101
|
Baviera-Muñoz R, Carretero-Vilarroig L, Vázquez-Costa JF, Morata-Martínez C, Campins-Romeu M, Muelas N, Sastre-Bataller I, Martínez-Torres I, Pérez-García J, Sivera R, Sevilla T, Vilchez JJ, Jaijo T, Espinós C, Millán JM, Bataller L, Aller E. Diagnostic Efficacy of Genetic Studies in a Series of Hereditary Cerebellar Ataxias in Eastern Spain. NEUROLOGY GENETICS 2022; 8:e200038. [DOI: 10.1212/nxg.0000000000200038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022]
Abstract
Background and ObjectivesTo determine the diagnostic efficacy of clinical exome-targeted sequencing (CES) and spinocerebellar ataxia 36 (SCA36) screening in a real-life cohort of patients with cerebellar ataxia (CA) from Eastern Spain.MethodsA total of 130 unrelated patients with CA, negative for common trinucleotide repeat expansions (SCA1, SCA2, SCA3, SCA6, SCA7, SCA8, SCA12, SCA17, dentatorubral pallidoluysian atrophy [DRPLA], and Friedreich ataxia), were studied with CES. Bioinformatic and genotype-phenotype analyses were performed to assess the pathogenicity of the variants encountered. Copy number variants were analyzed when appropriate. In undiagnosed dominant and sporadic cases, repeat primed PCR was used to screen for the presence of a repeat expansion in theNOP56gene.ResultsCES identified pathogenic or likely pathogenic variants in 50 families (39%), including 23 novel variants. Overall, there was a high genetic heterogeneity, and the most frequent genetic diagnosis wasSPG7(n = 15), followed bySETX(n = 6),CACNA1A(n = 5),POLR3A(n = 4), andSYNE1(n = 3). In addition, 17 families displayed likely pathogenic/pathogenic variants in 14 different genes:KCND3(n = 2),KIF1C(n = 2),CYP27A1A(n = 2),AFG3L2(n = 1),ANO10(n = 1),CAPN1(n = 1),CWF19L1(n = 1),ITPR1(n = 1),KCNA1(n = 1),OPA1(n = 1),PNPLA6(n = 1),SPG11(n = 1),SPTBN2(n = 1), andTPP1(n = 1). Twenty-two novel variants were characterized. SCA36 was diagnosed in 11 families, all with autosomal dominant (AD) presentation. SCA36 screening increased the total diagnostic rate to 47% (n = 61/130). Ultimately, undiagnosed patients showed delayed age at onset (p< 0.05) and were more frequently sporadic.DiscussionOur study provides insight into the genetic landscape of CA in Eastern Spain. Although CES was an effective approach to capture genetic heterogeneity, most patients remained undiagnosed. SCA36 was found to be a relatively frequent form and, therefore, should be tested prior to CES in familial AD presentations in particular geographical regions.
Collapse
|
102
|
Ruan M, Wang H, Zhu M, Sun R, Shi J, Wang Q, Chen Y, Wang Y, Wang D. Heterozygous pathogenic variants in CWF19L1 in a Chinese family with spinocerebellar ataxia, autosomal recessive 17. J Clin Lab Anal 2022; 36:e24767. [PMID: 36357319 PMCID: PMC9757004 DOI: 10.1002/jcla.24767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND CWF19L1 is responsible for spinocerebellar ataxia, autosomal recessive 17, which presents with cerebellar ataxia, and atrophy. Here, we report novel compound heterozygous variants of CWF19L1 in a Chinese family with progressive ataxia and mental retardation of unknown etiology by analyzing clinical characteristics and genetic variations. METHODS Clinical profiles and genomic DNA extracts of family members were collected. Whole-exome and Sanger sequencing were performed to detect associated genetic variants. Pathogenicity prediction and conservation analysis of the identified variants were performed using bioinformatics tools. RESULTS We identified heterozygous variants at the invariant +2 position (c.1555_c.1557delGAG in exon 14 and c.1070G > T in exon 11) of the CWF19L1 gene. Two novel heterozygous variants of the CWF19L1 gene were identified in the CWF19L1 gene associated with autosomal recessive cerebellar ataxia. CONCLUSION Our results suggest that CWF19L1 variants may be a novel cause of recessive ataxia with developmental delay. Whole-exome sequencing is an efficient tool for screening variants associated with the disease. This case report may help diagnose and identify the causes of other ataxias, leading to novel therapies, especially in China. This finding enriches the variant spectrum of the CWF19L1 gene and lays the foundation for future studies on the correlation between genotype and phenotype.
Collapse
Affiliation(s)
- Miaohua Ruan
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hongwei Wang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Mianmian Zhu
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Rongyue Sun
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiamin Shi
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qiu Wang
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yuan Chen
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yihong Wang
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Dan Wang
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
103
|
Correia JS, Duarte-Silva S, Salgado AJ, Maciel P. Cell-based therapeutic strategies for treatment of spinocerebellar ataxias: an update. Neural Regen Res 2022; 18:1203-1212. [PMID: 36453395 PMCID: PMC9838137 DOI: 10.4103/1673-5374.355981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Spinocerebellar ataxias are heritable neurodegenerative diseases caused by a cytosine-adenine-guanine expansion, which encodes a long glutamine tract (polyglutamine) in the respective wild-type protein causing misfolding and protein aggregation. Clinical features of polyglutamine spinocerebellar ataxias include neuronal aggregation, mitochondrial dysfunction, decreased proteasomal activity, and autophagy impairment. Mutant polyglutamine protein aggregates accumulate within neurons and cause neural dysfunction and death in specific regions of the central nervous system. Spinocerebellar ataxias are mostly characterized by progressive ataxia, speech and swallowing problems, loss of coordination and gait deficits. Over the past decade, efforts have been made to ameliorate disease symptoms in patients, yet no cure is available. Previous studies have been proposing the use of stem cells as promising tools for central nervous system tissue regeneration. So far, pre-clinical trials have shown improvement in various models of neurodegenerative diseases following stem cell transplantation, including animal models of spinocerebellar ataxia types 1, 2, and 3. However, contrasting results can be found in the literature, depending on the animal model, cell type, and route of administration used. Nonetheless, clinical trials using cellular implants into degenerated brain regions have already been applied, with the expectation that these cells would be able to differentiate into the specific neuronal subtypes and re-populate these regions, reconstructing the affected neural network. Meanwhile, the question of how feasible it is to continue such treatments remains unanswered, with long-lasting effects being still unknown. To establish the value of these advanced therapeutic tools, it is important to predict the actions of the transplanted cells as well as to understand which cell type can induce the best outcomes for each disease. Further studies are needed to determine the best route of administration, without neglecting the possible risks of repetitive transplantation that these approaches so far appear to demand. Despite the challenges ahead of us, cell-transplantation therapies are reported to have transient but beneficial outcomes in spinocerebellar ataxias, which encourages efforts towards their improvement in the future.
Collapse
Affiliation(s)
- Joana Sofia Correia
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal,ICVS/3B’s – PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Sara Duarte-Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal,ICVS/3B’s – PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - António José Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal,ICVS/3B’s – PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Patrícia Maciel
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal,ICVS/3B’s – PT Government Associate Laboratory, Braga, Guimarães, Portugal,Correspondence to: Patrícia Maciel, .
| |
Collapse
|
104
|
Kharytaniuk N, Mazaheri AA, Pavlou M, Werring DJ, Bamiou DE. Health-Related Quality of Life in Adults With Classical Infratentorial Superficial Siderosis: A Cross-sectional Study. Neurology 2022; 99:e2201-e2211. [PMID: 36008145 PMCID: PMC9651455 DOI: 10.1212/wnl.0000000000201115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/30/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Infratentorial superficial siderosis (iSS) is a rare but disabling neurologic condition characterized by progressive hearing loss and balance and mobility problems. The functional decline in these neurologic domains with iSS progression is likely to adversely affect health-related quality of life (HRQoL). We studied the HRQoL of adults with iSS using 2 common generic HRQoL measures (Health Utilities Index Mark III [HUI3] and EuroQoL EQ5D [5 Level]) to determine the most affected domains and evaluate the association between HRQoL scores and disease duration. METHODS This observational study was an anonymous online survey. Following institutional Research Ethics Committee approval, we contacted dedicated international organizations, charities, and patient groups identified through online searches, social media, and collaborative networks, to distribute the study information and study link, inviting their members diagnosed with iSS to participate. Participation required access to a digital device connected to the Internet, confirmation of eligibility (aged 18 years and older and previously diagnosed with iSS), and informed consent to participate in the survey, which included study-specific questions (demographics, iSS, and hearing) and HRQoL questionnaires. Survey responses were captured by the Research Electronic Data Capture survey software and analyzed using the SPSS statistical package. Linear regression analysis was performed to investigate the association between HRQoL scores and disease duration. RESULTS Of 50 participants, 60% were male; the median (interquartile range [IQR]) age was 60 (15) years. The median (IQR) multiattribute scores for HUI3 and EQ5D were 0.36 (0.53) and 0.64 (0.33), respectively. The most frequently affected domains (moderate or worse category) were hearing (64%) and pain (48%) for HUI3 and mobility (54%) and pain (50%) for EQ5D. There was a weak association between disease duration and multiattribute scores for HUI3 (R = 0.353; adjusted R2 = 0.096; b = -0.008; p = 0.047) but not EQ5D. DISCUSSION Our findings demonstrate low HRQoL scores that capture low functional status in several domains typically affected in iSS, suggesting that iSS has a major adverse effect on quality of life in multiple functional domains. Measures of HRQoL in iSS should be included in clinical and research settings, including treatment trials.
Collapse
Affiliation(s)
- Natallia Kharytaniuk
- From the Ear Institute (N.K., D.-E.B.), Stroke Research Centre (D.W.), Department of Brain Repair and Rehabilitation, Queen Square Institute of Neurology (A.A.M.), and Department of Statistical Science (M.P.), University College London; and National Institute for Health and Care Research (N.K., D.-E.B.), University College London Hospitals Biomedical Research Centre (Deafness and Hearing Problems Theme), London; Southampton School of Medicine (A.A.M.), University of Southampton, UK.
| | - Amir Ala Mazaheri
- From the Ear Institute (N.K., D.-E.B.), Stroke Research Centre (D.W.), Department of Brain Repair and Rehabilitation, Queen Square Institute of Neurology (A.A.M.), and Department of Statistical Science (M.P.), University College London; and National Institute for Health and Care Research (N.K., D.-E.B.), University College London Hospitals Biomedical Research Centre (Deafness and Hearing Problems Theme), London; Southampton School of Medicine (A.A.M.), University of Southampton, UK
| | - Menelaos Pavlou
- From the Ear Institute (N.K., D.-E.B.), Stroke Research Centre (D.W.), Department of Brain Repair and Rehabilitation, Queen Square Institute of Neurology (A.A.M.), and Department of Statistical Science (M.P.), University College London; and National Institute for Health and Care Research (N.K., D.-E.B.), University College London Hospitals Biomedical Research Centre (Deafness and Hearing Problems Theme), London; Southampton School of Medicine (A.A.M.), University of Southampton, UK
| | - David J Werring
- From the Ear Institute (N.K., D.-E.B.), Stroke Research Centre (D.W.), Department of Brain Repair and Rehabilitation, Queen Square Institute of Neurology (A.A.M.), and Department of Statistical Science (M.P.), University College London; and National Institute for Health and Care Research (N.K., D.-E.B.), University College London Hospitals Biomedical Research Centre (Deafness and Hearing Problems Theme), London; Southampton School of Medicine (A.A.M.), University of Southampton, UK
| | - Doris-Eva Bamiou
- From the Ear Institute (N.K., D.-E.B.), Stroke Research Centre (D.W.), Department of Brain Repair and Rehabilitation, Queen Square Institute of Neurology (A.A.M.), and Department of Statistical Science (M.P.), University College London; and National Institute for Health and Care Research (N.K., D.-E.B.), University College London Hospitals Biomedical Research Centre (Deafness and Hearing Problems Theme), London; Southampton School of Medicine (A.A.M.), University of Southampton, UK
| |
Collapse
|
105
|
Tsimpanouli ME, Ghimire A, Barget AJ, Weston R, Paulson HL, Costa MDC, Watson BO. Sleep Alterations in a Mouse Model of Spinocerebellar Ataxia Type 3. Cells 2022; 11:cells11193132. [PMID: 36231095 PMCID: PMC9563426 DOI: 10.3390/cells11193132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/20/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
Spinocerebellar ataxia type 3 (SCA3) is a neurodegenerative disorder showing progressive neuronal loss in several brain areas and a broad spectrum of motor and non-motor symptoms, including ataxia and altered sleep. While sleep disturbances are known to play pathophysiologic roles in other neurodegenerative disorders, their impact on SCA3 is unknown. Using spectrographic measurements, we sought to quantitatively characterize sleep electroencephalography (EEG) in SCA3 transgenic mice with confirmed disease phenotype. We first measured motor phenotypes in 18-31-week-old homozygous SCA3 YACMJD84.2 mice and non-transgenic wild-type littermate mice during lights-on and lights-off periods. We next implanted electrodes to obtain 12-h (zeitgeber time 0-12) EEG recordings for three consecutive days when the mice were 26-36 weeks old. EEG-based spectroscopy showed that compared to wild-type littermates, SCA3 homozygous mice display: (i) increased duration of rapid-eye movement sleep (REM) and fragmentation in all sleep and wake states; (ii) higher beta power oscillations during REM and non-REM (NREM); and (iii) additional spectral power band alterations during REM and wake. Our data show that sleep architecture and EEG spectral power are dysregulated in homozygous SCA3 mice, indicating that common sleep-related etiologic factors may underlie mouse and human SCA3 phenotypes.
Collapse
Affiliation(s)
- Maria-Efstratia Tsimpanouli
- Department of Neurology, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Correspondence: (M.-E.T.); (M.d.C.C.); (B.O.W.)
| | - Anjesh Ghimire
- Department of Psychiatry, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Anna J. Barget
- Department of Neurology, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ridge Weston
- Department of Psychiatry, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Henry L. Paulson
- Department of Neurology, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Maria do Carmo Costa
- Department of Neurology, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Correspondence: (M.-E.T.); (M.d.C.C.); (B.O.W.)
| | - Brendon O. Watson
- Department of Psychiatry, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Correspondence: (M.-E.T.); (M.d.C.C.); (B.O.W.)
| |
Collapse
|
106
|
Park YW, Joers JM, Guo B, Hutter D, Bushara K, Adanyeguh IM, Eberly LE, Öz G, Lenglet C. Corrigendum: Assessment of cerebral and cerebellar white matter microstructure in spinocerebellar ataxias 1, 2, 3, and 6 using diffusion MRI. Front Neurol 2022; 13:1038298. [PMID: 36247785 PMCID: PMC9559733 DOI: 10.3389/fneur.2022.1038298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 12/04/2022] Open
Affiliation(s)
- Young Woo Park
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota Medical School, Minneapolis, MN, United States
- *Correspondence: Young Woo Park
| | - James M. Joers
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Bin Guo
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, United States
| | - Diane Hutter
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Khalaf Bushara
- Department of Neurology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Isaac M. Adanyeguh
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Lynn E. Eberly
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota Medical School, Minneapolis, MN, United States
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, United States
| | - Gülin Öz
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Christophe Lenglet
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota Medical School, Minneapolis, MN, United States
- Christophe Lenglet
| |
Collapse
|
107
|
Johnson SL, Tsou WL, Prifti MV, Harris AL, Todi SV. A survey of protein interactions and posttranslational modifications that influence the polyglutamine diseases. Front Mol Neurosci 2022; 15:974167. [PMID: 36187346 PMCID: PMC9515312 DOI: 10.3389/fnmol.2022.974167] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/27/2022] [Indexed: 01/20/2023] Open
Abstract
The presence and aggregation of misfolded proteins has deleterious effects in the nervous system. Among the various diseases caused by misfolded proteins is the family of the polyglutamine (polyQ) disorders. This family comprises nine members, all stemming from the same mutation—the abnormal elongation of a polyQ repeat in nine different proteins—which causes protein misfolding and aggregation, cellular dysfunction and disease. While it is the same type of mutation that causes them, each disease is distinct: it is influenced by regions and domains that surround the polyQ repeat; by proteins with which they interact; and by posttranslational modifications they receive. Here, we overview the role of non-polyQ regions that control the pathogenicity of the expanded polyQ repeat. We begin by introducing each polyQ disease, the genes affected, and the symptoms experienced by patients. Subsequently, we provide a survey of protein-protein interactions and posttranslational modifications that regulate polyQ toxicity. We conclude by discussing shared processes and pathways that bring some of the polyQ diseases together and may serve as common therapeutic entry points for this family of incurable disorders.
