins (i.e., Tat and Nef), while also causing an upregulation of BAG1. Such a reciprocal regulation of BAG3 and BAG1 levels was also indicated in two animal models of HIV, the doxycycline-inducible Tat (iTat) and the Tg26 mouse. Inhibiting oxidative stress via antioxidants in primary culture was capable of partially preserving neuronal BAG3 levels as well as electrophysiological functioning otherwise altered by HIV-1 viral proteins. Current findings indicate HIV-1 viral proteins and H2O2 may mediate neuronal PQC by exerting synergistic effects on complementary BAG family members, and suggest novel therapeutic targets for the aging HIV-1 population.
Collapse
Affiliation(s)
- Michael R Duggan
- Department of Neuroscience, Center for Neurovirology, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, 7th Floor, Philadelphia, PA, 19140, USA
- Department of Psychology, College of Liberal Arts at Temple University, 1701 N 13th Street, 9th Floor, Philadelphia, PA, 19122, USA
| | - Taha Mohseni Ahooyi
- Department of Neuroscience, Center for Neurovirology, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, 7th Floor, Philadelphia, PA, 19140, USA
| | - Vinay Parikh
- Department of Psychology, College of Liberal Arts at Temple University, 1701 N 13th Street, 9th Floor, Philadelphia, PA, 19122, USA
| | - Kamel Khalili
- Department of Neuroscience, Center for Neurovirology, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, 7th Floor, Philadelphia, PA, 19140, USA.
| |
Collapse
|
135
|
Martínez-Magaña JJ, Genis-Mendoza AD, Villatoro Velázquez JA, Bustos-Gamiño M, Juárez-Rojop IE, Tovilla-Zarate CA, Sarmiento E, Saucedo E, Rodríguez-Mayoral O, Fleiz-Bautista C, Camarena B, Aguilar A, Gonzalez-Castro TB, Medina-Mora ME, Nicolini H. Genome-wide association study of psychiatric and substance use comorbidity in Mexican individuals. Sci Rep 2021; 11:6771. [PMID: 33762635 PMCID: PMC7990941 DOI: 10.1038/s41598-021-85881-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 03/08/2021] [Indexed: 01/31/2023] Open
Abstract
The combination of substance use and psychiatric disorders is one of the most common comorbidities. The objective of this study was to perform a genome-wide association study of this comorbidity (Com), substance use alone (Subs), and psychiatric symptomatology alone (Psych) in the Mexican population. The study included 3914 individuals of Mexican descent. Genotyping was carried out using the PsychArray microarray and genome-wide correlations were calculated. Genome-wide associations were analyzed using multiple logistic models, polygenic risk scores (PRSs) were evaluated using multinomial models, and vertical pleiotropy was evaluated by generalized summary-data-based Mendelian randomization. Brain DNA methylation quantitative loci (brain meQTL) were also evaluated in the prefrontal cortex. Genome-wide correlation and vertical pleiotropy were found between all traits. No genome-wide association signals were found, but 64 single-nucleotide polymorphism (SNPs) reached nominal associations (p < 5.00e-05). The SNPs associated with each trait were independent, and the individuals with high PRSs had a higher prevalence of tobacco and alcohol use. In the multinomial models all of the PRSs (Subs-PRS, Com-PRS, and Psych-PRS) were associated with all of the traits. Brain meQTL of the Subs-associated SNPs had an effect on the genes enriched in insulin signaling pathway, and that of the Psych-associated SNPs had an effect on the Fc gamma receptor phagocytosis pathway.
Collapse
Affiliation(s)
- José Jaime Martínez-Magaña
- División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, Mexico
- Laboratorio de Genómica de Enfermedades Psiquiátricas y Neurodegenerativas, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Alma Delia Genis-Mendoza
- Laboratorio de Genómica de Enfermedades Psiquiátricas y Neurodegenerativas, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
- Hospital Psiquiátrico Infantil Juan N. Navarro, Servicios de Atención Psiquiátrica, Mexico City, Mexico
| | - Jorge Ameth Villatoro Velázquez
- Unidad de Encuestas y Análisis de Datos, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz (INPRFM), Mexico City, Mexico
- Seminario de Estudios Sobre la Globalidad, Facultad de Medicina, Universidad Nacional Autónoma de Mexico (UNAM), Mexico City, Mexico
| | - Marycarmen Bustos-Gamiño
- Unidad de Encuestas y Análisis de Datos, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz (INPRFM), Mexico City, Mexico
| | - Isela Esther Juárez-Rojop
- División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, Mexico
| | | | - Emmanuel Sarmiento
- Hospital Psiquiátrico Infantil Juan N. Navarro, Servicios de Atención Psiquiátrica, Mexico City, Mexico
| | - Erasmo Saucedo
- Centro de Neurociencias Avanzadas, Departamento de Psiquiátrica del Hospital Psiquiátrico, Universitario Dr. José Eleuterio González, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico
| | | | - Clara Fleiz-Bautista
- Unidad de Encuestas y Análisis de Datos, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz (INPRFM), Mexico City, Mexico
- Seminario de Estudios Sobre la Globalidad, Facultad de Medicina, Universidad Nacional Autónoma de Mexico (UNAM), Mexico City, Mexico
| | - Beatriz Camarena
- Laboratorio de Farmacogenética, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz (INPRFM), Mexico City, Mexico
| | - Alejandro Aguilar
- Laboratorio de Farmacogenética, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz (INPRFM), Mexico City, Mexico
| | - Thelma Beatriz Gonzalez-Castro
- División Multidisciplinaria de Jalpa de Méndez, Universidad Juárez Autónoma de Tabasco, Jalpa de Méndez, Tabasco, Mexico
| | - María Elena Medina-Mora
- Unidad de Encuestas y Análisis de Datos, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz (INPRFM), Mexico City, Mexico
- Seminario de Estudios Sobre la Globalidad, Facultad de Medicina, Universidad Nacional Autónoma de Mexico (UNAM), Mexico City, Mexico
| | - Humberto Nicolini
- División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, Mexico.
