101
|
Yin X, Chen Y, Ruze R, Xu R, Song J, Wang C, Xu Q. The evolving view of thermogenic fat and its implications in cancer and metabolic diseases. Signal Transduct Target Ther 2022; 7:324. [PMID: 36114195 PMCID: PMC9481605 DOI: 10.1038/s41392-022-01178-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 02/07/2023] Open
Abstract
AbstractThe incidence of metabolism-related diseases like obesity and type 2 diabetes mellitus has reached pandemic levels worldwide and increased gradually. Most of them are listed on the table of high-risk factors for malignancy, and metabolic disorders systematically or locally contribute to cancer progression and poor prognosis of patients. Importantly, adipose tissue is fundamental to the occurrence and development of these metabolic disorders. White adipose tissue stores excessive energy, while thermogenic fat including brown and beige adipose tissue dissipates energy to generate heat. In addition to thermogenesis, beige and brown adipocytes also function as dynamic secretory cells and a metabolic sink of nutrients, like glucose, fatty acids, and amino acids. Accordingly, strategies that activate and expand thermogenic adipose tissue offer therapeutic promise to combat overweight, diabetes, and other metabolic disorders through increasing energy expenditure and enhancing glucose tolerance. With a better understanding of its origins and biological functions and the advances in imaging techniques detecting thermogenesis, the roles of thermogenic adipose tissue in tumors have been revealed gradually. On the one hand, enhanced browning of subcutaneous fatty tissue results in weight loss and cancer-associated cachexia. On the other hand, locally activated thermogenic adipocytes in the tumor microenvironment accelerate cancer progression by offering fuel sources and is likely to develop resistance to chemotherapy. Here, we enumerate current knowledge about the significant advances made in the origin and physiological functions of thermogenic fat. In addition, we discuss the multiple roles of thermogenic adipocytes in different tumors. Ultimately, we summarize imaging technologies for identifying thermogenic adipose tissue and pharmacologic agents via modulating thermogenesis in preclinical experiments and clinical trials.
Collapse
|
102
|
Tummolo A, Carella R, Paterno G, Bartolomeo N, Giotta M, Dicintio A, De Giovanni D, Fischetto R. Body Composition in Adolescent PKU Patients: Beyond Fat Mass. CHILDREN (BASEL, SWITZERLAND) 2022; 9:children9091353. [PMID: 36138662 PMCID: PMC9497631 DOI: 10.3390/children9091353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/10/2022] [Accepted: 08/31/2022] [Indexed: 11/21/2022]
Abstract
There is a lack of evidence on the impact on body composition of high protein intake and types of protein substitutes in PKU patients—particularly in adolescents, who are more inclined to dietary transgressions. In this observational, cross-sectional study, PKU patients were observed during prepubertal age (p) or after the pubertal spurt (P), assessing body composition and bone quality and correlating these parameters with dietary compliance and types of protein substitutes. Anthropometric and dietary data were evaluated together with bioelectrical impedance analysis (BIA), quantitative ultrasound (QUS) and branched-chain amino acids (BCAAs). A total of 36 patients (16 males, 17 prepubertal and 19 post-pubertal; mean ± SD age 11.4 ± 3.9 years) were included. A higher BMI was observed in adolescents (p-value: 0.018). The BIA revealed a significant increase in total body water (TBW) and muscle mass (MM) in P subjects either compliant (p-value: 0.001) or non-compliant with the diet (p-value: 0.001). MM content correlated with increased Phe intake (r = 0.63; p < 0.001). In the subgroup of five patients taking L-AAs and glycomacropeptides (GMPs), BCAA values tended to be lower than those taking only L-AA mixtures, with a significant trend for valine. Maintenance of body composition parameters within the normal range—for both fat and muscle mass—and levels of BCAAs can be helpful in reducing the risk of becoming overweight in adulthood. Further studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Albina Tummolo
