101
|
Długosz E, Basałaj K, Zawistowska-Deniziak A. Cytokine production and signalling in human THP-1 macrophages is dependent on Toxocara canis glycans. Parasitol Res 2019; 118:2925-2933. [PMID: 31396715 PMCID: PMC6754358 DOI: 10.1007/s00436-019-06405-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 07/19/2019] [Indexed: 12/11/2022]
Abstract
The effect of Toxocara canis antigens on cytokine production by human THP-1 macrophages was studied in vitro. Toxocara Excretory–Secretory products (TES) and recombinant mucins (Tc-MUC-2, Tc-MUC-3, Tc-MUC-4, and Tc-MUC-5) as well as deglycosylated forms of these antigens were used in the study. TES products stimulated macrophages to produce the innate proinflammatory IL-1β, IL-6, and TNF-α cytokines regardless of the presence of glycans. Recombinant mucins induced glycan-dependent cytokine production. Sugar moieties led to at least 3-fold higher production of regulatory IL-10 as well as proinflammatory cytokines. The presence of glycans on mucins also affected the downstream signalling pathways in stimulated cells. The most prominent difference was noted in AKT and AMPK kinase activation. AKT phosphorylation was observed in cells stimulated with glycosylated mucins, whereas treatment with deglycosylated antigens led to AMPK phosphorylation. MAP kinase family members such as JNK and p38 and c-Jun transcription factor were phosphorylated in both cases what suggests that toll-like receptor signalling may be involved in mucin-treated macrophages. This pathway is however modified by other signalling molecules as only mucins containing intact sugars significantly induced the production of cytokines.
Collapse
Affiliation(s)
- Ewa Długosz
- Division of Parasitology, Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Ciszewskiego 8, 02-786, Warsaw, Poland.
| | - Katarzyna Basałaj
- W. Stefański Institute of Parasitology, Twarda 51/55, 00-818, Warsaw, Poland
| | | |
Collapse
|
102
|
Downregulation of FOXO3a by DNMT1 promotes breast cancer stem cell properties and tumorigenesis. Cell Death Differ 2019; 27:966-983. [PMID: 31296961 PMCID: PMC7206060 DOI: 10.1038/s41418-019-0389-3] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 06/15/2019] [Accepted: 06/24/2019] [Indexed: 12/20/2022] Open
Abstract
Breast cancer stem cells (BCSCs) are tumor initiating cells that can self-renew and are highly tumorigenic and chemoresistant. Therefore, the identification of factors critical for BCSC function is vital for the development of therapies. Here, we report that DNMT1-mediated FOXO3a promoter hypermethylation leads to downregulation of FOXO3a expression in breast cancer. FOXO3a is functionally related to the inhibition of FOXM1/SOX2 signaling and to the consequent suppression of BCSCs properties and tumorigenicity. Moreover, we found that SOX2 directly transactivates DNMT1 expression and thereby alters the methylation landscape, which in turn feedback inhibits FOXO3a expression. Inhibition of DNMT activity suppressed tumor growth via regulation of FOXO3a/FOXM1/SOX2 signaling in breast cancer. Clinically, we observed a significant inverse correlation between FOXO3a and FOXM1/SOX2/DNMT1 expression levels, and loss of FOXO3a expression or increased expression of FOXM1, SOX2, and DNMT1 predicted poor prognosis in breast cancer. Collectively, our findings suggest an important role of the DNMT1/FOXO3a/FOXM1/SOX2 pathway in regulating BCSCs properties, suggesting potential therapeutic targets for breast cancer.
Collapse
|
103
|
Albooshoke SN, Bakhtiarizadeh MR. Divergent gene expression through PI3K/akt signalling pathway cause different models of hypertrophy growth in chicken. ITALIAN JOURNAL OF ANIMAL SCIENCE 2019. [DOI: 10.1080/1828051x.2019.1634498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- S. N. Albooshoke
- Department of Animal Science, Khuzestan Agricultural and Natural Resources, Research and Education Center, AREEO, Ahwaz, Iran
| | - M. R. Bakhtiarizadeh
- Department of Animal Science, College of Aburaihan, Iran University of Tehran, Tehran, Iran
| |
Collapse
|
104
|
Roles of forkhead box O (FoxO) transcription factors in neurodegenerative diseases: A panoramic view. Prog Neurobiol 2019; 181:101645. [PMID: 31229499 DOI: 10.1016/j.pneurobio.2019.101645] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 06/03/2019] [Accepted: 06/18/2019] [Indexed: 12/11/2022]
Abstract
Neurodegenerative diseases (NDDs), which are among the most important aging-related diseases, are typically characterized by neuronal damage and a progressive impairment in neurological function during aging. Few effective therapeutic targets for NDDs have been revealed; thus, an understanding of the pathogenesis of NDDs is important. Forkhead box O (FoxO) transcription factors have been implicated in the mechanisms regulating aging and longevity. The functions of FoxOs are regulated by diverse post-translational modifications (e.g., phosphorylation, acetylation, ubiquitination, methylation and glycosylation). FoxOs exert both detrimental and protective effects on NDDs. Therefore, an understanding of the precise function of FoxOs in NDDs will be helpful for developing appropriate treatment strategies. In this review, we first introduce the post-translational modifications of FoxOs. Next, the regulation of FoxO expression and post-translational modifications in the central nervous system (CNS) is described. Afterwards, we analyze and address the important roles of FoxOs in NDDs. Finally, novel potential directions of future FoxO research in NDDs are discussed. This review recapitulates essential facts and questions about the promise of FoxOs in treating NDDs, and it will likely be important for the design of further basic studies and to realize the potential for FoxOs as therapeutic targets in NDDs.
Collapse
|
105
|
Kuttikrishnan S, Siveen KS, Prabhu KS, Khan AQ, Ahmed EI, Akhtar S, Ali TA, Merhi M, Dermime S, Steinhoff M, Uddin S. Curcumin Induces Apoptotic Cell Death via Inhibition of PI3-Kinase/AKT Pathway in B-Precursor Acute Lymphoblastic Leukemia. Front Oncol 2019; 9:484. [PMID: 31275848 PMCID: PMC6593070 DOI: 10.3389/fonc.2019.00484] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/22/2019] [Indexed: 12/20/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is a significant cancer of children resulting from the clonal proliferation of lymphoid precursors with arrested maturation. Although chemotherapeutic approaches have been achieving successful remission for the majority of cases of childhood ALL, development of resistance to chemotherapy has been observed. Thus, new therapeutic approaches are required to improve patient's prognosis. Therefore, we investigated the anticancer potential of curcumin in ALL. We tested a panel of B-precursor ALL (B-Pre-ALL) cell lines with various translocations after treatment with different doses of curcumin. Curcumin suppresses the viability in a concentration-dependent manner in 697, REH, SupB15, and RS4;11 cells (doses from 0 to 80 μM). Curcumin induces apoptosis in B-Pre-ALL cell lines via activation of caspase-8 and truncation of BID. Curcumin treatment increased the ratio of Bax/Bcl-2 and resulted in a leaky mitochondrial membrane that led to the discharge of cytochrome c from the mitochondria to the cytoplasm, the activation of caspase 3 and the cleavage of PARP. Curcumin treatment of B-Pre-ALL cell lines induced a dephosphorylation of the constitutive phosphorylated AKT/PKB and a down-regulation of the expression of cIAP1, and XIAP. Moreover, curcumin mediates its anticancer activity by the generation of reactive oxygen species. Finally, the suboptimal doses of curcumin potentiated the anticancer activity of cisplatin. Altogether, these results suggest an important therapeutic role of curcumin, acting as a growth suppressor of B-Pre-ALL by apoptosis via inactivation of AKT/PKB and down-regulation of IAPs and activation of intrinsic apoptotic pathway via generation of Reactive Oxygen Species (ROS). Our interesting findings raise the possibility of considering curcumin as a potential therapeutic agent for the treatment of B-Pre-ALL.
Collapse
Affiliation(s)
- Shilpa Kuttikrishnan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Kodappully S. Siveen
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Kirti S. Prabhu
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Abdul Quaiyoom Khan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Eiman I. Ahmed
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Sabah Akhtar
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Tayyiba A. Ali
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Maysaloun Merhi
- National Centre for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Said Dermime
- National Centre for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Martin Steinhoff
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Department of Dermatology Venereology, Hamad Medical Corporation, Doha, Qatar
- Weill Cornell-Medicine, Doha, Qatar
- Department of Dermatology, Weill Cornell University, New York, NY, United States
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
106
|
Henriques V, Machado S, Link W, Ferreira BI. Monitoring the Transcriptional Activity of FOXO Transcription Factors by Analyzing their Target Genes. Methods Mol Biol 2019; 1890:103-113. [PMID: 30414148 DOI: 10.1007/978-1-4939-8900-3_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
FOXO proteins represent a subfamily of transcription factors that belong to the forkhead family. The study of FOXO target genes can be performed using Real-Time PCR (RT-PCR). The RT-PCR is a sensitive method that allows the detection and quantification of minute amounts of nucleic acids. In RT-PCR the accumulation of the amplicon is detected and measured as the reaction progresses. Here, we describe the application of RT-PCR technique to monitor the transcriptional activity of FOXO transcription factors.
Collapse
Affiliation(s)
- Vanessa Henriques
- Centre for Biomedical Research (CBMR), University of Algarve, Faro, Portugal
| | - Susana Machado
- Centre for Biomedical Research (CBMR), University of Algarve, Faro, Portugal
| | - Wolfgang Link
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid, Spain
| | - Bibiana I Ferreira
- Centre for Biomedical Research (CBMR), University of Algarve, Faro, Portugal. .,Regenerative Medicine Program, Department of Biomedical Sciences and Medicine, University of Algarve, Faro, Portugal. .,Algarve Biomedical Center (ABC), University of Algarve, Faro, Portugal.
| |
Collapse
|
107
|
McCaig C, Ataliotis P, Shtaya A, Omar AS, Green AR, Kind CN, Pereira AC, Naray-Fejes-Toth A, Fejes-Toth G, Yáñez-Muñoz RJ, Murray JT, Hainsworth AH. Induction of the cell survival kinase Sgk1: A possible novel mechanism for α-phenyl-N-tert-butyl nitrone in experimental stroke. J Cereb Blood Flow Metab 2019; 39:1111-1121. [PMID: 29260627 PMCID: PMC6545623 DOI: 10.1177/0271678x17746980] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 11/03/2017] [Accepted: 11/06/2017] [Indexed: 11/19/2022]
Abstract
Nitrones (e.g. α-phenyl-N-tert-butyl nitrone; PBN) are cerebroprotective in experimental stroke. Free radical trapping is their proposed mechanism. As PBN has low radical trapping potency, we tested Sgk1 induction as another possible mechanism. PBN was injected (100 mg/kg, i.p.) into adult male rats and mice. Sgk1 was quantified in cerebral tissue by microarray, quantitative RT-PCR and western analyses. Sgk1+/+ and Sgk1-/- mice were randomized to receive PBN or saline immediately following transient (60 min) occlusion of the middle cerebral artery. Neurological deficit was measured at 24 h and 48 h and infarct volume at 48 h post-occlusion. Following systemic PBN administration, rapid induction of Sgk1 was detected by microarray (at 4 h) and confirmed by RT-PCR and phosphorylation of the Sgk1-specific substrate NDRG1 (at 6 h). PBN-treated Sgk1+/+ mice had lower neurological deficit ( p < 0.01) and infarct volume ( p < 0.01) than saline-treated Sgk1+/+ mice. PBN-treated Sgk1-/- mice did not differ from saline-treated Sgk1-/- mice. Saline-treated Sgk1-/- and Sgk1+/+ mice did not differ. Brain Sgk3:Sgk1 mRNA ratio was 1.0:10.6 in Sgk1+/+ mice. Sgk3 was not augmented in Sgk1-/- mice. We conclude that acute systemic treatment with PBN induces Sgk1 in brain tissue. Sgk1 may play a part in PBN-dependent actions in acute brain ischemia.
