101
|
Das PK, Rakib MA, Khanam JA, Pillai S, Islam F. Novel Therapeutics Against Breast Cancer Stem Cells by Targeting Surface Markers and Signaling Pathways. Curr Stem Cell Res Ther 2019; 14:669-682. [DOI: 10.2174/1574888x14666190628104721] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 05/27/2019] [Accepted: 06/13/2019] [Indexed: 12/12/2022]
Abstract
Background:
Breast cancer remains to be one of the deadliest forms of cancers, owing to
the drug resistance and tumor relapse caused by breast cancer stem cells (BCSCs) despite notable advancements
in radio-chemotherapies.
Objective:
To find out novel therapeutics against breast cancer stem cells by aiming surface markers
and signaling pathways.
Methods:
A systematic literature search was conducted through various electronic databases including,
Pubmed, Scopus, Google scholar using the keywords "BCSCs, surface markers, signaling pathways
and therapeutic options against breast cancer stem cell. Articles selected for the purpose of this review
were reviewed and extensively analyzed.
Results:
Novel therapeutic strategies include targeting BCSCs surface markers and aberrantly activated
signaling pathways or targeting their components, which play critical roles in self-renewal and defense,
have been shown to be significantly effective against breast cancer. In this review, we represent a
number of ways against BCSCs surface markers and hyper-activated signaling pathways to target this
highly malicious entity of breast cancer more effectively in order to make a feasible and useful strategy
for successful breast cancer treatment. In addition, we discuss some characteristics of BCSCs in disease
progression and therapy resistance.
Conclusion:
BCSCs involved in cancer pathogenesis, therapy resistance and cancer recurrence. Thus,
it is suggested that a multi-dimensional therapeutic approach by targeting surface markers and aberrantly
activated signaling pathways of BCSCs alone or in combination with each other could really be
worthwhile in the treatment of breast cancer.
Collapse
Affiliation(s)
- Plabon K. Das
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi-6205, Bangladesh
| | - Md. A. Rakib
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi-6205, Bangladesh
| | - Jahan A. Khanam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi-6205, Bangladesh
| | - Suja Pillai
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Farhadul Islam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi-6205, Bangladesh
| |
Collapse
|
102
|
Seitz CM, Schroeder S, Knopf P, Krahl AC, Hau J, Schleicher S, Martella M, Quintanilla-Martinez L, Kneilling M, Pichler B, Lang P, Atar D, Schilbach K, Handgretinger R, Schlegel P. GD2-targeted chimeric antigen receptor T cells prevent metastasis formation by elimination of breast cancer stem-like cells. Oncoimmunology 2019; 9:1683345. [PMID: 32002293 PMCID: PMC6959445 DOI: 10.1080/2162402x.2019.1683345] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 10/16/2019] [Accepted: 10/16/2019] [Indexed: 02/07/2023] Open
Abstract
Expression of the disialoganglioside GD2 has been identified as a marker antigen associated with a breast cancer stem-like cell (BCSC) phenotype. Here, we report on the evaluation of GD2 as a BCSC-specific target antigen for immunotherapy. GD2 expression was confirmed at variable degree in a set of breast cancer cell lines, predominantly in triple-negative breast cancer (TNBC). To target GD2, we have generated novel anti-GD2 chimeric antigen receptors (GD2-CAR), based on single-chain variable fragments (scFv) derived from the monoclonal antibody (mAb) ch14.18, also known as dinutuximab beta. Expressed on T cells, GD2-CARs mediated specific GD2-dependent T-cell activation and target cell lysis. In contrast to previously described GD2-CARs, no signs of exhaustion by tonic signaling were found. Importantly, application of GD2-CAR expressing T cells (GD2-CAR-T) in an orthotopic xenograft model of TNBC (MDA-MB-231) halted local tumor progression and completely prevented lung metastasis formation. In line with the BCSC model, GD2 expression was only found in a subpopulation (4-6%) of MDA-MB-231 cells before injection. Significant expansion of GD2-CAR-T in tumor-bearing mice as well as T-cell infiltrates in the primary tumor and the lungs were found, indicating site-specific activation of GD2-CAR-T. Our data strongly support previous findings of GD2 as a BCSC-associated antigen. GD2-targeted immunotherapies have been extensively studied in human. In conclusion, GD2-CAR-T should be considered a promising novel approach for GD2-positive breast cancer, especially to eliminate disseminated tumor cells and prevent metastasis formation.
Collapse
Affiliation(s)
- Christian M Seitz
- Department of Pediatric Hematology and Oncology, University Children's Hospital Tuebingen, Tuebingen, Germany
| | - Sarah Schroeder
- Department of Pediatric Hematology and Oncology, University Children's Hospital Tuebingen, Tuebingen, Germany
| | - Philipp Knopf
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Ann-Christin Krahl
- Department of Pediatric Hematology and Oncology, University Children's Hospital Tuebingen, Tuebingen, Germany
| | - Jana Hau
- Department of Pediatric Hematology and Oncology, University Children's Hospital Tuebingen, Tuebingen, Germany
| | - Sabine Schleicher
- Department of Pediatric Hematology and Oncology, University Children's Hospital Tuebingen, Tuebingen, Germany
| | - Manuela Martella
- Department of Pathology, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | | | - Manfred Kneilling
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Bernd Pichler
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen, Germany.,Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, Tuebingen, Germany
| | - Peter Lang
- Department of Pediatric Hematology and Oncology, University Children's Hospital Tuebingen, Tuebingen, Germany
| | - Daniel Atar
- Department of Pediatric Hematology and Oncology, University Children's Hospital Tuebingen, Tuebingen, Germany
| | - Karin Schilbach
- Department of Pediatric Hematology and Oncology, University Children's Hospital Tuebingen, Tuebingen, Germany
| | - Rupert Handgretinger
- Department of Pediatric Hematology and Oncology, University Children's Hospital Tuebingen, Tuebingen, Germany.,Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, Tuebingen, Germany
| | - Patrick Schlegel
- Department of Pediatric Hematology and Oncology, University Children's Hospital Tuebingen, Tuebingen, Germany.,Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
103
|
Cavdarli S, Groux-Degroote S, Delannoy P. Gangliosides: The Double-Edge Sword of Neuro-Ectodermal Derived Tumors. Biomolecules 2019; 9:E311. [PMID: 31357634 PMCID: PMC6723632 DOI: 10.3390/biom9080311] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 12/12/2022] Open
Abstract
Gangliosides, the glycosphingolipids carrying one or several sialic acid residues, are mostly localized at the plasma membrane in lipid raft domains and implicated in many cellular signaling pathways mostly by interacting with tyrosine kinase receptors. Gangliosides are divided into four series according to the number of sialic acid residues, which can be also modified by O-acetylation. Both ganglioside expression and sialic acid modifications can be modified in pathological conditions such as cancer, which can induce either pro-cancerous or anti-cancerous effects. In this review, we summarize the specific functions of gangliosides in neuro-ectodermal derived tumors, and their roles in reprogramming the lipidomic profile of cell membrane occurring with the induction of epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Sumeyye Cavdarli
- Université de Lille, CNRS, UMR8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F59000 Lille, France
| | - Sophie Groux-Degroote
- Université de Lille, CNRS, UMR8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F59000 Lille, France
| | - Philippe Delannoy
- Université de Lille, CNRS, UMR8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F59000 Lille, France.
| |
Collapse
|
104
|
Scioli MG, Storti G, D'Amico F, Gentile P, Fabbri G, Cervelli V, Orlandi A. The Role of Breast Cancer Stem Cells as a Prognostic Marker and a Target to Improve the Efficacy of Breast Cancer Therapy. Cancers (Basel) 2019; 11:cancers11071021. [PMID: 31330794 PMCID: PMC6678191 DOI: 10.3390/cancers11071021] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/13/2019] [Accepted: 07/16/2019] [Indexed: 02/06/2023] Open
Abstract
Breast cancer is the most common form of tumor in women and the leading cause of cancer-related mortality. Even though the major cellular burden in breast cancer is constituted by the so-called bulk tumor cells, another cell subpopulation named cancer stem cells (CSCs) has been identified. The latter have stem features, a self-renewal capacity, and the ability to regenerate the bulk tumor cells. CSCs have been described in several cancer types but breast cancer stem cells (BCSCs) were among the first to be identified and characterized. Therefore, many efforts have been put into the phenotypic characterization of BCSCs and the study of their potential as prognostic indicators and therapeutic targets. Many dysregulated pathways in BCSCs are involved in the epithelial-mesenchymal transition (EMT) and are found up-regulated in circulating tumor cells (CTCs), another important cancer cell subpopulation, that shed into the vasculature and disseminate along the body to give metastases. Conventional therapies fail at eliminating BCSCs because of their quiescent state that gives them therapy resistance. Based on this evidence, preclinical studies and clinical trials have tried to establish novel therapeutic regimens aiming to eradicate BCSCs. Markers useful for BCSC identification could also be possible therapeutic methods against BCSCs. New approaches in drug delivery combined with gene targeting, immunomodulatory, and cell-based therapies could be promising tools for developing effective CSC-targeted drugs against breast cancer.
Collapse
Affiliation(s)
- Maria Giovanna Scioli
- Anatomic Pathology Institute, Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Roma, Italy
| | - Gabriele Storti
- Plastic and Reconstructive Surgery, Department of Surgical Sciences, University of Rome Tor Vergata, 00133 Roma, Italy
| | - Federico D'Amico
- Anatomic Pathology Institute, Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Roma, Italy
| | - Pietro Gentile
- Plastic and Reconstructive Surgery, Department of Surgical Sciences, University of Rome Tor Vergata, 00133 Roma, Italy
| | - Giulia Fabbri
- Anatomic Pathology Institute, Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Roma, Italy
| | - Valerio Cervelli
- Plastic and Reconstructive Surgery, Department of Surgical Sciences, University of Rome Tor Vergata, 00133 Roma, Italy
| | - Augusto Orlandi
- Anatomic Pathology Institute, Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Roma, Italy.
| |
Collapse
|
105
|
Mansoori M, Roudi R, Abbasi A, Abolhasani M, Abdi Rad I, Shariftabrizi A, Madjd Z. High GD2 expression defines breast cancer cells with enhanced invasiveness. Exp Mol Pathol 2019; 109:25-35. [PMID: 31075227 DOI: 10.1016/j.yexmp.2019.05.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 02/08/2019] [Accepted: 05/02/2019] [Indexed: 01/16/2023]
Abstract
INTRODUCTION Breast cancer is the most frequently diagnosed cancer among women. Cancer stem cells (CSCs) are suggested to be responsible for tumor initiation, progression, metastasis, recurrence and drug resistance. This study was conducted to evaluate the clinical significance of GD2, a newly suggested CSC marker and two other traditional CSC markers, CD44 and CD24 in breast cancer patients. MATERIAL AND METHODS A total of 168 primary breast cancer tissues were evaluated in terms of GD2, CD44 and CD24 expression using tissue microarray. Then, the correlation of expression levels of these markers with patients' clinicopathological characteristics was assessed. RESULTS Higher GD2 expression was mainly found in patients with advanced histological grade (p = 0.02), presence of lymph node invasion (p = 0.04), larger size of tumors (p = 0.04) and older age (p = 0.04). Breast cancer samples with advanced histological grade also showed higher CD44 (p = 0.03) and CD24 expression (p = 0.05). A significant positive association was found between increased CD24 expression and lymph node involvement (p = 0.01). Furthermore, GD2-high/CD44-high/CD24-low phenotype was frequently seen in breast cancer samples with positive lymph node involvement (p = 0.05). CONCLUSION In summary, increased expression of GD2 may define more aggressive tumor behavior in breast cancer. GD2 can well be considered as a diagnostic and prognostic marker in breast cancer.
Collapse
Affiliation(s)
- Maryam Mansoori
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Raheleh Roudi
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ata Abbasi
- Department of Pathology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Maryam Abolhasani
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran; Hasheminejad Kidney Center, Iran University of Medical Sciences, Tehran, Iran
| | - Isa Abdi Rad
- Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - A Shariftabrizi
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Nuclear Oncology, Memorial Sloan Kettering Cancer Center, New York, USA.
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
106
|
Tomar D, Yadav AS, Kumar D, Bhadauriya G, Kundu GC. Non-coding RNAs as potential therapeutic targets in breast cancer. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1863:194378. [PMID: 31048026 DOI: 10.1016/j.bbagrm.2019.04.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/15/2019] [Accepted: 04/23/2019] [Indexed: 12/15/2022]
Abstract
Paradigm shifting studies especially involving non-coding RNAs (ncRNAs) during last few decades have significantly changed the scientific perspectives regarding the complexity of cellular signalling pathways. Several studies have shown that the non-coding RNAs, initially ignored as transcriptional noise or products of erroneous transcription; actually regulate plethora of biological phenomena ranging from developmental processes to various diseases including cancer. Current strategies that are employed for the management of various cancers including that of breast fall short when their undesired side effects like Cancer Stem Cells (CSC) enrichment, low recurrence-free survival and development of drug resistance are taken into consideration. This review aims at exploring the potential role of ncRNAs as therapeutics in breast cancer, by providing a comprehensive understanding of their mechanism of action and function and their crucial contribution in regulating various aspects of breast cancer progression such as cell proliferation, angiogenesis, EMT, CSCs, drug resistance and metastasis. In addition, we also provide information about various strategies that can be employed or are under development to explore them as potential moieties that may be used for therapeutic intervention in breast cancer.
