101
|
Risk stratification of patients with SARS-CoV-2 by tissue factor expression in circulating extracellular vesicles. Vascul Pharmacol 2022; 145:106999. [PMID: 35597450 PMCID: PMC9116046 DOI: 10.1016/j.vph.2022.106999] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/15/2022] [Accepted: 05/13/2022] [Indexed: 01/08/2023]
Abstract
Inflammatory response following SARS-CoV-2 infection results in substantial increase of amounts of intravascular pro-coagulant extracellular vesicles (EVs) expressing tissue factor (CD142) on their surface. CD142-EV turned out to be useful as diagnostic biomarker in COVID-19 patients. Here we aimed at studying the prognostic capacity of CD142-EV in SARS-CoV-2 infection. Expression of CD142-EV was evaluated in 261 subjects admitted to hospital for pneumonia and with a positive molecular test for SARS-CoV-2. The study population consisted of a discovery cohort of selected patients (n = 60) and an independent validation cohort including unselected consecutive enrolled patients (n = 201). CD142-EV levels were correlated with post-hospitalization course of the disease and compared to the clinically available 4C Mortality Score as referral. CD142-EV showed a reliable performance to predict patient prognosis in the discovery cohort (AUC = 0.906) with an accuracy of 81.7%, that was confirmed in the validation cohort (AUC = 0.736). Kaplan-Meier curves highlighted a high discrimination power in unselected subjects with CD142-EV being able to stratify the majority of patients according to their prognosis. We obtained a comparable accuracy, being not inferior in terms of prediction of patients' prognosis and risk of mortality, with 4C Mortality Score. The expression of surface vesicular CD142 and its reliability as prognostic marker was technically validated using different immunocapture strategies and assays. The detection of CD142 on EV surface gains considerable interest as risk stratification tool to support clinical decision making in COVID-19.
Collapse
|
102
|
Pivoting Novel Exosome-Based Technologies for the Detection of SARS-CoV-2. Viruses 2022; 14:v14051083. [PMID: 35632824 PMCID: PMC9148162 DOI: 10.3390/v14051083] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 11/16/2022] Open
Abstract
The National Institutes of Health (NIH) launched the Rapid Acceleration of Diagnostics (RADx) initiative to meet the needs for COVID-19 diagnostic and surveillance testing, and to speed its innovation in the development, commercialization, and implementation of new technologies and approaches. The RADx Radical (RADx-Rad) initiative is one component of the NIH RADx program which focuses on the development of new or non-traditional applications of existing approaches, to enhance their usability, accessibility, and/or accuracy for the detection of SARS-CoV-2. Exosomes are a subpopulation of extracellular vesicles (EVs) 30–140 nm in size, that are critical in cell-to-cell communication. The SARS-CoV-2 virus has similar physical and molecular properties as exosomes. Therefore, the novel tools and technologies that are currently in development for the isolation and detection of exosomes, may prove to be invaluable in screening for SARS-CoV-2 viral infection. Here, we describe how novel exosome-based technologies are being pivoted for the detection of SARS-CoV-2 and/or the diagnosis of COVID-19. Considerations for these technologies as they move toward clinical validation and commercially viable diagnostics is discussed along with their future potential. Ultimately, the technologies in development under the NIH RADx-Rad exosome-based non-traditional technologies toward multi-parametric and integrated approaches for SARS-CoV-2 program represent a significant advancement in diagnostic technology, and, due to a broad focus on the biophysical and biochemical properties of nanoparticles, the technologies have the potential to be further pivoted as tools for future infectious agents.
Collapse
|
103
|
Abstract
SARS-CoV-2 virus has become a global health problem that has caused millions of deaths worldwide. The infection can present with multiple clinical features ranging from asymptomatic or mildly symptomatic patients to patients with severe or critical illness that can even lead to death. Although the immune system plays an important role in pathogen control, SARS-CoV-2 can drive dysregulation of this response and trigger severe immunopathology. Exploring the mechanisms of the immune response involved in host defense against SARS-CoV-2 allows us to understand its immunopathogenesis and possibly detect features that can be used as potential therapies to eliminate the virus. The main objective of this review on SARS-CoV-2 is to highlight the interaction between the virus and the immune response. We explore the function and action of the immune system, the expression of molecules at the site of infection that cause hyperinflammation and hypercoagulation disorders, the factors leading to the development of pneumonia and subsequent severe acute respiratory distress syndrome which is the leading cause of death in patients with COVID-19.
Collapse
Affiliation(s)
- Dennis Jiménez
- Departamento de Ciencias de la Vida y Agricultura, Carrera de Ingeniería en Biotecnología, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Pichincha, Ecuador
| | - Marbel Torres Arias
- Departamento de Ciencias de la Vida y Agricultura, Carrera de Ingeniería en Biotecnología, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Pichincha, Ecuador.,Laboratorio de Inmunología y Virología, CENCINAT, GISAH, Universidad de las Fuerzas Armadas, Sangolquí, Pichincha, Ecuador
| |
Collapse
|
104
|
Gourronc FA, Rebagliati M, Kramer-Riesberg B, Fleck AM, Patten JJ, Geohegan-Barek K, Messingham KN, Davey RA, Maury W, Klingelhutz AJ. Adipocytes are susceptible to Ebola Virus infection. Virology 2022; 573:12-22. [DOI: 10.1016/j.virol.2022.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 12/23/2022]
|
105
|
Xiang M, Jing H, Wang C, Novakovic VA, Shi J. Persistent Lung Injury and Prothrombotic State in Long COVID. Front Immunol 2022; 13:862522. [PMID: 35464473 PMCID: PMC9021447 DOI: 10.3389/fimmu.2022.862522] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/17/2022] [Indexed: 12/19/2022] Open
Abstract
Lung injury may persist during the recovery period of COVID-19 as shown through imaging, six-minute walk, and lung function tests. The pathophysiological mechanisms leading to long COVID have not been adequately explained. Our aim is to investigate the basis of pulmonary susceptibility during sequelae and the possibility that prothrombotic states may influence long-term pulmonary symptoms of COVID-19. The patient’s lungs remain vulnerable during the recovery stage due to persistent shedding of the virus, the inflammatory environment, the prothrombotic state, and injury and subsequent repair of the blood-air barrier. The transformation of inflammation to proliferation and fibrosis, hypoxia-involved vascular remodeling, vascular endothelial cell damage, phosphatidylserine-involved hypercoagulability, and continuous changes in serological markers all contribute to post-discharge lung injury. Considering the important role of microthrombus and arteriovenous thrombus in the process of pulmonary functional lesions to organic lesions, we further study the possibility that prothrombotic states, including pulmonary vascular endothelial cell activation and hypercoagulability, may affect long-term pulmonary symptoms in long COVID. Early use of combined anticoagulant and antiplatelet therapy is a promising approach to reduce the incidence of pulmonary sequelae. Essentially, early treatment can block the occurrence of thrombotic events. Because impeded pulmonary circulation causes large pressure imbalances over the alveolar membrane leading to the infiltration of plasma into the alveolar cavity, inhibition of thrombotic events can prevent pulmonary hypertension, formation of lung hyaline membranes, and lung consolidation.
Collapse
Affiliation(s)
- Mengqi Xiang
- Department of Hematology, First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Haijiao Jing
- Department of Hematology, First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Chengyue Wang
- Department of Hematology, First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Valerie A Novakovic
- Department of Research, Veterans Affairs Boston Healthcare System, Harvard Medical School, Boston, MA, United States
| | - Jialan Shi
- Department of Hematology, First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China.,Department of Research, Veterans Affairs Boston Healthcare System, Harvard Medical School, Boston, MA, United States.,Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
106
|
Platelet activation by SARS-CoV-2 implicates the release of active tissue factor by infected cells. Blood Adv 2022; 6:3593-3605. [PMID: 35443030 PMCID: PMC9023084 DOI: 10.1182/bloodadvances.2022007444] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/06/2022] [Indexed: 11/20/2022] Open
Abstract
Platelets are hyperactivated in coronavirus disease 2019 (COVID-19). However, the mechanisms promoting platelet activation by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are not well understood. This may be due to inherent challenges in discriminating the contribution of viral vs host components produced by infected cells. This is particularly true for enveloped viruses and extracellular vesicles (EVs), as they are concomitantly released during infection and share biophysical properties. To study this, we evaluated whether SARS-CoV-2 itself or components derived from SARS-CoV-2-infected human lung epithelial cells could activate isolated platelets from healthy donors. Activation was measured by the surface expression of P-selectin and the activated conformation of integrin αIIbβ3, degranulation, aggregation under flow conditions, and the release of EVs. We find that neither SARS-CoV-2 nor purified spike activates platelets. In contrast, tissue factor (TF) produced by infected cells was highly potent at activating platelets. This required trace amounts of plasma containing the coagulation factors FX, FII, and FVII. Robust platelet activation involved thrombin and the activation of protease-activated receptor (PAR)-1 and -4 expressed by platelets. Virions and EVs were identified by electron microscopy. Through size-exclusion chromatography, TF activity was found to be associated with a virus or EVs, which were indistinguishable. Increased TF messenger RNA (mRNA) expression and activity were also found in lungs in a murine model of COVID-19 and plasma of severe COVID-19 patients, respectively. In summary, TF activity from SARS-CoV-2–infected cells activates thrombin, which signals to PARs on platelets. Blockade of molecules in this pathway may interfere with platelet activation and the coagulation characteristic of COVID-19.
Collapse
|
107
|
Wang C, Yu C, Jing H, Wu X, Novakovic VA, Xie R, Shi J. Long COVID: The Nature of Thrombotic Sequelae Determines the Necessity of Early Anticoagulation. Front Cell Infect Microbiol 2022; 12:861703. [PMID: 35449732 PMCID: PMC9016198 DOI: 10.3389/fcimb.2022.861703] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/15/2022] [Indexed: 12/24/2022] Open
Abstract
Many discharged COVID-19 patients affected by sequelae experience reduced quality of life leading to an increased burden on the healthcare system, their families and society at large. Possible pathophysiological mechanisms of long COVID include: persistent viral replication, chronic hypoxia and inflammation. Ongoing vascular endothelial damage promotes platelet adhesion and coagulation, resulting in the impairment of various organ functions. Meanwhile, thrombosis will further aggravate vasculitis contributing to further deterioration. Thus, long COVID is essentially a thrombotic sequela. Unfortunately, there is currently no effective treatment for long COVID. This article summarizes the evidence for coagulation abnormalities in long COVID, with a focus on the pathophysiological mechanisms of thrombosis. Extracellular vesicles (EVs) released by various types of cells can carry SARS-CoV-2 through the circulation and attack distant tissues and organs. Furthermore, EVs express tissue factor and phosphatidylserine (PS) which aggravate thrombosis. Given the persistence of the virus, chronic inflammation and endothelial damage are inevitable. Pulmonary structural changes such as hypertension, embolism and fibrosis are common in long COVID. The resulting impaired lung function and chronic hypoxia again aggravates vascular inflammation and coagulation abnormalities. In this article, we also summarize recent research on antithrombotic therapy in COVID-19. There is increasing evidence that early anticoagulation can be effective in improving outcomes. In fact, persistent systemic vascular inflammation and dysfunction caused by thrombosis are key factors driving various complications of long COVID. Early prophylactic anticoagulation can prevent the release of or remove procoagulant substances, thereby protecting the vascular endothelium from damage, reducing thrombotic sequelae, and improving quality of life for long-COVID patients.
Collapse
Affiliation(s)
- Chengyue Wang
- Department of Hematology, The First Hospital of Harbin, Harbin Medical University, Harbin, China
- Department of Nephrology, The First Hospital of Harbin, Harbin Medical University, Harbin, China
| | - Chengyuan Yu
- Department of Hematology, The First Hospital of Harbin, Harbin Medical University, Harbin, China
- Department of Geriatric, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Haijiao Jing
- Department of Hematology, The First Hospital of Harbin, Harbin Medical University, Harbin, China
| | - Xiaoming Wu
- Department of Hematology, The First Hospital of Harbin, Harbin Medical University, Harbin, China
| | - Valerie A. Novakovic
- Department of Research, Veterans Affairs (VA) Boston Healthcare System, Harvard Medical School, Boston, MA, United States
| | - Rujuan Xie
- Department of Nephrology, The First Hospital of Harbin, Harbin Medical University, Harbin, China
- *Correspondence: Rujuan Xie, ; Jialan Shi,
| | - Jialan Shi
- Department of Hematology, The First Hospital of Harbin, Harbin Medical University, Harbin, China
- Department of Research, Veterans Affairs (VA) Boston Healthcare System, Harvard Medical School, Boston, MA, United States
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
- *Correspondence: Rujuan Xie, ; Jialan Shi,
| |
Collapse
|
108
|
Al Chalaby S, Makhija RR, Sharma AN, Majid M, Aman E, Venugopal S, Amsterdam EA. Nonbacterial Thrombotic Endocarditis: Presentation, Pathophysiology, Diagnosis and Management. Rev Cardiovasc Med 2022; 23:137. [PMID: 39076228 PMCID: PMC11273749 DOI: 10.31083/j.rcm2304137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/31/2021] [Accepted: 01/13/2022] [Indexed: 07/31/2024] Open
Abstract
Initially described in 1936, non-bacterial thrombotic endocarditis (NBTE) is a rare entity involving sterile vegetations on cardiac valves. These vegetations are usually small and friable, typically associated with hypercoagulable states of malignancy and inflammatory diseases such as systemic lupus erythematosus. Diagnosis remains challenging and is commonly made post-mortem although standard clinical methods such as echocardiography (transthoracic and transesophageal) and magnetic resonance imaging may yield the clinical diagnosis. Prognosis of NBTE is poor with very high morbidity and mortality usually related to the serious underlying conditions and high rates of systemic embolization. Therapeutic anticoagulation with unfractionated heparin has been described as useful for short term prevention of recurrent embolic events in patients with NBTE but there are no guidelines for management of this disease.
