101
|
Li CY, Zhang JR, Hu WN, Li SN. Atrial fibrosis underlying atrial fibrillation (Review). Int J Mol Med 2021; 47:9. [PMID: 33448312 PMCID: PMC7834953 DOI: 10.3892/ijmm.2020.4842] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 12/07/2020] [Indexed: 01/17/2023] Open
Abstract
Atrial fibrillation (AF) is one of the most common tachyarrhythmias observed in the clinic and is characterized by structural and electrical remodelling. Atrial fibrosis, an emblem of atrial structural remodelling, is a complex multifactorial and patient-specific process involved in the occurrence and maintenance of AF. Whilst there is already considerable knowledge regarding the association between AF and fibrosis, this process is extremely complex, involving intricate neurohumoral and cellular and molecular interactions, and it is not limited to the atrium. Current technological advances have made the non-invasive evaluation of fibrosis in the atria and ventricles possible, facilitating the selection of patient-specific ablation strategies and upstream treatment regimens. An improved understanding of the mechanisms and roles of fibrosis in the context of AF is of great clinical significance for the development of treatment strategies targeting the fibrous region. In the present review, a focus was placed on the atrial fibrosis underlying AF, outlining its role in the occurrence and perpetuation of AF, by reviewing recent evaluations and potential treatment strategies targeting areas of fibrosis, with the aim of providing a novel perspective on the management and prevention of AF.
Collapse
Affiliation(s)
- Chang Yi Li
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, P.R. China
| | - Jing Rui Zhang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, P.R. China
| | - Wan Ning Hu
- Department of Cardiology, Laboratory of Molecular Biology, Head and Neck Surgery, Tangshan Gongren Hospital, Tangshan, Hebei 063000, P.R. China
| | - Song Nan Li
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, P.R. China
| |
Collapse
|
102
|
Burke RM, Burgos Villar KN, Small EM. Fibroblast contributions to ischemic cardiac remodeling. Cell Signal 2021; 77:109824. [PMID: 33144186 PMCID: PMC7718345 DOI: 10.1016/j.cellsig.2020.109824] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 12/23/2022]
Abstract
The heart can respond to increased pathophysiological demand through alterations in tissue structure and function 1 . This process, called cardiac remodeling, is particularly evident following myocardial infarction (MI), where the blockage of a coronary artery leads to widespread death of cardiac muscle. Following MI, necrotic tissue is replaced with extracellular matrix (ECM), and the remaining viable cardiomyocytes (CMs) undergo hypertrophic growth. ECM deposition and cardiac hypertrophy are thought to represent an adaptive response to increase structural integrity and prevent cardiac rupture. However, sustained ECM deposition leads to the formation of a fibrotic scar that impedes cardiac compliance and can induce lethal arrhythmias. Resident cardiac fibroblasts (CFs) are considered the primary source of ECM molecules such as collagens and fibronectin, particularly after becoming activated by pathologic signals. CFs contribute to multiple phases of post-MI heart repair and remodeling, including the initial response to CM death, immune cell (IC) recruitment, and fibrotic scar formation. The goal of this review is to describe how resident fibroblasts contribute to the healing and remodeling that occurs after MI, with an emphasis on how fibroblasts communicate with other cell types in the healing infarct scar 1 –6 .
Collapse
Affiliation(s)
- Ryan M Burke
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA; Department of Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, United States of America
| | - Kimberly N Burgos Villar
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Eric M Small
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA; Department of Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, United States of America; Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, United States of America; Department of Biomedical Engineering, University of Rochester, Rochester, NY 14642, United States of America.
| |
Collapse
|
103
|
House A, Atalla I, Lee EJ, Guvendiren M. Designing Biomaterial Platforms for Cardiac Tissue and Disease Modeling. ADVANCED NANOBIOMED RESEARCH 2021; 1:2000022. [PMID: 33709087 PMCID: PMC7942203 DOI: 10.1002/anbr.202000022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Heart disease is one of the leading causes of death in the world. There is a growing demand for in vitro cardiac models that can recapitulate the complex physiology of the cardiac tissue. These cardiac models can provide a platform to better understand the underlying mechanisms of cardiac development and disease and aid in developing novel treatment alternatives and platforms towards personalized medicine. In this review, a summary of engineered cardiac platforms is presented. Basic design considerations for replicating the heart's microenvironment are discussed considering the anatomy of the heart. This is followed by a detailed summary of the currently available biomaterial platforms for modeling the heart tissue in vitro. These in vitro models include 2D surface modified structures, 3D molded structures, porous scaffolds, electrospun scaffolds, bioprinted structures, and heart-on-a-chip devices. The challenges faced by current models and the future directions of in vitro cardiac models are also discussed. Engineered in vitro tissue models utilizing patients' own cells could potentially revolutionize the way we develop treatment and diagnostic alternatives.
Collapse
Affiliation(s)
- Andrew House
- Instructive Biomaterials and Additive Manufacturing Laboratory, Otto H. York Chemical and Materials Engineering, 138 York Center, University Heights, Newark, NJ 07102, USA
| | - Iren Atalla
- Instructive Biomaterials and Additive Manufacturing Laboratory, Otto H. York Chemical and Materials Engineering, 138 York Center, University Heights, Newark, NJ 07102, USA
| | - Eun Jung Lee
- Instructive Biomaterials and Additive Manufacturing Laboratory, Otto H. York Chemical and Materials Engineering, 138 York Center, University Heights, Newark, NJ 07102, USA
| | - Murat Guvendiren
- Instructive Biomaterials and Additive Manufacturing Laboratory, Otto H. York Chemical and Materials Engineering, 138 York Center, University Heights, Newark, NJ 07102, USA
| |
Collapse
|
104
|
Díez J, González A, Kovacic JC. Myocardial Interstitial Fibrosis in Nonischemic Heart Disease, Part 3/4: JACC Focus Seminar. J Am Coll Cardiol 2020; 75:2204-2218. [PMID: 32354386 DOI: 10.1016/j.jacc.2020.03.019] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 02/27/2020] [Accepted: 03/03/2020] [Indexed: 12/17/2022]
Abstract
Myocardial interstitial fibrosis (MIF) is a histological hallmark of several cardiac diseases that alter myocardial architecture and function and are associated with progression to heart failure. MIF is a diffuse and patchy process, appearing as a combination of interstitial microscars, perivascular collagen fiber deposition, and increased thickness of mysial collagen strands. Although MIF arises mainly because of alterations in fibrillar collagen turnover leading to collagen fiber accumulation, there are also alterations in other nonfibrillar extracellular matrix components, such as fibronectin and matricellular proteins. Furthermore, in addition to an excess of collagen, qualitative changes in collagen fibers also contribute to the detrimental impact of MIF. In this part 3 of a 4-part JACC Focus Seminar, we review the evidence on the complex mechanisms leading to MIF, as well as its contribution to systolic and diastolic cardiac dysfunction and impaired clinical outcomes in patients with nonischemic heart disease.
Collapse
Affiliation(s)
- Javier Díez
- Program of Cardiovascular Diseases, Centro de Investigación Médica Aplicada (CIMA), University of Navarra, Pamplona, Spain; Department of Cardiology and Cardiac Surgery, University of Navarra Clinic, Pamplona, Spain; Department of Nephrology, University of Navarra Clinic, Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Navarra Institute for Health Research, Pamplona, Spain; Centro de Investigación Biomédica en Red-Enfermedades Cardiovasculares (CIBERCV), Carlos III Institute of Health, Madrid, Spain.
| | - Arantxa González
- Program of Cardiovascular Diseases, Centro de Investigación Médica Aplicada (CIMA), University of Navarra, Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Navarra Institute for Health Research, Pamplona, Spain; Centro de Investigación Biomédica en Red-Enfermedades Cardiovasculares (CIBERCV), Carlos III Institute of Health, Madrid, Spain
| | - Jason C Kovacic
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia; St. Vincent's Clinical School, University of New South Wales, Darlinghurst, New South Wales, Australia.
| |
Collapse
|
105
|
Surface-Modified Highly Biocompatible Bacterial-poly(3-hydroxybutyrate- co-4-hydroxybutyrate): A Review on the Promising Next-Generation Biomaterial. Polymers (Basel) 2020; 13:polym13010051. [PMID: 33375622 PMCID: PMC7795663 DOI: 10.3390/polym13010051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 02/01/2023] Open
Abstract
Polyhydroxyalkanoates (PHAs) are bacteria derived bio-based polymers that are synthesised under limited conditions of nutritional elements with excess carbon sources. Among the members of PHAs, poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [(P(3HB-co-4HB)] emerges as an attractive biomaterial to be applied in medical applications owing to its desirable mechanical and physical properties, non-genotoxicity and biocompatibility eliciting appropriate host tissue responses. The tailorable physical and chemical properties and easy surface functionalisation of P(3HB-co-4HB) increase its practicality to be developed as functional medical substitutes. However, its applicability is sometimes limited due to its hydrophobic nature due to fewer bio-recognition sites. In this review, we demonstrate how surface modifications of PHAs, mainly P(3HB-co-4HB), will overcome these limitations and facilitate their use in diverse medical applications. The integration of nanotechnology has drastically enhanced the functionality of P(3HB-co-4HB) biomaterials for application in complex biological environments of the human body. The design of versatile P(3HB-co-4HB) materials with surface modifications promise a non-cytotoxic and biocompatible material without inducing severe inflammatory responses for enhanced effective alternatives in healthcare biotechnology. The enticing work carried out with P(3HB-co-4HB) promises to be one of the next-generation materials in biomedicines which will facilitate translation into the clinic in the future.
Collapse
|
106
|
Engineering Shape-Controlled Microtissues on Compliant Hydrogels with Tunable Rigidity and Extracellular Matrix Ligands. Methods Mol Biol 2020. [PMID: 33340354 DOI: 10.1007/978-1-0716-1174-6_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
In vitro models that recapitulate key aspects of native tissue architecture and the physical microenvironment are emerging systems for modeling development and disease. For example, the myocardium consists of layers of aligned and coupled cardiac myocytes that are interspersed with supporting cells and embedded in a compliant extracellular matrix (ECM). These cell-cell and cell-matrix interactions are known to be important regulators of tissue physiology and pathophysiology. In this protocol, we describe a method for mimicking the alignment, cell-cell interactions, and rigidity of the myocardium by engineering an array of square, aligned cardiac microtissues on polyacrylamide hydrogels. This entails three key methods: (1) fabricating elastomer stamps with a microtissue pattern; (2) preparing polyacrylamide hydrogel culture substrates with tunable elastic moduli; and (3) transferring ECM proteins onto the surface of the hydrogels using microcontact printing. These hydrogels can then be seeded with cardiac myocytes or mixtures of cardiac myocytes and fibroblasts to adjust cell-cell interactions. Overall, this approach is advantageous because shape-controlled microtissues encompass both cell-cell and cell-matrix adhesions in a form factor that is relatively reproducible and scalable. Furthermore, polyacrylamide hydrogels are compatible with the traction force microscopy assay for quantifying contractility, a critical function of the myocardium. Although cardiac microtissues are the example presented in this protocol, the techniques are relatively versatile and could have many applications in modeling other tissue systems.
Collapse
|
107
|
Taghizadeh B, Ghavami L, Derakhshankhah H, Zangene E, Razmi M, Jaymand M, Zarrintaj P, Zarghami N, Jaafari MR, Moallem Shahri M, Moghaddasian A, Tayebi L, Izadi Z. Biomaterials in Valvular Heart Diseases. Front Bioeng Biotechnol 2020; 8:529244. [PMID: 33425862 PMCID: PMC7793990 DOI: 10.3389/fbioe.2020.529244] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 11/16/2020] [Indexed: 01/07/2023] Open
Abstract
Valvular heart disease (VHD) occurs as the result of valvular malfunction, which can greatly reduce patient's quality of life and if left untreated may lead to death. Different treatment regiments are available for management of this defect, which can be helpful in reducing the symptoms. The global commitment to reduce VHD-related mortality rates has enhanced the need for new therapeutic approaches. During the past decade, development of innovative pharmacological and surgical approaches have dramatically improved the quality of life for VHD patients, yet the search for low cost, more effective, and less invasive approaches is ongoing. The gold standard approach for VHD management is to replace or repair the injured valvular tissue with natural or synthetic biomaterials. Application of these biomaterials for cardiac valve regeneration and repair holds a great promise for treatment of this type of heart disease. The focus of the present review is the current use of different types of biomaterials in treatment of valvular heart diseases.
Collapse
Affiliation(s)
- Bita Taghizadeh
- Department of Medical Biotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Laleh Ghavami
- Laboratory of Biophysics and Molecular Biology, Department of Biophysics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Hossein Derakhshankhah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ehsan Zangene
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Mahdieh Razmi
- Department of Biochemistry, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Mehdi Jaymand
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Payam Zarrintaj
- Polymer Engineering Department, Faculty of Engineering, Urmia University, Urmia, Iran
| | - Nosratollah Zarghami
- Department of Medical Biotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahmoud Reza Jaafari
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Matin Moallem Shahri
- Cardiology Department, Taleghani Trauma Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, United States
| | - Zhila Izadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Regenerative Medicine, Cell Science Research Center, Academic Center for Education, Culture and Research (ACECR), Royan Institute for Stem Cell Biology and Technology, Tehran, Iran
| |
Collapse
|
108
|
Atale N, Yadav D, Rani V, Jin JO. Pathophysiology, Clinical Characteristics of Diabetic Cardiomyopathy: Therapeutic Potential of Natural Polyphenols. Front Nutr 2020; 7:564352. [PMID: 33344490 PMCID: PMC7744342 DOI: 10.3389/fnut.2020.564352] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 10/27/2020] [Indexed: 12/20/2022] Open
Abstract
Diabetic cardiomyopathy (DCM) is an outcome of disturbances in metabolic activities through oxidative stress, local inflammation, and fibrosis, as well as a prime cause of fatality worldwide. Cardiovascular disorders in diabetic individuals have become a challenge in diagnosis and formulation of treatment prototype. It is necessary to have a better understanding of cellular pathophysiology that reveal the therapeutic targets and prevent the progression of cardiovascular diseases due to hyperglycemia. Critical changes in levels of collagen and integrin have been observed in the extracellular matrix of heart, which was responsible for cardiac remodeling in diabetic patients. This review explored the understanding of the mechanisms of how the phytochemicals provide cardioprotection under diabetes along with the caveats and provide future perspectives on these agents as prototypes for the development of drugs for managing DCM. Thus, here we summarized the effect of various plant extracts and natural polyphenols tested in preclinical and cell culture models of diabetic cardiomyopathy. Further, the potential use of selected polyphenols that improved the therapeutic efficacy against diabetic cardiomyopathy is also illustrated.
