101
|
Epigenetics and Heart Failure. Int J Mol Sci 2020; 21:ijms21239010. [PMID: 33260869 PMCID: PMC7729735 DOI: 10.3390/ijms21239010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/13/2022] Open
Abstract
Epigenetics refers to changes in phenotypes without changes in genotypes. These changes take place in a number of ways, including via genomic DNA methylation, DNA interacting proteins, and microRNAs. The epigenome is the second dimension of the genome and it contains key information that is specific to every type of cell. Epigenetics is essential for many fundamental processes in biology, but its importance in the development and progression of heart failure, which is one of the major causes of morbidity and mortality worldwide, remains unclear. Our understanding of the underlying molecular mechanisms is incomplete. While epigenetics is one of the most innovative research areas in modern biology and medicine, compounds that directly target the epigenome, such as epidrugs, have not been well translated into therapies. This paper focuses on epigenetics in terms of genomic DNA methylation, such as 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) modifications. These appear to be more dynamic than previously anticipated and may underlie a wide variety of conditions, including heart failure. We also outline possible new strategies for the development of novel therapies.
Collapse
|
102
|
Brown SM, Larsen NK, Thankam FG, Agrawal DK. Fetal cardiomyocyte phenotype, ketone body metabolism, and mitochondrial dysfunction in the pathology of atrial fibrillation. Mol Cell Biochem 2020; 476:1165-1178. [PMID: 33188453 DOI: 10.1007/s11010-020-03980-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/06/2020] [Indexed: 10/23/2022]
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia diagnosed in clinical practice. Even though hypertension, congestive heart failure, pulmonary disease, and coronary artery disease are the potential risk factors for AF, the underlying molecular pathology is largely unknown. The reversion of the mature cardiomyocytes to fetal phenotype, impaired ketone body metabolism, mitochondrial dysfunction, and the cellular effect of reactive oxygen species (ROS) are the major underlying biochemical events associated with the molecular pathology of AF. On this background, the present manuscript sheds light into these biochemical events in regard to the metabolic derangements in cardiomyocyte leading to AF, especially with respect to structural, contractile, and electrophysiological properties. In addition, the article critically reviews the current understanding, potential demerits, and translational strategies in the management of AF.
Collapse
Affiliation(s)
- Sean M Brown
- Creighton University School of Medicine, Omaha, NE, 68178, USA
| | | | - Finosh G Thankam
- Department of Translational Research, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766, USA
| | - Devendra K Agrawal
- Department of Translational Research, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766, USA.
| |
Collapse
|
103
|
McCommis KS, Kovacs A, Weinheimer CJ, Shew TM, Koves TR, Ilkayeva OR, Kamm DR, Pyles KD, King MT, Veech RL, DeBosch BJ, Muoio DM, Gross RW, Finck BN. Nutritional modulation of heart failure in mitochondrial pyruvate carrier-deficient mice. Nat Metab 2020; 2:1232-1247. [PMID: 33106690 PMCID: PMC7957960 DOI: 10.1038/s42255-020-00296-1] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 09/10/2020] [Indexed: 01/04/2023]
Abstract
The myocardium is metabolically flexible; however, impaired flexibility is associated with cardiac dysfunction in conditions including diabetes and heart failure. The mitochondrial pyruvate carrier (MPC) complex, composed of MPC1 and MPC2, is required for pyruvate import into the mitochondria. Here we show that MPC1 and MPC2 expression is downregulated in failing human and mouse hearts. Mice with cardiac-specific deletion of Mpc2 (CS-MPC2-/-) exhibited normal cardiac size and function at 6 weeks old, but progressively developed cardiac dilation and contractile dysfunction, which was completely reversed by a high-fat, low-carbohydrate ketogenic diet. Diets with higher fat content, but enough carbohydrate to limit ketosis, also improved heart failure, while direct ketone body provisioning provided only minor improvements in cardiac remodelling in CS-MPC2-/- mice. An acute fast also improved cardiac remodelling. Together, our results reveal a critical role for mitochondrial pyruvate use in cardiac function, and highlight the potential of dietary interventions to enhance cardiac fat metabolism to prevent or reverse cardiac dysfunction and remodelling in the setting of MPC deficiency.
Collapse
Affiliation(s)
- Kyle S McCommis
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Biochemistry & Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA.
| | - Attila Kovacs
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Carla J Weinheimer
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Trevor M Shew
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Timothy R Koves
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - Olga R Ilkayeva
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - Dakota R Kamm
- Department of Biochemistry & Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Kelly D Pyles
- Department of Biochemistry & Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - M Todd King
- Laboratory of Metabolic Control, National Institute on Alcohol Abuse and Alcoholism, National Institute of Health, Bethesda, MD, USA
| | - Richard L Veech
- Laboratory of Metabolic Control, National Institute on Alcohol Abuse and Alcoholism, National Institute of Health, Bethesda, MD, USA
| | - Brian J DeBosch
- Departments of Pediatrics and Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Deborah M Muoio
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - Richard W Gross
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Chemistry, Washington University, St. Louis, MO, USA
| | - Brian N Finck
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
104
|
Greenwell AA, Gopal K, Ussher JR. Myocardial Energy Metabolism in Non-ischemic Cardiomyopathy. Front Physiol 2020; 11:570421. [PMID: 33041869 PMCID: PMC7526697 DOI: 10.3389/fphys.2020.570421] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022] Open
Abstract
As the most metabolically demanding organ in the body, the heart must generate massive amounts of energy adenosine triphosphate (ATP) from the oxidation of fatty acids, carbohydrates and other fuels (e.g., amino acids, ketone bodies), in order to sustain constant contractile function. While the healthy mature heart acts omnivorously and is highly flexible in its ability to utilize the numerous fuel sources delivered to it through its coronary circulation, the heart’s ability to produce ATP from these fuel sources becomes perturbed in numerous cardiovascular disorders. This includes ischemic heart disease and myocardial infarction, as well as in various cardiomyopathies that often precede the development of overt heart failure. We herein will provide an overview of myocardial energy metabolism in the healthy heart, while describing the numerous perturbations that take place in various non-ischemic cardiomyopathies such as hypertrophic cardiomyopathy, diabetic cardiomyopathy, arrhythmogenic cardiomyopathy, and the cardiomyopathy associated with the rare genetic disease, Barth Syndrome. Based on preclinical evidence where optimizing myocardial energy metabolism has been shown to attenuate cardiac dysfunction, we will discuss the feasibility of myocardial energetics optimization as an approach to treat the cardiac pathology associated with these various non-ischemic cardiomyopathies.
Collapse
Affiliation(s)
- Amanda A Greenwell
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada.,Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| | - Keshav Gopal
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada.,Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| | - John R Ussher
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada.,Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
105
|
Nguyen TD, Schulze PC. Lipid in the midst of metabolic remodeling - Therapeutic implications for the failing heart. Adv Drug Deliv Rev 2020; 159:120-132. [PMID: 32791076 DOI: 10.1016/j.addr.2020.08.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 08/07/2020] [Accepted: 08/07/2020] [Indexed: 02/07/2023]
Abstract
A healthy heart relies on an intact cardiac lipid metabolism. Fatty acids represent the major source for ATP production in the heart. Not less importantly, lipids are directly involved in critical processes such as cell growth, proliferation, and cell death by functioning as building blocks or signaling molecules. In the development of heart failure, perturbations in fatty acid utilization impair cardiac energetics. Furthermore, they may affect glucose and amino acid metabolism and induce the synthesis of several lipid intermediates, whose biological functions are still poorly understood. This work outlines the pivotal role of lipid metabolism in the heart and provides a lipocentric view of metabolic remodeling in heart failure. We will also critically revisit therapeutic attempts targeting cardiac lipid metabolism in heart failure and propose specific strategies for future investigations in this regard.
Collapse
|
106
|
Abstract
PURPOSE OF REVIEW This review summarizes the important role that metabolism plays in driving maturation of human pluripotent stem cell-derived cardiomyocytes. RECENT FINDINGS Human pluripotent stem cell-derived cardiomyocytes provide a model system for human cardiac biology. However, these models have been unable to fully recapitulate the maturity observed in the adult heart. By simulating the glucose to fatty acid transition observed in neonatal mammals, human pluripotent stem cell-derived cardiomyocytes undergo structural and functional maturation also accompanied by transcriptional changes and cell cycle arrest. The role of metabolism in energy production, signaling, and epigenetic modifications illustrates that metabolism and cellular phenotype are intimately linked. Further understanding of key metabolic factors driving cardiac maturation will facilitate the generation of more mature human pluripotent stem cell-derived cardiomyocyte models. This will increase our understanding of cardiac biology and potentially lead to novel therapeutics to enhance heart function.
Collapse
|
107
|
Harvey AP, Robinson E, Edgar KS, McMullan R, O’Neill KM, Alderdice M, Amirkhah R, Dunne PD, McDermott BJ, Grieve DJ. Downregulation of PPARα during Experimental Left Ventricular Hypertrophy Is Critically Dependent on Nox2 NADPH Oxidase Signalling. Int J Mol Sci 2020; 21:E4406. [PMID: 32575797 PMCID: PMC7352162 DOI: 10.3390/ijms21124406] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/31/2022] Open
Abstract
Pressure overload-induced left ventricular hypertrophy (LVH) is initially adaptive but ultimately promotes systolic dysfunction and chronic heart failure. Whilst underlying pathways are incompletely understood, increased reactive oxygen species generation from Nox2 NADPH oxidases, and metabolic remodelling, largely driven by PPARα downregulation, are separately implicated. Here, we investigated interaction between the two as a key regulator of LVH using in vitro, in vivo and transcriptomic approaches. Phenylephrine-induced H9c2 cardiomyoblast hypertrophy was associated with reduced PPARα expression and increased Nox2 expression and activity. Pressure overload-induced LVH and systolic dysfunction induced in wild-type mice by transverse aortic constriction (TAC) for 7 days, in association with Nox2 upregulation and PPARα downregulation, was enhanced in PPARα-/- mice and prevented in Nox2-/- mice. Detailed transcriptomic analysis revealed significantly altered expression of genes relating to PPARα, oxidative stress and hypertrophy pathways in wild-type hearts, which were unaltered in Nox2-/- hearts, whilst oxidative stress pathways remained dysregulated in PPARα-/- hearts following TAC. Network analysis indicated that Nox2 was essential for PPARα downregulation in this setting and identified preferential inflammatory pathway modulation and candidate cytokines as upstream Nox2-sensitive regulators of PPARα signalling. Together, these data suggest that Nox2 is a critical driver of PPARα downregulation leading to maladaptive LVH.
Collapse
Affiliation(s)
- Adam P. Harvey
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7AE, UK; (A.P.H.); (E.R.); (K.S.E.); (R.M.); (K.M.O.); (B.J.M.)
| | - Emma Robinson
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7AE, UK; (A.P.H.); (E.R.); (K.S.E.); (R.M.); (K.M.O.); (B.J.M.)
| | - Kevin S. Edgar
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7AE, UK; (A.P.H.); (E.R.); (K.S.E.); (R.M.); (K.M.O.); (B.J.M.)
| | - Ross McMullan
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7AE, UK; (A.P.H.); (E.R.); (K.S.E.); (R.M.); (K.M.O.); (B.J.M.)
| | - Karla M. O’Neill
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7AE, UK; (A.P.H.); (E.R.); (K.S.E.); (R.M.); (K.M.O.); (B.J.M.)
| | - Matthew Alderdice
- Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast BT7 1NN, UK; (M.A.); (R.A.); (P.D.D.)
| | - Raheleh Amirkhah
- Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast BT7 1NN, UK; (M.A.); (R.A.); (P.D.D.)
| | - Philip D. Dunne
- Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast BT7 1NN, UK; (M.A.); (R.A.); (P.D.D.)
| | - Barbara J. McDermott
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7AE, UK; (A.P.H.); (E.R.); (K.S.E.); (R.M.); (K.M.O.); (B.J.M.)
| | - David J. Grieve
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7AE, UK; (A.P.H.); (E.R.); (K.S.E.); (R.M.); (K.M.O.); (B.J.M.)
| |
Collapse
|
108
|
Ho KL, Zhang L, Wagg C, Al Batran R, Gopal K, Levasseur J, Leone T, Dyck JRB, Ussher JR, Muoio DM, Kelly DP, Lopaschuk GD. Increased ketone body oxidation provides additional energy for the failing heart without improving cardiac efficiency. Cardiovasc Res 2020; 115:1606-1616. [PMID: 30778524 DOI: 10.1093/cvr/cvz045] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 12/18/2018] [Accepted: 02/13/2019] [Indexed: 02/06/2023] Open
Abstract
AIMS The failing heart is energy-starved and inefficient due to perturbations in energy metabolism. Although ketone oxidation has been shown recently to increase in the failing heart, it remains unknown whether this improves cardiac energy production or efficiency. We therefore assessed cardiac metabolism in failing hearts and determined whether increasing ketone oxidation improves cardiac energy production and efficiency. METHODS AND RESULTS C57BL/6J mice underwent sham or transverse aortic constriction (TAC) surgery to induce pressure overload hypertrophy over 4-weeks. Isolated working hearts from these mice were perfused with radiolabelled β-hydroxybutyrate (βOHB), glucose, or palmitate to assess cardiac metabolism. Ejection fraction decreased by 45% in TAC mice. Failing hearts had decreased glucose oxidation while palmitate oxidation remained unchanged, resulting in a 35% decrease in energy production. Increasing βOHB levels from 0.2 to 0.6 mM increased ketone oxidation rates from 251 ± 24 to 834 ± 116 nmol·g dry wt-1 · min-1 in TAC hearts, rates which were significantly increased compared to sham hearts and occurred without decreasing glycolysis, glucose, or palmitate oxidation rates. Therefore, the contribution of ketones to energy production in TAC hearts increased to 18% and total energy production increased by 23%. Interestingly, glucose oxidation, in parallel with total ATP production, was also significantly upregulated in hearts upon increasing βOHB levels. However, while overall energy production increased, cardiac efficiency was not improved. CONCLUSIONS Increasing ketone oxidation rates in failing hearts increases overall energy production without compromising glucose or fatty acid metabolism, albeit without increasing cardiac efficiency.