Collapse
Affiliation(s)
| | - Rakhee R Makhija
- Division of Cardiovascular Medicine, University of California Davis, Davis, CA 95817, USA
| | - Ajay N. Sharma
- School of Medicine, University of California Irvine, Irvine, CA 92697, USA
| | - Muhammad Majid
- Division of Cardiovascular Medicine, University of California Davis, Davis, CA 95817, USA
| | - Edris Aman
- Division of Cardiovascular Medicine, University of California Davis, Davis, CA 95817, USA
| | - Sandhya Venugopal
- Division of Cardiovascular Medicine, University of California Davis, Davis, CA 95817, USA
| | - Ezra A. Amsterdam
- Division of Cardiovascular Medicine, University of California Davis, Davis, CA 95817, USA
| |
Collapse
|
109
|
Hamali HA, Saboor M, Dobie G, Madkhali AM, Akhter MS, Hakamy A, Al-Mekhlafi HM, Jackson DE, Matari YH, Mobarki AA. Procoagulant Microvesicles in COVID-19 Patients: Possible Modulators of Inflammation and Prothrombotic Tendency. Infect Drug Resist 2022; 15:2359-2368. [PMID: 35517897 PMCID: PMC9064482 DOI: 10.2147/idr.s355395] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/20/2022] [Indexed: 12/14/2022] Open
Abstract
Background The hypercoagulability and thrombotic tendency in coronavirus disease 2019 (COVID-19) is multifactorial, driven mainly by inflammation, and endothelial dysfunction. Elevated levels of procoagulant microvesicles (MVs) and tissue factor–bearing microvesicles (TF-bearing MVs) have been observed in many diseases with thrombotic tendency. The current study aimed to measure the levels of procoagulant MVs and TF-bearing MVs in patients with COVID-19 and healthy controls and to correlate their levels with platelet counts, D-Dimer levels, and other proposed calculated inflammatory markers. Materials and Methods Forty ICU-admitted patients with COVID-19 and 37 healthy controls were recruited in the study. Levels of procoagulant MVs and TF-bearing MVs in the plasma of the study population were measured using enzyme linked immunosorbent assay. Results COVID-19 patients had significantly elevated levels of procoagulant MVs and TF-bearing MVs as compared with healthy controls (P<0.001). Procoagulant MVs significantly correlated with TF-bearing MVs, D-dimer levels, and platelet count, but not with calculated inflammatory markers (neutrophil/lymphocyte ratio, platelet/lymphocyte ratio, and platelet/neutrophil ratio). Conclusion Elevated levels of procoagulant MVs and TF-bearing MVs in patients with COVID-19 are suggested to be (i) early potential markers to predict the severity of COVID-19 (ii) a novel circulatory biomarker to evaluate the procoagulant activity and severity of COVID-19.
Collapse
Affiliation(s)
- Hassan A Hamali
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Gizan, Saudi Arabia
- Correspondence: Hassan A Hamali, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, P.O. Box 1906, Gizan, 45142, Saudi Arabia, Tel +966173295000, Email
| | - Muhammad Saboor
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Gizan, Saudi Arabia
- Medical Research Center, Jazan University, Gizan, Saudi Arabia
| | - Gasim Dobie
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Gizan, Saudi Arabia
| | - Aymen M Madkhali
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Gizan, Saudi Arabia
| | - Mohammad S Akhter
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Gizan, Saudi Arabia
| | - Ali Hakamy
- Department of Respiratory Therapy, Faculty of Applied Medical Sciences, Jazan University, Gizan, Saudi Arabia
| | | | - Denise E Jackson
- Thrombosis and Vascular Diseases Laboratory, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT) University, Bundoora, VIC, Australia
| | - Yahya H Matari
- Laboratory Department, Baish General Hospital, Gizan, Saudi Arabia
| | - Abdullah A Mobarki
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Gizan, Saudi Arabia
| |
Collapse
|
110
|
Immunothrombosis and the molecular control of tissue factor by pyroptosis: prospects for new anticoagulants. Biochem J 2022; 479:731-750. [PMID: 35344028 DOI: 10.1042/bcj20210522] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 02/06/2023]
Abstract
The interplay between innate immunity and coagulation after infection or injury, termed immunothrombosis, is the primary cause of disseminated intravascular coagulation (DIC), a condition that occurs in sepsis. Thrombosis associated with DIC is the leading cause of death worldwide. Interest in immunothrombosis has grown because of COVID-19, the respiratory disease caused by SARS-CoV-2, which has been termed a syndrome of dysregulated immunothrombosis. As the relatively new field of immunothrombosis expands at a rapid pace, the focus of academic and pharmacological research has shifted from generating treatments targeted at the traditional 'waterfall' model of coagulation to therapies better directed towards immune components that drive coagulopathies. Immunothrombosis can be initiated in macrophages by cleavage of the non-canonical inflammasome which contains caspase-11. This leads to release of tissue factor (TF), a membrane glycoprotein receptor that forms a high-affinity complex with coagulation factor VII/VIIa to proteolytically activate factors IX to IXa and X to Xa, generating thrombin and leading to fibrin formation and platelet activation. The mechanism involves the post-translational activation of TF, termed decryption, and release of decrypted TF via caspase-11-mediated pyroptosis. During aberrant immunothrombosis, decryption of TF leads to thromboinflammation, sepsis, and DIC. Therefore, developing therapies to target pyroptosis have emerged as an attractive concept to counteract dysregulated immunothrombosis. In this review, we detail the three mechanisms of TF control: concurrent induction of TF, caspase-11, and NLRP3 (signal 1); TF decryption, which increases its procoagulant activity (signal 2); and accelerated release of TF into the intravascular space via pyroptosis (signal 3). In this way, decryption of TF is analogous to the two signals of NLRP3 inflammasome activation, whereby induction of pro-IL-1β and NLRP3 (signal 1) is followed by activation of NLRP3 (signal 2). We describe in detail TF decryption, which involves pathogen-induced alterations in the composition of the plasma membrane and modification of key cysteines on TF, particularly at the location of the critical, allosterically regulated disulfide bond of TF in its 219-residue extracellular domain. In addition, we speculate towards the importance of identifying new therapeutics to block immunothrombotic triggering of TF, which can involve inhibition of pyroptosis to limit TF release, or the direct targeting of TF decryption using cysteine-modifying therapeutics.
Collapse
|
111
|
Amri N, Bégin R, Tessier N, Vachon L, Villeneuve L, Bégin P, Bazin R, Loubaki L, Martel C. Use of Early Donated COVID-19 Convalescent Plasma Is Optimal to Preserve the Integrity of Lymphatic Endothelial Cells. Pharmaceuticals (Basel) 2022; 15:ph15030365. [PMID: 35337162 PMCID: PMC8948637 DOI: 10.3390/ph15030365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/11/2022] [Accepted: 03/16/2022] [Indexed: 01/27/2023] Open
Abstract
Convalescent plasma therapy (CPT) has gained significant attention since the onset of the coronavirus disease 2019 (COVID-19) pandemic. However, clinical trials designed to study the efficacy of CPT based on antibody concentrations were inconclusive. Lymphatic transport is at the interplay between the immune response and the resolution of inflammation from peripheral tissues, including the artery wall. As vascular complications are a key pathogenic mechanism in COVID-19, leading to inflammation and multiple organ failure, we believe that sustaining lymphatic vessel function should be considered to define optimal CPT. We herein sought to determine what specific COVID-19 convalescent plasma (CCP) characteristics should be considered to limit inflammation-driven lymphatic endothelial cells (LEC) dysfunction. CCP donated 16 to 100 days after the last day of symptoms was characterized and incubated on inflammation-elicited adult human dermal LEC (aHDLEC). Plasma analysis revealed that late donation correlates with higher concentration of circulating pro-inflammatory cytokines. Conversely, extracellular vesicles (EVs) derived from LEC are more abundant in early donated plasma (r = −0.413, p = 0.004). Thus, secretion of LEC-EVs by an impaired endothelium could be an alarm signal that instigate the self-defense of peripheral lymphatic vessels against an excessive inflammation. Indeed, in vitro experiments suggest that CCP obtained rapidly following the onset of symptoms does not damage the aHDLEC junctions as much as late-donated plasma. We identified a particular signature of CCP that would counteract the effects of an excessive inflammation on the lymphatic endothelium. Accordingly, an easy and efficient selection of convalescent plasma based on time of donation would be essential to promote the preservation of the lymphatic and immune system of infected patients.
Collapse
Affiliation(s)
- Nada Amri
- Faculty of Medicine, Université de Montréal, Pavillon Roger-Gaudry, 2900 Edouard Montpetit Blvd, Montreal, QC H3T 1J4, Canada; (N.A.); (R.B.); (N.T.); (L.V.)
- Montreal Heart Institute, 5000 Belanger Street, Montreal, QC H1T 1C8, Canada;
| | - Rémi Bégin
- Faculty of Medicine, Université de Montréal, Pavillon Roger-Gaudry, 2900 Edouard Montpetit Blvd, Montreal, QC H3T 1J4, Canada; (N.A.); (R.B.); (N.T.); (L.V.)
- Montreal Heart Institute, 5000 Belanger Street, Montreal, QC H1T 1C8, Canada;
| | - Nolwenn Tessier
- Faculty of Medicine, Université de Montréal, Pavillon Roger-Gaudry, 2900 Edouard Montpetit Blvd, Montreal, QC H3T 1J4, Canada; (N.A.); (R.B.); (N.T.); (L.V.)
- Montreal Heart Institute, 5000 Belanger Street, Montreal, QC H1T 1C8, Canada;
| | - Laurent Vachon
- Faculty of Medicine, Université de Montréal, Pavillon Roger-Gaudry, 2900 Edouard Montpetit Blvd, Montreal, QC H3T 1J4, Canada; (N.A.); (R.B.); (N.T.); (L.V.)
- Montreal Heart Institute, 5000 Belanger Street, Montreal, QC H1T 1C8, Canada;
| | - Louis Villeneuve
- Montreal Heart Institute, 5000 Belanger Street, Montreal, QC H1T 1C8, Canada;
| | - Philippe Bégin
- Department of Pediatrics, CHU Sainte-Justine, 3175 Chem. de la Côte-Sainte-Catherine, Montreal, QC H3T 1C5, Canada;
- Department of Medicine, Centre Hospitalier de l’Université de Montréal, 900 Rue Saint-Denis, Montreal, QC H2X 0A9, Canada
| | - Renée Bazin
- Medical Affairs and Innovation, Héma-Québec, 1070 Avenue des Sciences-de-la-Vie, Québec, QC G1V 5C3, Canada; (R.B.); (L.L.)
| | - Lionel Loubaki
- Medical Affairs and Innovation, Héma-Québec, 1070 Avenue des Sciences-de-la-Vie, Québec, QC G1V 5C3, Canada; (R.B.); (L.L.)
| | - Catherine Martel
- Faculty of Medicine, Université de Montréal, Pavillon Roger-Gaudry, 2900 Edouard Montpetit Blvd, Montreal, QC H3T 1J4, Canada; (N.A.); (R.B.); (N.T.); (L.V.)
- Montreal Heart Institute, 5000 Belanger Street, Montreal, QC H1T 1C8, Canada;
- Correspondence: ; Tel.: +1-(514)-376-3330 (ext. 2977)
| |
Collapse
|
112
|
COVID-19 Induced Coagulopathy (CIC): Thrombotic Manifestations of Viral Infection. TH OPEN : COMPANION JOURNAL TO THROMBOSIS AND HAEMOSTASIS 2022; 6:e70-e79. [PMID: 35280973 PMCID: PMC8913175 DOI: 10.1055/s-0042-1744185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/18/2021] [Indexed: 01/08/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and may result in an overactive coagulative system, thereby resulting in serious cardiovascular consequences in critically affected patients. The respiratory tract is a primary target for COVID-19 infection, which is manifested as acute lung injury in the most severe form of the viral infection, leading to respiratory failure. A proportion of infected patients may progress to serious systemic disease including dysfunction of multiple organs, acute respiratory distress syndrome (ARDS), and coagulation abnormalities, all of which are associated with increased mortality, additionally depending on age and compromised immunity. Coagulation abnormalities associated with COVID-19 mimic other systemic coagulopathies otherwise involved in other severe infections, such as disseminated intravascular coagulation (DIC) and may be termed COVID-19 induced coagulopathy (CIC). There is substantial evidence that patients with severe COVID-19 exhibiting CIC can develop venous and arterial thromboembolic complications. In the initial stages of CIC, significant elevation of D-dimer and fibrin/fibrinogen degradation products is observed. Alteration in prothrombin time, activated partial thromboplastin time, and platelet counts are less common in the early phase of the disease. In patients admitted to intensive care units (ICUs), coagulation test screening involving the measurement of D-dimer and fibrinogen levels, has been recommended. Prior established protocols for thromboembolic prophylaxis are also followed for CIC, including the use of heparin and other standard supportive care measures. In the present review, we summarize the characteristics of CIC and its implications for thrombosis, clinical findings of coagulation parameters in SARS-CoV-2 infected patients with incidences of thromboembolic events and plausible therapeutic measures.
Collapse
|
113
|
Merolli A, Kasaei L, Ramasamy S, Kolloli A, Kumar R, Subbian S, Feldman LC. An intra-cytoplasmic route for SARS-CoV-2 transmission unveiled by Helium-ion microscopy. Sci Rep 2022; 12:3794. [PMID: 35260703 PMCID: PMC8904465 DOI: 10.1038/s41598-022-07867-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 02/23/2022] [Indexed: 12/11/2022] Open
Abstract
SARS-CoV-2 virions enter the host cells by docking their spike glycoproteins to the membrane-bound Angiotensin Converting Enzyme 2. After intracellular assembly, the newly formed virions are released from the infected cells to propagate the infection, using the extra-cytoplasmic ACE2 docking mechanism. However, the molecular events underpinning SARS-CoV-2 transmission between host cells are not fully understood. Here, we report the findings of a scanning Helium-ion microscopy study performed on Vero E6 cells infected with mNeonGreen-expressing SARS-CoV-2. Our data reveal, with unprecedented resolution, the presence of: (1) long tunneling nanotubes that connect two or more host cells over submillimeter distances; (2) large scale multiple cell fusion events (syncytia); and (3) abundant extracellular vesicles of various sizes. Taken together, these ultrastructural features describe a novel intra-cytoplasmic connection among SARS-CoV-2 infected cells that may act as an alternative route of viral transmission, disengaged from the well-known extra-cytoplasmic ACE2 docking mechanism. Such route may explain the elusiveness of SARS-CoV-2 to survive from the immune surveillance of the infected host.