Collapse
Affiliation(s)
- Sean L. Johnson
- Department of Pharmacology, Wayne State University, Detroit, MI, United States
| | - Wei-Ling Tsou
- Department of Pharmacology, Wayne State University, Detroit, MI, United States
| | - Matthew V. Prifti
- Department of Pharmacology, Wayne State University, Detroit, MI, United States
| | - Autumn L. Harris
- Department of Pharmacology, Wayne State University, Detroit, MI, United States
- Maximizing Access to Research Careers (MARC) Program, Wayne State University, Detroit, MI, United States
| | - Sokol V. Todi
- Department of Pharmacology, Wayne State University, Detroit, MI, United States
- Maximizing Access to Research Careers (MARC) Program, Wayne State University, Detroit, MI, United States
- Department of Neurology, Wayne State University, Detroit, MI, United States
- *Correspondence: Sokol V. Todi,
| |
Collapse
|
108
|
Phenotypic and Genetic Heterogeneity of Adult Patients with Hereditary Spastic Paraplegia from Serbia. Cells 2022; 11:cells11182804. [PMID: 36139378 PMCID: PMC9497238 DOI: 10.3390/cells11182804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 11/17/2022] Open
Abstract
Hereditary spastic paraplegia (HSP) is among the most genetically diverse of all monogenic diseases. The aim was to analyze the genetic causes of HSP among adult Serbian patients. The study comprised 74 patients from 65 families clinically diagnosed with HSP during a nine-year prospective period. A panel of thirteen genes was analyzed: L1CAM (SPG1), PLP1 (SPG2), ATL1 (SPG3A), SPAST (SPG4), CYP7B1 (SPG5A), SPG7 (SPG7), KIF5A (SPG10), SPG11 (SPG11), ZYFVE26 (SPG15), REEP1 (SPG31), ATP13A2 (SPG78), DYNC1H1, and BICD2 using a next generation sequencing-based technique. A copy number variation (CNV) test for SPAST, SPG7, and SPG11 was also performed. Twenty-three patients from 19 families (29.2%) had conclusive genetic findings, including 75.0% of families with autosomal dominant and 25.0% with autosomal recessive inheritance, and 15.7% of sporadic cases. Twelve families had mutations in the SPAST gene, usually with a pure HSP phenotype. Three sporadic patients had conclusive findings in the SPG11 gene. Two unrelated patients carried a homozygous pathogenic mutation c.233T>A (p.L78*) in SPG7 that is a founder Roma mutation. One patient had a heterozygous de novo variant in the KIF5A gene, and one had a compound heterozygous mutation in the ZYFVE26 gene. The combined genetic yield of our gene panel and CNV analysis for HSP was around 30%. Our findings broaden the knowledge on the genetic epidemiology of HSP, with implications for molecular diagnostics in this region.
Collapse
|
109
|
Regensburger M, Spatz IT, Ollenschläger M, Martindale CF, Lindeburg P, Kohl Z, Eskofier B, Klucken J, Schüle R, Klebe S, Winkler J, Gaßner H. Inertial Gait Sensors to Measure Mobility and Functioning in Hereditary Spastic Paraplegia: A Cross-sectional Multicenter Clinical Study. Neurology 2022; 99:e1079-e1089. [PMID: 35667840 PMCID: PMC9519248 DOI: 10.1212/wnl.0000000000200819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/19/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Hereditary spastic paraplegia (HSP) causes progressive spasticity and weakness of the lower limbs. As neurologic examination and the clinical Spastic Paraplegia Rating Scale (SPRS) are subject to potential patient-dependent and clinician-dependent bias, instrumented gait analysis bears the potential to objectively quantify impaired gait. The aim of this study was to investigate gait cyclicity parameters by application of a mobile gait analysis system in a cross-sectional cohort of patients with HSP and a longitudinal fast progressing subcohort. METHODS Using wearable sensors attached to the shoes, patients with HSP and controls performed a 4 × 10 m walking test during regular visits in 3 outpatient centers. Patients were also rated according to the SPRS, and in a subset, questionnaires on quality of life and fear of falling were obtained. An unsupervised segmentation algorithm was used to extract stride parameters and respective coefficients of variation. RESULTS Mobile gait analysis was performed in a total of 112 ambulatory patients with HSP and 112 age-matched and sex-matched controls. Although swing time was unchanged compared with controls, there were significant increases in the duration of the total stride phase and the duration of the stance phase, both regarding absolute values and coefficients of variation values. Although stride parameters did not correlate with age, weight, or height of the patients, there were significant associations of absolute stride parameters with single SPRS items reflecting impaired mobility (|r| > 0.50), with patients' quality of life (|r| > 0.44), and notably with disease duration (|r| > 0.27). Sensor-derived coefficients of variation, on the other hand, were associated with patient-reported fear of falling (|r| > 0.41) and cognitive impairment (|r| > 0.40). In a small 1-year follow-up analysis of patients with complicated HSP and fast progression, the absolute values of mobile gait parameters had significantly worsened compared with baseline. DISCUSSION The presented wearable sensor system provides parameters of stride characteristics which seem clinically valid to reflect gait impairment in HSP. Owing to the feasibility regarding time, space, and costs, this study forms the basis for larger scale longitudinal and interventional studies in HSP.
Collapse
Affiliation(s)
- Martin Regensburger
- From the Department of Molecular Neurology (M.R., I.T.S., M.O., Z.K., J.K., J.W., H.G.), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU); Center for Rare Diseases Erlangen (ZSEER) (M.R., Z.K., J.W., H.G.), Universitätsklinikum Erlangen; Machine Learning and Data Analytics Lab (M.O., C.F.M., B.E.), Department of Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU); Department of Neurology (P.L., S.K.), University Hospital Essen; Department of Neurodegenerative Diseases (R.S.), Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen; German Center for Neurodegenerative Diseases (DZNE) (R.S.), Tübingen; and Fraunhofer IIS (H.G.), Fraunhofer Institute for Integrated Circuits IIS, Erlangen, Germany.
| | - Imke Tabea Spatz
- From the Department of Molecular Neurology (M.R., I.T.S., M.O., Z.K., J.K., J.W., H.G.), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU); Center for Rare Diseases Erlangen (ZSEER) (M.R., Z.K., J.W., H.G.), Universitätsklinikum Erlangen; Machine Learning and Data Analytics Lab (M.O., C.F.M., B.E.), Department of Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU); Department of Neurology (P.L., S.K.), University Hospital Essen; Department of Neurodegenerative Diseases (R.S.), Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen; German Center for Neurodegenerative Diseases (DZNE) (R.S.), Tübingen; and Fraunhofer IIS (H.G.), Fraunhofer Institute for Integrated Circuits IIS, Erlangen, Germany
| | - Malte Ollenschläger
- From the Department of Molecular Neurology (M.R., I.T.S., M.O., Z.K., J.K., J.W., H.G.), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU); Center for Rare Diseases Erlangen (ZSEER) (M.R., Z.K., J.W., H.G.), Universitätsklinikum Erlangen; Machine Learning and Data Analytics Lab (M.O., C.F.M., B.E.), Department of Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU); Department of Neurology (P.L., S.K.), University Hospital Essen; Department of Neurodegenerative Diseases (R.S.), Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen; German Center for Neurodegenerative Diseases (DZNE) (R.S.), Tübingen; and Fraunhofer IIS (H.G.), Fraunhofer Institute for Integrated Circuits IIS, Erlangen, Germany
| | - Christine F Martindale
- From the Department of Molecular Neurology (M.R., I.T.S., M.O., Z.K., J.K., J.W., H.G.), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU); Center for Rare Diseases Erlangen (ZSEER) (M.R., Z.K., J.W., H.G.), Universitätsklinikum Erlangen; Machine Learning and Data Analytics Lab (M.O., C.F.M., B.E.), Department of Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU); Department of Neurology (P.L., S.K.), University Hospital Essen; Department of Neurodegenerative Diseases (R.S.), Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen; German Center for Neurodegenerative Diseases (DZNE) (R.S.), Tübingen; and Fraunhofer IIS (H.G.), Fraunhofer Institute for Integrated Circuits IIS, Erlangen, Germany
| | - Philipp Lindeburg
- From the Department of Molecular Neurology (M.R., I.T.S., M.O., Z.K., J.K., J.W., H.G.), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU); Center for Rare Diseases Erlangen (ZSEER) (M.R., Z.K., J.W., H.G.), Universitätsklinikum Erlangen; Machine Learning and Data Analytics Lab (M.O., C.F.M., B.E.), Department of Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU); Department of Neurology (P.L., S.K.), University Hospital Essen; Department of Neurodegenerative Diseases (R.S.), Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen; German Center for Neurodegenerative Diseases (DZNE) (R.S.), Tübingen; and Fraunhofer IIS (H.G.), Fraunhofer Institute for Integrated Circuits IIS, Erlangen, Germany
| | - Zacharias Kohl
- From the Department of Molecular Neurology (M.R., I.T.S., M.O., Z.K., J.K., J.W., H.G.), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU); Center for Rare Diseases Erlangen (ZSEER) (M.R., Z.K., J.W., H.G.), Universitätsklinikum Erlangen; Machine Learning and Data Analytics Lab (M.O., C.F.M., B.E.), Department of Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU); Department of Neurology (P.L., S.K.), University Hospital Essen; Department of Neurodegenerative Diseases (R.S.), Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen; German Center for Neurodegenerative Diseases (DZNE) (R.S.), Tübingen; and Fraunhofer IIS (H.G.), Fraunhofer Institute for Integrated Circuits IIS, Erlangen, Germany
| | - Björn Eskofier
- From the Department of Molecular Neurology (M.R., I.T.S., M.O., Z.K., J.K., J.W., H.G.), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU); Center for Rare Diseases Erlangen (ZSEER) (M.R., Z.K., J.W., H.G.), Universitätsklinikum Erlangen; Machine Learning and Data Analytics Lab (M.O., C.F.M., B.E.), Department of Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU); Department of Neurology (P.L., S.K.), University Hospital Essen; Department of Neurodegenerative Diseases (R.S.), Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen; German Center for Neurodegenerative Diseases (DZNE) (R.S.), Tübingen; and Fraunhofer IIS (H.G.), Fraunhofer Institute for Integrated Circuits IIS, Erlangen, Germany
| | - Jochen Klucken
- From the Department of Molecular Neurology (M.R., I.T.S., M.O., Z.K., J.K., J.W., H.G.), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU); Center for Rare Diseases Erlangen (ZSEER) (M.R., Z.K., J.W., H.G.), Universitätsklinikum Erlangen; Machine Learning and Data Analytics Lab (M.O., C.F.M., B.E.), Department of Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU); Department of Neurology (P.L., S.K.), University Hospital Essen; Department of Neurodegenerative Diseases (R.S.), Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen; German Center for Neurodegenerative Diseases (DZNE) (R.S.), Tübingen; and Fraunhofer IIS (H.G.), Fraunhofer Institute for Integrated Circuits IIS, Erlangen, Germany
| | - Rebecca Schüle
- From the Department of Molecular Neurology (M.R., I.T.S., M.O., Z.K., J.K., J.W., H.G.), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU); Center for Rare Diseases Erlangen (ZSEER) (M.R., Z.K., J.W., H.G.), Universitätsklinikum Erlangen; Machine Learning and Data Analytics Lab (M.O., C.F.M., B.E.), Department of Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU); Department of Neurology (P.L., S.K.), University Hospital Essen; Department of Neurodegenerative Diseases (R.S.), Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen; German Center for Neurodegenerative Diseases (DZNE) (R.S.), Tübingen; and Fraunhofer IIS (H.G.), Fraunhofer Institute for Integrated Circuits IIS, Erlangen, Germany
| | - Stephan Klebe
- From the Department of Molecular Neurology (M.R., I.T.S., M.O., Z.K., J.K., J.W., H.G.), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU); Center for Rare Diseases Erlangen (ZSEER) (M.R., Z.K., J.W., H.G.), Universitätsklinikum Erlangen; Machine Learning and Data Analytics Lab (M.O., C.F.M., B.E.), Department of Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU); Department of Neurology (P.L., S.K.), University Hospital Essen; Department of Neurodegenerative Diseases (R.S.), Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen; German Center for Neurodegenerative Diseases (DZNE) (R.S.), Tübingen; and Fraunhofer IIS (H.G.), Fraunhofer Institute for Integrated Circuits IIS, Erlangen, Germany
| | - Jürgen Winkler
- From the Department of Molecular Neurology (M.R., I.T.S., M.O., Z.K., J.K., J.W., H.G.), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU); Center for Rare Diseases Erlangen (ZSEER) (M.R., Z.K., J.W., H.G.), Universitätsklinikum Erlangen; Machine Learning and Data Analytics Lab (M.O., C.F.M., B.E.), Department of Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU); Department of Neurology (P.L., S.K.), University Hospital Essen; Department of Neurodegenerative Diseases (R.S.), Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen; German Center for Neurodegenerative Diseases (DZNE) (R.S.), Tübingen; and Fraunhofer IIS (H.G.), Fraunhofer Institute for Integrated Circuits IIS, Erlangen, Germany
| | - Heiko Gaßner
- From the Department of Molecular Neurology (M.R., I.T.S., M.O., Z.K., J.K., J.W., H.G.), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU); Center for Rare Diseases Erlangen (ZSEER) (M.R., Z.K., J.W., H.G.), Universitätsklinikum Erlangen; Machine Learning and Data Analytics Lab (M.O., C.F.M., B.E.), Department of Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU); Department of Neurology (P.L., S.K.), University Hospital Essen; Department of Neurodegenerative Diseases (R.S.), Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen; German Center for Neurodegenerative Diseases (DZNE) (R.S.), Tübingen; and Fraunhofer IIS (H.G.), Fraunhofer Institute for Integrated Circuits IIS, Erlangen, Germany
| |
Collapse
|
110
|
Giannoccaro MP, Matteo E, Bartiromo F, Tonon C, Santorelli FM, Liguori R, Rizzo G. Multiple sclerosis in patients with hereditary spastic paraplegia: a case report and systematic review. Neurol Sci 2022; 43:5501-5511. [PMID: 35595875 DOI: 10.1007/s10072-022-06145-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/13/2022] [Indexed: 10/18/2022]
Abstract
INTRODUCTION An increasing number of cases of comorbid hereditary spastic paraplegia (HSP) and multiple sclerosis (MS) have been described. We report a patient with the SPG3A form of HSP and features of relapsing-remitting MS (RRMS). We took this opportunity to review the current literature of co-occurring MS and HSP. METHOD The patient underwent clinical, laboratory and neuroimaging evaluations. We performed a literature search for cases of HSP and MS. The 2017 McDonalds Criteria for MS were retrospectively applied to the selected cases. RESULTS A 34-year-old woman, presenting a molecular diagnosis of SPG3A, complained subacute sensory-motor symptoms. Spinal MRI disclosed T2-hyperintense lesions at C2, T6 and T4 level, the latter presenting contrast-enhancement. CSF analysis showed oligoclonal bands. She was treated with intravenous high-dose steroids, with symptom resolution. The literature review yielded 13 papers reporting 20 possible cases of MS and HSP. Nine patients (5 M, median age 34) met the 2017 McDonald criteria. Five (25%) received a diagnosis of RRMS and four (20%) of primary progressive MS. Brain MRI showed multiple WM lesions, mostly periventricular. Six of seven cases (85.7%) had spinal cord involvement. Oligoclonal bands were found in 6/8 (75%) patients. Seven patients (77.7%) improved/stabilized on immunotherapy. CONCLUSION This is the first description on the association between SPG3A type of HSP and MS. This report adds to the other reported cases of co-occurring HSPs and MS. Although it remains unclear if this association is casual or causal, clinicians should be aware that an HSP diagnosis does not always exclude a concomitant MS.
Collapse
Affiliation(s)
- Maria Pia Giannoccaro
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, 40139, Bologna, Italy
- Dipartimento di Scienze Biomediche e Neuromotorie, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Eleonora Matteo
- Dipartimento di Scienze Biomediche e Neuromotorie, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Fiorina Bartiromo
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, 40139, Bologna, Italy
- Dipartimento di Scienze Biomediche e Neuromotorie, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Caterina Tonon
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, 40139, Bologna, Italy
- Dipartimento di Scienze Biomediche e Neuromotorie, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | | | - Rocco Liguori
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, 40139, Bologna, Italy
- Dipartimento di Scienze Biomediche e Neuromotorie, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Giovanni Rizzo
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, 40139, Bologna, Italy.
| |
Collapse
|
111
|
Panza E, Meyyazhagan A, Orlacchio A. Hereditary spastic paraplegia: Genetic heterogeneity and common pathways. Exp Neurol 2022; 357:114203. [PMID: 35970204 DOI: 10.1016/j.expneurol.2022.114203] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 07/11/2022] [Accepted: 08/09/2022] [Indexed: 02/07/2023]
Abstract
Hereditary Spastic Paraplegias (HSPs) are a heterogeneous group of disease, mainly characterized by progressive spasticity and weakness of the lower limbs resulting from distal degeneration of corticospinal tract axons. Although HSPs represent rare or ultra-rare conditions, with reported cases of mutated genes found in single families, overall, with 87 forms described, they are an important health and economic problem for society and patients. In fact, they are chronic and life-hindering conditions, still lacking a specific therapy. Notwithstanding the number of forms described, and 73 causative genes identified, overall, the molecular diagnostic rate varies among 29% to 61.8%, based on recent published analysis, suggesting that more genes are involved in HSP and/or that different molecular diagnostic approaches are necessary. The accumulating data in this field highlight several peculiar features of HSPs, such as genetic heterogeneity, the discovery that different mutations in a single gene can be transmitted in dominant and recessive trait in families and allelic heterogeneity, resulting in the involvement of HSP-genes in other conditions. Based on the observation of protein functions, the activity of many different proteins encoded by HSP-related genes converges into some distinct pathophysiological mechanisms. This suggests that common pathways could be a potential target for a therapy, possibly addressing several forms at once. Furthermore, the overlap of HSP genes with other neurological conditions can further expand this concept.