- Instituto Nacional de Medicina Genómica, Periférico Sur 4809, Arenal Tepepan, Tlalpan, 14610, Mexico City, Mexico.
| |
Collapse
|
136
|
Park MW, Cha HW, Kim J, Kim JH, Yang H, Yoon S, Boonpraman N, Yi SS, Yoo ID, Moon JS. NOX4 promotes ferroptosis of astrocytes by oxidative stress-induced lipid peroxidation via the impairment of mitochondrial metabolism in Alzheimer's diseases. Redox Biol 2021; 41:101947. [PMID: 33774476 PMCID: PMC8027773 DOI: 10.1016/j.redox.2021.101947] [Citation(s) in RCA: 310] [Impact Index Per Article: 103.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 12/16/2022] Open
Abstract
Oxidative stress has been implicated in the pathogenesis of Alzheimer's disease (AD). Mitochondrial dysfunction is linked to oxidative stress and reactive oxygen species (ROS) in neurotoxicity during AD. Impaired mitochondrial metabolism has been associated with mitochondrial dysfunction in brain damage of AD. While the role of NADPH oxidase 4 (NOX4), a major source of ROS, has been identified in brain damage, the mechanism by which NOX4 regulates ferroptosis of astrocytes in AD remains unclear. Here, we show that the protein levels of NOX4 were significantly elevated in impaired astrocytes of cerebral cortex from patients with AD and APP/PS1 double-transgenic mouse model of AD. The levels of 4-hydroxynonenal (4-HNE) and malondialdehyde (MDA), a marker of oxidative stress-induced lipid peroxidation, were significantly also elevated in impaired astrocytes of patients with AD and mouse AD. We demonstrate that the over-expression of NOX4 significantly increases the impairment of mitochondrial metabolism by inhibition of mitochondrial respiration and ATP production via the reduction of five protein complexes in the mitochondrial ETC in human astrocytes. Moreover, the elevation of NOX4 induces oxidative stress by mitochondrial ROS (mtROS) production, mitochondrial fragmentation, and inhibition of cellular antioxidant process in human astrocytes. Furthermore, the elevation of NOX4 increased ferroptosis-dependent cytotoxicity by the activation of oxidative stress-induced lipid peroxidation in human astrocytes. These results suggest that NOX4 promotes ferroptosis of astrocytes by oxidative stress-induced lipid peroxidation via the impairment of mitochondrial metabolism in AD.
Collapse
Affiliation(s)
- Min Woo Park
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, 31151, Chungcheongnam-do, Republic of Korea
| | - Hyeon Woo Cha
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, 31151, Chungcheongnam-do, Republic of Korea
| | - Junhyung Kim
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, 31151, Chungcheongnam-do, Republic of Korea
| | - Jung Han Kim
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, 31151, Chungcheongnam-do, Republic of Korea
| | - Haesung Yang
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan, 31538, Chungcheongnam-do, Republic of Korea; BK21 Four Project, Department of Biomedical Laboratory Science, General Graduate School, College of Medical Sciences, Soonchunhyang University, Asan, 31538, Chungcheongnam-do, Republic of Korea
| | - Sunmi Yoon
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan, 31538, Chungcheongnam-do, Republic of Korea; BK21 Four Project, Department of Biomedical Laboratory Science, General Graduate School, College of Medical Sciences, Soonchunhyang University, Asan, 31538, Chungcheongnam-do, Republic of Korea
| | - Napissara Boonpraman
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan, 31538, Chungcheongnam-do, Republic of Korea; BK21 Four Project, Department of Biomedical Laboratory Science, General Graduate School, College of Medical Sciences, Soonchunhyang University, Asan, 31538, Chungcheongnam-do, Republic of Korea
| | - Sun Shin Yi
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan, 31538, Chungcheongnam-do, Republic of Korea; BK21 Four Project, Department of Biomedical Laboratory Science, General Graduate School, College of Medical Sciences, Soonchunhyang University, Asan, 31538, Chungcheongnam-do, Republic of Korea
| | - Ik Dong Yoo
- Department of Nuclear Medicine, Soonchunhyang University Hospital Cheonan, Cheonan, 31151, Chungcheongnam-do, Republic of Korea.
| | - Jong-Seok Moon
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, 31151, Chungcheongnam-do, Republic of Korea.
| |
Collapse
|
137
|
Ali SA, Singh G, Datusalia AK. Potential therapeutic applications of phytoconstituents as immunomodulators: Pre-clinical and clinical evidences. Phytother Res 2021; 35:3702-3731. [PMID: 33734511 DOI: 10.1002/ptr.7068] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022]
Abstract
Autoimmune and infectious diseases are the major public health issues and have gained great attention in the last few years for the search of new agents with therapeutic benefits on the host immune functions. In recent years, natural products (NPs) have been studied broadly for their multi-targeted activities under pathological conditions. Interestingly, several attempts have been made to outline the immunomodulatory properties of NPs. Research on in-vitro and in-vivo models have shown the immunomodulatory activity of NPs, is due to their antiinflammatory property, induction of phagocytosis and immune cells stimulation activity. Moreover, studies on humans have suggested that phytomedicines reduce inflammation and could provide appropriate benefits either in single form or complex combinations with other agents preventing disease progression, subsequently enhancing the efficacy of treatment to combat multiple malignancies. However, the exact mechanism of immunomodulation is far from clear, warranting more detailed investigations on their effectiveness. Nevertheless, the reduction of inflammatory cascades is considered as a prime protective mechanism in a number of inflammation regulated autoimmune diseases. Altogether, this review will discuss the biological activities of plant-derived secondary metabolites, such as polyphenols, alkaloids, saponins, polysaccharides and so forth, against various diseases and their potential use as an immunomodulatory agent under pathological conditions.