Collapse
Affiliation(s)
- Neha Atale
- Jaypee Institute of Information Technology, Noida, India
| | - Dhananjay Yadav
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Vibha Rani
- Jaypee Institute of Information Technology, Noida, India
| | - Jun-O Jin
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea
| |
Collapse
|
109
|
Zeng-Brouwers J, Pandey S, Trebicka J, Wygrecka M, Schaefer L. Communications via the Small Leucine-rich Proteoglycans: Molecular Specificity in Inflammation and Autoimmune Diseases. J Histochem Cytochem 2020; 68:887-906. [PMID: 32623933 PMCID: PMC7708667 DOI: 10.1369/0022155420930303] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 05/06/2020] [Indexed: 12/15/2022] Open
Abstract
Inflammation is a highly regulated biological response of the immune system that is triggered by assaulting pathogens or endogenous alarmins. It is now well established that some soluble extracellular matrix constituents, such as small leucine-rich proteoglycans (SLRPs), can act as danger signals and trigger aseptic inflammation by interacting with innate immune receptors. SLRP inflammatory signaling cascade goes far beyond its canonical function. By choosing specific innate immune receptors, coreceptors, and adaptor molecules, SLRPs promote a switch between pro- and anti-inflammatory signaling, thereby determining disease resolution or chronification. Moreover, by orchestrating signaling through various receptors, SLRPs fine-tune inflammation and, despite their structural homology, regulate inflammatory processes in a molecule-specific manner. Hence, the overarching theme of this review is to highlight the molecular and functional specificity of biglycan-, decorin-, lumican-, and fibromodulin-mediated signaling in inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Jinyang Zeng-Brouwers
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Johann Wolfgang Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Sony Pandey
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Johann Wolfgang Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Jonel Trebicka
- Translational Hepatology, Department of Internal Medicine I, University Clinic Frankfurt, Frankfurt, Germany
| | - Malgorzata Wygrecka
- Department of Biochemistry, Faculty of Medicine, Universities of Giessen and Marburg Lung Center, Giessen, Germany
- German Center for Lung Research, Giessen, Germany
| | - Liliana Schaefer
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Johann Wolfgang Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| |
Collapse
|
110
|
Szepes M, Melchert A, Dahlmann J, Hegermann J, Werlein C, Jonigk D, Haverich A, Martin U, Olmer R, Gruh I. Dual Function of iPSC-Derived Pericyte-Like Cells in Vascularization and Fibrosis-Related Cardiac Tissue Remodeling In Vitro. Int J Mol Sci 2020; 21:E8947. [PMID: 33255686 PMCID: PMC7728071 DOI: 10.3390/ijms21238947] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/12/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022] Open
Abstract
Myocardial interstitial fibrosis (MIF) is characterized by excessive extracellular matrix (ECM) deposition, increased myocardial stiffness, functional weakening, and compensatory cardiomyocyte (CM) hypertrophy. Fibroblasts (Fbs) are considered the principal source of ECM, but the contribution of perivascular cells, including pericytes (PCs), has gained attention, since MIF develops primarily around small vessels. The pathogenesis of MIF is difficult to study in humans because of the pleiotropy of mutually influencing pathomechanisms, unpredictable side effects, and the lack of available patient samples. Human pluripotent stem cells (hPSCs) offer the unique opportunity for the de novo formation of bioartificial cardiac tissue (BCT) using a variety of different cardiovascular cell types to model aspects of MIF pathogenesis in vitro. Here, we have optimized a protocol for the derivation of hPSC-derived PC-like cells (iPSC-PCs) and present a BCT in vitro model of MIF that shows their central influence on interstitial collagen deposition and myocardial tissue stiffening. This model was used to study the interplay of different cell types-i.e., hPSC-derived CMs, endothelial cells (ECs), and iPSC-PCs or primary Fbs, respectively. While iPSC-PCs improved the sarcomere structure and supported vascularization in a PC-like fashion, the functional and histological parameters of BCTs revealed EC- and PC-mediated effects on fibrosis-related cardiac tissue remodeling.
Collapse
Affiliation(s)
- Monika Szepes
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany; (M.S.); (A.M.); (J.D.); (A.H.); (U.M.); (R.O.)
- REBIRTH—Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany;
| | - Anna Melchert
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany; (M.S.); (A.M.); (J.D.); (A.H.); (U.M.); (R.O.)
- REBIRTH—Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany;
| | - Julia Dahlmann
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany; (M.S.); (A.M.); (J.D.); (A.H.); (U.M.); (R.O.)
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, 30625 Hannover, Germany;
| | - Jan Hegermann
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, 30625 Hannover, Germany;
- Institute of Functional and Applied Anatomy, Research Core Unit Electron Microscopy, Hannover Medical School, 30625 Hannover, Germany
| | | | - Danny Jonigk
- REBIRTH—Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany;
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, 30625 Hannover, Germany;
- Institute of Pathology, Hannover Medical School, 30625 Hannover, Germany;
| | - Axel Haverich
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany; (M.S.); (A.M.); (J.D.); (A.H.); (U.M.); (R.O.)
- REBIRTH—Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany;
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, 30625 Hannover, Germany;
| | - Ulrich Martin
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany; (M.S.); (A.M.); (J.D.); (A.H.); (U.M.); (R.O.)
- REBIRTH—Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany;
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, 30625 Hannover, Germany;
| | - Ruth Olmer
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany; (M.S.); (A.M.); (J.D.); (A.H.); (U.M.); (R.O.)
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, 30625 Hannover, Germany;
| | - Ina Gruh
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany; (M.S.); (A.M.); (J.D.); (A.H.); (U.M.); (R.O.)
- REBIRTH—Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany;
| |
Collapse
|
111
|
Knott SJ, Brown KA, Josyer H, Carr A, Inman D, Jin S, Friedl A, Ponik SM, Ge Y. Photocleavable Surfactant-Enabled Extracellular Matrix Proteomics. Anal Chem 2020; 92:15693-15698. [PMID: 33232116 DOI: 10.1021/acs.analchem.0c03104] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The extracellular matrix (ECM) provides an architectural meshwork that surrounds and supports cells. The dysregulation of heavily post-translationally modified ECM proteins directly contributes to various diseases. Mass spectrometry (MS)-based proteomics is an ideal tool to identify ECM proteins and characterize their post-translational modifications, but ECM proteomics remains challenging owing to the extremely low solubility of the ECM. Herein, enabled by effective solubilization of ECM proteins using our recently developed photocleavable surfactant, Azo, we have developed a streamlined ECM proteomic strategy that allows fast tissue decellularization, efficient extraction and enrichment of ECM proteins, and rapid digestion prior to reversed-phase liquid chromatography (RPLC)-MS analysis. A total of 173 and 225 unique ECM proteins from mouse mammary tumors have been identified using 1D and 2D RPLC-MS/MS, respectively. Moreover, 87 (from 1DLC-MS/MS) and 229 (from 2DLC-MS/MS) post-translational modifications of ECM proteins, including glycosylation, phosphorylation, and hydroxylation, were identified and localized. This Azo-enabled ECM proteomics strategy will streamline the analysis of ECM proteins and promote the study of ECM biology.
Collapse
Affiliation(s)
- Samantha J Knott
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Kyle A Brown
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Harini Josyer
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Austin Carr
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - David Inman
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Song Jin
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Andreas Friedl
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, 1685 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Suzanne M Ponik
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States.,Department of Cell and Regenerative Biology, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705, United States.,Human Proteomics Program, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705, United States
| |
Collapse
|
112
|
Song R, Zhang L. Cardiac ECM: Its Epigenetic Regulation and Role in Heart Development and Repair. Int J Mol Sci 2020; 21:ijms21228610. [PMID: 33203135 PMCID: PMC7698074 DOI: 10.3390/ijms21228610] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/07/2020] [Accepted: 11/13/2020] [Indexed: 12/14/2022] Open
Abstract
The extracellular matrix (ECM) is the non-cellular component in the cardiac microenvironment, and serves essential structural and regulatory roles in establishing and maintaining tissue architecture and cellular function. The patterns of molecular and biochemical ECM alterations in developing and adult hearts depend on the underlying injury type. In addition to exploring how the ECM regulates heart structure and function in heart development and repair, this review conducts an inclusive discussion of recent developments in the role, function, and epigenetic guidelines of the ECM. Moreover, it contributes to the development of new therapeutics for cardiovascular disease.
Collapse
Affiliation(s)
- Rui Song
- Correspondence: (R.S.); (L.Z.); Tel.: +1-909-558-4325 (R.S. & L.Z.)
| | - Lubo Zhang
- Correspondence: (R.S.); (L.Z.); Tel.: +1-909-558-4325 (R.S. & L.Z.)
| |
Collapse
|
113
|
Smolgovsky S, Ibeh U, Tamayo TP, Alcaide P. Adding insult to injury - Inflammation at the heart of cardiac fibrosis. Cell Signal 2020; 77:109828. [PMID: 33166625 DOI: 10.1016/j.cellsig.2020.109828] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 02/06/2023]
Abstract
The fibrotic response has evolutionary worked in tandem with the inflammatory response to facilitate healing following injury or tissue destruction as a result of pathogen clearance. However, excessive inflammation and fibrosis are key pathological drivers of organ tissue damage. Moreover, fibrosis can occur in several conditions associated with chronic inflammation that are not directly caused by overt tissue injury or infection. In the heart, in particular, fibrotic adverse cardiac remodeling is a key pathological driver of cardiac dysfunction in heart failure. Cardiac fibroblast activation and immune cell activation are two mechanistic domains necessary for fibrotic remodeling in the heart, and, independently, their contributions to cardiac fibrosis and cardiac inflammation have been studied and reviewed thoroughly. The interdependence of these two processes, and how their cellular components modulate each other's actions in response to different cardiac insults, is only recently emerging. Here, we review recent literature in cardiac fibrosis and inflammation and discuss the mechanisms involved in the fibrosis-inflammation axis in the context of specific cardiac stresses, such as myocardial ischemia, and in nonischemic heart conditions. We discuss how the search for anti-inflammatory and anti-fibrotic therapies, so far unsuccessful to date, needs to be based on our understanding of the interdependence of immune cell and fibroblast activities. We highlight that in addition to the extensively reviewed role of immune cells modulating fibroblast function, cardiac fibroblasts are central participants in inflammation that may acquire immune like cell functions. Lastly, we review the gut-heart axis as an example of a novel perspective that may contribute to our understanding of how immune and fibrotic modulation may be indirectly modulated as a potential area for therapeutic research.
Collapse
Affiliation(s)
- Sasha Smolgovsky
- Department of Immunology, Tufts University School of Medicine, Boston, MA, United States of America; Immunology Program, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States of America
| | - Udoka Ibeh
- Department of Immunology, Tufts University School of Medicine, Boston, MA, United States of America; Cell, Molecular, and Developmental Biology Program, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States of America
| | - Tatiana Peña Tamayo
- Department of Immunology, Tufts University School of Medicine, Boston, MA, United States of America
| | - Pilar Alcaide
- Department of Immunology, Tufts University School of Medicine, Boston, MA, United States of America; Immunology Program, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States of America; Cell, Molecular, and Developmental Biology Program, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States of America.
| |
Collapse
|
114
|
Wu X, Reboll MR, Korf-Klingebiel M, Wollert KC. Angiogenesis after acute myocardial infarction. Cardiovasc Res 2020; 117:1257-1273. [PMID: 33063086 DOI: 10.1093/cvr/cvaa287] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/09/2020] [Accepted: 09/30/2020] [Indexed: 12/16/2022] Open
Abstract
Acute myocardial infarction (MI) inflicts massive injury to the coronary microcirculation leading to vascular disintegration and capillary rarefication in the infarct region. Tissue repair after MI involves a robust angiogenic response that commences in the infarct border zone and extends into the necrotic infarct core. Technological advances in several areas have provided novel mechanistic understanding of postinfarction angiogenesis and how it may be targeted to improve heart function after MI. Cell lineage tracing studies indicate that new capillary structures arise by sprouting angiogenesis from pre-existing endothelial cells (ECs) in the infarct border zone with no meaningful contribution from non-EC sources. Single-cell RNA sequencing shows that ECs in infarcted hearts may be grouped into clusters with distinct gene expression signatures, likely reflecting functionally distinct cell populations. EC-specific multicolour lineage tracing reveals that EC subsets clonally expand after MI. Expanding EC clones may arise from tissue-resident ECs with stem cell characteristics that have been identified in multiple organs including the heart. Tissue repair after MI involves interactions among multiple cell types which occur, to a large extent, through secreted proteins and their cognate receptors. While we are only beginning to understand the full complexity of this intercellular communication, macrophage and fibroblast populations have emerged as major drivers of the angiogenic response after MI. Animal data support the view that the endogenous angiogenic response after MI can be boosted to reduce scarring and adverse left ventricular remodelling. The improved mechanistic understanding of infarct angiogenesis therefore creates multiple therapeutic opportunities. During preclinical development, all proangiogenic strategies should be tested in animal models that replicate both cardiovascular risk factor(s) and the pharmacotherapy typically prescribed to patients with acute MI. Considering that the majority of patients nowadays do well after MI, clinical translation will require careful selection of patients in need of proangiogenic therapies.
Collapse
Affiliation(s)
- Xuekun Wu
- Division of Molecular and Translational Cardiology, Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany
| | - Marc R Reboll
- Division of Molecular and Translational Cardiology, Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany
| | - Mortimer Korf-Klingebiel
- Division of Molecular and Translational Cardiology, Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany
| | - Kai C Wollert
- Division of Molecular and Translational Cardiology, Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany
| |
Collapse
|
115
|
Mota C, Camarero-Espinosa S, Baker MB, Wieringa P, Moroni L. Bioprinting: From Tissue and Organ Development to in Vitro Models. Chem Rev 2020; 120:10547-10607. [PMID: 32407108 PMCID: PMC7564098 DOI: 10.1021/acs.chemrev.9b00789] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Indexed: 02/08/2023]
Abstract
Bioprinting techniques have been flourishing in the field of biofabrication with pronounced and exponential developments in the past years. Novel biomaterial inks used for the formation of bioinks have been developed, allowing the manufacturing of in vitro models and implants tested preclinically with a certain degree of success. Furthermore, incredible advances in cell biology, namely, in pluripotent stem cells, have also contributed to the latest milestones where more relevant tissues or organ-like constructs with a certain degree of functionality can already be obtained. These incredible strides have been possible with a multitude of multidisciplinary teams around the world, working to make bioprinted tissues and organs more relevant and functional. Yet, there is still a long way to go until these biofabricated constructs will be able to reach the clinics. In this review, we summarize the main bioprinting activities linking them to tissue and organ development and physiology. Most bioprinting approaches focus on mimicking fully matured tissues. Future bioprinting strategies might pursue earlier developmental stages of tissues and organs. The continuous convergence of the experts in the fields of material sciences, cell biology, engineering, and many other disciplines will gradually allow us to overcome the barriers identified on the demanding path toward manufacturing and adoption of tissue and organ replacements.
Collapse
Affiliation(s)
- Carlos Mota
- Department of Complex Tissue Regeneration,
MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Sandra Camarero-Espinosa
- Department of Complex Tissue Regeneration,
MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Matthew B. Baker
- Department of Complex Tissue Regeneration,
MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Paul Wieringa
- Department of Complex Tissue Regeneration,
MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Lorenzo Moroni
- Department of Complex Tissue Regeneration,
MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6211 LK Maastricht, The Netherlands
| |
Collapse
|
116
|
Verdonschot JAJ, Merken JJ, van Stipdonk AMW, Pliger P, Derks KWJ, Wang P, Henkens MTHM, van Paassen P, Abdul Hamid MA, van Empel VPM, Knackstedt C, Luermans JGLM, Crijns HJGM, Brunner-La Rocca HP, Brunner HG, Poelzl G, Vernooy K, Heymans SRB, Hazebroek MR. Cardiac Inflammation Impedes Response to Cardiac Resynchronization Therapy in Patients With Idiopathic Dilated Cardiomyopathy. Circ Arrhythm Electrophysiol 2020; 13:e008727. [PMID: 32997547 DOI: 10.1161/circep.120.008727] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cardiac resynchronization therapy (CRT) is an established therapy in patients with dilated cardiomyopathy (DCM) and conduction disorders. Still, one-third of the patients with DCM do not respond to CRT. This study aims to depict the underlying cardiac pathophysiological processes of nonresponse to CRT in patients with DCM using endomyocardial biopsies. METHODS Within the Maastricht and Innsbruck registries of patients with DCM, 99 patients underwent endomyocardial biopsies before CRT implantation, with histological quantification of fibrosis and inflammation, where inflammation was defined as >14 infiltrating cells/mm2. Echocardiographic left ventricular end-systolic volume reduction ≥15% after 6 months was defined as response to CRT. RNA was isolated from cardiac biopsies of a representative subset of responders and nonresponders. RESULTS Sixty-seven patients responded (68%), whereas 32 (32%) did not respond to CRT. Cardiac inflammation before implantation was negatively associated with response to CRT (25% of responders, 47% of nonresponders; odds ratio 0.3 [0.12-0.76]; P=0.01). Endomyocardial biopsies fibrosis did not relate to CRT response. Cardiac inflammation improved the robustness of prediction beyond well-known clinical predictors of CRT response (likelihood ratio test P<0.001). Cardiac transcriptomic profiling of endomyocardial biopsies reveals a strong proinflammatory and profibrotic signature in the hearts of nonresponders compared with responders. In particular, COL1A1, COL1A2, COL3A1, COL5A1, POSTN, CTGF, LOX, TGFβ1, PDGFRA, TNC, BGN, and TSP2 were significantly higher expressed in the hearts of nonresponders. CONCLUSIONS Cardiac inflammation along with a transcriptomic profile of high expression of combined proinflammatory and profibrotic genes are associated with a poor response to CRT in patients with DCM.