Collapse
Affiliation(s)
- Emanuele Panza
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | - Arun Meyyazhagan
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| | - Antonio Orlacchio
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy; Laboratorio di Neurogenetica, Centro Europeo di Ricerca sul Cervello (CERC), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, Rome, Italy.
| |
Collapse
|
112
|
Calame DG, Herman I, Marshall AE, Maroofian R, Donis KC, Fatih JM, Mitani T, Du H, Grochowski CM, Sousa S, Bakhtiari S, Ito YA, Rocca C, Hunter JV, Sutton VR, Emrick LT, Boycott KM, Lossos A, Fellig Y, Prus E, Kalish Y, Meiner V, Suerink M, Ruivenkamp C, Muirhead K, Saadi NW, Zaki MS, Skidmore DL, Osmond M, Silva TO, Houlden H, Murphy D, Ghayoorarimiani E, Jamshidi Y, Jaddoa AG, Tajsharghi H, Jin SC, Coban-Akdemir Z, Travaglini L, Nicita F, Jhangiani SN, Gibbs RA, Posey JE, Kruer MC, Kernohan KD, Morales Saute JA, Vanderver A, Pehlivan D, Marafi D, Lupski JR. Biallelic Variants in the Ectonucleotidase ENTPD1 Cause a Complex Neurodevelopmental Disorder with Intellectual Disability, Distinct White Matter Abnormalities, and Spastic Paraplegia. Ann Neurol 2022; 92:304-321. [PMID: 35471564 PMCID: PMC10054521 DOI: 10.1002/ana.26381] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 01/17/2023]
Abstract
OBJECTIVE Human genomics established that pathogenic variation in diverse genes can underlie a single disorder. For example, hereditary spastic paraplegia is associated with >80 genes, with frequently only few affected individuals described for each gene. Herein, we characterize a large cohort of individuals with biallelic variation in ENTPD1, a gene previously linked to spastic paraplegia 64 (Mendelian Inheritance in Man # 615683). METHODS Individuals with biallelic ENTPD1 variants were recruited worldwide. Deep phenotyping and molecular characterization were performed. RESULTS A total of 27 individuals from 17 unrelated families were studied; additional phenotypic information was collected from published cases. Twelve novel pathogenic ENTPD1 variants are described (NM 001776.6): c.398_399delinsAA; p.(Gly133Glu), c.540del; p.(Thr181Leufs*18), c.640del; p.(Gly216Glufs*75), c.185 T > G; p.(Leu62*), c.1531 T > C; p.(*511Glnext*100), c.967C > T; p.(Gln323*), c.414-2_414-1del, and c.146 A > G; p.(Tyr49Cys) including 4 recurrent variants c.1109 T > A; p.(Leu370*), c.574-6_574-3del, c.770_771del; p.(Gly257Glufs*18), and c.1041del; p.(Ile348Phefs*19). Shared disease traits include childhood onset, progressive spastic paraplegia, intellectual disability (ID), dysarthria, and white matter abnormalities. In vitro assays demonstrate that ENTPD1 expression and function are impaired and that c.574-6_574-3del causes exon skipping. Global metabolomics demonstrate ENTPD1 deficiency leads to impaired nucleotide, lipid, and energy metabolism. INTERPRETATION The ENTPD1 locus trait consists of childhood disease onset, ID, progressive spastic paraparesis, dysarthria, dysmorphisms, and white matter abnormalities, with some individuals showing neurocognitive regression. Investigation of an allelic series of ENTPD1 (1) expands previously described features of ENTPD1-related neurological disease, (2) highlights the importance of genotype-driven deep phenotyping, (3) documents the need for global collaborative efforts to characterize rare autosomal recessive disease traits, and (4) provides insights into disease trait neurobiology. ANN NEUROL 2022;92:304-321.
Collapse
Affiliation(s)
- Daniel G. Calame
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Texas Children’s Hospital, Houston, Texas, 77030, USA
| | - Isabella Herman
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Texas Children’s Hospital, Houston, Texas, 77030, USA
| | - Aren E. Marshall
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, K1H 8L1, Canada
| | - Reza Maroofian
- Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University College London, London, UK
| | - Karina Carvalho Donis
- Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Jawid M. Fatih
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Tadahiro Mitani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Haowei Du
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | | | | | - Somayeh Bakhtiari
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children’s Hospital, Phoenix, AZ, 85016, USA
- Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine–Phoenix, Phoenix, AZ, USA
| | - Yoko A. Ito
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, K1H 8L1, Canada
| | - Clarissa Rocca
- Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University College London, London, UK
| | - Jill V. Hunter
- Texas Children’s Hospital, Houston, Texas, 77030, USA
- Division of Neuroradiology, Edward B. Singleton Department of Radiology, Texas Children’s Hospital, Houston, Texas
| | - V. Reid Sutton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Texas Children’s Hospital, Houston, Texas, 77030, USA
| | - Lisa T. Emrick
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Texas Children’s Hospital, Houston, Texas, 77030, USA
| | - Kym M. Boycott
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, K1H 8L1, Canada
| | - Alexander Lossos
- Department of Neurology, Hadassah Medical Organization and Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel
| | - Yakov Fellig
- Department of Pathology, Hadassah Medical Organization and Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel
| | - Eugenia Prus
- Hematology and Bone Marrow Transplantation Division, Hadassah Medical Center and the Hebrew University, POB 12000, 91120, Jerusalem, Israel
| | - Yosef Kalish
- Hematology and Bone Marrow Transplantation Division, Hadassah Medical Center and the Hebrew University, POB 12000, 91120, Jerusalem, Israel
| | - Vardiella Meiner
- Department of Genetics, Hadassah Medical Center and the Hebrew University, POB 12000, 91120, Jerusalem, Israel
| | - Manon Suerink
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Claudia Ruivenkamp
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Kayla Muirhead
- Division of Neurology, Children’s Hospital of Philadelphia, Abramson Research Center, 3615 Civic Center Boulevard, Philadelphia, Pennsylvania 19104, USA
| | - Nebal W. Saadi
- College of Medicine / University of Baghdad, Children Welfare Teaching Hospital, Medical City Complex, Baghdad 10001, Iraq
| | - Maha S. Zaki
- Clinical Genetics Department, Human Genetics and Genome Research Division, Centre of Excellence of Human Genetics, National Research Centre, Cairo, Egypt
| | - David L. Skidmore
- Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Matthew Osmond
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, K1H 8L1, Canada
| | - Thiago Oliveira Silva
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Postgraduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Henry Houlden
- Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University College London, London, UK
| | - David Murphy
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, United Kingdom
| | - Ehsan Ghayoorarimiani
- Genetics Section, Molecular and Clinical Sciences Institute, St. George’s University of London, Cranmer Terrace, London SW17 0RE, UK
| | - Yalda Jamshidi
- Genetics Section, Molecular and Clinical Sciences Institute, St. George’s University of London, Cranmer Terrace, London SW17 0RE, UK
| | | | - Homa Tajsharghi
- School of Health Sciences, Division Biomedicine, University of Skovde, Skovde, Sweden
| | - Sheng Chih Jin
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Zeynep Coban-Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Lorena Travaglini
- Unit of Neuromuscular and Neurodegenerative Disorders, Department of Neurosciences, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Laboratory of Molecular Medicine, Department of Neuroscience, IRCCS Bambino Gesù Children’s Hospital, 00146 Rome, Italy
| | - Francesco Nicita
- Unit of Neuromuscular and Neurodegenerative Disorders, Department of Neurosciences, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Laboratory of Molecular Medicine, Department of Neuroscience, IRCCS Bambino Gesù Children’s Hospital, 00146 Rome, Italy
| | - Shalini N. Jhangiani
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Richard A. Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Jennifer E. Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Michael C. Kruer
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children’s Hospital, Phoenix, AZ, 85016, USA
- Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine–Phoenix, Phoenix, AZ, USA
| | - Kristin D. Kernohan
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, K1H 8L1, Canada
- Newborn Screening Ontario, Ottawa, Canada, K1H 8L1, Canada
| | - Jonas A. Morales Saute
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Internal Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Neurology Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Adeline Vanderver
- Division of Neurology, Children’s Hospital of Philadelphia, Abramson Research Center, 3615 Civic Center Boulevard, Philadelphia, Pennsylvania 19104, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, Pennsylvania 19104, USA
| | - Davut Pehlivan
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Texas Children’s Hospital, Houston, Texas, 77030, USA
| | - Dana Marafi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Department of Pediatrics, Faculty of Medicine, Kuwait University, P.O. Box 24923, 13110 Safat, Kuwait
| | - James R. Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Texas Children’s Hospital, Houston, Texas, 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| |
Collapse
|
113
|
Spinocerebellar ataxia in a cohort of patients from Rio de Janeiro. Neurol Sci 2022; 43:4997-5005. [DOI: 10.1007/s10072-022-06084-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/14/2022] [Indexed: 10/18/2022]
|
114
|
Radmard S, Zesiewicz TA, Kuo SH. Evaluation of Cerebellar Ataxic Patients. Neurol Clin 2022; 41:21-44. [DOI: 10.1016/j.ncl.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
115
|
The Puzzle of Hereditary Spastic Paraplegia: From Epidemiology to Treatment. Int J Mol Sci 2022; 23:ijms23147665. [PMID: 35887006 PMCID: PMC9321931 DOI: 10.3390/ijms23147665] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 01/03/2023] Open
Abstract
Inherited neurodegenerative pathology characterized by lower muscle tone and increasing spasticity in the lower limbs is termed hereditary spastic paraplegia (HSP). HSP is associated with changes in about 80 genes and their products involved in various biochemical pathways, such as lipid droplet formation, endoplasmic reticulum shaping, axon transport, endosome trafficking, and mitochondrial function. With the inheritance patterns of autosomal dominant, autosomal recessive, X-linked recessive, and mitochondrial inheritance, HSP is prevalent around the globe at a rate of 1–5 cases in every 100,000 individuals. Recent technology and medical interventions somewhat aid in recognizing and managing the malaise. However, HSP still lacks an appropriate and adequate therapeutic approach. Current therapies are based on the clinical manifestations observed in the patients, for example, smoothing the relaxant spastic muscle and physiotherapies. The limited clinical trial studies contribute to the absence of specific pharmaceuticals for HSPs. Our current work briefly explains the causative genes, epidemiology, underlying mechanism, and the management approach undertaken to date. We have also mentioned the latest approved drugs to summarise the available knowledge on therapeutic strategies for HSP.
Collapse
|
116
|
Maas RPPWM, Teerenstra S, Lima M, Pires P, Pereira de Almeida L, van Gaalen J, Timmann D, Infante J, Onyike C, Bushara K, Jacobi H, Reetz K, Santana MM, Afonso Ribeiro J, Hübener-Schmid J, de Vries JJ, Synofzik M, Schöls L, Garcia-Moreno H, Giunti P, Faber J, Klockgether T, van de Warrenburg BPC. Differential Temporal Dynamics of Axial and Appendicular Ataxia in SCA3. Mov Disord 2022; 37:1850-1860. [PMID: 35808813 PMCID: PMC9540189 DOI: 10.1002/mds.29135] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/20/2022] [Accepted: 06/06/2022] [Indexed: 01/02/2023] Open
Abstract
Background Disease severity in spinocerebellar ataxia type 3 (SCA3) is commonly defined by the Scale for the Assessment and Rating of Ataxia (SARA) sum score, but little is known about the contributions and progression patterns of individual items. Objectives To investigate the temporal dynamics of SARA item scores in SCA3 patients and evaluate if clinical and demographic factors are differentially associated with evolution of axial and appendicular ataxia. Methods In a prospective, multinational cohort study involving 11 European and 2 US sites, SARA scores were determined longitudinally in 223 SCA3 patients with a follow‐up assessment after 1 year. Results An increase in SARA score from 10 to 20 points was mainly driven by axial and speech items, with a markedly smaller contribution of appendicular items. Finger chase and nose‐finger test scores not only showed the lowest variability at baseline, but also the least deterioration at follow‐up. Compared with the full set of SARA items, omission of both tests would result in lower sample size requirements for therapeutic trials. Sex was associated with change in SARA sum score and appendicular, but not axial, subscore, with a significantly faster progression in men. Despite considerable interindividual variability, the average annual progression rate of SARA score was approximately three times higher in subjects with a disease duration over 10 years than in those within 10 years from onset. Conclusion Our findings provide evidence for a difference in temporal dynamics between axial and appendicular ataxia in SCA3 patients, which will help inform the design of clinical trials and development of new (etiology‐specific) outcome measures. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Roderick P P W M Maas
- Department of Neurology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Steven Teerenstra
- Department for Health Evidence, Biostatistics Section, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Manuela Lima
- Faculdade de Ciências e Tecnologia, Universidade dos Açores, Azores, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Paula Pires
- Department of Neurology, Hospital Santo Espírito da ilha Terceira, Azores, Portugal
| | - Luís Pereira de Almeida
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Judith van Gaalen
- Department of Neurology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dagmar Timmann
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Jon Infante
- Neurology Service, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CINERNED), University Hospital Marques de Valdecilla-IDIVAL, University of Cantabria-UC, Santander, Spain
| | - Chiadi Onyike
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Khalaf Bushara
- Ataxia Center, Department of Neurology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Heike Jacobi
- Department of Neurology, University Hospital Heidelberg, Heidelberg, Germany
| | - Kathrin Reetz
- Department of Neurology, RWTH Aachen University, Aachen, Germany.,JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
| | - Magda M Santana
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - Joana Afonso Ribeiro
- Department of Neurology, Child Development Centre, Coimbra's Hospital and University Centre, Coimbra, Portugal
| | | | - Jeroen J de Vries
- Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Expertise Center Movement Disorders Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Center for Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Ludger Schöls
- Department of Neurodegenerative Diseases, Center for Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Hector Garcia-Moreno
- Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.,Department of Neurogenetics, National Hospital for Neurology and Neurosurgery, University College London Hospital NHS Foundation Trust, London, United Kingdom
| | - Paola Giunti
- Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.,Department of Neurogenetics, National Hospital for Neurology and Neurosurgery, University College London Hospital NHS Foundation Trust, London, United Kingdom
| | - Jennifer Faber
- Department of Neurology, University Hospital Bonn, Bonn, Germany.,German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Thomas Klockgether
- Department of Neurology, University Hospital Bonn, Bonn, Germany.,German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Bart P C van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
117
|
Olmos V, Gogia N, Luttik K, Haidery F, Lim J. The extra-cerebellar effects of spinocerebellar ataxia type 1 (SCA1): looking beyond the cerebellum. Cell Mol Life Sci 2022; 79:404. [PMID: 35802260 PMCID: PMC9993484 DOI: 10.1007/s00018-022-04419-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 12/28/2022]
Abstract
Spinocerebellar ataxia type 1 (SCA1) is one of nine polyglutamine (polyQ) diseases and is characterized as an adult late-onset, progressive, dominantly inherited genetic disease. SCA1 is caused by an increase in the number of CAG repeats in the ATXN1 gene leading to an expanded polyQ tract in the ATAXIN-1 protein. ATAXIN-1 is broadly expressed throughout the brain. However, until recently, SCA1 research has primarily centered on the cerebellum, given the characteristic cerebellar Purkinje cell loss observed in patients, as well as the progressive motor deficits, including gait and limb incoordination, that SCA1 patients present with. There are, however, also other symptoms such as respiratory problems, cognitive defects and memory impairment, anxiety, and depression observed in SCA1 patients and mouse models, which indicate that there are extra-cerebellar effects of SCA1 that cannot be explained solely through changes in the cerebellar region of the brain alone. The existing gap between human and mouse model studies of extra-cerebellar regions in SCA1 makes it difficult to answer many important questions in the field. This review will cover both the cerebellar and extra-cerebellar effects of SCA1 and highlight the need for further investigations into the impact of mutant ATXN1 expression in these regions. This review will also discuss implications of extra-cerebellar effects not only for SCA1 but other neurodegenerative diseases showing diverse pathology as well.
Collapse
Affiliation(s)
- Victor Olmos
- Department of Genetics, Yale School of Medicine, 295 Congress Avenue, BCMM 154E, New Haven, CT, 06510, USA
| | - Neha Gogia
- Department of Genetics, Yale School of Medicine, 295 Congress Avenue, BCMM 154E, New Haven, CT, 06510, USA
| | - Kimberly Luttik
- Interdepartmental Neuroscience Program, Yale School of Medicine, 295 Congress Avenue, BCMM 154E, New Haven, CT, 06510, USA
- Department of Neuroscience, Yale School of Medicine, 295 Congress Avenue, BCMM 154E, New Haven, CT, 06510, USA
| | | | - Janghoo Lim
- Department of Genetics, Yale School of Medicine, 295 Congress Avenue, BCMM 154E, New Haven, CT, 06510, USA.
- Interdepartmental Neuroscience Program, Yale School of Medicine, 295 Congress Avenue, BCMM 154E, New Haven, CT, 06510, USA.
- Department of Neuroscience, Yale School of Medicine, 295 Congress Avenue, BCMM 154E, New Haven, CT, 06510, USA.
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale School of Medicine, 295 Congress Avenue, BCMM 154E, New Haven, CT, 06510, USA.