Collapse
Affiliation(s)
- Antonio Merolli
- Department of Physics and Astronomy, School of Arts and Sciences, Rutgers University, 136 Frelinghuysen Road, Piscataway, NJ, 08854, USA. .,Department Physics and Astronomy, Rutgers University, DLS Building, 145 Bevier Road, Room 108, Piscataway, NJ, 08854, USA.
| | - Leila Kasaei
- Department of Physics and Astronomy, School of Arts and Sciences, Rutgers University, 136 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Santhamani Ramasamy
- Public Health Research Institute (PHRI), New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ, 07103, USA
| | - Afsal Kolloli
- Public Health Research Institute (PHRI), New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ, 07103, USA
| | - Ranjeet Kumar
- Public Health Research Institute (PHRI), New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ, 07103, USA
| | - Selvakumar Subbian
- Public Health Research Institute (PHRI), New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ, 07103, USA
| | - Leonard C Feldman
- Department of Physics and Astronomy, School of Arts and Sciences, Rutgers University, 136 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| |
Collapse
|
114
|
Giacca M, Shah AM. The pathological maelstrom of COVID-19 and cardiovascular disease. NATURE CARDIOVASCULAR RESEARCH 2022; 1:200-210. [PMID: 39195986 DOI: 10.1038/s44161-022-00029-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/01/2022] [Indexed: 08/29/2024]
Abstract
Coronavirus disease 2019 (COVID-19) is a consequence of infection of the upper and lower respiratory tract with severe acute respiratory syndrome coronavirus 2 but often becomes a systemic disease, with important involvement of other organs. A bidirectional relationship exists between COVID-19 and cardiovascular disease. On the one hand, preexisting comorbidities, in particular high prevalence of cardiovascular risk factors such as hypertension and diabetes and chronic cardiovascular conditions predispose to severe disease. On the other hand, biomarkers of myocardial injury are frequently raised in patients with COVID-19, along with arrhythmia and heart failure. Localized thrombosis is a common finding in the lungs but can also increase the occurrence of thrombotic events systemically. Thrombosis is consequent to different pathogenic mechanisms, which include endothelial dysfunction and immunothrombosis. Thrombocytopenia is common in patients with COVID-19 and alterations in platelet function participate in the pro-thrombotic phenotype. Involvement of the cardiovascular system in COVID-19 has important consequences during recovery from infection and the development of long COVID.
Collapse
Affiliation(s)
- Mauro Giacca
- King's College London, British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, London, UK.
| | - Ajay M Shah
- King's College London, British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, London, UK.
| |
Collapse
|
115
|
Campello E, Radu CM, Simion C, Spiezia L, Bulato C, Gavasso S, Tormene D, Perin N, Turatti G, Simioni P. Longitudinal Trend of Plasma Concentrations of Extracellular Vesicles in Patients Hospitalized for COVID-19. Front Cell Dev Biol 2022; 9:770463. [PMID: 35111751 PMCID: PMC8801799 DOI: 10.3389/fcell.2021.770463] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/13/2021] [Indexed: 12/23/2022] Open
Abstract
Plasma concentrations of extracellular vesicles (EVs) originating from cells involved in COVID-19-associated coagulopathy (CAC), their longitudinal trend and association with clinical outcomes were evaluated. Blood samples of consecutive COVID-19 patients admitted to a medical Unit were longitudinally collected within 48 h of admission, at discharge and 30 days post-discharge. EVs were analyzed using high sensitivity flow cytometry and phospholipid-dependent clotting time (PPL). The following EVs were measured: endothelium-, platelet-, leukocyte-derived, bearing tissue factor (TF)+, angiotensin-converting enzyme (ACE2)+, platelet-derived growth factor receptor-β (PDGF-β)+ and SARS-CoV-2-nucleoprotein (NP)+. 91 patients were recruited for baseline EV analysis (mean age 67 ± 14 years, 50.5% male) and 48 underwent the longitudinal evaluation. From baseline to 30-days post-discharge, we observed significantly decreased plasma concentrations of endothelium-derived EVs (E-Selectin+), endothelium-derived bearing TF (E-Selectin+ TF+), endothelium-derived bearing ACE2 (E-Selectin+ACE2+) and leukocyte-EVs bearing TF (CD45+TF+), p < 0.001, p = 0.03, p = 0.001, p = 0.001, respectively. Conversely, platelet-derived (P-Selectin+) and leukocyte-derived EVs (CD45+) increased from baseline to 30-days post-discharge (p = 0.038 and 0.032, respectively). EVs TF+, ACE2+, PDGF-β+, and SARS-CoV-2-NP+ did not significantly change during the monitoring. PPL increased from baseline to 30-days post-discharge (+ 6.3 s, p = 0.006). P-Selectin + EVs >1,054/µL were associated with thrombosis (p = 0.024), E-Selectin + EVs ≤531/µL with worsening/death (p 0.026) and 30-days P-Selectin+ and CD45 + EVs with persistent symptoms (p < 0.0001). We confirmed increased EVs originating from cells involved in CAC at admission and discharge. EVs derived from activated pericytes and expressing SARS-CoV-2-NP were also detected. 30-days post-discharge, endothelium-EVs decreased, while platelet- and leukocyte-EVs further increased, indicating that cellular activation persists long after the acute phase.
Collapse
Affiliation(s)
- Elena Campello
- General Medicine and Thrombotic and Hemorrhagic Diseases Unit, Department of Medicine, Padova University Hospital, Padova, Italy
| | - Claudia Maria Radu
- General Medicine and Thrombotic and Hemorrhagic Diseases Unit, Department of Medicine, Padova University Hospital, Padova, Italy
| | - Chiara Simion
- General Medicine and Thrombotic and Hemorrhagic Diseases Unit, Department of Medicine, Padova University Hospital, Padova, Italy
| | - Luca Spiezia
- General Medicine and Thrombotic and Hemorrhagic Diseases Unit, Department of Medicine, Padova University Hospital, Padova, Italy
| | - Cristiana Bulato
- General Medicine and Thrombotic and Hemorrhagic Diseases Unit, Department of Medicine, Padova University Hospital, Padova, Italy
| | - Sabrina Gavasso
- General Medicine and Thrombotic and Hemorrhagic Diseases Unit, Department of Medicine, Padova University Hospital, Padova, Italy
| | - Daniela Tormene
- General Medicine and Thrombotic and Hemorrhagic Diseases Unit, Department of Medicine, Padova University Hospital, Padova, Italy
| | - Nicola Perin
- General Medicine and Thrombotic and Hemorrhagic Diseases Unit, Department of Medicine, Padova University Hospital, Padova, Italy
| | - Giacomo Turatti
- General Medicine and Thrombotic and Hemorrhagic Diseases Unit, Department of Medicine, Padova University Hospital, Padova, Italy
| | - Paolo Simioni
- General Medicine and Thrombotic and Hemorrhagic Diseases Unit, Department of Medicine, Padova University Hospital, Padova, Italy
| |
Collapse
|
116
|
Archibald SJ, Hisada Y, Bae‐Jump VL, Mackman N. Evaluation of a new bead-based assay to measure levels of human tissue factor antigen in extracellular vesicles in plasma. Res Pract Thromb Haemost 2022; 6:e12677. [PMID: 35284777 PMCID: PMC8897283 DOI: 10.1002/rth2.12677] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/03/2022] [Accepted: 02/08/2022] [Indexed: 12/27/2022] Open
Abstract
Background Circulating tissue factor (TF)-expressing extracellular vesicles (EVs) are associated with thrombosis in several diseases, such as coronavirus disease 2019 (COVID-19). Activity assays have higher sensitivity and specificity compared to antigen assays for measuring TF+ EVs in plasma. The MACSPlex Exosome Kit is designed to detect 37 exosomal surface epitopes, including TF, on EVs in plasma using various fluorescently labeled beads. The different EV-bead complexes are detected by flow cytometry. A recent study used the MACSPlex Exosome Kit to measure levels of TF+ EVs in serum from patients with COVID-19. Objectives To evaluate the ability of the MACSPlex Exosome Kit to detect TF on EVs in plasma. Methods We measured levels of TF+ EVs isolated from plasma with or without TF detected using our in-house EVTF activity assay and the MACSPlex Exosome Kit. Results The MACSPlex Exosome Kit gave a very low TF antigen signal (TF bead signal) compared to platelet-derived CD41b+ EVs, which was used as a control. Lipopolysaccharide (LPS) increased levels of EVTF activity but not TF bead signal in four donors. Inhibition of TF reduced levels of EVTF activity but did not affect the TF bead signal in EVs isolated from plasma from LPS-treated blood. Finally, we found no correlation between levels of EVTF activity and TF bead signal in EVs isolated from plasma from ovarian cancer patients (r = .16, P = .62). Conclusion Our data suggest that the MACSPlex Exosome Kit gives a nonspecific signal for TF and does not have the sensitivity to detect TF+ EVs in plasma.
Collapse
Affiliation(s)
- Sierra J. Archibald
- Division of HematologyUNC Blood Research CenterUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Yohei Hisada
- Division of HematologyUNC Blood Research CenterUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Victoria L. Bae‐Jump
- Division of Gynecologic OncologyUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
- Lineberger Comprehensive Cancer CenterDepartment of MedicineUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Nigel Mackman
- Division of HematologyUNC Blood Research CenterUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| |
Collapse
|
117
|
Bogdanov VY, Khirmanov VN. SARS-CoV-2, platelets, and endothelium: coexistence in space and time, or a pernicious ménage à trois? VASCULAR BIOLOGY (BRISTOL, ENGLAND) 2022; 4:R35-R43. [PMID: 35949299 PMCID: PMC9354055 DOI: 10.1530/vb-22-0004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/08/2022] [Indexed: 11/30/2022]
Abstract
As we enter year 3 of SARS-CoV-2 pandemic, long-term consequences of COVID-19 have become a major public health issue worldwide; however, the molecular and cellular underpinnings of 'long COVID' remain very poorly understood. A paradigm has recently emerged that thrombo-inflammatory consequences of SARS-CoV-2's impact on endothelial cells and platelets likely play a significant role in the development of chronic symptomatology associated with COVID-19. In this brief overview, we discuss the recent findings pertaining to the detection of SARS-CoV-2 virions in vascular cell subtypes, the contribution of the coagulation system to the development of 'long COVID', and the potential role of stem/progenitor cells in the viral and thrombotic dissemination in this disorder.
Collapse
Affiliation(s)
- Vladimir Y Bogdanov
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Vladimir N Khirmanov
- Department of Cardiovascular Medicine, Nikiforov’s All-Russian Center for Emergency and Radiation Medicine, Saint Petersburg, Russia
| |
Collapse
|
118
|
Mormile R. Obesity and Severe COVID-19 in the Young: Is Downregulation of miR-126 a Piece of the SARS-COV2 Pathogenicity Puzzle? Arch Med Res 2022; 53:228-230. [PMID: 34419338 PMCID: PMC8361140 DOI: 10.1016/j.arcmed.2021.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/28/2021] [Accepted: 08/05/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Raffaella Mormile
- Division of Pediatrics and Neonatology, Moscati Hospital, Aversa, Italy.
| |
Collapse
|
119
|
Xie Y, Becker R, Scott M, Bean K, Huang TJ. Addressing the global challenges of COVID-19 and other pulmonary diseases with microfluidic technology. ENGINEERING (BEIJING, CHINA) 2022; 24:S2095-8099(22)00015-7. [PMID: 35103108 PMCID: PMC8791846 DOI: 10.1016/j.eng.2022.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 12/08/2021] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
COVID-19, an infectious pulmonary disease caused by the SARS-CoV-2 virus, has profoundly impacted the world, motivating researchers across a broad spectrum of academic disciplines to gain a deeper understanding and develop effective therapies to this disease. This article presents an engineering perspective on how microfluidic technologies may address some of the challenges presented by COVID-19 and other pulmonary diseases. In particular, this article highlights urgent needs in pulmonary medicine, with an emphasis on technological innovations in the microfluidic manipulation of particles and fluids, and how these innovations may contribute to the study, diagnosis, and therapy of pulmonary diseases.
Collapse
Affiliation(s)
- Yuliang Xie
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA, 52242, United States
| | - Ryan Becker
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27710, United States
| | - Michael Scott
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA, 52242, United States
| | - Kayla Bean
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA, 52242, United States
| | - Tony Jun Huang
- Department of Mechanical Engineering and Materials Science, Pratt School of Engineering, Duke University, Durham, NC, 27710, United States
| |
Collapse
|
120
|
Abusukhun M, Winkler MS, Pöhlmann S, Moerer O, Meissner K, Tampe B, Hofmann-Winkler H, Bauer M, Gräler MH, Claus RA. Activation of Sphingomyelinase-Ceramide-Pathway in COVID-19 Purposes Its Inhibition for Therapeutic Strategies. Front Immunol 2022; 12:784989. [PMID: 34987511 PMCID: PMC8721106 DOI: 10.3389/fimmu.2021.784989] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/02/2021] [Indexed: 12/23/2022] Open
Abstract
Effective treatment strategies for severe coronavirus disease (COVID-19) remain scarce. Hydrolysis of membrane-embedded, inert sphingomyelin by stress responsive sphingomyelinases is a hallmark of adaptive responses and cellular repair. As demonstrated in experimental and observational clinical studies, the transient and stress-triggered release of a sphingomyelinase, SMPD1, into circulation and subsequent ceramide generation provides a promising target for FDA-approved drugs. Here, we report the activation of sphingomyelinase-ceramide pathway in 23 intensive care patients with severe COVID-19. We observed an increase of circulating activity of sphingomyelinase with subsequent derangement of sphingolipids in serum lipoproteins and from red blood cells (RBC). Consistent with increased ceramide levels derived from the inert membrane constituent sphingomyelin, increased activity of acid sphingomyelinase (ASM) accurately distinguished the patient cohort undergoing intensive care from healthy controls. Positive correlational analyses with biomarkers of severe clinical phenotype support the concept of an essential pathophysiological role of ASM in the course of SARS-CoV-2 infection as well as of a promising role for functional inhibition with anti-inflammatory agents in SARS-CoV-2 infection as also proposed in independent observational studies. We conclude that large-sized multicenter, interventional trials are now needed to evaluate the potential benefit of functional inhibition of this sphingomyelinase in critically ill patients with COVID-19.