Collapse
Affiliation(s)
- Deepti Tomar
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science (NCCS), Pune, India.
| | - Amit S Yadav
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science (NCCS), Pune, India.
| | - Dhiraj Kumar
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.
| | - Garima Bhadauriya
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science (NCCS), Pune, India
| | - Gopal C Kundu
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science (NCCS), Pune, India.
| |
Collapse
|
107
|
Jagust P, de Luxán-Delgado B, Parejo-Alonso B, Sancho P. Metabolism-Based Therapeutic Strategies Targeting Cancer Stem Cells. Front Pharmacol 2019; 10:203. [PMID: 30967773 PMCID: PMC6438930 DOI: 10.3389/fphar.2019.00203] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/18/2019] [Indexed: 02/02/2023] Open
Abstract
Cancer heterogeneity constitutes the major source of disease progression and therapy failure. Tumors comprise functionally diverse subpopulations, with cancer stem cells (CSCs) as the source of this heterogeneity. Since these cells bear in vivo tumorigenicity and metastatic potential, survive chemotherapy and drive relapse, its elimination may be the only way to achieve long-term survival in patients. Thanks to the great advances in the field over the last few years, we know now that cellular metabolism and stemness are highly intertwined in normal development and cancer. Indeed, CSCs show distinct metabolic features as compared with their more differentiated progenies, though their dominant metabolic phenotype varies across tumor entities, patients and even subclones within a tumor. Following initial works focused on glucose metabolism, current studies have unveiled particularities of CSC metabolism in terms of redox state, lipid metabolism and use of alternative fuels, such as amino acids or ketone bodies. In this review, we describe the different metabolic phenotypes attributed to CSCs with special focus on metabolism-based therapeutic strategies tested in preclinical and clinical settings.
Collapse
Affiliation(s)
- Petra Jagust
- Centre for Stem Cells in Cancer and Ageing, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Beatriz de Luxán-Delgado
- Centre for Stem Cells in Cancer and Ageing, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Beatriz Parejo-Alonso
- Traslational Research Unit, Hospital Universitario Miguel Servet, Aragon Institute for Health Research (IIS Aragon), Zaragoza, Spain
| | - Patricia Sancho
- Centre for Stem Cells in Cancer and Ageing, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom.,Traslational Research Unit, Hospital Universitario Miguel Servet, Aragon Institute for Health Research (IIS Aragon), Zaragoza, Spain
| |
Collapse
|
108
|
Kailayangiri S, Altvater B, Lesch S, Balbach S, Göttlich C, Kühnemundt J, Mikesch JH, Schelhaas S, Jamitzky S, Meltzer J, Farwick N, Greune L, Fluegge M, Kerl K, Lode HN, Siebert N, Müller I, Walles H, Hartmann W, Rossig C. EZH2 Inhibition in Ewing Sarcoma Upregulates G D2 Expression for Targeting with Gene-Modified T Cells. Mol Ther 2019; 27:933-946. [PMID: 30879952 DOI: 10.1016/j.ymthe.2019.02.014] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/15/2019] [Accepted: 02/15/2019] [Indexed: 12/21/2022] Open
Abstract
Chimeric antigen receptor (CAR) engineering of T cells allows one to specifically target tumor cells via cell surface antigens. A candidate target in Ewing sarcoma is the ganglioside GD2, but heterogeneic expression limits its value. Here we report that pharmacological inhibition of Enhancer of Zeste Homolog 2 (EZH2) at doses reducing H3K27 trimethylation, but not cell viability, selectively and reversibly induces GD2 surface expression in Ewing sarcoma cells. EZH2 in Ewing sarcoma cells directly binds to the promoter regions of genes encoding for two key enzymes of GD2 biosynthesis, and EZH2 inhibition enhances expression of these genes. GD2 surface expression in Ewing sarcoma cells is not associated with distinct in vitro proliferation, colony formation, chemosensitivity, or in vivo tumorigenicity. Moreover, disruption of GD2 synthesis by gene editing does not affect its in vitro behavior. EZH2 inhibitor treatment sensitizes Ewing sarcoma cells to effective cytolysis by GD2-specific CAR gene-modified T cells. In conclusion, we report a clinically applicable pharmacological approach for enhancing efficacy of adoptively transferred GD2-redirected T cells against Ewing sarcoma, by enabling recognition of tumor cells with low or negative target expression.
Collapse
Affiliation(s)
- Sareetha Kailayangiri
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, 48149 Münster, Germany
| | - Bianca Altvater
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, 48149 Münster, Germany
| | - Stefanie Lesch
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, 48149 Münster, Germany; Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, 80539 Munich, Germany
| | - Sebastian Balbach
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, 48149 Münster, Germany
| | - Claudia Göttlich
- Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, 97070 Würzburg, Germany; Fraunhofer Institute for Silicate Research (ISC), Translational Center Regenerative Therapies, 97082 Würzburg, Germany
| | - Johanna Kühnemundt
- Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, 97070 Würzburg, Germany; Fraunhofer Institute for Silicate Research (ISC), Translational Center Regenerative Therapies, 97082 Würzburg, Germany
| | - Jan-Henrik Mikesch
- Department of Medicine A, University Hospital Münster, 48149 Münster, Germany
| | - Sonja Schelhaas
- European Institute for Molecular Imaging (EIMI), University of Münster, 48149 Münster, Germany
| | - Silke Jamitzky
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, 48149 Münster, Germany
| | - Jutta Meltzer
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, 48149 Münster, Germany
| | - Nicole Farwick
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, 48149 Münster, Germany
| | - Lea Greune
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, 48149 Münster, Germany
| | - Maike Fluegge
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, 48149 Münster, Germany
| | - Kornelius Kerl
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, 48149 Münster, Germany
| | - Holger N Lode
- Pediatric Hematology and Oncology, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Nikolai Siebert
- Pediatric Hematology and Oncology, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Ingo Müller
- Division of Pediatric Stem Cell Transplantation and Immunology, Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Heike Walles
- Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, 97070 Würzburg, Germany; Fraunhofer Institute for Silicate Research (ISC), Translational Center Regenerative Therapies, 97082 Würzburg, Germany
| | - Wolfgang Hartmann
- Division of Translational Pathology, Gerhard-Domagk Institute for Pathology, University of Münster, 48149 Münster, Germany
| | - Claudia Rossig
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, 48149 Münster, Germany; Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Münster, 48149 Münster, Germany.
| |
Collapse
|
109
|
Yu H, Santra A, Li Y, McArthur JB, Ghosh T, Yang X, Wang PG, Chen X. Streamlined chemoenzymatic total synthesis of prioritized ganglioside cancer antigens. Org Biomol Chem 2019; 16:4076-4080. [PMID: 29789847 DOI: 10.1039/c8ob01087k] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A highly efficient streamlined chemoenzymatic strategy for total synthesis of four prioritized ganglioside cancer antigens GD2, GD3, fucosyl GM1, and GM3 from commercially available lactose and phytosphingosine is demonstrated. Lactosyl sphingosine (LacβSph) was chemically synthesized (on a 13 g scale), subjected to sequential one-pot multienzyme (OPME) glycosylation reactions with facile C18-cartridge purification, followed by improved acylation conditions to form target gangliosides, including fucosyl GM1 which has never been synthesized before.
Collapse
Affiliation(s)
- Hai Yu
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA.
| | | | | | | | | | | | | | | |
Collapse
|
110
|
Self-renewal signaling pathways in breast cancer stem cells. Int J Biochem Cell Biol 2019; 107:140-153. [DOI: 10.1016/j.biocel.2018.12.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/19/2018] [Accepted: 12/25/2018] [Indexed: 12/11/2022]
|
111
|
Aalam SMM, Beer PA, Kannan N. Assays for functionally defined normal and malignant mammary stem cells. Adv Cancer Res 2019; 141:129-174. [PMID: 30691682 DOI: 10.1016/bs.acr.2018.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The discovery of rare, heterogeneous self-renewing stem cells with shared developmental and molecular features within epithelial components of mammary gland and breast cancers has provided a conceptual framework to understand cellular composition of these tissues and mechanisms that control their number. These normal mammary epithelial stem cells (MaSCs) and breast cancer stem cells (BCSCs) were identified and analyzed using transplant assays (namely mammary repopulating unit (MRU) assay, mammary tumor-initiating cell (TIC) assay), which reveal their latent ability to regenerate respective normal and malignant epithelial tissues with self-renewing units displaying hierarchical cellular differentiation over multiple generations in recipient mice. "Next-generation" methods using "barcoded" normal and malignant mammary cells, with the help of next-generation sequencing (NGS) technology, have revealed hidden complexity and heterogeneous growth potential of MaSCs and BCSCs. Several single markers or combinations of markers have been reported to prospectively enrich MaSCs and BCSCs. Such markers and the extent to which they enrich for MaSCs and BCSCs activity require a critical appraisal. Also, knowledge of the functional assays and their limitations and harmonious reporting of results is a prerequisite to improve our understanding of MaSCs and BCSCs. This chapter describes evolution of the concept of MaSCs and BCSCs, and specific methodologies to investigate them.
Collapse
Affiliation(s)
- Syed Mohammed Musheer Aalam
- Laboratory of Stem Cell and Cancer Biology, Division of Experimental Pathology and Laboratory Medicine, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Philip Anthony Beer
- Laboratory of Stem Cell and Cancer Biology, Division of Experimental Pathology and Laboratory Medicine, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States; Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Nagarajan Kannan
- Laboratory of Stem Cell and Cancer Biology, Division of Experimental Pathology and Laboratory Medicine, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States.
| |
Collapse
|
112
|
Stein RG, Ebert S, Schlahsa L, Scholz CJ, Braun M, Hauck P, Horn E, Monoranu CM, Thiemann VJ, Wustrow MP, Häusler SF, Montalbán del Barrio I, Stüber TN, Wölfl M, Dietl J, Rosenwald A, Diessner JE, Wöckel A, Wischhusen J. Cognate Nonlytic Interactions between CD8+ T Cells and Breast Cancer Cells Induce Cancer Stem Cell–like Properties. Cancer Res 2019; 79:1507-1519. [DOI: 10.1158/0008-5472.can-18-0387] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 08/06/2018] [Accepted: 01/23/2019] [Indexed: 11/16/2022]
|
113
|
van den Bijgaart RJE, Kroesen M, Wassink M, Brok IC, Kers-Rebel ED, Boon L, Heise T, van Scherpenzeel M, Lefeber DJ, Boltje TJ, den Brok MH, Hoogerbrugge PM, Büll C, Adema GJ. Combined sialic acid and histone deacetylase (HDAC) inhibitor treatment up-regulates the neuroblastoma antigen GD2. J Biol Chem 2019; 294:4437-4449. [PMID: 30670592 DOI: 10.1074/jbc.ra118.002763] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 01/14/2019] [Indexed: 12/12/2022] Open
Abstract
Neuroblastoma cells highly express the disialoganglioside GD2, a tumor-associated carbohydrate antigen, which is only sparsely expressed on healthy tissue. GD2 is a primary target for the development of immunotherapy for neuroblastoma. Immunotherapy with monoclonal anti-GD2 antibodies has proven safety and efficacy in clinical trials and is included in the standard treatment for children with high-risk neuroblastoma. Strategies to modulate GD2 expression in neuroblastoma could further improve anti-GD2-targeted immunotherapy. Here, we report that the cellular sialylation pathway, as well as epigenetic reprogramming, strongly modulates GD2 expression in human and mouse neuroblastoma cell lines. Recognition of GD2 by the 14G2a antibody is sialic acid-dependent and was blocked with the fluorinated sialic acid mimetic Ac53FaxNeu5Ac. Interestingly, sialic acid supplementation using a cell-permeable sialic acid analogue (Ac5Neu5Ac) boosted GD2 expression without or with minor alterations in overall cell surface sialylation. Furthermore, sialic acid supplementation with Ac5Neu5Ac combined with various histone deacetylase (HDAC) inhibitors, including vorinostat, enhanced GD2 expression in neuroblastoma cells beyond their individual effects. Mechanistic studies revealed that Ac5Neu5Ac supplementation increased intracellular CMP-Neu5Ac concentrations, thereby providing higher substrate levels for sialyltransferases. Furthermore, HDAC inhibitor treatment increased mRNA expression of the sialyltransferases GM3 synthase (ST3GAL5) and GD3 synthase (ST8SIA1), both of which are involved in GD2 biosynthesis. Our findings reveal that sialic acid analogues and HDAC inhibitors enhance GD2 expression and could potentially be employed to boost anti-GD2 targeted immunotherapy in neuroblastoma patients.