- Yale Stem Cell Center, Yale School of Medicine, 295 Congress Avenue, BCMM 154E, New Haven, CT, 06510, USA.
| |
Collapse
|
118
|
Nivean PD, Sayee TSM, Madhivanan N. Pseudoproptosis in a case of familial hereditary cerebellar ataxia. Indian J Ophthalmol 2022; 70:2735-2736. [PMID: 35791228 PMCID: PMC9426200 DOI: 10.4103/ijo.ijo_1169_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
119
|
Lamberti G, Sesenna G, Marina M, Ricci E, Ciardi G. Robot Assisted Gait Training in a Patient with Ataxia. Neurol Int 2022; 14:561-573. [PMID: 35893280 PMCID: PMC9326713 DOI: 10.3390/neurolint14030045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 12/02/2022] Open
Abstract
Background: Ataxia is a neurological sign characterized by motor coordination during gait/voluntary limb movements impairment. Ataxic gait leads to disability and worsening of quality of life; physiotherapy intervention is recommended to improve motor function. Recent studies showed benefits due to repetitive robotized assisted gait training using a static exoskeleton in patients affected by acquired ataxias. The aim of the study was to perform a preliminary evaluation of the short-term effects of overground UAN.GO®-assisted gait training in an adult patient with ataxia but with no clear genetic pattern. Methods: This case report study was conducted on a single male adult patient, who presented ataxic spastic gait, posterior chain tightness, pes cavus, and unstable standing position. The patient underwent two preliminary sessions to take part in the study. Treatment protocol planned 10 sessions and each one lasted 80 min, 60 of which were spent in gait training using the mobile overground exoskeleton UAN.GO®. At T1 (start of the study) and T10 (final evaluation) assessments using the Scale for the Assessment and Rating of Ataxia, Berg Balance Scale, 6-Minute Walking Test, and Likert Scale were administered. Space-time parameters of gait cycle were also evaluated: left and right step length, stance and swing percentages. Results: improvements on the Scale for the Assessment and Rating of Ataxia, Berg Balance Scale, and in the distance travelled at 6-Minute Walking Test emerged. The patient gave a positive opinion towards the treatment, showed by Likert Scale results. Kinematic gait analysis showed more physiological step length, stance and swing percentages, joint angles. The patient completed the training program with an excellent compliance. Discussion: Since these encouraging outcomes were obtained, it is possible to consider robot-assisted gait training performed with UAN.GO® as a therapeutic option to improve motor and functional performance in patients with ataxic gait.
Collapse
Affiliation(s)
- Gianfranco Lamberti
- Spinal Unit, Azienda Usl, 29121 Piacenza, Italy; (G.L.); (E.R.)
- Degree Course of Physiotherapy, University of Parma-Piacenza Training Center, Viale Abruzzo 12, 29017 Fiorenzuola d’Arda, Italy
| | | | - Martina Marina
- Degree Course of Physiotherapy Student, University of Parma-Piacenza Training Center, Viale Abruzzo 12, 29017 Fiorenzuola d’Arda, Italy;
| | - Emanuela Ricci
- Spinal Unit, Azienda Usl, 29121 Piacenza, Italy; (G.L.); (E.R.)
- Degree Course of Physiotherapy, University of Parma-Piacenza Training Center, Viale Abruzzo 12, 29017 Fiorenzuola d’Arda, Italy
| | - Gianluca Ciardi
- Spinal Unit, Azienda Usl, 29121 Piacenza, Italy; (G.L.); (E.R.)
- Degree Course of Physiotherapy, University of Parma-Piacenza Training Center, Viale Abruzzo 12, 29017 Fiorenzuola d’Arda, Italy
- Correspondence:
| |
Collapse
|
120
|
Discovery of Therapeutics Targeting Oxidative Stress in Autosomal Recessive Cerebellar Ataxia: A Systematic Review. Pharmaceuticals (Basel) 2022; 15:ph15060764. [PMID: 35745683 PMCID: PMC9228961 DOI: 10.3390/ph15060764] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/05/2022] [Accepted: 06/14/2022] [Indexed: 01/05/2023] Open
Abstract
Autosomal recessive cerebellar ataxias (ARCAs) are a heterogeneous group of rare neurodegenerative inherited disorders. The resulting motor incoordination and progressive functional disabilities lead to reduced lifespan. There is currently no cure for ARCAs, likely attributed to the lack of understanding of the multifaceted roles of antioxidant defense and the underlying mechanisms. This systematic review aims to evaluate the extant literature on the current developments of therapeutic strategies that target oxidative stress for the management of ARCAs. We searched PubMed, Web of Science, and Science Direct Scopus for relevant peer-reviewed articles published from 1 January 2016 onwards. A total of 28 preclinical studies fulfilled the eligibility criteria for inclusion in this systematic review. We first evaluated the altered cellular processes, abnormal signaling cascades, and disrupted protein quality control underlying the pathogenesis of ARCA. We then examined the current potential therapeutic strategies for ARCAs, including aromatic, organic and pharmacological compounds, gene therapy, natural products, and nanotechnology, as well as their associated antioxidant pathways and modes of action. We then discussed their potential as antioxidant therapeutics for ARCAs, with the long-term view toward their possible translation to clinical practice. In conclusion, our current understanding is that these antioxidant therapies show promise in improving or halting the progression of ARCAs. Tailoring the therapies to specific disease stages could greatly facilitate the management of ARCAs.
Collapse
|
121
|
Speech Impairment in Cerebellar Ataxia Affects Naturalness More Than Intelligibility. THE CEREBELLUM 2022:10.1007/s12311-022-01427-y. [PMID: 35670895 DOI: 10.1007/s12311-022-01427-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/31/2022] [Indexed: 10/18/2022]
Abstract
The purpose of this analysis was to document intelligibility and naturalness in ataxia, a neurological condition that results from cerebellar damage. The cerebellum is important for normal speech production to scale and coordinate articulatory and laryngeal movements. The disruption of these cerebellar mechanisms has unique implications for how intelligibility and naturalness are affected in ataxia. The results of research on speech in ataxia have important clinical implications for assessment and treatment of individuals with ataxic dysarthria. Speech samples from 27 participants with ataxia and 28 age- and sex-matched control participants were assessed by nine speech-language pathology graduate students for intelligibility and naturalness. Intelligibility was measured as the percentage of words transcribed correctly, and naturalness was assessed as a subjective rating on a seven-point interval scale. Both intra- and inter-rater reliability were moderate to high for both intelligibility and naturalness. Speech intelligibility and naturalness were robustly decreased in the ataxia group compared to the control group; however, the difference was greater for measures of speech naturalness. There were robust relationships among dysarthria severity, length of diagnosis, and speech naturalness in speakers with ataxia, but there were no other robust effects for age, sex, or impact on quality of life for intelligibility or naturalness. Speech naturalness was more impaired than intelligibility in speakers with ataxia. Impaired naturalness can have debilitating consequences for communicative participation, effectiveness, and quality of life. Assessment and treatment for ataxic dysarthria should include aspects of prosodic control for speech naturalness.
Collapse
|
122
|
Cendelin J, Cvetanovic M, Gandelman M, Hirai H, Orr HT, Pulst SM, Strupp M, Tichanek F, Tuma J, Manto M. Consensus Paper: Strengths and Weaknesses of Animal Models of Spinocerebellar Ataxias and Their Clinical Implications. CEREBELLUM (LONDON, ENGLAND) 2022; 21:452-481. [PMID: 34378174 PMCID: PMC9098367 DOI: 10.1007/s12311-021-01311-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/21/2021] [Indexed: 01/02/2023]
Abstract
Spinocerebellar ataxias (SCAs) represent a large group of hereditary degenerative diseases of the nervous system, in particular the cerebellum, and other systems that manifest with a variety of progressive motor, cognitive, and behavioral deficits with the leading symptom of cerebellar ataxia. SCAs often lead to severe impairments of the patient's functioning, quality of life, and life expectancy. For SCAs, there are no proven effective pharmacotherapies that improve the symptoms or substantially delay disease progress, i.e., disease-modifying therapies. To study SCA pathogenesis and potential therapies, animal models have been widely used and are an essential part of pre-clinical research. They mainly include mice, but also other vertebrates and invertebrates. Each animal model has its strengths and weaknesses arising from model animal species, type of genetic manipulation, and similarity to human diseases. The types of murine and non-murine models of SCAs, their contribution to the investigation of SCA pathogenesis, pathological phenotype, and therapeutic approaches including their advantages and disadvantages are reviewed in this paper. There is a consensus among the panel of experts that (1) animal models represent valuable tools to improve our understanding of SCAs and discover and assess novel therapies for this group of neurological disorders characterized by diverse mechanisms and differential degenerative progressions, (2) thorough phenotypic assessment of individual animal models is required for studies addressing therapeutic approaches, (3) comparative studies are needed to bring pre-clinical research closer to clinical trials, and (4) mouse models complement cellular and invertebrate models which remain limited in terms of clinical translation for complex neurological disorders such as SCAs.
Collapse
Affiliation(s)
- Jan Cendelin
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 75, 323 00, Plzen, Czech Republic.
- Laboratory of Neurodegenerative Disorders, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 75, 323 00, Plzen, Czech Republic.
| | - Marija Cvetanovic
- Department of Neuroscience, Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Mandi Gandelman
- Department of Neurology, University of Utah, 175 North Medical Drive East, Salt Lake City, UT, 84132, USA
| | - Hirokazu Hirai
- Department of Neurophysiology and Neural Repair, Gunma University Graduate School of Medicine, 3-39-22, Gunma, 371-8511, Japan
- Viral Vector Core, Gunma University Initiative for Advanced Research (GIAR), Gunma, 371-8511, Japan
| | - Harry T Orr
- Department of Laboratory Medicine and Pathology, Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Stefan M Pulst
- Department of Neurology, University of Utah, 175 North Medical Drive East, Salt Lake City, UT, 84132, USA
| | - Michael Strupp
- Department of Neurology and German Center for Vertigo and Balance Disorders, Hospital of the Ludwig-Maximilians University, Munich, Campus Grosshadern, Marchioninistr. 15, 81377, Munich, Germany
| | - Filip Tichanek
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 75, 323 00, Plzen, Czech Republic
- Laboratory of Neurodegenerative Disorders, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 75, 323 00, Plzen, Czech Republic
| | - Jan Tuma
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 75, 323 00, Plzen, Czech Republic
- The Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, MC 7843, San Antonio, TX, 78229, USA
| | - Mario Manto
- Unité des Ataxies Cérébelleuses, Service de Neurologie, CHU-Charleroi, Charleroi, Belgium
- Service des Neurosciences, Université de Mons, UMons, Mons, Belgium
| |
Collapse
|
123
|
Zhao J, Zhang H, Fan X, Yu X, Huai J. Lipid Dyshomeostasis and Inherited Cerebellar Ataxia. Mol Neurobiol 2022; 59:3800-3828. [PMID: 35420383 PMCID: PMC9148275 DOI: 10.1007/s12035-022-02826-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/01/2022] [Indexed: 12/04/2022]
Abstract
Cerebellar ataxia is a form of ataxia that originates from dysfunction of the cerebellum, but may involve additional neurological tissues. Its clinical symptoms are mainly characterized by the absence of voluntary muscle coordination and loss of control of movement with varying manifestations due to differences in severity, in the site of cerebellar damage and in the involvement of extracerebellar tissues. Cerebellar ataxia may be sporadic, acquired, and hereditary. Hereditary ataxia accounts for the majority of cases. Hereditary ataxia has been tentatively divided into several subtypes by scientists in the field, and nearly all of them remain incurable. This is mainly because the detailed mechanisms of these cerebellar disorders are incompletely understood. To precisely diagnose and treat these diseases, studies on their molecular mechanisms have been conducted extensively in the past. Accumulating evidence has demonstrated that some common pathogenic mechanisms exist within each subtype of inherited ataxia. However, no reports have indicated whether there is a common mechanism among the different subtypes of inherited cerebellar ataxia. In this review, we summarize the available references and databases on neurological disorders characterized by cerebellar ataxia and show that a subset of genes involved in lipid homeostasis form a new group that may cause ataxic disorders through a common mechanism. This common signaling pathway can provide a valuable reference for future diagnosis and treatment of ataxic disorders.
Collapse
Affiliation(s)
- Jin Zhao
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China
| | - Huan Zhang
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China
| | - Xueyu Fan
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China
| | - Xue Yu
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China
| | - Jisen Huai
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China.
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
124
|
van der Horn HJ, Meles SK, Kok JG, Vergara VM, Qi S, Calhoun VD, Dalenberg JR, Siero JCW, Renken RJ, de Vries JJ, Spikman JM, Kremer HPH, De Jong BM. A resting-state fMRI pattern of spinocerebellar ataxia type 3 and comparison with 18F-FDG PET. Neuroimage Clin 2022; 34:103023. [PMID: 35489193 PMCID: PMC9062756 DOI: 10.1016/j.nicl.2022.103023] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/25/2022] [Accepted: 04/24/2022] [Indexed: 11/17/2022]
Abstract
This is the first study identifying a resting-state fMRI pattern in SCA3. This pattern was closely associated with a metabolic (18F-FDG PET) counterpart. Pattern subject scores were highly correlated with ataxia severity.
Spinocerebellar ataxia type 3 (SCA3) is a rare genetic neurodegenerative disease. The neurobiological basis of SCA3 is still poorly understood, and up until now resting-state fMRI (rs-fMRI) has not been used to study this disease. In the current study we investigated (multi-echo) rs-fMRI data from patients with genetically confirmed SCA3 (n = 17) and matched healthy subjects (n = 16). Using independent component analysis (ICA) and subsequent regression with bootstrap resampling, we identified a pattern of differences between patients and healthy subjects, which we coined the fMRI SCA3 related pattern (fSCA3-RP) comprising cerebellum, anterior striatum and various cortical regions. Individual fSCA3-RP scores were highly correlated with a previously published 18F-FDG PET pattern found in the same sample (rho = 0.78, P = 0.0003). Also, a high correlation was found with the Scale for Assessment and Rating of Ataxia scores (r = 0.63, P = 0.007). No correlations were found with neuropsychological test scores, nor with levels of grey matter atrophy. Compared with the 18F-FDG PET pattern, the fSCA3-RP included a more extensive contribution of the mediofrontal cortex, putatively representing changes in default network activity. This rs-fMRI identification of additional regions is proposed to reflect a consequence of the nature of the BOLD technique, enabling measurement of dynamic network activity, compared to the more static 18F-FDG PET methodology. Altogether, our findings shed new light on the neural substrate of SCA3, and encourage further validation of the fSCA3-RP to assess its potential contribution as imaging biomarker for future research and clinical use.
Collapse
Affiliation(s)
- Harm J van der Horn
- Department of Neurology, University Medical Center Groningen, University of Groningen, the Netherlands.
| | - Sanne K Meles
- Department of Neurology, University Medical Center Groningen, University of Groningen, the Netherlands
| | - Jelmer G Kok
- Department of Neurology, University Medical Center Groningen, University of Groningen, the Netherlands
| | - Victor M Vergara
- Tri-institutional Center for Translational Research (TReNDS), Georgia State, Georgia Tech, Emory, Atlanta, GA, USA
| | - Shile Qi
- Tri-institutional Center for Translational Research (TReNDS), Georgia State, Georgia Tech, Emory, Atlanta, GA, USA
| | - Vince D Calhoun
- Tri-institutional Center for Translational Research (TReNDS), Georgia State, Georgia Tech, Emory, Atlanta, GA, USA
| | - Jelle R Dalenberg
- Department of Neurology, University Medical Center Groningen, University of Groningen, the Netherlands
| | - Jeroen C W Siero
- Department of Radiology, Utrecht Center for Image Sciences, University Medical Center Utrecht, Utrecht, the Netherlands; Spinoza Centre for Neuroimaging Amsterdam, Amsterdam, the Netherlands
| | - Remco J Renken
- Department of Neuroscience, University Medical Center Groningen, University of Groningen, the Netherlands
| | - Jeroen J de Vries
- Department of Neurology, University Medical Center Groningen, University of Groningen, the Netherlands
| | - Jacoba M Spikman
- Department of Neuropsychology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Hubertus P H Kremer
- Department of Neurology, University Medical Center Groningen, University of Groningen, the Netherlands
| | - Bauke M De Jong
- Department of Neurology, University Medical Center Groningen, University of Groningen, the Netherlands
| |
Collapse
|
125
|
Lunev E, Karan A, Egorova T, Bardina M. Adeno-Associated Viruses for Modeling Neurological Diseases in Animals: Achievements and Prospects. Biomedicines 2022; 10:biomedicines10051140. [PMID: 35625877 PMCID: PMC9139062 DOI: 10.3390/biomedicines10051140] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/13/2022] [Accepted: 05/13/2022] [Indexed: 02/04/2023] Open
Abstract
Adeno-associated virus (AAV) vectors have become an attractive tool for efficient gene transfer into animal tissues. Extensively studied as the vehicles for therapeutic constructs in gene therapy, AAVs are also applied for creating animal models of human genetic disorders. Neurological disorders are challenging to model in laboratory animals by transgenesis or genome editing, at least partially due to the embryonic lethality and the timing of the disease onset. Therefore, gene transfer with AAV vectors provides a more flexible option for simulating genetic neurological disorders. Indeed, the design of the AAV expression construct allows the reproduction of various disease-causing mutations, and also drives neuron-specific expression. The natural and newly created AAV serotypes combined with various delivery routes enable differentially targeting neuronal cell types and brain areas in vivo. Moreover, the same viral vector can be used to reproduce the main features of the disorder in mice, rats, and large laboratory animals such as non-human primates. The current review demonstrates the general principles for the development and use of AAVs in modeling neurological diseases. The latest achievements in AAV-mediated modeling of the common (e.g., Alzheimer’s disease, Parkinson’s disease, ataxias, etc.) and ultra-rare disorders affecting the central nervous system are described. The use of AAVs to create multiple animal models of neurological disorders opens opportunities for studying their mechanisms, understanding the main pathological features, and testing therapeutic approaches.