Collapse
Affiliation(s)
- Syed Afroz Ali
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Lucknow, India
| | - Gurpreet Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Lucknow, India
| | - Ashok Kumar Datusalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Lucknow, India
| |
Collapse
|
138
|
Xiong L, Huang J, Gao Y, Gao Y, Wu C, He S, Zou L, Yang D, Han Y, Yuan Q, Zheng Z, Hu G. Sodium arsenite induces spatial learning and memory impairment associated with oxidative stress and activates the Nrf2/PPARγ pathway against oxidative injury in mice hippocampus. Toxicol Res (Camb) 2021; 10:277-283. [PMID: 33884178 PMCID: PMC8045596 DOI: 10.1093/toxres/tfab007] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/06/2020] [Accepted: 01/11/2021] [Indexed: 11/14/2022] Open
Abstract
Arsenic (As) is a ubiquitous environmental and industrial toxin with known correlates of oxidative stress and cognitive deficits in the brain. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcriptional factor that represents a central cellular antioxidant defense mechanism and transcribes many antioxidant genes. Peroxisome proliferator-activated receptor-gamma (PPARγ) is a well-known nuclear receptor to regulate lipid metabolism in many tissues, and it has been also associated with the control of oxidative stress, neuronal death, neurogenesis and differentiation. The role of Nrf2 and PPARγ in As-induced neurotoxicity is still debated. The present study was designed to investigate the neurobehavioral toxic effect of sub-chronic and middle-dose sodium arsenite exposure in mice hippocampus, as well as the response of Nrf2/PPARγ expression and influence on protein expression levels of their downstream antioxidant genes. Our results showed that mice treated with intraperitoneal injection of sodium arsenite (50 mg/kg body wt.) twice a week for 7 weeks resulted in increased generation of reactive oxygen species and impairment of spatial cognitive function. The present study also found a positive association between Nrf2/PPARγ expression in hippocampus of mice, and activation of antioxidant defenses by the evidently upregulated expression of their downstream genes, including superoxide dismutase, heme oxygenase-1 and glutathione peroxidase-3. Therefore, our findings were helpful for further understanding the role of Nrf2/PPARγ feedback loop in As-induced neurobehavioral toxicity.
Collapse
Affiliation(s)
- Liang Xiong
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Number 1 Yixueyuan Road, Ganzhou 341000, China
- School of Public Health and Health Management, Gannan Medical University, Number 1 Yixueyuan Road, Ganzhou 341000, Jiangxi, China
| | - Jinyu Huang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Number 1 Yixueyuan Road, Ganzhou 341000, China
- Department of Anatomy, School of Basic Medicine Sciences, Gannan Medical University, Number 1 Yixueyuan Road, Ganzhou 341000, Jiangxi, China
| | - Ying Gao
- Department of rehabilitation medicine, School of Rehabilitation, Gannan Medical University, Number 1 Yixueyuan Road, Ganzhou 341000, Jiangxi, China
| | - Yanfang Gao
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Number 1 Yixueyuan Road, Ganzhou 341000, China
- School of Public Health and Health Management, Gannan Medical University, Number 1 Yixueyuan Road, Ganzhou 341000, Jiangxi, China
| | - Chunmei Wu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Number 1 Yixueyuan Road, Ganzhou 341000, China
- School of Public Health and Health Management, Gannan Medical University, Number 1 Yixueyuan Road, Ganzhou 341000, Jiangxi, China
| | - Shengfa He
- School of Public Health and Health Management, Gannan Medical University, Number 1 Yixueyuan Road, Ganzhou 341000, Jiangxi, China
| | - Lijun Zou
- School of Public Health and Health Management, Gannan Medical University, Number 1 Yixueyuan Road, Ganzhou 341000, Jiangxi, China
| | - Dongmei Yang
- School of Public Health and Health Management, Gannan Medical University, Number 1 Yixueyuan Road, Ganzhou 341000, Jiangxi, China
| | - Yuhao Han
- School of Public Health and Health Management, Gannan Medical University, Number 1 Yixueyuan Road, Ganzhou 341000, Jiangxi, China
| | - Qiong Yuan
- School of Public Health and Health Management, Gannan Medical University, Number 1 Yixueyuan Road, Ganzhou 341000, Jiangxi, China
| | - Zuobing Zheng
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Number 1 Yixueyuan Road, Ganzhou 341000, China
| | - Gonghua Hu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Number 1 Yixueyuan Road, Ganzhou 341000, China
- School of Public Health and Health Management, Gannan Medical University, Number 1 Yixueyuan Road, Ganzhou 341000, Jiangxi, China
| |
Collapse
|
139
|
Chiu KM, Lin TY, Lee MY, Lu CW, Wang MJ, Wang SJ. Typhaneoside Suppresses Glutamate Release Through Inhibition of Voltage-Dependent Calcium Entry in Rat Cerebrocortical Nerve Terminals. Chem Res Toxicol 2021; 34:1286-1295. [PMID: 33621091 DOI: 10.1021/acs.chemrestox.0c00446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Glutamate is the major excitatory neurotransmitter in the brain and is involved in many brain functions. In this study, we investigated whether typhaneoside, a flavonoid from Typhae angustifolia pollen, affects endogenous glutamate release from rat cortical synaptosomes. Using a one-line enzyme-coupled fluorometric assay, glutamate release stimulated by the K+ channel blocker 4-aminopyridine was monitored to explore the possible underlying mechanisms. The vesicular transporter inhibitor bafilomycin A1 and chelation of extracellular Ca2+ ions with EGTA suppressed the effect of typhaneoside on the induced glutamate release. Nevertheless, the typhaneoside activity has not been affected by the glutamate transporter inhibitor dl-threo-beta-benzyloxyaspartate. The synaptosomal plasma membrane potential was assayed using a membrane potential-sensitive dye DiSC3(5), and cytosolic Ca2+ concentrations ([Ca2+]C) was monitored by a Ca2+ indicator Fura-2. Results showed that typhaneoside did not alter the synaptosomal membrane potential but lowered 4-aminopyridine-induced increases in [Ca2+]C. Furthermore, the Cav2.2 (N-type) channel blocker ω-conotoxin GVIA blocked Ca2+ entry and inhibited the effect of typhaneoside on 4-aminopyridine-induced glutamate release. However, the inhibitor of intracellular Ca2+ release dantrolene and the mitochondrial Na+/Ca2+ exchanger blocker 7-chloro-5-(2-chloropheny)-1,5-dihydro-4,1-benzothiazepin-2(3H)-one have no effect on the suppression of glutamate release mediated by typhaneoside. Moreover, inhibition of mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) prevented the inhibitory effect of typhaneoside on induced glutamate release. Typhaneoside reduced 4-aminopyridine-induced phosphorylation of ERK1/2 and the major presynaptic ERK target synapsin I, which is a synaptic vesicle-associated protein. In conclusion, these findings suggest a role for typhaneoside in modulating glutamate release by suppressing voltage-dependent Ca2+ channel mediated presynaptic Ca2+ influx and the MAPK/ERK/synapsin I signaling cascade.