Collapse
Affiliation(s)
- Kim L Ho
- Cardiovascular Research Centre, Faculty of Medicine and Dentistry, 423 Heritage Medical Research Centre, University of Alberta, Edmonton, AB, Canada
| | - Liyan Zhang
- Cardiovascular Research Centre, Faculty of Medicine and Dentistry, 423 Heritage Medical Research Centre, University of Alberta, Edmonton, AB, Canada
| | - Cory Wagg
- Cardiovascular Research Centre, Faculty of Medicine and Dentistry, 423 Heritage Medical Research Centre, University of Alberta, Edmonton, AB, Canada
| | - Rami Al Batran
- Cardiovascular Research Centre, Faculty of Medicine and Dentistry, 423 Heritage Medical Research Centre, University of Alberta, Edmonton, AB, Canada.,Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Keshav Gopal
- Cardiovascular Research Centre, Faculty of Medicine and Dentistry, 423 Heritage Medical Research Centre, University of Alberta, Edmonton, AB, Canada.,Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Jody Levasseur
- Cardiovascular Research Centre, Faculty of Medicine and Dentistry, 423 Heritage Medical Research Centre, University of Alberta, Edmonton, AB, Canada
| | - Teresa Leone
- Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA, USA
| | - Jason R B Dyck
- Cardiovascular Research Centre, Faculty of Medicine and Dentistry, 423 Heritage Medical Research Centre, University of Alberta, Edmonton, AB, Canada
| | - John R Ussher
- Cardiovascular Research Centre, Faculty of Medicine and Dentistry, 423 Heritage Medical Research Centre, University of Alberta, Edmonton, AB, Canada.,Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Deborah M Muoio
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, 300 N Duke St, Durham, NC, USA
| | - Daniel P Kelly
- Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA, USA
| | - Gary D Lopaschuk
- Cardiovascular Research Centre, Faculty of Medicine and Dentistry, 423 Heritage Medical Research Centre, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
109
|
Shi L, Liu J, Zhang Y, Chen M, Liu J. β1 adrenoceptor antibodies induce myocardial apoptosis via inhibiting PGC-1α-related pathway. BMC Cardiovasc Disord 2020; 20:269. [PMID: 32503464 PMCID: PMC7275518 DOI: 10.1186/s12872-020-01492-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 04/20/2020] [Indexed: 12/19/2022] Open
Abstract
Background Peripartum cardiomyopathy (PPCM) is life-threatening heart disease. However, the causes and pathogenesis of PPCM remain unclear. Previous studies found that β1 adrenoceptor antibodies (β1AA) had possible involvement in the development of PPCM. In the present study, we determined the potential relationship between PPCM and β1AA, including the mechanism of β1AA leading to PPCM. Methods We extracted the β1AA from the postpartum Wistar rats that were injected by the antigen peptide segment of the β1 adrenoceptor to produce PPCM. We tested the effects of β1AA on H9C2 cell line by CCK-8, LDH, TUNEL, SA-ELISA, qRT-PCR, and western blot methods. Furthermore, PGC-1α was overexpressed to rescue the effect of β1AA on H9C2 cells. Results We found that the extracted β1AA induced apoptosis of cardiac myocytes of H9C2 cell line. Moreover, the expression of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), which is a master regulator of mitochondrial metabolism, and its downstream transcript vascular endothelial growth factor (VEGF) got decreased in H9C2 cells after β1AA treatment. In addition, the effect of β1AA could be inhibited by atenolol, the antagonist of β1 adrenoceptors (β1AR) and imitated by isoprenaline, the agonist of β1AR. Furthermore, overexpression of PGC-1α in the H9C2 cells rescued the apoptosis of cells and inhibitory expression of VEGF induced by β1AA. Conclusions Our results suggest that the symptoms of PPCM due to myocardial cell apoptosis induced by β1AA inhibiting the PGC-1α-related pathway impairs mitochondrial energy metabolism. Therefore, our results uncover a previously unknown role of the β1AA pathway in the etiology of PPCM and provide a novel potential target for the treatment of PPCM.
Collapse
Affiliation(s)
- Linying Shi
- Heart Failure Center, Department of Cardiology, Beijing Chao-Yang Hospital, Capital Medical University, 8 Gongrentiyuchangnan Rd, Beijing, 100020, China
| | - Jia Liu
- Heart Failure Center, Department of Cardiology, Beijing Chao-Yang Hospital, Capital Medical University, 8 Gongrentiyuchangnan Rd, Beijing, 100020, China
| | - Yuan Zhang
- Heart Failure Center, Department of Cardiology, Beijing Chao-Yang Hospital, Capital Medical University, 8 Gongrentiyuchangnan Rd, Beijing, 100020, China
| | - Mulei Chen
- Heart Failure Center, Department of Cardiology, Beijing Chao-Yang Hospital, Capital Medical University, 8 Gongrentiyuchangnan Rd, Beijing, 100020, China.
| | - Jiamei Liu
- Heart Failure Center, Department of Cardiology, Beijing Chao-Yang Hospital, Capital Medical University, 8 Gongrentiyuchangnan Rd, Beijing, 100020, China.
| |
Collapse
|
110
|
Selvaraj S, Kelly DP, Margulies KB. Implications of Altered Ketone Metabolism and Therapeutic Ketosis in Heart Failure. Circulation 2020; 141:1800-1812. [PMID: 32479196 DOI: 10.1161/circulationaha.119.045033] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Despite existing therapy, patients with heart failure (HF) experience substantial morbidity and mortality, highlighting the urgent need to identify novel pathophysiological mechanisms and therapies, as well. Traditional models for pharmacological intervention have targeted neurohormonal axes and hemodynamic disturbances in HF. However, several studies have now highlighted the potential for ketone metabolic modulation as a promising treatment paradigm. During the pathophysiological progression of HF, the failing heart reduces fatty acid and glucose oxidation, with associated increases in ketone metabolism. Recent studies indicate that enhanced myocardial ketone use is adaptive in HF, and limited data demonstrate beneficial effects of exogenous ketone therapy in studies of animal models and humans with HF. This review will summarize current evidence supporting a salutary role for ketones in HF including (1) normal myocardial ketone use, (2) alterations in ketone metabolism in the failing heart, (3) effects of therapeutic ketosis in animals and humans with HF, and (4) the potential significance of ketosis associated with sodium-glucose cotransporter 2 inhibitors. Although a number of important questions remain regarding the use of therapeutic ketosis and mechanism of action in HF, current evidence suggests potential benefit, in particular, in HF with reduced ejection fraction, with theoretical rationale for its use in HF with preserved ejection fraction. Although it is early in its study and development, therapeutic ketosis across the spectrum of HF holds significant promise.
Collapse
Affiliation(s)
- Senthil Selvaraj
- Division of Cardiovascular Medicine, Department of Medicine (S.S., K.B.M.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Daniel P Kelly
- Cardiovascular Institute and Department of Medicine (D.P.K., K.B.M.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Kenneth B Margulies
- Division of Cardiovascular Medicine, Department of Medicine (S.S., K.B.M.), Perelman School of Medicine, University of Pennsylvania, Philadelphia.,Cardiovascular Institute and Department of Medicine (D.P.K., K.B.M.), Perelman School of Medicine, University of Pennsylvania, Philadelphia.,Heart Failure and Transplant Program, Smilow Center for Translational Research (K.B.M.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| |
Collapse
|
111
|
Gupta K, Kalra R, Rajapreyar I, Joly JM, Pate M, Cribbs MG, Ather S, Prabhu SD, Bajaj NS. Anemia, Mortality, and Hospitalizations in Heart Failure With a Preserved Ejection Fraction (from the TOPCAT Trial). Am J Cardiol 2020; 125:1347-1354. [PMID: 32151432 PMCID: PMC10083894 DOI: 10.1016/j.amjcard.2020.01.046] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/21/2020] [Accepted: 01/23/2020] [Indexed: 02/08/2023]
Abstract
In this post-hoc analysis of the TOPCAT trial, we evaluated the prognostic role of anemia in adverse cardiovascular (CV) outcomes in heart failure with a preserved ejection fraction (HFpEF). Anemia was defined as hemoglobin of <12 g/dl in females and <13 g/dl in males. The primary outcome was a composite of CV mortality, aborted cardiac arrest (ACA), and heart failure (HF) hospitalization. Secondary outcomes were components of the primary outcome, all-cause, CV and non-CV mortality, cause-specific CV and non-CV mortality, all-cause and HF hospitalization, myocardial infarction, and stroke. Among 1,748 patients from TOPCAT-Americas, patients with anemia had a 52% higher risk of the primary outcome (hazard ratio [HR] 1.52, 95% confidence interval 1.27, 1.83, p<0.05) during a median follow up of 2.4 years. These patients were also at higher risk of all-cause and CV mortality with no difference in non-CV mortality. Among CV causes, patients with anemia had higher risk of sudden cardiac death (SCD)/ACA and presumed CV death with no difference in death due to pump failure. Among non-CV causes, patients with anemia had higher risk of death due to malignancy (HR 2.61, p<0.05). Patients with anemia had higher risk of all-cause and HF hospitalizations (HR 1.26 and 1.56, respectively, p<0.05 for both). There was no difference in the risk of myocardial infarction or stroke. In conclusion, patients with HFpEF and anemia are at higher risk of mortality and hospitalization. Anemia is a significant risk factor for SCD/ACA, death due to presumed CV causes and malignancy in HFpEF.
Collapse
|
112
|
Ma C, Zhang L, Wang X, He S, Bai J, Li Q, Zhang M, Zhang C, Yu X, Zhang J, Xin W, Li Y, Zhu D. piRNA-63076 contributes to pulmonary arterial smooth muscle cell proliferation through acyl-CoA dehydrogenase. J Cell Mol Med 2020; 24:5260-5273. [PMID: 32227582 PMCID: PMC7205801 DOI: 10.1111/jcmm.15179] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 02/09/2020] [Accepted: 03/06/2020] [Indexed: 12/18/2022] Open
Abstract
Piwi-interacting RNAs (piRNAs) are thought to be germline-specific and to be involved in maintaining genome stability during development. Recently, piRNA expression has been identified in somatic cells in diverse organisms. However, the roles of piRNAs in pulmonary arterial smooth muscle cell (PASMC) proliferation and the molecular mechanism underlying the hypoxia-regulated pathological process of pulmonary hypertension are not well understood. Using hypoxic animal models, cell and molecular biology, we obtained the first evidence that the expression of piRNA-63076 was up-regulated in hypoxia and was positively correlated with cell proliferation. Subsequently, we showed that acyl-CoA dehydrogenase (Acadm), which is negatively regulated by piRNA-63076 and interacts with Piwi proteins, was involved in hypoxic PASMC proliferation. Finally, Acadm inhibition under hypoxia was partly attributed to DNA methylation of the Acadm promoter region mediated by piRNA-63076. Overall, these findings represent invaluable resources for better understanding the role of epigenetics in pulmonary hypertension associated with piRNAs.
Collapse
Affiliation(s)
- Cui Ma
- Central Laboratory of Harbin Medical University (Daqing)DaqingChina
- College of Medical Laboratory Science and TechnologyHarbin Medical University (Daqing)DaqingChina
| | - Lixin Zhang
- Central Laboratory of Harbin Medical University (Daqing)DaqingChina
- College of Medical Laboratory Science and TechnologyHarbin Medical University (Daqing)DaqingChina
| | - Xiaoying Wang
- Central Laboratory of Harbin Medical University (Daqing)DaqingChina
- College of PharmacyHarbin Medical UniversityHarbinChina
| | - Siyu He
- Central Laboratory of Harbin Medical University (Daqing)DaqingChina
- College of PharmacyHarbin Medical UniversityHarbinChina
| | - June Bai
- Central Laboratory of Harbin Medical University (Daqing)DaqingChina
- College of PharmacyHarbin Medical UniversityHarbinChina
| | - Qian Li
- College of PharmacyHarbin Medical UniversityHarbinChina
| | - Min Zhang
- Central Laboratory of Harbin Medical University (Daqing)DaqingChina
- College of PharmacyHarbin Medical UniversityHarbinChina
| | - Chen Zhang
- College of PharmacyHarbin University of CommerceHarbinChina
| | - Xiufeng Yu
- Central Laboratory of Harbin Medical University (Daqing)DaqingChina
- College of Medical Laboratory Science and TechnologyHarbin Medical University (Daqing)DaqingChina
| | - Junting Zhang
- Central Laboratory of Harbin Medical University (Daqing)DaqingChina
- College of PharmacyHarbin Medical UniversityHarbinChina
| | - Wei Xin
- Central Laboratory of Harbin Medical University (Daqing)DaqingChina
- College of PharmacyHarbin Medical UniversityHarbinChina
| | - Yiying Li
- Central Laboratory of Harbin Medical University (Daqing)DaqingChina
- College of PharmacyHarbin Medical UniversityHarbinChina
| | - Daling Zhu
- Central Laboratory of Harbin Medical University (Daqing)DaqingChina
- College of PharmacyHarbin Medical UniversityHarbinChina
- State Province Key Laboratories of BiomedicinePharmaceutics of ChinaDaqingChina
- Key Laboratory of Cardiovascular Medicine ResearchMinistry of EducationHarbin Medical UniversityHarbinChina
| |
Collapse
|
113
|
LaRocca TJ, Seeger T, Prado M, Perea-Gil I, Neofytou E, Mecham BH, Ameen M, Chang ACY, Pandey G, Wu JC, Karakikes I. Pharmacological Silencing of MicroRNA-152 Prevents Pressure Overload-Induced Heart Failure. Circ Heart Fail 2020; 13:e006298. [PMID: 32160771 DOI: 10.1161/circheartfailure.119.006298] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND MicroRNAs are small, noncoding RNAs that play a key role in gene expression. Accumulating evidence suggests that aberrant microRNA expression contributes to the heart failure (HF) phenotype; however, the underlying molecular mechanisms are not well understood. A better understanding of the mechanisms of action of microRNAs could potentially lead to targeted therapies that could halt the progression or even reverse HF. METHODS AND RESULTS We found that microRNA-152 (miR-152) expression was upregulated in the failing human heart and experimental animal models of HF. Transgenic mice with cardiomyocyte-specific miR-152 overexpression developed systolic dysfunction (mean difference, -38.74% [95% CI, -45.73% to -31.74%]; P<0.001) and dilated cardiomyopathy. At the cellular level, miR-152 overexpression perturbed mitochondrial ultrastructure and dysregulated key genes involved in cardiomyocyte metabolism and inflammation. Mechanistically, we identified Glrx5 (glutaredoxin 5), a critical regulator of mitochondrial iron homeostasis and iron-sulfur cluster synthesis, as a direct miR-152 target. Finally, a proof-of-concept of the therapeutic efficacy of targeting miR-152 in vivo was obtained by utilizing a locked nucleic acid-based inhibitor of miR-152 (LNA 152) in a murine model of HF subjected to transverse aortic constriction. We demonstrated that animals treated with LNA-152 (n=10) showed preservation of systolic function when compared with locked nucleic acid-control treated animals (n=9; mean difference, 18.25% [95% CI, 25.10% to 11.39%]; P<0.001). CONCLUSIONS The upregulation of miR-152 expression in the failing myocardium contributes to HF pathophysiology. Preclinical evidence suggests that miR-152 inhibition preserves cardiac function in a model of pressure overload-induced HF. These findings offer new insights into the pathophysiology of HF and point to miR-152-Glrx5 axis as a potential novel therapeutic target.