Collapse
Affiliation(s)
- Evgenii Lunev
- Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
- Marlin Biotech LLC, 354340 Sochi, Russia; (A.K.); (T.E.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
- Correspondence: (E.L.); (M.B.)
| | - Anna Karan
- Marlin Biotech LLC, 354340 Sochi, Russia; (A.K.); (T.E.)
| | - Tatiana Egorova
- Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
- Marlin Biotech LLC, 354340 Sochi, Russia; (A.K.); (T.E.)
| | - Maryana Bardina
- Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
- Marlin Biotech LLC, 354340 Sochi, Russia; (A.K.); (T.E.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
- Correspondence: (E.L.); (M.B.)
| |
Collapse
|
126
|
Narendiran S, Debnath M, Shivaram S, Kannan R, Sharma S, Christopher R, Seshagiri DV, Jain S, Purushottam M, Mangalore S, Bharath RD, Bindu PS, Sinha S, Taly AB, Nagappa M. Novel insights into the genetic profile of hereditary spastic paraplegia in India. J Neurogenet 2022; 36:21-31. [DOI: 10.1080/01677063.2022.2064463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sundarapandian Narendiran
- Departments of Neurology and Human Genetics, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Monojit Debnath
- Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Sumanth Shivaram
- Departments of Neurology and Human Genetics, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Ramakrishnan Kannan
- Department of Neurochemistry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Shivani Sharma
- Departments of Neurology and Human Genetics, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Rita Christopher
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Doniparthi V. Seshagiri
- Departments of Neurology and Human Genetics, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Sanjeev Jain
- Department of Neurochemistry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Meera Purushottam
- Department of Neurochemistry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Sandhya Mangalore
- National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Rose Dawn Bharath
- National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | | | - Sanjib Sinha
- National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Arun B. Taly
- Departments of Neurology and Human Genetics, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Madhu Nagappa
- Departments of Neurology and Human Genetics, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| |
Collapse
|
127
|
Altered retinal structure and function in Spinocerebellar ataxia type 3. Neurobiol Dis 2022; 170:105774. [DOI: 10.1016/j.nbd.2022.105774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 01/13/2023] Open
|
128
|
Mao C, Li X, Su Y, Luo H, Fan L, Zheng H, Fan Y, Yang Z, Zhang S, Hu Z, Hao X, Shi C, Xu Y. Spinocerebellar Ataxia Type 10 with Atypical Clinical Manifestation in Han Chinese. CEREBELLUM (LONDON, ENGLAND) 2022; 22:355-362. [PMID: 35441258 DOI: 10.1007/s12311-022-01405-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/06/2022] [Indexed: 10/18/2022]
Abstract
Spinocerebellar ataxia type 10 (SCA10) is an autosomal dominant cerebellar ataxia accompanied by extracerebellar signs and other neurological disorders. It is caused by an expansion of the ATTCT pentanucleotide repeat in intron 9 of ATXN10. Cases of SCA10, formerly confined to America, have been reported in Europe and Asia. In the present study, we aim to report an atypical SCA10 family in China and provide a reference for the diagnosis of SCA10 in Asia by comparing their clinical and genetic features with former SCA10 pedigrees. Genomic DNA was extracted from patients and subjected to RP-PCR (repeat-primed PCR), Southern blotting, and haplotype analysis to determine the genetic pathogenesis. Patients with SCA10 in this pedigree demonstrated atypical SCA10 manifestations, including the absence of seizures and ocular abnormalities. Magnetic resonance imaging (MRI) showed cerebellar atrophy in five patients with available data. RP-PCR and Southern blotting revealed abnormal expansion. Analysis of single nucleotide polymorphisms (SNPs) surrounding the SCA10 locus in the proband and other affected family members revealed the "C-expansion-G-G-C" haplotype, consistent with former studies. These findings imply that the SCA10 mutation may have occurred before the Amerindian migration from East Asia to North America. It also suggested that SCA10 should be taken into account during differential diagnosis in patients of Asian ancestry, even if they do not present with typical features such as epilepsy.
Collapse
Affiliation(s)
- Chengyuan Mao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China.,NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, Henan, China
| | - Xinwei Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
| | - Yun Su
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Haiyang Luo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Liyuan Fan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
| | - Huimin Zheng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yu Fan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
| | - Zhihua Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Shuo Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
| | - Zhengwei Hu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
| | - Xiaoyan Hao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
| | - Changhe Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China. .,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China. .,NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, Henan, China. .,Institute of Neuroscience, Zhengzhou University, Zhengzhou, China.
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China. .,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China. .,NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, Henan, China. .,Institute of Neuroscience, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
129
|
Zhang S, Shen L, Jiao B. Cognitive Dysfunction in Repeat Expansion Diseases: A Review. Front Aging Neurosci 2022; 14:841711. [PMID: 35478698 PMCID: PMC9036481 DOI: 10.3389/fnagi.2022.841711] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/24/2022] [Indexed: 11/16/2022] Open
Abstract
With the development of the sequencing technique, more than 40 repeat expansion diseases (REDs) have been identified during the past two decades. Moreover, the clinical features of these diseases show some commonality, and the nervous system, especially the cognitive function was affected in part by these diseases. However, the specific cognitive domains impaired in different diseases were inconsistent. Here, we survey literature on the cognitive consequences of the following disorders presenting cognitive dysfunction and summarizing the pathogenic genes, epidemiology, and different domains affected by these diseases. We found that the cognitive domains affected in neuronal intranuclear inclusion disease (NIID) were widespread including the executive function, memory, information processing speed, attention, visuospatial function, and language. Patients with C9ORF72-frontotemporal dementia (FTD) showed impairment in executive function, memory, language, and visuospatial function. While in Huntington's disease (HD), the executive function, memory, and information processing speed were affected, in the fragile X-associated tremor/ataxia syndrome (FXTAS), executive function, memory, information processing speed, and attention were impaired. Moreover, the spinocerebellar ataxias showed broad damage in almost all the cognitive domains except for the relatively intact language ability. Some other diseases with relatively rare clinical data also indicated cognitive dysfunction, such as myotonic dystrophy type 1 (DM1), progressive myoclonus epilepsy (PME), Friedreich ataxia (FRDA), Huntington disease like-2 (HDL2), and cerebellar ataxia, neuropathy, vestibular areflexia syndrome (CANVAS). We drew a cognitive function landscape of the related REDs that might provide an aspect for differential diagnosis through cognitive domains and effective non-specific interventions for these diseases.
Collapse
Affiliation(s)
- Sizhe Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Bin Jiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- *Correspondence: Bin Jiao
| |
Collapse
|
130
|
Giangiardi VF, Perracini MR, da Silva ML, Setti GBR, Curzio LE, Vegas M, Alouche SR. Functional Outcomes Associated With Independence in Walking Among People With Hereditary Ataxias: An Exploratory Cross-sectional Study. Phys Ther 2022; 102:6506304. [PMID: 35079839 DOI: 10.1093/ptj/pzac006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 08/14/2021] [Accepted: 11/21/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVE This study aimed to identify functional outcomes related to independence in walking among people affected by hereditary ataxias. METHODS Sixty participants were selected by convenience in a list provided by an organization of people with ataxia. Sociodemographic and clinical data were collected using a semistructured questionnaire. The Assessment and Rating of Ataxia was used to assess and rate cerebellar ataxia. Changes in body structure and function, limitation in activities, and restriction in participation were evaluated with specific outcome measures. Participants were classified as independent in walking if they were able to walk without walking aids or human assistance and as dependent in walking if they have been using walking aids (sticks, crutches, or walkers) for more than 6 months, using a wheelchair for locomotion most of the day, or both. Multivariate logistic regression analyses were conducted hierarchically and in blocks considering upper limbs function, balance systems, sensory functions, postural control, walking, independence, cognition, and perception as independent variables. The prevalence ratio for walking independence was determined. RESULTS The final regression model pointed out that gait capacity assessed by the 6-Minute Walk Test and dexterity assessed by the Box and Blocks test were the main markers related to walking independence in individuals with hereditary ataxias. CONCLUSION The distance covered in 6 minutes of walking (walking endurance) and upper extremity dexterity can be used to better assess the progression of cerebellar disease related to walking independence in individuals with hereditary ataxias. IMPACT This study supports early detection of individuals who are at risk of loss of walking independence and an optimized rehabilitation plan.
Collapse
Affiliation(s)
- Vivian Farahte Giangiardi
- Master's and Doctoral Program in Physical Therapy, Universidade Cidade de São Paulo, São Paulo, SP, Brazil
| | - Monica Rodrigues Perracini
- Master's and Doctoral Program in Physical Therapy, Universidade Cidade de São Paulo, São Paulo, SP, Brazil
| | - Maria Liliane da Silva
- Master's and Doctoral Program in Physical Therapy, Universidade Cidade de São Paulo, São Paulo, SP, Brazil
| | | | | | - Milena Vegas
- School of Physical Therapy, Universidade Cidade de São Paulo, São Paulo, SP, Brazil
| | - Sandra Regina Alouche
- Master's and Doctoral Program in Physical Therapy, Universidade Cidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
131
|
Sager G, Turkyilmaz A, Ates EA, Kutlubay B. HACE1, GLRX5, and ELP2 gene variant cause spastic paraplegies. Acta Neurol Belg 2022; 122:391-399. [PMID: 33813722 DOI: 10.1007/s13760-021-01649-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/08/2021] [Indexed: 10/21/2022]
Abstract
Hereditary spastic paraplegias (HSPs) are a clinically and genetically heterogeneous group of conditions that are characterized by lower limb spasticity and weakness. Considering the clinical overlap between metabolic causes, genetic diseases, and autosomal recessive HSP, differentiation between these types can be difficult based solely on their clinical characteristics. This study aimed to investigate the genetic etiology of patients with clinically suspected HSP. The study group was composed of seven Turkish families who each had two affected children and three families who each had a single affected child (17 total patients). The 17 probands (14 males, 3 females) underwent whole exome sequencing. Five typical HSP genes (FA2H, AP4M1, AP4E1, CYP7B1, and MAG) and three genes not previously related to HSP (HACE1, GLRX5, ad ELP2) were identified in 14 probands. Eight novel variants were identified in seven families: c.653 T > C (p.Leu218Pro) in the FA2H gene, c.347G > A (p.Gly116Asp) in the GLRX5 gene, c.2581G > C (p.Ala861Pro) in the HACE1 gene, c.1580G > A (p.Arg527Gln) and c.1189-1G > A in the ELP2 gene, c.10C > T (p.Gln4*) and c.1025 + 1G > A in the AP4M1 gene, c.1291delG (p.Gly431Alafs*3) and c.3250delA (p.Ile1084*) in the AP4E1 gene, and c.475 T > G (p.Cys159Gly) in the MAG gene. The growing use of next-generation sequencing improved diagnosis but also led to the continual identification of new causal genes for neurogenetic diseases associated with lower limb spasticity. The increasing number of HSP genes identified thus far highlights the extreme genetic heterogeneity of these disorders and their clinical and functional overlap with other neurological conditions. Our findings suggest that the HACE1, GLRX5, and ELP2 genes are genetic causes of HSP.
Collapse
Affiliation(s)
- Gunes Sager
- Department of Pediatric Neurology, Kartal Dr. Lutfi Kirdar City Hospital, Semsi Denizer Avenue, Cevizli, 34890, Kartal, Istanbul, Turkey.
| | - Ayberk Turkyilmaz
- Department of Medical Genetics, Erzurum City Hospital, Erzurum, Turkey
| | - Esra Arslan Ates
- Department of Medical Genetics, Marmara University Pendik Training and Research Hospital, Istanbul, Turkey
| | - Busra Kutlubay
- Department of Pediatric Neurology, Umraniye Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
132
|
Rossi S, Rubegni A, Riso V, Barghigiani M, Bassi MT, Battini R, Bertini E, Cereda C, Cioffi E, Criscuolo C, Dal Fabbro B, Dato C, D'Angelo MG, Di Muzio A, Diamanti L, Dotti MT, Filla A, Gioiosa V, Liguori R, Martinuzzi A, Massa R, Mignarri A, Moroni R, Musumeci O, Nicita F, Orologio I, Orsi L, Pegoraro E, Petrucci A, Plumari M, Ricca I, Rizzo G, Romano S, Rumore R, Sampaolo S, Scarlato M, Seri M, Stefan C, Straccia G, Tessa A, Travaglini L, Trovato R, Ulgheri L, Vazza G, Orlacchio A, Silvestri G, Santorelli FM, Melone MAB, Casali C. Clinical-Genetic Features Influencing Disability in Spastic Paraplegia Type 4. Neurol Genet 2022; 8:e664. [PMID: 35372684 PMCID: PMC8969300 DOI: 10.1212/nxg.0000000000000664] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/31/2022] [Indexed: 11/15/2022]
Abstract
Background and ObjectivesHereditary spastic paraplegias (HSPs) are a group of inherited rare neurologic disorders characterized by length-dependent degeneration of the corticospinal tracts and dorsal columns, whose prominent clinical feature is represented by spastic gait. Spastic paraplegia type 4 (SPG4, SPAST-HSP) is the most common form. We present both clinical and molecular findings of a large cohort of patients, with the aim of (1) defining the clinical spectrum of SPAST-HSP in Italy; (2) describing their molecular features; and (3) assessing genotype-phenotype correlations to identify features associated with worse disability.MethodsA cross-sectional retrospective study with molecular and clinical data collected in an anonymized database was performed.ResultsA total of 723 Italian patients with SPAST-HSP (58% men) from 316 families, with a median age at onset of 35 years, were included. Penetrance was 97.8%, with men showing higher Spastic Paraplegia Rating Scale (SPRS) scores (19.67 ± 12.58 vs 16.15 ± 12.61, p = 0.009). In 26.6% of patients with SPAST-HSP, we observed a complicated phenotype, mainly including intellectual disability (8%), polyneuropathy (6.7%), and cognitive decline (6.5%). Late-onset cases seemed to progress more rapidly, and patients with a longer disease course displayed a more severe neurologic disability, with higher SPATAX (3.61 ± 1.46 vs 2.71 ± 1.20, p < 0.001) and SPRS scores (22.63 ± 11.81 vs 12.40 ± 8.83, p < 0.001). Overall, 186 different variants in the SPAST gene were recorded, of which 48 were novel. Patients with SPAST-HSP harboring missense variants displayed intellectual disability (14.5% vs 4.4%, p < 0.001) more frequently, whereas patients with truncating variants presented more commonly cognitive decline (9.7% vs 2.6%, p = 0.001), cerebral atrophy (11.2% vs 3.4%, p = 0.003), lower limb spasticity (61.5% vs 44.5%), urinary symptoms (50.0% vs 31.3%, p < 0.001), and sensorimotor polyneuropathy (11.1% vs 1.1%, p < 0.001). Increasing disease duration (DD) and abnormal motor evoked potentials (MEPs) were also associated with increased likelihood of worse disability (SPATAX score>3).DiscussionThe SPAST-HSP phenotypic spectrum in Italian patients confirms a predominantly pure form of HSP with mild-to-moderate disability in 75% of cases, and slight prevalence of men, who appeared more severely affected. Early-onset cases with intellectual disability were more frequent among patients carrying missense SPAST variants, whereas patients with truncating variants showed a more complicated disease. Both longer DD and altered MEPs are associated with worse disability.
Collapse
|
133
|
Byrne DJ, Garcia-Pardo ME, Cole NB, Batnasan B, Heneghan S, Sohail A, Blackstone C, O'Sullivan NC. Liver X receptor-agonist treatment rescues degeneration in a Drosophila model of hereditary spastic paraplegia. Acta Neuropathol Commun 2022; 10:40. [PMID: 35346366 PMCID: PMC8961908 DOI: 10.1186/s40478-022-01343-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/02/2022] [Indexed: 12/26/2022] Open
Abstract
Hereditary spastic paraplegias (HSPs) are a group of inherited, progressive neurodegenerative conditions characterised by prominent lower-limb spasticity and weakness, caused by a length-dependent degeneration of the longest corticospinal upper motor neurons. While more than 80 spastic paraplegia genes (SPGs) have been identified, many cases arise from mutations in genes encoding proteins which generate and maintain tubular endoplasmic reticulum (ER) membrane organisation. The ER-shaping proteins are essential for the health and survival of long motor neurons, however the mechanisms by which mutations in these genes cause the axonopathy observed in HSP have not been elucidated. To further develop our understanding of the ER-shaping proteins, this study outlines the generation of novel in vivo and in vitro models, using CRISPR/Cas9-mediated gene editing to knockout the ER-shaping protein ADP-ribosylation factor-like 6 interacting protein 1 (ARL6IP1), mutations in which give rise to the HSP subtype SPG61. Loss of Arl6IP1 in Drosophila results in progressive locomotor deficits, emulating a key aspect of HSP in patients. ARL6IP1 interacts with ER-shaping proteins and is required for regulating the organisation of ER tubules, particularly within long motor neuron axons. Unexpectedly, we identified physical and functional interactions between ARL6IP1 and the phospholipid transporter oxysterol-binding protein-related protein 8 in both human and Drosophila model systems, pointing to a conserved role for ARL6IP1 in lipid homeostasis. Furthermore, loss of Arl6IP1 from Drosophila neurons results in a cell non-autonomous accumulation of lipid droplets in axonal glia. Importantly, treatment with lipid regulating liver X receptor-agonists blocked lipid droplet accumulation, restored axonal ER organisation, and improved locomotor function in Arl6IP1 knockout Drosophila. Our findings indicate that disrupted lipid homeostasis contributes to neurodegeneration in HSP, identifying a potential novel therapeutic avenue for the treatment of this disorder.