Collapse
Affiliation(s)
- Kuan-Ming Chiu
- Division of Cardiovascular Surgery, Cardiovascular Center, Far-Eastern Memorial Hospital, New Taipei City 22060, Taiwan.,Department of Nursing, Oriental Institute of Technology, New Taipei City 22060, Taiwan.,Department of Photonics Engineering, Yuan Ze University, Taoyuan City 32003, Taiwan
| | - Tzu-Yu Lin
- Department of Anesthesiology, Far-Eastern Memorial Hospital, New Taipei City 22060, Taiwan.,Department of Mechanical Engineering, Yuan Ze University, Taoyuan City 32003, Taiwan
| | - Ming-Yi Lee
- Division of Cardiovascular Surgery, Cardiovascular Center, Far-Eastern Memorial Hospital, New Taipei City 22060, Taiwan
| | - Cheng-Wei Lu
- Department of Anesthesiology, Far-Eastern Memorial Hospital, New Taipei City 22060, Taiwan.,Department of Mechanical Engineering, Yuan Ze University, Taoyuan City 32003, Taiwan
| | - Ming-Jiuh Wang
- Department of Anesthesiology, National Taiwan University Hospital, Taipei City 100225, Taiwan
| | - Su-Jane Wang
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan City 33303, Taiwan.,School of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| |
Collapse
|
140
|
Savage K, Kingshott D, Gubko A, Thee AW, Burjawi T, Croft K, Sarris J, Stough C. The Relationship between Oxidative Stress and Anxiety in a Healthy Older Population. Exp Aging Res 2021; 47:322-346. [PMID: 33616006 DOI: 10.1080/0361073x.2021.1883966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Background/study context: F2-Isoprostanes are putative markers of oxidative stress, one of the processes associated with biological senescence. Evidence exists for elevated F2-Isoprostanes in chronic conditions including psychiatric disorders. Few studies have examined the relationship between oxidative stress and mood in older healthy samples, to establish the influence on mental health. Given current aging demographics in many nations, management of brain and mental health is crucial for longevity, chronic disease management, and quality of life.Method: We investigated the relationship between F2-Isoprostanes, a marker for oxidative stress, and anxiety and mood in 262 healthy adults aged 60-75 years, using baseline data from the Australian Research Council Longevity Intervention (ARCLI; ANZCTR12611000487910), a 12-month nutraceutical intervention study.Results: Higher F2 levels significantly predicted increased Depression-dejection and Anger-hostility subscale scores from the Profile of Mood States (POMS). Fatigue-inertia subscale was predicted by increased Body Mass Index. Spielberger State-Trait Inventory (STAI) scores were significantly higher in females.Conclusion: While the primary outcome data did not find a definitive relationship between F2 and total mood or general anxiety levels, the sub-scale data adds weight toward growing literature that biological processes such as oxidative stress are in part related to mood. This is a modifiable risk factor contributing to physical and mental wellbeing that are crucial to healthy aging.
Collapse
Affiliation(s)
- Karen Savage
- Centre for Human Psychopharmacology, Swinburne University of Technology, Advanced Technologies Centre, Hawthorn, Australia.,Professorial Unit, the Melbourne Clinic, Department of Psychiatry, Melbourne University, Richmond, Australia
| | - Davy Kingshott
- Centre for Human Psychopharmacology, Swinburne University of Technology, Advanced Technologies Centre, Hawthorn, Australia
| | - Andrew Gubko
- Centre for Human Psychopharmacology, Swinburne University of Technology, Advanced Technologies Centre, Hawthorn, Australia
| | - Alicia Wt Thee
- Centre for Human Psychopharmacology, Swinburne University of Technology, Advanced Technologies Centre, Hawthorn, Australia
| | - Tamer Burjawi
- Centre for Human Psychopharmacology, Swinburne University of Technology, Advanced Technologies Centre, Hawthorn, Australia
| | - Kevin Croft
- School of Biomedical Science, The University of Western Australia, Crawley, Australia
| | - Jerome Sarris
- Professorial Unit, the Melbourne Clinic, Department of Psychiatry, Melbourne University, Richmond, Australia.,NICM Health Research Institute, Western Sydney University, Westmead, Australia
| | - Con Stough
- Centre for Human Psychopharmacology, Swinburne University of Technology, Advanced Technologies Centre, Hawthorn, Australia
| |
Collapse
|
141
|
Yu Q, Dai H, Jiang Y, Zha Y, Zhang J. Sevoflurane alleviates oxygen-glucose deprivation/reoxygenation-induced injury in HT22 cells through regulation of the PI3K/AKT/GSK3β signaling pathway. Exp Ther Med 2021; 21:376. [PMID: 33732349 PMCID: PMC7903476 DOI: 10.3892/etm.2021.9807] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 07/07/2020] [Indexed: 12/30/2022] Open
Abstract
Sevoflurane (Sev), a volatile anesthetic, has been reported to exhibit beneficial effects on different ischemia/reperfusion (I/R)-injured organs. However, the neuroprotective effect of Sev on cerebral I/R injury is poorly understood. In the present study, the effects of Sev on HT22 cells exposed to oxygen-glucose deprivation/reperfusion (OGD/R) injury are investigated. The present study demonstrated that OGD/R suppressed the cell viability and increased lactate dehydrogenase (LDH) release from the cells, and these effects were attenuated by Sev treatment. The results also demonstrated that Sev alleviated OGD/R-induced cell apoptosis via flow cytometry and caspase-3 activity determination. Biochemical analysis results revealed that Sev significantly protected against OGD/R-induced oxidative stress by reducing ROS generation and improving antioxidant defense markers. Western blot analysis demonstrated that Sev reactivated the PI3K/AKT/glycogen synthase kinase-3β (GSK3β) signaling pathway, which was inhibited by OGD/R. In addition, wortmannin, a selective PI3K inhibitor was used to investigate the underlying pathways. Notably, the neuroprotective effect of Sev on apoptosis and reactive oxygen species production was found to be suppressed by wortmannin. Collectively, these results demonstrated that Sev may protect neuronal cells against OGD/R-induced injury through the activation of the PI3K/AKT/GSK3β signaling pathway. The findings from the present study provide a novel insight into understanding the neuroprotective effect of Sev on cerebral I/R injury.