Collapse
Affiliation(s)
- Job A J Verdonschot
- Cardiovascular Research Institute (CARIM), Departments of Cardiology (J.A.J.V., J.J.M., A.M.W.v.S., M.T.H.M.H., V.P.M.v.E., C.K., J.G.L.M.L., H.J.G.M.C., H.-P.B.-L.R., K.V., S.R.B.H., M.R.H.), Maastricht University Medical Center, the Netherlands.,Clinical Genetics (J.A.J.V., K.W.J.D., P.W., H.G.B.), Maastricht University Medical Center, the Netherlands
| | - Jort J Merken
- Cardiovascular Research Institute (CARIM), Departments of Cardiology (J.A.J.V., J.J.M., A.M.W.v.S., M.T.H.M.H., V.P.M.v.E., C.K., J.G.L.M.L., H.J.G.M.C., H.-P.B.-L.R., K.V., S.R.B.H., M.R.H.), Maastricht University Medical Center, the Netherlands
| | - Antonius M W van Stipdonk
- Cardiovascular Research Institute (CARIM), Departments of Cardiology (J.A.J.V., J.J.M., A.M.W.v.S., M.T.H.M.H., V.P.M.v.E., C.K., J.G.L.M.L., H.J.G.M.C., H.-P.B.-L.R., K.V., S.R.B.H., M.R.H.), Maastricht University Medical Center, the Netherlands
| | - Philipp Pliger
- Clinical Division of Cardiology and Angiology, Innsbruck Medical University, Austria (P.P., G.P.)
| | - Kasper W J Derks
- Clinical Genetics (J.A.J.V., K.W.J.D., P.W., H.G.B.), Maastricht University Medical Center, the Netherlands
| | - Ping Wang
- Clinical Genetics (J.A.J.V., K.W.J.D., P.W., H.G.B.), Maastricht University Medical Center, the Netherlands
| | - Michiel T H M Henkens
- Cardiovascular Research Institute (CARIM), Departments of Cardiology (J.A.J.V., J.J.M., A.M.W.v.S., M.T.H.M.H., V.P.M.v.E., C.K., J.G.L.M.L., H.J.G.M.C., H.-P.B.-L.R., K.V., S.R.B.H., M.R.H.), Maastricht University Medical Center, the Netherlands
| | - Pieter van Paassen
- Immunology (P.v.P.), Maastricht University Medical Center, the Netherlands
| | | | - Vanessa P M van Empel
- Cardiovascular Research Institute (CARIM), Departments of Cardiology (J.A.J.V., J.J.M., A.M.W.v.S., M.T.H.M.H., V.P.M.v.E., C.K., J.G.L.M.L., H.J.G.M.C., H.-P.B.-L.R., K.V., S.R.B.H., M.R.H.), Maastricht University Medical Center, the Netherlands
| | - Christian Knackstedt
- Cardiovascular Research Institute (CARIM), Departments of Cardiology (J.A.J.V., J.J.M., A.M.W.v.S., M.T.H.M.H., V.P.M.v.E., C.K., J.G.L.M.L., H.J.G.M.C., H.-P.B.-L.R., K.V., S.R.B.H., M.R.H.), Maastricht University Medical Center, the Netherlands
| | - Justin G L M Luermans
- Cardiovascular Research Institute (CARIM), Departments of Cardiology (J.A.J.V., J.J.M., A.M.W.v.S., M.T.H.M.H., V.P.M.v.E., C.K., J.G.L.M.L., H.J.G.M.C., H.-P.B.-L.R., K.V., S.R.B.H., M.R.H.), Maastricht University Medical Center, the Netherlands
| | - Harry J G M Crijns
- Cardiovascular Research Institute (CARIM), Departments of Cardiology (J.A.J.V., J.J.M., A.M.W.v.S., M.T.H.M.H., V.P.M.v.E., C.K., J.G.L.M.L., H.J.G.M.C., H.-P.B.-L.R., K.V., S.R.B.H., M.R.H.), Maastricht University Medical Center, the Netherlands
| | - Hans-Peter Brunner-La Rocca
- Cardiovascular Research Institute (CARIM), Departments of Cardiology (J.A.J.V., J.J.M., A.M.W.v.S., M.T.H.M.H., V.P.M.v.E., C.K., J.G.L.M.L., H.J.G.M.C., H.-P.B.-L.R., K.V., S.R.B.H., M.R.H.), Maastricht University Medical Center, the Netherlands
| | - Han G Brunner
- Clinical Genetics (J.A.J.V., K.W.J.D., P.W., H.G.B.), Maastricht University Medical Center, the Netherlands.,GROW Institute for Developmental Biology and Cancer (H.G.B.), Maastricht University Medical Center, the Netherlands.,Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour (H.G.B.), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Gerhard Poelzl
- Clinical Division of Cardiology and Angiology, Innsbruck Medical University, Austria (P.P., G.P.)
| | - Kevin Vernooy
- Cardiovascular Research Institute (CARIM), Departments of Cardiology (J.A.J.V., J.J.M., A.M.W.v.S., M.T.H.M.H., V.P.M.v.E., C.K., J.G.L.M.L., H.J.G.M.C., H.-P.B.-L.R., K.V., S.R.B.H., M.R.H.), Maastricht University Medical Center, the Netherlands.,Department of Cardiology (K.V.), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Stephane R B Heymans
- Cardiovascular Research Institute (CARIM), Departments of Cardiology (J.A.J.V., J.J.M., A.M.W.v.S., M.T.H.M.H., V.P.M.v.E., C.K., J.G.L.M.L., H.J.G.M.C., H.-P.B.-L.R., K.V., S.R.B.H., M.R.H.), Maastricht University Medical Center, the Netherlands.,Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, Belgium (S.R.B.H.).,The Netherlands Heart Institute, Nl-HI, Utrecht (S.R.B.H.)
| | - Mark R Hazebroek
- Cardiovascular Research Institute (CARIM), Departments of Cardiology (J.A.J.V., J.J.M., A.M.W.v.S., M.T.H.M.H., V.P.M.v.E., C.K., J.G.L.M.L., H.J.G.M.C., H.-P.B.-L.R., K.V., S.R.B.H., M.R.H.), Maastricht University Medical Center, the Netherlands
| |
Collapse
|
117
|
Steijns F, Renard M, Vanhomwegen M, Vermassen P, Desloovere J, Raedt R, Larsen LE, Tóth MI, De Backer J, Sips P. Spontaneous Right Ventricular Pseudoaneurysms and Increased Arrhythmogenicity in a Mouse Model of Marfan Syndrome. Int J Mol Sci 2020; 21:E7024. [PMID: 32987703 PMCID: PMC7582482 DOI: 10.3390/ijms21197024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 02/08/2023] Open
Abstract
Patients with Marfan syndrome (MFS), a connective tissue disorder caused by pathogenic variants in the gene encoding the extracellular matrix protein fibrillin-1, have an increased prevalence of primary cardiomyopathy, arrhythmias, and sudden cardiac death. We have performed an in-depth in vivo and ex vivo study of the cardiac phenotype of Fbn1mgR/mgR mice, an established mouse model of MFS with a severely reduced expression of fibrillin-1. Using ultrasound measurements, we confirmed the presence of aortic dilatation and observed cardiac diastolic dysfunction in male Fbn1mgR/mgR mice. Upon post-mortem examination, we discovered that the mutant mice consistently presented myocardial lesions at the level of the right ventricular free wall, which we characterized as spontaneous pseudoaneurysms. Histological investigation demonstrated a decrease in myocardial compaction in the MFS mouse model. Furthermore, continuous 24 h electrocardiographic analysis showed a decreased heart rate variability and an increased prevalence of extrasystolic arrhythmic events in Fbn1mgR/mgR mice compared to wild-type littermates. Taken together, in this paper we document a previously unreported cardiac phenotype in the Fbn1mgR/mgR MFS mouse model and provide a detailed characterization of the cardiac dysfunction and rhythm disorders which are caused by fibrillin-1 deficiency. These findings highlight the wide spectrum of cardiac manifestations of MFS, which might have implications for patient care.
Collapse
Affiliation(s)
- Felke Steijns
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium; (F.S.); (M.R.); (M.V.); (P.V.); (J.D.B.)
| | - Marjolijn Renard
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium; (F.S.); (M.R.); (M.V.); (P.V.); (J.D.B.)
| | - Marine Vanhomwegen
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium; (F.S.); (M.R.); (M.V.); (P.V.); (J.D.B.)
| | - Petra Vermassen
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium; (F.S.); (M.R.); (M.V.); (P.V.); (J.D.B.)
| | - Jana Desloovere
- 4BRAIN, Department of Head and Skin, Ghent University, 9000 Ghent, Belgium; (J.D.); (R.R.); (L.E.L.)
| | - Robrecht Raedt
- 4BRAIN, Department of Head and Skin, Ghent University, 9000 Ghent, Belgium; (J.D.); (R.R.); (L.E.L.)
| | - Lars E. Larsen
- 4BRAIN, Department of Head and Skin, Ghent University, 9000 Ghent, Belgium; (J.D.); (R.R.); (L.E.L.)
- Institute Biomedical Technology, Ghent University, 9000 Ghent, Belgium;
| | - Máté I. Tóth
- Institute Biomedical Technology, Ghent University, 9000 Ghent, Belgium;
| | - Julie De Backer
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium; (F.S.); (M.R.); (M.V.); (P.V.); (J.D.B.)
- Department of Cardiology, Ghent University Hospital, 9000 Ghent, Belgium
| | - Patrick Sips
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium; (F.S.); (M.R.); (M.V.); (P.V.); (J.D.B.)
| |
Collapse
|
118
|
Thomas TP, Grisanti LA. The Dynamic Interplay Between Cardiac Inflammation and Fibrosis. Front Physiol 2020; 11:529075. [PMID: 33041853 PMCID: PMC7522448 DOI: 10.3389/fphys.2020.529075] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 08/14/2020] [Indexed: 12/12/2022] Open
Abstract
Heart failure is a leading cause of death worldwide. While there are multiple etiologies contributing to the development of heart failure, all cause result in impairments in cardiac function that is characterized by changes in cardiac remodeling and compliance. Fibrosis is associated with nearly all forms of heart failure and is an important contributor to disease pathogenesis. Inflammation also plays a critical role in the heart and there is a large degree of interconnectedness between the inflammatory and fibrotic response. This review discusses the cellular and molecular mechanisms contributing to inflammation and fibrosis and the interplay between the two.
Collapse
Affiliation(s)
- Toby P Thomas
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Laurel A Grisanti
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| |
Collapse
|
119
|
Sohns C, Zintl K, Zhao Y, Dagher L, Andresen D, Siebels J, Wegscheider K, Sehner S, Boersma L, Merkely B, Pokushalov E, Sanders P, Schunkert H, Bänsch D, Mahnkopf C, Brachmann J, Marrouche NF. Impact of Left Ventricular Function and Heart Failure Symptoms on Outcomes Post Ablation of Atrial Fibrillation in Heart Failure: CASTLE-AF Trial. Circ Arrhythm Electrophysiol 2020; 13:e008461. [PMID: 32903044 DOI: 10.1161/circep.120.008461] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Recent data demonstrate promising effects on left ventricular dysfunction and left ventricular ejection fraction (LVEF) improvement following ablation for atrial fibrillation (AF) in patients with heart failure. We sought to study the relationship between LVEF, New York Heart Association class on presentation, and the end points of mortality and heart failure admissions in the CASTLE-AF study (Catheter Ablation for Atrial Fibrillation With Heart Failure) population. Furthermore, predictors for LVEF improvement were examined. METHODS The CASTLE-AF patients with coexisting heart failure and AF (n=363) were randomized in a multicenter prospective controlled fashion to ablation (n=179) versus pharmacological therapy (n=184). Left ventricular function and New York Heart Association class were assessed at baseline (after randomization) and at each follow-up visit. RESULTS In the ablation arm, a significantly higher number of patients experienced an improvement in their LVEF to >35% at the end of the study (odds ratio, 2.17; P<0.001). Compared with the pharmacological therapy arm, both ablation patient groups with severe (<20%) or moderate/severe (≥20% and <35%) baseline LVEF had a significantly lower number of composite end points (hazard ratio [HR], 0.60; P=0.006), all-cause mortality (HR, 0.54; P=0.019), and cardiovascular hospitalizations (HR, 0.66; P=0.017). In the ablation group, New York Heart Association I/II patients at the time of treatment had the strongest improvement in clinical outcomes (primary end point: HR, 0.43; P<0.001; mortality: HR, 0.30; P=0.001). CONCLUSIONS Compared with pharmacological treatment, AF ablation was associated with a significant improvement in LVEF, independent from the severity of left ventricular dysfunction. AF ablation should be performed at early stages of the patient's heart failure symptoms.
Collapse
Affiliation(s)
- Christian Sohns
- Clinic for Electrophysiology, Herz- und Diabeteszentrum NRW, Ruhr-Universität Bochum, Bad Oeynhausen, Germany (C.S.)
| | - Konstantin Zintl
- Department of Cardiology, Klinikum Coburg, Germany (K.Z., C.M., J.B.)
| | - Yan Zhao
- Department of Cardiology, Tulane University School of Medicine, New Orleans, LA (Y.Z., L.D., N.F.M.)
| | - Lilas Dagher
- Department of Cardiology, Tulane University School of Medicine, New Orleans, LA (Y.Z., L.D., N.F.M.)
| | | | | | - Karl Wegscheider
- Department of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Germany (K.W., S.S.)
| | - Susanne Sehner
- Department of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Germany (K.W., S.S.)
| | - Lucas Boersma
- Department of Cardiology, Antonius Ziekenhuis Nieuwegein, the Netherlands (L.B.)
| | - Béla Merkely
- Department of Cardiology, Semmelweis Medical University, Budapest, Hungary (B.M.)
| | - Evgeny Pokushalov
- State Research Institute of Circulation Pathology, Novosibirsk, Russia (E.P.)
| | - Prashanthan Sanders
- Center for Heart Rhythm Disorders, University of Adelaide and Royal Adelaide Hospital, Australia (P.S.)
| | - Heribert Schunkert
- Department of Cardiology, Deutsches Herzzentrum München, Munich, Germany (H.S.)
| | - Dietmar Bänsch
- Clinic for Electrophysiology, KMG Klinikum, Güstrow, Germany (D.B.)
| | | | | | - Nassir F Marrouche
- Department of Cardiology, Tulane University School of Medicine, New Orleans, LA (Y.Z., L.D., N.F.M.)
| |
Collapse
|
120
|
Pagliarosi O, Picchio V, Chimenti I, Messina E, Gaetani R. Building an Artificial Cardiac Microenvironment: A Focus on the Extracellular Matrix. Front Cell Dev Biol 2020; 8:559032. [PMID: 33015056 PMCID: PMC7500153 DOI: 10.3389/fcell.2020.559032] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/18/2020] [Indexed: 12/20/2022] Open
Abstract
The increased knowledge in cell signals and stem cell differentiation, together with the development of new technologies, such as 3D bioprinting, has made the generation of artificial tissues more feasible for in vitro studies and in vivo applications. In the human body, cell fate, function, and survival are determined by the microenvironment, a rich and complex network composed of extracellular matrix (ECM), different cell types, and soluble factors. They all interconnect and communicate, receiving and sending signals, modulating and responding to cues. In the cardiovascular field, the culture of stem cells in vitro and their differentiation into cardiac phenotypes is well established, although differentiated cardiomyocytes often lack the functional maturation and structural organization typical of the adult myocardium. The recreation of an artificial microenvironment as similar as possible to the native tissue, though, has been shown to partly overcome these limitations, and can be obtained through the proper combination of ECM molecules, different cell types, bioavailability of growth factors (GFs), as well as appropriate mechanical and geometrical stimuli. This review will focus on the role of the ECM in the regulation of cardiac differentiation, will provide new insights on the role of supporting cells in the generation of 3D artificial tissues, and will also present a selection of the latest approaches to recreate a cardiac microenvironment in vitro through 3D bioprinting approaches.