- Department of Metabolic Diseases and Clinical Genetics, Giovanni XXIII Children Hospital, Azienda Ospedaliero-Universitaria Consorziale, 70126 Bari, Italy
- Correspondence:
| | - Rosa Carella
- Department of Metabolic Diseases and Clinical Genetics, Giovanni XXIII Children Hospital, Azienda Ospedaliero-Universitaria Consorziale, 70126 Bari, Italy
| | - Giulia Paterno
- Department of Metabolic Diseases and Clinical Genetics, Giovanni XXIII Children Hospital, Azienda Ospedaliero-Universitaria Consorziale, 70126 Bari, Italy
| | - Nicola Bartolomeo
- Interdisciplinary Department of Medicine, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Massimo Giotta
- Interdisciplinary Department of Medicine, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Annamaria Dicintio
- Department of Metabolic Diseases and Clinical Genetics, Giovanni XXIII Children Hospital, Azienda Ospedaliero-Universitaria Consorziale, 70126 Bari, Italy
| | - Donatella De Giovanni
- Department of Metabolic Diseases and Clinical Genetics, Giovanni XXIII Children Hospital, Azienda Ospedaliero-Universitaria Consorziale, 70126 Bari, Italy
| | - Rita Fischetto
- Department of Metabolic Diseases and Clinical Genetics, Giovanni XXIII Children Hospital, Azienda Ospedaliero-Universitaria Consorziale, 70126 Bari, Italy
| |
Collapse
|
103
|
Min HY, Hwang J, Choi Y, Jo YH. Overexpressing the hydroxycarboxylic acid receptor 1 in mouse brown adipose tissue restores glucose tolerance and insulin sensitivity in diet-induced obese mice. Am J Physiol Endocrinol Metab 2022; 323:E231-E241. [PMID: 35830691 PMCID: PMC9423771 DOI: 10.1152/ajpendo.00084.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/05/2022] [Accepted: 07/09/2022] [Indexed: 11/22/2022]
Abstract
Interscapular brown adipose tissue (BAT) plays an important role in controlling glucose homeostasis. Increased glucose entry and glycolysis in BAT result in lactate production and release. The adipose tissue expresses the lactate receptor hydrocarboxylic acid receptor 1 (HCAR1), markedly downregulated in male diet-induced obese (DIO) and ob/ob mice. In this study, we examined the role of HCAR1 in BAT in controlling glucose homeostasis in male DIO mice. We overexpressed HCAR1 in BAT by injecting adeno-associated viruses (AAVs) expressing HCAR1 into the BAT pads of male DIO C57BL/6J mice. Overexpressing HCAR1 in BAT resulted in augmented glucose uptake by BAT in response to treatment with the HCAR1 agonist. HCAR1 overexpression elevated BAT temperature associated with increased thermogenic gene expression in BAT. HCAR1 overexpression prevented body weight gain in male DIO mice. Importantly, mice overexpressing HCAR1 in BAT exhibited improved glucose tolerance and insulin sensitivity. HCAR1 overexpression upregulated the Slc2a4 gene expression and promoted GLUT4 trafficking to the plasma membrane. In addition, mice overexpressing HCAR1 displayed a decrease in hormone-sensitive lipase (HSL) phosphorylation and increased lipogenic enzyme gene expression in BAT. Unlike DIO mice, overexpressing HCAR1 in BAT of mice fed a low-fat diet did not change body weight gain and glucose homeostasis. Taken together, our results support the interpretation that HCAR1 expressed in BAT promotes glucose entry and reduces lipolysis in BAT of male DIO mice. As activation of HCAR1 in BAT restores body weight, glucose tolerance, and insulin sensitivity in male DIO mice, our study suggests that interoceptive lactate detection via HCAR1 in BAT can regulate glucose and lipid substrate utilization and/or availability to promote healthy metabolism.NEW & NOTEWORTHY HCAR1 expressed in BAT can promote glucose entry and reduce lipolysis, resulting in body weight loss and increased insulin sensitivity. Hence, targeting HCAR1 in BAT would provide an alternative way to control body weight and euglycemia in individuals with obesity.