Collapse
Affiliation(s)
- Thomas J LaRocca
- Division of Critical Care Medicine, Department of Pediatrics, Lucile Packard Children's Hospital (T.J.L.), Stanford University School of Medicine, CA
| | - Timon Seeger
- Stanford Cardiovascular Institute (T.S., I.P.-G., E.N., M.A., J.C.W., I.K.), Stanford University School of Medicine, CA
| | - Maricela Prado
- Department of Cardiothoracic Surgery (M.P., I.P.-G., I.K.), Stanford University School of Medicine, CA
| | - Isaac Perea-Gil
- Department of Cardiothoracic Surgery (M.P., I.P.-G., I.K.), Stanford University School of Medicine, CA.,Stanford Cardiovascular Institute (T.S., I.P.-G., E.N., M.A., J.C.W., I.K.), Stanford University School of Medicine, CA
| | - Evgenios Neofytou
- Stanford Cardiovascular Institute (T.S., I.P.-G., E.N., M.A., J.C.W., I.K.), Stanford University School of Medicine, CA
| | | | - Mohamed Ameen
- Stanford Cardiovascular Institute (T.S., I.P.-G., E.N., M.A., J.C.W., I.K.), Stanford University School of Medicine, CA
| | - Alex Chia Yu Chang
- Department of Cardiology and Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China (A.C.Y.C.)
| | - Gaurav Pandey
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY (G.P.)
| | - Joseph C Wu
- Stanford Cardiovascular Institute (T.S., I.P.-G., E.N., M.A., J.C.W., I.K.), Stanford University School of Medicine, CA.,Department of Radiology (J.C.W.), Stanford University School of Medicine, CA
| | - Ioannis Karakikes
- Department of Cardiothoracic Surgery (M.P., I.P.-G., I.K.), Stanford University School of Medicine, CA.,Stanford Cardiovascular Institute (T.S., I.P.-G., E.N., M.A., J.C.W., I.K.), Stanford University School of Medicine, CA
| |
Collapse
|
114
|
Kimball TH, Vondriska TM. Metabolism, Epigenetics, and Causal Inference in Heart Failure. Trends Endocrinol Metab 2020; 31:181-191. [PMID: 31866216 PMCID: PMC7035178 DOI: 10.1016/j.tem.2019.11.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 12/24/2022]
Abstract
Eukaryotes must balance the metabolic and cell death actions of mitochondria via control of gene expression and cell fate by chromatin, thereby functionally binding the metabolome and epigenome. This interaction has far-reaching implications for chronic diseases in humans, the most common of which are those of the cardiovascular system. The most devastating consequence of cardiovascular disease, heart failure, is not a single disease, diagnosis, or endpoint. Human and animal studies have revealed that, regardless of etiology and symptoms, heart failure is universally associated with abnormal metabolism and gene expression - to frame this as cause or consequence, however, may be to wrongfoot the question. This essay aims to challenge current thinking on metabolic-epigenetic crosstalk in heart failure, presenting hypotheses for how chronic diseases arise, take hold, and persist. We unpack assumptions about the order of operations for gene expression and metabolism, exploring recent findings in noncardiac systems that link metabolic intermediates directly to chromatin remodeling. Lastly, we discuss potential mechanisms by which chromatin may serve as a substrate for metabolic memory, and how changes in cellular transcriptomes (and hence in cellular behavior) in response to stress correspond to global changes in chromatin accessibility and structure.
Collapse
Affiliation(s)
- Todd H Kimball
- Departments of Anesthesiology, Medicine, and Physiology, David Geffen School of Medicine, University of California at Los Angeles (UCLA), Los Angeles, CA, USA
| | - Thomas M Vondriska
- Departments of Anesthesiology, Medicine, and Physiology, David Geffen School of Medicine, University of California at Los Angeles (UCLA), Los Angeles, CA, USA.
| |
Collapse
|
115
|
Trum M, Wagner S, Maier LS, Mustroph J. CaMKII and GLUT1 in heart failure and the role of gliflozins. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165729. [PMID: 32068116 DOI: 10.1016/j.bbadis.2020.165729] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 12/14/2022]
Abstract
Empagliflozin, a selective sodium-glucose co-transporter 2 (SGLT2) inhibitor, has been shown to reduce mortality and hospitalization for heart failure in diabetic patients in the EMPA-REG-OUTCOME trial (Zinman et al., 2015). Surprisingly, dapagliflozin, another SGLT2 inhibitor, exerted comparable effects on clinical endpoints even in the absence of diabetes mellitus (DAPA-HF trial) (McMurray et al., 2019). There is a myriad of suggested underlying mechanisms ranging from improved glycemic control and hemodynamic effects to altered myocardial metabolism, inflammation, neurohumoral activation and intracellular ion homeostasis. Here, we review the effects of gliflozins on cardiac electro-mechanical coupling with an emphasis on novel CaMKII-mediated pathways and on cardiac glucose and ketone metabolism in the failing heart. We focus on empagliflozin as it is the gliflozin with the most abundant experimental evidence for direct effects on the heart. Where useful, we aim to compare empagliflozin to other gliflozins. To facilitate understanding of empagliflozin-induced alterations, we first give a short summary of the pathophysiological role of CaMKII in heart failure, as well as cardiac changes of glucose and ketone body metabolism in the failing heart.
Collapse
Affiliation(s)
- M Trum
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - S Wagner
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - L S Maier
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - J Mustroph
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany.
| |
Collapse
|
116
|
Parsanathan R, Jain SK. Novel Invasive and Noninvasive Cardiac-Specific Biomarkers in Obesity and Cardiovascular Diseases. Metab Syndr Relat Disord 2020; 18:10-30. [PMID: 31618136 PMCID: PMC7041332 DOI: 10.1089/met.2019.0073] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of fatality and disability worldwide regardless of gender. Obesity has reached epidemic proportions in population across different regions. According to epidemiological studies, CVD risk markers in childhood obesity are one of the significant risk factors for adulthood CVD, but have received disproportionally little attention. This review has examined the evidence for the presence of traditional cardiac biomarkers (nonspecific; lactate dehydrogenase, alanine aminotransferase, aspartate aminotransferase, creatine kinase, myoglobulin, glycogen phosphorylase isoenzyme BB, myosin light chains, ST2, and ischemia-modified albumin) and novel emerging cardiac-specific biomarkers (cardiac troponins, natriuretic peptides, heart-type fatty acid-binding protein, and miRNAs). Besides, noninvasive anatomical and electrophysiological markers (carotid intima-media thickness, coronary artery calcification, and heart rate variability) in CVDs and obesity are also discussed. Modifiable and nonmodifiable risk factors associated with metabolic syndrome in the progression of CVD, such as obesity, diabetes, hypertension, dyslipidemia, oxidative stress, inflammation, and adipocytokines are also outlined. These underlying prognostic risk factors predict the onset of future microvascular and macrovascular complications. The understanding of invasive and noninvasive cardiac-specific biomarkers and the risk factors may yield valuable insights into the pathophysiology and prevention of CVD in a high-risk obese population at an early stage.
Collapse
Affiliation(s)
- Rajesh Parsanathan
- Department of Pediatrics and Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana
| | - Sushil K. Jain
- Department of Pediatrics and Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana
| |
Collapse
|
117
|
Affiliation(s)
- Timothy R Matsuura
- From the Cardiovascular Institute, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia
| | - Teresa C Leone
- From the Cardiovascular Institute, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia
| | - Daniel P Kelly
- From the Cardiovascular Institute, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia
| |
Collapse
|
118
|
Torres MJ, McLaughlin KL, Renegar RH, Valsaraj S, Whitehurst KS, Sharaf OM, Sharma UM, Horton JL, Sarathy B, Parks JC, Brault JJ, Fisher-Wellman KH, Neufer PD, Virag JAI. Intracardiac administration of ephrinA1-Fc preserves mitochondrial bioenergetics during acute ischemia/reperfusion injury. Life Sci 2019; 239:117053. [PMID: 31733316 DOI: 10.1016/j.lfs.2019.117053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 12/18/2022]
Abstract
AIMS Intracardiac injection of recombinant EphrinA1-Fc immediately following coronary artery ligation in mice reduces infarct size in both reperfused and non-reperfused myocardium, but the cellular alterations behind this phenomenon remain unknown. MAIN METHODS Herein, 10 wk-old B6129SF2/J male mice were exposed to acute ischemia/reperfusion (30minI/24hrsR) injury immediately followed by intracardiac injection of either EphrinA1-Fc or IgG-Fc. After 24 h of reperfusion, sections of the infarct margin in the left ventricle were imaged via transmission electron microscopy, and mitochondrial function was assessed in both permeabilized fibers and isolated mitochondria, to examine mitochondrial structure, function, and energetics in the early stages of repair. KEY FINDINGS At a structural level, EphrinA1-Fc administration prevented the I/R-induced loss of sarcomere alignment and mitochondrial organization along the Z disks, as well as disorganization of the cristae and loss of inter-mitochondrial junctions. With respect to bioenergetics, loss of respiratory function induced by I/R was prevented by EphrinA1-Fc. Preservation of cardiac bioenergetics was not due to changes in mitochondrial JH2O2 emitting potential, membrane potential, ADP affinity, efficiency of ATP production, or activity of the main dehydrogenase enzymes, suggesting that EphrinA1-Fc indirectly maintains respiratory function via preservation of the mitochondrial network. Moreover, these protective effects were lost in isolated mitochondria, further emphasizing the importance of the intact cardiomyocyte ultrastructure in mitochondrial energetics. SIGNIFICANCE Collectively, these data suggest that intracardiac injection of EphrinA1-Fc protects cardiac function by preserving cardiomyocyte structure and mitochondrial bioenergetics, thus emerging as a potential therapeutic strategy in I/R injury.
Collapse
Affiliation(s)
- Maria J Torres
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, 27834, USA
| | - Kelsey L McLaughlin
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, 27834, USA; Dept of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Randall H Renegar
- Dept of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Smrithi Valsaraj
- Dept of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - K'Shylah S Whitehurst
- Dept of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Omar M Sharaf
- Dept of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Uma M Sharma
- Dept of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Julie L Horton
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, 27834, USA; Dept of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Brinda Sarathy
- Dept of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Justin C Parks
- Dept of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Jeffrey J Brault
- Dept of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA; Dept of Kinesiology, College of Health and Human Performance, East Carolina University, Greenville, NC, 27834, USA
| | - Kelsey H Fisher-Wellman
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, 27834, USA; Dept of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - P Darrell Neufer
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, 27834, USA; Dept of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Jitka A I Virag
- Dept of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA.
| |
Collapse
|
119
|
Tian R, Colucci WS, Arany Z, Bachschmid MM, Ballinger SW, Boudina S, Bruce JE, Busija DW, Dikalov S, Dorn GW, Galis ZS, Gottlieb RA, Kelly DP, Kitsis RN, Kohr MJ, Levy D, Lewandowski ED, McClung JM, Mochly-Rosen D, O’Brien KD, O’Rourke B, Park JY, Ping P, Sack MN, Sheu SS, Shi Y, Shiva S, Wallace DC, Weiss RG, Vernon HJ, Wong R, Longacre LS. Unlocking the Secrets of Mitochondria in the Cardiovascular System: Path to a Cure in Heart Failure—A Report from the 2018 National Heart, Lung, and Blood Institute Workshop. Circulation 2019; 140:1205-1216. [PMID: 31769940 PMCID: PMC6880654 DOI: 10.1161/circulationaha.119.040551] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mitochondria have emerged as a central factor in the pathogenesis and progression of heart failure, and other cardiovascular diseases, as well, but no therapies are available to treat mitochondrial dysfunction. The National Heart, Lung, and Blood Institute convened a group of leading experts in heart failure, cardiovascular diseases, and mitochondria research in August 2018. These experts reviewed the current state of science and identified key gaps and opportunities in basic, translational, and clinical research focusing on the potential of mitochondria-based therapeutic strategies in heart failure. The workshop provided short- and long-term recommendations for moving the field toward clinical strategies for the prevention and treatment of heart failure and cardiovascular diseases by using mitochondria-based approaches.