Collapse
Affiliation(s)
- Qiong Yu
- Department of Anesthesia, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Haofei Dai
- Department of Nursing, Huashan Hospital-North, Fudan University, Shanghai 201907, P.R. China
| | - Yinan Jiang
- Department of Anesthesia, Huashan Hospital-North, Fudan University, Shanghai 201907, P.R. China
| | - Yifeng Zha
- Department of Anesthesia, Huashan Hospital-North, Fudan University, Shanghai 201907, P.R. China
| | - Jie Zhang
- Department of Anesthesia, Huashan Hospital-North, Fudan University, Shanghai 201907, P.R. China
| |
Collapse
|
142
|
A review on α-mangostin as a potential multi-target-directed ligand for Alzheimer's disease. Eur J Pharmacol 2021; 897:173950. [PMID: 33607107 DOI: 10.1016/j.ejphar.2021.173950] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 02/03/2021] [Accepted: 02/12/2021] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disease characterized by progressive memory loss, declining language skills and other cognitive disorders. AD has brought great mental and economic burden to patients, families and society. However due to the complexity of AD's pathology, drugs developed for the treatment of AD often fail in clinical or experimental trials. The main problems of current anti-AD drugs are low efficacy due to mono-target method or side effects, especially high hepatotoxicity. To tackle these two main problems, multi-target-directed ligand (MTDL) based on "one molecule, multiple targets" has been studied. MTDLs can regulate multiple biological targets at the same time, so it has shown higher efficacy, better safety. As a natural active small molecule, α-mangostin (α-M) has shown potential multi-factor anti-AD activities in a series of studies, furthermore it also has a certain hepatoprotective effect. The good availability of α-M also provides support for its application in clinical research. In this work, multiple activities of α-M related to AD therapy were reviewed, which included anti-cholinesterase, anti-amyloid-cascade, anti-inflammation, anti-oxidative stress, low toxicity, hepatoprotective effects and drug formulation. It shows that α-M is a promising candidate for the treatment of AD.
Collapse
|
143
|
A Toxic Synergy between Aluminium and Amyloid Beta in Yeast. Int J Mol Sci 2021; 22:ijms22041835. [PMID: 33673244 PMCID: PMC7918211 DOI: 10.3390/ijms22041835] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/31/2021] [Accepted: 02/08/2021] [Indexed: 12/27/2022] Open
Abstract
Alzheimer’s disease (AD), the most prevalent, age-related, neurodegenerative disease, is associated with the accumulation of amyloid beta (Aβ) and oxidative stress. However, the sporadic nature of late-onset AD has suggested that other factors, such as aluminium may be involved. Aluminium (Al3+) is the most ubiquitous neurotoxic metal on earth, extensively bioavailable to humans. Despite this, the link between Al3+ and AD has been debated for decades and remains controversial. Using Saccharomyces cerevisiae as a model organism expressing Aβ42, this study aimed to examine the mechanisms of Al3+ toxicity and its interactions with Aβ42. S. cerevisiae cells producing Aβ42 treated with varying concentrations of Al3+ were examined for cell viability, growth inhibition, and production of reactive oxygen species (ROS). Al3+ caused a significant reduction in cell viability: cell death in yeast producing green fluorescent protein tagged with Aβ42 (GFP–Aβ42) was significantly higher than in cells producing green fluorescent protein (GFP) alone. Additionally, Al3+ greatly inhibited the fermentative growth of yeast producing GFP–Aβ42, which was enhanced by ferric iron (Fe3+), while there was negligible growth inhibition of GFP cells. Al3+- induced ROS levels in yeast expressing native Aβ42 were significantly higher than in empty vector controls. These findings demonstrate Al3+ has a direct, detrimental toxic synergy with Aβ42 that can be influenced by Fe3+, causing increased oxidative stress. Thus, Al3+ should be considered as an important factor, alongside the known characteristic hallmarks of AD, in the development and aetiology of the disease.