Collapse
Affiliation(s)
- Catherine McCaig
- Molecular and Clinical Sciences Research
Institute, St Georges University of London, London, UK
| | - Paris Ataliotis
- Institute for Medical & Biomedical
Education, St George’s University of London, London, UK
| | - Anan Shtaya
- Molecular and Clinical Sciences Research
Institute, St Georges University of London, London, UK
| | - Ayan S Omar
- Molecular and Clinical Sciences Research
Institute, St Georges University of London, London, UK
| | - A Richard Green
- School of Life Sciences, University of
Nottingham, Nottingham, UK
| | - Clive N Kind
- Leicester School of Pharmacy,
De
Montfort University, Leicester, UK
| | - Anthony C Pereira
- Molecular and Clinical Sciences Research
Institute, St Georges University of London, London, UK
- Department of Neurology, St George’s
University Hospitals NHS Foundation Trust, London, UK
| | - Aniko Naray-Fejes-Toth
- Molecular & Systems Biology
Department, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Geza Fejes-Toth
- Molecular & Systems Biology
Department, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Rafael J Yáñez-Muñoz
- AGCTlab.org, Centre for Biomedical
Sciences, School of Biological Sciences,
Royal
Holloway, University of London, Egham,
Surrey, UK
| | - James T Murray
- School of Biochemistry and Immunology,
Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2,
Ireland
| | - Atticus H Hainsworth
- Molecular and Clinical Sciences Research
Institute, St Georges University of London, London, UK
- Department of Neurology, St George’s
University Hospitals NHS Foundation Trust, London, UK
| |
Collapse
|
108
|
Zhao R, Li Y, Gorantla S, Poluektova LY, Lin H, Gao F, Wang H, Zhao J, Zheng JC, Huang Y. Small molecule ONC201 inhibits HIV-1 replication in macrophages via FOXO3a and TRAIL. Antiviral Res 2019; 168:134-145. [PMID: 31158413 DOI: 10.1016/j.antiviral.2019.05.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 01/01/2023]
Abstract
Despite the success of antiretroviral therapy (ART), eradication of HIV-1 from brain reservoirs remains elusive. HIV-1 brain reservoirs include perivascular macrophages that are behind the blood-brain barrier and difficult to access by ART. Macrophages express transcription factor FOXO3a and the TNF superfamily cytokine TRAIL, which are known to target HIV-1-infected macrophages for viral inhibition. ONC201 is a novel and potent FOXO3a activator capable of inducing TRAIL. It can cross the blood-brain barrier, and has shown antitumor effects in clinical trials. We hypothesized that activation of FOXO3a/TRAIL by ONC201 will inhibit HIV-1 replication in macrophages. Using primary human monocyte-derived macrophages, we demonstrated that ONC201 dose-dependently decreased replication levels of both HIV-1 laboratory strain and primary strains as determined by HIV-1 reverse transcriptase activity assay. Consistent with data on HIV-1 replication, ONC201 also reduced intracellular and extracellular p24, viral RNA, and integrated HIV-1 DNA in infected macrophages. Blocking TRAIL or knockdown of FOXO3a with siRNA reversed ONC201-mediated HIV-1 suppression, suggesting that ONC201 inhibits HIV-1 through FOXO3a and TRAIL. The anti-HIV-1 effect of ONC201 was further validated in vivo in NOD/scid-IL-2Rgcnull mice. After intracranial injection of HIV-1-infected macrophages into the basal ganglia, we treated the mice daily with ONC201 through intraperitoneal injection for six days. ONC201 significantly decreased p24 levels in both the macrophages and the brain tissues, suggesting that ONC201 suppresses HIV-1 in vivo. Therefore, ONC201 can be a promising drug candidate to combat persistent HIV-1 infection in the brain.
Collapse
Affiliation(s)
- Runze Zhao
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, United States
| | - Yuju Li
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, United States; Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Santhi Gorantla
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, United States
| | - Larisa Y Poluektova
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, United States
| | - Hai Lin
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, United States; Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengtong Gao
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, United States
| | - Hongyun Wang
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, United States
| | - Jeffrey Zhao
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, United States
| | - Jialin C Zheng
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, United States; Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China.
| | - Yunlong Huang
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, United States; Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
109
|
He J, Qi D, Tang XM, Deng W, Deng XY, Zhao Y, Wang DX. Rosiglitazone promotes ENaC-mediated alveolar fluid clearance in acute lung injury through the PPARγ/SGK1 signaling pathway. Cell Mol Biol Lett 2019; 24:35. [PMID: 31160894 PMCID: PMC6540532 DOI: 10.1186/s11658-019-0154-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 04/29/2019] [Indexed: 02/06/2023] Open
Abstract
Background Pulmonary edema is one of the pathological characteristics of acute respiratory distress syndrome (ARDS). The epithelial sodium channel (ENaC) is thought to be the rate-limiting factor for alveolar fluid clearance (AFC) during pulmonary edema. The peroxisome proliferator-activated receptor γ (PPARγ) agonist rosiglitazone was shown to stimulate ENaC-mediated salt absorption in the kidney. However, its role in the lung remains unclear. Here, we investigated the role of the PPARγ agonist in the lung to find out whether it can regulate AFC during acute lung injury (ALI). We also attempted to elucidate the mechanism for this. Methods Our ALI model was established through intratracheal instillation of lipopolysaccharide (LPS) in C57BL/6 J mice. The mice were randomly divided into 4 groups of 10. The control group underwent a sham operation and received an equal quantity of saline. The three experimental groups underwent intratracheal instillation of 5 mg/kg LPS, followed by intraperitoneal injection of 4 mg/kg rosiglitazone, 4 mg/kg rosiglitazone plus 1 mg/kg GW9662, or only equal quantity of saline. The histological morphology of the lung, the levels of TNF-α and IL-1β in the bronchoalveolar lavage fluid (BALF), the level of AFC, and the expressions of αENaC and serum and glucocorticoid-induced kinase-1 (SGK1) were determined. Type 2 alveolar (AT II) cells were incubated with rosiglitazone (15 μM) with or without GW9662 (10 μM). The expressions of αENaC and SGK1 were determined 24 h later. Results A mouse model of ALI was successfully established. Rosiglitazone significantly ameliorated the lung injury, decreasing the TNF-α and IL-1β levels in the BALF, enhancing AFC, and promoting the expressions of αENaC and SGK1 in ALI mice, which were abolished by the specific PPARγ blocker GW9662. In vitro, rosiglitazone increased the expressions of αENaC and SGK1. This increase was prevented by GW9662. Conclusions Rosiglitazone ameliorated the lung injury and promoted ENaC-mediated AFC via a PPARγ/SGK1-dependent signaling pathway, alleviating pulmonary edema in a mouse model of ALI.
Collapse
Affiliation(s)
- Jing He
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, 400010 China
| | - Di Qi
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, 400010 China
| | - Xu-Mao Tang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, 400010 China
| | - Wang Deng
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, 400010 China
| | - Xin-Yu Deng
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, 400010 China
| | - Yan Zhao
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, 400010 China
| | - Dao-Xin Wang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, 400010 China
| |
Collapse
|
110
|
Zhu L, Dai LM, Shen H, Gu PQ, Zheng K, Liu YJ, Zhang L, Cheng JF. Qing Chang Hua Shi granule ameliorate inflammation in experimental rats and cell model of ulcerative colitis through MEK/ERK signaling pathway. Biomed Pharmacother 2019; 116:108967. [PMID: 31102937 DOI: 10.1016/j.biopha.2019.108967] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 05/04/2019] [Accepted: 05/08/2019] [Indexed: 01/16/2023] Open
Abstract
Ulcerative colitis (UC), a bowel disease with significant morbidity, is associated with inflammation. In this study, the effect of Qingchang Huashi granule (QCHS) on UC and its underlying mechanisms were explored using both animal and cell culture experiments. A rat UC model was induced with trinitro-benzene-sulfonic acid (TNBS), concentrations of the cytokines IL-1α, IL-6, IL-8, IL-1β, and TNF-α were significantly up-regulated and the concentrations of IL-4, IL-10, and IL-13 were significantly down-regulated compared with the control group (P < 0.05). In contrast, the QCHS and salicylazosulfapyridine (SASP) groups reversed these modulations (P < 0.05). A UC cell model in HT-29 cells was generated using TNF-α combined with lipopolysaccharide treatment. Cells treated with QCHS were used to investigate the possible mechanisms. The expression of apoptosis-related proteins, including Bax/Bcl-2, caspase-3, caspase-9, Fas/Fas-L, and Rafl in the QCHS and SASP groups, were significantly lower than that in the control group in both animal and cell experiments (P < 0.05). In addition, the in vitro results indicate changes in these indicators mediate the MEK/ERK signaling pathways via SGK1. Our results suggested that QCHS could be beneficial in preventing UC progression as an alternative drug for UC treatment.
Collapse
Affiliation(s)
- Lei Zhu
- Affiliated Hospital of Nanjing University of TCM, JiangSu Province Hospital of TCM, Nan Jing, 210029, Jiangsu Province, China
| | - Lu-Ming Dai
- Affiliated Hospital of Nanjing University of TCM, JiangSu Province Hospital of TCM, Nan Jing, 210029, Jiangsu Province, China
| | - Hong Shen
- Affiliated Hospital of Nanjing University of TCM, JiangSu Province Hospital of TCM, Nan Jing, 210029, Jiangsu Province, China.
| | - Pei-Qing Gu
- Affiliated Hospital of Nanjing University of TCM, JiangSu Province Hospital of TCM, Nan Jing, 210029, Jiangsu Province, China
| | - Kai Zheng
- Affiliated Hospital of Nanjing University of TCM, JiangSu Province Hospital of TCM, Nan Jing, 210029, Jiangsu Province, China
| | - Ya-Jun Liu
- Affiliated Hospital of Nanjing University of TCM, JiangSu Province Hospital of TCM, Nan Jing, 210029, Jiangsu Province, China
| | - Lu Zhang
- Affiliated Hospital of Nanjing University of TCM, JiangSu Province Hospital of TCM, Nan Jing, 210029, Jiangsu Province, China
| | - Jia-Fei Cheng
- Affiliated Hospital of Nanjing University of TCM, JiangSu Province Hospital of TCM, Nan Jing, 210029, Jiangsu Province, China
| |
Collapse
|
111
|
Li C, Miao X, Li F, Adhikari BK, Liu Y, Sun J, Zhang R, Cai L, Liu Q, Wang Y. Curcuminoids: Implication for inflammation and oxidative stress in cardiovascular diseases. Phytother Res 2019; 33:1302-1317. [PMID: 30834628 DOI: 10.1002/ptr.6324] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/28/2018] [Accepted: 01/31/2019] [Indexed: 01/04/2023]
Abstract
It has been extensively verified that inflammation and oxidative stress play important roles in the pathogenesis of cardiovascular diseases (CVDs). Curcuminoids, from the plant Curcuma longa, have three major active ingredients, which include curcumin (curcumin I), demethoxycurcumin, and bisdemethoxycurcumin. Curcuminoids have been used in traditional medicine for CVDs' management and other comorbidities for centuries. Numerous studies had delineated their anti-inflammatory, antioxidative, and other medicinally relevant properties. Animal experiments and clinical trials have also demonstrated that turmeric and curcuminoids can effectively reduce atherosclerosis, cardiac hypertrophy, hypertension, ischemia/reperfusion injury, and diabetic cardiovascular complications. In this review, we introduce and summarize curcuminoids' molecular and biological significance, while focusing on their mechanistic anti-inflammatory/antioxidative involvements in CVDs and preventive effects against CVDs, and, finally, discuss relevant clinical applications.
Collapse
Affiliation(s)
- Cheng Li
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xiao Miao
- Department of ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Fengsheng Li
- General Hospital of the PLA Rocket Force, Beijing, China
| | - Binay Kumar Adhikari
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yucheng Liu
- A.T. Still University School of Osteopathic Medicine in Arizona, Mesa, AZ, USA
| | - Jian Sun
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Rong Zhang
- General Hospital of the PLA Rocket Force, Beijing, China
| | - Lu Cai
- Pediatric Research Institute, Department of Pediatrics, Radiation Oncology, Pharmacology & Toxicology, The University of Louisville, Louisville, KY, USA
| | - Quan Liu
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yonggang Wang
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
112
|
Chapman NM, Shrestha S, Chi H. Metabolism in Immune Cell Differentiation and Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1011:1-85. [PMID: 28875486 DOI: 10.1007/978-94-024-1170-6_1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The immune system is a central determinant of organismal health. Functional immune responses require quiescent immune cells to rapidly grow, proliferate, and acquire effector functions when they sense infectious agents or other insults. Specialized metabolic programs are critical regulators of immune responses, and alterations in immune metabolism can cause immunological disorders. There has thus been growing interest in understanding how metabolic processes control immune cell functions under normal and pathophysiological conditions. In this chapter, we summarize how metabolic programs are tuned and what the physiological consequences of metabolic reprogramming are as they relate to immune cell homeostasis, differentiation, and function.