Collapse
Affiliation(s)
- Rong Tian
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine,, University of Washington, Seattle, WA
| | | | - Zoltan Arany
- Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | | | - Scott W. Ballinger
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL
| | - Sihem Boudina
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT
| | - James E. Bruce
- Department of Genome Sciences, University of Washington, Seattle, WA
| | - David W. Busija
- Department of Pharmacology, Tulane University, New Orleans, LA
| | - Sergey Dikalov
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Gerald W. Dorn
- Center for Pharmacogenomics, Department of Internal Medicine, Washington University, St. Louis, MO
| | - Zorina S. Galis
- National, Heart, Lung, and Blood Institute, NIH, Bethesda, MD
| | | | - Daniel P. Kelly
- Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Richard N. Kitsis
- Department of Medicine, Department of Cell Biology, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY
| | - Mark J. Kohr
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD
| | - Daniel Levy
- National, Heart, Lung, and Blood Institute, NIH, Bethesda, MD
| | | | | | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA
| | | | - Brian O’Rourke
- Department of Medicine, Johns Hopkins University, Baltimore, MD
| | - Joon-Young Park
- Department of Kinesiology, Temple University, Philadelphia, PA
| | - Peipei Ping
- Department of Physiology and Department of Medicine, University of California, Los Angeles
| | - Michael N. Sack
- National, Heart, Lung, and Blood Institute, NIH, Bethesda, MD
| | | | - Yang Shi
- National, Heart, Lung, and Blood Institute, NIH, Bethesda, MD
| | - Sruti Shiva
- Department of Pharmacology and Chemical Biology and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA
| | - Douglas C. Wallace
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia Research Institute, Philadelphia, PA
| | - Robert G. Weiss
- Department of Medicine, Johns Hopkins University, Baltimore, MD
| | - Hilary J. Vernon
- Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD
| | - Renee Wong
- National, Heart, Lung, and Blood Institute, NIH, Bethesda, MD
| | | |
Collapse
|
120
|
Ginsenoside Rb3 regulates energy metabolism and apoptosis in cardiomyocytes via activating PPARα pathway. Biomed Pharmacother 2019; 120:109487. [PMID: 31577975 DOI: 10.1016/j.biopha.2019.109487] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/09/2019] [Accepted: 09/22/2019] [Indexed: 12/21/2022] Open
Abstract
Heart failure (HF) leads to an increase in morbidity and mortality globally. Disorders of energy metabolism and apoptosis of cardiomyocytes are critically involved in the progression of HF. Ginsenoside Rb3 (G-Rb3) is a natural product derived from ginseng that has cardio-protective effect. The pharmacological mechanism of G-Rb3 in the treatment of HF remains to be clarified. In this study, we aimed to explore the regulative effects of G-Rb3 on fatty acids oxidation and apoptosis by in vivo and in vitro studies. Myocardial infarction (MI)-induced HF mice model and a cellular H9C2 injury model was induced by oxygen-glucose deprivation/reperfusion (OGD/R) stimulation. The results showed that G-Rb3 could protect heart functions in MI-induced HF model. G-Rb3 treatment up-regulated expressions of key enzymes involved in β-oxidation of fatty acids, including carnitine palmitoyltransterase-1α (CPT-1α), acyl-CoA dehydrogenase long chain (ACADL) and the major mitochondrial deacetylase enzyme sirtuin 3 (SIRT3). The upstream transcriptional regulator, peroxisome proliferator-activated receptor α (PPARα), was also up-regulated by G-Rb3 treatment. In vitro study demonstrated that G-Rb3 could protect mitochondrial membrane integrity and exert anti-apoptotic effects, in addition to regulating fatty acids oxidation. Impressively, after cells were co-treated with PPARα inhibitor, the regulative effects of G-Rb3 on energy metabolism and apoptosis were abrogated. Our study suggests that G-Rb3 is a promising agent and PPARα is potential target in the management of HF.
Collapse
|
121
|
Abstract
Metabolic pathways integrate to support tissue homeostasis and to prompt changes in cell phenotype. In particular, the heart consumes relatively large amounts of substrate not only to regenerate ATP for contraction but also to sustain biosynthetic reactions for replacement of cellular building blocks. Metabolic pathways also control intracellular redox state, and metabolic intermediates and end products provide signals that prompt changes in enzymatic activity and gene expression. Mounting evidence suggests that the changes in cardiac metabolism that occur during development, exercise, and pregnancy as well as with pathological stress (eg, myocardial infarction, pressure overload) are causative in cardiac remodeling. Metabolism-mediated changes in gene expression, metabolite signaling, and the channeling of glucose-derived carbon toward anabolic pathways seem critical for physiological growth of the heart, and metabolic inefficiency and loss of coordinated anabolic activity are emerging as proximal causes of pathological remodeling. This review integrates knowledge of different forms of cardiac remodeling to develop general models of how relationships between catabolic and anabolic glucose metabolism may fortify cardiac health or promote (mal)adaptive myocardial remodeling. Adoption of conceptual frameworks based in relational biology may enable further understanding of how metabolism regulates cardiac structure and function.
Collapse
Affiliation(s)
- Andrew A Gibb
- From the Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA (A.A.G.)
| | - Bradford G Hill
- the Department of Medicine, Institute of Molecular Cardiology, Diabetes and Obesity Center, University of Louisville School of Medicine, KY (B.G.H.).
| |
Collapse
|
122
|
Abstract
The heart consumes large amounts of energy in the form of ATP that is continuously replenished by oxidative phosphorylation in mitochondria and, to a lesser extent, by glycolysis. To adapt the ATP supply efficiently to the constantly varying demand of cardiac myocytes, a complex network of enzymatic and signalling pathways controls the metabolic flux of substrates towards their oxidation in mitochondria. In patients with heart failure, derangements of substrate utilization and intermediate metabolism, an energetic deficit, and oxidative stress are thought to underlie contractile dysfunction and the progression of the disease. In this Review, we give an overview of the physiological processes of cardiac energy metabolism and their pathological alterations in heart failure and diabetes mellitus. Although the energetic deficit in failing hearts - discovered >2 decades ago - might account for contractile dysfunction during maximal exertion, we suggest that the alterations of intermediate substrate metabolism and oxidative stress rather than an ATP deficit per se account for maladaptive cardiac remodelling and dysfunction under resting conditions. Treatments targeting substrate utilization and/or oxidative stress in mitochondria are currently being tested in patients with heart failure and might be promising tools to improve cardiac function beyond that achieved with neuroendocrine inhibition.
Collapse
|
123
|
Maciejewska-Skrendo A, Buryta M, Czarny W, Król P, Stastny P, Petr M, Safranow K, Sawczuk M. The Polymorphisms of the Peroxisome-Proliferator Activated Receptors' Alfa Gene Modify the Aerobic Training Induced Changes of Cholesterol and Glucose. J Clin Med 2019; 8:jcm8071043. [PMID: 31319591 PMCID: PMC6679124 DOI: 10.3390/jcm8071043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/09/2019] [Accepted: 07/15/2019] [Indexed: 12/19/2022] Open
Abstract
Background: PPARα is a transcriptional factor that controls the expression of genes involved in fatty acid metabolism, including fatty acid transport, uptake by the cells, intracellular binding, and activation, as well as catabolism (particularly mitochondrial fatty acid oxidation) or storage. PPARA gene polymorphisms may be crucial for maintaining lipid homeostasis and in this way, being responsible for developing specific training-induced physiological reactions. Therefore, we have decided to check if post-training changes of body mass measurements as well as chosen biochemical parameters are modulation by the PPARA genotypes. Methods: We have examined the genotype and alleles’ frequencies (described in PPARA rs1800206 and rs4253778 polymorphic sites) in 168 female participants engaged in a 12-week training program. Body composition and biochemical parameters were measured before and after the completion of a whole training program. Results: Statistical analyses revealed that PPARA intron 7 rs4253778 CC genotype modulate training response by increasing low-density lipoproteins (LDL) and glucose concentration, while PPARA Leu162Val rs1800206 CG genotype polymorphism interacts in a decrease in high-density lipoproteins (HDL) concentration. Conclusions: Carriers of PPARA intron 7 rs4253778 CC genotype and Leu162Val rs1800206 CG genotype might have potential negative training-induced cholesterol and glucose changes after aerobic exercise.
Collapse
Affiliation(s)
- Agnieszka Maciejewska-Skrendo
- Department of Molecular Biology, Faculty of Physical Education, Gdansk University of Physical Education and Sport, 80-336 Gdansk, Poland
| | - Maciej Buryta
- Department of Molecular Biology, Faculty of Physical Education, Gdansk University of Physical Education and Sport, 80-336 Gdansk, Poland
| | - Wojciech Czarny
- Department of Anatomy and Anthropology, Faculty of Physical Education, University of Rzeszow, 35-310 Rzeszow, Poland
| | - Pawel Król
- Department of Anatomy and Anthropology, Faculty of Physical Education, University of Rzeszow, 35-310 Rzeszow, Poland
| | - Petr Stastny
- Department of Sport Games, Faulty of Physical Education and Sport, Charles University, 162-52 Prague, Czech Republic.
| | - Miroslav Petr
- Department of Sport Games, Faulty of Physical Education and Sport, Charles University, 162-52 Prague, Czech Republic
| | - Krzysztof Safranow
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, 70-204 Szczecin, Poland
| | - Marek Sawczuk
- Unit of Physical Medicine, Faculty of Tourism and Recreation, Gdansk University of Physical Education and Sport, 80-336 Gdansk, Poland
| |
Collapse
|
124
|
Abstract
Inflammatory processes underlie many diseases associated with injury of the heart muscle, including conditions without an obvious inflammatory pathogenic component such as hypertensive and diabetic cardiomyopathy. Persistence of cardiac inflammation can cause irreversible structural and functional deficits. Some are induced by direct damage of the heart muscle by cellular and soluble mediators but also by metabolic adaptations sustained by the inflammatory microenvironment. It is well established that both cardiomyocytes and immune cells undergo metabolic reprogramming in the site of inflammation, which allow them to deal with decreased availability of nutrients and oxygen. However, like in cancer, competition for nutrients and increased production of signalling metabolites such as lactate initiate a metabolic cross-talk between immune cells and cardiomyocytes which, we propose, might tip the balance between resolution of the inflammation versus adverse cardiac remodeling. Here we review our current understanding of the metabolic reprogramming of both heart tissue and immune cells during inflammation, and we discuss potential key mechanisms by which these metabolic responses intersect and influence each other and ultimately define the prognosis of the inflammatory process in the heart.
Collapse
Affiliation(s)
- Federica M Marelli-Berg
- William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom.,Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom
| | - Dunja Aksentijevic
- School of Biological and Chemical Sciences, Queen Mary University of London, G.E. Fogg Building, Mile End Road, London E1 4NS, United Kingdom.,Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom
| |
Collapse
|
125
|
Seki M, Powers JC, Maruyama S, Zuriaga MA, Wu CL, Kurishima C, Kim L, Johnson J, Poidomani A, Wang T, Muñoz E, Rajan S, Park JY, Walsh K, Recchia FA. Acute and Chronic Increases of Circulating FSTL1 Normalize Energy Substrate Metabolism in Pacing-Induced Heart Failure. Circ Heart Fail 2019; 11:e004486. [PMID: 29317401 DOI: 10.1161/circheartfailure.117.004486] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/30/2017] [Indexed: 02/01/2023]
Abstract
BACKGROUND FSTL1 (follistatin-like protein 1) is an emerging cardiokine/myokine that is upregulated in heart failure (HF) and is found to be cardioprotective in animal models of cardiac injury. We tested the hypothesis that circulating FSTL1 can affect cardiac function and metabolism under baseline physiological conditions and in HF. METHODS AND RESULTS FSTL1 was acutely (10 minutes) or chronically (2 weeks) infused to attain clinically relevant blood levels in conscious dogs with cardiac tachypacing-induced HF. Dogs with no cardiac pacing and FSTL1 infusion served as control. 3H-oleate and 14C-glucose were infused to track the metabolic fate of free fatty acids and glucose. Cardiac uptake of lactate and ketone bodies and systemic respiratory quotient were also measured. HF caused a shift from prevalent cardiac and systemic fat to carbohydrate oxidation. Although acute FSTL1 administration caused minimal hemodynamic changes at baseline, in HF dogs it enhanced cardiac oxygen consumption and transiently reversed the changes in free fatty acid and glucose oxidation and systemic respiratory quotient. In HF, chronic FSTL1 infusion stably normalized cardiac free fatty acid, glucose, ketone body consumption, and systemic respiratory quotient, while moderately improving diastolic and contractile function. Consistently, FSTL1 prevented the downregulation of medium-chain acyl-CoA dehydrogenase-a representative enzyme of the free fatty acid oxidation pathway. Complementary in vitro experiments in primary cardiac and skeletal muscle myocytes showed that FSTL1 stimulated oxygen consumption through AMPK (AMP-activated kinase) activation. CONCLUSIONS These findings support a novel function for FSTL1 and provide the first direct evidence that a circulating cardiokine/myokine can alter myocardial and systemic energy substrate metabolism, in vivo.