Collapse
Affiliation(s)
- Murad Abusukhun
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany.,Center for Molecular Biomedicine (CMB), Jena University Hospital, Jena, Germany
| | - Martin S Winkler
- Department of Anesthesiology, Emergency and Intensive Care Medicine, University of Göttingen, Göttingen, Germany
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center-Leibniz Institute for Primate Research, Göttingen, Germany.,Faculty of Biology and Psychology, University Göttingen, Göttingen, Germany
| | - Onnen Moerer
- Department of Anesthesiology, Emergency and Intensive Care Medicine, University of Göttingen, Göttingen, Germany
| | - Konrad Meissner
- Department of Anesthesiology, Emergency and Intensive Care Medicine, University of Göttingen, Göttingen, Germany
| | - Björn Tampe
- Department of Nephrology, University of Göttingen, Göttingen, Germany
| | - Heike Hofmann-Winkler
- Infection Biology Unit, German Primate Center-Leibniz Institute for Primate Research, Göttingen, Germany
| | - Michael Bauer
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany.,Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany
| | - Markus H Gräler
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany.,Center for Molecular Biomedicine (CMB), Jena University Hospital, Jena, Germany.,Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany
| | - Ralf A Claus
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany.,Center for Molecular Biomedicine (CMB), Jena University Hospital, Jena, Germany
| |
Collapse
|
121
|
FitzGerald ES, Jamieson AM. Comment on 'SARS-CoV-2 suppresses anticoagulant and fibrinolytic gene expression in the lung'. eLife 2022; 11:74268. [PMID: 35014954 PMCID: PMC8752089 DOI: 10.7554/elife.74268] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/26/2021] [Indexed: 12/28/2022] Open
Abstract
Mast et al. analyzed transcriptome data derived from RNA-sequencing (RNA-seq) of COVID-19 patient bronchoalveolar lavage fluid (BALF) samples, as compared to BALF RNA-seq samples from a study investigating microbiome and inflammatory interactions in obese and asthmatic adults (Mast et al., 2021). Based on their analysis of these data, Mast et al. concluded that mRNA expression of key regulators of the extrinsic coagulation cascade and fibrinolysis were significantly reduced in COVID-19 patients. Notably, they reported that the expression of the extrinsic coagulation cascade master regulator Tissue Factor (F3) remained unchanged, while there was an 8-fold upregulation of its cognate inhibitor Tissue Factor Pathway Inhibitor (TFPI). From this they conclude that “pulmonary fibrin deposition does not stem from enhanced local [tissue factor] production and that counterintuitively, COVID-19 may dampen [tissue factor]-dependent mechanisms in the lungs”. They also reported decreased Activated Protein C (aPC) mediated anticoagulant activity and major increases in fibrinogen expression and other key regulators of clot formation. Many of these results are contradictory to findings in most of the field, particularly the findings regarding extrinsic coagulation cascade mediated coagulopathies. Here, we present a complete re-analysis of the data sets analyzed by Mast et al. This re-analysis demonstrates that the two data sets utilized were not comparable between one another, and that the COVID-19 sample set was not suitable for the transcriptomic analysis Mast et al. performed. We also identified other significant flaws in the design of their retrospective analysis, such as poor-quality control and filtering standards. Given the issues with the datasets and analysis, their conclusions are not supported.
Collapse
Affiliation(s)
- Ethan S FitzGerald
- Division of Biology and Medicine, Department of Molecular Microbiology and Immunology, Brown University, Providence, United States
| | - Amanda M Jamieson
- Division of Biology and Medicine, Department of Molecular Microbiology and Immunology, Brown University, Providence, United States
| |
Collapse
|
122
|
Schultz IC, Bertoni APS, Wink MR. Purinergic signaling elements are correlated with coagulation players in peripheral blood and leukocyte samples from COVID-19 patients. J Mol Med (Berl) 2022; 100:569-584. [PMID: 35091759 PMCID: PMC8799442 DOI: 10.1007/s00109-021-02175-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 12/06/2021] [Accepted: 12/10/2021] [Indexed: 12/20/2022]
Abstract
For over a year, the coronavirus disease 2019 has been affecting the world population by causing severe tissue injuries and death in infected people. Adenosine triphosphate (ATP) and the nicotinamide adenine dinucleotide (NAD +) are two molecules that are released into the extracellular microenvironment after direct virus infection or cell death caused by hyper inflammation and coagulopathy. Also, these molecules are well known to participate in multiple pathways and have a pivotal role in the purinergic signaling pathway. Thus, using public datasets available on the Gene Expression Omnibus (GEO), we analyzed raw proteomics data acquired using mass spectrometry (the gold standard method) and raw genomics data from COVID-19 patient samples obtained by microarray. The data was analyzed using bioinformatics and statistical methods according to our objectives. Here, we compared the purinergic profile of the total leukocyte population and evaluated the levels of these soluble biomolecules in the blood, and their correlation with coagulation components in COVID-19 patients, in comparison to healthy people or non-COVID-19 patients. The blood metabolite analysis showed a stage-dependent inosine increase in COVID-19 patients, while the nucleotides ATP and ADP had positive correlations with fibrinogen and other coagulation proteins. Also, ATP, ADP, inosine, and hypoxanthine had positive and negative correlations with clinical features. Regarding leukocyte gene expression, COVID-19 patients showed an upregulation of the P2RX1, P2RX4, P2RX5, P2RX7, P2RY1, P2RY12, PANX1, ADORA2B, NLPR3, and F3 genes. Yet, the ectoenzymes of the canonical and non-canonical adenosinergic pathway (ENTPD1 and CD38) are upregulated, suggesting that adenosine is produced by both active adenosinergic pathways. Hence, approaches targeting these biomolecules or their specific purinoreceptors and ectoenzymes may attenuate the high inflammatory state and the coagulopathy seen in COVID-19 patients. KEY MESSAGES : Adenosinergic pathways are modulated on leukocytes from COVID-19 patients. Plasmatic inosine levels are increased in COVID-19 patients. ATP, ADP, AMP, hypoxanthine, and inosine are correlated with coagulation players. The nucleotides and nucleosides are correlated with patients' clinical features. The P2 receptors and ectoenzymes are correlated with Tissue factor in COVID-19.
Collapse
Affiliation(s)
- Iago C Schultz
- Departamento de Ciências Básicas da Saúde, Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, 245 Sala 304, Porto Alegre, RS, 90050-170, Brazil
| | - Ana Paula S Bertoni
- Departamento de Ciências Básicas da Saúde, Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, 245 Sala 304, Porto Alegre, RS, 90050-170, Brazil
| | - Márcia R Wink
- Departamento de Ciências Básicas da Saúde, Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, 245 Sala 304, Porto Alegre, RS, 90050-170, Brazil.
| |
Collapse
|
123
|
Ramos AP, Sebinelli HG, Ciancaglini P, Rosato N, Mebarek S, Buchet R, Millán JL, Bottini M. The functional role of soluble proteins acquired by extracellular vesicles. JOURNAL OF EXTRACELLULAR BIOLOGY 2022; 1:e34. [PMID: 38938684 PMCID: PMC11080634 DOI: 10.1002/jex2.34] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 06/29/2024]
Abstract
Extracellular vesicles (EVs) are lipid bilayer-enclosed nanosized particles released by all cell types during physiological as well as pathophysiological processes to carry out diverse biological functions, including acting as sources of cellular dumping, signalosomes and mineralisation nanoreactors. The ability of EVs to perform specific biological functions is due to their biochemical machinery. Among the components of the EVs' biochemical machinery, surface proteins are of critical functional significance as they mediate the interactions of EVs with components of the extracellular milieu, the extracellular matrix and neighbouring cells. Surface proteins are thought to be native, that is, pre-assembled on the EVs' surface by the parent cells before the vesicles are released. However, numerous pieces of evidence have suggested that soluble proteins are acquired by the EVs' surface from the extracellular milieu and further modulate the biological functions of EVs during innate and adaptive immune responses, autoimmune disorders, complement activation, coagulation, viral infection and biomineralisation. Herein, we will describe the methods currently used to identify the EVs' surface proteins and discuss recent knowledge on the functional relevance of the soluble proteins acquired by EVs.
Collapse
Affiliation(s)
- Ana Paula Ramos
- Departamento de QuímicaFaculdade de FilosofiaCiências e Letras de Ribeirão PretoUniversidade de São Paulo (FFCLRP‐USP)Ribeirão PretoSão PauloBrazil
| | - Heitor Gobbi Sebinelli
- Departamento de QuímicaFaculdade de FilosofiaCiências e Letras de Ribeirão PretoUniversidade de São Paulo (FFCLRP‐USP)Ribeirão PretoSão PauloBrazil
| | - Pietro Ciancaglini
- Departamento de QuímicaFaculdade de FilosofiaCiências e Letras de Ribeirão PretoUniversidade de São Paulo (FFCLRP‐USP)Ribeirão PretoSão PauloBrazil
| | - Nicola Rosato
- Dipartimento di Medicina SperimentaleUniversita’ di Roma “Tor Vergata”RomeItaly
| | - Saida Mebarek
- ICBMS UMR CNRS 5246UFR BiosciencesUniversité Lyon 1Villeurbanne CedexFrance
| | - Rene Buchet
- ICBMS UMR CNRS 5246UFR BiosciencesUniversité Lyon 1Villeurbanne CedexFrance
| | | | - Massimo Bottini
- Departamento de QuímicaFaculdade de FilosofiaCiências e Letras de Ribeirão PretoUniversidade de São Paulo (FFCLRP‐USP)Ribeirão PretoSão PauloBrazil
- Sanford Burnham PrebysLa JollaCaliforniaUSA
| |
Collapse
|
124
|
Caillon A, Trimaille A, Favre J, Jesel L, Morel O, Kauffenstein G. Role of neutrophils, platelets, and extracellular vesicles and their interactions in COVID-19-associated thrombopathy. J Thromb Haemost 2022; 20:17-31. [PMID: 34672094 PMCID: PMC8646423 DOI: 10.1111/jth.15566] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/28/2021] [Accepted: 10/19/2021] [Indexed: 12/14/2022]
Abstract
The COVID-19 pandemic extended all around the world causing millions of deaths. In addition to acute respiratory distress syndrome, many patients with severe COVID-19 develop thromboembolic complications associated to multiorgan failure and death. Here, we review evidence for the contribution of neutrophils, platelets, and extracellular vesicles (EVs) to the thromboinflammatory process in COVID-19. We discuss how the immune system, influenced by pro-inflammatory molecules, EVs, and neutrophil extracellular traps (NETs), can be caught out in patients with severe outcomes. We highlight how the deficient regulation of the innate immune system favors platelet activation and induces a vicious cycle amplifying an immunothrombogenic environment associated with platelet/NET interactions. In light of these considerations, we discuss potential therapeutic strategies underlining the modulation of purinergic signaling as an interesting target.
Collapse
Affiliation(s)
- Antoine Caillon
- Lady Davis Institute for Medical Research, McGill University, Montréal, Quebec, Canada
| | - Antonin Trimaille
- UMR INSERM 1260, CRBS, Strasbourg University, Strasbourg, France
- Division of Cardiovascular Medicine, Nouvel Hôpital Civil, Strasbourg University Hospital, Strasbourg, France
| | - Julie Favre
- INSERM, UMR S 1121, Biomaterials and Bioengineering, CRBS, Strasbourg, France
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France
| | - Laurence Jesel
- UMR INSERM 1260, CRBS, Strasbourg University, Strasbourg, France
- Division of Cardiovascular Medicine, Nouvel Hôpital Civil, Strasbourg University Hospital, Strasbourg, France
| | - Olivier Morel
- UMR INSERM 1260, CRBS, Strasbourg University, Strasbourg, France
- Division of Cardiovascular Medicine, Nouvel Hôpital Civil, Strasbourg University Hospital, Strasbourg, France
| | | |
Collapse
|
125
|
Garnier Y, Claude L, Hermand P, Sachou E, Claes A, Desplan K, Chahim B, Roger PM, Martino F, Colin Y, Le Van Kim C, Baccini V, Romana M. Plasma microparticles of intubated COVID-19 patients cause endothelial cell death, neutrophil adhesion and netosis, in a phosphatidylserine-dependent manner. Br J Haematol 2021; 196:1159-1169. [PMID: 34962643 DOI: 10.1111/bjh.18019] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/13/2021] [Indexed: 12/15/2022]
Abstract
COVID-19 urges scientists to better describe its pathophysiology to find new therapeutic approaches. While risk factors such as ageing, obesity and diabetes mellitus suggest a central role of endothelial cells (ECs), autopsies revealed clots in the pulmonary microvasculature, which are rich in neutrophils and DNA traps produced by these cells and called NETs. Moreover, submicron extracellular vesicles called microparticles (MPs), are described in several diseases as involved in pro-inflammatory pathways. Therefore, we analyzed 3 patient groups: one for which intubation was not necessary, an intubated group, and the last one after extubating. In the most severe group, the intubated group, platelet-derived MPs and endothelial cell-derived MPs exhibited increased concentration and size, when compared to uninfected controls. MPs of intubated COVID-19 patients triggered ECs death and overexpression of two adhesion molecules: P-selectin and VCAM-1. Strikingly, neutrophils adhesion and NET production were increased following incubation with these ECs. Importantly, we also showed that preincubation of these COVID-19 MPs with the phosphatidylserine capping endogenous protein annexin A5, abolished cytotoxicity, P-selectin and VCAM-1 induction, all like increases in neutrophil adhesion and NET release. Altogether our results unveil that MPs are a key actor in COVID-19 pathophysiology and point towards a potential therapeutic: annexin A5.
Collapse
Affiliation(s)
- Yohann Garnier
- Université de Paris, UMR_S1134, BIGR, INSERM, F-75015, Paris, France.,Université des Antilles, UMR_S1134, BIGR, F- 97157, Pointe-à-Pitre, France.,Laboratoire d'Excellence GR-Ex, Paris, France.,CHU de Pointe-à-Pitre, 97110, Guadeloupe, France
| | - Livia Claude
- Université de Paris, UMR_S1134, BIGR, INSERM, F-75015, Paris, France.,Université des Antilles, UMR_S1134, BIGR, F- 97157, Pointe-à-Pitre, France.,Laboratoire d'Excellence GR-Ex, Paris, France.,CHU de Pointe-à-Pitre, 97110, Guadeloupe, France
| | - Patricia Hermand
- Université de Paris, UMR_S1134, BIGR, INSERM, F-75015, Paris, France.,Laboratoire d'Excellence GR-Ex, Paris, France.,Institut National de la Transfusion Sanguine, 75015, Paris, France
| | - Evely Sachou
- Université de Paris, UMR_S1134, BIGR, INSERM, F-75015, Paris, France.,Université des Antilles, UMR_S1134, BIGR, F- 97157, Pointe-à-Pitre, France.,Laboratoire d'Excellence GR-Ex, Paris, France.,CHU de Pointe-à-Pitre, 97110, Guadeloupe, France
| | - Aurélie Claes
- Institut Pasteur, 75015, Paris, France.,CNRS ERL9195, 75015, Paris, France.,INSERM U1201, 75015, Paris, France
| | - Kassandra Desplan
- Université de Paris, UMR_S1134, BIGR, INSERM, F-75015, Paris, France.,Université des Antilles, UMR_S1134, BIGR, F- 97157, Pointe-à-Pitre, France.,Laboratoire d'Excellence GR-Ex, Paris, France.,CHU de Pointe-à-Pitre, 97110, Guadeloupe, France
| | - Bassel Chahim
- Service de post-urgences, CHU Pointe à Pitre-Abymes, Pointe à Pitre, Guadeloupe, France
| | - Pierre-Marie Roger
- Service d'infectiologie CHU Pointe à Pitre-Abymes, Pointe à Pitre, Guadeloupe, France
| | - Frédéric Martino
- Service de réanimation, CHU Pointe à Pitre-Abymes, Pointe à Pitre, Guadeloupe, France
| | - Yves Colin
- Université de Paris, UMR_S1134, BIGR, INSERM, F-75015, Paris, France.,Laboratoire d'Excellence GR-Ex, Paris, France.,Institut National de la Transfusion Sanguine, 75015, Paris, France
| | - Caroline Le Van Kim
- Université de Paris, UMR_S1134, BIGR, INSERM, F-75015, Paris, France.,Laboratoire d'Excellence GR-Ex, Paris, France.,Institut National de la Transfusion Sanguine, 75015, Paris, France
| | - Véronique Baccini
- Université de Paris, UMR_S1134, BIGR, INSERM, F-75015, Paris, France.,Université des Antilles, UMR_S1134, BIGR, F- 97157, Pointe-à-Pitre, France.,Laboratoire d'Excellence GR-Ex, Paris, France.,CHU de Pointe-à-Pitre, 97110, Guadeloupe, France
| | - Marc Romana
- Université de Paris, UMR_S1134, BIGR, INSERM, F-75015, Paris, France.,Université des Antilles, UMR_S1134, BIGR, F- 97157, Pointe-à-Pitre, France.,Laboratoire d'Excellence GR-Ex, Paris, France.,CHU de Pointe-à-Pitre, 97110, Guadeloupe, France
| |
Collapse
|
126
|
Vitamin D Immune-Mediated Responses and SARS-CoV-2 Infection: Clinical Implications in COVID-19. IMMUNO 2021. [DOI: 10.3390/immuno2010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Active vitamin D is a true steroid hormone with pleiotropic biological effects that go beyond the classical concept of bone metabolism regulation. In fact, adequate serum levels of 25-hydroxyvitamin D (>40 ng/mL) are required to support several biological functions, including the control of innate and adaptive immunity in course of infectious, inflammatory and autoimmune diseases. SARS-CoV-2 is responsible for the COVID-19 pandemic and deficient/insufficient serum levels of 25-hydroxyvitamin D are reported in very large cohorts of patients. Of note, vitamin D is involved in different pathophysiological processes, such as expression of SARS-CoV-2 receptor (ACE2), activation of innate (neutrophils with their extracellular traps, monocytes/macrophages, dendritic cells, natural killer cells) and adaptive (T and B lymphocytes) immune cells and clinical manifestations, such as coagulation/thrombotic disorders and acute respiratory distress syndrome. Randomized clinical trials regarding vitamin D supplementation in COVID-19 patients have shown favorable effects on the control of inflammation markers, arterial oxygen saturation/inspired fraction of oxygen ratio, admission to hospital intensive care units and mortality. A target of serum 25-hydroxyvitamin D > 50 ng/mL has been identified as protective for the course of COVID-19, potentially playing an ancillary role in the treatment of the disease.