Collapse
Affiliation(s)
- Nicole M Chapman
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Sharad Shrestha
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Hongbo Chi
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA.
| |
Collapse
|
113
|
Gleason CE, Oses-Prieto JA, Li KH, Saha B, Situ G, Burlingame AL, Pearce D. Phosphorylation at distinct subcellular locations underlies specificity in mTORC2-mediated activation of SGK1 and Akt. J Cell Sci 2019; 132:jcs.224931. [PMID: 30837283 DOI: 10.1242/jcs.224931] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 02/21/2019] [Indexed: 02/04/2023] Open
Abstract
mTORC2 lies at the intersection of signaling pathways that control metabolism and ion transport through phosphorylation of the AGC-family kinases, the Akt and SGK1 proteins. How mTORC2 targets these functionally distinct downstream effectors in a context-specific manner is not known. Here, we show that the salt- and blood pressure-regulatory hormone, angiotensin II (AngII) stimulates selective mTORC2-dependent phosphorylation of SGK1 (S422) but not Akt (S473 and equivalent sites). Conventional PKC (cPKC), a critical mediator of the angiotensin type I receptor (AT1R, also known as AGTR1) signaling, regulates the subcellular localization of SIN1 (also known as MAPKAP1) and SGK1. Inhibition of cPKC catalytic activity disturbs SIN1 and SGK1 subcellular localization, re-localizing them from the nucleus and a perinuclear compartment to the plasma membrane in advance of hormonal stimulation. Surprisingly, pre-targeting of SIN1 and SGK1 to the plasma membrane prevents SGK1 S422 but not Akt S473 phosphorylation. Additionally, we identify three sites on SIN1 (S128, S315 and S356) that are phosphorylated in response to cPKC activation. Collectively, these data demonstrate that SGK1 activation occurs at a distinct subcellular compartment from that of Akt and suggests a mechanism for the selective activation of these functionally distinct mTORC2 targets through subcellular partitioning of mTORC2 activity.
Collapse
Affiliation(s)
- Catherine E Gleason
- Department of Medicine, Division of Nephrology, UCSF, San Francisco, CA 94143, USA
| | - Juan A Oses-Prieto
- Departments of Chemistry and Pharmaceutical Chemistry, UCSF, San Francisco, CA 94143, USA
| | - Kathy H Li
- Departments of Chemistry and Pharmaceutical Chemistry, UCSF, San Francisco, CA 94143, USA
| | - Bidisha Saha
- Department of Medicine, Division of Nephrology, UCSF, San Francisco, CA 94143, USA
| | - Gavin Situ
- Department of Medicine, Division of Nephrology, UCSF, San Francisco, CA 94143, USA
| | - Alma L Burlingame
- Departments of Chemistry and Pharmaceutical Chemistry, UCSF, San Francisco, CA 94143, USA
| | - David Pearce
- Department of Medicine, Division of Nephrology, UCSF, San Francisco, CA 94143, USA
| |
Collapse
|
114
|
Li L, Kang H, Zhang Q, D'Agati VD, Al-Awqati Q, Lin F. FoxO3 activation in hypoxic tubules prevents chronic kidney disease. J Clin Invest 2019; 129:2374-2389. [PMID: 30912765 DOI: 10.1172/jci122256] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Acute kidney injury (AKI) can lead to chronic kidney disease (CKD) if injury is severe and/or repair is incomplete. However, the pathogenesis of CKD following renal ischemic injury is not fully understood. Capillary rarefaction and tubular hypoxia are common findings during the AKI to CKD transition. We investigated the tubular stress response to hypoxia and demonstrated that a stress responsive transcription factor, FoxO3, was regulated by prolyl hydroxylase. Hypoxia inhibited FoxO3 prolyl hydroxylation and FoxO3 degradation, thus leading to FoxO3 accumulation and activation in tubular cells. Hypoxia-activated Hif-1α contributed to FoxO3 activation and functioned to protect kidneys, as tubular deletion of Hif-1α decreased hypoxia-induced FoxO3 activation, and resulted in more severe tubular injury and interstitial fibrosis following ischemic injury. Strikingly, tubular deletion of FoxO3 during the AKI to CKD transition aggravated renal structural and functional damage leading to a more profound CKD phenotype. We showed that tubular deletion of FoxO3 resulted in decreased autophagic response and increased oxidative injury, which may explain renal protection by FoxO3. Our study indicates that in the hypoxic kidney, stress responsive transcription factors can be activated for adaptions to counteract hypoxic insults, thus attenuating CKD development.
Collapse
Affiliation(s)
- Ling Li
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Huimin Kang
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA.,Department of Pediatrics, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Qing Zhang
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | | | - Qais Al-Awqati
- Department of Internal Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Fangming Lin
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| |
Collapse
|
115
|
Grossi V, Fasano C, Celestini V, Lepore Signorile M, Sanese P, Simone C. Chasing the FOXO3: Insights into Its New Mitochondrial Lair in Colorectal Cancer Landscape. Cancers (Basel) 2019; 11:414. [PMID: 30909600 PMCID: PMC6468785 DOI: 10.3390/cancers11030414] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) poses a formidable challenge in terms of molecular heterogeneity, as it involves a variety of cancer-related pathways and molecular changes unique to an individual's tumor. On the other hand, recent advances in DNA sequencing technologies provide an unprecedented capacity to comprehensively identify the genetic alterations resulting in tumorigenesis, raising the hope that new therapeutic approaches based on molecularly targeted drugs may prevent the occurrence of chemoresistance. Regulation of the transcription factor FOXO3a in response to extracellular cues plays a fundamental role in cellular homeostasis, being part of the molecular machinery that drives cells towards survival or death. Indeed, FOXO3a is controlled by a range of external stimuli, which not only influence its transcriptional activity, but also affect its subcellular localization. These regulation mechanisms are mediated by cancer-related signaling pathways that eventually drive changes in FOXO3a post-translational modifications (e.g., phosphorylation). Recent results showed that FOXO3a is imported into the mitochondria in tumor cells and tissues subjected to metabolic stress and cancer therapeutics, where it induces expression of the mitochondrial genome to support mitochondrial metabolism and cell survival. The current review discusses the potential clinical relevance of multidrug therapies that drive cancer cell fate by regulating critical pathways converging on FOXO3a.
Collapse
Affiliation(s)
- Valentina Grossi
- Medical Genetics, National Institute for Gastroenterology, IRCCS 'S. de Bellis', Via Turi, 27, Castellana Grotte, 70013 Bari, Italy.
| | - Candida Fasano
- Medical Genetics, National Institute for Gastroenterology, IRCCS 'S. de Bellis', Via Turi, 27, Castellana Grotte, 70013 Bari, Italy.
| | - Valentina Celestini
- Division of Medical Genetics, Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari Aldo Moro, Piazza G. Cesare, 11, 70124 Bari, Italy.
| | - Martina Lepore Signorile
- Medical Genetics, National Institute for Gastroenterology, IRCCS 'S. de Bellis', Via Turi, 27, Castellana Grotte, 70013 Bari, Italy.
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena, 324, 00161 Roma, Italy.
| | - Paola Sanese
- Division of Medical Genetics, Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari Aldo Moro, Piazza G. Cesare, 11, 70124 Bari, Italy.
| | - Cristiano Simone
- Medical Genetics, National Institute for Gastroenterology, IRCCS 'S. de Bellis', Via Turi, 27, Castellana Grotte, 70013 Bari, Italy.
- Division of Medical Genetics, Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari Aldo Moro, Piazza G. Cesare, 11, 70124 Bari, Italy.
| |
Collapse
|
116
|
Choi S, Jeong HJ, Kim H, Choi D, Cho SC, Seong JK, Koo SH, Kang JS. Skeletal muscle-specific Prmt1 deletion causes muscle atrophy via deregulation of the PRMT6-FOXO3 axis. Autophagy 2019; 15:1069-1081. [PMID: 30653406 DOI: 10.1080/15548627.2019.1569931] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Protein arginine methyltransferases (PRMTs) have emerged as important regulators of skeletal muscle metabolism and regeneration. However, the direct roles of the various PRMTs during skeletal muscle remodeling remain unclear. Using skeletal muscle-specific prmt1 knockout mice, we examined the function and downstream targets of PRMT1 in muscle homeostasis. We found that muscle-specific PRMT1 deficiency led to muscle atrophy. PRMT1-deficient muscles exhibited enhanced expression of a macroautophagic/autophagic marker LC3-II, FOXO3 and muscle-specific ubiquitin ligases, TRIM63/MURF-1 and FBXO32, likely contributing to muscle atrophy. The mechanistic study reveals that PRMT1 regulates FOXO3 through PRMT6 modulation. In the absence of PRMT1, increased PRMT6 specifically methylates FOXO3 at arginine 188 and 249, leading to its activation. Finally, we demonstrate that PRMT1 deficiency triggers FOXO3 hyperactivation, which is abrogated by PRMT6 depletion. Taken together, PRMT1 is a key regulator for the PRMT6-FOXO3 axis in the control of autophagy and protein degradation underlying muscle maintenance. Abbreviations: Ad-RNAi: adenovirus-delivered small interfering RNA; AKT: thymoma viral proto-oncogene; AMPK: AMP-activated protein kinase; Baf A1: bafilomycin A1; CSA: cross-sectional area; EDL: extensor digitorum longus; FBXO32: F-box protein 32; FOXO: forkhead box O; GAS: gatrocnemieus; HDAC: histone deacetylase; IGF: insulin-like growth factor; LAMP: lysosomal-associated membrane protein; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; mKO: Mice with skeletal muscle-specific deletion of Prmt1; MTOR: mechanistic target of rapamycin kinase; MYH: myosin heavy chain; MYL1/MLC1f: myosin, light polypeptide 1; PRMT: protein arginine N-methyltransferase; sgRNA: single guide RNA; SQSTM1: sequestosome 1; SOL: soleus; TA: tibialis anterior; TRIM63/MURF-1: tripartite motif-containing 63; YY1: YY1 transcription factor.
Collapse
Affiliation(s)
- Seri Choi
- a Division of Life Sciences , Korea University , Seoul , South Korea
| | - Hyeon-Ju Jeong
- b Department of Molecular Cell Biology, Single Cell Network Research Center , Sungkyunkwan University School of Medicine , Suwon , South Korea
| | - Hyebeen Kim
- b Department of Molecular Cell Biology, Single Cell Network Research Center , Sungkyunkwan University School of Medicine , Suwon , South Korea
| | - Dahee Choi
- a Division of Life Sciences , Korea University , Seoul , South Korea
| | - Sung-Chun Cho
- c Well Aging Research Center, Samsung Advanced Institute of Technology , Samsung Electronics Co. Ltd , Suwon , South Korea
| | - Je Kyung Seong
- d Korea Mouse Phenotyping Center , Seoul National University , Seoul , South Korea
| | - Seung-Hoi Koo
- a Division of Life Sciences , Korea University , Seoul , South Korea
| | - Jong-Sun Kang
- b Department of Molecular Cell Biology, Single Cell Network Research Center , Sungkyunkwan University School of Medicine , Suwon , South Korea.,e Samsung Biomedical Research Institute , Samsung Medical Center , Seoul , South Korea
| |
Collapse
|
117
|
Peng Y, Yang C, Shi X, Li L, Dong H, Liu C, Fang Z, Wang Z, Ming S, Liu M, Xie B, Gao X, Sun Y. Sirt3 suppresses calcium oxalate-induced renal tubular epithelial cell injury via modification of FoxO3a-mediated autophagy. Cell Death Dis 2019; 10:34. [PMID: 30674870 PMCID: PMC6377683 DOI: 10.1038/s41419-018-1169-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/18/2018] [Accepted: 10/11/2018] [Indexed: 12/15/2022]
Abstract
High oxalic acid and calcium oxalate (CaOx)-induced renal tubular epithelial cell (TEC) injury plays a key role in nephrolithiasis. However, the mechanism remains unknown. Gene array analysis of the mice nephrolithiasis model indicated significant downregulation of sirtuin 3 (Sirt3) and activation of mitogen-activated protein kinase (MAPK) pathway. Kidney biopsy tissues of renal calculi patients also showed decreased Sirt3 expression. Silencing Sirt3 exacerbated oxidative stress and TEC death under CaOx stimulation. Restoring Sirt3 expression by overexpression or enhancing its activity protected renal function and reduced TEC death both in vitro and in vivo. Inhibiting the MAPK pathway resulted in upregulation of Sirt3 expression, preservation of renal function and decreased cell death both in vitro and in vivo. Furthermore, Sirt3 could upregulate FoxO3a activity post-translationally via deacetylation, dephosphorylation and deubiquitination. FoxO3a was found to interact with the promoter region of LC3B and to increase its expression, enhancing TEC autophagy and suppressing cell apoptosis and necrosis. Taken together, our results indicate that the MAPK/Sirt3/FoxO3a pathway modulates renal TEC death and autophagy in TEC injury.