Collapse
Affiliation(s)
- Renske J E van den Bijgaart
- From the Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Michiel Kroesen
- the Department of Radiotherapy, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Melissa Wassink
- From the Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Ingrid C Brok
- From the Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Esther D Kers-Rebel
- From the Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Louis Boon
- Bioceros, 3584 CM Utrecht, The Netherlands
| | - Torben Heise
- the Cluster for Molecular Chemistry, Institute for Molecules and Materials, Radboud University, 6525 AJ Nijmegen, The Netherlands
| | - Monique van Scherpenzeel
- the Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud University Medical Center, 6525 DA Nijmegen, the Netherlands, and
| | - Dirk J Lefeber
- the Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud University Medical Center, 6525 DA Nijmegen, the Netherlands, and
| | - Thomas J Boltje
- the Cluster for Molecular Chemistry, Institute for Molecules and Materials, Radboud University, 6525 AJ Nijmegen, The Netherlands
| | - Martijn H den Brok
- From the Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Peter M Hoogerbrugge
- the Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
| | - Christian Büll
- From the Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Gosse J Adema
- From the Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands,
| |
Collapse
|
114
|
Pola R, Král V, Filippov SK, Kaberov L, Etrych T, Sieglová I, Sedláček J, Fábry M, Pechar M. Polymer Cancerostatics Targeted by Recombinant Antibody Fragments to GD2-Positive Tumor Cells. Biomacromolecules 2018; 20:412-421. [PMID: 30485077 DOI: 10.1021/acs.biomac.8b01616] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A water-soluble polymer cancerostatic actively targeted against cancer cells expressing a disialoganglioside antigen GD2 was designed, synthesized and characterized. A polymer conjugate of an antitumor drug doxorubicin with a N-(2-hydroxypropyl)methacrylamide-based copolymer was specifically targeted against GD2 antigen-positive tumor cells using a recombinant single chain fragment (scFv) of an anti-GD2 monoclonal antibody. The targeting protein ligand was attached to the polymer-drug conjugate either via a covalent bond between the amino groups of the protein using a traditional nonspecific aminolytic reaction with a reactive polymer precursor or via a noncovalent but highly specific interaction between bungarotoxin covalently linked to the polymer and the recombinant scFv modified with a C-terminal bungarotoxin-binding peptide. The GD2 antigen binding activity and GD2-specific cytotoxicity of the targeted noncovalent polymer-scFv complex proved to be superior to the covalent polymer-scFv conjugate.
Collapse
Affiliation(s)
- Robert Pola
- Institute of Macromolecular Chemistry , Czech Academy of Sciences , Heyrovského nám. 2 , 162 06 Prague 6 , Czech Republic
| | - Vlastimil Král
- Institute of Molecular Genetics , Czech Academy of Sciences , Flemingovo nám. 2 , 166 10 Prague 6 , Czech Republic
| | - Sergey K Filippov
- Institute of Macromolecular Chemistry , Czech Academy of Sciences , Heyrovského nám. 2 , 162 06 Prague 6 , Czech Republic
| | - Leonid Kaberov
- Institute of Macromolecular Chemistry , Czech Academy of Sciences , Heyrovského nám. 2 , 162 06 Prague 6 , Czech Republic
| | - Tomáš Etrych
- Institute of Macromolecular Chemistry , Czech Academy of Sciences , Heyrovského nám. 2 , 162 06 Prague 6 , Czech Republic
| | - Irena Sieglová
- Institute of Molecular Genetics , Czech Academy of Sciences , Flemingovo nám. 2 , 166 10 Prague 6 , Czech Republic
| | - Juraj Sedláček
- Institute of Molecular Genetics , Czech Academy of Sciences , Flemingovo nám. 2 , 166 10 Prague 6 , Czech Republic
| | - Milan Fábry
- Institute of Molecular Genetics , Czech Academy of Sciences , Flemingovo nám. 2 , 166 10 Prague 6 , Czech Republic
| | - Michal Pechar
- Institute of Macromolecular Chemistry , Czech Academy of Sciences , Heyrovského nám. 2 , 162 06 Prague 6 , Czech Republic
| |
Collapse
|
115
|
Butti R, Gunasekaran VP, Kumar TVS, Banerjee P, Kundu GC. Breast cancer stem cells: Biology and therapeutic implications. Int J Biochem Cell Biol 2018; 107:38-52. [PMID: 30529656 DOI: 10.1016/j.biocel.2018.12.001] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/03/2018] [Accepted: 12/03/2018] [Indexed: 12/12/2022]
Abstract
Breast cancer remains to be a dreadful disease even with several advancements in radiation and chemotherapies, owing to the drug resistance and tumor relapse caused by breast cancer stem cells. Cancer stem cells are a minute population of cells of solid tumors which show self-renewal and differentiation properties as well as tumorigenic potential. Several signaling pathways including Notch, Hippo, Wnt and Hedgehog and tumor-stroma exchanges play a critical role in the self-renewal and differentiation of cancer stem cells in breast cancer. Cancer stem cells can grow anchorage-independent manner so they disseminate to different parts of the body to form secondary tumors. Cancer stem cells promote angiogenesis by dedifferentiating to endothelial cells as well as secreting proangiogenic and angiogenic factors. Moreover, multidrug resistance genes and drug efflux transporters expressed in breast cancer stem cells confer resistance to various conventional chemotherapeutic drugs. Indeed, these therapies are recognised to enhance the percent of cancer stem cell population in tumors leading to cancer relapse with increased aggressiveness. Hence, devising the therapeutic interventions to target cancer stem cells would be useful in increasing patients' survival rates. In addition, targeting the self-renewal pathways and tumor-stromal cross-talk helps in eradicating this population. Reversal of the cancer stem cell-mediated drug resistance would increase the sensitivity to various conventional drugs for the effective management of breast cancer. In this review, we have discussed the cancer stem cell origin and their involvement in angiogenesis, metastasis and therapy-resistance. We have also summarized different therapeutic approaches to eradicate the same for the successful treatment of breast cancer.
Collapse
Affiliation(s)
- Ramesh Butti
- National Centre for Cell Science, SP Pune University Campus, Pune 411007, India.
| | | | - Totakura V S Kumar
- National Centre for Cell Science, SP Pune University Campus, Pune 411007, India.
| | - Pinaki Banerjee
- National Centre for Cell Science, SP Pune University Campus, Pune 411007, India.
| | - Gopal C Kundu
- National Centre for Cell Science, SP Pune University Campus, Pune 411007, India.
| |
Collapse
|
116
|
Ohmi Y, Kambe M, Ohkawa Y, Hamamura K, Tajima O, Takeuchi R, Furukawa K, Furukawa K. Differential roles of gangliosides in malignant properties of melanomas. PLoS One 2018; 13:e0206881. [PMID: 30462668 PMCID: PMC6248923 DOI: 10.1371/journal.pone.0206881] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 10/22/2018] [Indexed: 12/18/2022] Open
Abstract
Ganglioside GD3 is widely expressed in human malignant melanomas, and has been reported to be involved in the increased cell proliferation and invasion. In this study, we established GM3-, GM2-, GM1-, GD3-, or GD2-expressing melanoma cell lines by transfecting cDNAs of glyscosyltransferases, and effects of individual gangliosides on the cell phenotypes and signals were examined. The phenotypes of established ganglioside-expressing cells were quite different, i.e. cell growth increased as following order; GD2+, GD3+ > GM1+, GM2+, GM3+ cells. Cell invasion activity increased as GD3+ ≧ GM2+ > GM1+, GM3+, GD2+ cells. Intensity of cell adhesion to collagen I (CL-I) and spreading increased as GD2+ >> GD3+, GM1+ > GM2+, GM3+ cells. In particular, cell adhesion of GD2+ cells was markedly strong. As for cell migration velocity, GD2+ cells were slower than all other cells. The immunocytostaining revealed close localization of gangliosides and F-actin in lamellipodia. Immunoblotting of phosphorylated p130Cas and paxillin by serum treatment reveled that these phosphorylations were more increased in GD3+ cells than in GD2+ or GM3+ cells, while phosphorylation of Akt underwent similarly increased phosphorylation between GD3+ and GD2+ cells compared with GM3+ cells. While GD2 and GD3 enhanced cell growth, GD3 might also contribute in cell invasion. On the other hand, GD2 might contribute in the solid fixation of melanoma cells at metastasized sites. These results suggested that individual gangliosides exert distinct roles in the different aspects of melanomas by differentially regulating cytoskeletons and signaling molecules.
Collapse
Affiliation(s)
- Yuhsuke Ohmi
- Department of Clinical Engineering, Chubu University College of Life and Health Sciences, Kasugai, Aichi, Japan
| | - Mariko Kambe
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Aichi, Japan
| | - Yuki Ohkawa
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Aichi, Japan
| | - Kazunori Hamamura
- Department of Pharmacology, School of Dentistry, Aichigakuin University, Nagoya, Japan
| | - Orie Tajima
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Aichi, Japan
| | - Rika Takeuchi
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Aichi, Japan
| | - Koichi Furukawa
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Aichi, Japan
- Department of Biochemistry II, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Keiko Furukawa
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Aichi, Japan
- * E-mail:
| |
Collapse
|
117
|
Rossig C, Kailayangiri S, Jamitzky S, Altvater B. Carbohydrate Targets for CAR T Cells in Solid Childhood Cancers. Front Oncol 2018; 8:513. [PMID: 30483473 PMCID: PMC6240699 DOI: 10.3389/fonc.2018.00513] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 10/22/2018] [Indexed: 12/23/2022] Open
Abstract
Application of the CAR targeting strategy in solid tumors is challenged by the need for adequate target antigens. As a consequence of their tissue origin, embryonal cancers can aberrantly express membrane-anchored gangliosides. These are carbohydrate molecules consisting of a glycosphingolipid linked to sialic acids residues. The best-known example is the abundant expression of ganglioside GD2 on the cell surface of neuroblastomas which derive from GD2-positive neuroectoderm. Gangliosides are involved in various cellular functions, including signal transduction, cell proliferation, differentiation, adhesion and cell death. In addition, transformation of human cells to cancer cells can be associated with distinct glycosylation profiles which provide advantages for tumor growth and dissemination and can serve as immune targets. Both gangliosides and aberrant glycosylation of proteins escape the direct molecular and proteomic screening strategies currently applied to identify further immune targets in cancers. Due to their highly restricted expression and their functional roles in the malignant behavior, they are attractive targets for immune engineering strategies. GD2-redirected CAR T cells have shown activity in clinical phase I/II trials in neuroblastoma and next-generation studies are ongoing. Further carbohydrate targets for CAR T cells in preclinical development are O-acetyl-GD2, NeuGc-GM3 (N-glycolyl GM3), GD3, SSEA-4, and oncofetal glycosylation variants. This review summarizes knowledge on the role and function of some membrane-expressed non-protein antigens, including gangliosides and abnormal protein glycosylation patterns, and discusses their potential to serve as a CAR targets in pediatric solid cancers.
Collapse
Affiliation(s)
- Claudia Rossig
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany.,Cells-in-Motion Cluster of Excellence (EXC 1003-CiM), University of Muenster, Muenster, Germany
| | - Sareetha Kailayangiri
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| | - Silke Jamitzky
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| | - Bianca Altvater
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| |
Collapse
|
118
|
Sorvina A, Bader CA, Caporale C, Carter EA, Johnson IRD, Parkinson-Lawrence EJ, Simpson PV, Wright PJ, Stagni S, Lay PA, Massi M, Brooks DA, Plush SE. Lipid profiles of prostate cancer cells. Oncotarget 2018; 9:35541-35552. [PMID: 30473749 PMCID: PMC6238979 DOI: 10.18632/oncotarget.26222] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 09/13/2018] [Indexed: 01/01/2023] Open
Abstract
Lipids are important cellular components which can be significantly altered in a range of disease states including prostate cancer. Here, a unique systematic approach has been used to define lipid profiles of prostate cancer cell lines, using quantitative mass spectrometry (LC-ESI-MS/MS), FTIR spectroscopy and fluorescent microscopy. All three approaches identified significant difference in the lipid profiles of the three prostate cancer cell lines (DU145, LNCaP and 22RV1) and one non-malignant cell line (PNT1a). Specific lipid classes and species, such as phospholipids (e.g., phosphatidylethanolamine 18:1/16:0 and 18:1/18:1) and cholesteryl esters, detected by LC-ESI-MS/MS, allowed statistical separation of all four prostate cell lines. Lipid mapping by FTIR revealed that variations in these lipid classes could also be detected at a single cell level, however further investigation into this approach would be needed to generate large enough data sets for quantitation. Visualisation by fluorescence microscopy showed striking variations that could be observed in lipid staining patterns between cell lines allowing visual separation of cell lines. In particular, polar lipid staining by a fluorescent marker was observed to increase significantly in prostate cancer lines cells, when compared to PNT1a cells, which was consistent with lipid quantitation by LC-ESI-MS/MS and FTIR spectroscopy. Thus, multiple technologies can be employed to either quantify or visualise changes in lipid composition, and moreover specific lipid profiles could be used to detect and phenotype prostate cancer cells.