Collapse
|
144
|
Malta CP, Barcelos RCS, Rosa HZ, Bürger ME, Bento LW. Effect of cerebral palsy and dental caries on dental plaque index, salivary parameters and oxidative stress in children and adolescents. Eur Arch Paediatr Dent 2021; 22:21-28. [PMID: 32008171 DOI: 10.1007/s40368-020-00509-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 01/14/2020] [Indexed: 12/16/2022]
Abstract
PURPOSE The aim of the present study was to investigate the effect of cerebral palsy and dental caries on dental plaque index, salivary parameters and oxidative stress in children and adolescents. METHODS Seventy children and adolescents aged 2-20 years were divided into four groups: neurotypical controls-inactive caries (NCIC; n = 19); neurotypical controls-active caries (NCAC; n = 16); cerebral palsy-inactive caries (CPIC; n = 19); and cerebral palsy-active caries (CPAC; n = 16). The visible dental plaque index was determined after drying the tooth surfaces and without any mechanical or chemical disclosing methods. Salivary pH and buffer capacity were measured 1 hour after collection using a digital pH meter. Saliva was used to evaluate oxidative status based on the levels of reactive species, lipid peroxidation and non-enzymatic antioxidants (reduced glutathione and vitamin C). RESULTS The CPIC and CPAC groups had lower salivary pH and a higher visible dental plaque index. CP was also associated with an increase in salivary levels of markers of oxidative stress and the modulation of salivary levels of non-enzymatic antioxidants. CONCLUSION Cerebral palsy exerts an influence on the salivary profile, oral health and oxidative stress. The individuals with CP had more acidic saliva and a higher dental plaque index, which were positively correlated with caries activity. CP was associated with high salivary levels of reactive species and lipid peroxidation, demonstrating an imbalance in salivary redox that was particularly associated with caries activity. These factors facilitate the development of oral diseases in individuals with cerebral palsy.
Collapse
Affiliation(s)
- C P Malta
- Graduate Program in Health and Life Sciences, Universidade Franciscana (UFN), 1175 Silva Jardim St, Santa Maria, RS, 97010-491, Brazil
| | - R C S Barcelos
- Graduate Program in Pharmacology, Universidade Federal de Santa Maria (UFSM), 1000 Roraima Ave, Santa Maria, RS, 97105-900, Brazil
| | - H Z Rosa
- Graduate Program in Pharmacology, Universidade Federal de Santa Maria (UFSM), 1000 Roraima Ave, Santa Maria, RS, 97105-900, Brazil
| | - M E Bürger
- Graduate Program in Pharmacology, Universidade Federal de Santa Maria (UFSM), 1000 Roraima Ave, Santa Maria, RS, 97105-900, Brazil
- Graduate Program in Toxicological Biochemistry, Universidade Federal de Santa Maria (UFSM), 1000 Roraima Ave, Santa Maria, RS, 97105-900, Brazil
| | - L W Bento
- Graduate Program in Health and Life Sciences, Universidade Franciscana (UFN), 1175 Silva Jardim St, Santa Maria, RS, 97010-491, Brazil.
| |
Collapse
|
145
|
Dourado LFN, Silva CN, Dos Anjos LC, Mortari MR, Silva-Cunha A, Fialho SL. Ischemia-induced retinal injury is attenuated by Neurovespina, a peptide from the venom of the social wasp Polybia occidentalis. Neuropeptides 2021; 85:102113. [PMID: 33370615 DOI: 10.1016/j.npep.2020.102113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 01/28/2023]
Abstract
Neurovespina is a synthetic peptide modified from Occidentalin-1202, a nine amino acid residue peptide isolated from the venom of the social wasp Polybia occidentalis. Previous studies showed that this peptide has a neuroprotective effect on the central nervous system, but its action on the eye has not been explored. So, the objective of this work was to investigate the neuroprotective effect of Neurovespina on the retina and its angiogenic potential in the chicken chorioallantoic membrane (CAM). Retinal ischemia was induced in rats by acute elevation of intraocular pressure (IOP). Electroretinography (ERG) measurements, histopathological and immunohistochemical analysis, and transmission electronic microscopy (TEM) records were performed to check the neuroprotection effect of Neurovespina in the retina of the animals. The angiogenic activity of the peptide was investigated by CAM assay. The results showed that Neurovespina was able to reduce the effects induced by ischemic injury, preventing the reduction of a- and b-waves in the scotopic ERG. Histopathological and immunohistochemistry assays showed that Neurovespina, mainly at 60 μg/ml, protected all layers of the retina. The CAM assay revealed that the peptide promoted the reduction of CAM vessels. So, Neurovespina was able to protect retinal cells from ischemic insult and has an antiangiogenic effect, which can be considered as a promising neuroprotective agent for intravitreal application.
Collapse
Affiliation(s)
- Lays Fernanda Nunes Dourado
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Campus Pampulha, Av. Antônio Carlos, 6627, Belo Horizonte, MG CEP 31270-901, Brazil
| | - Carolina Nunes Silva
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Campus Pampulha, Av. Antônio Carlos, 6627, Belo Horizonte, MG CEP 31270-901, Brazil
| | - Lilian Carneiro Dos Anjos
- Laboratório de Neurofarmacologia, Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade de Brasília, DF, Brazil
| | - Márcia Renata Mortari
- Laboratório de Neurofarmacologia, Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade de Brasília, DF, Brazil
| | - Armando Silva-Cunha
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Campus Pampulha, Av. Antônio Carlos, 6627, Belo Horizonte, MG CEP 31270-901, Brazil
| | - Silvia Ligório Fialho
- Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Rua Conde Pereira Carneiro, 80, Belo Horizonte, MG CEP 30510-010, Brazil.