Collapse
Affiliation(s)
- Hyeon-Young Min
- The Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, New York City, New York
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, New York City, New York
| | - Jiyeon Hwang
- The Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, New York City, New York
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, New York City, New York
| | - Yuna Choi
- The Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, New York City, New York
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, New York City, New York
| | - Young-Hwan Jo
- The Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, New York City, New York
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, New York City, New York
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York City, New York
| |
Collapse
|
104
|
High-fructose feeding suppresses cold-stimulated brown adipose tissue glucose uptake independently of changes in thermogenesis and the gut microbiome. Cell Rep Med 2022; 3:100742. [PMID: 36130480 PMCID: PMC9512695 DOI: 10.1016/j.xcrm.2022.100742] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 06/14/2022] [Accepted: 08/23/2022] [Indexed: 12/30/2022]
Abstract
Diets rich in added sugars are associated with metabolic diseases, and studies have shown a link between these pathologies and changes in the microbiome. Given the reported associations in animal models between the microbiome and brown adipose tissue (BAT) function, and the alterations in the microbiome induced by high-glucose or high-fructose diets, we investigated the potential causal link between high-glucose or -fructose diets and BAT dysfunction in humans. Primary outcomes are changes in BAT cold-induced thermogenesis and the fecal microbiome (clinicaltrials.gov, NCT03188835). We show that BAT glucose uptake, but not thermogenesis, is impaired by a high-fructose but not high-glucose diet, in the absence of changes in the gastrointestinal microbiome. We conclude that decreased BAT glucose metabolism occurs earlier than other pathophysiological abnormalities during fructose overconsumption in humans. This is a potential confounding factor for studies relying on 18F-FDG to assess BAT thermogenesis. Fructose overfeeding decreases brown adipose tissue glucose metabolism These changes occur independently of oxidative metabolism No change is observed with glucose overfeeding The gut microbiome is not affected by fructose/glucose overfeeding
Collapse
|
105
|
Tanaka R, Fuse-Hamaoka S, Kuroiwa M, Kurosawa Y, Endo T, Kime R, Yoneshiro T, Hamaoka T. The Effects of 10-Week Strength Training in the Winter on Brown-like Adipose Tissue Vascular Density. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10375. [PMID: 36012011 PMCID: PMC9408462 DOI: 10.3390/ijerph191610375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
There is no evidence of the effect of exercise training on human brown-like adipose tissue vascular density (BAT-d). Here, we report whether whole-body strength training (ST) in a cold environment increased BAT-d. The participants were 18 men aged 20-31 years. They were randomly assigned to two groups: one that performed ST twice a week at 75% intensity of one-repetition maximum for 10 weeks during winter (EX; n = 9) and a control group that did not perform ST (CT; n = 9). The total hemoglobin concentration in the supraclavicular region determined by time-resolved near-infrared spectroscopy was used as a parameter of BAT-d. ST volume (Tvol) was defined as the mean of the weight × repetition × sets of seven training movements. The number of occasions where the room temperature was lower than the median (NRcold) was counted as an index of potential cold exposure during ST. There was no significant between-group difference in BAT-d. Multiple regression analysis using body mass index, body fat percentage, NRcold, and Tvol as independent variables revealed that NRcold and Tvol were determined as predictive of changes in BAT-d. An appropriate combination of ST with cold environments could be an effective strategy for modulating BAT.
Collapse
Affiliation(s)
- Riki Tanaka
- Department of Sports Medicine for Health Promotion, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Sayuri Fuse-Hamaoka
- Department of Sports Medicine for Health Promotion, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Miyuki Kuroiwa
- Department of Sports Medicine for Health Promotion, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Yuko Kurosawa
- Department of Sports Medicine for Health Promotion, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Tasuki Endo
- Faculty of Science and Technology, Meijo University, Nagoya 468-8502, Japan
| | - Ryotaro Kime
- Department of Sports Medicine for Health Promotion, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Takeshi Yoneshiro
- Research Center for Advanced Science and Technology, University of Tokyo, Tokyo 153-8904, Japan
| | - Takafumi Hamaoka
- Department of Sports Medicine for Health Promotion, Tokyo Medical University, Tokyo 160-8402, Japan
| |
Collapse
|
106
|
Ocobock C, Niclou A. Commentary-fat but fit…and cold? Potential evolutionary and environmental drivers of metabolically healthy obesity. Evol Med Public Health 2022; 10:400-408. [PMID: 36071988 PMCID: PMC9447378 DOI: 10.1093/emph/eoac030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/04/2022] [Indexed: 11/29/2022] Open
Abstract
As global obesity rates continue to rise, it is important to understand the origin, role and range of human variation of body mass index (BMI) in assessing health and healthcare. A growing body of evidence suggests that BMI is a poor indicator of health across populations, and that there may be a metabolically healthy obese phenotype. Here, we review the reasons why BMI is an inadequate tool for assessing cardiometabolic health. We then suggest that cold climate adaptations may also render BMI an uninformative metric. Underlying evolutionary and environmental drivers may allow for heat conserving larger body sizes without necessarily increasing metabolic health risks. However, there may also be a potential mismatch between modern obesogenic environments and adaptations to cold climates, highlighting the need to further investigate the potential for metabolically healthy obese phenotypes among circumpolar and other populations as well as the broader meaning for metabolic health.