Collapse
Affiliation(s)
- Alexandra Sorvina
- Mechanisms in Cell Biology and Disease Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Christie A Bader
- Mechanisms in Cell Biology and Disease Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Chiara Caporale
- School of Molecular and Life Science - Curtin Institute for Functional Molecules and Interfaces, Curtin University, Bentley, Australia
| | - Elizabeth A Carter
- Sydney Analytical and School of Chemistry, The University of Sydney, Sydney, Australia
| | - Ian R D Johnson
- Mechanisms in Cell Biology and Disease Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Emma J Parkinson-Lawrence
- Mechanisms in Cell Biology and Disease Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Peter V Simpson
- School of Molecular and Life Science - Curtin Institute for Functional Molecules and Interfaces, Curtin University, Bentley, Australia
| | - Phillip J Wright
- School of Molecular and Life Science - Curtin Institute for Functional Molecules and Interfaces, Curtin University, Bentley, Australia
| | - Stefano Stagni
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Bologna, Bologna, Italy
| | - Peter A Lay
- Sydney Analytical and School of Chemistry, The University of Sydney, Sydney, Australia
| | - Massimiliano Massi
- Mechanisms in Cell Biology and Disease Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, Australia.,School of Molecular and Life Science - Curtin Institute for Functional Molecules and Interfaces, Curtin University, Bentley, Australia
| | - Douglas A Brooks
- Mechanisms in Cell Biology and Disease Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, Australia.,School of Molecular and Life Science - Curtin Institute for Functional Molecules and Interfaces, Curtin University, Bentley, Australia
| | - Sally E Plush
- Mechanisms in Cell Biology and Disease Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, Australia.,School of Molecular and Life Science - Curtin Institute for Functional Molecules and Interfaces, Curtin University, Bentley, Australia.,Future Industries Institute, University of South Australia, Mawson Lakes, Australia
| |
Collapse
|
119
|
Nguyen K, Yan Y, Yuan B, Dasgupta A, Sun J, Mu H, Do KA, Ueno NT, Andreeff M, Battula VL. ST8SIA1 Regulates Tumor Growth and Metastasis in TNBC by Activating the FAK-AKT-mTOR Signaling Pathway. Mol Cancer Ther 2018; 17:2689-2701. [PMID: 30237308 DOI: 10.1158/1535-7163.mct-18-0399] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/23/2018] [Accepted: 09/05/2018] [Indexed: 01/16/2023]
Abstract
Breast cancer stem-like cells (BCSC) are implicated in cancer recurrence and metastasis of triple-negative breast cancer (TNBC). We have recently discovered that ganglioside GD2 expression defines BCSCs and that ST8SIA1 regulates GD2 expression and BCSC function. In this report, we show that ST8SIA1 is highly expressed in primary TNBC; its expression is positively correlated with the expression of several BCSC-associated genes such as BCL11A, FOXC1, CXCR4, PDGFRβ, SOX2, and mutations in p53. CRISPR knockout of ST8SIA1 completely inhibited BCSC functions, including in vitro tumorigenesis and mammosphere formation. Mechanistic studies discovered activation of the FAK-AKT-mTOR signaling pathway in GD2+ BCSCs, and its tight regulation by ST8SIA1. Finally, knockout of ST8SIA1 completely blocked in vivo tumor growth and metastasis by TNBC cells. In summary, these data demonstrate the mechanism by which ST8SIA1 regulates tumor growth and metastasis in TNBC and identifies it as a novel therapeutic target.
Collapse
Affiliation(s)
- Khoa Nguyen
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yuanqing Yan
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Bin Yuan
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Abhishek Dasgupta
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jeffrey Sun
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hong Mu
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kim-Anh Do
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Naoto T Ueno
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael Andreeff
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - V Lokesh Battula
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas. .,Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
120
|
Liu J, Zheng X, Pang X, Li L, Wang J, Yang C, Du G. Ganglioside GD3 synthase (GD3S), a novel cancer drug target. Acta Pharm Sin B 2018; 8:713-720. [PMID: 30245960 PMCID: PMC6147802 DOI: 10.1016/j.apsb.2018.07.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/24/2018] [Accepted: 04/28/2018] [Indexed: 01/05/2023] Open
Abstract
Gangliosides are a class of important glycosphingolipids containing sialic acid that are widely distributed on the outer surface of cells and are abundantly distributed in brain tissue. Disialoganglioside with three glycosyl groups (GD3) and disialoganglioside with two glycosyl groups (GD2) are markedly increased in pathological conditions such as cancers and neurodegenerative diseases. GD3 and GD2 were found to play important roles in cancers by mediating cell proliferation, migration, invasion, adhesion, angiogenesis and in preventing immunosuppression of tumors. GD3 synthase (GD3S) is the regulatory enzyme of GD3 and GD2 synthesis, and is important in tumorigenesis and the development of cancers. The study of GD3S as a drug target may be of great significance for the discovery of new drugs for cancer treatment. This review will describe the gangliosides and their roles in physiological and pathological conditions; the roles of GD3 and GD2 in cancers; the expression, functions and mechanisms of GD3S, and its potential as a drug target in cancers.
Collapse
Affiliation(s)
- Jinyi Liu
- Ethnic Drug Screening & Pharmacology Center, Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming 650500, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Xiangjin Zheng
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Xiaocong Pang
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Li Li
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Jinhua Wang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Cui Yang
- Ethnic Drug Screening & Pharmacology Center, Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming 650500, China
| | - Guanhua Du
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
121
|
Han SW, Kim YY, Kang WJ, Kim HC, Ku SY, Kang BC, Yun JW. The Use of Normal Stem Cells and Cancer Stem Cells for Potential Anti-Cancer Therapeutic Strategy. Tissue Eng Regen Med 2018; 15:365-380. [PMID: 30603561 PMCID: PMC6171655 DOI: 10.1007/s13770-018-0128-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 05/08/2018] [Accepted: 05/24/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Despite recent advance in conventional cancer therapies including surgery, radiotherapy, chemotherapy, and immunotherapy to reduce tumor size, unfortunately cancer mortality and metastatic cancer incidence remain high. Along with a deeper understanding of stem cell biology, cancer stem cell (CSC) is important in targeted cancer therapy. Herein, we review representative patents using not only normal stem cells as therapeutics themselves or delivery vehicles, but also CSCs as targets for anti-cancer strategy. METHODS Relevant patent literatures published between 2005 and 2017 are discussed to present developmental status and experimental results on using normal stem cells and CSCs for cancer therapy and explore potential future directions in this field. RESULTS Stem cells have been considered as important element of regenerative therapy by promoting tissue regeneration. Particularly, there is a growing trend to use stem cells as a target drug-delivery system to reduce undesirable side effects in non-target tissues. Noteworthy, studies on CSC-specific markers for distinguishing CSCs from normal stem cells and mature cancer cells have been conducted as a selective anti-cancer therapy with few side effects. Many researchers have also reported the development of various substances with anticancer effects by targeting CSCs from cancer tissues. CONCLUSION There has been a continuing increase in the number of studies on therapeutic stem cells and CSC-specific markers for selective diagnosis and therapy of cancer. This review focuses on the current status in the use of normal stem cells and CSCs for targeted cancer therapy. Future direction is also proposed.
Collapse
Affiliation(s)
- Seung-Woo Han
- Department of Biotechnology, The Catholic University of Korea, 43 Jibongro, Bucheon, 14662 Republic of Korea
| | - Yoon Young Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Republic of Korea
| | - Woo-Ju Kang
- Department of Biotechnology, The Catholic University of Korea, 43 Jibongro, Bucheon, 14662 Republic of Korea
| | - Hyoung-Chin Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do 28116 Republic of Korea
| | - Seung-Yup Ku
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Republic of Korea
| | - Byeong-Cheol Kang
- Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Republic of Korea
- Biomedical Center for Animal Resource and Development, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Republic of Korea
- Graduate School of Translational Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Republic of Korea
- Designed Animal and Transplantation Research Institute, Institute of GreenBio Science Technology, Seoul National University, 1447 Pyeongchang-daero, Daehwa-myeon, Pyeongchang-gun, Gangwon-do 25354 Republic of Korea
| | - Jun-Won Yun
- Department of Biotechnology, The Catholic University of Korea, 43 Jibongro, Bucheon, 14662 Republic of Korea
| |
Collapse
|
122
|
Bai X, Ni J, Beretov J, Graham P, Li Y. Cancer stem cell in breast cancer therapeutic resistance. Cancer Treat Rev 2018; 69:152-163. [PMID: 30029203 DOI: 10.1016/j.ctrv.2018.07.004] [Citation(s) in RCA: 198] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 07/11/2018] [Accepted: 07/12/2018] [Indexed: 12/15/2022]
Abstract
Development of therapeutic resistance and metastasis is a major challenge with current breast cancer (BC) therapy. Mounting evidence suggests that a subpopulation of cancer stem cells (CSCs) contribute to the cancer therapeutic resistance and metastasis, leading to the recurrence and death in patients. Breast cancer stem cells (BCSCs) are not only a consequence of mutations that overactivate the self-renewal ability of normal stem cells or committed progenitors but also a result of the de-differentiation of cancer cells induced by somatic mutations or microenvironmental components under treatment. Eradication of BCSCs may bring hope and relief to patients whose lives are threatened by recurrent BCs. Therefore, a better understanding of the generation, regulatory mechanisms, and identification of CSCs in BC therapeutic resistance and metastasis will be imperative for developing BCSC-targeted strategies. Here we summarize the latest studies about cell surface markers and signalling pathways that sustain the stemness of BCSC and discuss the associations of mechanisms behind these traits with phenotype and behavior changes in BCSCs. More importantly, their implications for future study are also evaluated and potential BCSC-targeted strategies are proposed to break through the limitation of current therapies.
Collapse
Affiliation(s)
- Xupeng Bai
- Cancer Care Centre, St. George Hospital, Kogarah, NSW 2217, Australia; St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Jie Ni
- Cancer Care Centre, St. George Hospital, Kogarah, NSW 2217, Australia; St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Julia Beretov
- Cancer Care Centre, St. George Hospital, Kogarah, NSW 2217, Australia; St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW 2052, Australia; Anatomical Pathology, NSW Health Pathology, St. George Hospital, Kogarah, NSW 2217, Australia
| | - Peter Graham
- Cancer Care Centre, St. George Hospital, Kogarah, NSW 2217, Australia; St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Yong Li
- Cancer Care Centre, St. George Hospital, Kogarah, NSW 2217, Australia; St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW 2052, Australia; School of Basic Medical Sciences, Zhengzhou University, Henan 450001, China.
| |
Collapse
|
123
|
Zhuo D, Li X, Guan F. Biological Roles of Aberrantly Expressed Glycosphingolipids and Related Enzymes in Human Cancer Development and Progression. Front Physiol 2018; 9:466. [PMID: 29773994 PMCID: PMC5943571 DOI: 10.3389/fphys.2018.00466] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 04/13/2018] [Indexed: 01/05/2023] Open
Abstract
Glycosphingolipids (GSLs), which consist of a hydrophobic ceramide backbone and a hydrophilic carbohydrate residue, are an important type of glycolipid expressed in surface membranes of all animal cells. GSLs play essential roles in maintenance of plasma membrane stability, in regulation of numerous cellular processes (including adhesion, proliferation, apoptosis, and recognition), and in modulation of signal transduction pathways. GSLs have traditionally been classified as ganglio-series, lacto-series, or globo-series on the basis of their diverse types of oligosaccharide chains. Structures and functions of specific GSLs are also determined by their oligosaccharide chains. Different cells and tissues show differential expression of GSLs, and changes in structures of GSL glycan moieties occur during development of numerous types of human cancer. Association of GSLs and/or related enzymes with initiation and progression of cancer has been documented in 100s of studies, and many such GSLs are useful markers or targets for cancer diagnosis or therapy. In this review, we summarize (i) recent studies on aberrant expression and distribution of GSLs in common human cancers (breast, lung, colorectal, melanoma, prostate, ovarian, leukemia, renal, bladder, gastric); (ii) biological functions of specific GSLs in these cancers.
Collapse
Affiliation(s)
- Dinghao Zhuo
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xiang Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of China, College of Life Science, Northwest University, Xi'an, China
| | - Feng Guan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
124
|
Zhou Z, Li M, Zhang L, Zhao H, Şahin Ö, Chen J, Zhao JJ, Songyang Z, Yu D. Oncogenic Kinase-Induced PKM2 Tyrosine 105 Phosphorylation Converts Nononcogenic PKM2 to a Tumor Promoter and Induces Cancer Stem-like Cells. Cancer Res 2018; 78:2248-2261. [PMID: 29440169 PMCID: PMC5932213 DOI: 10.1158/0008-5472.can-17-2726] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 12/27/2017] [Accepted: 02/06/2018] [Indexed: 02/07/2023]
Abstract
The role of pyruvate kinase M2 isoform (PKM2) in tumor progression has been controversial. Previous studies showed that PKM2 promoted tumor growth in xenograft models; however, depletion of PKM2 in the Brca1-loss-driven mammary tumor mouse model accelerates tumor formation. Because oncogenic kinases are frequently activated in tumors and PKM2 phosphorylation promotes tumor growth, we hypothesized that phosphorylation of PKM2 by activated kinases in tumor cells confers PKM2 oncogenic function, whereas nonphosphorylated PKM2 is nononcogenic. Indeed, PKM2 was phosphorylated at tyrosine 105 (Y105) and formed oncogenic dimers in MDA-MB-231 breast cancer cells, whereas PKM2 was largely unphosphorylated and formed nontumorigenic tetramers in nontransformed MCF10A cells. PKM2 knockdown did not affect MCF10A cell growth but significantly decreased proliferation of MDA-MB-231 breast cancer cells with tyrosine kinase activation. Multiple kinases that are frequently activated in different cancer types were identified to phosphorylate PKM2-Y105 in our tyrosine kinase screening. Introduction of the PKM2-Y105D phosphomimetic mutant into MCF10A cells induced colony formation and the CD44hi/CD24neg cancer stem-like cell population by increasing Yes-associated protein (YAP) nuclear localization. ErbB2, a strong inducer of PKM2-Y105 phosphorylation, boosted nuclear localization of YAP and enhanced the cancer stem-like cell population. Treatment with the ErbB2 kinase inhibitor lapatinib decreased PKM2-Y105 phosphorylation and cancer stem-like cells, impeding PKM2 tumor-promoting function. Taken together, phosphorylation of PKM2-Y105 by activated kinases exerts oncogenic functions in part via activation of YAP downstream signaling to increase cancer stem-like cell properties.Significance: These findings reveal PKM2 promotes tumorigenesis by inducing cancer stem-like cell properties and clarify the paradox of PKM2's dichotomous functions in tumor progression. Cancer Res; 78(9); 2248-61. ©2018 AACR.