Collapse
Affiliation(s)
- Olivia Pagliarosi
- Department of Molecular Medicine, Faculty of Pharmacy and Medicine, Sapienza University of Rome, Rome, Italy
| | - Vittorio Picchio
- Department of Medical and Surgical Sciences and Biotechnology, Faculty of Pharmacy and Medicine, Sapienza University of Rome, Rome, Italy
| | - Isotta Chimenti
- Department of Medical and Surgical Sciences and Biotechnology, Faculty of Pharmacy and Medicine, Sapienza University of Rome, Rome, Italy
- Mediterranea Cardiocentro, Naples, Italy
| | - Elisa Messina
- Department of Maternal, Infantile, and Urological Sciences, “Umberto I” Hospital, Rome, Italy
| | - Roberto Gaetani
- Department of Molecular Medicine, Faculty of Pharmacy and Medicine, Sapienza University of Rome, Rome, Italy
- Department of Bioengineering, Sanford Consortium for Regenerative Medicine, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
121
|
Change the Laminin, Change the Cardiomyocyte: Improve Untreatable Heart Failure. Int J Mol Sci 2020; 21:ijms21176013. [PMID: 32825544 PMCID: PMC7504464 DOI: 10.3390/ijms21176013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 08/18/2020] [Indexed: 02/07/2023] Open
Abstract
No effective medical treatment exists for heart failure with preserved ejection fraction (HFpEF), accounting for approximately half of all heart failure cases. The elevated passive myocardial stiffness in HFpEF is attributed to a combination of alterations in the extracellular matrix (ECM) collagen content and modifications in the sarcomeric protein titin. Here, we propose polylaminin, a biomimetic polymer of laminin, as a promising approach for manipulating the titin isoform shift and phosphorylation in cardiomyocytes. Exploring the pleiotropic effects of polylaminin may be a novel strategy for alleviating symptoms in HFpEF's multifactorial pathophysiology.
Collapse
|
122
|
Wu CC, Jeratsch S, Graumann J, Stainier DYR. Modulation of Mammalian Cardiomyocyte Cytokinesis by the Extracellular Matrix. Circ Res 2020; 127:896-907. [PMID: 32564729 DOI: 10.1161/circresaha.119.316303] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE After birth, cycling mammalian CMs (cardiomyocytes) progressively lose the ability to undergo cytokinesis and hence they become binucleated, which leads to cell cycle exit and loss of regenerative capacity. During late embryonic and early postnatal heart growth, CM development is accompanied by an expansion of the cardiac fibroblast (cFb) population and compositional changes in the ECM (extracellular matrix). Whether and how these changes influence cardiomyocyte cytokinesis is currently unknown. OBJECTIVE To elucidate the role of postnatal cFbs and the ECM in cardiomyocyte cytokinesis and identify ECM proteins that promote cardiomyocyte cytokinesis. METHODS AND RESULTS Using primary rat cardiomyocyte cultures, we found that a proportion of postnatal, but not embryonic, cycling cardiomyocytes fail to progress through cytokinesis and subsequently binucleate, consistent with published reports of in vitro and in vivo observations. Direct coculture with postnatal cFbs increased cardiomyocyte binucleation, which could be inhibited by RGD peptide treatment. In contrast, cFb-conditioned medium or transwell coculture did not significantly increase cardiomyocyte binucleation, suggesting that cFbs inhibit cardiomyocyte cytokinesis through ECM modulation rather than by secreting diffusible factors. Furthermore, we found that both embryonic and postnatal CMs binucleate at a significantly higher rate when cultured on postnatal cFb-derived ECM compared with embryonic cFb-derived ECM. These cytokinetic defects correlate with cardiomyocyte inefficiency in mitotic rounding, a process which is key to successful cytokinesis. To identify ECM proteins that modulate cardiomyocyte cytokinesis, we compared the composition of embryonic and postnatal cFb-derived ECM by mass spectrometry followed by functional assessment. We found that 2 embryonically enriched ECM proteins, SLIT2 and NPNT (nephronectin), promote cytokinesis of postnatal CMs in vitro and in vivo. CONCLUSIONS We identified the postnatal cardiac ECM as a nonpermissive environment for cardiomyocyte cytokinesis and uncovered novel functions for the embryonic ECM proteins SLIT2 and NPNT (nephronectin) in promoting postnatal cardiomyocyte cytokinesis. Graphic Abstract: A graphic abstract is available for this article.
Collapse
Affiliation(s)
- Chi-Chung Wu
- From the Department of Developmental Genetics (C.-C.W., D.Y.R.S.), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,German Centre for Cardiovascular Research (DZHK) Partner site Rhein Main (C.-C.W., S.J., J.G., D.Y.R.S.), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Sylvia Jeratsch
- German Centre for Cardiovascular Research (DZHK) Partner site Rhein Main (C.-C.W., S.J., J.G., D.Y.R.S.), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Biomolecular Mass Spectrometry (S.J., J.G.), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Johannes Graumann
- German Centre for Cardiovascular Research (DZHK) Partner site Rhein Main (C.-C.W., S.J., J.G., D.Y.R.S.), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Biomolecular Mass Spectrometry (S.J., J.G.), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Didier Y R Stainier
- From the Department of Developmental Genetics (C.-C.W., D.Y.R.S.), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,German Centre for Cardiovascular Research (DZHK) Partner site Rhein Main (C.-C.W., S.J., J.G., D.Y.R.S.), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| |
Collapse
|
123
|
Castillo EA, Lane KV, Pruitt BL. Micromechanobiology: Focusing on the Cardiac Cell-Substrate Interface. Annu Rev Biomed Eng 2020; 22:257-284. [PMID: 32501769 DOI: 10.1146/annurev-bioeng-092019-034950] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Engineered, in vitro cardiac cell and tissue systems provide test beds for the study of cardiac development, cellular disease processes, and drug responses in a dish. Much effort has focused on improving the structure and function of engineered cardiomyocytes and heart tissues. However, these parameters depend critically on signaling through the cellular microenvironment in terms of ligand composition, matrix stiffness, and substrate mechanical properties-that is, matrix micromechanobiology. To facilitate improvements to in vitro microenvironment design, we review how cardiomyocytes and their microenvironment change during development and disease in terms of integrin expression and extracellular matrix (ECM) composition. We also discuss strategies used to bind proteins to common mechanobiology platforms and describe important differences in binding strength to the substrate. Finally, we review example biomaterial approaches designed to support and probe cell-ECM interactions of cardiomyocytes in vitro, as well as open questions and challenges.
Collapse
Affiliation(s)
- Erica A Castillo
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, USA; .,Department of Mechanical Engineering, University of California, Santa Barbara, California 93106, USA;
| | - Kerry V Lane
- Department of Mechanical Engineering, University of California, Santa Barbara, California 93106, USA;
| | - Beth L Pruitt
- Department of Mechanical Engineering, University of California, Santa Barbara, California 93106, USA; .,Biomolecular Science and Engineering Program, University of California, Santa Barbara, California 93106, USA.,Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California 93117, USA;
| |
Collapse
|
124
|
Oh JG, Lee P, Gordon RE, Sahoo S, Kho C, Jeong D. Analysis of extracellular vesicle miRNA profiles in heart failure. J Cell Mol Med 2020; 24:7214-7227. [PMID: 32485073 PMCID: PMC7339231 DOI: 10.1111/jcmm.15251] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/25/2020] [Accepted: 03/13/2020] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) have recently emerged as an important carrier for various genetic materials including microRNAs (miRs). Growing evidences suggested that several miRs transported by EVs were particularly involved in modulating cardiac function. However, it has remained unclear what miRs are enriched in EVs and play an important role in the pathological condition. Therefore, we established the miR expression profiles in EVs from murine normal and failing hearts and consecutively identified substantially altered miRs. In addition, we have performed bioinformatics approach to predict potential cardiac outcomes through the identification of miR targets. Conclusively, we observed approximately 63% of predicted targets were validated with previous reports. Notably, the predicted targets by this approach were often involved in both beneficial and malicious signalling pathways, which may reflect heterogeneous cellular origins of EVs in tissues. Lastly, there has been an active debate on U6 whether it is a proper control. Through further analysis of EV miR profiles, miR‐676 was identified as a superior reference control due to its consistent and abundant expressions. In summary, our results contribute to identifying specific EV miRs for the potential therapeutic targets in heart failure and suggest that miR‐676 as a new reference control for the EV miR studies.
Collapse
Affiliation(s)
- Jae Gyun Oh
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Philyoung Lee
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ronald E Gordon
- Pathology Department, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Susmita Sahoo
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Changwon Kho
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Division of Applied Medicine, School of Korean Medicine, Pusan National University, Republic of Korea
| | - Dongtak Jeong
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
125
|
Li M, Parker BL, Pearson E, Hunter B, Cao J, Koay YC, Guneratne O, James DE, Yang J, Lal S, O'Sullivan JF. Core functional nodes and sex-specific pathways in human ischaemic and dilated cardiomyopathy. Nat Commun 2020; 11:2843. [PMID: 32487995 PMCID: PMC7266817 DOI: 10.1038/s41467-020-16584-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 05/06/2020] [Indexed: 12/11/2022] Open
Abstract
Poor access to human left ventricular myocardium is a significant limitation in the study of heart failure (HF). Here, we utilise a carefully procured large human heart biobank of cryopreserved left ventricular myocardium to obtain direct molecular insights into ischaemic cardiomyopathy (ICM) and dilated cardiomyopathy (DCM), the most common causes of HF worldwide. We perform unbiased, deep proteomic and metabolomic analyses of 51 left ventricular (LV) samples from 44 cryopreserved human ICM and DCM hearts, compared to age-, gender-, and BMI-matched, histopathologically normal, donor controls. We report a dramatic reduction in serum amyloid A1 protein in ICM hearts, perturbed thyroid hormone signalling pathways and significant reductions in oxidoreductase co-factor riboflavin-5-monophosphate and glycolytic intermediate fructose-6-phosphate in both; unveil gender-specific changes in HF, including nitric oxide-related arginine metabolism, mitochondrial substrates, and X chromosome-linked protein and metabolite changes; and provide an interactive online application as a publicly-available resource.
Collapse
Affiliation(s)
- Mengbo Li
- School of Mathematics and Statistics, Faculty of Science, The University of Sydney, Sydney, NSW, Australia.,Precision Cardiovascular Laboratory, The University of Sydney, Sydney, NSW, Australia.,Charles Perkins Centre, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Benjamin L Parker
- Charles Perkins Centre, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia.,Department of Physiology, School of Biomedical Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Evangeline Pearson
- Precision Cardiovascular Laboratory, The University of Sydney, Sydney, NSW, Australia.,Charles Perkins Centre, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Benjamin Hunter
- Precision Cardiovascular Laboratory, The University of Sydney, Sydney, NSW, Australia.,Discipline of Anatomy and Histology, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Jacob Cao
- Precision Cardiovascular Laboratory, The University of Sydney, Sydney, NSW, Australia.,Discipline of Anatomy and Histology, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Yen Chin Koay
- Precision Cardiovascular Laboratory, The University of Sydney, Sydney, NSW, Australia.,Charles Perkins Centre, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia.,Heart Research Institute, The University of Sydney, Sydney, NSW, Australia
| | - Oneka Guneratne
- Precision Cardiovascular Laboratory, The University of Sydney, Sydney, NSW, Australia.,Discipline of Anatomy and Histology, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - David E James
- Charles Perkins Centre, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia.,School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia.,Central Clinical School, Sydney Medical School, Faculty of Medicine, The University of Sydney, Sydney, NSW, Australia
| | - Jean Yang
- School of Mathematics and Statistics, Faculty of Science, The University of Sydney, Sydney, NSW, Australia.,Charles Perkins Centre, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Sean Lal
- Precision Cardiovascular Laboratory, The University of Sydney, Sydney, NSW, Australia. .,Discipline of Anatomy and Histology, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia. .,Central Clinical School, Sydney Medical School, Faculty of Medicine, The University of Sydney, Sydney, NSW, Australia. .,Department of Cardiology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia.
| | - John F O'Sullivan
- Precision Cardiovascular Laboratory, The University of Sydney, Sydney, NSW, Australia. .,Charles Perkins Centre, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia. .,Heart Research Institute, The University of Sydney, Sydney, NSW, Australia. .,Central Clinical School, Sydney Medical School, Faculty of Medicine, The University of Sydney, Sydney, NSW, Australia. .,Department of Cardiology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia.
| |
Collapse
|
126
|
Toong DWY, Toh HW, Ng JCK, Wong PEH, Leo HL, Venkatraman S, Tan LP, Ang HY, Huang Y. Bioresorbable Polymeric Scaffold in Cardiovascular Applications. Int J Mol Sci 2020; 21:E3444. [PMID: 32414114 PMCID: PMC7279389 DOI: 10.3390/ijms21103444] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/06/2020] [Accepted: 05/08/2020] [Indexed: 12/12/2022] Open
Abstract
Advances in material science and innovative medical technologies have allowed the development of less invasive interventional procedures for deploying implant devices, including scaffolds for cardiac tissue engineering. Biodegradable materials (e.g., resorbable polymers) are employed in devices that are only needed for a transient period. In the case of coronary stents, the device is only required for 6-8 months before positive remodelling takes place. Hence, biodegradable polymeric stents have been considered to promote this positive remodelling and eliminate the issue of permanent caging of the vessel. In tissue engineering, the role of the scaffold is to support favourable cell-scaffold interaction to stimulate formation of functional tissue. The ideal outcome is for the cells to produce their own extracellular matrix over time and eventually replace the implanted scaffold or tissue engineered construct. Synthetic biodegradable polymers are the favoured candidates as scaffolds, because their degradation rates can be manipulated over a broad time scale, and they may be functionalised easily. This review presents an overview of coronary heart disease, the limitations of current interventions and how biomaterials can be used to potentially circumvent these shortcomings in bioresorbable stents, vascular grafts and cardiac patches. The material specifications, type of polymers used, current progress and future challenges for each application will be discussed in this manuscript.
Collapse
Affiliation(s)
- Daniel Wee Yee Toong
- School of Materials Science and Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798, Singapore; (D.W.Y.T.); (L.P.T.)
| | - Han Wei Toh
- National Heart Centre Singapore, 5 Hospital Drive, Singapore 169609, Singapore; (H.W.T.); (J.C.K.N.); (P.E.H.W.)
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore;
| | - Jaryl Chen Koon Ng
- National Heart Centre Singapore, 5 Hospital Drive, Singapore 169609, Singapore; (H.W.T.); (J.C.K.N.); (P.E.H.W.)
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore;
| | - Philip En Hou Wong
- National Heart Centre Singapore, 5 Hospital Drive, Singapore 169609, Singapore; (H.W.T.); (J.C.K.N.); (P.E.H.W.)
- Duke-NUS Medical School, National University of Singapore, 8 College Road, Singapore 169857, Singapore
| | - Hwa Liang Leo
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore;
| | - Subramanian Venkatraman
- Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore;
| | - Lay Poh Tan
- School of Materials Science and Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798, Singapore; (D.W.Y.T.); (L.P.T.)
| | - Hui Ying Ang
- National Heart Centre Singapore, 5 Hospital Drive, Singapore 169609, Singapore; (H.W.T.); (J.C.K.N.); (P.E.H.W.)