Collapse
Affiliation(s)
- Mitsuru Seki
- From the Cardiovascular Research Center (M.S., J.C.P., C.K., L.K., J.J., A.P., T.W., E.M., J.Y.P., F.A.R.) and the Center for Translational Medicine (S.R.), Lewis Katz School of Medicine at Temple University, Philadelphia, PA; Molecular Cardiology, Whitaker Cardiovascular Institute, Boston University School of Medicine, MA (S.M., M.A.Z., C.-L.W., K.W.); Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy (F.A.R.); and Fondazione Toscana Gabriele Monasterio, Pisa, Italy (F.A.R.)
| | - Jeffery C Powers
- From the Cardiovascular Research Center (M.S., J.C.P., C.K., L.K., J.J., A.P., T.W., E.M., J.Y.P., F.A.R.) and the Center for Translational Medicine (S.R.), Lewis Katz School of Medicine at Temple University, Philadelphia, PA; Molecular Cardiology, Whitaker Cardiovascular Institute, Boston University School of Medicine, MA (S.M., M.A.Z., C.-L.W., K.W.); Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy (F.A.R.); and Fondazione Toscana Gabriele Monasterio, Pisa, Italy (F.A.R.)
| | - Sonomi Maruyama
- From the Cardiovascular Research Center (M.S., J.C.P., C.K., L.K., J.J., A.P., T.W., E.M., J.Y.P., F.A.R.) and the Center for Translational Medicine (S.R.), Lewis Katz School of Medicine at Temple University, Philadelphia, PA; Molecular Cardiology, Whitaker Cardiovascular Institute, Boston University School of Medicine, MA (S.M., M.A.Z., C.-L.W., K.W.); Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy (F.A.R.); and Fondazione Toscana Gabriele Monasterio, Pisa, Italy (F.A.R.)
| | - Maria A Zuriaga
- From the Cardiovascular Research Center (M.S., J.C.P., C.K., L.K., J.J., A.P., T.W., E.M., J.Y.P., F.A.R.) and the Center for Translational Medicine (S.R.), Lewis Katz School of Medicine at Temple University, Philadelphia, PA; Molecular Cardiology, Whitaker Cardiovascular Institute, Boston University School of Medicine, MA (S.M., M.A.Z., C.-L.W., K.W.); Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy (F.A.R.); and Fondazione Toscana Gabriele Monasterio, Pisa, Italy (F.A.R.)
| | - Chia-Ling Wu
- From the Cardiovascular Research Center (M.S., J.C.P., C.K., L.K., J.J., A.P., T.W., E.M., J.Y.P., F.A.R.) and the Center for Translational Medicine (S.R.), Lewis Katz School of Medicine at Temple University, Philadelphia, PA; Molecular Cardiology, Whitaker Cardiovascular Institute, Boston University School of Medicine, MA (S.M., M.A.Z., C.-L.W., K.W.); Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy (F.A.R.); and Fondazione Toscana Gabriele Monasterio, Pisa, Italy (F.A.R.)
| | - Clara Kurishima
- From the Cardiovascular Research Center (M.S., J.C.P., C.K., L.K., J.J., A.P., T.W., E.M., J.Y.P., F.A.R.) and the Center for Translational Medicine (S.R.), Lewis Katz School of Medicine at Temple University, Philadelphia, PA; Molecular Cardiology, Whitaker Cardiovascular Institute, Boston University School of Medicine, MA (S.M., M.A.Z., C.-L.W., K.W.); Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy (F.A.R.); and Fondazione Toscana Gabriele Monasterio, Pisa, Italy (F.A.R.)
| | - Lydia Kim
- From the Cardiovascular Research Center (M.S., J.C.P., C.K., L.K., J.J., A.P., T.W., E.M., J.Y.P., F.A.R.) and the Center for Translational Medicine (S.R.), Lewis Katz School of Medicine at Temple University, Philadelphia, PA; Molecular Cardiology, Whitaker Cardiovascular Institute, Boston University School of Medicine, MA (S.M., M.A.Z., C.-L.W., K.W.); Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy (F.A.R.); and Fondazione Toscana Gabriele Monasterio, Pisa, Italy (F.A.R.)
| | - Jesse Johnson
- From the Cardiovascular Research Center (M.S., J.C.P., C.K., L.K., J.J., A.P., T.W., E.M., J.Y.P., F.A.R.) and the Center for Translational Medicine (S.R.), Lewis Katz School of Medicine at Temple University, Philadelphia, PA; Molecular Cardiology, Whitaker Cardiovascular Institute, Boston University School of Medicine, MA (S.M., M.A.Z., C.-L.W., K.W.); Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy (F.A.R.); and Fondazione Toscana Gabriele Monasterio, Pisa, Italy (F.A.R.)
| | - Anthony Poidomani
- From the Cardiovascular Research Center (M.S., J.C.P., C.K., L.K., J.J., A.P., T.W., E.M., J.Y.P., F.A.R.) and the Center for Translational Medicine (S.R.), Lewis Katz School of Medicine at Temple University, Philadelphia, PA; Molecular Cardiology, Whitaker Cardiovascular Institute, Boston University School of Medicine, MA (S.M., M.A.Z., C.-L.W., K.W.); Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy (F.A.R.); and Fondazione Toscana Gabriele Monasterio, Pisa, Italy (F.A.R.)
| | - Tao Wang
- From the Cardiovascular Research Center (M.S., J.C.P., C.K., L.K., J.J., A.P., T.W., E.M., J.Y.P., F.A.R.) and the Center for Translational Medicine (S.R.), Lewis Katz School of Medicine at Temple University, Philadelphia, PA; Molecular Cardiology, Whitaker Cardiovascular Institute, Boston University School of Medicine, MA (S.M., M.A.Z., C.-L.W., K.W.); Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy (F.A.R.); and Fondazione Toscana Gabriele Monasterio, Pisa, Italy (F.A.R.)
| | - Eric Muñoz
- From the Cardiovascular Research Center (M.S., J.C.P., C.K., L.K., J.J., A.P., T.W., E.M., J.Y.P., F.A.R.) and the Center for Translational Medicine (S.R.), Lewis Katz School of Medicine at Temple University, Philadelphia, PA; Molecular Cardiology, Whitaker Cardiovascular Institute, Boston University School of Medicine, MA (S.M., M.A.Z., C.-L.W., K.W.); Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy (F.A.R.); and Fondazione Toscana Gabriele Monasterio, Pisa, Italy (F.A.R.)
| | - Sudarsan Rajan
- From the Cardiovascular Research Center (M.S., J.C.P., C.K., L.K., J.J., A.P., T.W., E.M., J.Y.P., F.A.R.) and the Center for Translational Medicine (S.R.), Lewis Katz School of Medicine at Temple University, Philadelphia, PA; Molecular Cardiology, Whitaker Cardiovascular Institute, Boston University School of Medicine, MA (S.M., M.A.Z., C.-L.W., K.W.); Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy (F.A.R.); and Fondazione Toscana Gabriele Monasterio, Pisa, Italy (F.A.R.)
| | - Joon Y Park
- From the Cardiovascular Research Center (M.S., J.C.P., C.K., L.K., J.J., A.P., T.W., E.M., J.Y.P., F.A.R.) and the Center for Translational Medicine (S.R.), Lewis Katz School of Medicine at Temple University, Philadelphia, PA; Molecular Cardiology, Whitaker Cardiovascular Institute, Boston University School of Medicine, MA (S.M., M.A.Z., C.-L.W., K.W.); Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy (F.A.R.); and Fondazione Toscana Gabriele Monasterio, Pisa, Italy (F.A.R.)
| | - Kenneth Walsh
- From the Cardiovascular Research Center (M.S., J.C.P., C.K., L.K., J.J., A.P., T.W., E.M., J.Y.P., F.A.R.) and the Center for Translational Medicine (S.R.), Lewis Katz School of Medicine at Temple University, Philadelphia, PA; Molecular Cardiology, Whitaker Cardiovascular Institute, Boston University School of Medicine, MA (S.M., M.A.Z., C.-L.W., K.W.); Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy (F.A.R.); and Fondazione Toscana Gabriele Monasterio, Pisa, Italy (F.A.R.)
| | - Fabio A Recchia
- From the Cardiovascular Research Center (M.S., J.C.P., C.K., L.K., J.J., A.P., T.W., E.M., J.Y.P., F.A.R.) and the Center for Translational Medicine (S.R.), Lewis Katz School of Medicine at Temple University, Philadelphia, PA; Molecular Cardiology, Whitaker Cardiovascular Institute, Boston University School of Medicine, MA (S.M., M.A.Z., C.-L.W., K.W.); Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy (F.A.R.); and Fondazione Toscana Gabriele Monasterio, Pisa, Italy (F.A.R.).
| |
Collapse
|
126
|
Sousa Fialho MDL, Abd Jamil AH, Stannard GA, Heather LC. Hypoxia-inducible factor 1 signalling, metabolism and its therapeutic potential in cardiovascular disease. Biochim Biophys Acta Mol Basis Dis 2019; 1865:831-843. [DOI: 10.1016/j.bbadis.2018.09.024] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/24/2018] [Accepted: 09/18/2018] [Indexed: 12/20/2022]
|
127
|
Horton JL, Virag J. Use of Multifactorial Treatments to Address the Challenge of Translating Experimental Myocardial Infarct Reduction Strategies. Int J Mol Sci 2019; 20:E1449. [PMID: 30909376 PMCID: PMC6471438 DOI: 10.3390/ijms20061449] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/13/2019] [Accepted: 03/15/2019] [Indexed: 12/27/2022] Open
Abstract
Myocardial tissue damage that occurs during an ischemic event leads to a spiraling deterioration of cardiac muscle structural and functional integrity. Reperfusion is the only known efficacious strategy and is the most commonly used treatment to reduce injury and prevent remodeling. However, timing is critical, and the procedure is not always feasible for a variety of reasons. The complex molecular basis for cardioprotection has been studied for decades but formulation of a viable therapeutic that can significantly attenuate myocardial injury remains elusive. In this review, we address barriers to the development of a fruitful approach that will substantially improve the prognosis of those suffering from this widespread and largely unmitigated disease. Furthermore, we proffer that ephrinA1, a candidate molecule that satisfies many of the important criteria discussed, possesses robust potential to overcome these hurdles and thus offers protection that surpasses the limitations currently observed.
Collapse
Affiliation(s)
| | - Jitka Virag
- Department of Physiology, Brody School of Medicine, 600 Moye Blvd, East Carolina University, Greenville, NC 27834, USA.
| |
Collapse
|
128
|
Horton JL, Davidson MT, Kurishima C, Vega RB, Powers JC, Matsuura TR, Petucci C, Lewandowski ED, Crawford PA, Muoio DM, Recchia FA, Kelly DP. The failing heart utilizes 3-hydroxybutyrate as a metabolic stress defense. JCI Insight 2019; 4:124079. [PMID: 30668551 DOI: 10.1172/jci.insight.124079] [Citation(s) in RCA: 265] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 01/16/2019] [Indexed: 12/18/2022] Open
Abstract
Evidence has emerged that the failing heart increases utilization of ketone bodies. We sought to determine whether this fuel shift is adaptive. Mice rendered incapable of oxidizing the ketone body 3-hydroxybutyrate (3OHB) in the heart exhibited worsened heart failure in response to fasting or a pressure overload/ischemic insult compared with WT controls. Increased delivery of 3OHB ameliorated pathologic cardiac remodeling and dysfunction in mice and in a canine pacing model of progressive heart failure. 3OHB was shown to enhance bioenergetic thermodynamics of isolated mitochondria in the context of limiting levels of fatty acids. These results indicate that the heart utilizes 3OHB as a metabolic stress defense and suggest that strategies aimed at increasing ketone delivery to the heart could prove useful in the treatment of heart failure.
Collapse
Affiliation(s)
- Julie L Horton
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona (SBP-LN), Orlando, Florida, USA
| | - Michael T Davidson
- Departments of Medicine and Pharmacology, and Cancer Biology, and Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| | - Clara Kurishima
- Department of Physiology, Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Rick B Vega
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona (SBP-LN), Orlando, Florida, USA
| | - Jeffery C Powers
- Department of Physiology, Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Timothy R Matsuura
- Cardiovascular Institute and Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Christopher Petucci
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona (SBP-LN), Orlando, Florida, USA.,Cardiovascular Institute and Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - E Douglas Lewandowski
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona (SBP-LN), Orlando, Florida, USA.,Davis Heart and Lung Research Institute and Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Peter A Crawford
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona (SBP-LN), Orlando, Florida, USA.,Departments of Medicine and Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Deborah M Muoio
- Departments of Medicine and Pharmacology, and Cancer Biology, and Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| | - Fabio A Recchia
- Department of Physiology, Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA.,Institute of Life Sciences, Scuola Superiore Sant'Anna Pisa, Fondazione G. Monasterio, Pisa, Italy
| | - Daniel P Kelly
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona (SBP-LN), Orlando, Florida, USA.,Cardiovascular Institute and Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
129
|
Rana S, Datta R, Chaudhuri RD, Chatterjee E, Chawla-Sarkar M, Sarkar S. Nanotized PPARα Overexpression Targeted to Hypertrophied Myocardium Improves Cardiac Function by Attenuating the p53-GSK3β-Mediated Mitochondrial Death Pathway. Antioxid Redox Signal 2019; 30:713-732. [PMID: 29631413 DOI: 10.1089/ars.2017.7371] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
AIMS Metabolic remodeling of cardiac muscles during pathological hypertrophy is characterized by downregulation of fatty acid oxidation (FAO) regulator, peroxisome proliferator-activated receptor alpha (PPARα). Thereby, we hypothesized that a cardiac-specific induction of PPARα might restore the FAO-related protein expression and resultant energy deficit. In the present study, consequences of PPARα augmentation were evaluated for amelioration of chronic oxidative stress, myocyte apoptosis, and cardiac function during pathological cardiac hypertrophy. RESULTS Nanotized PPARα overexpression targeted to myocardium was done by a stearic acid-modified carboxymethyl-chitosan (CMC) conjugated to a 20-mer myocyte-targeted peptide (CMCP). Overexpression of PPARα ameliorated pathological hypertrophy and improved cardiac function. Augmented PPARα in hypertrophied myocytes revealed downregulated p53 acetylation (lys 382), leading to reduced apoptosis. Such cells showed increased binding of PPARα with p53 that in turn reduced interaction of p53 with glycogen synthase kinase-3β (GSK3β), which upregulated inactive phospho-GSK3β (serine [Ser]9) expression within mitochondrial protein fraction. Altogether, the altered molecular milieu in PPARα-overexpressed hypertrophy groups restored mitochondrial structure and function both in vitro and in vivo. INNOVATION Cardiomyocyte-targeted overexpression of a protein of interest (PPARα) by nanotized plasmid has been described for the first time in this study. Our data provide a novel insight towards regression of pathological hypertrophy by ameliorating mitochondrial oxidative stress in targeted PPARα-overexpressed myocardium. CONCLUSION PPARα-overexpression during pathological hypertrophy showed substantial betterment of mitochondrial structure and function, along with downregulated apoptosis. Myocardium-targeted overexpression of PPARα during pathological cardiac hypertrophy led to an overall improvement of cardiac energy deficit and subsequent cardiac function, thereby, opening up a potential avenue for cardiac tissue engineering during hypertrophic cardiac pathophysiology.