Collapse
Affiliation(s)
- Zhifen Zhou
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Oncology in South China, Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Min Li
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lin Zhang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas
| | - Hong Zhao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Özgür Şahin
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jing Chen
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia
| | - Jean J Zhao
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts
| | - Zhou Songyang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Oncology in South China, Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas
| | - Dihua Yu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas
- Center for Molecular Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
125
|
Dewald JH, Cavdarli S, Steenackers A, Delannoy CP, Mortuaire M, Spriet C, Noël M, Groux-Degroote S, Delannoy P. TNF differentially regulates ganglioside biosynthesis and expression in breast cancer cell lines. PLoS One 2018; 13:e0196369. [PMID: 29698439 PMCID: PMC5919650 DOI: 10.1371/journal.pone.0196369] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 04/11/2018] [Indexed: 12/26/2022] Open
Abstract
Gangliosides are glycosphingolipids concentrated in glycolipid-enriched membrane microdomains. Mainly restricted to the nervous system in healthy adult, complex gangliosides such as GD3 and GD2 have been shown to be involved in aggressiveness and metastasis of neuro-ectoderm derived tumors such as melanoma and neuroblastoma. GD3 synthase (GD3S), the key enzyme that controls the biosynthesis of complex gangliosides, was shown to be over-expressed in Estrogen Receptor (ER)-negative breast cancer tumors, and associated with a decreased overall survival of patients. We previously demonstrated that GD3S expression in ER-negative breast cancer cells induced a proliferative phenotype and an increased tumor growth. In addition, our results clearly indicate that Tumor Necrosis Factor (TNF) induced GD3S over-expression in breast cancer cells via NFκB pathway. In this study, we analyzed the effect of TNF on ganglioside biosynthesis and expression in breast cancer cells from different molecular subtypes. We showed that TNF up-regulated the expression of GD3S in MCF-7 and Hs578T cells, whereas no change was observed for MDA-MB-231. We also showed that TNF induced an increased expression of complex gangliosides at the cell surface of a small proportion of MCF-7 cells. These results demonstrate that TNF differentially regulates gangliosides expression in breast cancer cell lines and establish a possible link between inflammation at the tumor site environment, expression of complex gangliosides and tumor development.
Collapse
Affiliation(s)
- Justine H. Dewald
- University of Lille, Structural and Functional Glycobiology Unit, UMR CNRS 8576, Lille, France
| | - Sumeyye Cavdarli
- University of Lille, Structural and Functional Glycobiology Unit, UMR CNRS 8576, Lille, France
| | - Agata Steenackers
- University of Lille, Structural and Functional Glycobiology Unit, UMR CNRS 8576, Lille, France
| | - Clément P. Delannoy
- University of Lille, Structural and Functional Glycobiology Unit, UMR CNRS 8576, Lille, France
| | - Marlène Mortuaire
- University of Lille, Structural and Functional Glycobiology Unit, UMR CNRS 8576, Lille, France
| | - Corentin Spriet
- University of Lille, Bio Imaging Center Lille, Lille, France
| | - Maxence Noël
- University of Lille, Structural and Functional Glycobiology Unit, UMR CNRS 8576, Lille, France
| | - Sophie Groux-Degroote
- University of Lille, Structural and Functional Glycobiology Unit, UMR CNRS 8576, Lille, France
| | - Philippe Delannoy
- University of Lille, Structural and Functional Glycobiology Unit, UMR CNRS 8576, Lille, France
- * E-mail:
| |
Collapse
|
126
|
Liang YJ, Wang CY, Wang IA, Chen YW, Li LT, Lin CY, Ho MY, Chou TL, Wang YH, Chiou SP, Lin YJ, Yu J. Interaction of glycosphingolipids GD3 and GD2 with growth factor receptors maintains breast cancer stem cell phenotype. Oncotarget 2018; 8:47454-47473. [PMID: 28537895 PMCID: PMC5564578 DOI: 10.18632/oncotarget.17665] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 04/19/2017] [Indexed: 01/13/2023] Open
Abstract
Many studies have suggested that disialogangliosides, GD2 and GD3, are involved in the development of various tumor types. However, the functional relationships between ganglioside expression and cancer development or aggressiveness are not fully described. GD3 is upregulated in approximately half of all invasive ductal breast carcinoma cases, and enhanced expression of GD3 synthase (GD3S, alpha-N-acetylneuraminide alpha-2,8-sialyltransferase) in estrogen receptor-negative breast tumors, was shown to correlate with reduced overall patient survival. We previously found that GD2 and GD3, together with their common upstream glycosyltransferases, GD3S and GD2/GM2 synthase, maintain a stem cell phenotype in breast cancer stem cells (CSCs). In the current study, we demonstrate that GD3S alone can sustain CSC properties and also promote malignant cancer properties. Using MALDI-MS and flow cytometry, we found that breast cancer cell lines, of various subtypes with or without ectopic GD3S-expression, exhibited distinct GD2/GD3 expression profiles. Furthermore, we found that GD3 was associated with EGFR and activated EGFR signaling in both breast CSCs and breast cancer cell lines. In addition, GD3S knockdown enhanced cytotoxicity of the EGFR-inhibitor gefitinib in resistant MDA-MB468 cells, both in vitro and in vivo. Based on this evidence, we propose that GD3S contributes to gefitinib-resistance in EGFR-positive breast cancer cells and may be an effective therapeutic target in drug-resistant breast cancers.
Collapse
Affiliation(s)
- Yuh-Jin Liang
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Chen-Yu Wang
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - I-An Wang
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Yi-Wen Chen
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Li-Tzu Li
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Chuang-Yu Lin
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Ming-Yi Ho
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Tsung-Lung Chou
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Ya-Hui Wang
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Shih-Pin Chiou
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Yu-Ju Lin
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - John Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
127
|
Pearce OMT. Cancer glycan epitopes: biosynthesis, structure and function. Glycobiology 2018; 28:670-696. [DOI: 10.1093/glycob/cwy023] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 03/09/2018] [Indexed: 12/13/2022] Open
Affiliation(s)
- Oliver M T Pearce
- Centre for Cancer & Inflammation, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, UK
| |
Collapse
|
128
|
Orsi G, Barbolini M, Ficarra G, Tazzioli G, Manni P, Petrachi T, Mastrolia I, Orvieto E, Spano C, Prapa M, Kaleci S, D'Amico R, Guarneri V, Dieci MV, Cascinu S, Conte P, Piacentini F, Dominici M. GD2 expression in breast cancer. Oncotarget 2018; 8:31592-31600. [PMID: 28415563 PMCID: PMC5458232 DOI: 10.18632/oncotarget.16363] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 03/09/2017] [Indexed: 01/05/2023] Open
Abstract
Breast cancer (BC) is a heterogeneous disease, including different subtypes having diverse incidence, drug-sensitivity and survival rates. In particular, claudin-low and basal-like BC have mesenchymal features with a dismal prognosis. Disialoganglioside GD2 is a typical neuroectodermal antigen expressed in a variety of cancers. Despite its potential relevance in cancer diagnostics and therapeutics, the presence and role of GD2 require further investigation, especially in BC. Therefore, we evaluated GD2 expression in a cohort of BC patients and its correlation with clinical-pathological features. Sixty-three patients with BC who underwent surgery without prior chemo- and/or radiotherapy between 2001 and 2014 were considered. Cancer specimens were analyzed by immunohistochemistry and GD2-staining was expressed according to the percentage of positive cells and by a semi-quantitative scoring system. Patient characteristics were heterogeneous by age at diagnosis, histotype, grading, tumor size, Ki-67 and receptor-status. GD2 staining revealed positive cancer cells in 59% of patients. Among them, 26 cases (41%) were labeled with score 1+ and 11 (18%) with score 2+. Notably, the majority of metaplastic carcinoma specimens stained positive for GD2. The univariate regression logistic analysis revealed a significant association of GD2 with triple-receptor negative phenotype and older age (> 78) at diagnosis. We demonstrate for the first time that GD2 is highly prevalent in a cohort of BC patients clustering on very aggressive BC subtypes, such as triple-negative and metaplastic variants.
Collapse
Affiliation(s)
- Giulia Orsi
- Department of Medical and Surgical Sciences for Children and Adults, University-Hospital of Modena and Reggio Emilia, 71-41124 Modena, Italy
| | - Monica Barbolini
- Department of Medical and Surgical Sciences for Children and Adults, University-Hospital of Modena and Reggio Emilia, 71-41124 Modena, Italy
| | - Guido Ficarra
- Division of Pathology, University-Hospital of Modena and Reggio Emilia, 71-41124 Modena, Italy.,Breast Unit, University-Hospital of Modena and Reggio Emilia, 71-41124 Modena, Italy
| | - Giovanni Tazzioli
- Department of Medical and Surgical Sciences for Children and Adults, University-Hospital of Modena and Reggio Emilia, 71-41124 Modena, Italy.,Breast Unit, University-Hospital of Modena and Reggio Emilia, 71-41124 Modena, Italy
| | - Paola Manni
- Division of Pathology, University-Hospital of Modena and Reggio Emilia, 71-41124 Modena, Italy
| | - Tiziana Petrachi
- Department of Medical and Surgical Sciences for Children and Adults, University-Hospital of Modena and Reggio Emilia, 71-41124 Modena, Italy
| | - Ilenia Mastrolia
- Department of Medical and Surgical Sciences for Children and Adults, University-Hospital of Modena and Reggio Emilia, 71-41124 Modena, Italy
| | - Enrico Orvieto
- Department of Pathology, Padua University Hospital, 2-35128 Padua, Italy
| | - Carlotta Spano
- Department of Medical and Surgical Sciences for Children and Adults, University-Hospital of Modena and Reggio Emilia, 71-41124 Modena, Italy
| | - Malvina Prapa
- Department of Medical and Surgical Sciences for Children and Adults, University-Hospital of Modena and Reggio Emilia, 71-41124 Modena, Italy
| | - Shaniko Kaleci
- Department of Diagnostic and Clinical Medicine and Public Health, Statistics Unit, University-Hospital of Modena and Reggio Emilia, 71-41124 Modena, Italy
| | - Roberto D'Amico
- Department of Diagnostic and Clinical Medicine and Public Health, Statistics Unit, University-Hospital of Modena and Reggio Emilia, 71-41124 Modena, Italy
| | - Valentina Guarneri
- Department of Surgery, Oncology and Gastroenterology, Division of Medical Oncology 2, Istituto Oncologico Veneto IRCCS, 64-35128, Padua, Italy
| | - Maria Vittoria Dieci
- Department of Surgery, Oncology and Gastroenterology, Division of Medical Oncology 2, Istituto Oncologico Veneto IRCCS, 64-35128, Padua, Italy
| | - Stefano Cascinu
- Department of Medical and Surgical Sciences for Children and Adults, University-Hospital of Modena and Reggio Emilia, 71-41124 Modena, Italy
| | - Pierfranco Conte
- Department of Surgery, Oncology and Gastroenterology, Division of Medical Oncology 2, Istituto Oncologico Veneto IRCCS, 64-35128, Padua, Italy
| | - Federico Piacentini
- Department of Medical and Surgical Sciences for Children and Adults, University-Hospital of Modena and Reggio Emilia, 71-41124 Modena, Italy.,Breast Unit, University-Hospital of Modena and Reggio Emilia, 71-41124 Modena, Italy
| | - Massimo Dominici
- Department of Medical and Surgical Sciences for Children and Adults, University-Hospital of Modena and Reggio Emilia, 71-41124 Modena, Italy
| |
Collapse
|
129
|
Battula VL, Nguyen K, Sun J, Pitner MK, Yuan B, Bartholomeusz C, Hail N, Andreeff M. IKK inhibition by BMS-345541 suppresses breast tumorigenesis and metastases by targeting GD2+ cancer stem cells. Oncotarget 2018; 8:36936-36949. [PMID: 28415808 PMCID: PMC5514883 DOI: 10.18632/oncotarget.16294] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 03/01/2017] [Indexed: 01/01/2023] Open
Abstract
We have identified that the ganglioside GD2 is a marker for breast cancer stem cells (BCSCs), and that targeting the enzyme GD3 synthase (GD3S, which regulates GD2 biosynthesis) reduces breast tumorigenesis. The pathways regulating GD2 expression, and their anomalous functions in BCSC, are unclear. Proteomic analysis of GD2+ and GD2- cells from breast cancer cell lines revealed the activation of NFκB signaling in GD2+ cells. Dose- and time-dependent suppression of NFκB signaling by the small molecule inhibitor BMS-345541 reduced GD2+ cells by > 90%. Likewise, BMS-345541 inhibited BCSC GD3S expression, mammosphere formation, and cell migration/invasion in vitro. Breast tumor-bearing mice treated with BMS-345541 showed a statistically significant decrease in tumor volume and exhibited prolonged survival compared to control mice, with a median survival of 78 d for the BMS-345541-treated group vs. 58 d for the controls. Moreover, in an experimental metastases model, treatment with BMS-345541 reduced the lung metastases by > 5-fold. These data suggest that GD2 expression and function, and NFκB signaling, are related, and they control BCSCs tumorigenic characteristics. Thus, the suppression of NFκB signaling by BMS-345541 is a potentially important advance in controlling breast cancer growth and metastases.