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore;
| | - Yingying Huang
- School of Materials Science and Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798, Singapore; (D.W.Y.T.); (L.P.T.)
| |
Collapse
|
127
|
Aleksenko L, Quaye IK. Pregnancy-induced Cardiovascular Pathologies: Importance of Structural Components and Lipids. Am J Med Sci 2020; 360:447-466. [PMID: 32540145 DOI: 10.1016/j.amjms.2020.05.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 03/09/2020] [Accepted: 05/07/2020] [Indexed: 01/22/2023]
Abstract
Pregnancy leads to adaptations for maternal and fetal energy needs. The cardiovascular system bears the brunt of the adaptations as the heart and vessels enable nutrient supply to maternal organs facilitated by the placenta to the fetus. The components of the cardiovascular system are critical in the balance between maternal homeostatic and fetus driven homeorhetic regulation. Since lipids intersect maternal cardiovascular function and fetal needs with growth and in stress, factors affecting lipid deposition and mobilization impact risk outcomes. Here, the cardiovascular components and functional derangements associated with cardiovascular pathology in pregnancy, vis-à-vis lipid deposition, mobilization and maternal and/or cardiac and fetal energy needs are detailed. Most reports on the components and associated pathology in pregnancy, are on derangements affecting the extracellular matrix and epicardial fat, followed by the endothelium, vascular smooth muscle, pericytes and myocytes. Targeted studies on all cardiovascular components and pathological outcomes in pregnancy will enhance targeted interventions.
Collapse
Affiliation(s)
- Larysa Aleksenko
- Division of Obstetrics and Gynecology, Department of Clinical Sciences, Lund University, Lund, Sweden.
| | - Isaac K Quaye
- Regent University College of Science and Technology, Accra, Ghana
| |
Collapse
|
128
|
Maione AS, Pilato CA, Casella M, Gasperetti A, Stadiotti I, Pompilio G, Sommariva E. Fibrosis in Arrhythmogenic Cardiomyopathy: The Phantom Thread in the Fibro-Adipose Tissue. Front Physiol 2020; 11:279. [PMID: 32317983 PMCID: PMC7147329 DOI: 10.3389/fphys.2020.00279] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/12/2020] [Indexed: 12/22/2022] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) is an inherited heart disorder, predisposing to malignant ventricular arrhythmias leading to sudden cardiac death, particularly in young and athletic patients. Pathological features include a progressive loss of myocardium with fibrous or fibro-fatty substitution. During the last few decades, different clinical aspects of ACM have been well investigated but still little is known about the molecular mechanisms that underlie ACM pathogenesis, leading to these phenotypes. In about 50% of ACM patients, a genetic mutation, predominantly in genes that encode for desmosomal proteins, has been identified. However, the mutation-associated mechanisms, causing the observed cardiac phenotype are not always clear. Until now, the attention has been principally focused on the study of molecular mechanisms that lead to a prominent myocardium adipose substitution, an uncommon marker for a cardiac disease, thus often recognized as hallmark of ACM. Nonetheless, based on Task Force Criteria for the diagnosis of ACM, cardiomyocytes death associated with fibrous replacement of the ventricular free wall must be considered the main tissue feature in ACM patients. For this reason, it urges to investigate ACM cardiac fibrosis. In this review, we give an overview on the cellular effectors, possible triggers, and molecular mechanisms that could be responsible for the ventricular fibrotic remodeling in ACM patients.
Collapse
Affiliation(s)
- Angela Serena Maione
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Chiara Assunta Pilato
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Michela Casella
- Heart Rhythm Center, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Alessio Gasperetti
- Heart Rhythm Center, Centro Cardiologico Monzino IRCCS, Milan, Italy
- University Heart Center, Zurich University Hospital, Zurich, Switzerland
| | - Ilaria Stadiotti
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Giulio Pompilio
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino IRCCS, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Elena Sommariva
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino IRCCS, Milan, Italy
| |
Collapse
|
129
|
Ushakov A, Ivanchenko V, Gagarina A. Regulation of Myocardial Extracellular Matrix Dynamic Changes in Myocardial Infarction and Postinfarct Remodeling. Curr Cardiol Rev 2020; 16:11-24. [PMID: 31072294 PMCID: PMC7393593 DOI: 10.2174/1573403x15666190509090832] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/22/2019] [Accepted: 04/29/2019] [Indexed: 02/07/2023] Open
Abstract
The article represents literature review dedicated to molecular and cellular mechanisms underlying clinical manifestations and outcomes of acute myocardial infarction. Extracellular matrix adaptive changes are described in detail as one of the most important factors contributing to healing of damaged myocardium and post-infarction cardiac remodeling. Extracellular matrix is reviewed as dynamic constantly remodeling structure that plays a pivotal role in myocardial repair. The role of matrix metalloproteinases and their tissue inhibitors in fragmentation and degradation of extracellular matrix as well as in myocardium healing is discussed. This review provides current information about fibroblasts activity, the role of growth factors, particularly transforming growth factor β and cardiotrophin-1, colony-stimulating factors, adipokines and gastrointestinal hormones, various matricellular proteins. In conclusion considering the fact that dynamic transformation of extracellular matrix after myocardial ischemic damage plays a pivotal role in myocardial infarction outcomes and prognosis, we suggest a high importance of further investigation of mechanisms underlying extracellular matrix remodeling and cell-matrix interactions in cardiovascular diseases.
Collapse
Affiliation(s)
- Alexey Ushakov
- Department of Internal Medicine #1 with Clinical Pharmacology Course, Medical Academy named after S.I. Georgievsky of V.I. Vernadsky Crimean Federal University, Simferopol, Russian Federation
| | - Vera Ivanchenko
- Department of Internal Medicine #1 with Clinical Pharmacology Course, Medical Academy named after S.I. Georgievsky of V.I. Vernadsky Crimean Federal University, Simferopol, Russian Federation
| | - Alina Gagarina
- Department of Internal Medicine #1 with Clinical Pharmacology Course, Medical Academy named after S.I. Georgievsky of V.I. Vernadsky Crimean Federal University, Simferopol, Russian Federation
| |
Collapse
|
130
|
Wight TN, Kang I, Evanko SP, Harten IA, Chang MY, Pearce OMT, Allen CE, Frevert CW. Versican-A Critical Extracellular Matrix Regulator of Immunity and Inflammation. Front Immunol 2020; 11:512. [PMID: 32265939 PMCID: PMC7105702 DOI: 10.3389/fimmu.2020.00512] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/06/2020] [Indexed: 12/13/2022] Open
Abstract
The extracellular matrix (ECM) proteoglycan, versican increases along with other ECM versican binding molecules such as hyaluronan, tumor necrosis factor stimulated gene-6 (TSG-6), and inter alpha trypsin inhibitor (IαI) during inflammation in a number of different diseases such as cardiovascular and lung disease, autoimmune diseases, and several different cancers. These interactions form stable scaffolds which can act as "landing strips" for inflammatory cells as they invade tissue from the circulation. The increase in versican is often coincident with the invasion of leukocytes early in the inflammatory process. Versican interacts with inflammatory cells either indirectly via hyaluronan or directly via receptors such as CD44, P-selectin glycoprotein ligand-1 (PSGL-1), and toll-like receptors (TLRs) present on the surface of immune and non-immune cells. These interactions activate signaling pathways that promote the synthesis and secretion of inflammatory cytokines such as TNFα, IL-6, and NFκB. Versican also influences inflammation by interacting with a variety of growth factors and cytokines involved in regulating inflammation thereby influencing their bioavailability and bioactivity. Versican is produced by multiple cell types involved in the inflammatory process. Conditional total knockout of versican in a mouse model of lung inflammation demonstrated significant reduction in leukocyte invasion into the lung and reduced inflammatory cytokine expression. While versican produced by stromal cells tends to be pro-inflammatory, versican expressed by myeloid cells can create anti-inflammatory and immunosuppressive microenvironments. Inflammation in the tumor microenvironment often contains elevated levels of versican. Perturbing the accumulation of versican in tumors can inhibit inflammation and tumor progression in some cancers. Thus versican, as a component of the ECM impacts immunity and inflammation through regulating immune cell trafficking and activation. Versican is emerging as a potential target in the control of inflammation in a number of different diseases.
Collapse
Affiliation(s)
- Thomas N. Wight
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Inkyung Kang
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Stephen P. Evanko
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Ingrid A. Harten
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Mary Y. Chang
- Division of Pulmonary/Critical Care Medicine, Center for Lung Biology, University of Washington School of Medicine, Seattle, WA, United States
| | - Oliver M. T. Pearce
- Centre for the Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Carys E. Allen
- Centre for the Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Charles W. Frevert
- Division of Pulmonary/Critical Care Medicine, Center for Lung Biology, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
131
|
Belviso I, Romano V, Sacco AM, Ricci G, Massai D, Cammarota M, Catizone A, Schiraldi C, Nurzynska D, Terzini M, Aldieri A, Serino G, Schonauer F, Sirico F, D’Andrea F, Montagnani S, Di Meglio F, Castaldo C. Decellularized Human Dermal Matrix as a Biological Scaffold for Cardiac Repair and Regeneration. Front Bioeng Biotechnol 2020; 8:229. [PMID: 32266249 PMCID: PMC7099865 DOI: 10.3389/fbioe.2020.00229] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/05/2020] [Indexed: 12/19/2022] Open
Abstract
The complex and highly organized environment in which cells reside consists primarily of the extracellular matrix (ECM) that delivers biological signals and physical stimuli to resident cells. In the native myocardium, the ECM contributes to both heart compliance and cardiomyocyte maturation and function. Thus, myocardium regeneration cannot be accomplished if cardiac ECM is not restored. We hypothesize that decellularized human skin might make an easily accessible and viable alternate biological scaffold for cardiac tissue engineering (CTE). To test our hypothesis, we decellularized specimens of both human skin and human myocardium and analyzed and compared their composition by histological methods and quantitative assays. Decellularized dermal matrix was then cut into 600-μm-thick sections and either tested by uniaxial tensile stretching to characterize its mechanical behavior or used as three-dimensional scaffold to assess its capability to support regeneration by resident cardiac progenitor cells (hCPCs) in vitro. Histological and quantitative analyses of the dermal matrix provided evidence of both effective decellularization with preserved tissue architecture and retention of ECM proteins and growth factors typical of cardiac matrix. Further, the elastic modulus of the dermal matrix resulted comparable with that reported in literature for the human myocardium and, when tested in vitro, dermal matrix resulted a comfortable and protective substrate promoting and supporting hCPC engraftment, survival and cardiomyogenic potential. Our study provides compelling evidence that dermal matrix holds promise as a fully autologous and cost-effective biological scaffold for CTE.
Collapse
Affiliation(s)
- Immacolata Belviso
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Veronica Romano
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Anna Maria Sacco
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Giulia Ricci
- Department of Experimental Medicine, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy
| | - Diana Massai
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Marcella Cammarota
- Department of Experimental Medicine, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy
| | - Angiolina Catizone
- Department of Anatomy, Histology, Forensic-Medicine and Orthopedics, Sapienza University of Rome, Rome, Italy
| | - Chiara Schiraldi
- Department of Experimental Medicine, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy
| | - Daria Nurzynska
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Mara Terzini
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Alessandra Aldieri
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Gianpaolo Serino
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Fabrizio Schonauer
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Felice Sirico
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Francesco D’Andrea
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Stefania Montagnani
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Franca Di Meglio
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Clotilde Castaldo
- Department of Public Health, University of Naples Federico II, Naples, Italy
| |
Collapse
|
132
|
Protease-activated receptor 2 deficiency in hematopoietic lineage protects against myocardial infarction through attenuated inflammatory response and fibrosis. Biochem Biophys Res Commun 2020; 526:253-260. [PMID: 32204916 DOI: 10.1016/j.bbrc.2020.03.077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 03/12/2020] [Indexed: 11/20/2022]
Abstract
Ischaemic heart disease is one of the leading causes of death. Protease-activated receptor 2 (PAR2) is widely expressed within the cardiovascular system and is known to mediate inflammatory processes in various immunocytes, such as macrophages, mastocytes and neutrophils. Here, we investigated whether activating macrophage PAR2 modulates cardiac remodelling in a murine model of myocardial infarction. Myocardial infarction was produced by the permanent ligation of the left anterior descending coronary artery (LAD) in C57BL/6J background wild-type (WT) mice transplanted with bone marrow from WT or PAR2 knockout (PAR2 KO) mice. Hematopoietic deficiency of PAR2 had improvement of left ventricular systolic dysfunction and dilatation and decreased fibrosis deposition in remote zone at 1 week after LAD ligation. Inactivation of PAR2 also led to less recruitment of macrophages in myocardium, which was accompanied by decreased expression of pro-inflammatory cytokines. Furthermore, cultured cardiac fibroblasts (CFs) were activated and showed a fibrotic phenotype after being co-cultured in medium containing PAR2-activating macrophage, which enhances interferon-beta (INF-β) expression. The beneficial effects of macrophages with INF-β neutralisation or PAR2-deletion ameliorates the JAK/STAT3 pathway in CFs, which might be attributed to CF activation. These data suggest that macrophage-derived IFN-β plays a crucial role in adverse cardiac remodelling after myocardial infarction, at least in part, through a PAR2-dependent mechanism.
Collapse
|
133
|
Ward M, Iskratsch T. Mix and (mis-)match - The mechanosensing machinery in the changing environment of the developing, healthy adult and diseased heart. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2020; 1867:118436. [PMID: 30742931 PMCID: PMC7042712 DOI: 10.1016/j.bbamcr.2019.01.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/07/2019] [Accepted: 01/29/2019] [Indexed: 01/01/2023]
Abstract
The composition and the stiffness of cardiac microenvironment change during development and/or in heart disease. Cardiomyocytes (CMs) and their progenitors sense these changes, which decides over the cell fate and can trigger CM (progenitor) proliferation, differentiation, de-differentiation or death. The field of mechanobiology has seen a constant increase in output that also includes a wealth of new studies specific to cardiac or cardiomyocyte mechanosensing. As a result, mechanosensing and transduction in the heart is increasingly being recognised as a main driver of regulating the heart formation and function. Recent work has for instance focused on measuring the molecular, physical and mechanical changes of the cellular environment - as well as intracellular contributors to the passive stiffness of the heart. On the other hand, a variety of new studies shed light into the molecular machinery that allow the cardiomyocytes to sense these properties. Here we want to discuss the recent work on this topic, but also specifically focus on how the different components are regulated at various stages during development, in health or disease in order to highlight changes that might contribute to disease progression and heart failure.