Collapse
Affiliation(s)
- Dwayne J Byrne
- UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute, University College Dublin, Dublin 4, Ireland
- Cell Biology Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - M Elena Garcia-Pardo
- UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Nelson B Cole
- Cell Biology Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Belguun Batnasan
- UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Sophia Heneghan
- UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Anood Sohail
- UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Craig Blackstone
- Cell Biology Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Niamh C O'Sullivan
- UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute, University College Dublin, Dublin 4, Ireland.
| |
Collapse
|
134
|
Vander Stichele G, Durr A, Yoon G, Schüle R, Blackstone C, Esposito G, Buffel C, Oliveira I, Freitag C, van Rooijen S, Hoffmann S, Thielemans L, Cowling BS. An integrated modelling methodology for estimating global incidence and prevalence of hereditary spastic paraplegia subtypes SPG4, SPG7, SPG11, and SPG15. BMC Neurol 2022; 22:115. [PMID: 35331153 PMCID: PMC8944001 DOI: 10.1186/s12883-022-02595-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 02/19/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Hereditary spastic paraplegias (HSPs) are progressively debilitating neurodegenerative disorders that follow heterogenous patterns of Mendelian inheritance. Available epidemiological evidence provides limited incidence and prevalence data, especially at the genetic subtype level, preventing a realistic estimation of the true social burden of the disease. The objectives of this study were to (1) review the literature on epidemiology of HSPs; and (2) develop an epidemiological model of the prevalence of HSP, focusing on four common HSP genetic subtypes at the country and region-level. METHODS A model was constructed estimating the incidence at birth, survival, and prevalence of four genetic subtypes of HSP based on the most appropriate published literature. The key model parameters were assessed by HSP clinical experts, who provided feedback on the validity of assumptions. A model was then finalized and validated through comparison of outputs against available evidence. The global, regional, and national prevalence and patient pool were calculated per geographic region and per genetic subtype. RESULTS The HSP global prevalence was estimated to be 3.6 per 100,000 for all HSP forms, whilst the estimated global prevalence per genetic subtype was 0.90 (SPG4), 0.22 (SPG7), 0.34 (SPG11), and 0.13 (SPG15), respectively. This equates to an estimated 3365 (SPG4) and 872 (SPG11) symptomatic patients, respectively, in the USA. CONCLUSIONS This is the first epidemiological model of HSP prevalence at the genetic subtype-level reported at multiple geographic levels. This study offers additional data to better capture the burden of illness due to mutations in common genes causing HSP, that can inform public health policy and healthcare service planning, especially in regions with higher estimated prevalence of HSP.
Collapse
Affiliation(s)
- Geert Vander Stichele
- Integrated Strategic Market Access Services (ISMS), Rodendijk 60Y, 2980 Zoersel, Belgium
- GenBytes, Schoondreef 7, 2330 Merksplas, Belgium
| | - Alexandra Durr
- Sorbonne Université, Paris Brain Institute, Paris, France
| | - Grace Yoon
- Divisions of Neurology and Clinical and Metabolic Genetics, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Rebecca Schüle
- Hertie Institute for Clinical Brain Research, Tubingen, Germany
| | - Craig Blackstone
- Department of Neurology, Massachusetts General Hospital, Boston, MA USA
| | - Giovanni Esposito
- Integrated Strategic Market Access Services (ISMS), Rodendijk 60Y, 2980 Zoersel, Belgium
| | - Connor Buffel
- Integrated Strategic Market Access Services (ISMS), Rodendijk 60Y, 2980 Zoersel, Belgium
| | - Inês Oliveira
- Integrated Strategic Market Access Services (ISMS), Rodendijk 60Y, 2980 Zoersel, Belgium
| | | | | | | | - Leen Thielemans
- Dynacure, 67400 Illkirch, France
- 2 Bridge, Rodendijk 60/X, 2980 Zoersel, Belgium
| | | |
Collapse
|
135
|
Recessive cerebellar and afferent ataxias - clinical challenges and future directions. Nat Rev Neurol 2022; 18:257-272. [PMID: 35332317 DOI: 10.1038/s41582-022-00634-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2022] [Indexed: 02/07/2023]
Abstract
Cerebellar and afferent ataxias present with a characteristic gait disorder that reflects cerebellar motor dysfunction and sensory loss. These disorders are a diagnostic challenge for clinicians because of the large number of acquired and inherited diseases that cause cerebellar and sensory neuron damage. Among such conditions that are recessively inherited, Friedreich ataxia and RFC1-associated cerebellar ataxia, neuropathy, vestibular areflexia syndrome (CANVAS) include the characteristic clinical, neuropathological and imaging features of ganglionopathies, a distinctive non-length-dependent type of sensory involvement. In this Review, we discuss the typical and atypical phenotypes of Friedreich ataxia and CANVAS, along with the features of other recessive ataxias that present with a ganglionopathy or polyneuropathy, with an emphasis on recently described clinical features, natural history and genotype-phenotype correlations. We review the main developments in understanding the complex pathology that affects the sensory neurons and cerebellum, which seem to be most vulnerable to disorders that affect mitochondrial function and DNA repair mechanisms. Finally, we discuss disease-modifying therapeutic advances in Friedreich ataxia, highlighting the most promising candidate molecules and lessons learned from previous clinical trials.
Collapse
|
136
|
Molecular Characterization of Portuguese Patients with Hereditary Cerebellar Ataxia. Cells 2022; 11:cells11060981. [PMID: 35326432 PMCID: PMC8946949 DOI: 10.3390/cells11060981] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 01/02/2023] Open
Abstract
Hereditary cerebellar ataxia (HCA) comprises a clinical and genetic heterogeneous group of neurodegenerative disorders characterized by incoordination of movement, speech, and unsteady gait. In this study, we performed whole-exome sequencing (WES) in 19 families with HCA and presumed autosomal recessive (AR) inheritance, to identify the causal genes. A phenotypic classification was performed, considering the main clinical syndromes: spastic ataxia, ataxia and neuropathy, ataxia and oculomotor apraxia (AOA), ataxia and dystonia, and ataxia with cognitive impairment. The most frequent causal genes were associated with spastic ataxia (SACS and KIF1C) and with ataxia and neuropathy or AOA (PNKP). We also identified three families with autosomal dominant (AD) forms arising from de novo variants in KIF1A, CACNA1A, or ATP1A3, reinforcing the importance of differential diagnosis (AR vs. AD forms) in families with only one affected member. Moreover, 10 novel causal-variants were identified, and the detrimental effect of two splice-site variants confirmed through functional assays. Finally, by reviewing the molecular mechanisms, we speculated that regulation of cytoskeleton function might be impaired in spastic ataxia, whereas DNA repair is clearly associated with AOA. In conclusion, our study provided a genetic diagnosis for HCA families and proposed common molecular pathways underlying cerebellar neurodegeneration.
Collapse
|
137
|
Sharma P, Sonakar AK, Tyagi N, Suroliya V, Kumar M, Kutum R, Asokchandran V, Ambawat S, Shamim U, Anand A, Ahmad I, Shakya S, Uppili B, Mathur A, Parveen S, Jain S, Singh J, Seth M, Zahra S, Joshi A, Goel D, Sahni S, Kamai A, Wadhwa S, Murali A, Saifi S, Chowdhury D, Pandey S, Anand KS, Narasimhan RL, Laskar S, Kushwaha S, Kumar M, Shaji CV, Srivastava MVP, Srivastava AK, Faruq M. Genetics of Ataxias in Indian Population: A Collative Insight from a Common Genetic Screening Tool. ADVANCED GENETICS (HOBOKEN, N.J.) 2022; 3:2100078. [PMID: 36618024 PMCID: PMC9744545 DOI: 10.1002/ggn2.202100078] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Indexed: 01/11/2023]
Abstract
Cerebellar ataxias (CAs) represent a group of autosomal dominant and recessive neurodegenerative disorders affecting cerebellum with or without spinal cord. Overall, CAs have preponderance for tandem nucleotide repeat expansions as an etiological factor (10 TREs explain nearly 30-40% of ataxia cohort globally). The experience of 10 years of common genetic ataxia subtypes for ≈5600 patients' referrals (Pan-India) received at a single center is shared herein. Frequencies (in %, n) of SCA types and FRDA in the sample cohort are observed as follows: SCA12 (8.6%, 490); SCA2 (8.5%, 482); SCA1 (4.8%, 272); SCA3 (2%, 113); SCA7 (0.5%, 28); SCA6 (0.1%, 05); SCA17 (0.1%, 05), and FRDA (2.2%, 127). A significant amount of variability in TRE lengths at each locus is observed, we noted presence of biallelic expansion, co-occurrence of SCA-subtypes, and the presence of premutable normal alleles. The frequency of mutated GAA-FRDA allele in healthy controls is 1/158 (0.63%), thus an expected FRDA prevalence of 1:100 000 persons. The data of this study are relevant not only for clinical decision making but also for guidance in direction of genetic investigations, transancestral comparison of genotypes, and lastly provide insight for policy decision for the consideration of SCAs under rare disease category.
Collapse
Affiliation(s)
- Pooja Sharma
- Genomics and Molecular MedicineCSIR‐Institute of Genomics and Integrative Biology (CSIR‐IGIB)Mall RoadDelhi110007India,Academy for Scientific and Innovative ResearchGhaziabadUttar Pradesh201002India
| | | | - Nishu Tyagi
- Genomics and Molecular MedicineCSIR‐Institute of Genomics and Integrative Biology (CSIR‐IGIB)Mall RoadDelhi110007India,Academy for Scientific and Innovative ResearchGhaziabadUttar Pradesh201002India
| | - Varun Suroliya
- Neurology DepartmentNeuroscience CentreNew Delhi110029India
| | - Manish Kumar
- Genomics and Molecular MedicineCSIR‐Institute of Genomics and Integrative Biology (CSIR‐IGIB)Mall RoadDelhi110007India,Academy for Scientific and Innovative ResearchGhaziabadUttar Pradesh201002India
| | - Rintu Kutum
- Genomics and Molecular MedicineCSIR‐Institute of Genomics and Integrative Biology (CSIR‐IGIB)Mall RoadDelhi110007India
| | - Vivekananda Asokchandran
- Genomics and Molecular MedicineCSIR‐Institute of Genomics and Integrative Biology (CSIR‐IGIB)Mall RoadDelhi110007India,Academy for Scientific and Innovative ResearchGhaziabadUttar Pradesh201002India
| | - Sakshi Ambawat
- Genomics and Molecular MedicineCSIR‐Institute of Genomics and Integrative Biology (CSIR‐IGIB)Mall RoadDelhi110007India
| | - Uzma Shamim
- Genomics and Molecular MedicineCSIR‐Institute of Genomics and Integrative Biology (CSIR‐IGIB)Mall RoadDelhi110007India
| | - Avni Anand
- Genomics and Molecular MedicineCSIR‐Institute of Genomics and Integrative Biology (CSIR‐IGIB)Mall RoadDelhi110007India
| | - Ishtaq Ahmad
- Neurology DepartmentNeuroscience CentreNew Delhi110029India
| | - Sunil Shakya
- Neurology DepartmentNeuroscience CentreNew Delhi110029India
| | - Bharathram Uppili
- Genomics and Molecular MedicineCSIR‐Institute of Genomics and Integrative Biology (CSIR‐IGIB)Mall RoadDelhi110007India,Academy for Scientific and Innovative ResearchGhaziabadUttar Pradesh201002India
| | - Aradhana Mathur
- Genomics and Molecular MedicineCSIR‐Institute of Genomics and Integrative Biology (CSIR‐IGIB)Mall RoadDelhi110007India
| | - Shaista Parveen
- Genomics and Molecular MedicineCSIR‐Institute of Genomics and Integrative Biology (CSIR‐IGIB)Mall RoadDelhi110007India
| | - Shweta Jain
- Genomics and Molecular MedicineCSIR‐Institute of Genomics and Integrative Biology (CSIR‐IGIB)Mall RoadDelhi110007India
| | - Jyotsna Singh
- Genomics and Molecular MedicineCSIR‐Institute of Genomics and Integrative Biology (CSIR‐IGIB)Mall RoadDelhi110007India,Neurology DepartmentNeuroscience CentreNew Delhi110029India
| | - Malika Seth
- Genomics and Molecular MedicineCSIR‐Institute of Genomics and Integrative Biology (CSIR‐IGIB)Mall RoadDelhi110007India
| | - Sana Zahra
- Genomics and Molecular MedicineCSIR‐Institute of Genomics and Integrative Biology (CSIR‐IGIB)Mall RoadDelhi110007India,Academy for Scientific and Innovative ResearchGhaziabadUttar Pradesh201002India
| | - Aditi Joshi
- Genomics and Molecular MedicineCSIR‐Institute of Genomics and Integrative Biology (CSIR‐IGIB)Mall RoadDelhi110007India
| | - Divya Goel
- Genomics and Molecular MedicineCSIR‐Institute of Genomics and Integrative Biology (CSIR‐IGIB)Mall RoadDelhi110007India
| | - Shweta Sahni
- Genomics and Molecular MedicineCSIR‐Institute of Genomics and Integrative Biology (CSIR‐IGIB)Mall RoadDelhi110007India
| | - Asangla Kamai
- Genomics and Molecular MedicineCSIR‐Institute of Genomics and Integrative Biology (CSIR‐IGIB)Mall RoadDelhi110007India,Academy for Scientific and Innovative ResearchGhaziabadUttar Pradesh201002India
| | - Saruchi Wadhwa
- Genomics and Molecular MedicineCSIR‐Institute of Genomics and Integrative Biology (CSIR‐IGIB)Mall RoadDelhi110007India,Academy for Scientific and Innovative ResearchGhaziabadUttar Pradesh201002India
| | - Aparna Murali
- Genomics and Molecular MedicineCSIR‐Institute of Genomics and Integrative Biology (CSIR‐IGIB)Mall RoadDelhi110007India
| | - Sheeba Saifi
- Genomics and Molecular MedicineCSIR‐Institute of Genomics and Integrative Biology (CSIR‐IGIB)Mall RoadDelhi110007India
| | | | - Sanjay Pandey
- Department of NeurologyGB Pant HospitalDelhi110002India
| | - Kuljeet Singh Anand
- Department of NeurologyPost Graduate Institute of Medical Education and ResearchDr. Ram Manohar Lohia HospitalNew Delhi110001India
| | | | | | - Suman Kushwaha
- Department of NeurologyInstitute of Human Behaviour and Allied SciencesDelhi110095India
| | | | | | | | | | - Mohammed Faruq
- Genomics and Molecular MedicineCSIR‐Institute of Genomics and Integrative Biology (CSIR‐IGIB)Mall RoadDelhi110007India,Academy for Scientific and Innovative ResearchGhaziabadUttar Pradesh201002India
| | | |
Collapse
|
138
|
Stevanovski I, Chintalaphani SR, Gamaarachchi H, Ferguson JM, Pineda SS, Scriba CK, Tchan M, Fung V, Ng K, Cortese A, Houlden H, Dobson-Stone C, Fitzpatrick L, Halliday G, Ravenscroft G, Davis MR, Laing NG, Fellner A, Kennerson M, Kumar KR, Deveson IW. Comprehensive genetic diagnosis of tandem repeat expansion disorders with programmable targeted nanopore sequencing. SCIENCE ADVANCES 2022; 8:eabm5386. [PMID: 35245110 PMCID: PMC8896783 DOI: 10.1126/sciadv.abm5386] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/11/2022] [Indexed: 05/25/2023]
Abstract
More than 50 neurological and neuromuscular diseases are caused by short tandem repeat (STR) expansions, with 37 different genes implicated to date. We describe the use of programmable targeted long-read sequencing with Oxford Nanopore's ReadUntil function for parallel genotyping of all known neuropathogenic STRs in a single assay. Our approach enables accurate, haplotype-resolved assembly and DNA methylation profiling of STR sites, from a list of predetermined candidates. This correctly diagnoses all individuals in a small cohort (n = 37) including patients with various neurogenetic diseases (n = 25). Targeted long-read sequencing solves large and complex STR expansions that confound established molecular tests and short-read sequencing and identifies noncanonical STR motif conformations and internal sequence interruptions. We observe a diversity of STR alleles of known and unknown pathogenicity, suggesting that long-read sequencing will redefine the genetic landscape of repeat disorders. Last, we show how the inclusion of pharmacogenomic genes as secondary ReadUntil targets can further inform patient care.