Collapse
|
127
|
Reid LV, Spalluto CM, Watson A, Staples KJ, Wilkinson TMA. The Role of Extracellular Vesicles as a Shared Disease Mechanism Contributing to Multimorbidity in Patients With COPD. Front Immunol 2021; 12:754004. [PMID: 34925327 PMCID: PMC8675939 DOI: 10.3389/fimmu.2021.754004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/04/2021] [Indexed: 01/27/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is one of the leading causes of death worldwide. Individuals with COPD typically experience a progressive, debilitating decline in lung function as well as systemic manifestations of the disease. Multimorbidity, is common in COPD patients and increases the risk of hospitalisation and mortality. Central to the genesis of multimorbidity in COPD patients is a self-perpetuating, abnormal immune and inflammatory response driven by factors including ageing, pollutant inhalation (including smoking) and infection. As many patients with COPD have multiple concurrent chronic conditions, which require an integrative management approach, there is a need to greater understand the shared disease mechanisms contributing to multimorbidity. The intercellular transfer of extracellular vesicles (EVs) has recently been proposed as an important method of local and distal cell-to-cell communication mediating both homeostatic and pathological conditions. EVs have been identified in many biological fluids and provide a stable capsule for the transfer of cargo including proteins, lipids and nucleic acids. Of these cargo, microRNAs (miRNAs), which are short 17-24 nucleotide non-coding RNA molecules, have been amongst the most extensively studied. There is evidence to support that miRNA are selectively packaged into EVs and can regulate recipient cell gene expression including major pathways involved in inflammation, apoptosis and fibrosis. Furthermore changes in EV cargo including miRNA have been reported in many chronic diseases and in response to risk factors including respiratory infections, noxious stimuli and ageing. In this review, we discuss the potential of EVs and EV-associated miRNA to modulate shared pathological processes in chronic diseases. Further delineating these may lead to the identification of novel biomarkers and therapeutic targets for patients with COPD and multimorbidities.
Collapse
Affiliation(s)
- Laura V Reid
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - C Mirella Spalluto
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,National Institute for Health Research Southampton Biomedical Research Centre, Southampton Centre for Biomedical Research, Southampton General Hospital, Southampton, United Kingdom
| | - Alastair Watson
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,National Institute for Health Research Southampton Biomedical Research Centre, Southampton Centre for Biomedical Research, Southampton General Hospital, Southampton, United Kingdom.,Birmingham Medical School, University of Birmingham, Birmingham, United Kingdom
| | - Karl J Staples
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,National Institute for Health Research Southampton Biomedical Research Centre, Southampton Centre for Biomedical Research, Southampton General Hospital, Southampton, United Kingdom
| | - Tom M A Wilkinson
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,National Institute for Health Research Southampton Biomedical Research Centre, Southampton Centre for Biomedical Research, Southampton General Hospital, Southampton, United Kingdom
| |
Collapse
|
128
|
Barale C, Melchionda E, Morotti A, Russo I. Prothrombotic Phenotype in COVID-19: Focus on Platelets. Int J Mol Sci 2021; 22:ijms222413638. [PMID: 34948438 PMCID: PMC8705811 DOI: 10.3390/ijms222413638] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 12/15/2022] Open
Abstract
COVID-19 infection is associated with a broad spectrum of presentations, but alveolar capillary microthrombi have been described as a common finding in COVID-19 patients, appearing as a consequence of a severe endothelial injury with endothelial cell membrane disruption. These observations clearly point to the identification of a COVID-19-associated coagulopathy, which may contribute to thrombosis, multi-organ damage, and cause of severity and fatality. One significant finding that emerges in prothrombotic abnormalities observed in COVID-19 patients is that the coagulation alterations are mainly mediated by the activation of platelets and intrinsically related to viral-mediated endothelial inflammation. Beyond the well-known role in hemostasis, the ability of platelets to also release various potent cytokines and chemokines has elevated these small cells from simple cell fragments to crucial modulators in the blood, including their inflammatory functions, that have a large influence on the immune response during infectious disease. Indeed, platelets are involved in the pathogenesis of acute lung injury also by promoting NET formation and affecting vascular permeability. Specifically, the deposition by activated platelets of the chemokine platelet factor 4 at sites of inflammation promotes adhesion of neutrophils on endothelial cells and thrombogenesis, and it seems deeply involved in the phenomenon of vaccine-induced thrombocytopenia and thrombosis. Importantly, the hyperactivated platelet phenotype along with evidence of cytokine storm, high levels of P-selectin, D-dimer, and, on the other hand, decreased levels of fibrinogen, von Willebrand factor, and thrombocytopenia may be considered suitable biomarkers that distinguish the late stage of COVID-19 progression in critically ill patients.
Collapse
Affiliation(s)
| | | | | | - Isabella Russo
- Correspondence: ; Tel.: +39-011-6705447; Fax: +39-011-9038639
| |
Collapse
|
129
|
Mizurini DM, Hottz ED, Bozza PT, Monteiro RQ. Fundamentals in Covid-19-Associated Thrombosis: Molecular and Cellular Aspects. Front Cardiovasc Med 2021; 8:785738. [PMID: 34977191 PMCID: PMC8718518 DOI: 10.3389/fcvm.2021.785738] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/23/2021] [Indexed: 01/08/2023] Open
Abstract
The novel coronavirus disease (COVID-19) is associated with a high incidence of coagulopathy and venous thromboembolism that may contribute to the worsening of the clinical outcome in affected patients. Marked increased D-dimer levels are the most common laboratory finding and have been repeatedly reported in critically ill COVID-19 patients. The infection caused by Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is followed by a massive release of pro-inflammatory cytokines, which mediate the activation of endothelial cells, platelets, monocytes, and neutrophils in the vasculature. In this context, COVID-19-associated thrombosis is a complex process that seems to engage vascular cells along with soluble plasma factors, including the coagulation cascade, and complement system that contribute to the establishment of the prothrombotic state. In this review, we summarize the main findings concerning the cellular mechanisms proposed for the establishment of COVID-19-associated thrombosis.
Collapse
Affiliation(s)
- Daniella M. Mizurini
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Eugenio D. Hottz
- Oswaldo Cruz Foundation, Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Rio de Janeiro, Brazil
- Laboratory of Immunothrombosis, Department of Biochemistry, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Brazil
| | - Patrícia T. Bozza
- Oswaldo Cruz Foundation, Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Rio de Janeiro, Brazil
| | - Robson Q. Monteiro
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| |
Collapse
|
130
|
Hokama LT, Veiga ADM, Menezes MCS, Sardinha Pinto AA, de Lima TM, Ariga SKK, Barbeiro HV, Barbeiro DF, de Lucena Moreira C, Stanzani G, Brandao RA, Marchini JF, Alencar JC, Marino LO, Gomez LM, Souza HP. Endothelial injury in COVID-19 and septic patients. Microvasc Res 2021; 140:104303. [PMID: 34914941 PMCID: PMC8667352 DOI: 10.1016/j.mvr.2021.104303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 12/01/2021] [Accepted: 12/09/2021] [Indexed: 12/20/2022]
Abstract
Systemic inflammatory response, as observed in sepsis and severe COVID-19, may lead to endothelial damage. Therefore, we aim to compare the extent of endothelial injury and its relationship to inflammation in both diseases. We included patients diagnosed with sepsis (SEPSIS group, n = 21), mild COVID-19 (MILD group, n = 31), and severe COVID-19 (SEVERE group, n = 24). Clinical and routine laboratory data were obtained, circulating cytokines (INF-γ, TNF-α, and IL-10) and endothelial injury markers (E-Selectin, Tissue Factor (TF) and von Willebrand factor (vWF)) were measured. Compared to the SEPSIS group, patients with severe COVID-19 present similar clinical and laboratory data, except for lower circulating IL-10 and E-Selectin levels. Compared to the MILD group, patients in the SEVERE group showed higher levels of TNF-α, IL-10, and TF. There was no clear relationship between cytokines and endothelial injury markers among the three studied groups; however, in SEVERE COVID-19 patients, there is a positive relationship between INF-γ with TF and a negative relationship between IL-10 and vWF. In conclusion, COVID-19 and septic patients have a similar pattern of cytokines and endothelial dysfunction markers. These findings highlight the importance of endothelium dysfunction in COVID-19 and suggest that endothelium should be better evaluated as a therapeutic target for the disease.
Collapse
Affiliation(s)
- Larissa Tami Hokama
- Emergency Medicine Department, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.
| | - Alicia Dudy Müller Veiga
- Emergency Medicine Department, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Maria Clara Saad Menezes
- Emergency Medicine Department, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | | | - Thais Martins de Lima
- Emergency Medicine Department, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Suely Kunimi Kubo Ariga
- Emergency Medicine Department, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Hermes Vieira Barbeiro
- Emergency Medicine Department, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Denise Frediani Barbeiro
- Emergency Medicine Department, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Claudia de Lucena Moreira
- Emergency Medicine Department, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Gabriela Stanzani
- Emergency Medicine Department, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Rodrigo Antonio Brandao
- Emergency Medicine Department, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Julio Flavio Marchini
- Emergency Medicine Department, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Julio Cesar Alencar
- Emergency Medicine Department, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Lucas Oliveira Marino
- Emergency Medicine Department, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Luz Marina Gomez
- Emergency Medicine Department, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | -
- Emergency Medicine Department, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Heraldo P Souza
- Emergency Medicine Department, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
131
|
Esquivel-Ruiz S, González-Rodríguez P, Lorente JA, Pérez-Vizcaíno F, Herrero R, Moreno L. Extracellular Vesicles and Alveolar Epithelial-Capillary Barrier Disruption in Acute Respiratory Distress Syndrome: Pathophysiological Role and Therapeutic Potential. Front Physiol 2021; 12:752287. [PMID: 34887773 PMCID: PMC8650589 DOI: 10.3389/fphys.2021.752287] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/27/2021] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) mediate intercellular communication by transferring genetic material, proteins and organelles between different cells types in both health and disease. Recent evidence suggests that these vesicles, more than simply diagnostic markers, are key mediators of the pathophysiology of acute respiratory distress syndrome (ARDS) and other lung diseases. In this review, we will discuss the contribution of EVs released by pulmonary structural cells (alveolar epithelial and endothelial cells) and immune cells in these diseases, with particular attention to their ability to modulate inflammation and alveolar-capillary barrier disruption, a hallmark of ARDS. EVs also offer a unique opportunity to develop new therapeutics for the treatment of ARDS. Evidences supporting the ability of stem cell-derived EVs to attenuate the lung injury and ongoing strategies to improve their therapeutic potential are also discussed.
Collapse
Affiliation(s)
- Sergio Esquivel-Ruiz
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.,Ciber de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Paloma González-Rodríguez
- Ciber de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Department of Critical Care, Hospital Universitario de Getafe, Madrid, Spain
| | - José A Lorente
- Ciber de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Department of Critical Care, Hospital Universitario de Getafe, Madrid, Spain.,Clinical Section, School of Medicine, European University of Madrid, Madrid, Spain
| | - Francisco Pérez-Vizcaíno
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.,Ciber de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Raquel Herrero
- Ciber de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Department of Critical Care, Hospital Universitario de Getafe, Madrid, Spain
| | - Laura Moreno
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.,Ciber de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| |
Collapse
|
132
|
Lazebnik Y. Cell fusion as a link between the SARS-CoV-2 spike protein, COVID-19 complications, and vaccine side effects. Oncotarget 2021; 12:2476-2488. [PMID: 34917266 PMCID: PMC8664391 DOI: 10.18632/oncotarget.28088] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 09/24/2021] [Indexed: 12/23/2022] Open
Abstract
A distinctive feature of the SARS-CoV-2 spike protein is its ability to efficiently fuse cells, thus producing syncytia found in COVID-19 patients. This commentary proposes how this ability enables spike to cause COVID-19 complications as well as side effects of COVID-19 vaccines, and suggests how these effects can be prevented.