Collapse
Key Words
- cm, cardiomyocytes
- hcm, hypertrophic cardiomyopathy
- dcm, dilated cardiomyopathy
- icm, idiopathic cardiomyopathy
- myh, myosin heavy chain
- tnnt, troponin t
- tnni, troponin i
- afm, atomic force microscope
- mre, magnetic resonance elastography
- swe, ultrasound cardiac shear-wave elastography
- lv, left ventricle
- lox, lysyl oxidase
- loxl, lysyl oxidase like protein
- lh, lysyl hydroxylase
- lys, lysin
- lccs, lysald-derived collagen crosslinks
- hlccs, hylald-derived collagen crosslinks
- pka, protein kinase a
- pkc, protein kinase c
- vash1, vasohibin-1
- svbp, small vasohibin binding protein
- tcp, tubulin carboxypeptidase
- ttl, tubulin tyrosine ligase
- mrtf, myocardin-related transcription factor
- gap, gtpase activating protein
- gef, guanine nucleotide exchange factor
Collapse
Affiliation(s)
- Matthew Ward
- Division of Bioengineering, School of Engineering and Materials Science & Institute for Bioengineering, Queen Mary University of London, United Kingdom
| | - Thomas Iskratsch
- Division of Bioengineering, School of Engineering and Materials Science & Institute for Bioengineering, Queen Mary University of London, United Kingdom.
| |
Collapse
|
134
|
Kuhn TC, Knobel J, Burkert-Rettenmaier S, Li X, Meyer IS, Jungmann A, Sicklinger F, Backs J, Lasitschka F, Müller OJ, Katus HA, Krijgsveld J, Leuschner F. Secretome Analysis of Cardiomyocytes Identifies PCSK6 (Proprotein Convertase Subtilisin/Kexin Type 6) as a Novel Player in Cardiac Remodeling After Myocardial Infarction. Circulation 2020; 141:1628-1644. [PMID: 32100557 DOI: 10.1161/circulationaha.119.044914] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Acute occlusion of a coronary artery results in swift tissue necrosis. Bordering areas of the infarcted myocardium can also experience impaired blood supply and reduced oxygen delivery, leading to altered metabolic and mechanical processes. Although transcriptional changes in hypoxic cardiomyocytes are well studied, little is known about the proteins that are actively secreted from these cells. METHODS We established a novel secretome analysis of cardiomyocytes by combining stable isotope labeling and click chemistry with subsequent mass spectrometry analysis. Further functional validation experiments included ELISA measurement of human samples, murine left anterior descending coronary artery ligation, and adeno-associated virus 9-mediated in vivo overexpression in mice. RESULTS The presented approach is feasible for analysis of the secretome of primary cardiomyocytes without serum starvation. A total of 1026 proteins were identified to be secreted within 24 hours, indicating a 5-fold increase in detection compared with former approaches. Among them, a variety of proteins have not yet been explored in the context of cardiovascular pathologies. One of the secreted factors most strongly upregulated upon hypoxia was PCSK6 (proprotein convertase subtilisin/kexin type 6). Validation experiments revealed an increase of PCSK6 on mRNA and protein level in hypoxic cardiomyocytes. PCSK6 expression was elevated in hearts of mice after 3 days of ligation of the left anterior descending artery, a finding confirmed by immunohistochemistry. ELISA measurements in human serum also indicate distinct kinetics for PCSK6 in patients with acute myocardial infarction, with a peak on postinfarction day 3. Transfer of PCSK6-depleted cardiomyocyte secretome resulted in decreased expression of collagen I and III in fibroblasts compared with control treated cells, and small interfering RNA-mediated knockdown of PCSK6 in cardiomyocytes impacted transforming growth factor-β activation and SMAD3 (mothers against decapentaplegic homolog 3) translocation in fibroblasts. An adeno-associated virus 9-mediated, cardiomyocyte-specific overexpression of PCSK6 in mice resulted in increased collagen expression and cardiac fibrosis, as well as decreased left ventricular function, after myocardial infarction. CONCLUSIONS A novel mass spectrometry-based approach allows investigation of the secretome of primary cardiomyocytes. Analysis of hypoxia-induced secretion led to the identification of PCSK6 as being crucially involved in cardiac remodeling after acute myocardial infarction.
Collapse
Affiliation(s)
- Tim Christian Kuhn
- Department of Cardiology, Medical University Hospital, Heidelberg, Germany (T.C.K., J.K., S.B-R., X.L., I.S.M., A.J., F.S., H.A.K., F.L.).,DZHK (German Centre for Cardiovascular Research), Heidelberg, Germany (T.C.K., J.K., S.B-R., X.L., I.S.M., A.J., F.S., J.B., H.A.K., F.L.)
| | - Johannes Knobel
- Department of Cardiology, Medical University Hospital, Heidelberg, Germany (T.C.K., J.K., S.B-R., X.L., I.S.M., A.J., F.S., H.A.K., F.L.).,DZHK (German Centre for Cardiovascular Research), Heidelberg, Germany (T.C.K., J.K., S.B-R., X.L., I.S.M., A.J., F.S., J.B., H.A.K., F.L.)
| | - Sonja Burkert-Rettenmaier
- Department of Cardiology, Medical University Hospital, Heidelberg, Germany (T.C.K., J.K., S.B-R., X.L., I.S.M., A.J., F.S., H.A.K., F.L.).,DZHK (German Centre for Cardiovascular Research), Heidelberg, Germany (T.C.K., J.K., S.B-R., X.L., I.S.M., A.J., F.S., J.B., H.A.K., F.L.)
| | - Xue Li
- Department of Cardiology, Medical University Hospital, Heidelberg, Germany (T.C.K., J.K., S.B-R., X.L., I.S.M., A.J., F.S., H.A.K., F.L.).,DZHK (German Centre for Cardiovascular Research), Heidelberg, Germany (T.C.K., J.K., S.B-R., X.L., I.S.M., A.J., F.S., J.B., H.A.K., F.L.)
| | - Ingmar Sören Meyer
- Department of Cardiology, Medical University Hospital, Heidelberg, Germany (T.C.K., J.K., S.B-R., X.L., I.S.M., A.J., F.S., H.A.K., F.L.).,DZHK (German Centre for Cardiovascular Research), Heidelberg, Germany (T.C.K., J.K., S.B-R., X.L., I.S.M., A.J., F.S., J.B., H.A.K., F.L.)
| | - Andreas Jungmann
- Department of Cardiology, Medical University Hospital, Heidelberg, Germany (T.C.K., J.K., S.B-R., X.L., I.S.M., A.J., F.S., H.A.K., F.L.).,DZHK (German Centre for Cardiovascular Research), Heidelberg, Germany (T.C.K., J.K., S.B-R., X.L., I.S.M., A.J., F.S., J.B., H.A.K., F.L.)
| | - Florian Sicklinger
- Department of Cardiology, Medical University Hospital, Heidelberg, Germany (T.C.K., J.K., S.B-R., X.L., I.S.M., A.J., F.S., H.A.K., F.L.).,DZHK (German Centre for Cardiovascular Research), Heidelberg, Germany (T.C.K., J.K., S.B-R., X.L., I.S.M., A.J., F.S., J.B., H.A.K., F.L.)
| | - Johannes Backs
- DZHK (German Centre for Cardiovascular Research), Heidelberg, Germany (T.C.K., J.K., S.B-R., X.L., I.S.M., A.J., F.S., J.B., H.A.K., F.L.).,Department of Molecular Cardiology and Epigenetics, Heidelberg, Germany (J.B.)
| | - Felix Lasitschka
- Institute of Pathology, University of Heidelberg, Germany (Fe.L.)
| | - Oliver J Müller
- Department of Internal Medicine III, University of Kiel, Germany (O.J.M.)
| | - Hugo A Katus
- Department of Cardiology, Medical University Hospital, Heidelberg, Germany (T.C.K., J.K., S.B-R., X.L., I.S.M., A.J., F.S., H.A.K., F.L.).,DZHK (German Centre for Cardiovascular Research), Heidelberg, Germany (T.C.K., J.K., S.B-R., X.L., I.S.M., A.J., F.S., J.B., H.A.K., F.L.)
| | - Jeroen Krijgsveld
- Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany (Je.K.).,Heidelberg University, Medical Faculty, Germany (Je.K.)
| | - Florian Leuschner
- Department of Cardiology, Medical University Hospital, Heidelberg, Germany (T.C.K., J.K., S.B-R., X.L., I.S.M., A.J., F.S., H.A.K., F.L.).,DZHK (German Centre for Cardiovascular Research), Heidelberg, Germany (T.C.K., J.K., S.B-R., X.L., I.S.M., A.J., F.S., J.B., H.A.K., F.L.)
| |
Collapse
|
135
|
Schwach V, Passier R. Native cardiac environment and its impact on engineering cardiac tissue. Biomater Sci 2020; 7:3566-3580. [PMID: 31338495 DOI: 10.1039/c8bm01348a] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) generally have an immature fetal-like phenotype when directly compared to isolated CMs from human hearts, despite significant advance in differentiation of human pluripotent stem cells (hPSCs) to multiple cardiac lineages. Therefore, hPSC-CMs may not accurately mimic all facets of healthy and diseased human adult CMs. During embryonic development, the cardiac extracellular matrix (ECM) experiences a gradual assembly of matrix proteins that transits along the maturation of CMs. Mimicking these dynamic stages may contribute to hPSC-CMs maturation in vitro. Thus, in this review, we describe the progressive build-up of the cardiac ECM during embryonic development, the ECM of the adult human heart and the application of natural and synthetic biomaterials for cardiac tissue engineering with hPSC-CMs.
Collapse
Affiliation(s)
- Verena Schwach
- Dept of Applied Stem Cell Technologies, TechMed Centre, University of Twente, The Netherlands.
| | | |
Collapse
|
136
|
Robert AW, Pereira IT, Dallagiovanna B, Stimamiglio MA. Secretome Analysis Performed During in vitro Cardiac Differentiation: Discovering the Cardiac Microenvironment. Front Cell Dev Biol 2020; 8:49. [PMID: 32117977 PMCID: PMC7025591 DOI: 10.3389/fcell.2020.00049] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 01/20/2020] [Indexed: 12/13/2022] Open
Abstract
Human pluripotent stem cells are an important tool for the study of developmental processes, such as cardiomyogenic differentiation. Despite the advances made in this field, the molecular and cellular signals involved in the commitment of embryonic stem cells to the cardiac phenotype are still under investigation. Therefore, this study focuses on identifying the extracellular signals involved in in vitro cardiac differentiation of human embryonic stem cells. Using a three-dimensional cardiomyogenic differentiation protocol, the conditioned medium and the extracellular matrix (ECM) of embryoid body cultures were collected and characterized at four specific time points. Mass spectrometry (MS) and antibody array analysis of the secretome identified a number of secreted proteins related to signaling pathways, such as Wnt and TGFβ, as well as many ECM proteins. When comparing the proteins identified at selected time points, our data pointed out protein interactions and biological process related to cardiac differentiation. Interestingly, the great changes in secretome profile occurred during the cardiac progenitor specification. The secretome results were also compared with our previous RNAseq data, indicating that the secreted proteins undergo some level of gene regulation. During cardiac commitment it was observed an increase in complexity of the ECM, and some proteins as IGFBP7, FN1, HSPG2, as well as other members of the basal lamina could be highlighted. Thus, these findings contribute valuable information about essential microenvironmental signals working on cardiomyogenic differentiation that may be used in future strategies for cardiac differentiation, cardiomyocyte maturation, and in advances for future acellular therapies.
Collapse
Affiliation(s)
- Anny Waloski Robert
- Laboratório de Biologia Básica de Células-Tronco, Instituto Carlos Chagas - Fiocruz-Paraná, Curitiba, Brazil
| | - Isabela Tiemy Pereira
- Laboratório de Biologia Básica de Células-Tronco, Instituto Carlos Chagas - Fiocruz-Paraná, Curitiba, Brazil
| | - Bruno Dallagiovanna
- Laboratório de Biologia Básica de Células-Tronco, Instituto Carlos Chagas - Fiocruz-Paraná, Curitiba, Brazil
| | - Marco Augusto Stimamiglio
- Laboratório de Biologia Básica de Células-Tronco, Instituto Carlos Chagas - Fiocruz-Paraná, Curitiba, Brazil
| |
Collapse
|
137
|
Fu Q, Lu Z, Fu X, Ma S, Lu X. MicroRNA 27b promotes cardiac fibrosis by targeting the FBW7/Snail pathway. Aging (Albany NY) 2019; 11:11865-11879. [PMID: 31881012 PMCID: PMC6949061 DOI: 10.18632/aging.102465] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 11/08/2019] [Indexed: 04/09/2023]
Abstract
Our study aspires to understand the impact of miR-27b on myocardial fibrosis as well as its functional mechanism. 12 days post the ligation of coronary artery in rats, the expression of miR-27b in the peri-infarction region was elevated. Treating cultivated rat neonatal cardiac fibroblasts (CFs) with angiotensin II (AngII) also enhanced the miR-27b expression. Forced expression of miR-27b promoted the proliferation and collagen production in rat neonatal CFs, as revealed by cell counting, MTT assay, and quantitative reverse transcription-polymerase chain reaction. FBW7 was found to be the miR-27b's target since the overexpression of miR-27b reduced the transcriptional level of FBW7. The enhanced expression of FBW7 protein abrogated the effects of miR-27b in cultured CFs, while the siRNA silence of FBW7 promoted the pro-fibrosis activity of AngII. As to the mechanism, we found that the expression of FBW7 led to the degradation of Snail, which is an important regulator of cardiac epithelial-mesenchymal transitions. Importantly, inhibition of miR-27b abrogated the coronary artery ligation (CAL) induced cardiac fibrosis in vivo, suggesting that it might be a potential target for the treatment of fibrosis associated cardiac diseases.
Collapse
Affiliation(s)
- Qiang Fu
- Department of Cardiovascular Surgery, The General Hospital of Tianjin Medical University, Tianjin, China
| | - Zhihong Lu
- Department of Anatomy and Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xiao Fu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Shitang Ma
- College of Life and Health Sciences, Anhui Science and Technology University, Chuzhou, Anhui, China
| | - Xiaochun Lu
- Department of Cardiology, The 2nd Medical Centre, PLA General Hospital, Beijing, China
| |
Collapse
|
138
|
Doostmohammadi M, Forootanfar H, Ramakrishna S. Regenerative medicine and drug delivery: Progress via electrospun biomaterials. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 109:110521. [PMID: 32228899 DOI: 10.1016/j.msec.2019.110521] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 12/01/2019] [Accepted: 12/02/2019] [Indexed: 02/07/2023]
Abstract
Worldwide research on electrospinning enabled it as a versatile technique for producing nanofibers with specified physio-chemical characteristics suitable for diverse biomedical applications. In the case of tissue engineering and regenerative medicine, the nanofiber scaffolds' characteristics are custom designed based on the cells and tissues specific needs. This fabrication technique is also innovated for the production of nanofibers with special micro-structure and secondary structure characteristics such as porous fibers, hollow structure, and core- sheath structure. This review attempts to critically and succinctly capture the vast number of developments reported in the literature over the past two decades. We then discuss their applications as scaffolds for induction of cells growth and differentiation or as architecture for being used as graft for tissue engineering. The special nanofibers designed for improving regeneration of several tissues including heart, bone, central nerve system, spinal cord, skin and ocular tissue are introduced. We also discuss the potential of the electrospinning in drug delivery applications, which is a critical factor for cell culture, tissue formation and wound healing applications.
Collapse
Affiliation(s)
- Mohsen Doostmohammadi
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Forootanfar
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran; Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore.
| |
Collapse
|
139
|
Nagai-Okatani C, Nishigori M, Sato T, Minamino N, Kaji H, Kuno A. Wisteria floribunda agglutinin staining for the quantitative assessment of cardiac fibrogenic activity in a mouse model of dilated cardiomyopathy. J Transl Med 2019; 99:1749-1765. [PMID: 31253865 DOI: 10.1038/s41374-019-0279-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/24/2019] [Accepted: 05/10/2019] [Indexed: 12/17/2022] Open
Abstract
Cardiac fibrosis is a typical phenomenon in failing hearts for most cardiac diseases, including dilated cardiomyopathy (DCM), and its specific detection and quantification are crucial for the analysis of cardiac remodeling. Since cardiac fibrosis is characterized by extensive remodeling of the myocardial extracellular matrix (ECM), in which glycoproteins are the major components, we assumed that fibrosis-related alterations in the cardiac glycome and glycoproteome would be suitable targets for the detection of cardiac fibrosis. Here, we compared protein glycosylation between heart tissues of normal and DCM model mice by laser microdissection-assisted lectin microarray. Among 45 lectins, Wisteria floribunda agglutinin (WFA) was selected as the most suitable lectin for staining cardiac fibrotic tissues. Although the extent of WFA staining was highly correlated (r > 0.98) with that of picrosirius red staining, a common collagen staining method, WFA did not bind to collagen fibers. Further histochemical analysis with N-glycosidase revealed that WFA staining of fibrotic tissues was attributable to the binding of WFA to N-glycoproteins. Using a mass spectrometry-based approach, we identified WFA-binding N-glycoproteins expressed in DCM hearts, many of which were fibrogenesis-related ECM proteins, as expected. In addition, the identified glycoproteins carrying WFA-binding N-glycans were detected only in DCM hearts, suggesting their cooperative glycosylation alterations with disease progression. Among these WFA-binding ECM N-glycoproteins, co-localization of the collagen α6(VI) chain protein and WFA staining in cardiac tissue sections was confirmed with a double-staining analysis. Collectively, these results indicate that WFA staining is more suitable for the quantitative assessment of cardiac fibrogenic activity than current collagen staining methods. Furthermore, given that plasma WFA-binding glycoprotein levels were significantly correlated with the echocardiographic parameters for left ventricular remodeling, cardiac WFA-binding glycoproteins are candidate circulating glyco-biomarkers for the quantification and monitoring of cardiac fibrogenesis.