Collapse
Affiliation(s)
- Santanu Rana
- 1 Department of Zoology, University of Calcutta, Kolkata, India
| | - Ritwik Datta
- 1 Department of Zoology, University of Calcutta, Kolkata, India
| | | | | | - Mamta Chawla-Sarkar
- 2 Division of Virology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | | |
Collapse
|
130
|
Adaptations in Protein Expression and Regulated Activity of Pyruvate Dehydrogenase Multienzyme Complex in Human Systolic Heart Failure. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4532592. [PMID: 30881593 PMCID: PMC6383428 DOI: 10.1155/2019/4532592] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/13/2018] [Accepted: 12/18/2018] [Indexed: 01/18/2023]
Abstract
Pyruvate dehydrogenase (PDH) complex, a multienzyme complex at the nexus of glycolytic and Krebs cycles, provides acetyl-CoA to the Krebs cycle and NADH to complex I thus supporting a critical role in mitochondrial energy production and cellular survival. PDH activity is regulated by pyruvate dehydrogenase phosphatases (PDP1, PDP2), pyruvate dehydrogenase kinases (PDK 1-4), and mitochondrial pyruvate carriers (MPC1, MPC2). As NADH-dependent oxidative phosphorylation is diminished in systolic heart failure, we tested whether the left ventricular myocardium (LV) from end-stage systolic adult heart failure patients (n = 26) exhibits altered expression of PDH complex subunits, PDK, MPC, PDP, and PDH complex activity, compared to LV from nonfailing donor hearts (n = 21). Compared to nonfailing LV, PDH activity and relative expression levels of E2, E3bp, E1α, and E1β subunits were greater in LV failure. PDK4, MPC1, and MPC2 expressions were decreased in failing LV, whereas PDP1, PDP2, PDK1, and PDK2 expressions did not differ between nonfailing and failing LV. In order to examine PDK4 further, donor human LV cardiomyocytes were induced in culture to hypertrophy with 0.1 μM angiotensin II and treated with PDK inhibitors (0.2 mM dichloroacetate, or 5 mM pyruvate) or activators (0.6 mM NADH plus 50 μM acetyl CoA). In isolated hypertrophic cardiomyocytes in vitro, PDK activators and inhibitors increased and decreased PDK4, respectively. In conclusion, in end-stage failing hearts, greater expression of PDH proteins and decreased expression of PDK4, MPC1, and MPC2 were evident with higher rates of PDH activity. These adaptations support sustained capacity for PDH to facilitate glucose metabolism in the face of other failing bioenergetic pathways.
Collapse
|
131
|
Elucidating the Beneficial Role of PPAR Agonists in Cardiac Diseases. Int J Mol Sci 2018; 19:ijms19113464. [PMID: 30400386 PMCID: PMC6275024 DOI: 10.3390/ijms19113464] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/28/2018] [Accepted: 11/02/2018] [Indexed: 12/13/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that bind to DNA and regulate transcription of genes involved in lipid and glucose metabolism. A growing number of studies provide strong evidence that PPARs are the promising pharmacological targets for therapeutic intervention in various diseases including cardiovascular disorders caused by compromised energy metabolism. PPAR agonists have been widely used for decades as lipid-lowering and anti-inflammatory drugs. Existing studies are mainly focused on the anti-atherosclerotic effects of PPAR agonists; however, their role in the maintenance of cellular bioenergetics remains unclear. Recent studies on animal models and patients suggest that PPAR agonists can normalize lipid metabolism by stimulating fatty acid oxidation. These studies indicate the importance of elucidation of PPAR agonists as potential pharmacological agents for protection of the heart from energy deprivation. Here, we summarize and provide a comprehensive analysis of previous studies on the role of PPARs in the heart under normal and pathological conditions. In addition, the review discusses the PPARs as a therapeutic target and the beneficial effects of PPAR agonists, particularly bezafibrate, to attenuate cardiomyopathy and heart failure in patients and animal models.
Collapse
|
132
|
Cerf ME. Cardiac Glucolipotoxicity and Cardiovascular Outcomes. ACTA ACUST UNITED AC 2018; 54:medicina54050070. [PMID: 30344301 PMCID: PMC6262512 DOI: 10.3390/medicina54050070] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/04/2018] [Accepted: 10/05/2018] [Indexed: 01/12/2023]
Abstract
Cardiac insulin signaling can be impaired due to the altered fatty acid metabolism to induce insulin resistance. In diabetes and insulin resistance, the metabolic, structural and ultimately functional alterations in the heart and vasculature culminate in diabetic cardiomyopathy, coronary artery disease, ischemia and eventually heart failure. Glucolipotoxicity describes the combined, often synergistic, adverse effects of elevated glucose and free fatty acid concentrations on heart structure, function, and survival. The quality of fatty acid shapes the cardiac structure and function, often influencing survival. A healthy fatty acid balance is therefore critical for maintaining cardiac integrity and function.
Collapse
Affiliation(s)
- Marlon E Cerf
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa.
- Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Stellenbosch, Tygerberg 7505, South Africa.
| |
Collapse
|
133
|
Kärkkäinen O, Tuomainen T, Mutikainen M, Lehtonen M, Ruas JL, Hanhineva K, Tavi P. Heart specific PGC-1α deletion identifies metabolome of cardiac restricted metabolic heart failure. Cardiovasc Res 2018; 115:107-118. [DOI: 10.1093/cvr/cvy155] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 06/16/2018] [Indexed: 01/02/2023] Open
Abstract
Abstract
Aims
Heart failure (HF) is associated with drastic changes in metabolism leading to a cardiac energy deficiency well as maladaptive changes in multiple other tissues. It is still unclear which of these changes originates from cardiomyocyte metabolic remodelling or whether they are induced secondarily by systemic factors. Our aim here was to induce cardiac restricted metabolic changes mimicking those seen in HF and to characterize the associated metabolite changes in the heart, circulation, and peripheral tissues.
Methods and results
We generated a cardiac specific PGC-1α knockout mice (KO) to specifically induce metabolic dysregulation typically accompanied by HF and performed a non-targeted LC-MS metabolite profiling analysis of heart, plasma, liver, and skeletal muscle to identify metabolites associated with cardiac specific metabolic remodelling. The KO animals developed a progressive cardiomyopathy with cardiac dilatation leading to fatal HF. At 17 weeks of age, when significant remodelling had occurred but before the onset of HF, isolated PGC-1α deficient cardiomyocytes had suppressed glucose and fatty acid oxidation as well as blunted anaerobic metabolism. KO hearts displayed a distinctive metabolite profile with 92 significantly altered molecular features including metabolite changes in energy metabolism, phospholipid metabolism, amino acids, and oxidative stress signalling. Some of the metabolite changes correlated with the specific parameters of cardiac function. We did not observe any significant alterations in the metabolomes of the other measured tissues or in plasma.
Conclusions
Heart specific PGC-1α KO induces metabolic, functional, and structural abnormalities leading to dilating cardiomyopathy and HF. The metabolic changes were limited to the cardiac tissue indicating that cardiomyocyte metabolic remodelling is not sufficient to evoke the body wide metabolic alterations usually associated with HF.
Collapse
Affiliation(s)
- Olli Kärkkäinen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Yliopistonranta 1 C, Kuopio, Finland
| | - Tomi Tuomainen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, Kuopio, Finland
| | - Maija Mutikainen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, Kuopio, Finland
| | - Marko Lehtonen
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1 C, Kuopio, Finland
| | - Jorge L Ruas
- Department of Physiology and Pharmacology, Karolinska Institutet, Solnavägen 1, Stockholm, Sweden
| | - Kati Hanhineva
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Yliopistonranta 1 C, Kuopio, Finland
| | - Pasi Tavi
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, Kuopio, Finland
- Department of Physiology and Pharmacology, Karolinska Institutet, Solnavägen 1, Stockholm, Sweden
| |
Collapse
|
134
|
Karwi QG, Uddin GM, Ho KL, Lopaschuk GD. Loss of Metabolic Flexibility in the Failing Heart. Front Cardiovasc Med 2018; 5:68. [PMID: 29928647 PMCID: PMC5997788 DOI: 10.3389/fcvm.2018.00068] [Citation(s) in RCA: 300] [Impact Index Per Article: 42.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/18/2018] [Indexed: 12/15/2022] Open
Abstract
To maintain its high energy demand the heart is equipped with a highly complex and efficient enzymatic machinery that orchestrates ATP production using multiple energy substrates, namely fatty acids, carbohydrates (glucose and lactate), ketones and amino acids. The contribution of these individual substrates to ATP production can dramatically change, depending on such variables as substrate availability, hormonal status and energy demand. This "metabolic flexibility" is a remarkable virtue of the heart, which allows utilization of different energy substrates at different rates to maintain contractile function. In heart failure, cardiac function is reduced, which is accompanied by discernible energy metabolism perturbations and impaired metabolic flexibility. While it is generally agreed that overall mitochondrial ATP production is impaired in the failing heart, there is less consensus as to what actual switches in energy substrate preference occur. The failing heart shift toward a greater reliance on glycolysis and ketone body oxidation as a source of energy, with a decrease in the contribution of glucose oxidation to mitochondrial oxidative metabolism. The heart also becomes insulin resistant. However, there is less consensus as to what happens to fatty acid oxidation in heart failure. While it is generally believed that fatty acid oxidation decreases, a number of clinical and experimental studies suggest that fatty acid oxidation is either not changed or is increased in heart failure. Of importance, is that any metabolic shift that does occur has the potential to aggravate cardiac dysfunction and the progression of the heart failure. An increasing body of evidence shows that increasing cardiac ATP production and/or modulating cardiac energy substrate preference positively correlates with heart function and can lead to better outcomes. This includes increasing glucose and ketone oxidation and decreasing fatty acid oxidation. In this review we present the physiology of the energy metabolism pathways in the heart and the changes that occur in these pathways in heart failure. We also look at the interventions which are aimed at manipulating the myocardial metabolic pathways toward more efficient substrate utilization which will eventually improve cardiac performance.
Collapse
Affiliation(s)
| | | | | | - Gary D. Lopaschuk
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
135
|
Saito T, Uchiumi T, Yagi M, Amamoto R, Setoyama D, Matsushima Y, Kang D. Cardiomyocyte-specific loss of mitochondrial p32/C1qbp causes cardiomyopathy and activates stress responses. Cardiovasc Res 2018; 113:1173-1185. [PMID: 28498888 DOI: 10.1093/cvr/cvx095] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 05/09/2017] [Indexed: 12/16/2022] Open
Abstract
Aims Mitochondria are important organelles, dedicated to energy production. Mitochondrial p32/C1qbp, which functions as an RNA and protein chaperone, interacts with mitochondrial mRNA and is indispensable for mitochondrial function through its regulation of mitochondrial translation in cultured cell lines. However, the precise role of p32/C1qbp in vivo is poorly understood because of embryonic lethality in the systemic p32-deficient mouse. The goal of this study was to examine the physiological function of mitochondrial p32/C1qbp in the heart. Methods and results We investigated the role of p32 in regulating cardiac function in mice using a Cre-loxP recombinase technology against p32 with tamoxifen-inducible knockdown or genetic ablation during postnatal periods. Cardiomyocyte-specific deletion of p32 resulted in contractile dysfunction, cardiac dilatation and cardiac fibrosis, compared with hearts of control mice. We also found decreased COX1 expression, decreased rates of oxygen consumption and increased oxidative stress, indicating that these mice had cardiac mitochondrial dysfunction provoked by p32-deficiency at early stage. Next, we investigated lifespan in cardiac-specific p32-deficient mice. The mice died beginning at 12 months and their median lifespan was ∼14 months. Cardiac mitochondria in the p32-deficient mice showed disordered alignment, enlargement and abnormalities in their internal structure by electron microscopy. We observed that, in p32-deficient compared with control myocytes, AMPKɑ was constitutively phosphorylated and 4EBP-1 and ribosomal S6K were less phosphorylated, suggesting impairment of mammalian target of rapamycin signalling. Finally, we found that expression levels of mitokines such as FGF21 and of integrated stress response genes were significantly increased. Metabolic analysis demonstrated that the urea cycle was impaired in the p32-deficient hearts. Conclusion These findings support a key role for mitochondrial p32 protein in cardiac myocytes modulating mitochondrial translation and function, and thereby survival.
Collapse
Affiliation(s)
- Toshiro Saito
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka 812-8582, Japan
| | - Takeshi Uchiumi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka 812-8582, Japan
| | - Mikako Yagi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka 812-8582, Japan
| | - Rie Amamoto
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka 812-8582, Japan.,Department of Nutritional Sciences, Faculty of Health and Welfare, Seinan Jo Gakuin University, Kokurakita-Ku, Kitakyushu 803-0835, Japan
| | - Daiki Setoyama
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka 812-8582, Japan
| | - Yuichi Matsushima
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka 812-8582, Japan
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka 812-8582, Japan
| |
Collapse
|
136
|
Wardak M, Nguyen PK. The Gift of Light: Using Multiplexed Optical Imaging to Probe Cardiac Metabolism in Health and Disease. Circ Cardiovasc Imaging 2018; 11:e007597. [PMID: 29555838 DOI: 10.1161/circimaging.118.007597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Mirwais Wardak
- From the Department of Radiology (M.W.), Molecular Imaging Program at Stanford (MIPS) (M.W.), Division of Cardiovascular Medicine, Department of Medicine (P.K.N.), and Stanford Cardiovascular Institute (M.W., P.K.N.), Stanford University School of Medicine, CA; and Cardiology Section, Veterans Affairs Palo Alto Health Care Administration, CA (P.K.N.)
| | - Patricia K Nguyen
- From the Department of Radiology (M.W.), Molecular Imaging Program at Stanford (MIPS) (M.W.), Division of Cardiovascular Medicine, Department of Medicine (P.K.N.), and Stanford Cardiovascular Institute (M.W., P.K.N.), Stanford University School of Medicine, CA; and Cardiology Section, Veterans Affairs Palo Alto Health Care Administration, CA (P.K.N.).
| |
Collapse
|
137
|
Ribeiro Junior RF, Dabkowski ER, Shekar KC, O Connell KA, Hecker PA, Murphy MP. MitoQ improves mitochondrial dysfunction in heart failure induced by pressure overload. Free Radic Biol Med 2018; 117:18-29. [PMID: 29421236 PMCID: PMC5866124 DOI: 10.1016/j.freeradbiomed.2018.01.012] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/03/2018] [Accepted: 01/10/2018] [Indexed: 01/01/2023]
Abstract
Heart failure remains a major public-health problem with an increase in the number of patients worsening from this disease. Despite current medical therapy, the condition still has a poor prognosis. Heart failure is complex but mitochondrial dysfunction seems to be an important target to improve cardiac function directly. Our goal was to analyze the effects of MitoQ (100 µM in drinking water) on the development and progression of heart failure induced by pressure overload after 14 weeks. The main findings are that pressure overload-induced heart failure in rats decreased cardiac function in vivo that was not altered by MitoQ. However, we observed a reduction in right ventricular hypertrophy and lung congestion in heart failure animals treated with MitoQ. Heart failure also decreased total mitochondrial protein content, mitochondrial membrane potential in the intermyofibrillar mitochondria. MitoQ restored membrane potential in IFM but did not restore mitochondrial protein content. These alterations are associated with the impairment of basal and stimulated mitochondrial respiration in IFM and SSM induced by heart failure. Moreover, MitoQ restored mitochondrial respiration in heart failure induced by pressure overload. We also detected higher levels of hydrogen peroxide production in heart failure and MitoQ restored the increase in ROS production. MitoQ was also able to improve mitochondrial calcium retention capacity, mainly in the SSM whereas in the IFM we observed a small alteration. In summary, MitoQ improves mitochondrial dysfunction in heart failure induced by pressure overload, by decreasing hydrogen peroxide formation, improving mitochondrial respiration and improving mPTP opening.