| |
Collapse
|
146
|
Drolet J, Buchner-Duby B, Stykel MG, Coackley C, Kang JX, Ma DWL, Ryan SD. Docosahexanoic acid signals through the Nrf2-Nqo1 pathway to maintain redox balance and promote neurite outgrowth. Mol Biol Cell 2021; 32:511-520. [PMID: 33502893 PMCID: PMC8101469 DOI: 10.1091/mbc.e20-09-0599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Evidence suggests that n-3 polyunsaturated fatty acids may act as activators of the Nrf2 antioxidant pathway. The antioxidant response, in turn, promotes neuronal differentiation and neurite outgrowth. Nrf2 has recently been suggested to be a cell intrinsic mediator of docosohexanoic acid (DHA) signaling. In the current study, we assessed whether DHA-mediated axodendritic development was dependent on activation of the Nrf2 pathway and whether Nrf2 protected from agrochemical-induced neuritic retraction. Expression profiling of the DHA-enriched Fat-1 mouse brain relative to wild type showed a significant enrichment of genes associated with neuronal development and neuronal projection and genes associated with the Nrf2-transcriptional pathway. Moreover, we found that primary cortical neurons treated with DHA showed a dose-dependent increase in Nrf2 transcriptional activity and Nrf2-target gene expression. DHA-mediated activation of Nrf2 promoted neurite outgrowth and inhibited oxidative stress-induced neuritic retraction evoked by exposure to agrochemicals. Finally, we provide evidence that this effect is largely dependent on induction of the Nrf2-target gene NAD(P)H: (quinone acceptor) oxidoreductase 1 (NQO1), and that silencing of either Nrf2 or Nqo1 blocks the effects of DHA on the axodendritic compartment. Collectively, these data support a role for the Nrf2-NQO1 pathway in DHA-mediated axodendritic development and protection from agrochemical exposure.
Collapse
Affiliation(s)
- Jennifer Drolet
- Department of Molecular and Cellular Biology, The University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Brodie Buchner-Duby
- Department of Molecular and Cellular Biology, The University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Morgan G Stykel
- Department of Molecular and Cellular Biology, The University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Carla Coackley
- Department of Molecular and Cellular Biology, The University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Jing X Kang
- Laboratory for Lipid Medicine and Technology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129
| | - David W L Ma
- Department of Human Health and Nutritional Sciences, The University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Scott D Ryan
- Department of Molecular and Cellular Biology, The University of Guelph, Guelph, ON N1G 2W1, Canada.,Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA 92121
| |
Collapse
|
147
|
Araujo UC, Krahe TE, Ribeiro-Carvalho A, Gomes RAA, Lotufo BM, Moreira MDFR, de Abreu-Villaça Y, Manhães AC, Filgueiras CC. Forced swimming stress increases natatory activity of lead-exposed mice. Toxicol Res 2021; 37:115-124. [PMID: 33489862 DOI: 10.1007/s43188-020-00045-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/27/2020] [Accepted: 03/26/2020] [Indexed: 12/11/2022] Open
Abstract
Recent evidence points to the relationship between lead toxicity and the function of the hypothalamic-pituitary-adrenal axis, which suggests that lead exposure could influence how an individual cope with stress. Here we test this hypothesis by investigating the behavioral effects of lead exposure in mice during the forced swimming test (FST), a parading in which animals are exposed to a stressful situation and environment. Swiss mice received either 180 ppm or 540 ppm of lead acetate (Pb) in their ad-lib water supply for 60-90 days, starting at postnatal day 30. Control (Ctrl) mice drank tap water. At the end of the exposure period, mice were submitted to a 5-min session of FST or to an open-field session of the same duration. Data from naïve animals showed that corticosterone levels were higher for animals tested in the FST compared to animals tested in the open-field. Blood-lead levels (BLL) in Pb-exposed mice ranged from 14.3 to 106.9 µg/dL. No differences were observed in spontaneous locomotion between Ctrl and Pb-exposed groups in the open-field. However, in the FST, Pb-treated mice displayed higher swimming activity than Ctrl ones and this effect was observed even for animals with BLL higher than 20 µg/dL. Furthermore, significant differences in brain glutathione levels, used as an indicator of led toxicity, were only observed for BLL higher than 40 µg/dL. Overall, these findings suggest that swimming activity in the FST is a good indicator of lead toxicity and confirm our prediction that lead toxicity influences behavioral responses associated to stress.
Collapse
Affiliation(s)
- Ulisses C Araujo
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Centro Biomédico, Universidade Do Estado Do Rio de Janeiro, Avenida Professor Manuel de Abreu 444, 5 andar, Vila Isabel, Rio de Janeiro, RJ 20550-170 Brazil
| | - Thomas E Krahe
- Departamento de Psicologia, Pontifícia Universidade Católica Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Anderson Ribeiro-Carvalho
- Departamento de Ciências, Faculdade de Formação de Professores da, Universidade Do Estado Do Rio de Janeiro, Rua Dr. Francisco Portela 1470-Patronato, São Gonçalo, RJ 24435-005 Brazil
| | - Regina A A Gomes
- Centro de Estudos da Saúde Do Trabalhador E Ecologia Humana, Escola Nacional de Saúde Pública, Fundação Oswaldo Cruz, Rua Leopoldo Bulhões 1480, Manguinhos, Rio de Janeiro, RJ 21040-210 Brazil
| | - Bruna M Lotufo
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Centro Biomédico, Universidade Do Estado Do Rio de Janeiro, Avenida Professor Manuel de Abreu 444, 5 andar, Vila Isabel, Rio de Janeiro, RJ 20550-170 Brazil
| | - Maria de Fátima R Moreira
- Centro de Estudos da Saúde Do Trabalhador E Ecologia Humana, Escola Nacional de Saúde Pública, Fundação Oswaldo Cruz, Rua Leopoldo Bulhões 1480, Manguinhos, Rio de Janeiro, RJ 21040-210 Brazil
| | - Yael de Abreu-Villaça
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Centro Biomédico, Universidade Do Estado Do Rio de Janeiro, Avenida Professor Manuel de Abreu 444, 5 andar, Vila Isabel, Rio de Janeiro, RJ 20550-170 Brazil
| | - Alex C Manhães
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Centro Biomédico, Universidade Do Estado Do Rio de Janeiro, Avenida Professor Manuel de Abreu 444, 5 andar, Vila Isabel, Rio de Janeiro, RJ 20550-170 Brazil
| | - Cláudio C Filgueiras
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Centro Biomédico, Universidade Do Estado Do Rio de Janeiro, Avenida Professor Manuel de Abreu 444, 5 andar, Vila Isabel, Rio de Janeiro, RJ 20550-170 Brazil
| |
Collapse
|
148
|
Vallée A, Vallée JN, Lecarpentier Y. Parkinson's Disease: Potential Actions of Lithium by Targeting the WNT/β-Catenin Pathway, Oxidative Stress, Inflammation and Glutamatergic Pathway. Cells 2021; 10:230. [PMID: 33503974 PMCID: PMC7911116 DOI: 10.3390/cells10020230] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/04/2021] [Accepted: 01/08/2021] [Indexed: 12/13/2022] Open
Abstract
Parkinson's disease (PD) is one of the major neurodegenerative diseases (ND) which presents a progressive neurodegeneration characterized by loss of dopamine in the substantia nigra pars compacta. It is well known that oxidative stress, inflammation and glutamatergic pathway play key roles in the development of PD. However, therapies remain uncertain and research for new treatment is mandatory. This review focuses on the potential effects of lithium, as a potential therapeutic strategy, on PD and some of the presumed mechanisms by which lithium provides its benefit properties. Lithium medication downregulates GSK-3beta, the main inhibitor of the WNT/β-catenin pathway. The stimulation of the WNT/β-catenin could be associated with the control of oxidative stress, inflammation, and glutamatergic pathway. Future prospective clinical trials could focus on lithium and its different and multiple interactions in PD.