Collapse
|
133
|
Kumar S, Kumar P, Kodidela S, Duhart B, Cernasev A, Nookala A, Kumar A, Singh UP, Bissler J. Racial Health Disparity and COVID-19. J Neuroimmune Pharmacol 2021; 16:729-742. [PMID: 34499313 PMCID: PMC8426163 DOI: 10.1007/s11481-021-10014-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/19/2021] [Indexed: 02/07/2023]
Abstract
The infection by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and resultant coronavirus diseases-19 (COVID-19) disproportionally affects minorities, especially African Americans (AA) compared to the Caucasian population. The AA population is disproportionally affected by COVID-19, in part, because they have high prevalence of underlying conditions such as obesity, diabetes, and hypertension, which are known to exacerbate not only kidney diseases, but also COVID-19. Further, a decreased adherence to COVID-19 guidelines among tobacco smokers could result in increased infection, inflammation, reduced immune response, and lungs damage, leading to more severe form of COVID-19. As a result of high prevalence of underlying conditions that cause kidney diseases in the AA population coupled with tobacco smoking make the AA population vulnerable to severe form of both COVID-19 and kidney diseases. In this review, we describe how tobacco smoking interact with SARS-CoV-2 and exacerbates SARS-CoV-2-induced kidney diseases including renal failure, especially in the AA population. We also explore the role of extracellular vesicles (EVs) in COVID-19 patients who smoke tobacco. EVs, which play important role in tobacco-mediated pathogenesis in infectious diseases, have also shown to be important in COVID-19 pathogenesis and organ injuries including kidney. Further, we explore the potential role of EVs in biomarker discovery and therapeutics, which may help to develop early diagnosis and treatment of tobacco-induced renal injury in COVID-19 patients, respectively.
Collapse
Affiliation(s)
- Santosh Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA.
| | - Prashant Kumar
- Department of Pediatrics, University of Tennessee Health Science Center and Le Bonheur Children's Hospital, Memphis, TN, USA
| | - Sunitha Kodidela
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Benjamin Duhart
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Sciences Center, Memphis, TN, USA
| | - Alina Cernasev
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Sciences Center, Nashville, TN, USA
| | | | - Asit Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Udai P Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - John Bissler
- Department of Pediatrics, University of Tennessee Health Science Center and Le Bonheur Children's Hospital, Memphis, TN, USA.
| |
Collapse
|
134
|
Immunomodulation and Reduction of Thromboembolic Risk in Hospitalized COVID-19 Patients: Systematic Review and Meta-Analysis of Randomized Trials. J Clin Med 2021; 10:jcm10225366. [PMID: 34830648 PMCID: PMC8617689 DOI: 10.3390/jcm10225366] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/12/2021] [Indexed: 12/19/2022] Open
Abstract
Background: We aimed to investigate the potential beneficial effect of immunomodulation therapy on the thromboembolic risk in hospitalized COVID-19 patients. Methods: We searched PubMed and Scopus for randomized trials reporting the outcomes of venous thromboembolism (VTE), ischemic stroke or systemic embolism, myocardial infarction, any thromboembolic event, and all-cause mortality in COVID-19 patients treated with immunomodulatory agents. Odds ratios (OR) and 95% confidence intervals (CI) were calculated using the Mantel–Haenszel random effects method. Results: Among 8499 patients hospitalized with COVID-19, 4638 were treated with an immunomodulatory agent, 3861—with usual care only. Among the patients prescribed immunomodulatory agents, there were 1.77 VTEs per 100 patient-months compared to 2.30 among those treated with usual care (OR: 0.84, 95% CI: 0.61–1.16; I2: 0%). Among the patients who received an interleukin 6 (IL-6) antagonist, VTEs were reported in 12 among the 1075 patients compared to 20 among the 848 receiving the usual care (OR: 0.52, 95% CI: 0.22–1.20; I2: 6%). Immunomodulators as an add-on to usual care did not reduce the risk of stroke or systemic embolism (OR: 1.10, 95% CI: 0.50–2.40; I2: 0%) or of myocardial infarction (OR: 1.06, 95% CI: 0.47–2.39; I2: 0%) and there was a nonsignificant reduction in any thromboembolic event (OR: 0.86, 95% CI: 0.65–1.14; I2: 0%). Conclusions: We did not identify a statistically significant effect of immunomodulation on prevention of thromboembolic events in COVID-19. However, given the large effect estimate for VTE prevention, especially in the patients treated with IL-6 antagonists, we cannot exclude a potential effect of immunomodulation.
Collapse
|
135
|
Mackman N, Grover SP, Antoniak S. Tissue factor expression, extracellular vesicles, and thrombosis after infection with the respiratory viruses influenza A virus and coronavirus. J Thromb Haemost 2021; 19:2652-2658. [PMID: 34418279 PMCID: PMC9770926 DOI: 10.1111/jth.15509] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 02/06/2023]
Abstract
Tissue factor (TF) is induced in a variety of cell types during viral infection, which likely contributes to disseminated intravascular coagulation and thrombosis. TF-expressing cells also release TF-positive extracellular vesicles (EVs) into the circulation that can be measured using an EVTF activity assay. This review summarizes studies that analyze TF expression, TF-positive EVs, activation of coagulation, and thrombosis after infection with influenza A virus (IAV) and coronaviruses (CoVs), including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), SARS-CoV, and Middle East respiratory syndrome CoV (MERS-CoV). The current pandemic of coronavirus disease 2019 (COVID-19) is caused by infection with SARS-CoV-2. Infection of mice with IAV increased TF expression in lung epithelial cells as well as increased EVTF activity and activation of coagulation in the bronchoalveolar lavage fluid (BALF). Infection of mice with MERS-CoV, SARS-CoV, and SARS-CoV-2 also increased lung TF expression. Single-cell RNA sequencing analysis on the BALF from severe COVID-19 patients revealed increased TF mRNA expression in epithelial cells. TF expression was observed in peripheral blood mononuclear cells infected with SARS-CoV. TF was also expressed by peripheral blood mononuclear cells, monocytes in platelet-monocyte aggregates, and neutrophils isolated from COVID-19 patients. Elevated circulating EVTF activity was observed in severe IAV and COVID-19 patients. Importantly, EVTF activity was associated with mortality in severe IAV patients and with plasma D-dimer, severity, thrombosis, and mortality in COVID-19 patients. These studies strongly suggest that increased TF expression in patients infected with IAV and pathogenic CoVs contributes to thrombosis.
Collapse
Affiliation(s)
- Nigel Mackman
- Department of Medicine, UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Steven P Grover
- Department of Medicine, UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Silvio Antoniak
- Department of Pathology and Laboratory Medicine, UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
136
|
Abstract
The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), results in life-threatening disease in a minority of patients, especially elderly people and those with co-morbidities such as obesity and diabetes. Severe disease is characterized by dysregulated cytokine release, pneumonia and acute lung injury, which can rapidly progress to acute respiratory distress syndrome, disseminated intravascular coagulation, multisystem failure and death. However, a mechanistic understanding of COVID-19 progression remains unclear. Here we review evidence that SARS-CoV-2 directly or indirectly activates inflammasomes, which are large multiprotein assemblies that are broadly responsive to pathogen-associated and stress-associated cellular insults, leading to secretion of the pleiotropic IL-1 family cytokines (IL-1β and IL-18), and pyroptosis, an inflammatory form of cell death. We further discuss potential mechanisms of inflammasome activation and clinical efforts currently under way to suppress inflammation to prevent or ameliorate severe COVID-19.
Collapse
Affiliation(s)
- Setu M Vora
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Judy Lieberman
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
137
|
Takahashi T, Schleimer RP. Epithelial-Cell-Derived Extracellular Vesicles in Pathophysiology of Epithelial Injury and Repair in Chronic Rhinosinusitis: Connecting Immunology in Research Lab to Biomarkers in Clinics. Int J Mol Sci 2021; 22:11709. [PMID: 34769139 PMCID: PMC8583779 DOI: 10.3390/ijms222111709] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 11/17/2022] Open
Abstract
Epithelial barrier disruption and failure of epithelial repair by aberrant epithelial-mesenchymal transition (EMT)-induced basal cells observed in nasal mucosa of chronic rhinosinusitis (CRS) are speculated to play important roles in disease pathophysiology. Microparticles (MPs) are a type of extracellular vesicle (EV) released by budding or shedding from the plasma membrane of activated or apoptotic cells. MPs are detected in nasal lavage fluids (NLFs) and are now receiving attention as potential biomarkers to evaluate the degree of activation of immune cells and injury of structural cells in nasal mucosa of subjects with sinus disease. There are three types of epithelial-cell-derived MPs, which are defined by the expression of different epithelial specific markers on their surface: EpCAM, E-cadherin, and integrin β6 (ITGB6). When these markers are on MPs that are also carrying canonical EMT/mesenchymal markers (Snail (SNAI1); Slug (SNAI2); alpha-smooth muscle actin (αSMA, ACTA2)) or pro- and anti-coagulant molecules (tissue factor (TF); tissue plasminogen activator (tPA); plasminogen activator inhibitor-1 (PAI-1)), they provide insight as to the roles of epithelial activation for EMT or regulation of coagulation in the underlying disease. In this review, we discuss the potential of epithelial MPs as research tools to evaluate status of nasal mucosae of CRS patients in the lab, as well as biomarkers for management and treatment of CRS in the clinic.
Collapse
Affiliation(s)
- Toru Takahashi
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA;
| | - Robert P Schleimer
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA;
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
138
|
Landau N, Shoenfeld Y, Negru L, Segal G. Exploring the pathways of inflammation and coagulopathy in COVID-19: A narrative tour into a viral rabbit hole. Int Rev Immunol 2021; 41:414-422. [PMID: 34678120 PMCID: PMC8544671 DOI: 10.1080/08830185.2021.1993211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 12/23/2022]
Abstract
Worldwide COVID-19 pandemic has taken a huge toll of morbidity and mortality. In selected patients, classified as severe, the overwhelming inflammatory state imposed by this infection is accompanied by a hypercoagulable state, hallmarked by a unique pattern; a marked increase in D-dimer, out of proportion to other markers of coagulopathy. In this review, we turn a spotlight to this phenomenon, offering a unified conceptual model depicting the leading hypotheses of coagulopathy in COVID-19. The key players of the coagulation cascades accompanying the COVID-19 inflammation malfunction on virtually every level; tissue factor expression is amplified, physiological anti-coagulant pathways (anti-thrombin, protein C and S, and the inhibitor of the tissue factor pathway) are impaired and fibrinolysis is inhibited. Components of autoimmunity, the complement system amongst others, further contribute to the pathology. As data continue to gather, our model offers a pathophysiological overview of COVID-19 coagulopathy, defined by the resultant histopathology: either intra-vascular or extra-vascular. We hope this review will facilitate understanding and serve as a lead point to future therapeutic directives.
Collapse
Affiliation(s)
- Nitsan Landau
- Internal Medicine “I,” Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan, Israel
| | - Yehuda Shoenfeld
- The Zabludowicz Research Center for Autoimmune Diseases, Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan, Israel
- Ariel University, Jerusalem, Israel
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- University of the Ministry of Health of the Russian Federation (Sechenov University), Saint Petersburg, Russia
| | - Liat Negru
- Internal Medicine “I,” Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan, Israel
| | - Gad Segal
- Internal Medicine “I,” Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan, Israel
| |
Collapse
|
139
|
Hernández-Huerta MT, Pérez-Santiago AD, Pérez-Campos Mayoral L, Sánchez Navarro LM, Rodal Canales FJ, Majluf-Cruz A, Matias-Cervantes CA, Pérez-Campos Mayoral E, Romero Díaz C, Mayoral-Andrade G, Martínez Cruz M, Luna Ángel J, Pérez-Campos E. Mechanisms of Immunothrombosis by SARS-CoV-2. Biomolecules 2021; 11:1550. [PMID: 34827548 PMCID: PMC8615366 DOI: 10.3390/biom11111550] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/06/2021] [Accepted: 10/09/2021] [Indexed: 12/20/2022] Open
Abstract
SARS-CoV-2 contains certain molecules that are related to the presence of immunothrombosis. Here, we review the pathogen and damage-associated molecular patterns. We also study the imbalance of different molecules participating in immunothrombosis, such as tissue factor, factors of the contact system, histones, and the role of cells, such as endothelial cells, platelets, and neutrophil extracellular traps. Regarding the pathogenetic mechanism, we discuss clinical trials, case-control studies, comparative and translational studies, and observational studies of regulatory or inhibitory molecules, more specifically, extracellular DNA and RNA, histones, sensors for RNA and DNA, as well as heparin and heparinoids. Overall, it appears that a network of cells and molecules identified in this axis is simultaneously but differentially affecting patients at different stages of COVID-19, and this is characterized by endothelial damage, microthrombosis, and inflammation.
Collapse
Affiliation(s)
- María Teresa Hernández-Huerta
- CONACyT, Facultad de Medicina y Cirugía, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca 68020, Mexico; (M.T.H.-H.); (C.A.M.-C.)
- Grupo de Investigación Biomedicina y Salud, Facultad de Medicina y Cirugía, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca 68020, Mexico; (E.P.-C.M.); (C.R.D.); (G.M.-A.)
| | | | - Laura Pérez-Campos Mayoral
- Grupo de Investigación Biomedicina y Salud, Facultad de Medicina y Cirugía, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca 68020, Mexico; (E.P.-C.M.); (C.R.D.); (G.M.-A.)
- Centro de Investigación Facultad de Medicina UNAM-UABJO, Facultad de Medicina y Cirugía, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca 68020, Mexico;
| | | | - Francisco Javier Rodal Canales
- Centro de Investigación Facultad de Medicina UNAM-UABJO, Facultad de Medicina y Cirugía, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca 68020, Mexico;
| | | | - Carlos Alberto Matias-Cervantes
- CONACyT, Facultad de Medicina y Cirugía, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca 68020, Mexico; (M.T.H.-H.); (C.A.M.-C.)
- Grupo de Investigación Biomedicina y Salud, Facultad de Medicina y Cirugía, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca 68020, Mexico; (E.P.-C.M.); (C.R.D.); (G.M.-A.)
| | - Eduardo Pérez-Campos Mayoral
- Grupo de Investigación Biomedicina y Salud, Facultad de Medicina y Cirugía, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca 68020, Mexico; (E.P.-C.M.); (C.R.D.); (G.M.-A.)
- Centro de Investigación Facultad de Medicina UNAM-UABJO, Facultad de Medicina y Cirugía, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca 68020, Mexico;
| | - Carlos Romero Díaz
- Grupo de Investigación Biomedicina y Salud, Facultad de Medicina y Cirugía, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca 68020, Mexico; (E.P.-C.M.); (C.R.D.); (G.M.-A.)
- Centro de Investigación Facultad de Medicina UNAM-UABJO, Facultad de Medicina y Cirugía, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca 68020, Mexico;
| | - Gabriel Mayoral-Andrade
- Grupo de Investigación Biomedicina y Salud, Facultad de Medicina y Cirugía, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca 68020, Mexico; (E.P.-C.M.); (C.R.D.); (G.M.-A.)