Collapse
Affiliation(s)
- Rogério Faustino Ribeiro Junior
- Division of Cardiology, Department of Medicine, University of Maryland, Baltimore, MD, USA; Department of Physiological Sciences, Federal University of Espirito Santo, Vitoria, ES, Brazil.
| | - Erinne Rose Dabkowski
- Division of Cardiology, Department of Medicine, University of Maryland, Baltimore, MD, USA
| | | | - Kelly A O Connell
- Division of Cardiology, Department of Medicine, University of Maryland, Baltimore, MD, USA
| | - Peter A Hecker
- Division of Cardiology, Department of Medicine, University of Maryland, Baltimore, MD, USA
| | - Michael P Murphy
- Medical Research Council Mitochondrial Biology Unit, Cambridge BioMedical Campus, Cambridge, UK
| |
Collapse
|
138
|
GLP-1 Improves Diastolic Function and Survival in Heart Failure with Preserved Ejection Fraction. J Cardiovasc Transl Res 2018; 11:259-267. [DOI: 10.1007/s12265-018-9795-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 02/08/2018] [Indexed: 02/06/2023]
|
139
|
Gene delivery of medium chain acyl-coenzyme A dehydrogenase induces physiological cardiac hypertrophy and protects against pathological remodelling. Clin Sci (Lond) 2018; 132:381-397. [PMID: 29358507 DOI: 10.1042/cs20171269] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 01/10/2018] [Accepted: 01/22/2018] [Indexed: 02/06/2023]
Abstract
We previously showed that medium chain acyl-coenzyme A dehydrogenase (MCAD, key regulator of fatty acid oxidation) is positively modulated in the heart by the cardioprotective kinase, phosphoinositide 3-kinase (PI3K(p110α)). Disturbances in cardiac metabolism are a feature of heart failure (HF) patients and targeting metabolic defects is considered a potential therapeutic approach. The specific role of MCAD in the adult heart is unknown. To examine the role of MCAD in the heart and to assess the therapeutic potential of increasing MCAD in the failing heart, we developed a gene therapy tool using recombinant adeno-associated viral vectors (rAAV) encoding MCAD. We hypothesised that increasing MCAD expression may recapitulate the cardioprotective properties of PI3K(p110α). rAAV6:MCAD or rAAV6:control was delivered to healthy adult mice and to mice with pre-existing pathological hypertrophy and cardiac dysfunction due to transverse aortic constriction (TAC). In healthy mice, rAAV6:MCAD induced physiological hypertrophy (increase in heart size, normal systolic function and increased capillary density). In response to TAC (~15 weeks), heart weight/tibia length increased by ~60% in control mice and ~45% in rAAV6:MCAD mice compared with sham. This was associated with an increase in cardiomyocyte cross-sectional area in both TAC groups which was similar. However, hypertrophy in TAC rAAV6:MCAD mice was associated with less fibrosis, a trend for increased capillary density and a more favourable molecular profile compared with TAC rAAV6:control mice. In summary, MCAD induced physiological cardiac hypertrophy in healthy adult mice and attenuated features of pathological remodelling in a cardiac disease model.
Collapse
|
140
|
Mitra A, Datta R, Rana S, Sarkar S. Modulation of NFKB1/p50 by ROS leads to impaired ATP production during MI compared to cardiac hypertrophy. J Cell Biochem 2018; 119:1575-1590. [PMID: 28771799 DOI: 10.1002/jcb.26318] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 08/02/2017] [Indexed: 01/26/2023]
Abstract
Pathological hypertrophy and myocardial infarction (MI) are two etiologically different cardiac disorders having differential molecular mechanisms of disease manifestation. However, no study has been conducted so far to analyze and compare the differential status of energy metabolism in these two disease forms. It was shown recently by our group that production of ATP is significantly impaired during MI along with inhibition of pyruvate dehydrogenase E1-β (PDHE1 B) by pyruvate dehydrogenase kinase 4 (PDK4). However, the ATP levels showed no significant change during pathological hypertrophy compared to control group. To seek a plausible explanation of this phenomenon, the peroxisome proliferator-activated receptor alpha (PPAR) pathway was studied in all the experimental groups which revealed that PGC1α- ERRα axis remains active in MI while the same remained inactive during pathological hypertrophy possibly by NF-κB that plays a significant role in deactivating this pathway during hypertrophy. At the same time, it was observed that reactive oxygen species (ROS) negatively regulates NF-κB activity during MI by oxidation of cysteine residues of p50- the DNA binding subunit of NF-κB. Thus, this study reports for the first time, a possible mechanism for the differential status of energy metabolism during two etiologically different cardiac pathophysiological conditions involving PGC1α-ERRα axis along with p50 subunit of NF-κB.
Collapse
Affiliation(s)
- Arkadeep Mitra
- Genetics and Molecular Cardiology Laboratory, Department of Zoology, University of Calcutta, Kolkata, West Bengal, India
- Department of Zoology, City College, Kolkata, West Bengal, India
| | - Ritwik Datta
- Genetics and Molecular Cardiology Laboratory, Department of Zoology, University of Calcutta, Kolkata, West Bengal, India
| | - Santanu Rana
- Genetics and Molecular Cardiology Laboratory, Department of Zoology, University of Calcutta, Kolkata, West Bengal, India
| | - Sagartirtha Sarkar
- Genetics and Molecular Cardiology Laboratory, Department of Zoology, University of Calcutta, Kolkata, West Bengal, India
| |
Collapse
|
141
|
Yan SH, Zhao NW, Geng ZR, Shen JY, Liu FM, Yan D, Zhou J, Nie C, Huang CC, Fang ZY. Modulations of Keap1-Nrf2 signaling axis by TIIA ameliorated the oxidative stress-induced myocardial apoptosis. Free Radic Biol Med 2018; 115:191-201. [PMID: 29221988 DOI: 10.1016/j.freeradbiomed.2017.12.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 11/26/2017] [Accepted: 12/01/2017] [Indexed: 01/16/2023]
Abstract
Mounting evidence has strongly implicated oxidative stress in the development of cardiac dysfunction, and myocardial apoptosis contributes to the pathogenesis of heart failure. Quantitative cardiac proteomics data revealed that pressure load by TAC resulted in a significant decline in mitochondrial metabolic activity, where TIIA (Tanshinone IIA sulfonate) treatment reversed it in vivo, which might be mediated by Nrf2. In NRVMs, TIIA treatment ameliorated H2O2-induced caspase-3/9 activations through the suppression of p38 and mTOR signaling pathways, where caspase-mediated cleavage of YY1 and PARP resulted in the defects in mitochondrial biogenesis and DNA repair, and this event finally led to cardiomyocyte apoptosis. Mass spectrometry analysis showed that TIIA hydrophobically interacted with Keap1 (the cytoplasmic repressor of Nrf2) and induced its degradation in vitro. Site-directed mutagenesis of Keap1 identified V122/V123/I125 to be the critical residues for the TIIA-induced de-dimerization and degradation of Keap1. Besides, TIIA treatment also epigenetically up-regulated Nrf2 gene transcription, where it hypomethylated the first 5 CpGs of Nrf2 promoter. Furthermore, cardiac-specific Nrf2 knockout mice exhibited the significantly dampened anti-apoptotic effects of TIIA.
Collapse
Affiliation(s)
- Shi-Hai Yan
- Laboratory of Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, China
| | - Ning-Wei Zhao
- Laboratory of Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Shimadzu Biomedical Research Laboratory, Shanghai, China.
| | - Zhi-Rong Geng
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, China
| | - Jia-Yin Shen
- Department of Scientific Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Fu-Ming Liu
- Department of Cardiovascular Diseases, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Dong Yan
- Department of Cardiovascular Diseases, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jie Zhou
- Department of Pharmacology, Jiangsu Jiankang Vocational College, Nanjing, China
| | - Chao Nie
- Department of Pharmacology, Jiangsu Jiankang Vocational College, Nanjing, China
| | | | - Zhu-Yuan Fang
- Laboratory of Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Department of Cardiovascular Diseases, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
142
|
Lahey R, Carley AN, Wang X, Glass CE, Accola KD, Silvestry S, O'Donnell JM, Lewandowski ED. Enhanced Redox State and Efficiency of Glucose Oxidation With miR Based Suppression of Maladaptive NADPH-Dependent Malic Enzyme 1 Expression in Hypertrophied Hearts. Circ Res 2018; 122:836-845. [PMID: 29386187 DOI: 10.1161/circresaha.118.312660] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 01/25/2018] [Accepted: 01/29/2018] [Indexed: 01/06/2023]
Abstract
RATIONALE Metabolic remodeling in hypertrophic hearts includes inefficient glucose oxidation via increased anaplerosis fueled by pyruvate carboxylation. Pyruvate carboxylation to malate through elevated ME1 (malic enzyme 1) consumes NADPH necessary for reduction of glutathione and maintenance of intracellular redox state. OBJECTIVE To elucidate upregulated ME1 as a potential maladaptive mechanism for inefficient glucose oxidation and compromised redox state in hypertrophied hearts. METHODS AND RESULTS ME1 expression was selectively inhibited, in vivo, via non-native miR-ME1 (miRNA specific to ME1) in pressure-overloaded rat hearts. Rats subjected to transverse aortic constriction (TAC) or Sham surgery received either miR-ME1 or PBS. Effects of ME1 suppression on anaplerosis and reduced glutathione (GSH) content were studied in isolated hearts supplied 13C-enriched substrate: palmitate, glucose, and lactate. Human myocardium collected from failing and nonfailing hearts during surgery enabled RT-qPCR confirmation of elevated ME1 gene expression in clinical heart failure versus nonfailing human hearts (P<0.04). TAC induced elevated ME1 content, but ME1 was lowered in hearts infused with miR-ME1 versus PBS. Although Sham miR-ME1 hearts showed no further reduction of inherently low anaplerosis in normal heart, miR-ME1 reduced anaplerosis in TAC to baseline: TAC miR-ME1=0.034±0.004; TAC PBS=0.081±0.005 (P<0.01). Countering elevated anaplerosis in TAC shifted pyruvate toward oxidation in the tricarboxylic acid cycle. Importantly, via the link to NADPH consumption by pyruvate carboxylation, ME1 suppression in TAC restored GSH content, reduced lactate production, and ultimately improved contractility. CONCLUSIONS A maladaptive increase in anaplerosis via ME1 in TAC is associated with reduced GSH content. Suppressing increased ME1 expression in hypertrophied rat hearts, which is also elevated in failing human hearts, reduced pyruvate carboxylation thereby normalizing anaplerosis, restoring GSH content, and reducing lactate accumulation. Reducing ME1 induced favorable metabolic shifts for carbohydrate oxidation, improving intracellular redox state and enhanced cardiac performance in pathological hypertrophy.