Collapse
Affiliation(s)
- Yonghan Peng
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Cheng Yang
- Department of Urology, Zhongshan Hospital, Fudan University; Shanghai Key Laboratory of Organ Transplantation, Shanghai, 200032, China
| | - Xiaolei Shi
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Ling Li
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Hao Dong
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Changcheng Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University, Shanghai, 200092, China
| | - Ziyu Fang
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Zeyu Wang
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Shaoxiong Ming
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Min Liu
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Bin Xie
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Science, University of Oxford, Oxford, OX3 7LD, UK.
| | - Xiaofeng Gao
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, 200433, China.
| | - Yinghao Sun
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, 200433, China.
| |
Collapse
|
118
|
Laissue P. The forkhead-box family of transcription factors: key molecular players in colorectal cancer pathogenesis. Mol Cancer 2019; 18:5. [PMID: 30621735 PMCID: PMC6325735 DOI: 10.1186/s12943-019-0938-x] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 01/01/2019] [Indexed: 12/18/2022] Open
Abstract
Colorectal cancer (CRC) is the third most commonly occurring cancer worldwide and the fourth most frequent cause of death having an oncological origin. It has been found that transcription factors (TF) dysregulation, leading to the significant expression modifications of genes, is a widely distributed phenomenon regarding human malignant neoplasias. These changes are key determinants regarding tumour’s behaviour as they contribute to cell differentiation/proliferation, migration and metastasis, as well as resistance to chemotherapeutic agents. The forkhead box (FOX) transcription factor family consists of an evolutionarily conserved group of transcriptional regulators engaged in numerous functions during development and adult life. Their dysfunction has been associated with human diseases. Several FOX gene subgroup transcriptional disturbances, affecting numerous complex molecular cascades, have been linked to a wide range of cancer types highlighting their potential usefulness as molecular biomarkers. At least 14 FOX subgroups have been related to CRC pathogenesis, thereby underlining their role for diagnosis, prognosis and treatment purposes. This manuscript aims to provide, for the first time, a comprehensive review of FOX genes’ roles during CRC pathogenesis. The molecular and functional characteristics of most relevant FOX molecules (FOXO, FOXM1, FOXP3) have been described within the context of CRC biology, including their usefulness regarding diagnosis and prognosis. Potential CRC therapeutics (including genome-editing approaches) involving FOX regulation have also been included. Taken together, the information provided here should enable a better understanding of FOX genes’ function in CRC pathogenesis for basic science researchers and clinicians.
Collapse
Affiliation(s)
- Paul Laissue
- Center For Research in Genetics and Genomics-CIGGUR, GENIUROS Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 N° 63C-69, Bogotá, Colombia.
| |
Collapse
|
119
|
Musikant D, Sato H, Capobianco E, White V, Jawerbaum A, Higa R. Altered FOXO1 activation in the programming of cardiovascular alterations by maternal diabetes. Mol Cell Endocrinol 2019; 479:78-86. [PMID: 30217602 DOI: 10.1016/j.mce.2018.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/10/2018] [Accepted: 09/10/2018] [Indexed: 12/30/2022]
Abstract
Maternal diabetes programs cardiovascular alterations in the adult offspring but the mechanisms involved remain unclarified. Here, we addresed whether maternal diabetes programs cardiac alterations related to extracellular matrix remodeling in the adult offspring, as well as the role of forkhead box transcription factor 1 (FOXO1) in the induction of these alterations. The heart from adult offspring from control and streptozotocin-induced diabetic rats was evaluated. Increased glycemia, triglyceridemia and insulinemia and markers of cardiomyopathy were found in the offspring from diabetic rats. In the heart, an increase in active FOXO1 and mRNA levels of its target genes, Mmp-2 and Ctgf, genes related to an altered extracellular matrix remodeling, together with an increase in collagen deposition and a decrease in the connexin43 levels, were found in the offspring from diabetic rats. Altogether, these results suggest an important role of FOXO1 activation in the cardiac alterations induced by intrauterine programming in maternal diabetes.
Collapse
Affiliation(s)
- Daniel Musikant
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Hugo Sato
- Universidad de Buenos Aires, Facultad de Medicina, Argentina; CONICET-Universidad de Buenos Aires, Laboratory of Reproduction and Metabolism, CEFYBO, Buenos Aires, Argentina
| | - Evangelina Capobianco
- Universidad de Buenos Aires, Facultad de Medicina, Argentina; CONICET-Universidad de Buenos Aires, Laboratory of Reproduction and Metabolism, CEFYBO, Buenos Aires, Argentina
| | - Verónica White
- Universidad de Buenos Aires, Facultad de Medicina, Argentina; CONICET-Universidad de Buenos Aires, Laboratory of Reproduction and Metabolism, CEFYBO, Buenos Aires, Argentina
| | - Alicia Jawerbaum
- Universidad de Buenos Aires, Facultad de Medicina, Argentina; CONICET-Universidad de Buenos Aires, Laboratory of Reproduction and Metabolism, CEFYBO, Buenos Aires, Argentina
| | - Romina Higa
- Universidad de Buenos Aires, Facultad de Medicina, Argentina; CONICET-Universidad de Buenos Aires, Laboratory of Reproduction and Metabolism, CEFYBO, Buenos Aires, Argentina.
| |
Collapse
|
120
|
Holst F, Werner HMJ, Mjøs S, Hoivik EA, Kusonmano K, Wik E, Berg A, Birkeland E, Gibson WJ, Halle MK, Trovik J, Cherniack AD, Kalland KH, Mills GB, Singer CF, Krakstad C, Beroukhim R, Salvesen HB. PIK3CA Amplification Associates with Aggressive Phenotype but Not Markers of AKT-MTOR Signaling in Endometrial Carcinoma. Clin Cancer Res 2018; 25:334-345. [PMID: 30442683 DOI: 10.1158/1078-0432.ccr-18-0452] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 07/07/2018] [Accepted: 09/04/2018] [Indexed: 12/17/2022]
Abstract
PURPOSE Amplification of PIK3CA, encoding the PI3K catalytic subunit alpha, is common in uterine corpus endometrial carcinoma (UCEC) and linked to an aggressive phenotype. However, it is unclear whether PIK3CA amplification acts via PI3K activation. We investigated the association between PIK3CA amplification, markers of PI3K activity, and prognosis in a large cohort of UCEC specimens. EXPERIMENTAL DESIGN UCECs from 591 clinically annotated patients including 83 tumors with matching metastasis (n = 188) were analyzed by FISH to determine PIK3CA copy-number status. These data were integrated with mRNA and protein expression and clinicopathologic data. Results were verified in The Cancer Genome Atlas dataset. RESULTS PIK3CA amplifications were associated with disease-specific mortality and with other markers of aggressive disease. PIK3CA amplifications were also associated with other amplifications characteristic of the serous-like somatic copy-number alteration (SCNA)-high subgroup of UCEC. Tumors with PIK3CA amplification also demonstrated an increase in phospho-p70S6K but had decreased levels of activated phospho-AKT1-3 as assessed by Reverse Phase Protein Arrays and an mRNA signature of MTOR inhibition. CONCLUSIONS PIK3CA amplification is a strong prognostic marker and a potential marker for the aggressive SCNA-high subgroup of UCEC. Although PIK3CA amplification associates with some surrogate measures of increased PI3K activity, markers for AKT1-3 and MTOR signaling are decreased, suggesting that this signaling is not a predominant pathway to promote cancer growth of aggressive serous-like UCEC. Moreover, these associations may reflect features of the SCNA-high subgroup of UCEC rather than effects of PIK3CA amplification itself.
Collapse
Affiliation(s)
- Frederik Holst
- Center for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway. .,Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway.,Department of Cancer Biology and Department of Medical Oncology, Dana-Farber Cancer Institute, Dana-Farber/Harvard Cancer Center, Boston, Massachusetts.,The Broad Institute of Harvard and MIT, Cambridge, Massachusetts.,Department of Obstetrics and Gynecology and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Henrica M J Werner
- Center for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
| | - Siv Mjøs
- Center for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
| | - Erling A Hoivik
- Center for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
| | - Kanthida Kusonmano
- Center for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway.,Computational Biology Unit, University of Bergen, Bergen, Norway.,Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Elisabeth Wik
- Center for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway.,Department of Pathology, Haukeland University Hospital, Bergen, Norway.,Center for Cancer Biomarkers CCBIO, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Anna Berg
- Center for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
| | - Even Birkeland
- Center for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway.,Department of Pathology, Haukeland University Hospital, Bergen, Norway.,Center for Cancer Biomarkers CCBIO, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - William J Gibson
- Department of Cancer Biology and Department of Medical Oncology, Dana-Farber Cancer Institute, Dana-Farber/Harvard Cancer Center, Boston, Massachusetts.,The Broad Institute of Harvard and MIT, Cambridge, Massachusetts.,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Mari K Halle
- Center for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
| | - Jone Trovik
- Center for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
| | | | - Karl-Henning Kalland
- Center for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Microbiology, Haukeland University Hospital, Bergen, Norway
| | - Gordon B Mills
- Department of Systems Biology, MD Anderson Cancer Center, Houston, Texas
| | - Christian F Singer
- Department of Obstetrics and Gynecology and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Camilla Krakstad
- Center for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
| | - Rameen Beroukhim
- Department of Cancer Biology and Department of Medical Oncology, Dana-Farber Cancer Institute, Dana-Farber/Harvard Cancer Center, Boston, Massachusetts.,The Broad Institute of Harvard and MIT, Cambridge, Massachusetts.,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Helga B Salvesen
- Center for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
121
|
Hu J, Yue X, Liu J, Kong D. Construction of an miRNA‑gene regulatory network in colorectal cancer through integrated analysis of mRNA and miRNA microarrays. Mol Med Rep 2018; 18:5109-5116. [PMID: 30272280 DOI: 10.3892/mmr.2018.9505] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 08/08/2018] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to identify potential biomarkers associated with colorectal cancer (CRC). The GSE32323 and GSE53592 mRNA and microRNA (miRNA) expression profiles were selected from the Gene Expression Omnibus database. The differentially expressed genes (DEGs) and differentially expressed miRNAs (DEMs) in CRC tissue samples compared with surrounding control tissue samples (DEGs‑CC), and DEGs in cells treated with 5‑aza‑2'‑deoxycitidine compared with untreated cells (DEGs‑TC) were identified with the Limma package. The Database for Annotation, Visualization and Integrated Discovery was used to conduct the functional and pathways enrichment analysis. Differential co‑regulation networks were constructed using the DCGL package of R. The targets of DEMs were identified using TargetScan. The overlaps between DEGs and the targets were selected. The miRNA‑gene regulatory network of the overlaps was established. There were 145 DEMs, and 1,284 DEGs in DEGs‑CC, and 101 DEGs in DEGs‑TC. DEGs‑CC were enriched in 196 Gene Ontology (GO) terms and 23 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. DEGs‑TC were enriched in 46 GO terms and two KEGG pathways. A differential co‑regulation network of the DEGs and a miRNA‑gene regulatory network between DEMs and overlapped DEGs were respectively constructed. miR‑124‑3p, miR‑145‑5p and miR‑320a may be critical in CRC, and serum/glucocorticoid regulated kinase 1 and SRY‑box 9 may be potential biomarkers for CRC tumor progression.
Collapse
Affiliation(s)
- Jun Hu
- Department of Colorectal Cancer Surgery, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Xin Yue
- Department of Colorectal Cancer Surgery, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Jianzhong Liu
- Department of Colorectal Cancer Surgery, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Dalu Kong
- Department of Colorectal Cancer Surgery, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| |
Collapse
|
122
|
Zhou X, Sen I, Lin XX, Riedel CG. Regulation of Age-related Decline by Transcription Factors and Their Crosstalk with the Epigenome. Curr Genomics 2018; 19:464-482. [PMID: 30258277 PMCID: PMC6128382 DOI: 10.2174/1389202919666180503125850] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 04/20/2018] [Accepted: 04/30/2018] [Indexed: 12/16/2022] Open
Abstract
Aging is a complex phenomenon, where damage accumulation, increasing deregulation of biological pathways, and loss of cellular homeostasis lead to the decline of organismal functions over time. Interestingly, aging is not entirely a stochastic process and progressing at a constant rate, but it is subject to extensive regulation, in the hands of an elaborate and highly interconnected signaling network. This network can integrate a variety of aging-regulatory stimuli, i.e. fertility, nutrient availability, or diverse stresses, and relay them via signaling cascades into gene regulatory events - mostly of genes that confer stress resistance and thus help protect from damage accumulation and homeostasis loss. Transcription factors have long been perceived as the pivotal nodes in this network. Yet, it is well known that the epigenome substantially influences eukaryotic gene regulation, too. A growing body of work has recently underscored the importance of the epigenome also during aging, where it not only undergoes drastic age-dependent changes but also actively influences the aging process. In this review, we introduce the major signaling pathways that regulate age-related decline and discuss the synergy between transcriptional regulation and the epigenetic landscape.