Collapse
Affiliation(s)
- Venkata Lokesh Battula
- Department of Leukemia, Section of Molecular Hematology and Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Breast Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Khoa Nguyen
- Department of Leukemia, Section of Molecular Hematology and Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jeff Sun
- Department of Leukemia, Section of Molecular Hematology and Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mary Kathryn Pitner
- Department of Breast Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bin Yuan
- Department of Leukemia, Section of Molecular Hematology and Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chandra Bartholomeusz
- Department of Breast Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Numsen Hail
- Department of Leukemia, Section of Molecular Hematology and Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael Andreeff
- Department of Leukemia, Section of Molecular Hematology and Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
130
|
Hosain SB, Khiste SK, Uddin MB, Vorubindi V, Ingram C, Zhang S, Hill RA, Gu X, Liu YY. Inhibition of glucosylceramide synthase eliminates the oncogenic function of p53 R273H mutant in the epithelial-mesenchymal transition and induced pluripotency of colon cancer cells. Oncotarget 2018; 7:60575-60592. [PMID: 27517620 PMCID: PMC5312403 DOI: 10.18632/oncotarget.11169] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 07/26/2016] [Indexed: 01/06/2023] Open
Abstract
Missense mutation of tumor suppressor p53, which exhibits oncogenic gain-of-function (GOF), not only promotes tumor progression, but also diminishes therapeutic efficacies of cancer treatments. However, it remains unclear how a p53 missense mutant contributes to induced pluripotency of cancer stem cells (CSCs) in tumors exposed to chemotherapeutic agents. More importantly, it may be possible to abrogate the GOF by restoring wild-type p53 activity, thereby overcoming the deleterious effects resulting from heterotetramer formation, which often compromises the efficacies of current approaches being used to reactivate p53 function. Herewith, we report that p53 R273H missense mutant urges cancer cells to spawn CSCs. SW48/TP53 cells, which heterozygously carry the p53 R273H hot-spot mutant (R273H/+, introduced by a CRISPR/Casp9 system), were subchronically exposed to doxorubicin in cell culture and in tumor-bearing mice. We found that p53-R273H (TP53-Dox) cells were drug-resistant and exhibited epithelial-mesenchymal transition (EMT) and increased numbers of CSCs (CD44v6+/CD133+), which resulted in enhanced wound healing and tumor formation. Inhibition of glucosylceramide synthase with d-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP) sensitized p53-R273H cancer cells and tumor xenografts to doxorubicin treatments. Intriguingly, PDMP treatments restored wild-type p53 expression in heterozygous R273H mutant cells and in tumors, decreasing CSCs and sensitizing cells and tumors to treatments. This study demonstrated that p53-R273H promotes EMT and induced pluripotency of CSCs in cancer cells exposed to doxorubicin, mainly through Zeb1 and β-catenin transcription factors. Our results further indicate that restoration of p53 through inhibition of ceramide glycosylation might be an effective treatment approach for targeting cancers heterozygously harboring TP53 missense mutations.
Collapse
Affiliation(s)
- Salman B Hosain
- Department of Basic Pharmaceutical Sciences, University of Louisiana at Monroe, Monroe, LA 71201, USA
| | - Sachin K Khiste
- Department of Basic Pharmaceutical Sciences, University of Louisiana at Monroe, Monroe, LA 71201, USA
| | - Mohammad B Uddin
- Department of Basic Pharmaceutical Sciences, University of Louisiana at Monroe, Monroe, LA 71201, USA
| | - Vindya Vorubindi
- Department of Basic Pharmaceutical Sciences, University of Louisiana at Monroe, Monroe, LA 71201, USA
| | - Catherine Ingram
- Department of Basic Pharmaceutical Sciences, University of Louisiana at Monroe, Monroe, LA 71201, USA
| | - Sifang Zhang
- Department of Integrated Chinese and Western Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Ronald A Hill
- Department of Basic Pharmaceutical Sciences, University of Louisiana at Monroe, Monroe, LA 71201, USA
| | - Xin Gu
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Yong-Yu Liu
- Department of Basic Pharmaceutical Sciences, University of Louisiana at Monroe, Monroe, LA 71201, USA
| |
Collapse
|
131
|
Groux-Degroote S, Rodríguez-Walker M, Dewald JH, Daniotti JL, Delannoy P. Gangliosides in Cancer Cell Signaling. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 156:197-227. [DOI: 10.1016/bs.pmbts.2017.10.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
132
|
Abstract
Tumor-associated gangliosides play important roles in regulation of signal transduction induced by growth-factor receptors including EGFR, FGFR, HGF and PDGFR in a specific microdomain called glycosynapse in the cancer cell membranes, and in interaction with glycan recognition molecules involved in cell adhesion and immune regulation including selectins and siglecs. As the genes involved in the synthesis and degradation of tumor-associated gangliosides were identified, biological functions became clearer from the experimental results employing forced overexpression and/or knockdown/knockout of the genes. Studies on the regulatory mechanisms for their expression also achieved great advancements. Epigenetic silencing of glycan-related genes is a dominant mechanism in glycan alteration at early stages of carcinogenesis. Development of hypoxia resistance involving activation of a transcription factor HIF, and acquisition of cancer stem cell-like characteristics through epithelial-mesenchymal transition are important mechanisms for glycan modulations in the later stages of cancer progression. In the initial stages of studies, the gangliosides which specifically appear in cancers attracted attention under the name of tumor-associated gangliosides. However, it became apparent that not only the cancer-associated gangliosides but also the normal gangliosides present in nonmalignant cells and tissues perform important biological functions, and some of them tend to disappear in cancer cells resulting in the loss of the physiological functions, and this sometimes facilitates progression of cancers.
Collapse
|
133
|
Targeting tumor-associated carbohydrate antigens: a phase I study of a carbohydrate mimetic-peptide vaccine in stage IV breast cancer subjects. Oncotarget 2017; 8:99161-99178. [PMID: 29228761 PMCID: PMC5716801 DOI: 10.18632/oncotarget.21959] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 10/10/2017] [Indexed: 01/09/2023] Open
Abstract
Tumor-associated carbohydrate antigens (TACAs) support cell survival that could be interrupted by anti-TACA antibodies. Among TACAs that mediate cell survival signals are the neolactoseries antigen Lewis Y (LeY) and the ganglioside GD2. To induce sustained immunity against both LeY and GD2, we developed a carbohydrate mimicking peptide (CMP) as a surrogate pan-immunogen that mimics both. This CMP, referred to as P10s, is the N-terminal half of a peptide vaccine named P10s-PADRE, the C-terminal half of which (PADRE) is a Pan-T-cell epitope. A Phase I dose-escalation trial of P10s-PADRE plus adjuvant MONTANIDE™ ISA 51 VG was conducted in subjects with metastatic breast cancer to test 300 and 500 μg/injection in two cohorts of 3 subjects each. Doses of the P10s-PADRE vaccine were administered to research participants subcutaneously on weeks 1, 2, 3, 7 and 19. Antibody responses to P10s, GD2, and LeY were measured by ELISA. The P10s-PADRE vaccine induced antibodies specifically reactive with P10s, LeY and GD2 in all 6 subjects. Serum antibodies displayed Caspase-3-dependent apoptotic functionality against LeY or GD2 expressing breast cancer cell lines. Immunization with the P10s-PADRE vaccine was well-tolerated and induced functional antibodies, and the data suggest potential clinical benefit.
Collapse
|
134
|
Abstract
INTRODUCTION Current therapeutic approaches for high-risk neuroblastoma (HR-NB) include high-dose chemotherapy, surgery and radiotherapy; interventions that are associated with long and short-term toxicities. Effective immunotherapy holds particular promise for improving survival and quality of life by reducing exposure to cytotoxic agents. GD2, a surface glycolipid is the most common target for immunotherapy. Areas covered: We review the status of anti-GD2 immunotherapies currently in clinical use for neuroblastomas and novel GD2-targeted strategies in preclinical development. Expert commentary: Anti-GD2 monoclonal antibodies are associated with improved survival in patients in their first remission and are increasingly being used for chemorefractory and relapsed neuroblastoma. As protein engineering technology has become more accessible, newer antibody constructs are being tested. GD2 is also being targeted by natural killer cells and T-cells. Active immunity can be elicited by anti-GD2 vaccines. The rational combination of currently available and soon-to-emerge immunotherapeutic approaches, and their integration into conventional multimodality therapies will require further investigation to optimize their use for HR-NB.
Collapse
Affiliation(s)
- Sameer Sait
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Shakeel I. Modak
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
135
|
Vantaku V, Donepudi SR, Ambati CR, Jin F, Putluri V, Nguyen K, Rajapakshe K, Coarfa C, Battula VL, Lotan Y, Putluri N. Expression of ganglioside GD2, reprogram the lipid metabolism and EMT phenotype in bladder cancer. Oncotarget 2017; 8:95620-95631. [PMID: 29221154 PMCID: PMC5707048 DOI: 10.18632/oncotarget.21038] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 08/04/2017] [Indexed: 11/25/2022] Open
Abstract
High-grade Bladder Cancer (BLCA) represents the most aggressive and treatment-resistant cancer that renders the patients with poor survival. However, only a few biomarkers have been identified for the detection and treatment of BLCA. Recent studies show that ganglioside GD2 can be used as cancer biomarker and/or therapeutic target for various cancers. Despite its potential relevance in cancer diagnosis and therapeutics, the role of GD2 is unknown in BLCA. Here, we report for the first time that high-grade BLCA tissues and cell lines have higher expression of GD2 compared to low-grade by high-resolution Mass Spectrometry. The muscle invasive UMUC3 cell line showed high GD2, mesenchymal phenotype, and cell proliferation. Besides, we have shown the cancer stem cells (CSC) property (CD44hiCD24lo) of GD2+ UMUC3 and J82 cells. Also, the evaluation of lipid metabolism in GD2+ BLCA cell lines revealed higher levels of Phosphatidylinositol (PI), Phosphatidic acid (PA), Cardiolipin (CL) and lower levels of Phosphatidylserine (PS), plasmenyl-phosphatidylethanolamines (pPE), plasmenyl-phosphocholines (pPC), sphingomyelins (SM), triglycerides (TGs) and N-Acetylneuraminic acid. These findings are significantly correlated with the tissues of BLCA patients. Based on this evidence, we propose that GD2 may be used as an effective diagnostic and therapeutic target for aggressive BLCA.
Collapse
Affiliation(s)
- Venkatrao Vantaku
- Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, TX, USA
| | - Sri Ramya Donepudi
- Dan L. Duncan Cancer Center, Advanced Technology Core, Alkek Center for Molecular Discovery, Baylor College of Medicine, Houston, TX, USA
| | - Chandrashekar R Ambati
- Dan L. Duncan Cancer Center, Advanced Technology Core, Alkek Center for Molecular Discovery, Baylor College of Medicine, Houston, TX, USA
| | - Feng Jin
- Dan L. Duncan Cancer Center, Advanced Technology Core, Alkek Center for Molecular Discovery, Baylor College of Medicine, Houston, TX, USA
| | - Vasanta Putluri
- Dan L. Duncan Cancer Center, Advanced Technology Core, Alkek Center for Molecular Discovery, Baylor College of Medicine, Houston, TX, USA
| | - Khoa Nguyen
- Section of Molecular Hematology and Therapy, Department of Leukemia, and Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kimal Rajapakshe
- Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, TX, USA
| | - Cristian Coarfa
- Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, TX, USA.,Dan L. Duncan Cancer Center, Advanced Technology Core, Alkek Center for Molecular Discovery, Baylor College of Medicine, Houston, TX, USA
| | - Venkata Lokesh Battula
- Section of Molecular Hematology and Therapy, Department of Leukemia, and Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yair Lotan
- Department of Urology, University of Texas Southwestern, Dallas, TX, USA
| | - Nagireddy Putluri
- Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, TX, USA.,Dan L. Duncan Cancer Center, Advanced Technology Core, Alkek Center for Molecular Discovery, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
136
|
Fournier C, Martin F, Zitvogel L, Kroemer G, Galluzzi L, Apetoh L. Trial Watch: Adoptively transferred cells for anticancer immunotherapy. Oncoimmunology 2017; 6:e1363139. [PMID: 29147628 DOI: 10.1080/2162402x.2017.1363139] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 07/29/2017] [Accepted: 07/30/2017] [Indexed: 12/22/2022] Open
Abstract
Immunotherapies aimed at strengthening immune effector responses against malignant cells are growing at exponential rates. Alongside, the impressive benefits obtained by patients with advanced melanoma who received adoptively transferred tumor-infiltrating lymphocytes (TILs) have encouraged the scientific community to pursue adoptive cell transfer (ACT)-based immunotherapy. ACT involves autologous or allogenic effector lymphocytes that are generally obtained from the peripheral blood or resected tumors, expanded and activated ex vivo, and administered to lymphodepleted patients. ACT may be optionally associated with chemo- and/or immunotherapeutics, with the overall aim of enhancing the proliferation, persistence and functionality of infused cells, as well as to ensure their evolution in an immunological permissive local and systemic microenvironment. In addition, isolated lymphocytes can be genetically engineered to endow them with the ability to target a specific tumor-associated antigen (TAA), to increase their lifespan, and/or to reduce their potential toxicity. The infusion of chimeric antigen receptor (CAR)-expressing cytotoxic T lymphocytes redirected against CD19 has shown promising clinical efficacy in patients with B-cell malignancies. Accordingly, the US Food and Drug Administration (FDA) has recently granted 'breakthrough therapy' designation to a CAR-based T-cell therapy (CTL019) for patients with B-cell malignancies. Considerable efforts are now being devoted to the development of efficient ACT-based immunotherapies for non-hematological neoplasms. In this Trial Watch, we summarize recent clinical advances on the use of ACT for oncological indications.