Collapse
Affiliation(s)
- Ryan Lahey
- From the Department of Internal Medicine and Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus (A.N.C., E.D.L.); Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL (A.N.C., C.E.G., E.D.L.); Center for Cardiovascular Research, University of Illinois College of Medicine at Chicago (R.L., A.N.C., X.W., J.M.O., E.D.L.); and Translational Research Institute for Diabetes and Metabolism (C.E.G., E.D.L.) and Department of Surgery, Florida Hospital Cardiovascular Institute, Florida Hospital Transplant Center (K.D.A., S.S.), Florida Hospital, Orlando
| | - Andrew N Carley
- From the Department of Internal Medicine and Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus (A.N.C., E.D.L.); Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL (A.N.C., C.E.G., E.D.L.); Center for Cardiovascular Research, University of Illinois College of Medicine at Chicago (R.L., A.N.C., X.W., J.M.O., E.D.L.); and Translational Research Institute for Diabetes and Metabolism (C.E.G., E.D.L.) and Department of Surgery, Florida Hospital Cardiovascular Institute, Florida Hospital Transplant Center (K.D.A., S.S.), Florida Hospital, Orlando
| | - Xuerong Wang
- From the Department of Internal Medicine and Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus (A.N.C., E.D.L.); Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL (A.N.C., C.E.G., E.D.L.); Center for Cardiovascular Research, University of Illinois College of Medicine at Chicago (R.L., A.N.C., X.W., J.M.O., E.D.L.); and Translational Research Institute for Diabetes and Metabolism (C.E.G., E.D.L.) and Department of Surgery, Florida Hospital Cardiovascular Institute, Florida Hospital Transplant Center (K.D.A., S.S.), Florida Hospital, Orlando
| | - Carley E Glass
- From the Department of Internal Medicine and Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus (A.N.C., E.D.L.); Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL (A.N.C., C.E.G., E.D.L.); Center for Cardiovascular Research, University of Illinois College of Medicine at Chicago (R.L., A.N.C., X.W., J.M.O., E.D.L.); and Translational Research Institute for Diabetes and Metabolism (C.E.G., E.D.L.) and Department of Surgery, Florida Hospital Cardiovascular Institute, Florida Hospital Transplant Center (K.D.A., S.S.), Florida Hospital, Orlando
| | - Kevin D Accola
- From the Department of Internal Medicine and Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus (A.N.C., E.D.L.); Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL (A.N.C., C.E.G., E.D.L.); Center for Cardiovascular Research, University of Illinois College of Medicine at Chicago (R.L., A.N.C., X.W., J.M.O., E.D.L.); and Translational Research Institute for Diabetes and Metabolism (C.E.G., E.D.L.) and Department of Surgery, Florida Hospital Cardiovascular Institute, Florida Hospital Transplant Center (K.D.A., S.S.), Florida Hospital, Orlando
| | - Scott Silvestry
- From the Department of Internal Medicine and Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus (A.N.C., E.D.L.); Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL (A.N.C., C.E.G., E.D.L.); Center for Cardiovascular Research, University of Illinois College of Medicine at Chicago (R.L., A.N.C., X.W., J.M.O., E.D.L.); and Translational Research Institute for Diabetes and Metabolism (C.E.G., E.D.L.) and Department of Surgery, Florida Hospital Cardiovascular Institute, Florida Hospital Transplant Center (K.D.A., S.S.), Florida Hospital, Orlando
| | - J Michael O'Donnell
- From the Department of Internal Medicine and Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus (A.N.C., E.D.L.); Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL (A.N.C., C.E.G., E.D.L.); Center for Cardiovascular Research, University of Illinois College of Medicine at Chicago (R.L., A.N.C., X.W., J.M.O., E.D.L.); and Translational Research Institute for Diabetes and Metabolism (C.E.G., E.D.L.) and Department of Surgery, Florida Hospital Cardiovascular Institute, Florida Hospital Transplant Center (K.D.A., S.S.), Florida Hospital, Orlando
| | - E Douglas Lewandowski
- From the Department of Internal Medicine and Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus (A.N.C., E.D.L.); Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL (A.N.C., C.E.G., E.D.L.); Center for Cardiovascular Research, University of Illinois College of Medicine at Chicago (R.L., A.N.C., X.W., J.M.O., E.D.L.); and Translational Research Institute for Diabetes and Metabolism (C.E.G., E.D.L.) and Department of Surgery, Florida Hospital Cardiovascular Institute, Florida Hospital Transplant Center (K.D.A., S.S.), Florida Hospital, Orlando.
| |
Collapse
|
143
|
Carthagenes DS, Barreto MDP, Freitas CM, Pedroza ADS, Fernandes MP, Ferreira DS, Lagranha CJ, Nascimento LC, Evencio LB. Moderate physical training counterbalances harmful effects of low-protein diet on heart: metabolic, oxidative and morphological parameters. MOTRIZ: REVISTA DE EDUCACAO FISICA 2017. [DOI: 10.1590/s1980-6574201700030019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
144
|
Angelini A, Pi X, Xie L. Dioxygen and Metabolism; Dangerous Liaisons in Cardiac Function and Disease. Front Physiol 2017; 8:1044. [PMID: 29311974 PMCID: PMC5732914 DOI: 10.3389/fphys.2017.01044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/29/2017] [Indexed: 12/19/2022] Open
Abstract
The heart must consume a significant amount of energy to sustain its contractile activity. Although the fuel demands are huge, the stock remains very low. Thus, in order to supply its daily needs, the heart must have amazing adaptive abilities, which are dependent on dioxygen availability. However, in myriad cardiovascular diseases, “fuel” depletion and hypoxia are common features, leading cardiomyocytes to favor low-dioxygen-consuming glycolysis rather than oxidation of fatty acids. This metabolic switch makes it challenging to distinguish causes from consequences in cardiac pathologies. Finally, despite the progress achieved in the past few decades, medical treatments have not improved substantially, either. In such a situation, it seems clear that much remains to be learned about cardiac diseases. Therefore, in this review, we will discuss how reconciling dioxygen availability and cardiac metabolic adaptations may contribute to develop full and innovative strategies from bench to bedside.
Collapse
Affiliation(s)
- Aude Angelini
- Department of Medicine-Athero and Lipo, Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, United States
| | - Xinchun Pi
- Department of Medicine-Athero and Lipo, Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, United States
| | - Liang Xie
- Department of Medicine-Athero and Lipo, Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
145
|
Wang ZY, Liu YY, Liu GH, Lu HB, Mao CY. l-Carnitine and heart disease. Life Sci 2017; 194:88-97. [PMID: 29241711 DOI: 10.1016/j.lfs.2017.12.015] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/03/2017] [Accepted: 12/09/2017] [Indexed: 02/07/2023]
Abstract
Cardiovascular disease (CVD) is a key cause of deaths worldwide, comprising 15-17% of healthcare expenditure in developed countries. Current records estimate an annual global average of 30 million cardiac dysfunction cases, with a predicted escalation by two-three folds for the next 20-30years. Although β-blockers and angiotensin-converting-enzymes are commonly prescribed to control CVD risk, hepatotoxicity and hematological changes are frequent adverse events associated with these drugs. Search for alternatives identified endogenous cofactor l-carnitine, which is capable of promoting mitochondrial β-oxidation towards a balanced cardiac energy metabolism. l-Carnitine facilitates transport of long-chain fatty acids into the mitochondrial matrix, triggering cardioprotective effects through reduced oxidative stress, inflammation and necrosis of cardiac myocytes. Additionally, l-carnitine regulates calcium influx, endothelial integrity, intracellular enzyme release and membrane phospholipid content for sustained cellular homeostasis. Carnitine depletion, characterized by reduced expression of "organic cation transporter-2" gene, is a metabolic and autosomal recessive disorder that also frequently associates with CVD. Hence, exogenous carnitine administration through dietary and intravenous routes serves as a suitable protective strategy against ventricular dysfunction, ischemia-reperfusion injury, cardiac arrhythmia and toxic myocardial injury that prominently mark CVD. Additionally, carnitine reduces hypertension, hyperlipidemia, diabetic ketoacidosis, hyperglycemia, insulin-dependent diabetes mellitus, insulin resistance, obesity, etc. that enhance cardiovascular pathology. These favorable effects of l-carnitine have been evident in infants, juvenile, young, adult and aged patients of sudden and chronic heart failure as well. This review describes the mechanism of action, metabolism and pharmacokinetics of l-carnitine. It specifically emphasizes upon the beneficial role of l-carnitine in cardiomyopathy.
Collapse
Affiliation(s)
- Zhong-Yu Wang
- Department of Cardiology, China-Japan Union Hospital, Jilin University, Changchun, PR China
| | - Ying-Yi Liu
- Department of Anesthesia, China-Japan Union Hospital, Jilin University, Changchun, PR China
| | - Guo-Hui Liu
- Department of Cardiology, China-Japan Union Hospital, Jilin University, Changchun, PR China
| | - Hai-Bin Lu
- College of Pharmacy, Jilin University, Changchun, PR China
| | - Cui-Ying Mao
- Department of Cardiology, China-Japan Union Hospital, Jilin University, Changchun, PR China.
| |
Collapse
|
146
|
Abstract
It is thought that at least 6,500 low-molecular-weight metabolites exist in humans, and these metabolites have various important roles in biological systems in addition to proteins and genes. Comprehensive assessment of endogenous metabolites is called metabolomics, and recent advances in this field have enabled us to understand the critical role of previously unknown metabolites or metabolic pathways in the cardiovascular system. In this review, we will focus on heart failure and how metabolomic analysis has contributed to improving our understanding of the pathogenesis of this critical condition.
Collapse
Affiliation(s)
- Ryutaro Ikegami
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences
| | - Ippei Shimizu
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences.,Division of Molecular Aging and Cell Biology, Niigata University Graduate School of Medical and Dental Sciences
| | - Yohko Yoshida
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences.,Division of Molecular Aging and Cell Biology, Niigata University Graduate School of Medical and Dental Sciences
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences
| |
Collapse
|
147
|
Otaki Y, Watanabe T, Kubota I. Heart-type fatty acid-binding protein in cardiovascular disease: A systemic review. Clin Chim Acta 2017; 474:44-53. [PMID: 28911997 DOI: 10.1016/j.cca.2017.09.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 09/09/2017] [Accepted: 09/09/2017] [Indexed: 12/12/2022]
Abstract
Fatty acid-binding proteins, whose clinical applications have been studied, are a family of proteins that reflect tissue injury. Heart-type fatty acid-binding protein (H-FABP) is a marker of ongoing myocardial damage and useful for early diagnosis of acute myocardial infarction (AMI). In the past decade, compared to other cardiac enzymes, H-FABP has shown more promise as an early detection marker for AMI. However, the role of H-FABP is being re-examined due to recent refinement in the search for newer biomarkers, and greater understanding of the role of high-sensitivity troponin. We discuss the current role of H-FABP as an early marker for AMI in the era of high sensitive troponin. H-FABP is highlighted as a prognostic marker for a broad spectrum of fatal diseases, viz., AMI, heart failure, arrhythmia, and pulmonary embolism that could be associated with poor clinical outcomes. Because the cut-off value of what constitutes an abnormal H-FABP potentially differs for each cardiovascular event and depends on the clinical setting, an optimal cut-off value has not been clearly established. Of note, several factors such as age, gender, and cardiovascular risk factors, which affect H-FABP levels need to be considered in this context. In this review, we discuss the clinical applications of H-FABP as a prognostic marker in various clinical settings.
Collapse
Affiliation(s)
- Yoichiro Otaki
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Tetsu Watanabe
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan.
| | - Isao Kubota
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| |
Collapse
|
148
|
Tuomainen T, Tavi P. The role of cardiac energy metabolism in cardiac hypertrophy and failure. Exp Cell Res 2017; 360:12-18. [DOI: 10.1016/j.yexcr.2017.03.052] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 03/21/2017] [Accepted: 03/23/2017] [Indexed: 12/22/2022]
|
149
|
Small heterodimer partner (SHP) deficiency protects myocardia from lipid accumulation in high fat diet-fed mice. PLoS One 2017; 12:e0186021. [PMID: 29016649 PMCID: PMC5634594 DOI: 10.1371/journal.pone.0186021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 09/22/2017] [Indexed: 11/19/2022] Open
Abstract
The small heterodimer partner (SHP) regulates fatty acid oxidation and lipogenesis in the liver by regulating peroxisome proliferator-activated receptor (PPAR) γ expression. SHP is also abundantly expressed in the myocardium. We investigated the effect of SHP expression on myocardia assessing not only heart structure and function but also lipid metabolism and related gene expression in a SHP deletion animal model. Transcriptional profiling with a microarray revealed that genes participating in cell growth, cytokine signalling, phospholipid metabolism, and extracellular matrix are up-regulated in the myocardia of SHP knockout (KO) mice compared to those of wild-type (WT) mice (nominal p value < 0.05). Consistent with these gene expression changes, the left ventricular masses of SHP KO mice were significantly higher than WT mice (76.8 ± 20.5 mg vs. 52.8 ± 6.8 mg, P = 0.0093). After 12 weeks of high fat diet (HFD), SHP KO mice gained less weight and exhibited less elevation in serum-free fatty acid and less ectopic lipid accumulation in the myocardium than WT mice. According to microarray analysis, genes regulated by PPARγ1 and PPARα were down-regulated in myocardia of SHP KO mice compared to their expression in WT mice after HFD, suggesting that the reduction in lipid accumulation in the myocardium resulted from a decrease in lipogenesis regulated by PPARγ. We confirmed the reduced expression of PPARγ1 and PPARα target genes such as CD36, medium-chain acyl-CoA dehydrogenase, long-chain acyl-CoA dehydrogenase, and very long-chain acyl-CoA dehydrogenase by SHP KO after HFD.
Collapse
|
150
|
Luciani M, Del Monte F. Insights from Second-Line Treatments for Idiopathic Dilated Cardiomyopathy. J Cardiovasc Dev Dis 2017; 4:jcdd4030012. [PMID: 29367542 PMCID: PMC5715707 DOI: 10.3390/jcdd4030012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/18/2017] [Accepted: 08/19/2017] [Indexed: 12/20/2022] Open
Abstract
Background: Dilated cardiomyopathy (DCM) is an independent nosographic entity characterized by left ventricular dilatation and contractile dysfunction leading to heart failure (HF). The idiopathic form of DCM (iDCM) occurs in the absence of coronaropathy or other known causes of DCM. Despite being different from other forms of HF for demographic, clinical, and prognostic features, its current pharmacological treatment does not significantly diverge. Methods: In this study we performed a Pubmed library search for placebo-controlled clinical investigations and a post-hoc analysis recruiting iDCM from 1985 to 2016. We searched for second-line pharmacologic treatments to reconsider drugs for iDCM management and pinpoint pathological mechanisms. Results: We found 33 clinical studies recruiting a total of 3392 patients of various durations and sizes, as well as studies that tested different drug classes (statins, pentoxifylline, inotropes). A metanalysis was unfeasible, although a statistical significance for changes upon treatment for molecular results, morphofunctional parameters, and clinical endpoints was reported. Statins appeared to be beneficial in light of their pleiotropic effects; inotropes might be tolerated more for longer times in iDCM compared to ischemic patients. General anti-inflammatory therapies do not significantly improve outcomes. Metabolic and growth modulation remain appealing fields to be investigated. Conclusions: The evaluation of drug effectiveness based on direct clinical benefit is an inductive method providing evidence-based insights. This backward approach sheds light on putative and underestimated pathologic mechanisms and thus therapeutic targets for iDCM management.
Collapse
Affiliation(s)
- Marco Luciani
- Department of Cardiovascular Sciences, Università Cattolica del Sacro Cuore, Largo A. Gemelli, 8, 00168 Rome, Italy.
| | - Federica Del Monte
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA.
| |
Collapse
|