Collapse
Affiliation(s)
- Chiaki Nagai-Okatani
- Glycoscience and Glycotechnology Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan.
| | - Mitsuhiro Nishigori
- Omics Research Center, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Takashi Sato
- Glycoscience and Glycotechnology Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Naoto Minamino
- Omics Research Center, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Hiroyuki Kaji
- Glycoscience and Glycotechnology Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Atsushi Kuno
- Glycoscience and Glycotechnology Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
140
|
Simon LR, Masters KS. Disease-inspired tissue engineering: Investigation of cardiovascular pathologies. ACS Biomater Sci Eng 2019; 6:2518-2532. [PMID: 32974421 DOI: 10.1021/acsbiomaterials.9b01067] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Once focused exclusively on the creation of tissues to repair or replace diseased or damaged organs, the field of tissue engineering has undergone an important evolution in recent years. Namely, tissue engineering techniques are increasingly being applied to intentionally generate pathological conditions. Motivated in part by the wide gap between 2D cultures and animal models in the current disease modeling continuum, disease-inspired tissue-engineered platforms have numerous potential applications, and may serve to advance our understanding and clinical treatment of various diseases. This review will focus on recent progress toward generating tissue-engineered models of cardiovascular diseases, including cardiac hypertrophy, fibrosis, and ischemia reperfusion injury, atherosclerosis, and calcific aortic valve disease, with an emphasis on how these disease-inspired platforms can be used to decipher disease etiology. Each pathology is discussed in the context of generating both disease-specific cells as well as disease-specific extracellular environments, with an eye toward future opportunities to integrate different tools to yield more complex and physiologically relevant culture platforms. Ultimately, the development of effective disease treatments relies upon our ability to develop appropriate experimental models; as cardiovascular diseases are the leading cause of death worldwide, the insights yielded by improved in vitro disease modeling could have substantial ramifications for public health and clinical care.
Collapse
Affiliation(s)
- LaTonya R Simon
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705
| | - Kristyn S Masters
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705.,Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705
| |
Collapse
|
141
|
Shi J, Fan C, Zhuang Y, Sun J, Hou X, Chen B, Xiao Z, Chen Y, Zhan Z, Zhao Y, Dai J. Heparan sulfate proteoglycan promotes fibroblast growth factor-2 function for ischemic heart repair. Biomater Sci 2019; 7:5438-5450. [PMID: 31642823 DOI: 10.1039/c9bm01336a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
It is well known that the basic fibroblast growth factor (bFGF) promotes angiogenesis after myocardial infarction (MI), but its biological functions decrease in the event of diffusion, enzymolysis, and weak binding with co-receptors in vivo. Heparan sulfate proteoglycans (HSPG) are a major component of extracellular matrices and have been shown to regulate a wide range of cellular functions and bioprocesses by acting as a co-receptor for bFGF and affecting its bioactivities. However, the influence of HSPG on the function of bFGF after myocardial infarction is unknown. Here, exogenous HSPG along with bFGF was injected into the hearts of rats to deliver the angiogenic growth factor for ischemic heart repair following induced MI. The specific binding of HSPG with bFGF protein was demonstrated, which was about 6-fold stronger than the binding of bFGF with heparin. The biological mechanisms of HSPG binding with bFGF were further studied by cell adhesion assay, and assays of bFGF and matrix metalloproteinase 2 (MMP2) activities demonstrated that HSPG enhances cell adhesion, promotes the bioactivity of bFGF in angiogenesis, and protects bFGF from enzymolysis. Our results indicate that HSPG has potential clinical utility as a delivery agent for heparin-binding growth factors. Additionally, HSPG shows high binding affinities with different ECM proteins which also help to anchor bFGF to heart tissue. Therefore, extracellular proteins that mimic the bio-scaffold of the extracellular matrix could promote the activities of bFGF to facilitate ischemic heart repair.
Collapse
Affiliation(s)
- Jiajia Shi
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei 230026, China and Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Caixia Fan
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Yan Zhuang
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Jie Sun
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 708 Renmin Road, Suzhou, Jiangsu 215007, P.R. China
| | - Xianglin Hou
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Bing Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Zhifeng Xiao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Yanyan Chen
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Zixuan Zhan
- Department of Thoracic and Cardiovascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 210008, Nanjing, China
| | - Yannan Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Jianwu Dai
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei 230026, China and Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China and State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
142
|
Affiliation(s)
- Thomas N Wight
- From the Matrix Biology Program, Benaroya Research Institute, Seattle, WA
| | - Robert B Vernon
- From the Matrix Biology Program, Benaroya Research Institute, Seattle, WA
| |
Collapse
|
143
|
Ribeiro AJS, Guth BD, Engwall M, Eldridge S, Foley CM, Guo L, Gintant G, Koerner J, Parish ST, Pierson JB, Brock M, Chaudhary KW, Kanda Y, Berridge B. Considerations for an In Vitro, Cell-Based Testing Platform for Detection of Drug-Induced Inotropic Effects in Early Drug Development. Part 2: Designing and Fabricating Microsystems for Assaying Cardiac Contractility With Physiological Relevance Using Human iPSC-Cardiomyocytes. Front Pharmacol 2019; 10:934. [PMID: 31555128 PMCID: PMC6727630 DOI: 10.3389/fphar.2019.00934] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/22/2019] [Indexed: 12/14/2022] Open
Abstract
Contractility of the myocardium engines the pumping function of the heart and is enabled by the collective contractile activity of its muscle cells: cardiomyocytes. The effects of drugs on the contractility of human cardiomyocytes in vitro can provide mechanistic insight that can support the prediction of clinical cardiac drug effects early in drug development. Cardiomyocytes differentiated from human-induced pluripotent stem cells have high potential for overcoming the current limitations of contractility assays because they attach easily to extracellular materials and last long in culture, while having human- and patient-specific properties. Under these conditions, contractility measurements can be non-destructive and minimally invasive, which allow assaying sub-chronic effects of drugs. For this purpose, the function of cardiomyocytes in vitro must reflect physiological settings, which is not observed in cultured cardiomyocytes derived from induced pluripotent stem cells because of the fetal-like properties of their contractile machinery. Primary cardiomyocytes or tissues of human origin fully represent physiological cellular properties, but are not easily available, do not last long in culture, and do not attach easily to force sensors or mechanical actuators. Microengineered cellular systems with a more mature contractile function have been developed in the last 5 years to overcome this limitation of stem cell-derived cardiomyocytes, while simultaneously measuring contractile endpoints with integrated force sensors/actuators and image-based techniques. Known effects of engineered microenvironments on the maturity of cardiomyocyte contractility have also been discovered in the development of these systems. Based on these discoveries, we review here design criteria of microengineered platforms of cardiomyocytes derived from pluripotent stem cells for measuring contractility with higher physiological relevance. These criteria involve the use of electromechanical, chemical and morphological cues, co-culture of different cell types, and three-dimensional cellular microenvironments. We further discuss the use and the current challenges for developing and improving these novel technologies for predicting clinical effects of drugs based on contractility measurements with cardiomyocytes differentiated from induced pluripotent stem cells. Future research should establish contexts of use in drug development for novel contractility assays with stem cell-derived cardiomyocytes.
Collapse
Affiliation(s)
- Alexandre J S Ribeiro
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translation Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States
| | - Brian D Guth
- Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co KG, Biberach an der Riss, Germany.,PreClinical Drug Development Platform (PCDDP), North-West University, Potchefstroom, South Africa
| | - Michael Engwall
- Safety Pharmacology and Animal Research Center, Amgen Research, Thousand Oaks, CA, United States
| | - Sandy Eldridge
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - C Michael Foley
- Department of Integrative Pharmacology, Integrated Sciences and Technology, AbbVie, North Chicago, IL, United States
| | - Liang Guo
- Laboratory of Investigative Toxicology, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Gary Gintant
- Department of Integrative Pharmacology, Integrated Sciences and Technology, AbbVie, North Chicago, IL, United States
| | - John Koerner
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translation Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States
| | - Stanley T Parish
- Health and Environmental Sciences Institute, Washington, DC, United States
| | - Jennifer B Pierson
- Health and Environmental Sciences Institute, Washington, DC, United States
| | - Mathew Brock
- Department of Safety Assessment, Genentech, South San Francisco, CA, United States
| | - Khuram W Chaudhary
- Global Safety Pharmacology, GlaxoSmithKline plc, Collegeville, PA, United States
| | - Yasunari Kanda
- Division of Pharmacology, National Institute of Health Sciences, Kanagawa, Japan
| | - Brian Berridge
- National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| |
Collapse
|
144
|
Korf-Klingebiel M, Reboll MR, Grote K, Schleiner H, Wang Y, Wu X, Klede S, Mikhed Y, Bauersachs J, Klintschar M, Rudat C, Kispert A, Niessen HW, Lübke T, Dierks T, Wollert KC. Heparan Sulfate-Editing Extracellular Sulfatases Enhance VEGF Bioavailability for Ischemic Heart Repair. Circ Res 2019; 125:787-801. [PMID: 31434553 DOI: 10.1161/circresaha.119.315023] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
RATIONALE Mechanistic insight into the inflammatory response after acute myocardial infarction may inform new molecularly targeted treatment strategies to prevent chronic heart failure. OBJECTIVE We identified the sulfatase SULF2 in an in silico secretome analysis in bone marrow cells from patients with acute myocardial infarction and detected increased sulfatase activity in myocardial autopsy samples. SULF2 (Sulf2 in mice) and its isoform SULF1 (Sulf1) act as endosulfatases removing 6-O-sulfate groups from heparan sulfate (HS) in the extracellular space, thus eliminating docking sites for HS-binding proteins. We hypothesized that the Sulfs have a role in tissue repair after myocardial infarction. METHODS AND RESULTS Both Sulfs were dynamically upregulated after coronary artery ligation in mice, attaining peak expression and activity levels during the first week after injury. Sulf2 was expressed by monocytes and macrophages, Sulf1 by endothelial cells and fibroblasts. Infarct border zone capillarization was impaired, scar size increased, and cardiac dysfunction more pronounced in mice with a genetic deletion of either Sulf1 or Sulf2. Studies in bone marrow-chimeric Sulf-deficient mice and Sulf-deficient cardiac endothelial cells established that inflammatory cell-derived Sulf2 and endothelial cell-autonomous Sulf1 promote angiogenesis. Mechanistically, both Sulfs reduced HS sulfation in the infarcted myocardium, thereby diminishing Vegfa (vascular endothelial growth factor A) interaction with HS. Along this line, both Sulfs rendered infarcted mouse heart explants responsive to the angiogenic effects of HS-binding Vegfa164 but did not modulate the angiogenic effects of non-HS-binding Vegfa120. Treating wild-type mice systemically with the small molecule HS-antagonist surfen (bis-2-methyl-4-amino-quinolyl-6-carbamide, 1 mg/kg/day) for 7 days after myocardial infarction released Vegfa from HS, enhanced infarct border-zone capillarization, and exerted sustained beneficial effects on cardiac function and survival. CONCLUSIONS These findings establish HS-editing Sulfs as critical inducers of postinfarction angiogenesis and identify HS sulfation as a therapeutic target for ischemic tissue repair.
Collapse
Affiliation(s)
- Mortimer Korf-Klingebiel
- From the Division of Molecular and Translational Cardiology (M.K.-K., M.R.R., K.G., H.S., Y.W., X.W., S.K., Y.M., K.C.W.), Hannover Medical School, Germany.,Department of Cardiology and Angiology (M.K.-K., M.R.R., K.G., H.S., Y.W., X.W., S.K., Y.M., J.B., K.C.W.), Hannover Medical School, Germany
| | - Marc R Reboll
- From the Division of Molecular and Translational Cardiology (M.K.-K., M.R.R., K.G., H.S., Y.W., X.W., S.K., Y.M., K.C.W.), Hannover Medical School, Germany.,Department of Cardiology and Angiology (M.K.-K., M.R.R., K.G., H.S., Y.W., X.W., S.K., Y.M., J.B., K.C.W.), Hannover Medical School, Germany
| | - Karsten Grote
- From the Division of Molecular and Translational Cardiology (M.K.-K., M.R.R., K.G., H.S., Y.W., X.W., S.K., Y.M., K.C.W.), Hannover Medical School, Germany.,Department of Cardiology and Angiology (M.K.-K., M.R.R., K.G., H.S., Y.W., X.W., S.K., Y.M., J.B., K.C.W.), Hannover Medical School, Germany
| | - Hauke Schleiner
- From the Division of Molecular and Translational Cardiology (M.K.-K., M.R.R., K.G., H.S., Y.W., X.W., S.K., Y.M., K.C.W.), Hannover Medical School, Germany.,Department of Cardiology and Angiology (M.K.-K., M.R.R., K.G., H.S., Y.W., X.W., S.K., Y.M., J.B., K.C.W.), Hannover Medical School, Germany
| | - Yong Wang
- From the Division of Molecular and Translational Cardiology (M.K.-K., M.R.R., K.G., H.S., Y.W., X.W., S.K., Y.M., K.C.W.), Hannover Medical School, Germany.,Department of Cardiology and Angiology (M.K.-K., M.R.R., K.G., H.S., Y.W., X.W., S.K., Y.M., J.B., K.C.W.), Hannover Medical School, Germany
| | - Xuekun Wu
- From the Division of Molecular and Translational Cardiology (M.K.-K., M.R.R., K.G., H.S., Y.W., X.W., S.K., Y.M., K.C.W.), Hannover Medical School, Germany.,Department of Cardiology and Angiology (M.K.-K., M.R.R., K.G., H.S., Y.W., X.W., S.K., Y.M., J.B., K.C.W.), Hannover Medical School, Germany
| | - Stefanie Klede
- From the Division of Molecular and Translational Cardiology (M.K.-K., M.R.R., K.G., H.S., Y.W., X.W., S.K., Y.M., K.C.W.), Hannover Medical School, Germany.,Department of Cardiology and Angiology (M.K.-K., M.R.R., K.G., H.S., Y.W., X.W., S.K., Y.M., J.B., K.C.W.), Hannover Medical School, Germany
| | - Yuliya Mikhed
- From the Division of Molecular and Translational Cardiology (M.K.-K., M.R.R., K.G., H.S., Y.W., X.W., S.K., Y.M., K.C.W.), Hannover Medical School, Germany.,Department of Cardiology and Angiology (M.K.-K., M.R.R., K.G., H.S., Y.W., X.W., S.K., Y.M., J.B., K.C.W.), Hannover Medical School, Germany
| | - Johann Bauersachs
- Department of Cardiology and Angiology (M.K.-K., M.R.R., K.G., H.S., Y.W., X.W., S.K., Y.M., J.B., K.C.W.), Hannover Medical School, Germany
| | | | - Carsten Rudat
- Institute of Molecular Biology (C.R., A.K.), Hannover Medical School, Germany
| | - Andreas Kispert
- Institute of Molecular Biology (C.R., A.K.), Hannover Medical School, Germany
| | - Hans W Niessen
- Department of Pathology and Department of Cardiac Surgery, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands (H.W.N.)
| | - Torben Lübke
- Department of Chemistry, Biochemistry I, Bielefeld University, Germany (T.L., T.D.)
| | - Thomas Dierks
- Department of Chemistry, Biochemistry I, Bielefeld University, Germany (T.L., T.D.)
| | - Kai C Wollert
- From the Division of Molecular and Translational Cardiology (M.K.-K., M.R.R., K.G., H.S., Y.W., X.W., S.K., Y.M., K.C.W.), Hannover Medical School, Germany.,Department of Cardiology and Angiology (M.K.-K., M.R.R., K.G., H.S., Y.W., X.W., S.K., Y.M., J.B., K.C.W.), Hannover Medical School, Germany
| |
Collapse
|
145
|
Cardiac Fibroblasts and the Extracellular Matrix in Regenerative and Nonregenerative Hearts. J Cardiovasc Dev Dis 2019; 6:jcdd6030029. [PMID: 31434209 PMCID: PMC6787677 DOI: 10.3390/jcdd6030029] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/15/2019] [Accepted: 08/19/2019] [Indexed: 12/15/2022] Open
Abstract
During the postnatal period in mammals, the heart undergoes significant remodeling and cardiac cells progressively lose their embryonic characteristics. At the same time, notable changes in the extracellular matrix (ECM) composition occur with a reduction in the components considered facilitators of cellular proliferation, including fibronectin and periostin, and an increase in collagen fiber organization. Not much is known about the postnatal cardiac fibroblast which is responsible for producing the majority of the ECM, but during the days after birth, mammalian hearts can regenerate after injury with only a transient scar formation. This phenomenon has also been described in adult urodeles and teleosts, but relatively little is known about their cardiac fibroblasts or ECM composition. Here, we review the pre-existing knowledge about cardiac fibroblasts and the ECM during the postnatal period in mammals as well as in regenerative environments.