Collapse
Affiliation(s)
- Carole Fournier
- INSERM, U1231, Dijon, France.,Faculté de Médecine, Université de Bourgogne Franche Comté, Dijon, France
| | - François Martin
- INSERM, U1231, Dijon, France.,Faculté de Médecine, Université de Bourgogne Franche Comté, Dijon, France
| | - Laurence Zitvogel
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,INSERM, U1015, Villejuif, France.,Center of Clinical Investigations in Biotherapies of Cancer (CICBT), Villejuif, France.,Université Paris Sud/Paris XI, Le Kremlin-Bicêtre, France
| | - Guido Kroemer
- Université Paris Descartes/Paris V, France.,Université Pierre et Marie Curie/Paris VI, Paris.,Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,INSERM, U1138, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.,Pôle de Biologie, Hopitâl Européen George Pompidou, AP-HP; Paris, France
| | - Lorenzo Galluzzi
- Université Paris Descartes/Paris V, France.,Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, New York, NY, USA
| | - Lionel Apetoh
- INSERM, U1231, Dijon, France.,Faculté de Médecine, Université de Bourgogne Franche Comté, Dijon, France.,Centre Georges François Leclerc, Dijon, France
| |
Collapse
|
137
|
Nguyen K, Battula VL. Targeting NFκB signaling in GD2 + BCSCs. Aging (Albany NY) 2017; 9:1847-1848. [PMID: 28858852 PMCID: PMC5611972 DOI: 10.18632/aging.101274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 08/02/2017] [Indexed: 11/25/2022]
Affiliation(s)
- Khoa Nguyen
- Section of Molecular Hematology and Therapy, Leukemia Department, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - V Lokesh Battula
- Section of Molecular Hematology and Therapy, Leukemia Department, UT MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Breast Medical Oncology, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
138
|
Chen HC, Joalland N, Bridgeman JS, Alchami FS, Jarry U, Khan MWA, Piggott L, Shanneik Y, Li J, Herold MJ, Herrmann T, Price DA, Gallimore AM, Clarkson RW, Scotet E, Moser B, Eberl M. Synergistic targeting of breast cancer stem-like cells by human γδ T cells and CD8 + T cells. Immunol Cell Biol 2017; 95:620-629. [PMID: 28356569 PMCID: PMC5550559 DOI: 10.1038/icb.2017.21] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 03/17/2017] [Accepted: 03/24/2017] [Indexed: 12/12/2022]
Abstract
The inherent resistance of cancer stem cells (CSCs) to existing therapies has largely hampered the development of effective treatments for advanced malignancy. To help develop novel immunotherapy approaches that efficiently target CSCs, an experimental model allowing reliable distinction of CSCs and non-CSCs was set up to study their interaction with non-MHC-restricted γδ T cells and antigen-specific CD8+ T cells. Stable lines with characteristics of breast CSC-like cells were generated from ras-transformed human mammary epithelial (HMLER) cells as confirmed by their CD44hi CD24lo GD2+ phenotype, their mesenchymal morphology in culture and their capacity to form mammospheres under non-adherent conditions, as well as their potent tumorigenicity, self-renewal and differentiation in xenografted mice. The resistance of CSC-like cells to γδ T cells could be overcome by inhibition of farnesyl pyrophosphate synthase (FPPS) through pretreatment with zoledronate or with FPPS-targeting short hairpin RNA. γδ T cells induced upregulation of MHC class I and CD54/ICAM-1 on CSC-like cells and thereby increased the susceptibility to antigen-specific killing by CD8+ T cells. Alternatively, γδ T-cell responses could be specifically directed against CSC-like cells using the humanised anti-GD2 monoclonal antibody hu14.18K322A. Our findings identify a powerful synergism between MHC-restricted and non-MHC-restricted T cells in the eradication of cancer cells including breast CSCs. Our research suggests that novel immunotherapies may benefit from a two-pronged approach combining γδ T-cell and CD8+ T-cell targeting strategies that triggers effective innate-like and tumour-specific adaptive responses.
Collapse
Affiliation(s)
- Hung-Chang Chen
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Noémie Joalland
- INSERM, Unité Mixte de Recherche 892, Centre de Recherche en Cancérologie Nantes Angers, Institut de Recherche en Santé de l’Université de Nantes, Nantes, France
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 6299, Nantes, France
| | - John S Bridgeman
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Fouad S Alchami
- Cardiff and Vale University Health Board, University Hospital of Wales, Cardiff, UK
| | - Ulrich Jarry
- INSERM, Unité Mixte de Recherche 892, Centre de Recherche en Cancérologie Nantes Angers, Institut de Recherche en Santé de l’Université de Nantes, Nantes, France
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 6299, Nantes, France
| | - Mohd Wajid A Khan
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Luke Piggott
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
- School of Biosciences, Cardiff University, Cardiff, UK
| | - Yasmin Shanneik
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Jianqiang Li
- Institute for Virology and Immunobiology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Marco J Herold
- Institute for Virology and Immunobiology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Thomas Herrmann
- Institute for Virology and Immunobiology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - David A Price
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
- Systems Immunity Research Institute, Cardiff University, Cardiff, UK
| | - Awen M Gallimore
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
- Systems Immunity Research Institute, Cardiff University, Cardiff, UK
| | - Richard W Clarkson
- School of Biosciences, Cardiff University, Cardiff, UK
- European Cancer Stem Cell Research Institute, Cardiff University, Cardiff, UK
| | - Emmanuel Scotet
- INSERM, Unité Mixte de Recherche 892, Centre de Recherche en Cancérologie Nantes Angers, Institut de Recherche en Santé de l’Université de Nantes, Nantes, France
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 6299, Nantes, France
| | - Bernhard Moser
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
- Systems Immunity Research Institute, Cardiff University, Cardiff, UK
| | - Matthias Eberl
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
- Systems Immunity Research Institute, Cardiff University, Cardiff, UK
| |
Collapse
|
139
|
Chao CC, Wu PH, Huang HC, Chung HY, Chou YC, Cai BH, Kannagi R. Downregulation of miR-199a/b-5p is associated with GCNT2 induction upon epithelial-mesenchymal transition in colon cancer. FEBS Lett 2017; 591:1902-1917. [PMID: 28542779 DOI: 10.1002/1873-3468.12685] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 04/20/2017] [Accepted: 04/27/2017] [Indexed: 11/08/2022]
Abstract
β-1,6-N-acetylglucosaminyltransferase 2 (GCNT2), which encodes a key glycosyltransferase for blood group I antigen synthesis, is induced upon epithelial-mesenchymal transition (EMT). Our results indicate that GCNT2 is upregulated upon EMT induced with epidermal growth factor and basic FGF in cultured human colon cancer cells. GCNT2 knockdown or overexpression decreases or increases, respectively, malignancy-related characteristics of colon cancer cells and I antigen levels. MiR-199a/b-5p is markedly downregulated upon EMT in colon cancer cells. Here, we find that miR-199a/b-5p consistently regulates GCNT2 expression in reporter assays and that it binds directly to the GCNT2 3' untranslated region intracellularly in RNA-induced silencing complex-trap assays. Overexpression of miR-199a/b-5p decreases GCNT2 expression and suppresses I antigen production. Based on these findings, we propose that miR-199a/b-5p regulates GCNT2 and I antigen expression in colon cancer cells undergoing EMT.
Collapse
Affiliation(s)
- Chia-Chun Chao
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Po-Han Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hsiang-Chi Huang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Taiwan International Graduate Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan
| | - Hsiao-Yu Chung
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yu-Chi Chou
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.,National RNAi Core Facility, Academia Sinica, Taipei, Taiwan
| | - Bi-He Cai
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Reiji Kannagi
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
140
|
Groux-Degroote S, Guérardel Y, Delannoy P. Gangliosides: Structures, Biosynthesis, Analysis, and Roles in Cancer. Chembiochem 2017; 18:1146-1154. [PMID: 28295942 DOI: 10.1002/cbic.201600705] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Indexed: 12/30/2022]
Abstract
Gangliosides are acidic glycosphingolipids containing one or more sialic acid residues. They are essential compounds at the outer leaflet of the plasma membrane, where they interact with phospholipids, cholesterol, and transmembrane proteins, forming lipid rafts. They are involved in cell adhesion, proliferation, and recognition processes, as well as in the modulation of signal transduction pathways. These functions are mainly governed by the glycan moiety, and changes in the structures of gangliosides occur under pathological conditions, particularly in neuro-ectoderm-derived cancers. With the progress in mass spectrometry analysis of gangliosides, their role in cancer progression can be now investigated in more detail. In this review we summarize the current knowledge on the biosynthesis of gangliosides and their role in cancers, together with the recent development of cancer immunotherapy targeting gangliosides.
Collapse
Affiliation(s)
- Sophie Groux-Degroote
- Université de Lille, CNRS, UMR 8576, UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France
| | - Yann Guérardel
- Université de Lille, CNRS, UMR 8576, UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France
| | - Philippe Delannoy
- Université de Lille, CNRS, UMR 8576, UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France
| |
Collapse
|
141
|
Morandi A, Taddei ML, Chiarugi P, Giannoni E. Targeting the Metabolic Reprogramming That Controls Epithelial-to-Mesenchymal Transition in Aggressive Tumors. Front Oncol 2017; 7:40. [PMID: 28352611 PMCID: PMC5348536 DOI: 10.3389/fonc.2017.00040] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/28/2017] [Indexed: 01/06/2023] Open
Abstract
The epithelial-to-mesenchymal transition (EMT) process allows the trans-differentiation of a cell with epithelial features into a cell with mesenchymal characteristics. This process has been reported to be a key priming event for tumor development and therefore EMT activation is now considered an established trait of malignancy. The transcriptional and epigenetic reprogramming that governs EMT has been extensively characterized and reviewed in the last decade. However, increasing evidence demonstrates a correlation between metabolic reprogramming and EMT execution. The aim of the current review is to gather the recent findings that illustrate this correlation to help deciphering whether metabolic changes are causative or just a bystander effect of EMT activation. The review is divided accordingly to the catabolic and anabolic pathways that characterize carbohydrate, aminoacid, and lipid metabolism. Moreover, at the end of each part, we have discussed a series of potential metabolic targets involved in EMT promotion and execution for which drugs are either available or that could be further investigated for therapeutic intervention.
Collapse
Affiliation(s)
- Andrea Morandi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence , Florence , Italy
| | - Maria Letizia Taddei
- Department of Experimental and Clinical Medicine, University of Florence , Florence , Italy
| | - Paola Chiarugi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy; Excellence Centre for Research, Transfer and High Education DenoTHE, University of Florence, Florence, Italy
| | - Elisa Giannoni
- Department of Experimental and Clinical Biomedical Sciences, University of Florence , Florence , Italy
| |
Collapse
|
142
|
Kwon KM, Chung TW, Kwak CH, Choi HJ, Kim KW, Ha SH, Cho SH, Lee YC, Ha KT, Lee MJ, Kim CH. Disialyl GD2 ganglioside suppresses ICAM-1-mediated invasiveness in human breast cancer MDA-MB231 cells. Int J Biol Sci 2017; 13:265-275. [PMID: 28367091 PMCID: PMC5370434 DOI: 10.7150/ijbs.16903] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 12/12/2016] [Indexed: 11/07/2022] Open
Abstract
The disialoganglioside GD3 has been considered to be involved in tumor progression or suppression in various tumor cells. However, the significance of the biological functions of GD3 in breast cancer cells is still controversial. This prompted us to study the possible relationship(s) between GD3 expression and the metastatic potential of a breast cancer MDA-MB231 cells as an estrogen receptor negative (ER-) type. The human GD3 synthase cDNA was transfected into MDA-MB231 cells, and G-418 bulk selection was used to select cells stably overexpressing the GD3 synthase. In vitro invasion potentials of the GD3 synthase over-expressing cells (pc3-GD3s) were significantly suppressed when compared with control cells. Expression of intercellular adhesion molecule-1 (ICAM-1; CD54) was down-regulated in the pc3-GD3s cells and the decrease in ICAM-I expression is directly related to the decrease in invasiveness of the pc3-GD3s cells. Another type of ER negative SK-BR3 cells exhibited the similar level of ICAM-1 expression as MDA-MB231 cells, while the ER positive MCF-7 cells (ER+) showed the increased expression level of ICAM-1. Then, we investigated signaling pathways known to control ICAM-1 expression. No difference was observed in the phosphorylation of ERK and p38 between the pc3-GD3s and control cells (pc3), but the activation of AKT was inhibited in pc3-GD3s, and not in the control (pc3). In addition, the composition of total gangliosides was changed between control (pc3) and pc3-GD3s cells, as confirmed by HPTLC. The pc3-GD3s cells had an accumulation of the GD2 instead of the GD3. RT-PCR results showed that not only GD3 synthase, but also GM2/GD2 synthase (β4-GalNc T) expression was increased in pc3-GD3s cells. Overexpression of GD3 synthase suppresses the invasive potential of human breast cancer MDA-MB-231 cells through down-regulation of ICAM-1 and the crucial pathway to allow the apoptotic effect has been attributed to accumulation of the GD2 ganglioside. ER has been linked to the ICAM-1 expression with GD3 to GD2 conversion in human breast cancer cells. This is the first finding of the endogenous sialyltransferase functions in tumor cells.