Collapse
Affiliation(s)
- Alexandre Vallée
- Department of Clinical Research and Innovation (DRCI), Hôpital Foch, 92150 Suresnes, France
| | - Jean-Noël Vallée
- Centre Hospitalier Universitaire (CHU) Amiens Picardie, Université Picardie Jules Verne (UPJV), 80054 Amiens, France;
- Laboratoire de Mathématiques et Applications (LMA), UMR CNRS 7348, Université de Poitiers, 86021 Poitiers, France
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l’Est Francilien (GHEF), 6-8 rue Saint-Fiacre, 77100 Meaux, France;
| |
Collapse
|
149
|
Zhang J, Liu R, Zhang D, Zhang Z, Zhu J, Xu L, Guo Y. Neuroprotective effects of maize tetrapeptide-anchored gold nanoparticles in Alzheimer's disease. Colloids Surf B Biointerfaces 2021; 200:111584. [PMID: 33508658 DOI: 10.1016/j.colsurfb.2021.111584] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/14/2021] [Accepted: 01/16/2021] [Indexed: 12/18/2022]
Abstract
Nanopeptide assembled from peptide-anchored nanoparticles possess an enormous research potential in the field of cellular medicine and disease treatment. The aim of this study was to explore the neuroprotective effects of maize tetrapeptide anchored gold nanoparticles against l-glutamic acid-induced PC12 cell apoptosis and a murine Alzheimer's disease model induced by aluminum chloride and d-galactose. The results revealed that the nanopeptide antioxidant inhibited intracellular ROS accumulation and promoted cell differentiation than that of maize bioactive tetrapeptide. Compared with untreated Alzheimer's disease model mice, nanopeptide administration shortened the escape latency time in a water maze test and improved the movements in the autonomic activity test. After 16 days of nanopeptide administration, the central cholinergic system function of acetylcholine and cholineacetyltransferase were enhanced, and the level of acetylcholinesterase was reduced. It also increased superoxide dismutase and glutathione peroxidase activity in sera and hypothalami. Moreover, nanopeptide treatment upregulated cerebral nuclear factor erythroid 2-related factor 2 and heme-oxygenase-1 and downregulated kelch-like ECH-associated protein 1 relative to untreated Alzheimer's disease model mice. Thus, the novel nanopeptide is expected to be used as the neuroprotective agent to prevent Alzheimer's disease.
Collapse
Affiliation(s)
- Junrong Zhang
- Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, PR China
| | - Rui Liu
- China-Japan Union Hospital of Jilin University, Changchun, 130033, PR China
| | - Dechen Zhang
- Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, PR China
| | - Zhixian Zhang
- Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, PR China
| | - Jinming Zhu
- China-Japan Union Hospital of Jilin University, Changchun, 130033, PR China
| | - Li Xu
- Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, PR China
| | - Yi Guo
- Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, PR China.
| |
Collapse
|
150
|
Campora M, Francesconi V, Schenone S, Tasso B, Tonelli M. Journey on Naphthoquinone and Anthraquinone Derivatives: New Insights in Alzheimer's Disease. Pharmaceuticals (Basel) 2021; 14:33. [PMID: 33466332 PMCID: PMC7824805 DOI: 10.3390/ph14010033] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/27/2020] [Accepted: 12/30/2020] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease that is characterized by memory loss, cognitive impairment, and functional decline leading to dementia and death. AD imposes neuronal death by the intricate interplay of different neurochemical factors, which continue to inspire the medicinal chemist as molecular targets for the development of new agents for the treatment of AD with diverse mechanisms of action, but also depict a more complex AD scenario. Within the wide variety of reported molecules, this review summarizes and offers a global overview of recent advancements on naphthoquinone (NQ) and anthraquinone (AQ) derivatives whose more relevant chemical features and structure-activity relationship studies will be discussed with a view to providing the perspective for the design of viable drugs for the treatment of AD. In particular, cholinesterases (ChEs), β-amyloid (Aβ) and tau proteins have been identified as key targets of these classes of compounds, where the NQ or AQ scaffold may contribute to the biological effect against AD as main unit or significant substructure. The multitarget directed ligand (MTDL) strategy will be described, as a chance for these molecules to exhibit significant potential on the road to therapeutics for AD.
Collapse
Affiliation(s)
| | | | | | | | - Michele Tonelli
- Dipartimento di Farmacia, Università degli Studi di Genova, Viale Benedetto XV, 3, 16132 Genova, Italy; (M.C.); (V.F.); (S.S.); (B.T.)
| |
Collapse
|