Collapse
|
146
|
Leitolis A, Robert AW, Pereira IT, Correa A, Stimamiglio MA. Cardiomyogenesis Modeling Using Pluripotent Stem Cells: The Role of Microenvironmental Signaling. Front Cell Dev Biol 2019; 7:164. [PMID: 31448277 PMCID: PMC6695570 DOI: 10.3389/fcell.2019.00164] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/29/2019] [Indexed: 12/20/2022] Open
Abstract
Pluripotent stem cells (PSC) can be used as a model to study cardiomyogenic differentiation. In vitro modeling can reproduce cardiac development through modulation of some key signaling pathways. Therefore, many studies make use of this strategy to better understand cardiomyogenesis complexity and to determine possible ways to modulate cell fate. However, challenges remain regarding efficiency of differentiation protocols, cardiomyocyte (CM) maturation and therapeutic applications. Considering that the extracellular milieu is crucial for cellular behavior control, cardiac niche studies, such as those identifying secreted molecules from adult or neonatal tissues, allow the identification of extracellular factors that may contribute to CM differentiation and maturation. This review will focus on cardiomyogenesis modeling using PSC and the elements involved in cardiac microenvironmental signaling (the secretome - extracellular vesicles, extracellular matrix and soluble factors) that may contribute to CM specification and maturation.
Collapse
Affiliation(s)
- Amanda Leitolis
- Stem Cell Basic Biology Laboratory, Carlos Chagas Institute, FIOCRUZ-PR, Curitiba, Brazil
| | - Anny W Robert
- Stem Cell Basic Biology Laboratory, Carlos Chagas Institute, FIOCRUZ-PR, Curitiba, Brazil
| | - Isabela T Pereira
- Stem Cell Basic Biology Laboratory, Carlos Chagas Institute, FIOCRUZ-PR, Curitiba, Brazil
| | - Alejandro Correa
- Stem Cell Basic Biology Laboratory, Carlos Chagas Institute, FIOCRUZ-PR, Curitiba, Brazil
| | - Marco A Stimamiglio
- Stem Cell Basic Biology Laboratory, Carlos Chagas Institute, FIOCRUZ-PR, Curitiba, Brazil
| |
Collapse
|
147
|
Joshi J, Abnavi MD, Kothapalli CR. Synthesis and secretome release by human bone marrow mesenchymal stem cell spheroids within three-dimensional collagen hydrogels: Integrating experiments and modelling. J Tissue Eng Regen Med 2019; 13:1923-1937. [PMID: 31350819 DOI: 10.1002/term.2943] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/09/2019] [Accepted: 07/17/2019] [Indexed: 12/12/2022]
Abstract
Myocardial infarction results in loss of cardiac cell types, inflammation, extracellular matrix (ECM) degradation, and fibrotic scar. Transplantation of bone marrow-derived mesenchymal stem cells (BM-MSCs) is being explored as they could differentiate into cardiomyocyte-like cells, integrate into host tissue, and enhance resident cell activity. The ability of these cells to restore lost ECM, remodel the inflammatory scar tissue, and repair the injured myocardium remains unexplored. We here elucidated the synthesis and deposition of ECM (e.g., elastin, sulfated glycosaminoglycans, hyaluronan, collagen type III, laminin, fibrillin, lysyl oxidase, and nitric oxide synthases), matrix metalloproteinases (MMPs) and their inhibitors (TIMPs), and other secretome (cytokines, chemokines, and growth factors) in adult human BM-MSC spheroid cultures within three-dimensional collagen gels. The roles of species-specific type I collagen and 5-azacytadine were assessed over a 28-day period. Results revealed that human collagen (but not rat-derived) suppressed MSC proliferation and survival, and MSCs synthesized and released a variety of ECM proteins and secretome over the 28 days. Matrix deposition is at least an order of magnitude lower than their release levels at every time point, most possibly due to elevated MMP levels and interleukins with a concomitant decrease in TIMPs. Matrix synthesis over the 28-day period was fitted to a competitive inhibition form of Michaelis-Menten kinetics, and the production and decay rates of ECM, MMPs, and TIMPs, along with the kinetic model parameters quantified. Such an integrated experimental and modelling approach would help elucidate the critical roles of various parameters (e.g., cell encapsulation and delivery vehicles) in stem cell-based transplantation therapies.
Collapse
Affiliation(s)
- Jyotsna Joshi
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH, USA
| | | | | |
Collapse
|
148
|
Glycation-induced modification of tissue-specific ECM proteins: A pathophysiological mechanism in degenerative diseases. Biochim Biophys Acta Gen Subj 2019; 1863:129411. [PMID: 31400438 DOI: 10.1016/j.bbagen.2019.08.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/29/2019] [Accepted: 08/05/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Glycation driven generation of advanced glycation end products (AGEs) and their patho-physiological role in human degenerative diseases has remained one of the thrust areas in the mainstream of disease biology. Glycation of extracellular matrix (ECM) proteins have deleterious effect on the mechanical and functional properties of tissues. Owing to the adverse pathophysiological concerns of glycation, there is a need to decipher the underlying mechanisms. SCOPE OF REVIEW AGE-modified ECM proteins affect the cell in the vicinity by altering protein structure-function, matrix-matrix or matrix-cell interaction and by activating signalling pathway through receptor for AGE. This review is intended for addressing the AGE-induced modification of tissue-specific ECM proteins and its implication in the pathogenesis of various organ-specific human ailments. MAJOR CONCLUSIONS The glycation affects the canonical cell behaviour due to alteration in the interaction of glycated ECM with receptors like integrins and discodin domain, and the signalling cues generated subsequently affect the downstream signalling pathways. Consequently, the variation of structural and functional properties of tissues due to matrix glycation helps in the initiation or progression of the disease condition. GENERAL SIGNIFICANCE This review offers comprehensive knowledge about the remodelling of glycation induced ECM and tissue-specific pathological concerns. As glycation of ECM affects the normal tissues and cell behaviour, the scientific discourse may also provide cues for developing candidate drugs that may help in attenuating the adverse effects of AGEs and perhaps open a research window of tailoring novel strategies for the management of glycation induced human degenerative diseases.
Collapse
|
149
|
Yin 殷晓科 X, Wanga S, Fellows AL, Barallobre-Barreiro J, Lu R, Davaapil H, Franken R, Fava M, Baig F, Skroblin P, Xing Q, Koolbergen DR, Groenink M, Zwinderman AH, Balm R, de Vries CJM, Mulder BJM, Viner R, Jahangiri M, Reinhardt DP, Sinha S, de Waard V, Mayr M. Glycoproteomic Analysis of the Aortic Extracellular Matrix in Marfan Patients. Arterioscler Thromb Vasc Biol 2019; 39:1859-1873. [PMID: 31315432 PMCID: PMC6727943 DOI: 10.1161/atvbaha.118.312175] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Supplemental Digital Content is available in the text. Marfan syndrome (MFS) is caused by mutations in FBN1 (fibrillin-1), an extracellular matrix (ECM) component, which is modified post-translationally by glycosylation. This study aimed to characterize the glycoproteome of the aortic ECM from patients with MFS and relate it to aortopathy.
Collapse
Affiliation(s)
- Xiaoke Yin 殷晓科
- From the King's British Heart Foundation Centre, King's College London, United Kingdom (X.Y., A.L.F., J.B.-B., R.L., M.F., F.B., P.S., Q.X., M.M.)
| | - Shaynah Wanga
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (S.W., C.J.M.d.V., V.d.W.), Amsterdam UMC, University of Amsterdam, the Netherlands.,Department of Cardiology (S.W., R.F., M.G., B.J.M.M.), Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Adam L Fellows
- From the King's British Heart Foundation Centre, King's College London, United Kingdom (X.Y., A.L.F., J.B.-B., R.L., M.F., F.B., P.S., Q.X., M.M.)
| | - Javier Barallobre-Barreiro
- From the King's British Heart Foundation Centre, King's College London, United Kingdom (X.Y., A.L.F., J.B.-B., R.L., M.F., F.B., P.S., Q.X., M.M.)
| | - Ruifang Lu
- From the King's British Heart Foundation Centre, King's College London, United Kingdom (X.Y., A.L.F., J.B.-B., R.L., M.F., F.B., P.S., Q.X., M.M.)
| | - Hongorzul Davaapil
- Department of Medicine, Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, United Kingdom (H.D., S.S.)
| | - Romy Franken
- Department of Cardiology (S.W., R.F., M.G., B.J.M.M.), Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Marika Fava
- From the King's British Heart Foundation Centre, King's College London, United Kingdom (X.Y., A.L.F., J.B.-B., R.L., M.F., F.B., P.S., Q.X., M.M.)
| | - Ferheen Baig
- From the King's British Heart Foundation Centre, King's College London, United Kingdom (X.Y., A.L.F., J.B.-B., R.L., M.F., F.B., P.S., Q.X., M.M.)
| | - Philipp Skroblin
- From the King's British Heart Foundation Centre, King's College London, United Kingdom (X.Y., A.L.F., J.B.-B., R.L., M.F., F.B., P.S., Q.X., M.M.)
| | - Qiuru Xing
- From the King's British Heart Foundation Centre, King's College London, United Kingdom (X.Y., A.L.F., J.B.-B., R.L., M.F., F.B., P.S., Q.X., M.M.)
| | - David R Koolbergen
- Department of Cardiothoracic Surgery (D.R.K.), Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Maarten Groenink
- Department of Cardiology (S.W., R.F., M.G., B.J.M.M.), Amsterdam UMC, University of Amsterdam, the Netherlands.,Department of Radiology (M.G.), Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Aeilko H Zwinderman
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics (A.H.Z.), Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Ron Balm
- Department of Surgery (R.B.), Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Carlie J M de Vries
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (S.W., C.J.M.d.V., V.d.W.), Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Barbara J M Mulder
- Department of Cardiology (S.W., R.F., M.G., B.J.M.M.), Amsterdam UMC, University of Amsterdam, the Netherlands.,Netherlands Heart Institute, Utrecht (B.J.M.M.)
| | - Rosa Viner
- Thermo Fisher Scientific, San Jose, CA (R.V.)
| | | | - Dieter P Reinhardt
- Faculty of Medicine, Department of Anatomy and Cell Biology and Faculty of Dentistry, McGill University, Montreal, Canada (D.P.R.)
| | - Sanjay Sinha
- Department of Medicine, Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, United Kingdom (H.D., S.S.)
| | - Vivian de Waard
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (S.W., C.J.M.d.V., V.d.W.), Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Manuel Mayr
- From the King's British Heart Foundation Centre, King's College London, United Kingdom (X.Y., A.L.F., J.B.-B., R.L., M.F., F.B., P.S., Q.X., M.M.)
| |
Collapse
|
150
|
Nijst P, Olinevich M, Hilkens P, Martens P, Dupont M, Tang WHW, Lambrichts I, Noben JP, Mullens W. Dermal Interstitial Alterations in Patients With Heart Failure and Reduced Ejection Fraction: A Potential Contributor to Fluid Accumulation? Circ Heart Fail 2019; 11:e004763. [PMID: 30002114 DOI: 10.1161/circheartfailure.117.004763] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 06/18/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND Large networks of interstitial glycosaminoglycans help to regulate water and electrolyte homeostasis. The relation between dermal interstitial alterations and occurrence of edema in heart failure patients with reduced ejection fraction (HFrEF) is unknown. We hypothesize that in HFrEF patients (1) interstitial glycosaminoglycan density is increased, (2) changes in the interstitial glycosaminoglycan network are associated with interstitial fluid accumulation, and (3) there is a link between the interstitial glycosaminoglycan network and the renin-angiotensin-aldosterone system. METHODS AND RESULTS Two punch biopsies of the skin were obtained in healthy subjects (n=18) and HFrEF patients (n=29). Alcian blue staining and immunostaining for the angiotensin II type 1 receptor was performed. After obtaining tissue water content, total interstitial glycosaminoglycan (uronic acid) and sulfated glycosaminoglycan were quantified. A venous blood sample, clinical examination, and echocardiography were obtained. A significantly higher interstitial glycosaminoglycan content was observed in HFrEF patients compared with healthy subjects (uronic acid: 13.0±4.2 versus 9.6±1.6 μg/mg; P=0.002; sulfated glycosaminoglycan: 14.1 [11.7; 18.1] versus 10.0 [9.1; 10.8] μg/mg; P<0.001). Uronic acid and sulfated glycosaminoglycan density were strongly associated with tissue water content and peripheral edema (uronic acid: ρ=0.66; P<0.0001 and sulfated glycosaminoglycan: τ=0.58; P<0.0001). Expression of the angiotensin II type 1 receptor was found on dermal cells, although use of angiotensin-converting enzyme inhibitors/angiotensin receptor blocker was associated with significantly lower levels of interstitial glycosaminoglycans in HFrEF patients. CONCLUSIONS Interstitial glycosaminoglycan concentration is significantly increased in HFrEF patients compared with healthy subjects and correlated with tissue water content and clinical signs of volume overload. A better appreciation of the interstitial compartment might improve management of volume overload in HF.
Collapse
Affiliation(s)
- Petra Nijst
- Department of Cardiology, Ziekenhuis Oost-Limburg, Genk, Belgium (P.N., P.M., M.D., W.M.)
- Doctoral School for Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium (P.N., P.H., P.M.)
| | - Mikhail Olinevich
- Biomedical Research Institute and Transnational University Limburg, School of Life Sciences, Hasselt University, Belgium (P.H., I.L., J.-P.N., W.M., M.O.)
| | - Petra Hilkens
- Doctoral School for Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium (P.N., P.H., P.M.)
- Biomedical Research Institute and Transnational University Limburg, School of Life Sciences, Hasselt University, Belgium (P.H., I.L., J.-P.N., W.M., M.O.)
| | - Pieter Martens
- Department of Cardiology, Ziekenhuis Oost-Limburg, Genk, Belgium (P.N., P.M., M.D., W.M.)
- Doctoral School for Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium (P.N., P.H., P.M.)
| | - Matthias Dupont
- Department of Cardiology, Ziekenhuis Oost-Limburg, Genk, Belgium (P.N., P.M., M.D., W.M.)
| | - W H Wilson Tang
- Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic, OH (W.H.W.T.)
| | - Ivo Lambrichts
- Biomedical Research Institute and Transnational University Limburg, School of Life Sciences, Hasselt University, Belgium (P.H., I.L., J.-P.N., W.M., M.O.)
| | - Jean-Paul Noben
- Biomedical Research Institute and Transnational University Limburg, School of Life Sciences, Hasselt University, Belgium (P.H., I.L., J.-P.N., W.M., M.O.)
| | - Wilfried Mullens
- Department of Cardiology, Ziekenhuis Oost-Limburg, Genk, Belgium (P.N., P.M., M.D., W.M.).
- Biomedical Research Institute and Transnational University Limburg, School of Life Sciences, Hasselt University, Belgium (P.H., I.L., J.-P.N., W.M., M.O.)
| |
Collapse
|