Collapse
Affiliation(s)
- Kyung-Min Kwon
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, Sungkyunkwan University, Seoburo 2066, Jangan-Gu, Suwon, Gyunggi-Do, 16419, Korea;; Research Institute, Davinch-K Co., Ltd., B1603-3, 606, Seobusaet-gil, Geumcheon-gu, Seoul 153-719, Korea
| | - Tae-Wook Chung
- Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan City, Gyeongsangnam-Do, Korea
| | - Choong-Hwan Kwak
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, Sungkyunkwan University, Seoburo 2066, Jangan-Gu, Suwon, Gyunggi-Do, 16419, Korea
| | - Hee-Jung Choi
- Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan City, Gyeongsangnam-Do, Korea
| | - Kyung-Woon Kim
- Animal Biotechnology Division, National Institute of Animal Science, RDA, Wanju-gun, Jeollabuk-do, 55365, Korea
| | - Sun-Hyung Ha
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, Sungkyunkwan University, Seoburo 2066, Jangan-Gu, Suwon, Gyunggi-Do, 16419, Korea
| | - Seung-Hak Cho
- Division of Enteric Diseases, Center for Infectious Diseases Research, Korea National Institute of Health, Heungdeok-gu, Cheongju 363-951, Korea
| | - Young-Choon Lee
- Department of Biotechnology, Dong-A University, Busan 604-714, Korea
| | - Ki-Tae Ha
- Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan City, Gyeongsangnam-Do, Korea
| | - Moon-Jo Lee
- Department of Herb Science, Dong-Eui Institute of Technology, 54, Yangji-ro, Busanjin-Gu, Busan 47230, Korea
| | - Cheorl-Ho Kim
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, Sungkyunkwan University, Seoburo 2066, Jangan-Gu, Suwon, Gyunggi-Do, 16419, Korea;; Department of Medical Device Management and Research, Samsung Advanced Institute of Health Science and Technology (SAIHST), Seoul 06351, Korea
| |
Collapse
|
143
|
Targeting O-Acetyl-GD2 Ganglioside for Cancer Immunotherapy. J Immunol Res 2017; 2017:5604891. [PMID: 28154831 PMCID: PMC5244029 DOI: 10.1155/2017/5604891] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 11/18/2016] [Accepted: 12/08/2016] [Indexed: 12/29/2022] Open
Abstract
Target selection is a key feature in cancer immunotherapy, a promising field in cancer research. In this respect, gangliosides, a broad family of structurally related glycolipids, were suggested as potential targets for cancer immunotherapy based on their higher abundance in tumors when compared with the matched normal tissues. GD2 is the first ganglioside proven to be an effective target antigen for cancer immunotherapy with the regulatory approval of dinutuximab, a chimeric anti-GD2 therapeutic antibody. Although the therapeutic efficacy of anti-GD2 monoclonal antibodies is well documented, neuropathic pain may limit its application. O-Acetyl-GD2, the O-acetylated-derivative of GD2, has recently received attention as novel antigen to target GD2-positive cancers. The present paper examines the role of O-acetyl-GD2 in tumor biology as well as the available preclinical data of anti-O-acetyl-GD2 monoclonal antibodies. A discussion on the relevance of O-acetyl-GD2 in chimeric antigen receptor T cell therapy development is also included.
Collapse
|
144
|
Predicting and Overcoming Chemotherapeutic Resistance in Breast Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1026:59-104. [PMID: 29282680 DOI: 10.1007/978-981-10-6020-5_4] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Our understanding of breast cancer and its therapeutic approach has improved greatly due to the advancement of molecular biology in recent years. Clinically, breast cancers are characterized into three basic types based on their immunohistochemical properties. They are triple-negative breast cancer, estrogen receptor (ER) and progesterone receptor (PR)-positive-HR positive breast cancer, and human epidermal growth factor receptor 2 (HER2)-positive breast cancer. Even though these subtypes have been characterized, assessment of a breast cancer's receptor status is still widely used to determine whether or not a targeted therapy could be applied. Moreover, drug resistance is common in all breast cancer types despite the different treatment modalities applied. The development of resistance to different therapeutics is not mutually exclusive. It seems that tumor could be resistant to multiple treatment strategies, such as being both chemoresistant and monoclonal antibody resistant. However, the underlying mechanisms are complicated and need further investigation. In this chapter, we aim to provide a brief review of the different types of breast cancer and their respective treatment strategies. We also review the possible mechanisms of potential drug resistance associated with each treatment type. We believe that a better understanding of the drug resistance mechanisms can lead to a more effective and efficient therapeutic success.
Collapse
|
145
|
Role of Cytokine-Induced Glycosylation Changes in Regulating Cell Interactions and Cell Signaling in Inflammatory Diseases and Cancer. Cells 2016; 5:cells5040043. [PMID: 27916834 PMCID: PMC5187527 DOI: 10.3390/cells5040043] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/23/2016] [Accepted: 11/24/2016] [Indexed: 12/17/2022] Open
Abstract
Glycosylation is one of the most important modifications of proteins and lipids, and cell surface glycoconjugates are thought to play important roles in a variety of biological functions including cell-cell and cell-substrate interactions, bacterial adhesion, cell immunogenicity and cell signaling. Alterations of glycosylation are observed in number of diseases such as cancer and chronic inflammation. In that context, pro-inflammatory cytokines have been shown to modulate cell surface glycosylation by regulating the expression of glycosyltransferases involved in the biosynthesis of carbohydrate chains. These changes in cell surface glycosylation are also known to regulate cell signaling and could contribute to disease pathogenesis. This review summarizes our current knowledge of the glycosylation changes induced by pro-inflammatory cytokines, with a particular focus on cancer and cystic fibrosis, and their consequences on cell interactions and signaling.
Collapse
|
146
|
Yu AL, Hung JT, Ho MY, Yu J. Alterations of Glycosphingolipids in Embryonic Stem Cell Differentiation and Development of Glycan-Targeting Cancer Immunotherapy. Stem Cells Dev 2016; 25:1532-1548. [DOI: 10.1089/scd.2016.0138] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Alice L. Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan, Taiwan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Jung-Tung Hung
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan, Taiwan
| | - Ming-Yi Ho
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan, Taiwan
| | - John Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan, Taiwan
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
147
|
Dobrenkov K, Ostrovnaya I, Gu J, Cheung IY, Cheung NKV. Oncotargets GD2 and GD3 are highly expressed in sarcomas of children, adolescents, and young adults. Pediatr Blood Cancer 2016; 63:1780-5. [PMID: 27304202 PMCID: PMC5215083 DOI: 10.1002/pbc.26097] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 05/15/2016] [Accepted: 05/17/2016] [Indexed: 01/22/2023]
Abstract
BACKGROUND GD2 and GD3 are the tumor-associated glycolipid antigens found in a broad spectrum of human cancers. GD2-specific antibody is currently a standard of care for high-risk neuroblastoma therapy. In this study, the pattern of GD2 and GD3 expression among pediatric/adolescent or young adult tumors was determined, providing companion diagnostics for targeted therapy. METHODS Ninety-two specimens of human osteosarcoma (OS), rhabdomyosarcoma (RMS), Ewing family of tumors, desmoplastic small round cell tumor (DSRCT), and melanoma were analyzed for GD2/GD3 expression by immunohistochemistry. Murine monoclonal antibody 3F8 was used for GD2 staining, and R24 for GD3. Staining was scored according to both intensity and percentage of positive tumor cells from 0 to 4. RESULTS Both gangliosides were highly prevalent in OS and melanoma. Among other tumors, GD3 expression was higher than GD2 expression. Most OS samples demonstrated strong staining for GD2 and GD3, whereas expression for other tumors was highly variable. Mean intensity of GD2 expression was significantly more heterogeneous (P < 0.001) when compared to GD3 across tumor types. When assessing the difference between GD2 and GD3 expression in all tumor types combined, GD3 expression had a significantly higher score (P = 0.049). When analyzed within each cancer, GD3 expression was significantly higher only in DSRCT (P = 0.002). There was no statistical difference in either GD2 or GD3 expression between primary and recurrent sarcomas. CONCLUSION GD2/GD3 expression among pediatric solid tumors is common, albeit with variable level of expression. Especially for patients with sarcoma, these gangliosides can be potential targets for antibody-based therapies.
Collapse
Affiliation(s)
| | - Irina Ostrovnaya
- Department of Biostatistics and Epidemiology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jessie Gu
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Irene Y. Cheung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Nai-Kong V. Cheung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
,Correspondence to: Nai-Kong V. Cheung, MD, PhD, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, Tel.: 646-888-2313, Fax: 631-422-0452,
| |
Collapse
|
148
|
Szabo R, Skropeta D. Advancement of Sialyltransferase Inhibitors: Therapeutic Challenges and Opportunities. Med Res Rev 2016; 37:219-270. [DOI: 10.1002/med.21407] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 07/14/2016] [Accepted: 08/03/2016] [Indexed: 01/06/2023]
Affiliation(s)
- Rémi Szabo
- School of Chemistry; University of Wollongong; Wollongong NSW 2522 Australia
| | - Danielle Skropeta
- School of Chemistry; University of Wollongong; Wollongong NSW 2522 Australia
- Centre for Medical & Molecular Bioscience; University of Wollongong; Wollongong NSW 2522 Australia
| |
Collapse
|
149
|
Zubareva AA, Boyko AA, Kholodenko IV, Rozov FN, Larina MV, Aliev TK, Doronin II, Vishnyakova PA, Molotkovskaya IM, Kholodenko RV. Chitosan nanoparticles targeted to the tumor-associated ganglioside GD2. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2016. [DOI: 10.1134/s1068162016050150] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
150
|
Hsu CL, Chung FH, Chen CH, Hsu TT, Liu SM, Chung DS, Hsu YF, Chen CL, Ma N, Lee HC. Genotypes of cancer stem cells characterized by epithelial-to-mesenchymal transition and proliferation related functions. Sci Rep 2016; 6:32523. [PMID: 27597445 PMCID: PMC5011650 DOI: 10.1038/srep32523] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 08/08/2016] [Indexed: 12/13/2022] Open
Abstract
Cancer stem cells (CSCs), or cancer cells with stem cell-like properties, generally exhibit drug resistance and have highly potent cancer inducing capabilities. Genome-wide expression data collected at public repositories over the last few years provide excellent material for studies that can lead to insights concerning the molecular and functional characteristics of CSCs. Here, we conducted functional genomic studies of CSC based on fourteen PCA-screened high quality public CSC whole genome gene expression datasets and, as control, four high quality non-stem-like cancer cell and non-cancerous stem cell datasets from the Gene Expression Omnibus database. A total of 6,002 molecular signatures were taken from the Molecular Signatures Database and used to characterize the datasets, which, under two-way hierarchical clustering, formed three genotypes. Type 1, consisting of mainly glia CSCs, had significantly enhanced proliferation, and significantly suppressed epithelial-mesenchymal transition (EMT), related functions. Type 2, mainly breast CSCs, had significantly enhanced EMT, but not proliferation, related functions. Type 3, composed of ovarian, prostate, and colon CSCs, had significantly suppressed proliferation related functions and mixed expressions on EMT related functions.
Collapse
Affiliation(s)
- Chueh-Lin Hsu
- Institute of Systems Biology and Bioinformatics, Department of Biomedical Science and Engineering, National Central University, Zhongli, 32001, Taiwan
| | - Feng-Hsiang Chung
- Institute of Systems Biology and Bioinformatics, Department of Biomedical Science and Engineering, National Central University, Zhongli, 32001, Taiwan
| | - Chih-Hao Chen
- Institute of Systems Biology and Bioinformatics, Department of Biomedical Science and Engineering, National Central University, Zhongli, 32001, Taiwan
| | - Tzu-Ting Hsu
- Institute of Systems Biology and Bioinformatics, Department of Biomedical Science and Engineering, National Central University, Zhongli, 32001, Taiwan
| | - Szu-Mam Liu
- Institute of Systems Biology and Bioinformatics, Department of Biomedical Science and Engineering, National Central University, Zhongli, 32001, Taiwan
| | - Dao-Sheng Chung
- Department of Radiation Oncology, Landseed Hospital, Taoyuan, 324, Taiwan
| | - Ya-Fen Hsu
- Department of Surgery, Landseed Hospital, Taoyuan, 324, Taiwan
| | - Chien-Lung Chen
- Department of Nephrology, Landseed Hospital, Taoyuan, 324, Taiwan
| | - Nianhan Ma
- Institute of Systems Biology and Bioinformatics, Department of Biomedical Science and Engineering, National Central University, Zhongli, 32001, Taiwan
| | - Hoong-Chien Lee
- Institute of Systems Biology and Bioinformatics, Department of Biomedical Science and Engineering, National Central University, Zhongli, 32001, Taiwan.,Department of Physics, Chung Yuan Christian University, Zhongli, 32023, Taiwan.,Center for Dynamical Biomarkers and Translational Medicine, National Central University, Zhongli, 32001, Taiwan
| |
Collapse
|