Collapse
Affiliation(s)
- Igor Stevanovski
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Sanjog R. Chintalaphani
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia
- School of Medicine, University of New South Wales, Sydney, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Hasindu Gamaarachchi
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia
- School of Computer Science and Engineering, University of New South Wales, Sydney, NSW, Australia
| | - James M. Ferguson
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Sandy S. Pineda
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia
- The University of Sydney, Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, Camperdown, NSW, Australia
| | - Carolin K. Scriba
- Harry Perkins Institute of Medical Research, University of Western Australia, Nedlands, WA, Australia
- Diagnostic Genomics, PathWest Laboratory Medicine WA, Nedlands, WA, Australia
| | - Michel Tchan
- Westmead Hospital, Westmead, NSW, Australia and Sydney Medical School, The University of Sydney, NSW, Australia
| | - Victor Fung
- Westmead Hospital, Westmead, NSW, Australia and Sydney Medical School, The University of Sydney, NSW, Australia
| | - Karl Ng
- Department of Neurology, Royal North Shore Hospital and The University of Sydney, Sydney, NSW, Australia
| | - Andrea Cortese
- Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
- The National Hospital for Neurology and Neurosurgery, London, UK
| | - Henry Houlden
- Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
- The National Hospital for Neurology and Neurosurgery, London, UK
| | - Carol Dobson-Stone
- The University of Sydney, Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, Camperdown, NSW, Australia
| | - Lauren Fitzpatrick
- The University of Sydney, Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, Camperdown, NSW, Australia
| | - Glenda Halliday
- The University of Sydney, Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, Camperdown, NSW, Australia
| | - Gianina Ravenscroft
- Harry Perkins Institute of Medical Research, University of Western Australia, Nedlands, WA, Australia
| | - Mark R. Davis
- Harry Perkins Institute of Medical Research, University of Western Australia, Nedlands, WA, Australia
| | - Nigel G. Laing
- Harry Perkins Institute of Medical Research, University of Western Australia, Nedlands, WA, Australia
- Diagnostic Genomics, PathWest Laboratory Medicine WA, Nedlands, WA, Australia
| | - Avi Fellner
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia
- Raphael Recanati Genetics Institute, Rabin Medical Center, Beilinson Hospital, Petah Tikva, Israel
- The Neurology Department, Rabin Medical Center, Beilinson Hospital, Petah Tikva, Israel
| | - Marina Kennerson
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Sydney, NSW, Australia
- Faculty of Health and Medicine, University of Sydney, Camperdown, NSW, Australia
- Molecular Medicine Laboratory, Concord Hospital, Concord, NSW, Australia
| | - Kishore R. Kumar
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia
- Molecular Medicine Laboratory, Concord Hospital, Concord, NSW, Australia
- Neurology Department, Central Clinical School, Concord Repatriation General Hospital, University of Sydney, Concord, NSW, Australia
| | - Ira W. Deveson
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
139
|
Nguyen TT, Nguyen TTD, Tran NMA, Van Vo G. Lipid-Based Nanocarriers via Nose-to-Brain Pathway for Central Nervous System Disorders. Neurochem Res 2022; 47:552-573. [PMID: 34800247 DOI: 10.1007/s11064-021-03488-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/01/2021] [Accepted: 11/10/2021] [Indexed: 12/27/2022]
Abstract
Neurodegenerative disorders are distinguished by the gradual deterioration of the nervous system's structure and function due to oxidative stress, mitochondrial dysfunction, protein misfolding, excitotoxicity, and neuroinflammation. Among these NDs, Alzheimer's disease, Huntington's disease, Parkinson's disease, and amyotrophic lateral sclerosis characterized an increasing dysfunction and loss of neuronal structure leading to neuronal cell death. Although there is currently no drug to totally reverse the effects of NDs, such novel formulations and administration routes are developed for better management and nose-to-brain delivery is one of delivery for treating NDs. This review aimed to highlight advances in research on various lipid based nanocarriers such as liposomes, solid lipid nanoparticles, nanostructured lipid carriers, microemulsion, nanoemulsion, and cubosomes which are reported to treat and alleviate the symptoms of NDs via nose-to-brain route. The challenges during clinical translation of lipid nanocarriers from bench to bed side is also discussed.
Collapse
Affiliation(s)
- Thuy Trang Nguyen
- Faculty of Pharmacy, Ho Chi Minh City University of Technology (HUTECH), Ho Chi Minh City, 700000, Vietnam
| | - Thi Thuy Dung Nguyen
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City, 700000, Vietnam
| | - Nguyen-Minh-An Tran
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City, 71420, Vietnam
| | - Giau Van Vo
- Department of Biomedical Engineering, School of Medicine, Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, 700000, Vietnam.
- Research Center for Genetics and Reproductive Health (CGRH), School of Medicine, Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, 700000, Vietnam.
- Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, 700000, Vietnam.
| |
Collapse
|
140
|
Rajan DS, Kour S, Fortuna TR, Cousin MA, Barnett SS, Niu Z, Babovic-Vuksanovic D, Klee EW, Kirmse B, Innes M, Rydning SL, Selmer KK, Vigeland MD, Erichsen AK, Nemeth AH, Millan F, DeVile C, Fawcett K, Legendre A, Sims D, Schnekenberg RP, Burglen L, Mercier S, Bakhtiari S, Francisco-Velilla R, Embarc-Buh A, Martinez-Salas E, Wigby K, Lenberg J, Friedman JR, Kruer MC, Pandey UB. Autosomal Recessive Cerebellar Atrophy and Spastic Ataxia in Patients With Pathogenic Biallelic Variants in GEMIN5. Front Cell Dev Biol 2022; 10:783762. [PMID: 35295849 PMCID: PMC8918504 DOI: 10.3389/fcell.2022.783762] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/17/2022] [Indexed: 01/01/2023] Open
Abstract
The hereditary ataxias are a heterogenous group of disorders with an increasing number of causative genes being described. Due to the clinical and genetic heterogeneity seen in these conditions, the majority of such individuals endure a diagnostic odyssey or remain undiagnosed. Defining the molecular etiology can bring insights into the responsible molecular pathways and eventually the identification of therapeutic targets. Here, we describe the identification of biallelic variants in the GEMIN5 gene among seven unrelated families with nine affected individuals presenting with spastic ataxia and cerebellar atrophy. GEMIN5, an RNA-binding protein, has been shown to regulate transcription and translation machinery. GEMIN5 is a component of small nuclear ribonucleoprotein (snRNP) complexes and helps in the assembly of the spliceosome complexes. We found that biallelic GEMIN5 variants cause structural abnormalities in the encoded protein and reduce expression of snRNP complex proteins in patient cells compared with unaffected controls. Finally, knocking out endogenous Gemin5 in mice caused early embryonic lethality, suggesting that Gemin5 expression is crucial for normal development. Our work further expands on the phenotypic spectrum associated with GEMIN5-related disease and implicates the role of GEMIN5 among patients with spastic ataxia, cerebellar atrophy, and motor predominant developmental delay.
Collapse
Affiliation(s)
- Deepa S. Rajan
- Department of Pediatrics, Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Sukhleen Kour
- Department of Pediatrics, Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Tyler R. Fortuna
- Department of Pediatrics, Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Margot A. Cousin
- Department of Center for Individualized Medicine, Mayo Clinic, Rochester, MN, United States
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, United States
| | - Sarah S. Barnett
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Zhiyv Niu
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, United States
| | - Dusica Babovic-Vuksanovic
- Department of Center for Individualized Medicine, Mayo Clinic, Rochester, MN, United States
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, United States
| | - Eric W. Klee
- Department of Center for Individualized Medicine, Mayo Clinic, Rochester, MN, United States
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, United States
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, United States
| | - Brian Kirmse
- Division of Genetics, University of Mississippi Medical Center, Jackson, MS, United States
| | - Micheil Innes
- Department of Medical Genetics and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | | | - Kaja K. Selmer
- Department of Research and Innovation, Division of Clinical Neuroscience, Oslo University Hospital and the University of Oslo, Oslo, Norway
| | - Magnus Dehli Vigeland
- Department of Medical Genetics, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | - Andrea H. Nemeth
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | | | | | - Katherine Fawcett
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- Department of Health Sciences, University of Leicester, Leicester, United Kingdom
| | - Adrien Legendre
- Laboratoire de biologie médicale multisites Seqoia—FMG2025, Paris, France
| | - David Sims
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Lydie Burglen
- Centre de Référence des Malformations et Maladies Congénitales du Cervelet et Laboratoire de Neurogénétique Moléculaire, Département de Génétique, AP-HP. Sorbonne Université, Hôpital Trousseau, Paris, France
- Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Sandra Mercier
- CHU Nantes, Service de génétique médicale, Centre de Référence Anomalies du Développement et Syndromes Malformatifs, Nantes, France
- Nantes Université, CNRS, INSERM, l’institut du thorax, Nantes, France
| | - Somayeh Bakhtiari
- Barrow Neurological Institute, Phoenix Children’s Hospital, Phoenix, AZ, United States
- Departments of Child Health, Neurology, Cellular and Molecular Medicine and Program in Genetics, University of Arizona College of Medicine—Phoenix, Phoenix, AZ, United States
| | | | - Azman Embarc-Buh
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | | | - Kristen Wigby
- Department of Pediatrics, University of California San Diego, San Diego, CA, United States
- Rady Children’s Institute for Genomic Medicine, San Diego, CA, United States
| | - Jerica Lenberg
- Rady Children’s Institute for Genomic Medicine, San Diego, CA, United States
| | - Jennifer R. Friedman
- Department of Neurosciences, University of California San Diego, San Diego, CA, United States
- Department of Pediatrics, University of California San Diego, San Diego, CA, United States
- Rady Children’s Institute for Genomic Medicine, San Diego, CA, United States
| | - Michael C. Kruer
- Barrow Neurological Institute, Phoenix Children’s Hospital, Phoenix, AZ, United States
- Departments of Child Health, Neurology, Cellular and Molecular Medicine and Program in Genetics, University of Arizona College of Medicine—Phoenix, Phoenix, AZ, United States
| | - Udai Bhan Pandey
- Department of Pediatrics, Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- *Correspondence: Udai Bhan Pandey,
| |
Collapse
|
141
|
Kollmer J, Weiler M, Sam G, Faber J, Hayes JM, Heiland S, Bendszus M, Wick W, Jacobi H. Quantitative magnetic resonance neurographic characterization of peripheral nerve involvement in manifest and pre‐ataxic spinocerebellar ataxia type 3. Eur J Neurol 2022; 29:1782-1790. [DOI: 10.1111/ene.15305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/08/2022] [Accepted: 02/24/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Jennifer Kollmer
- Department of Neuroradiology Heidelberg University Hospital Heidelberg Germany
| | - Markus Weiler
- Department of Neurology Heidelberg University Hospital Heidelberg Germany
| | - Georges Sam
- Department of Neurology Heidelberg University Hospital Heidelberg Germany
| | - Jennifer Faber
- Department of Neurology Bonn University Hospital Bonn Germany
- German Center for Neurodegenerative Diseases Bonn Germany
| | - John M. Hayes
- Department of Neurology University of Michigan Ann Arbor USA
| | - Sabine Heiland
- Department of Neuroradiology Heidelberg University Hospital Heidelberg Germany
- Division of Experimental Radiology Department of Neuroradiology Heidelberg University Hospital Heidelberg Germany
| | - Martin Bendszus
- Department of Neuroradiology Heidelberg University Hospital Heidelberg Germany
| | - Wolfgang Wick
- Department of Neurology Heidelberg University Hospital Heidelberg Germany
- Clinical Cooperation Unit Neurooncology German Cancer Research Center/DKTK Heidelberg Germany
| | - Heike Jacobi
- Department of Neurology Heidelberg University Hospital Heidelberg Germany
| |
Collapse
|
142
|
Marwaha S, Knowles JW, Ashley EA. A guide for the diagnosis of rare and undiagnosed disease: beyond the exome. Genome Med 2022; 14:23. [PMID: 35220969 PMCID: PMC8883622 DOI: 10.1186/s13073-022-01026-w] [Citation(s) in RCA: 113] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 02/10/2022] [Indexed: 02/07/2023] Open
Abstract
Rare diseases affect 30 million people in the USA and more than 300-400 million worldwide, often causing chronic illness, disability, and premature death. Traditional diagnostic techniques rely heavily on heuristic approaches, coupling clinical experience from prior rare disease presentations with the medical literature. A large number of rare disease patients remain undiagnosed for years and many even die without an accurate diagnosis. In recent years, gene panels, microarrays, and exome sequencing have helped to identify the molecular cause of such rare and undiagnosed diseases. These technologies have allowed diagnoses for a sizable proportion (25-35%) of undiagnosed patients, often with actionable findings. However, a large proportion of these patients remain undiagnosed. In this review, we focus on technologies that can be adopted if exome sequencing is unrevealing. We discuss the benefits of sequencing the whole genome and the additional benefit that may be offered by long-read technology, pan-genome reference, transcriptomics, metabolomics, proteomics, and methyl profiling. We highlight computational methods to help identify regionally distant patients with similar phenotypes or similar genetic mutations. Finally, we describe approaches to automate and accelerate genomic analysis. The strategies discussed here are intended to serve as a guide for clinicians and researchers in the next steps when encountering patients with non-diagnostic exomes.
Collapse
Affiliation(s)
- Shruti Marwaha
- Department of Medicine, Division of Cardiovascular Medicine, School of Medicine, Stanford University, Stanford, CA, USA.
- Stanford Center for Undiagnosed Diseases, Stanford University, Stanford, CA, USA.
| | - Joshua W Knowles
- Department of Medicine, Division of Cardiovascular Medicine, School of Medicine, Stanford University, Stanford, CA, USA
- Department of Medicine, Diabetes Research Center, Cardiovascular Institute and Prevention Research Center, Stanford, CA, USA
| | - Euan A Ashley
- Department of Medicine, Division of Cardiovascular Medicine, School of Medicine, Stanford University, Stanford, CA, USA.
- Stanford Center for Undiagnosed Diseases, Stanford University, Stanford, CA, USA.
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
143
|
Winser S, Chan HK, Chen WK, Hau CY, Leung SH, Leugn KY, Bello UM. Effects of therapeutic exercise on disease severity, balance, and functional Independence among individuals with cerebellar ataxia: A systematic review with meta-analysis. Physiother Theory Pract 2022:1-21. [PMID: 35212247 DOI: 10.1080/09593985.2022.2037115] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND Balance impairments are common in cerebellar ataxia. Exercises are beneficial in this population. OBJECTIVE Explore the benefits of therapeutic exercises on disease severity, balance and functional independence in cerebellar ataxia. METHODS Databases were searched from inception until July 2021. Methodological quality was assessed using the Physiotherapy Evidence Database (PEDro) scale and the Newcastle-Ottawa Scale (NOS); and quality of evidence was assessed using the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) tool. RESULTS Twenty-six studies were included and eight studies of low to high PEDro methodological quality were meta-analyzed. 'Low' to 'moderate' GRADE quality evidence supports the use of therapeutic exercises to reduce disease severity, assessed using the Scale for the Assessment and Rating of Ataxia [weighted mean difference (WMD): -3.3; 95% confidence interval (95%CI): -3.7, -2.8; p < .01]; and improve balance, assessed using the Berg Balance Scale (WMD: 2.6; 95%CI: 1.1, 4.2; p < .01). The effect of therapeutic exercises on functional independence was insignificant (WMD: 1.6; 95%CI: -1.5, 4.6; p = .31). CONCLUSION Low to moderate evidence from studies of low to high methodological quality provides some support for therapeutic exercises for reducing disease severity among non-hereditary degenerative cerebellar ataxia and improving balance among acquired cerebellar ataxia. Exercises did not benefit functional independence. Additional studies of large sample size and high methodological quality are necessary to substantiate these findings.
Collapse
Affiliation(s)
- Stanley Winser
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Ho Kwan Chan
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Wing Ki Chen
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Chung Yau Hau
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Siu Hang Leung
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Kimmy Yh Leugn
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Umar Muhammad Bello
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong
| |
Collapse
|
144
|
Qian N, Wei T, Yang W, Wang J, Zhang S, Jin S, Dong W, Hao W, Yang Y, Huang R. Case Report: Late-Onset Autosomal Recessive Cerebellar Ataxia Associated With SYNE1 Mutation in a Chinese Family. Front Genet 2022; 13:795188. [PMID: 35281832 PMCID: PMC8905644 DOI: 10.3389/fgene.2022.795188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Autosomal recessive cerebellar ataxia type 1 (ARCA-1), also known as autosomal recessive spinocerebellar ataxia type 8 (SCAR8), is caused by spectrin repeat containing nuclear envelope protein 1 (SYNE1) gene mutation. Nesprin-1, encoded by SYNE1, is widely expressed in various tissues, especially in the striated muscle and cerebellum. The destruction of Nesprin-1 is related to neuronal and neuromuscular lesions. It has been reported that SYNE1 gene variation is associated with Emery-Dreifuss muscular dystrophy type 4, arthrogryposis multiplex congenita, SCAR8, and dilated cardiomyopathy. The clinical manifestations of SCAR8 are mainly characterized by relatively pure cerebellar ataxia and may be accompanied by upper and/or lower motor neuron dysfunction. Some affected people may also display cerebellar cognitive affective syndrome. It is conventionally held that the age at the onset of SCAR8 is between 6 and 42 years (the median age is 17 years). Here, we report a pedigree with SCAR8 where the onset age in the proband is 48 years. This case report extends the genetic profile and clinical features of SCAR8. A new pathogenic site (c.7578del; p.S2526Sfs*8) located in SYNE1, which is the genetic cause of the patient, was identified via whole exome sequencing (WES).