- Centro de Investigación Facultad de Medicina UNAM-UABJO, Facultad de Medicina y Cirugía, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca 68020, Mexico;
| | - Margarito Martínez Cruz
- Tecnológico Nacional de México/IT Oaxaca, Oaxaca de Juárez, Oaxaca 68030, Mexico; (A.D.P.-S.); (M.M.C.)
| | - Judith Luna Ángel
- Hospital General Dr. Aurelio Valdivieso, Oaxaca de Juárez, Oaxaca 68000, Mexico;
| | - Eduardo Pérez-Campos
- Grupo de Investigación Biomedicina y Salud, Facultad de Medicina y Cirugía, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca 68020, Mexico; (E.P.-C.M.); (C.R.D.); (G.M.-A.)
- Tecnológico Nacional de México/IT Oaxaca, Oaxaca de Juárez, Oaxaca 68030, Mexico; (A.D.P.-S.); (M.M.C.)
- Laboratorio de Patología Clinica “Eduardo Pérez Ortega”, Oaxaca de Juárez, Oaxaca 68000, Mexico
| |
Collapse
|
140
|
Lundström A, Ziegler L, Havervall S, Rudberg A, von Meijenfeldt F, Lisman T, Mackman N, Sandén P, Thålin C. Soluble angiotensin-converting enzyme 2 is transiently elevated in COVID-19 and correlates with specific inflammatory and endothelial markers. J Med Virol 2021; 93:5908-5916. [PMID: 34138483 PMCID: PMC8426677 DOI: 10.1002/jmv.27144] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 06/14/2021] [Indexed: 12/29/2022]
Abstract
The main entry receptor of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is angiotensin-converting enzyme 2 (ACE2). SARS-CoV-2 interactions with ACE2 may increase ectodomain shedding but consequences for the renin-angiotensin system and pathology in Coronavirus disease 2019 (COVID-19) remain unclear. We measured soluble ACE2 (sACE2) and sACE levels by enzyme-linked immunosorbent assay in 114 hospital-treated COVID-19 patients compared with 10 healthy controls; follow-up samples after four months were analyzed for 58 patients. Associations between sACE2 respectively sACE and risk factors for severe COVID-19, outcome, and inflammatory markers were investigated. Levels of sACE2 were higher in COVID-19 patients than in healthy controls, median 5.0 (interquartile range 2.8-11.8) ng/ml versus 1.4 (1.1-1.6) ng/ml, p < .0001. sACE2 was higher in men than women but was not affected by other risk factors for severe COVID-19. sACE2 decreased to 2.3 (1.6-3.9) ng/ml at follow-up, p < .0001, but remained higher than in healthy controls, p = .012. sACE was marginally lower during COVID-19 compared with at follow-up, 57 (45-70) ng/ml versus 72 (52-87) ng/ml, p = .008. Levels of sACE2 and sACE did not differ depending on survival or disease severity. sACE2 during COVID-19 correlated with von Willebrand factor, factor VIII and D-dimer, while sACE correlated with interleukin 6, tumor necrosis factor α, and plasminogen activator inhibitor 1. Conclusions: sACE2 was transiently elevated in COVID-19, likely due to increased shedding from infected cells. sACE2 and sACE during COVID-19 differed in correlations with markers of inflammation and endothelial dysfunction, suggesting release from different cell types and/or vascular beds.
Collapse
Affiliation(s)
- Annika Lundström
- Division of Neurology, Department of Clinical SciencesKarolinska Institutet Danderyd HospitalStockholmSweden
| | - Louise Ziegler
- Division of Internal Medicine, Department of Clinical SciencesKarolinska Institutet Danderyd HospitalStockholmSweden
| | - Sebastian Havervall
- Division of Internal Medicine, Department of Clinical SciencesKarolinska Institutet Danderyd HospitalStockholmSweden
| | - Ann‐Sofie Rudberg
- Division of Neurology, Department of Clinical SciencesKarolinska Institutet Danderyd HospitalStockholmSweden
| | - Fien von Meijenfeldt
- Surgical Research Laboratory, Department of SurgeryUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Ton Lisman
- Surgical Research Laboratory, Department of SurgeryUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Nigel Mackman
- Division of Hematology, Department of Medicine, UNC Blood Research CenterUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Per Sandén
- Division of Neurology, Department of Clinical SciencesKarolinska Institutet Danderyd HospitalStockholmSweden
| | - Charlotte Thålin
- Division of Internal Medicine, Department of Clinical SciencesKarolinska Institutet Danderyd HospitalStockholmSweden
| |
Collapse
|
141
|
Sharma HN, Latimore COD, Matthews QL. Biology and Pathogenesis of SARS-CoV-2: Understandings for Therapeutic Developments against COVID-19. Pathogens 2021; 10:1218. [PMID: 34578250 PMCID: PMC8470303 DOI: 10.3390/pathogens10091218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/10/2021] [Accepted: 09/15/2021] [Indexed: 01/18/2023] Open
Abstract
Coronaviruses are positive sense, single-stranded, enveloped, and non-segmented RNA viruses that belong to the Coronaviridae family within the order Nidovirales and suborder Coronavirinae. Two Alphacoronavirus strains: HCoV-229E and HCoV-NL63 and five Betacoronaviruses: HCoV-HKU1, HCoV-OC43, SARS-CoV, MERS-CoV, and SARS-CoV-2 have so far been recognized as Human Coronaviruses (HCoVs). Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 is currently the greatest concern for humanity. Despite the overflow of research on SARS-CoV-2 and other HCoVs published every week, existing knowledge in this area is insufficient for the complete understanding of the viruses and the diseases caused by them. This review is based on the analysis of 210 published works, and it attempts to cover the basic biology of coronaviruses, including the genetic characteristics, life cycle, and host-pathogen interaction, pathogenesis, the antiviral drugs, and vaccines against HCoVs, especially focusing on SARS-CoV-2. Furthermore, we will briefly discuss the potential link between extracellular vesicles (EVs) and SARS-CoV-2/COVID-19 pathophysiology.
Collapse
Affiliation(s)
- Homa Nath Sharma
- Microbiology Program, Department of Biological Sciences, Alabama State University, Montgomery, AL 36104, USA;
| | | | - Qiana L. Matthews
- Microbiology Program, Department of Biological Sciences, Alabama State University, Montgomery, AL 36104, USA;
- Department of Biological Sciences, Alabama State University, Montgomery, AL 36104, USA;
| |
Collapse
|
142
|
Hollerbach A, Müller-Calleja N, Pedrosa D, Canisius A, Sprinzl MF, Falter T, Rossmann H, Bodenstein M, Werner C, Sagoschen I, Münzel T, Schreiner O, Sivanathan V, Reuter M, Niermann J, Galle PR, Teyton L, Ruf W, Lackner KJ. Pathogenic lipid-binding antiphospholipid antibodies are associated with severity of COVID-19. J Thromb Haemost 2021; 19:2335-2347. [PMID: 34242469 PMCID: PMC8420426 DOI: 10.1111/jth.15455] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 07/07/2021] [Accepted: 07/07/2021] [Indexed: 01/08/2023]
Abstract
BACKGROUND Coronavirus disease 19 (COVID-19)-associated coagulopathy is a hallmark of disease severity and poor prognosis. The key manifestations of this prothrombotic syndrome-microvascular thrombosis, stroke, and venous and pulmonary clots-are also observed in severe and catastrophic antiphospholipid syndrome. Antiphospholipid antibodies (aPL) are detectable in COVID-19 patients, but their association with the clinical course of COVID-19 remains unproven. OBJECTIVES To analyze the presence and relevance of lipid-binding aPL in hospitalized COVID-19 patients. METHODS Two cohorts of 53 and 121 patients from a single center hospitalized for PCR-proven severe acute respiratory syndrome-coronavirus 2 infection were analyzed for the presence of aPL and clinical severity of COVID-19. RESULTS We here demonstrate that lipid-binding aPL are common in COVID-19. COVID-19 patients with lipid-binding aPL have higher median concentrations of C-reactive protein and D-dimer, and are more likely to have a critical clinical course and fatal outcome. Lipid-binding aPL isolated from COVID-19 patients target the recently described cell surface complex of lysobisphosphatidic acid (LBPA) with the protein C receptor (EPCR) to induce prothrombotic and inflammatory responses in monocytes and endothelial cells. We show that B1a cells producing lipid-reactive aPL of the IgG isotype circulate in the blood of COVID-19 patients. In vivo, COVID-19 aPL accelerate thrombus formation in an experimental mouse model dependent on the recently delineated signaling pathway involving EPCR-LBPA. CONCLUSIONS COVID-19 patients rapidly expand B1a cells secreting pathogenic lipid-binding aPL with broad thrombotic and inflammatory effects. The association with markers of inflammation and coagulation, clinical severity, and mortality suggests a causal role of aPL in COVID-19-associated coagulopathy.
Collapse
Affiliation(s)
- Anne Hollerbach
- Institute of Clinical Chemistry and Laboratory Medicine, Johannes Gutenberg University Medical Center Mainz, Germany
| | - Nadine Müller-Calleja
- Institute of Clinical Chemistry and Laboratory Medicine, Johannes Gutenberg University Medical Center Mainz, Germany
- Center for Thrombosis and Hemostasis (CTH), Johannes Gutenberg University Medical Center Mainz, Mainz, Germany
| | - Denise Pedrosa
- Center for Thrombosis and Hemostasis (CTH), Johannes Gutenberg University Medical Center Mainz, Mainz, Germany
| | - Antje Canisius
- Institute of Clinical Chemistry and Laboratory Medicine, Johannes Gutenberg University Medical Center Mainz, Germany
| | - Martin F Sprinzl
- Department of Medicine I, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany
| | - Tanja Falter
- Institute of Clinical Chemistry and Laboratory Medicine, Johannes Gutenberg University Medical Center Mainz, Germany
| | - Heidi Rossmann
- Institute of Clinical Chemistry and Laboratory Medicine, Johannes Gutenberg University Medical Center Mainz, Germany
| | - Marc Bodenstein
- Department of Anesthesiology, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany
| | - Christian Werner
- Department of Anesthesiology, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany
| | - Ingo Sagoschen
- Department of Cardiology, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany
| | - Thomas Münzel
- Department of Cardiology, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany
| | - Oliver Schreiner
- Department of Medicine I, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany
| | - Visvakanth Sivanathan
- Department of Medicine I, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany
| | - Michael Reuter
- Department of Medicine I, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany
| | - Johannes Niermann
- Department of Medicine I, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany
| | - Peter R Galle
- Department of Medicine I, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany
| | - Luc Teyton
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California, USA
| | - Wolfram Ruf
- Center for Thrombosis and Hemostasis (CTH), Johannes Gutenberg University Medical Center Mainz, Mainz, Germany
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California, USA
| | - Karl J Lackner
- Institute of Clinical Chemistry and Laboratory Medicine, Johannes Gutenberg University Medical Center Mainz, Germany
| |
Collapse
|
143
|
Francischetti IM, Toomer K, Zhang Y, Jani J, Siddiqui Z, Brotman DJ, Hooper JE, Kickler TS. Upregulation of pulmonary tissue factor, loss of thrombomodulin and immunothrombosis in SARS-CoV-2 infection. EClinicalMedicine 2021; 39:101069. [PMID: 34377969 PMCID: PMC8342934 DOI: 10.1016/j.eclinm.2021.101069] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND SARS-CoV-2 infection is associated with thrombotic and microvascular complications. The cause of coagulopathy in the disease is incompletely understood. METHODS A single-center cross-sectional study including 66 adult COVID-19 patients (40 moderate, 26 severe disease), and 9 controls, performed between 04/2020 and 10/2020. Markers of coagulation, endothelial cell function [angiopoietin-1,-2, P-selectin, von Willebrand Factor Antigen (WF:Ag), von Willebrand Factor Ristocetin Cofactor, ADAMTS13, thrombomodulin, soluble Endothelial cell Protein C Receptor (sEPCR), Tissue Factor Pathway Inhibitor], neutrophil activation (elastase, citrullinated histones) and fibrinolysis (tissue-type plasminogen activator, plasminogen activator inhibitor-1) were evaluated using ELISA. Tissue Factor (TF) was estimated by antithrombin-FVIIa complex (AT/FVIIa) and microparticles-TF (MP-TF). We correlated each marker and determined its association with severity. Expression of pulmonary TF, thrombomodulin and EPCR was determined by immunohistochemistry in 9 autopsies. FINDINGS Comorbidities were frequent in both groups, with older age associated with severe disease. All patients were on prophylactic anticoagulants. Three patients (4.5%) developed pulmonary embolism. Mortality was 7.5%. Patients presented with mild alterations in the coagulogram (compensated state). Biomarkers of endothelial cell, neutrophil activation and fibrinolysis were elevated in severe vs moderate disease; AT/FVIIa and MP-TF levels were higher in severe patients. Logistic regression revealed an association of D-dimers, angiopoietin-1, vWF:Ag, thrombomodulin, white blood cells, absolute neutrophil count (ANC) and hemoglobin levels with severity, with ANC and vWF:Ag identified as independent factors. Notably, postmortem specimens demonstrated epithelial expression of TF in the lung of fatal COVID-19 cases with loss of thrombomodulin staining, implying in a shift towards a procoagulant state. INTERPRETATION Coagulation dysregulation has multifactorial etiology in SARS-Cov-2 infection. Upregulation of pulmonary TF with loss of thrombomodulin emerge as a potential link to immunothrombosis, and therapeutic targets in the disease. FUNDING John Hopkins University School of Medicine.