Collapse
Affiliation(s)
| | | | | | - Christian G. Riedel
- Address correspondence to this author at the Integrated Cardio Metabolic Centre (ICMC), Department of Biosciences and Nutrition, Karolinska Institutet, Blickagången 6, Novum, 7 floor Huddinge, Stockholm 14157, Sweden; Tel: +46-736707008; E-mail:
| |
Collapse
|
123
|
Polymorphisms in the FOXO gene are associated with growth traits in the Sanmen breeding population of the razor clam Sinonovacula constricta. AQUACULTURE AND FISHERIES 2018. [DOI: 10.1016/j.aaf.2018.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
124
|
Newton RH, Shrestha S, Sullivan JM, Yates KB, Compeer EB, Ron-Harel N, Blazar BR, Bensinger SJ, Haining WN, Dustin ML, Campbell DJ, Chi H, Turka LA. Maintenance of CD4 T cell fitness through regulation of Foxo1. Nat Immunol 2018; 19:838-848. [PMID: 29988091 PMCID: PMC6289177 DOI: 10.1038/s41590-018-0157-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 05/29/2018] [Indexed: 12/13/2022]
Abstract
Foxo transcription factors play an essential role in regulating specialized lymphocyte functions and in maintaining T cell quiescence. Here, we used a system in which Foxo1 transcription-factor activity, which is normally terminated upon cell activation, cannot be silenced, and we show that enforcing Foxo1 activity disrupts homeostasis of CD4 conventional and regulatory T cells. Despite limiting cell metabolism, continued Foxo1 activity is associated with increased activation of the kinase Akt and a cell-intrinsic proliferative advantage; however, survival and cell division are decreased in a competitive setting or growth-factor-limiting conditions. Via control of expression of the transcription factor Myc and the IL-2 receptor β-chain, termination of Foxo1 signaling couples the increase in cellular cholesterol to biomass accumulation after activation, thereby facilitating immunological synapse formation and mTORC1 activity. These data reveal that Foxo1 regulates the integration of metabolic and mitogenic signals essential for T cell competitive fitness and the coordination of cell growth with cell division.
Collapse
Affiliation(s)
- Ryan H Newton
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Celsius Therapeutics, Cambridge, MA, USA
| | - Sharad Shrestha
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Jenna M Sullivan
- Department of Immunology, University of Washington, Seattle and Immunology Program, Benaroya Research Institute, Seattle, WA, USA
| | - Kathleen B Yates
- Division of Pediatric Hematology and Oncology, Children's Hospital, Boston, MA, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ewoud B Compeer
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Noga Ron-Harel
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Bruce R Blazar
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Steven J Bensinger
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - W Nicholas Haining
- Division of Pediatric Hematology and Oncology, Children's Hospital, Boston, MA, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michael L Dustin
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Daniel J Campbell
- Department of Immunology, University of Washington, Seattle and Immunology Program, Benaroya Research Institute, Seattle, WA, USA
| | - Hongbo Chi
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Laurence A Turka
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Rheos Medicines, Cambridge, MA, USA.
| |
Collapse
|
125
|
Abstract
FOXO transcription factors are evolutionally conserved regulators of organismal life span downstream of insulin signaling. After integrating cellular signals from various stimuli such as growth factors, oxidative stress, and energy deprivation, FOXO factors induce expression of a specific set of genes that regulate various cellular processes to maintain homeostasis at a cellular or organismal level. In this review, we discuss roles of FOXO proteins in the maintenance of mitochondria, organelles critical for cellular quality control. FOXO factors protect mitochondria by activating mitochondrial antioxidant enzymes and they help remodel damaged mitochondria by inducing remodeling processes such as mitophagy. Furthermore, we also review the recently identified FOXO-dependent retrograde signaling from stressed mitochondria to the nucleus, which suggest that FOXO mediates the crosstalk between these two important organelles to maintain cell homeostasis. In addition, we introduce a mitohormetic role of gamitrinib-triphenylphosphonium (G-TPP), a mitochondrial heat shock protein (Hsp) inhibitor that can induce mild mitochondrial stress to protect cells from future insults in a FOXO-dependent manner.
Collapse
|
126
|
Tzanavari T, Tasoulas J, Vakaki C, Mihailidou C, Tsourouflis G, Theocharis S. The Role of Adipokines in the Establishment and Progression of Head and Neck Neoplasms. Curr Med Chem 2018; 26:4726-4748. [PMID: 30009699 DOI: 10.2174/0929867325666180713154505] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 03/13/2018] [Accepted: 07/06/2018] [Indexed: 12/15/2022]
Abstract
Adipokines constitute a family of protein factors secreted by white adipose tissue (WAT), that regulate the functions of WAT and other sites. Leptin, adiponectin and resistin, are the main adipokines present in serum and saliva, targeting several tissues and organs, including vessels, muscles, liver and pancreas. Besides body mass regulation, adipokines affect glucose homeostasis, inflammation, angiogenesis, cell proliferation and apoptosis, and other crucial cell procedures. Their involvement in tumor formation and growth is well established and deregulation of adipokine and adipokine receptors' expression is observed in several malignancies including those located in the head and neck region. Intracellular effects of adipokines are mediated by a plethora of receptors that activate several signaling cascades including Janus kinase/ Signal transducer and activator of transcription (JAK/ STAT pathway), Phospatidylinositol kinase (PI3/ Akt/ mTOR) and Peroxisome proliferator-activated receptor (PPAR). The present review summarizes the current knowledge on the role of adipokines family members in carcinogenesis of the head and neck region. The diagnostic and prognostic significance of adipokines and their potential role as serum and saliva biomarkers are also discussed.
Collapse
Affiliation(s)
- Theodora Tzanavari
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens, 11527, Greece
| | - Jason Tasoulas
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens, 11527, Greece
| | - Chrysoula Vakaki
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens, 11527, Greece
| | - Chrysovalantou Mihailidou
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens, 11527, Greece
| | - Gerasimos Tsourouflis
- Second Department of Propaedeutic Surgery, Medical School, National and Kapodistrian, University of Athens, Athens, 11527, Greece
| | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens, 11527, Greece
| |
Collapse
|
127
|
Shirooie S, Nabavi SF, Dehpour AR, Belwal T, Habtemariam S, Argüelles S, Sureda A, Daglia M, Tomczyk M, Sobarzo-Sanchez E, Xu S, Nabavi SM. Targeting mTORs by omega-3 fatty acids: A possible novel therapeutic strategy for neurodegeneration? Pharmacol Res 2018; 135:37-48. [PMID: 29990625 DOI: 10.1016/j.phrs.2018.07.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 07/03/2018] [Accepted: 07/05/2018] [Indexed: 12/26/2022]
Abstract
Neurodegenerative diseases (NDs) such as Parkinson's (PD), Alzheimer's (AD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS) cause significant world-wide morbidity and mortality. To date, there is no drug of cure for these, mostly age-related diseases, although approaches in delaying the pathology and/or giving patients some symptomatic relief have been adopted for the last few decades. Various studies in recent years have shown the beneficial effects of omega-3 poly unsaturated fatty acids (PUFAs) through diverse mechanisms including anti-inflammatory effects. This review now assesses the potential of this class of compounds in NDs therapy through specific action against the mammalian target of rapamycin (mTOR) signaling pathway. The role of mTOR in neurodegenerative diseases and targeted therapies by PUFAs are discussed.
Collapse
Affiliation(s)
- Samira Shirooie
- Department of Pharmacology, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed Fazel Nabavi
- Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran; Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran 14359-16471, Iran
| | - Ahmad R Dehpour
- Department of Pharmacology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Tarun Belwal
- G.B. Pant National Institute of Himalayan Environment and Sustainable Development, Kosi Katarmal, Almora, Uttarakhand, India
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories & Herbal Analysis Services UK, University of Greenwich, Chatham-Maritime, Kent ME4 4TB, UK
| | - Sandro Argüelles
- Department of Physiology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress (NUCOX) and CIBEROBN (Physiopathology of Obesity and Nutrition CB12/03/30038), University of Balearic Islands, Palma de Mallorca E-07122, Balearic Islands, Spain
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Italy
| | - Michał Tomczyk
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Białystok, ul. Mickiewicza 2a, 15-230 Białystok, Poland
| | - Eduardo Sobarzo-Sanchez
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782, Spain; Instituto de Investigación en Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago, Chile
| | - Suowen Xu
- Aab Cardiovascular Research Institute, University of Rochester, Rochester, NY 14623, United States
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran 14359-16471, Iran.
| |
Collapse
|
128
|
Foxn1 in Skin Development, Homeostasis and Wound Healing. Int J Mol Sci 2018; 19:ijms19071956. [PMID: 29973508 PMCID: PMC6073674 DOI: 10.3390/ijms19071956] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 06/29/2018] [Accepted: 07/02/2018] [Indexed: 02/07/2023] Open
Abstract
Intensive research effort has focused on cellular and molecular mechanisms that regulate skin biology, including the phenomenon of scar-free skin healing during foetal life. Transcription factors are the key molecules that tune gene expression and either promote or suppress gene transcription. The epidermis is the source of transcription factors that regulate many functions of epidermal cells such as proliferation, differentiation, apoptosis, and migration. Furthermore, the activation of epidermal transcription factors also causes changes in the dermal compartment of the skin. This review focuses on the transcription factor Foxn1 and its role in skin biology. The regulatory function of Foxn1 in the skin relates to physiological (development and homeostasis) and pathological (skin wound healing) conditions. In particular, the pivotal role of Foxn1 in skin development and the acquisition of the adult skin phenotype, which coincides with losing the ability of scar-free healing, is discussed. Thus, genetic manipulations with Foxn1 expression, specifically those introducing conditional Foxn1 silencing in a Foxn1+/+ organism or its knock-in in a Foxn1−/− model, may provide future perspectives for regenerative medicine.
Collapse
|
129
|
Adams NR, Vasquez YM, Mo Q, Gibbons W, Kovanci E, DeMayo FJ. WNK lysine deficient protein kinase 1 regulates human endometrial stromal cell decidualization, proliferation, and migration in part through mitogen-activated protein kinase 7. Biol Reprod 2018; 97:400-412. [PMID: 29025069 DOI: 10.1093/biolre/iox108] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 08/28/2017] [Indexed: 12/21/2022] Open
Abstract
The differentiation of endometrial stromal cells into decidual cells, termed decidualization, is an integral step in the establishment of pregnancy. The mitogen-activated protein kinase homolog, WNK lysine deficient protein kinase 1 (WNK1), is activated downstream of epidermal growth factor receptor during decidualization. Primary human endometrial stromal cells (HESCs) were subjected to small interfering RNA knockdown of WNK1 followed by in vitro decidualization. This abrogated expression of the decidual marker genes, insulin like growth factor binding protein 1 (IGFBP1) and prolactin (PRL), and prevented adoption of decidual cell morphology. Analysis of the WNK1-dependent transcriptome by RNA-Seq demonstrated that WNK1 regulates the expression of 1858 genes during decidualization. Gene ontology and upstream regulator pathway analysis showed that WNK1 regulates cell migration, differentiation, and proliferation. WNK1 was required for many of the gene expression changes that drive decidualization, including the induction of the inflammatory cytokines, C-C motif chemokine ligand 8 (CCL8), interleukin 1 beta (IL1B), and interleukin 15 (IL15), and the repression of transforming growth factor-beta (TGF-beta) pathway genes, including early growth response 2 (EGR2), SMAD family member 3 (SMAD3), integrin subunit alpha 2 (ITGA2), integrin subunit alpha 4 (ITGA4), and integrin subunit beta 3 (ITGB3). In addition to abrogating decidualization, WNK1 knockdown decreased the migration and proliferation of HESCs. Furthermore, mitogen-activated protein kinase 7 (MAPK7), a known downstream target of WNK1, was activated during decidualization in a WNK1-dependent manner. Small interfering RNA knockdown of MAPK7 demonstrated that MAPK7 regulates a subset of WNK1-regulated genes and controls the migration and proliferation of HESCs. These results indicate that WNK1 and MAPK7 promote migration and proliferation during decidualization and regulate the expression of inflammatory cytokines and TGF-beta pathway genes in HESCs.