Collapse
Affiliation(s)
- Nannan Qian
- Graduate School, Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Taohua Wei
- The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Wenming Yang
- The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
- Key Laboratory of Xin’an Medicine Ministry of Education, Hefei, China
| | - Jiuxiang Wang
- The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Shijie Zhang
- The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Shan Jin
- The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Wei Dong
- Graduate School, Anhui University of Traditional Chinese Medicine, Hefei, China
- The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Wenjie Hao
- Graduate School, Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Yue Yang
- Graduate School, Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Ru Huang
- V-Medical Laboratory Co., Ltd, Hangzhou, China
| |
Collapse
|
145
|
Fan Y, Shen S, Yang J, Yao D, Li M, Mao C, Wang Y, Hao X, Ma D, Li J, Shi J, Guo M, Li S, Yuan Y, Liu F, Yang Z, Zhang S, Hu Z, Fan L, Liu H, Zhang C, Wang Y, Wang Q, Zheng H, He Y, Song B, Xu Y, Shi C. GIPC1
CGG
repeat expansion is associated with movement disorders. Ann Neurol 2022; 91:704-715. [PMID: 35152460 DOI: 10.1002/ana.26325] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Yu Fan
- Department of Neurology The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
- Academy of Medical Sciences of Zhengzhou University Zhengzhou 450000 Henan China
| | - Si Shen
- Department of Neurology The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
| | - Jing Yang
- Department of Neurology The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
- Henan Key Laboratory of Cerebrovascular Diseases The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450,000 Henan China
- The Henan Medical Key Laboratory of Hereditary Neurodegenerative Diseases The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
| | - Dabao Yao
- Department of Neurology The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
| | - Mengjie Li
- Department of Neurology The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
| | - Chengyuan Mao
- Department of Neurology The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
- Henan Key Laboratory of Cerebrovascular Diseases The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450,000 Henan China
| | - Yunchao Wang
- Department of Neurology The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
- Henan Key Laboratory of Cerebrovascular Diseases The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450,000 Henan China
| | - Xiaoyan Hao
- Department of Neurology The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
| | - Dongrui Ma
- Department of Neurology The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
| | - Jiadi Li
- Department of Neurology The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
- Academy of Medical Sciences of Zhengzhou University Zhengzhou 450000 Henan China
| | - Jingjing Shi
- Department of Neurology The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
| | - Mengnan Guo
- Department of Neurology The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
| | - Shuangjie Li
- Department of Neurology The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
| | - Yanpeng Yuan
- Department of Neurology The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
- Henan Key Laboratory of Cerebrovascular Diseases The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450,000 Henan China
| | - Fen Liu
- Department of Neurology The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
- Academy of Medical Sciences of Zhengzhou University Zhengzhou 450000 Henan China
| | - Zhihua Yang
- Department of Neurology The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
- Academy of Medical Sciences of Zhengzhou University Zhengzhou 450000 Henan China
| | - Shuo Zhang
- Department of Neurology The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
- Academy of Medical Sciences of Zhengzhou University Zhengzhou 450000 Henan China
| | - Zhengwei Hu
- Department of Neurology The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
- Academy of Medical Sciences of Zhengzhou University Zhengzhou 450000 Henan China
| | - Liyuan Fan
- Department of Neurology The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
- Academy of Medical Sciences of Zhengzhou University Zhengzhou 450000 Henan China
| | - Han Liu
- Department of Neurology The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
- Henan Key Laboratory of Cerebrovascular Diseases The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450,000 Henan China
| | - Chan Zhang
- Department of Neurology The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
- Henan Key Laboratory of Cerebrovascular Diseases The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450,000 Henan China
| | - Yanlin Wang
- Department of Neurology The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
- Henan Key Laboratory of Cerebrovascular Diseases The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450,000 Henan China
| | - Qingzhi Wang
- Department of Neurology The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
- Henan Key Laboratory of Cerebrovascular Diseases The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450,000 Henan China
| | - Hong Zheng
- Department of Cell Biology and Medical Genetics Basic Medical College of Zhengzhou University Zhengzhou 450052 Henan China
| | - Ying He
- Department of Cell Biology and Medical Genetics Basic Medical College of Zhengzhou University Zhengzhou 450052 Henan China
| | - Bo Song
- Department of Neurology The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
- Henan Key Laboratory of Cerebrovascular Diseases The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450,000 Henan China
- Institute of Neuroscience Zhengzhou University Zhengzhou 450000 Henan China
- The Key Laboratory of Cerebrovascular Diseases Prevention and Treatment The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
| | - Yuming Xu
- Department of Neurology The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
- Henan Key Laboratory of Cerebrovascular Diseases The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450,000 Henan China
- Institute of Neuroscience Zhengzhou University Zhengzhou 450000 Henan China
- The Henan Medical Key Laboratory of Hereditary Neurodegenerative Diseases The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
- The Key Laboratory of Cerebrovascular Diseases Prevention and Treatment The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
| | - Changhe Shi
- Department of Neurology The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
- Henan Key Laboratory of Cerebrovascular Diseases The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450,000 Henan China
- Institute of Neuroscience Zhengzhou University Zhengzhou 450000 Henan China
- The Henan Medical Key Laboratory of Hereditary Neurodegenerative Diseases The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
- The Key Laboratory of Cerebrovascular Diseases Prevention and Treatment The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
| |
Collapse
|
146
|
MRI CNS Atrophy Pattern and the Etiologies of Progressive Ataxias. Tomography 2022; 8:423-437. [PMID: 35202200 PMCID: PMC8877967 DOI: 10.3390/tomography8010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/16/2022] [Accepted: 02/02/2022] [Indexed: 11/18/2022] Open
Abstract
MRI shows the three archetypal patterns of CNS volume loss underlying progressive ataxias in vivo, namely spinal atrophy (SA), cortical cerebellar atrophy (CCA) and olivopontocerebellar atrophy (OPCA). The MRI-based CNS atrophy pattern was reviewed in 128 progressive ataxias. A CNS atrophy pattern was identified in 91 conditions: SA in Friedreich’s ataxia, CCA in 5 acquired and 72 (24 dominant, 47 recessive,1 X-linked) inherited ataxias, OPCA in Multi-System Atrophy and 12 (9 dominant, 2 recessive,1 X-linked) inherited ataxias. The MRI-based CNS atrophy pattern may be useful for genetic assessment, identification of shared cellular targets, repurposing therapies or the enlargement of drug indications in progressive ataxias.
Collapse
|
147
|
Winser SJ, Pang M, Tsang WW, Whitney SL. Tai Chi for Dynamic Balance Training Among Individuals with Cerebellar Ataxia: An Assessor-Blinded Randomized-Controlled Trial. JOURNAL OF INTEGRATIVE AND COMPLEMENTARY MEDICINE 2022; 28:146-157. [PMID: 35167364 PMCID: PMC8867104 DOI: 10.1089/jicm.2021.0222] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Objective: To evaluate the immediate and long-term effects of 12 weeks of Tai Chi training on dynamic balance and disease severity among individuals with cerebellar ataxia (CA). Design: An assessor-blinded, two-arm, parallel-group randomized-controlled trial was conducted among 24 participants with CA. Participants were randomized to receive either Tai Chi intervention (n = 12) or usual care (n = 12). Dynamic balance was assessed using the Berg Balance Scale (BBS), Scale for the Assessment and Rating of Ataxia (SARA) balance sub-component of the SARA (SARAbal), Sensory Organization Test, and Limits of Stability test. Disease severity was assessed using the SARA and health-related quality of life using the EuroQol visual analog scale. Assessments were completed at baseline (week 0: T1), postintervention (week 12: T2), and at the end of the 24-week (week 36: T3) follow-up period. Interventions: The 8-form Tai Chi exercise was delivered in 60-min sessions, three times a week for 12 weeks. Participants were asked to complete an unsupervised home Tai Chi exercise program over the next 24 weeks. Participants in the usual care control group completed all study measures but did not receive any intervention. Results: Compared with the usual care control group, after 12 weeks of Tai Chi training, the experimental group demonstrated beneficial effects for dynamic balance assessed using the BBS (mean difference [MD]: 4, 95% confidence interval [CI]: −1.06 to 8.71) and the SARAbal (MD: −1.33, 95% CI: −2.66 to 2.33). The effect size ranged from small to large. The benefits gained were not sustained after 24 weeks during the follow-up assessment. Tai Chi did not benefit disease severity and health-related quality of life in this population. Conclusion: Some evidence supports the immediate beneficial effects of 12 weeks of Tai Chi training on the dynamic balance among individuals with CA. Australia New Zealand Clinical Trials Registry (ACTRN12617000327381).
Collapse
Affiliation(s)
- Stanley John Winser
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Marco Pang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - William W.N. Tsang
- Department of Physiotherapy, The Open University of Hong Kong, Hong Kong, Hong Kong
| | - Susan L. Whitney
- School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
148
|
Hereditary Spastic Paraplegia: An Update. Int J Mol Sci 2022; 23:ijms23031697. [PMID: 35163618 PMCID: PMC8835766 DOI: 10.3390/ijms23031697] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/21/2021] [Accepted: 01/28/2022] [Indexed: 12/12/2022] Open
Abstract
Hereditary spastic paraplegia (HSP) is a rare neurodegenerative disorder with the predominant clinical manifestation of spasticity in the lower extremities. HSP is categorised based on inheritance, the phenotypic characters, and the mode of molecular pathophysiology, with frequent degeneration in the axon of cervical and thoracic spinal cord’s lateral region, comprising the corticospinal routes. The prevalence ranges from 0.1 to 9.6 subjects per 100,000 reported around the globe. Though modern medical interventions help recognize and manage the disorder, the symptomatic measures remain below satisfaction. The present review assimilates the available data on HSP and lists down the chromosomes involved in its pathophysiology and the mutations observed in the respective genes on the chromosomes. It also sheds light on the treatment available along with the oral/intrathecal medications, physical therapies, and surgical interventions. Finally, we have discussed the related diagnostic techniques as well as the linked pharmacogenomics studies under future perspectives.
Collapse
|
149
|
Qiu YS, Zeng YH, Yuan RY, Ye ZX, Bi J, Lin XH, Chen YJ, Wang MW, Liu Y, Yao SB, Chen YK, Jiang JY, Lin Y, Lin X, Wang N, Fu Y, Chen WJ. Chinese patients with hereditary spastic paraplegias (HSPs): a protocol for a hospital-based cohort study. BMJ Open 2022; 12:e054011. [PMID: 35017251 PMCID: PMC8753405 DOI: 10.1136/bmjopen-2021-054011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
INTRODUCTION Hereditary spastic paraplegias (HSPs) are uncommon but not rare neurodegenerative diseases. More than 100 pathogenic genes and loci related to spastic paraplegia symptoms have been reported. HSPs have the same core clinical features, including progressive spasticity in the lower limbs, though HSPs are heterogeneous (eg, clinical signs, MRI features, gene mutation). The age of onset varies greatly, from infant to adulthood. In addition, the slow and variable rates of disease progression in patients with HSP represent a substantial challenge for informative assessment of therapeutic efficacy. To address this, we are undertaking a prospective cohort study to investigate genetic-clinical characteristics, find surrogates for monitoring disease progress and identify clinical readouts for treatment. METHODS AND ANALYSIS In this case-control cohort study, we will enrol 200 patients with HSP and 200 healthy individuals in parallel. Participants will be continuously assessed for 3 years at 12-month intervals. Six aspects, including clinical signs, genetic spectrum, cognitive competence, MRI features, potential biochemical indicators and nerve electrophysiological factors, will be assessed in detail. This study will observe clinical manifestations and disease severity based on different molecular mechanisms, including oxidative stress, cholesterol metabolism and microtubule dynamics, all of which have been proposed as potential treatment targets or modalities. The analysis will also assess disease progression in different types of HSPs and cellular pathways with a longitudinal study using t tests and χ2 tests. ETHICS AND DISSEMINATION The study was granted ethics committee approval by the first affiliated hospital of Fujian Medical University (MRCTA, ECFAH of FMU (2019)194) in 2019. Findings will be disseminated via presentations and peer-reviewed publications. Dissemination will target different audiences, including national stakeholders, researchers from different disciplines and the general public. TRIAL REGISTRATION NUMBER NCT04006418.
Collapse
Affiliation(s)
- Yu-Sen Qiu
- Department of Neurology and Institute of Neurology of The First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian, China
| | - Yi-Heng Zeng
- Department of Neurology and Institute of Neurology of The First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian, China
| | - Ru-Ying Yuan
- Department of Neurology and Institute of Neurology of The First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian, China
| | - Zhi-Xian Ye
- Department of Neurology and Institute of Neurology of The First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian, China
| | - Jin Bi
- Department of Neurology and Institute of Neurology of The First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian, China
| | - Xiao-Hong Lin
- Department of Neurology and Institute of Neurology of The First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian, China
| | - Yi-Jun Chen
- Department of Neurology and Institute of Neurology of The First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian, China
| | - Meng-Wen Wang
- Department of Neurology and Institute of Neurology of The First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian, China
| | - Ying Liu
- Department of Radiology of The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Department of Medical Imaging Technology, College of Medical Technology and Engineering, Fujian Medical University, Fuzhou, Fujian, China
| | - Shao-Bo Yao
- Department of Nuclear Medicine of The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Yi-Kun Chen
- Department of Neurology and Institute of Neurology of The First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian, China
| | - Jun-Yi Jiang
- Department of Neurology and Institute of Neurology of The First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian, China
| | - Yi Lin
- Department of Neurology and Institute of Neurology of The First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian, China
| | - Xiang Lin
- Department of Neurology and Institute of Neurology of The First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian, China
| | - Ning Wang
- Department of Neurology and Institute of Neurology of The First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian, China
| | - Ying Fu
- Department of Neurology and Institute of Neurology of The First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian, China
| | - Wan-Jin Chen
- Department of Neurology and Institute of Neurology of The First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
150
|
Méreaux JL, Banneau G, Papin M, Coarelli G, Valter R, Raymond L, Kol B, Ariste O, Parodi L, Tissier L, Mairey M, Ait Said S, Gautier C, Guillaud-Bataille M, Forlani S, de la Grange P, Brice A, Vazza G, Durr A, Leguern E, Stevanin G. Clinical and genetic spectra of 1550 index patients with hereditary spastic paraplegia. Brain 2022; 145:1029-1037. [PMID: 34983064 DOI: 10.1093/brain/awab386] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/07/2021] [Accepted: 08/29/2021] [Indexed: 11/13/2022] Open
Abstract
Hereditary spastic paraplegia refers to rare genetic neurodevelopmental and/or neurodegenerative disorders in which spasticity due to length-dependent damage to the upper motor neuron is a core sign. Their high clinical and genetic heterogeneity makes their diagnosis challenging. Multigene panels allow a high-throughput targeted analysis of the increasing number of genes involved using next-generation sequencing. We report here the clinical and genetic results of 1550 index cases tested for variants in a panel of hereditary spastic paraplegia related genes analyzed in routine diagnosis. A causative variant was found in 475 patients (30.7%) in 35/65 screened genes. SPAST and SPG7 were the most frequently mutated genes, representing 142 (9.2%) and 75 (4.8%) index cases of the whole series, respectively. KIF1A, ATL1, SPG11, KIF5A and REEP1 represented more than 1% (> 17 cases) each. There were 661 causative variants (382 different ones) and 30 of them were structural variants. This large cohort allowed us obtaining an overview of the clinical and genetic spectrum of hereditary spastic paraplegia in clinical practice. Because of the wide phenotypic variability, there was no very specific sign that could predict the causative gene but there were some constellations of symptoms that were found often related to specific subtypes. Finally, we confirmed the diagnostic effectiveness of a targeted sequencing panel as a first-line genetic test in hereditary spastic paraplegia. This is a pertinent strategy because of the relative frequency of several known genes (i.e.: SPAST, KIF1A) and it allows identifying variants in the rarest involved genes and to detect structural rearrangements via coverage analysis, which is less efficient in exome data sets. It is crucial because these structural variants represent a significant proportion of the pathogenic hereditary spastic paraplegia variants (∼6% of patients), notably for SPAST and REEP1. In a subset of 42 index cases negative for the targeted multigene panel, subsequent whole exome sequencing allowed to reach a theoretical diagnosis yield of ∼50%. We then propose a two-step strategy combining the use of a panel of genes followed by whole exome sequencing in negative cases.
Collapse
Affiliation(s)
- Jean-Loup Méreaux
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, 75013 Paris, France.,3Paris Sciences Lettres University, EPHE, 75000 Paris, France.,Rouen University Hospital, 76000 Rouen, France
| | - Guillaume Banneau
- APHP, Sorbonne Université, Department of Medical Genetics, 75013 Paris, France.,Département de Génétique Médicale, Institut Fédératif de Biologie, Hôpital Purpan, 31000 Toulouse, France
| | - Mélanie Papin
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, 75013 Paris, France.,3Paris Sciences Lettres University, EPHE, 75000 Paris, France
| | - Giulia Coarelli
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, 75013 Paris, France.,APHP, Sorbonne Université, Department of Medical Genetics, 75013 Paris, France
| | - Rémi Valter
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, 75013 Paris, France.,3Paris Sciences Lettres University, EPHE, 75000 Paris, France
| | - Laure Raymond
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, 75013 Paris, France.,3Paris Sciences Lettres University, EPHE, 75000 Paris, France
| | - Bophara Kol
- APHP, Sorbonne Université, Department of Medical Genetics, 75013 Paris, France
| | - Olivier Ariste
- GenoDiag-GenoSplice, Paris Biotech Santé, 75014 Paris, France
| | - Livia Parodi
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, 75013 Paris, France.,3Paris Sciences Lettres University, EPHE, 75000 Paris, France.,Department of Biology, University of Padua, 35100 Padua, Italy
| | - Laurène Tissier
- APHP, Sorbonne Université, Department of Medical Genetics, 75013 Paris, France
| | - Mathilde Mairey
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, 75013 Paris, France.,3Paris Sciences Lettres University, EPHE, 75000 Paris, France
| | - Samia Ait Said
- APHP, Sorbonne Université, Department of Medical Genetics, 75013 Paris, France
| | - Celia Gautier
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, 75013 Paris, France.,3Paris Sciences Lettres University, EPHE, 75000 Paris, France
| | | | | | - Sylvie Forlani
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, 75013 Paris, France
| | | | - Alexis Brice
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, 75013 Paris, France
| | - Giovanni Vazza
- Department of Biology, University of Padua, 35100 Padua, Italy
| | - Alexandra Durr
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, 75013 Paris, France.,APHP, Sorbonne Université, Department of Medical Genetics, 75013 Paris, France
| | - Eric Leguern
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, 75013 Paris, France.,APHP, Sorbonne Université, Department of Medical Genetics, 75013 Paris, France
| | - Giovanni Stevanin
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, 75013 Paris, France.,3Paris Sciences Lettres University, EPHE, 75000 Paris, France.,APHP, Sorbonne Université, Department of Medical Genetics, 75013 Paris, France
| |
Collapse
|