Collapse
Key Words
- ADAMTS13, a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13
- ALC, absolute lymphocyte count
- ALI, Acute Lung Injury
- AMC, absolute monocyte count
- ANC, absolute neutrophil count
- AT/VIIa, antithrombin-FVIIa complex
- Coagulation
- ELISA, enzyme-linked immunosorbent assay
- Hb, hemoglobin
- Hemostasis
- ICU, intensive care unit
- Ixolaris
- LMWH, low molecular weight heparin
- MP-TF, Microparticles-Tissue Factor
- PAI-1, plasminogen activator inhibitor-1
- PAR, protease-activated receptor
- TF, Tissue Factor
- TFPI, Tissue Factor Pathway Inhibitor
- Thrombosis
- WBC, white blood cells
- sEPCR, soluble Endothelial cell Protein C Receptor
- t-PA, tissue-type plasminogen activator
- vWF, von Willebrand Factor
- vWF:Ag, von Willebrand Factor Antigen
- vWF:RCo, von Willebrand Factor Ristocetin Cofactor
Collapse
Affiliation(s)
- Ivo M.B. Francischetti
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Corresponding author.
| | - Kevin Toomer
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Yifan Zhang
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States
| | - Jayesh Jani
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Zishan Siddiqui
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Daniel J. Brotman
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jody E. Hooper
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Thomas S. Kickler
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
144
|
Marchandot B, Curtiaud A, Trimaille A, Sattler L, Grunebaum L, Morel O. Vaccine-induced immune thrombotic thrombocytopenia: current evidence, potential mechanisms, clinical implications, and future directions. EUROPEAN HEART JOURNAL OPEN 2021; 1:oeab014. [PMID: 35915769 PMCID: PMC8385852 DOI: 10.1093/ehjopen/oeab014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/24/2021] [Accepted: 07/30/2021] [Indexed: 12/13/2022]
Abstract
Vaccine-induced immune thrombotic thrombocytopenia (VITT) (also termed thrombosis with thrombocytopenia syndrome or vaccine-induced thrombotic thrombocytopenia or vaccine-induced immune thrombocytopenia) is characterized by (i) venous or arterial thrombosis; (ii) mild-to-severe thrombocytopenia; (iii) positive antiplatelet factor 4 (PF4)-polyanion antibodies or anti-PF4-heparin antibodies detected by the HIT (heparin-induced thrombocytopenia) ELISA; (iv) occurring 5-30 days after ChAdOx1 nCoV-19 (AstraZeneca) or Ad26.COV2.S (Johnson & Johnson/Janssen) vaccination. VITT's incidence is 1 per 100 000 vaccinated people irrespective of age and up to 1 in 50 000 for people <50 years of age with the AstraZeneca COVID-19 vaccine. The exact mechanism by which adenovirus-vectored COVID-19 vaccines trigger this syndrome is still unclear, as for the increased risk for acute cerebral sinus venous thrombosis and splanchnic vein thrombosis as compared to other locations of venous thrombotic events. VITT is associated with the detection of anti-PF4 antibodies, unrelated to previous use of heparin therapy. PF4 antibodies are thought to activate platelets via the platelet FcγRIIA receptors leading to further platelet activation that causes thrombosis and thrombocytopenia.
Collapse
Affiliation(s)
- Benjamin Marchandot
- Division of Cardiovascular Medicine, Nouvel Hôpital Civil, Strasbourg University Hospital, 1 place de l’Hôpital, Strasbourg 67000, France
| | - Anais Curtiaud
- Division of Cardiovascular Medicine, Nouvel Hôpital Civil, Strasbourg University Hospital, 1 place de l’Hôpital, Strasbourg 67000, France
| | - Antonin Trimaille
- Division of Cardiovascular Medicine, Nouvel Hôpital Civil, Strasbourg University Hospital, 1 place de l’Hôpital, Strasbourg 67000, France
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, FMTS, Strasbourg 67000, France
| | - Laurent Sattler
- Haematology and Haemostasis Laboratory, Centre for Thrombosis and Haemostasis, Nouvel Hôpital Civil, Strasbourg University Hospital, 1 place de l’Hôpital, Strasbourg 67000, France
| | - Lelia Grunebaum
- Haematology and Haemostasis Laboratory, Centre for Thrombosis and Haemostasis, Nouvel Hôpital Civil, Strasbourg University Hospital, 1 place de l’Hôpital, Strasbourg 67000, France
| | - Olivier Morel
- Division of Cardiovascular Medicine, Nouvel Hôpital Civil, Strasbourg University Hospital, 1 place de l’Hôpital, Strasbourg 67000, France
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, FMTS, Strasbourg 67000, France
| |
Collapse
|
145
|
Subrahmanian S, Borczuk A, Salvatore S, Fung KM, Merrill JT, Laurence J, Ahamed J. Tissue factor upregulation is associated with SARS-CoV-2 in the lungs of COVID-19 patients. J Thromb Haemost 2021; 19:2268-2274. [PMID: 34236752 PMCID: PMC8565501 DOI: 10.1111/jth.15451] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND A substantial proportion of patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) develop severe/critical coronavirus disease 2019 (COVID-19) characterized by acute respiratory distress syndrome (ARDS) with thrombosis. OBJECTIVES We tested the hypothesis that SARS-CoV-2--induced upregulation of tissue factor (TF) expression may be responsible for thrombus formation in COVID-19. METHODS We compared autopsy lung tissues from 11 patients with COVID-19--associated ARDS with samples from 6 patients with ARDS from other causes (non-COVID-19 ARDS) and 11 normal control lungs. RESULTS Dual RNA in situ hybridization for SARS-CoV-2 and TF identified sporadic clustered SARS-CoV-2 with prominent co-localization of SARS-CoV-2 and TF RNA. TF expression was 2-fold higher in COVID-19 than in non-COVID-19 ARDS lungs (P = .017) and correlated with the intensity of SARS-CoV-2 staining (R2 = .36, P = .04). By immunofluorescence, TF protein expression was 2.1-fold higher in COVID-19 versus non-COVID-19 ARDS lungs (P = .0048) and 11-fold (P < .001) higher than control lungs. Fibrin thrombi and thrombi positive for platelet factor 4 (PF4) were found in close proximity to regions expressing TF in COVID-19 ARDS lung, and correlated with TF expression (fibrin, R2 = .52, P < .001; PF4, R2 = .59, P < .001). CONCLUSIONS These data suggest that upregulation of TF expression is associated with thrombus formation in COVID-19 lungs and could be a key therapeutic target. Correlation of TF expression with SARS-CoV-2 in lungs of COVID-19 patients also raises the possibility of direct TF induction by the virus.
Collapse
Affiliation(s)
- Sandeep Subrahmanian
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
| | - Alain Borczuk
- Department of Pathology, Weill Cornell Medical College, New York, New York, USA
| | - Steven Salvatore
- Department of Pathology, Weill Cornell Medical College, New York, New York, USA
| | - Kar-Ming Fung
- Department of Pathology, University of Oklahoma (HSC), Oklahoma City, Oklahoma, USA
| | - Joan T Merrill
- Arthritis & Clinical Immunology Research Program, Oklahoma Medical Research Foundation (OMR), Oklahoma City, Oklahoma, USA
| | - Jeffrey Laurence
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Jasimuddin Ahamed
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
- Department of Pathology, University of Oklahoma (HSC), Oklahoma City, Oklahoma, USA
- Department of Physiology, University of Oklahoma (HSC), Oklahoma City, Oklahoma, USA
| |
Collapse
|
146
|
Zifkos K, Dubois C, Schäfer K. Extracellular Vesicles and Thrombosis: Update on the Clinical and Experimental Evidence. Int J Mol Sci 2021; 22:ijms22179317. [PMID: 34502228 PMCID: PMC8431093 DOI: 10.3390/ijms22179317] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/16/2022] Open
Abstract
Extracellular vesicles (EVs) compose a heterogenous group of membrane-derived particles, including exosomes, microvesicles and apoptotic bodies, which are released into the extracellular environment in response to proinflammatory or proapoptotic stimuli. From earlier studies suggesting that EV shedding constitutes a cellular clearance mechanism, it has become evident that EV formation, secretion and uptake represent important mechanisms of intercellular communication and exchange of a wide variety of molecules, with relevance in both physiological and pathological situations. The putative role of EVs in hemostasis and thrombosis is supported by clinical and experimental studies unraveling how these cell-derived structures affect clot formation (and resolution). From those studies, it has become clear that the prothrombotic effects of EVs are not restricted to the exposure of tissue factor (TF) and phosphatidylserines (PS), but also involve multiplication of procoagulant surfaces, cross-linking of different cellular players at the site of injury and transfer of activation signals to other cell types. Here, we summarize the existing and novel clinical and experimental evidence on the role and function of EVs during arterial and venous thrombus formation and how they may be used as biomarkers as well as therapeutic vectors.
Collapse
Affiliation(s)
- Konstantinos Zifkos
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, D-55131 Mainz, Germany;
| | - Christophe Dubois
- Aix Marseille University, INSERM 1263, Institut National de la Recherche pour l’Agriculture, l’alimentation et l’Environnement (INRAE) 1260, Center for CardioVascular and Nutrition Research (C2VN), F-13380 Marseille, France;
| | - Katrin Schäfer
- Department of Cardiology, Cardiology I, University Medical Center Mainz, D-55131 Mainz, Germany
- Correspondence:
| |
Collapse
|
147
|
Abstract
Coronavirus disease 2019 (COVID-19) is a pandemic syndrome caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. SARS-CoV-2 infection induces a process of inflammation and thrombosis supported by an altered platelet activation state. This platelet activation is peculiar being characterized by the formation of platelet-leukocytes rather than platelet–platelet aggregates and by an increased procoagulant potential supported by elevated levels of TF positive platelets and microvesicles. Therapeutic strategies targeting, beyond systemic inflammation (i.e. with tocilizumab, an anti interleukin-6 receptor), this state of platelet activation might therefore be beneficial. Among the antithrombotic drugs proposed as candidates to treat patients with SARS-CoV-2 infection, antiplatelet drugs, such as aspirin are showing promising results.
Collapse
Affiliation(s)
- Marta Brambilla
- Unit of Cell and Molecular Biology in Cardiovascular Diseases, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Paola Canzano
- Unit of Cell and Molecular Biology in Cardiovascular Diseases, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Alessia Becchetti
- Unit of Cell and Molecular Biology in Cardiovascular Diseases, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Elena Tremoli
- Scientific Director Office, Maria Cecilia Hospital, Italy
| | - Marina Camera
- Unit of Cell and Molecular Biology in Cardiovascular Diseases, Centro Cardiologico Monzino IRCCS, Milan, Italy.,Dept of Pharmaceutical Sciences, Università Degli Studi Di Milano, Milan, Italy
| |
Collapse
|
148
|
Becker RC, Sexton T, Smyth S. COVID-19 and biomarkers of thrombosis: focus on von Willebrand factor and extracellular vesicles. J Thromb Thrombolysis 2021; 52:1010-1019. [PMID: 34350541 PMCID: PMC8336902 DOI: 10.1007/s11239-021-02544-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/15/2021] [Indexed: 12/19/2022]
Abstract
COVID-19, caused by the SARS-CoV-2 virus, is responsible for a pandemic of unparalleled portion over the past century. While the acute phase of infection causes significant morbidity and mortality, post-acute sequelae that can affect essentially any organ system is rapidly taking on an equally large part of the overall impact on human health, quality of life, attempts to return to normalcy and the global economy. Herein, we summarize the potential role of von Willebrand Factor and extracellular vesicles toward understanding the pathophysiology, clinical presentation, duration of illness, diagnostic approach and management of COVID-19 and its sequelae.
Collapse
Affiliation(s)
- Richard C Becker
- Heart, Lung and Vascular Institute, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, 45267, USA.
| | - Travis Sexton
- The Gill Heart and Vascular Institute, University of Kentucky, Lexington, KY, USA
| | - Susan Smyth
- University of Arkansas for Medical Sciences, Little Rock, AK, USA
| |
Collapse
|
149
|
Gurunathan S, Kang MH, Kim JH. Diverse Effects of Exosomes on COVID-19: A Perspective of Progress From Transmission to Therapeutic Developments. Front Immunol 2021; 12:716407. [PMID: 34394121 PMCID: PMC8355618 DOI: 10.3389/fimmu.2021.716407] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/05/2021] [Indexed: 01/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a new strain of coronavirus and the causative agent of the current global pandemic of coronavirus disease 2019 (COVID-19). There are currently no FDA-approved antiviral drugs for COVID-19 and there is an urgent need to develop treatment strategies that can effectively suppress SARS-CoV-2 infection. Numerous approaches have been researched so far, with one of them being the emerging exosome-based therapies. Exosomes are nano-sized, lipid bilayer-enclosed structures, share structural similarities with viruses secreted from all types of cells, including those lining the respiratory tract. Importantly, the interplay between exosomes and viruses could be potentially exploited for antiviral drug and vaccine development. Exosomes are produced by virus-infected cells and play crucial roles in mediating communication between infected and uninfected cells. SARS-CoV-2 modulates the production and composition of exosomes, and can exploit exosome formation, secretion, and release pathways to promote infection, transmission, and intercellular spread. Exosomes have been exploited for therapeutic benefits in patients afflicted with various diseases including COVID-19. Furthermore, the administration of exosomes loaded with immunomodulatory cargo in combination with antiviral drugs represents a novel intervention for the treatment of diseases such as COVID-19. In particular, exosomes derived from mesenchymal stem cells (MSCs) are used as cell-free therapeutic agents. Mesenchymal stem cell derived exosomes reduces the cytokine storm and reverse the inhibition of host anti-viral defenses associated with COVID-19 and also enhances mitochondrial function repair lung injuries. We discuss the role of exosomes in relation to transmission, infection, diagnosis, treatment, therapeutics, drug delivery, and vaccines, and present some future perspectives regarding their use for combating COVID-19.
Collapse
Affiliation(s)
- Sangiliyandi Gurunathan
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, South Korea
| | - Min Hee Kang
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, South Korea
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, South Korea
| |
Collapse
|
150
|
Yan YY, Zhou WM, Wang YQ, Guo QR, Zhao FX, Zhu ZY, Xing YX, Zhang HY, Aljofan M, Jarrahi AM, Makabel B, Zhang JY. The Potential Role of Extracellular Vesicles in COVID-19 Treatment: Opportunity and Challenge. Front Mol Biosci 2021; 8:699929. [PMID: 34368228 PMCID: PMC8345113 DOI: 10.3389/fmolb.2021.699929] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 07/08/2021] [Indexed: 12/13/2022] Open
Abstract
SARS-CoV-2 infection has become an urgent public health concern worldwide, severely affecting our society and economy due to the long incubation time and high prevalence. People spare no effort on the rapid development of vaccine and treatment all over the world. Amongst the numerous ways of tackling this pandemic, some approaches using extracellular vesicles (EVs) are emerging. In this review, we summarize current prevalence and pathogenesis of COVID-19, involving the combination of SARS-CoV-2 and virus receptor ACE2, endothelial dysfunction and micro thrombosis, together with cytokine storm. We also discuss the ongoing EVs-based strategies for the treatment of COVID-19, including mesenchymal stem cell (MSC)-EVs, drug-EVs, vaccine-EVs, platelet-EVs, and others. This manuscript provides the foundation for the development of targeted drugs and vaccines for SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Yan-yan Yan
- School of Medicine, Shanxi Datong University, Datong, China
| | - Wen-min Zhou
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yu-qing Wang
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Qiao-ru Guo
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Xinjiang Institute of Materia Medica, Urumqi, China
| | - Fu-xi Zhao
- School of Medicine, Shanxi Datong University, Datong, China
| | - Zhuang-yan Zhu
- School of Medicine, Shanxi Datong University, Datong, China
| | - Yan-xia Xing
- School of Medicine, Shanxi Datong University, Datong, China
| | - Hai-yan Zhang
- School of Medicine, Shanxi Datong University, Datong, China
| | - Mohamad Aljofan
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Nur-Sultan, Kazakhstan
| | | | | | - Jian-ye Zhang
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|