Collapse
Affiliation(s)
- Nyssa R Adams
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA.,Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Yasmin M Vasquez
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Qianxing Mo
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - William Gibbons
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas, USA
| | - Ertug Kovanci
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas, USA
| | - Francesco J DeMayo
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| |
Collapse
|
130
|
Sampattavanich S, Steiert B, Kramer BA, Gyori BM, Albeck JG, Sorger PK. Encoding Growth Factor Identity in the Temporal Dynamics of FOXO3 under the Combinatorial Control of ERK and AKT Kinases. Cell Syst 2018; 6:664-678.e9. [PMID: 29886111 DOI: 10.1016/j.cels.2018.05.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 12/19/2017] [Accepted: 05/04/2018] [Indexed: 02/05/2023]
Abstract
Extracellular growth factors signal to transcription factors via a limited number of cytoplasmic kinase cascades. It remains unclear how such cascades encode ligand identities and concentrations. In this paper, we use live-cell imaging and statistical modeling to study FOXO3, a transcription factor regulating diverse aspects of cellular physiology that is under combinatorial control. We show that FOXO3 nuclear-to-cytosolic translocation has two temporally distinct phases varying in magnitude with growth factor identity and cell type. These phases comprise synchronous translocation soon after ligand addition followed by an extended back-and-forth shuttling; this shuttling is pulsatile and does not have a characteristic frequency, unlike a simple oscillator. Early and late dynamics are differentially regulated by Akt and ERK and have low mutual information, potentially allowing the two phases to encode different information. In cancer cells in which ERK and Akt are dysregulated by oncogenic mutation, the diversity of states is lower.
Collapse
Affiliation(s)
- Somponnat Sampattavanich
- HMS LINCS Center and Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, WAB Room 438, 200 Longwood Avenue, Boston, MA 02115, USA; Siriraj Laboratory for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, 12th Floor Srisavarindhira Building, 2 Wanglang Road, Bangkoknoi, Bangkok 10700, Thailand.
| | - Bernhard Steiert
- HMS LINCS Center and Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, WAB Room 438, 200 Longwood Avenue, Boston, MA 02115, USA; Institute of Physics, University of Freiburg, Freiburg, Germany; Freiburg Center for Systems Biology, University of Freiburg, Freiburg, Germany
| | - Bernhard A Kramer
- HMS LINCS Center and Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, WAB Room 438, 200 Longwood Avenue, Boston, MA 02115, USA; Division of Systems Biology of Signal Transduction, German Cancer Research Center, Heidelberg, Germany
| | - Benjamin M Gyori
- HMS LINCS Center and Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, WAB Room 438, 200 Longwood Avenue, Boston, MA 02115, USA
| | - John G Albeck
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, USA
| | - Peter K Sorger
- HMS LINCS Center and Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, WAB Room 438, 200 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
131
|
Kim CG, Lee H, Gupta N, Ramachandran S, Kaushik I, Srivastava S, Kim SH, Srivastava SK. Role of Forkhead Box Class O proteins in cancer progression and metastasis. Semin Cancer Biol 2018; 50:142-151. [PMID: 28774834 PMCID: PMC5794649 DOI: 10.1016/j.semcancer.2017.07.007] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 07/24/2017] [Accepted: 07/30/2017] [Indexed: 01/10/2023]
Abstract
It is now widely accepted that several gene alterations including transcription factors are critically involved in cancer progression and metastasis. Forkhead Box Class O proteins (FoxOs) including FoxO1/FKHR, FoxO3/FKHRL1, FoxO4/AFX and FoxO6 transcription factors are known to play key roles in proliferation, apoptosis, metastasis, cell metabolism, aging and cancer biology through their phosphorylation, ubiquitination, acetylation and methylation. Though FoxOs are proved to be mainly regulated by upstream phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3 K)/Akt signaling pathway, the role of FoxOs in cancer progression and metastasis still remains unclear so far. Thus, with previous experimental evidences, the present review discussed the role of FoxOs in association with metastasis related molecules including cannabinoid receptor 1 (CNR1), Cdc25A/Cdk2, Src, serum and glucocorticoid inducible kinases (SGKs), CXCR4, E-cadherin, annexin A8 (ANXA8), Zinc finger E-box-binding homeobox 2 (ZEB2), human epidermal growth factor receptor 2 (HER2) and mRNAs such as miR-182, miR-135b, miR-499-5p, miR-1274a, miR-150, miR-34b/c and miR-622, subsequently analyzed the molecular mechanism of some natural compounds targeting FoxOs and finally suggested future research directions in cancer progression and metastasis.
Collapse
Affiliation(s)
- Chang Geun Kim
- Cancer Molecular Target Herbal Research Center, College of Korean Medicine, Kyunghee University, Seoul, Republic of Korea
| | - Hyemin Lee
- Cancer Molecular Target Herbal Research Center, College of Korean Medicine, Kyunghee University, Seoul, Republic of Korea
| | - Nehal Gupta
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Sharavan Ramachandran
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Itishree Kaushik
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | | | - Sung-Hoon Kim
- Cancer Molecular Target Herbal Research Center, College of Korean Medicine, Kyunghee University, Seoul, Republic of Korea.
| | - Sanjay K Srivastava
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA.
| |
Collapse
|
132
|
Bourgeois B, Madl T. Regulation of cellular senescence via the FOXO4-p53 axis. FEBS Lett 2018; 592:2083-2097. [PMID: 29683489 PMCID: PMC6033032 DOI: 10.1002/1873-3468.13057] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/09/2018] [Accepted: 04/11/2018] [Indexed: 02/06/2023]
Abstract
Forkhead box O (FOXO) and p53 proteins are transcription factors that regulate diverse signalling pathways to control cell cycle, apoptosis and metabolism. In the last decade both FOXO and p53 have been identified as key players in aging, and their misregulation is linked to numerous diseases including cancers. However, many of the underlying molecular mechanisms remain mysterious, including regulation of ageing by FOXOs and p53. Several activities appear to be shared between FOXOs and p53, including their central role in the regulation of cellular senescence. In this review, we will focus on the recent advances on the link between FOXOs and p53, with a particular focus on the FOXO4‐p53 axis and the role of FOXO4/p53 in cellular senescence. Moreover, we discuss potential strategies for targeting the FOXO4‐p53 interaction to modulate cellular senescence as a drug target in treatment of aging‐related diseases and morbidity.
Collapse
Affiliation(s)
- Benjamin Bourgeois
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Austria
| | - Tobias Madl
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Austria.,BioTechMed, Graz, Austria
| |
Collapse
|
133
|
Licorice flavonoid oil enhances muscle mass in KK-A y mice. Life Sci 2018; 205:91-96. [PMID: 29753766 DOI: 10.1016/j.lfs.2018.05.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/03/2018] [Accepted: 05/09/2018] [Indexed: 01/27/2023]
Abstract
AIMS Muscle mass is regulated by the balance between the synthesis and degradation of muscle proteins. Loss of skeletal muscle mass is associated with an increased risk of developing metabolic diseases such as obesity and type 2 diabetes mellitus. The aim of this study was to clarify the effects of licorice flavonoid oil on muscle mass in KK-Ay/Ta mice. MAIN METHODS Male genetically type II diabetic KK-Ay/Ta mice received 0, 1, or 1.5 g/kg BW of licorice flavonoid oil by mouth once daily for 4 weeks. After 4 weeks, the femoral and soleus muscles were collected for western blotting for evaluation of the mTOR/p70 S6K, p38/FoxO3a, and Akt/FoxO3a signaling pathways. KEY FINDINGS Ingestion of licorice flavonoid oil significantly enhanced femoral muscle mass without affecting body weight in KK-Ay/Ta mice. Licorice flavonoid oil also decreased expression of MuRF1 and atrogin-1, which are both markers of muscle atrophy. The mechanisms by which licorice flavonoid oil enhances muscle mass include activation of mTOR and p70 S6K, and regulation of phosphorylation of FoxO3a. SIGNIFICANCE Ingestion of licorice flavonoids may help to prevent muscle atrophy.
Collapse
|
134
|
SGK1 Inhibits Autophagy in Murine Muscle Tissue. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4043726. [PMID: 29849891 PMCID: PMC5937381 DOI: 10.1155/2018/4043726] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 01/20/2018] [Accepted: 02/20/2018] [Indexed: 11/17/2022]
Abstract
Background/Aims As autophagy is linked to several pathological conditions, like cancer and neurodegenerative diseases, it is crucial to understand its regulatory signaling network. In this study, we investigated the role of the serum- and glucocorticoid-induced protein kinase 1 (SGK1) in the control of autophagy. Methods To measure autophagic activity in vivo, we quantified the abundance of the autophagy conjugates LC3-PE (phosphatidylethanolamine) and ATG12-ATG5 in tissue extracts of SGK1 wild-type (Sgk1+/+) and knockout (Sgk1-/-) mice that were either fed or starved for 24 h prior sacrifice. In vitro, we targeted SGK1 by RNAi using GFP-WIPI1 expressing U-2 OS cells to quantify the numbers of cells displaying newly formed autophagosomes. In parallel, these cells were also assessed with regard to LC3 and ULK1 by quantitative Western blotting. Results The abundance of both LC3-PE (LC3-II) and ATG12-ATG5 was significantly increased in red muscle tissues of SGK1 knockout mice. This was found in particular in fed conditions, suggesting that SGK1 may keep basal autophagy under control in red muscle in vivo. Under starved conditions, significant differences were observed in SGK1-deficient white muscle tissue and, under fed conditions, also in the liver. In vitro, we found that SGK1 silencing provoked a significant increase of cells displaying WIPI1-positive autophagosomes and autophagosomal LC3 (LC3-II). Moreover, autophagic flux assessments revealed that autophagic degradation significantly increased in the absence of SGK1, strongly suggesting that SGK1 inhibits both autophagosome formation and autophagic degradation in vitro. In addition, more ULK1 protein lacking the inhibitory, TORC1-specific phosphorylation at serine 758 was detected in the absence of SGK1. Conclusions Combined, our data strongly support the idea that SGK1 inhibits the process of autophagy. Mechanistically, our data suggest that SGK1 should act upstream of ULK1 in regulating autophagy, and we hypothesize that SGK1 contributes to the regulation of ULK1 gene expression.
Collapse
|
135
|
Luo CT, Li MO. Foxo transcription factors in T cell biology and tumor immunity. Semin Cancer Biol 2018; 50:13-20. [PMID: 29684436 DOI: 10.1016/j.semcancer.2018.04.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 04/13/2018] [Accepted: 04/17/2018] [Indexed: 01/05/2023]
Abstract
The evolutionally conserved forkhead box O (Foxo) family of transcription factors is pivotal in the control of nutrient sensing and stress responses. Recent studies have revealed that the Foxo proteins have been rewired to regulate highly specialized T cell activities. Here, we review the latest advances in the understanding of how Foxo transcription factors control T cell biology, including T cell trafficking, naive T cell homeostasis, effector and memory responses, as well as the differentiation and function of regulatory T cells. We also discuss the emerging evidence on Foxo-mediated regulation in antitumor immunity. Future work will further explore how the Foxo-dependent programs in T cells can be exploited for cancer immunotherapy.
Collapse
Affiliation(s)
- Chong T Luo
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ming O Li
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
136
|
Liu W, Wang X, Wang Y, Dai Y, Xie Y, Ping Y, Yin B, Yu P, Liu Z, Duan X, Liao Z, Chen Y, Liu C, Li X, Tao Z. SGK1 inhibition-induced autophagy impairs prostate cancer metastasis by reversing EMT. J Exp Clin Cancer Res 2018; 37:73. [PMID: 29609629 PMCID: PMC5879613 DOI: 10.1186/s13046-018-0743-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/21/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Despite SGK1 has been identified and characterized as a tumor-promoting gene, the functions and underlying mechanisms of SGK1 involved in metastasis regulation have not yet been investigated in cancer. METHODS We investigated the cellular responses to GSK650394 treatment and SGK1 silencing (or overexpression) in human prostate cancer (PCa) cell lines and PC3 xenografts by wound healing assay, migration and invasion assay, western blotting, immunofluorescence and immunohistochemistry. RESULTS In the present study, we found that SGK1 expression positively correlates with human prostate cancer (PCa) progression and metastasis. We show that SGK1 inhibition significantly attenuates EMT and metastasis both in vitro and in vivo, whereas overexpression of SGK1 dramaticlly promoted the invasion and migration of PCa cells. Our further results suggest that SGK1 inhibition induced antimetastatic effects, at least partially via autophagy-mediated repression of EMT through the downregulation of Snail. Moreover, ectopic expression of SGK1 obviously attenuated the GSK650394-induced autophagy and antimetastatic effects. What's more, dual inhibition of mTOR and SGK1 enhances autophagy and leads to synergistic antimetastatic effects on PCa cells. CONCLUSIONS Taken together, this study unveils a novel mechanism in which SGK1 functions as a tumor metastasis-promoting gene and highlights how co-targeting SGK1 and autophagy restrains cancer progression due to the amplified antimetastatic effects.
Collapse
Affiliation(s)
- Weiwei Liu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xuchu Wang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yiyun Wang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yibei Dai
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yiyi Xie
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Ping
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Binbin Yin
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Pan Yu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Zhenping Liu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiuzhi Duan
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Zhaoping Liao
- Department of Blood Transfusion, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yuhua Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Chunhua Liu
- Department of Blood Transfusion, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiang Li
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Zhihua Tao
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
137
|
Di Vincenzo S, Heijink IH, Noordhoek JA, Cipollina C, Siena L, Bruno A, Ferraro M, Postma DS, Gjomarkaj M, Pace E. SIRT1/FoxO3 axis alteration leads to aberrant immune responses in bronchial epithelial cells. J Cell Mol Med 2018; 22:2272-2282. [PMID: 29411515 PMCID: PMC5867095 DOI: 10.1111/jcmm.13509] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 11/25/2017] [Indexed: 12/13/2022] Open
Abstract
Inflammation and ageing are intertwined in chronic obstructive pulmonary disease (COPD). The histone deacetylase SIRT1 and the related activation of FoxO3 protect from ageing and regulate inflammation. The role of SIRT1/FoxO3 in COPD is largely unknown. This study evaluated whether cigarette smoke, by modulating the SIRT1/FoxO3 axis, affects airway epithelial pro-inflammatory responses. Human bronchial epithelial cells (16HBE) and primary bronchial epithelial cells (PBECs) from COPD patients and controls were treated with/without cigarette smoke extract (CSE), Sirtinol or FoxO3 siRNA. SIRT1, FoxO3 and NF-κB nuclear accumulation, SIRT1 deacetylase activity, IL-8 and CCL20 expression/release and the release of 12 cytokines, neutrophil and lymphocyte chemotaxis were assessed. In PBECs, the constitutive FoxO3 expression was lower in patients with COPD than in controls. Furthermore, CSE reduced FoxO3 expression only in PBECs from controls. In 16HBE, CSE decreased SIRT1 activity and nuclear expression, enhanced NF-κB binding to the IL-8 gene promoter thus increasing IL-8 expression, decreased CCL20 expression, increased the neutrophil chemotaxis and decreased lymphocyte chemotaxis. Similarly, SIRT1 inhibition reduced FoxO3 expression and increased nuclear NF-κB. FoxO3 siRNA treatment increased IL-8 and decreased CCL20 expression in 16HBE. In conclusion, CSE impairs the function of SIRT1/FoxO3 axis in bronchial epithelium, dysregulating NF-κB activity and inducing pro-inflammatory responses.
Collapse
Affiliation(s)
- Serena Di Vincenzo
- Istituto di Biomedicina e Immunologia Molecolare‐Consiglio Nazionale delle RicerchePalermoItaly
| | - Irene H. Heijink
- Department of Pathology and Medical BiologyUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Jacobien A. Noordhoek
- Department of Pathology and Medical BiologyUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Chiara Cipollina
- Istituto di Biomedicina e Immunologia Molecolare‐Consiglio Nazionale delle RicerchePalermoItaly
- Fondazione Ri.MEDPalermoItaly
| | - Liboria Siena
- Istituto di Biomedicina e Immunologia Molecolare‐Consiglio Nazionale delle RicerchePalermoItaly
| | - Andreina Bruno
- Istituto di Biomedicina e Immunologia Molecolare‐Consiglio Nazionale delle RicerchePalermoItaly
| | - Maria Ferraro
- Istituto di Biomedicina e Immunologia Molecolare‐Consiglio Nazionale delle RicerchePalermoItaly
| | - Dirkje S. Postma
- Department of Pathology and Medical BiologyUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Mark Gjomarkaj
- Istituto di Biomedicina e Immunologia Molecolare‐Consiglio Nazionale delle RicerchePalermoItaly
| | - Elisabetta Pace
- Istituto di Biomedicina e Immunologia Molecolare‐Consiglio Nazionale delle RicerchePalermoItaly
| |
Collapse
|
138
|
Deng Y, Xiao Y, Yuan F, Liu Y, Jiang X, Deng J, Fejes-Toth G, Naray-Fejes-Toth A, Chen S, Chen Y, Ying H, Zhai Q, Shu Y, Guo F. SGK1/FOXO3 Signaling in Hypothalamic POMC Neurons Mediates Glucocorticoid-Increased Adiposity. Diabetes 2018; 67:569-580. [PMID: 29321171 DOI: 10.2337/db17-1069] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/02/2018] [Indexed: 11/13/2022]
Abstract
Although the central nervous system has been implicated in glucocorticoid-induced gain of fat mass, the underlying mechanisms are poorly understood. The aim of this study was to investigate the possible involvement of hypothalamic serum- and glucocorticoid-regulated kinase 1 (SGK1) in glucocorticoid-increased adiposity. It is well known that SGK1 expression is induced by acute glucocorticoid treatment, but it is interesting that we found its expression to be decreased in the arcuate nucleus of the hypothalamus, including proopiomelanocortin (POMC) neurons, following chronic dexamethasone (Dex) treatment. To study the role of SGK1 in POMC neurons, we produced mice that developed or experienced adult-onset SGK1 deletion in POMC neurons (PSKO). As observed in Dex-treated mice, PSKO mice exhibited increased adiposity and decreased energy expenditure. Mice overexpressing constitutively active SGK1 in POMC neurons consistently had the opposite phenotype and did not experience Dex-increased adiposity. Finally, Dex decreased hypothalamic α-melanocyte-stimulating hormone (α-MSH) content and its precursor Pomc expression via SGK1/FOXO3 signaling, and intracerebroventricular injection of α-MSH or adenovirus-mediated FOXO3 knockdown in the arcuate nucleus largely reversed the metabolic alterations in PSKO mice. These results demonstrate that POMC SGK1/FOXO3 signaling mediates glucocorticoid-increased adiposity, providing new insights into the mechanistic link between glucocorticoids and fat accumulation and important hints for possible treatment targets for obesity.
Collapse
Affiliation(s)
- Yalan Deng
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yuzhong Xiao
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Feixiang Yuan
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yaping Liu
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, School of Brain and Cognitive Sciences, Beijing Normal University, Beijing, China
| | - Xiaoxue Jiang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jiali Deng
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Geza Fejes-Toth
- Department of Physiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH
| | | | - Shanghai Chen
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yan Chen
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Hao Ying
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Qiwei Zhai
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yousheng Shu
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, School of Brain and Cognitive Sciences, Beijing Normal University, Beijing, China
| | - Feifan Guo
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
139
|
Zhang WY, Niu CJ, Chen BJ, Storey KB. Digital Gene Expression Profiling reveals transcriptional responses to acute cold stress in Chinese soft-shelled turtle Pelodiscus sinensis juveniles. Cryobiology 2018; 81:43-56. [DOI: 10.1016/j.cryobiol.2018.02.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/01/2018] [Accepted: 02/19/2018] [Indexed: 12/11/2022]
|
140
|
Decreased expression of serum- and glucocorticoid-inducible kinase 1 (SGK1) promotes alpha-synuclein increase related with down-regulation of dopaminergic cell in the Substantia Nigra of chronic MPTP-induced Parkinsonism mice and in SH-SY5Y cells. Gene 2018; 661:189-195. [PMID: 29604467 DOI: 10.1016/j.gene.2018.03.086] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 03/23/2018] [Accepted: 03/27/2018] [Indexed: 12/28/2022]
Abstract
Parkinson's disease (PD) is a chronically progressive neurodegenerative disease, with its main pathological hallmarks being a dramatic loss of dopaminergic neurons predominantly in the Substantia Nigra (SN), and the formations of intracytoplasmic Lewy bodies and dystrophic neurites. Alpha-synuclein (α-syn), widely recognized as the most prominent element of the Lewy body, is one of the representative hallmarks in PD. However, the mechanisms behind the increased α-syn expression and aggregation have not yet been clarified. To examine what causes α-syn expression to increase, we analyzed the pattern of gene expression in the SN of mice intoxicated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), where down-regulation of dopaminergic cells occurred. We identified serum- and glucocorticoid-dependent kinase 1 (SGK1) as one of the genes that is evidently downregulated in chronic MPTP-intoxication. The results of Western blot analyses showed that, together with the down-regulation of dopaminergic cells, the decrease in SGK1 expression increased α-syn expression in the SN in a chronic MPTP-induced Parkinsonism mouse. For an examination of the expression correlation between SGK1 and α-syn, SH-5YSY cells were knocked down with SGK1 siRNA then, the downregulation of dopaminergic cells and the increase in the expression of α-syn were observed. These results suggest that decreased expression of SGK1 may play a critical role in increasing the expression of α-syn, which is related with dopaminergic cell death in the SN of chronic MPTP-induced Parkinsonism mice and in SH-SY5Y cells.
Collapse
|
141
|
Xie Y, Jiang D, Xiao J, Fu C, Zhang Z, Ye Z, Zhang X. Ischemic preconditioning attenuates ischemia/reperfusion-induced kidney injury by activating autophagy via the SGK1 signaling pathway. Cell Death Dis 2018; 9:338. [PMID: 29497029 PMCID: PMC5832808 DOI: 10.1038/s41419-018-0358-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 01/22/2018] [Accepted: 01/23/2018] [Indexed: 12/12/2022]
Abstract
Ischemic preconditioning (IPC) has a strong renoprotective effect during renal ischemia/reperfusion (I/R) injury that is thought to relate to autophagy. However, the role of autophagy during IPC-afforded renoprotection and the precise mechanisms involved are unknown. In this study, an in vitro hypoxia/reoxygenation (H/R) model was established in which oxygen and glucose deprivation (OGD) was applied to renal cells for 15 h followed by reoxygenation under normal conditions for 30 min, 2 h or 6 h; transient OGD and subsequent reoxygenation were implemented before prolonged H/R injury to achieve hypoxic preconditioning (HPC). 3-Methyladenine (3-MA) was used to inhibit autophagy. In a renal I/R injury model, rats were subjected to 40 min of renal ischemia followed by 6 h, 12 h or 24 h of reperfusion. IPC was produced by four cycles of ischemia (8 min each) followed by 5 min of reperfusion prior to sustained ischemia. We found that IPC increased LC3II and Beclin-1 levels and decreased SQSTM/p62 and cleaved caspase-3 levels in a time-dependent manner during renal I/R injury, as well as increased the number of intracellular double-membrane vesicles in injured renal cells. IPC-induced renal protection was efficiently attenuated by pretreatment with 5 mM 3-MA. Pretreatment with IPC also dynamically affected the expression of SGK1/FOXO3a/HIF-1α signaling components. Moreover, knocking down SGK1 expression significantly downregulated phosphorylated-FOXO3a (p-FOXO3a)/FOXO3 and HIF-1α, suppressed LC3II and Beclin-1 levels, increased SQSTM/p62 and cleaved caspase-3 levels, and abolished the protective effect of IPC against I/R-induced renal damage. SGK1 overexpression efficiently increased p-FOXO3a/FOXO3 and HIF-1α levels, promoted the autophagy flux and enhanced the protective effect mediated by HPC. Furthermore, FOXO3a overexpression decreased HIF-1α protein levels, inhibited HIF-1α transcriptional activity and reduced the protective effect of IPC. Our study indicates that IPC can ameliorate renal I/R injury by promoting autophagy through the SGK1 pathway.
Collapse
Affiliation(s)
- Ying Xie
- Department of Nephrology, Huadong Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China
| | - Daofang Jiang
- Department of Nephrology, Huadong Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China
| | - Jing Xiao
- Department of Nephrology, Huadong Hospital, Fudan University, Shanghai, China
| | - Chensheng Fu
- Department of Nephrology, Huadong Hospital, Fudan University, Shanghai, China
| | - Zhenxing Zhang
- Department of Nephrology, Huadong Hospital, Fudan University, Shanghai, China
| | - Zhibin Ye
- Department of Nephrology, Huadong Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China
| | - Xiaoli Zhang
- Department of Nephrology, Huadong Hospital, Fudan University, Shanghai, China. .,Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China.
| |
Collapse
|
142
|
Role of Forkhead Box O (FOXO) transcription factor in aging and diseases. Gene 2018; 648:97-105. [PMID: 29428128 DOI: 10.1016/j.gene.2018.01.051] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 12/26/2017] [Accepted: 01/14/2018] [Indexed: 12/21/2022]
Abstract
Fork head box O (FOXO) transcription factor is a key player in an evolutionarily conserved pathway. The mammalian FOXO family consists of FOXO1, 3, 4 and 6, are highly similar in their structure, function and regulation. To maintain optimum body function, the organisms have developed complex mechanisms for homeostasis. Importantly, it is well known that when these mechanisms dysregulate it results in the development of age-related disease. FOXO proteins are involved in a diverse cellular function and also have clinical significance including cell cycle arrest, cell differentiation, tumour suppression, DNA repair, longevity, diabetic complications, immunity, wound healing, regulation of metabolism and thus treatment of several types of diseases. By the combinations of post-translational modifications FOXO's serve as a 'molecular code' to sense external stimuli and recruit it as to specific regions of the genome and provide an integrated cellular response to changing physiological conditions. Akt/Protein kinase B a signaling pathway as a main regulator of FOXO to perform a diverse function in organisms. The present review summarizes the molecular and clinical aspects of FOXO transcription factor. And also elaborate the interaction of FOXO with the nucleosome remodelling complex to target genes, which is essential to cellular homeostasis.
Collapse
|
143
|
Abstract
In Caenorhabditis elegans, there is a single FOXO transcription factor homolog, encoded by the gene, daf-16. As a central regulator for multiple signaling pathways, DAF-16 integrates these signals which results in modulation of several biological processes including longevity, development, fat storage, stress resistance, innate immunity, and reproduction. Using C. elegans allows for studies of FOXO in the context of the whole animal. Therefore, manipulating levels or the activity of daf-16 results in phenotypic changes. Genetic and molecular analysis revealed that similar to other systems, DAF-16 is the downstream target of the conserved insulin/IGF-1 signaling (IIS) pathway; a PI 3-kinase/AKT signaling cascade that ultimately controls the regulation of DAF-16 nuclear localization. In this chapter, I will focus on understanding how a single gene daf-16 can incorporate signals from multiple upstream pathways and in turn modulate different phenotypes as well as the study of FOXO in the context of a whole organism.
Collapse
Affiliation(s)
- Heidi A Tissenbaum
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, United States.
| |
Collapse
|
144
|
|
145
|
González-Quiroz M, Urra H, Limia CM, Hetz C. Homeostatic interplay between FoxO proteins and ER proteostasis in cancer and other diseases. Semin Cancer Biol 2018; 50:42-52. [PMID: 29369790 DOI: 10.1016/j.semcancer.2018.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 01/14/2018] [Accepted: 01/18/2018] [Indexed: 02/08/2023]
Abstract
Cancer cells are exposed to adverse conditions within the tumor microenvironment that challenge cells to adapt and survive. Several of these homeostatic perturbations insults alter the normal function of the endoplasmic reticulum (ER), resulting in the accumulation of misfolded proteins. ER stress triggers a conserved signaling pathway known as the unfolded protein response (UPR) to cope with the stress or trigger apoptosis of damaged cells. The UPR has been described as a major driver in the acquisition of malignant characteristics that ultimately lead to cancer progression. Although, several reports describe the relevance of the UPR in tumor growth, the possible crosstalk with other cancer-related pathways is starting to be elucidated. The Forkhead Box O (FoxO) subfamily of proteins has a major role in cancer progression, where chromosomal translocations and deregulated signaling lead to loss-of-function of FoxO proteins, contributing to tumor progression. Here we discuss the homeostatic connection between the UPR and FoxO proteins and its possible implications to tumor progression and the acquisition of several hallmarks of cancer. In addition, studies linking a crosstalk between the UPR and FoxO proteins in other diseases, including neurodegeneration and metabolic disorders is provided.
Collapse
Affiliation(s)
- Matías González-Quiroz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Hery Urra
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Celia María Limia
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Claudio Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile; The Buck Institute for Research in Aging, Novato CA 94945, USA; Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston MA 02115, USA.
| |
Collapse
|
146
|
Cao MQ, You AB, Zhu XD, Zhang W, Zhang YY, Zhang SZ, Zhang KW, Cai H, Shi WK, Li XL, Li KS, Gao DM, Ma DN, Ye BG, Wang CH, Qin CD, Sun HC, Zhang T, Tang ZY. miR-182-5p promotes hepatocellular carcinoma progression by repressing FOXO3a. J Hematol Oncol 2018; 11:12. [PMID: 29361949 PMCID: PMC5782375 DOI: 10.1186/s13045-018-0555-y] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 01/15/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND High frequency of recurrence is the major cause of the poor outcomes for patients with hepatocellular carcinoma (HCC). microRNA (miR)-182-5p emerged as a high-priority miRNA in HCC and was found to be related to HCC metastasis. Whether the expression of miR-182-5p in tumor tissue correlated with early recurrence in HCC patients underwent curative surgery was unknown. METHODS Real-time PCR (RT-PCR) and in situ hybridization (ISH) were conducted to assess the expression of miR-182-5p in HCC cells and tissues. Cell Counting Kit-8 (CCK-8), transwell assays were performed to detected cells proliferation and migration ability. Flow cytometry assays were used to detect cell apoptosis rate, and xenograft model was employed to study miR-182-5p in HCC growth and lung metastasis. The target of miR-182-5p was validated with a dual-luciferase reporter assay and western blotting. Immunohistochemistry, immumoblotting, and immunoprecipitation were performed to test relative protein expression. RESULTS We showed that high expression of miR-182-5p in tumor tissues correlated with poor prognosis as well as early recurrence in HCC patients underwent curative surgery. miR-182-5p enhanced motility and invasive ability of HCC cells both in vitro and in vivo. miR-182-5p directly targets 3'-UTR of FOXO3a and repressed FOXO3a expression, activating AKT/FOXO3a pathway to promote HCC proliferation. Notably, miR-182-5p activated Wnt/β-catenin signaling by inhibiting the degradation of β-catenin and enhancing the interaction between β-catenin and TCF4 which was mediated by repressed FOXO3a. CONCLUSIONS Consistently, miR-182-5p can be a potential predictor of early recurrence for HCC patients underwent curative surgery, and FOXO3a plays a key mediator in miR-182-5p induced HCC progression.
Collapse
Affiliation(s)
- Man-Qing Cao
- Department of Hepatobiliary Surgery, Liver Cancer Institute and Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
- Department of Hepatobiliary Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - A-Bin You
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Haidian District, Beijing, 100142, China
| | - Xiao-Dong Zhu
- Department of Hepatobiliary Surgery, Liver Cancer Institute and Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Wei Zhang
- Department of Hepatobiliary Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Yuan-Yuan Zhang
- Department of Hepatobiliary Surgery, Liver Cancer Institute and Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Shi-Zhe Zhang
- Department of Hepatobiliary Surgery, Liver Cancer Institute and Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Ke-Wei Zhang
- Department of General Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Hao Cai
- Department of Hepatobiliary Surgery, Liver Cancer Institute and Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Wen-Kai Shi
- Department of Hepatobiliary Surgery, Liver Cancer Institute and Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Xiao-Long Li
- Department of Hepatobiliary Surgery, Liver Cancer Institute and Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Kang-Shuai Li
- Department of Hepatobiliary Surgery, Liver Cancer Institute and Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Dong-Mei Gao
- Department of Hepatobiliary Surgery, Liver Cancer Institute and Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - De-Ning Ma
- Department of Colorectal Cancer Surgery, Zhejiang Cancer Hospital, Zhejiang, Hangzhou, 310022, China
| | - Bo-Gen Ye
- Department of Organ Transplantation, Changhai Hospital, The Second Military Medical University, Shanghai, 200433, China
| | - Cheng-Hao Wang
- Department of Liver Surgery, Fudan University Shanghai Cancer Center, Cancer Hospital, Shanghai, 200032, China
| | - Cheng-Dong Qin
- Department of Breast Cancer Surgery, Zhejiang Cancer Hospital, Zhejiang, Hangzhou, 310022, China
| | - Hui-Chuan Sun
- Department of Hepatobiliary Surgery, Liver Cancer Institute and Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
| | - Ti Zhang
- Department of Hepatobiliary Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.
| | - Zhao-You Tang
- Department of Hepatobiliary Surgery, Liver Cancer Institute and Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
| |
Collapse
|
147
|
Wu C, Chen Z, Xiao S, Thalhamer T, Madi A, Han T, Kuchroo V. SGK1 Governs the Reciprocal Development of Th17 and Regulatory T Cells. Cell Rep 2018; 22:653-665. [PMID: 29346764 PMCID: PMC5826610 DOI: 10.1016/j.celrep.2017.12.068] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 11/14/2017] [Accepted: 12/19/2017] [Indexed: 12/22/2022] Open
Abstract
A balance between Th17 and regulatory T (Treg) cells is critical for immune homeostasis and tolerance. Our previous work has shown Serum- and glucocorticoid-induced kinase 1 (SGK1) is critical for the development and function of Th17 cells. Here, we show that SGK1 restrains the function of Treg cells and reciprocally regulates development of Th17/Treg balance. SGK1 deficiency leads to protection against autoimmunity and enhances self-tolerance by promoting Treg cell development and disarming Th17 cells. Treg cell-specific deletion of SGK1 results in enhanced Treg cell-suppressive function through preventing Foxo1 out of the nucleus, thereby promoting Foxp3 expression by binding to Foxp3 CNS1 region. Furthermore, our data suggest that SGK1 also plays a critical role in IL-23R-mediated inhibition of Treg and development of Th17 cells. Therefore, we demonstrate that SGK1 functions as a pivotal node in regulating the reciprocal development of pro-inflammatory Th17 and Foxp3+ Treg cells during autoimmune tissue inflammation.
Collapse
Affiliation(s)
- Chuan Wu
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA.
| | - Zuojia Chen
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Sheng Xiao
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Theresa Thalhamer
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Asaf Madi
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Timothy Han
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Vijay Kuchroo
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
148
|
Yadav RK, Chauhan AS, Zhuang L, Gan B. FoxO transcription factors in cancer metabolism. Semin Cancer Biol 2018; 50:65-76. [PMID: 29309929 DOI: 10.1016/j.semcancer.2018.01.004] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 12/28/2017] [Accepted: 01/04/2018] [Indexed: 12/21/2022]
Abstract
FoxO transcription factors serve as the central regulator of cellular homeostasis and are tumor suppressors in human cancers. Recent studies have revealed that, besides their classic functions in promoting cell death and inducing cell cycle arrest, FoxOs also regulate cancer metabolism, an emerging hallmark of cancer. In this review, we summarize the regulatory mechanisms employed to control FoxO activities in the context of cancer biology, and discuss FoxO function in metabolism reprogramming in cancer and interaction with other key cancer metabolism pathways. A deeper understanding of FoxOs in cancer metabolism may reveal novel therapeutic opportunities in cancer treatment.
Collapse
Affiliation(s)
- Raj Kumar Yadav
- Department of Experimental Radiation Oncology, the University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Anoop Singh Chauhan
- Department of Experimental Radiation Oncology, the University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA.
| | - Li Zhuang
- Department of Experimental Radiation Oncology, the University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Boyi Gan
- Department of Experimental Radiation Oncology, the University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA; Department of Molecular and Cellular Oncology, the University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA; The University of Texas Graduate School of Biomedical Sciences, 1515 Holcombe Blvd, Houston, TX 77030, USA.
| |
Collapse
|
149
|
Mechanism of activation of SGK3 by growth factors via the Class 1 and Class 3 PI3Ks. Biochem J 2018; 475:117-135. [PMID: 29150437 PMCID: PMC5748840 DOI: 10.1042/bcj20170650] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/10/2017] [Accepted: 11/14/2017] [Indexed: 12/21/2022]
Abstract
Derailment of the PI3K-AGC protein kinase signalling network contributes to many human diseases including cancer. Recent work has revealed that the poorly studied AGC kinase family member, SGK3, promotes resistance to cancer therapies that target the Class 1 PI3K pathway, by substituting for loss of Akt kinase activity. SGK3 is recruited and activated at endosomes, by virtue of its phox homology domain binding to PtdIns(3)P. Here, we demonstrate that endogenous SGK3 is rapidly activated by growth factors such as IGF1, through pathways involving both Class 1 and Class 3 PI3Ks. We provide evidence that IGF1 enhances endosomal PtdIns(3)P levels via a pathway involving the UV-RAG complex of hVPS34 Class 3 PI3K. Our data point towards IGF1-induced activation of Class 1 PI3K stimulating SGK3 through enhanced production of PtdIns(3)P resulting from the dephosphorylation of PtdIns(3,4,5)P3 Our findings are also consistent with activation of Class 1 PI3K promoting mTORC2 phosphorylation of SGK3 and with oncogenic Ras-activating SGK3 solely through the Class 1 PI3K pathway. Our results highlight the versatility of upstream pathways that activate SGK3 and help explain how SGK3 substitutes for Akt following inhibition of Class 1 PI3K/Akt pathways. They also illustrate robustness of SGK3 activity that can remain active and counteract physiological conditions or stresses where either Class 1 or Class 3 PI3K pathways are inhibited.
Collapse
|
150
|
Unterman TG. Regulation of Hepatic Glucose Metabolism by FoxO Proteins, an Integrated Approach. Curr Top Dev Biol 2018; 127:119-147. [DOI: 10.1016/bs.ctdb.2017.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|