Collapse
Affiliation(s)
- Cara Ocobock
- Department of Anthropology, University of Notre Dame, Notre Dame, IN, USA
- Eck Institute for Global Health, Institute for Educational Initiatives, University of Notre Dame, Notre Dame, IN, USA
| | - Alexandra Niclou
- Department of Anthropology, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
107
|
Van Schaik L, Kettle C, Green R, Wundersitz D, Gordon B, Irving HR, Rathner JA. Both caffeine and Capsicum annuum fruit powder lower blood glucose levels and increase brown adipose tissue temperature in healthy adult males. Front Physiol 2022; 13:870154. [PMID: 36017333 PMCID: PMC9395699 DOI: 10.3389/fphys.2022.870154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 07/05/2022] [Indexed: 01/28/2023] Open
Abstract
Using a combination of respiratory gas exchange, infrared thermography, and blood glucose (BGL) analysis, we have investigated the impact of Capsicum annuum (C. annuum) fruit powder (475 mg) or caffeine (100 mg) on metabolic activity in a placebo controlled (lactose, 100 mg) double-blinded three-way cross-over-design experiment. Metabolic measurements were made on day 1 and day 7 of supplementation in eight adult male participants (22.2 ± 2 years of age, BMI 23 ± 2 kg/m2, x̅ ± SD). Participants arrived fasted overnight and were fed a high carbohydrate meal (90 g glucose), raising BGL from fasting baseline (4.4 ± 0.3 mmol/L) to peak BGL (8.5 ± 0.3 mmol/L) 45 min after the meal. Participants consumed the supplement 45 min after the meal, and both caffeine and C. annuum fruit powder restored BGL (F (8,178) = 2.2, p = 0.02) to near fasting levels within 15 min of supplementation compared to placebo (120 min). In parallel both supplements increased energy expenditure (F (2, 21) = 175.6, p < 0.001) over the 120-min test period (caffeine = 50.74 ± 2 kcal/kg/min, C. annuum fruit = 50.95 ± 1 kcal/kg/min, placebo = 29.34 ± 1 kcal/kg/min). Both caffeine and C. annuum fruit powder increased supraclavicular fossa temperature (F (2,42) = 32, p < 0.001) on both day 1 and day 7 of testing over the 120-min test period. No statistical difference in core temperature or reference point temperature, mean arterial pressure or heart rate was observed due to supplementation nor was any statistical difference seen between day 1 and day 7 of intervention. This is important for implementing dietary ingredients as potential metabolism increasing supplements. Together the results imply that through dietary supplements such as caffeine and C. annuum, mechanisms for increasing metabolism can be potentially targeted to improve metabolic homeostasis in people.
Collapse
Affiliation(s)
- Lachlan Van Schaik
- Department of Rural Clinical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC, Australia,*Correspondence: Lachlan Van Schaik,
| | - Christine Kettle
- Department of Rural Clinical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC, Australia
| | - Rod Green
- Department of Rural Clinical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC, Australia
| | - Daniel Wundersitz
- Department of Rural Allied Health, Holsworth Research Initiative, La Trobe Rural Health School, La Trobe University, Bendigo, VIC, Australia
| | - Brett Gordon
- Department of Rural Allied Health, Holsworth Research Initiative, La Trobe Rural Health School, La Trobe University, Bendigo, VIC, Australia
| | - Helen R. Irving
- Department of Rural Clinical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC, Australia
| | - Joseph A. Rathner
- Department of Rural Clinical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC, Australia,Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
108
|
Liu X, Fan W, Zhang X, Zhan S, Zhong T, Guo J, Wang Y, Cao J, Li L, Zhang H, Wang L. Maternal L-carnitine supplementation promotes brown adipose tissue thermogenesis of newborn goats after cold exposure. FASEB J 2022; 36:e22461. [PMID: 35838582 DOI: 10.1096/fj.202200637r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/03/2022] [Accepted: 07/08/2022] [Indexed: 11/11/2022]
Abstract
Brown adipose tissue (BAT) is an important component of energy expenditure and necessary to maintain body temperature for newborn mammals. In the previous study, we found that L-carnitine was enriched in BAT and promoted BAT adipogenesis and thermogenesis in goat brown adipocytes. However, whether dietary L-carnitine regulates BAT heat production and energy expenditure in lambs remains unclear. In this study, maternal L-carnitine supplementation elevated the rectal temperature, as well as the expression of UCP1 and mitochondrial DNA content to promote BAT thermogenesis in newborn goats. Moreover, maternal L-carnitine supplementation increased the levels of triglycerides (TG), non-esterified fatty acids (NEFA), and lactate in plasma, as well as the content of lipid droplet and glycogen in BAT of newborn goats. Lipidomic analysis showed that maternal L-carnitine supplementation remodeled the lipid composition of BAT in newborn goats. L-carnitine significantly increased the levels of TG and diglyceride (DG) and decreased the levels of glycerophospholipids and sphingolipids in BAT. Further studies showed that L-carnitine promoted TG and glycogen deposition in brown adipocytes through AMPKα. Our results indicate that maternal L-carnitine supplementation promotes BAT development and thermogenesis in newborn goats and provides new evidence for newborn goats to maintain body temperature in response to cold exposure.
Collapse
Affiliation(s)
- Xin Liu
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, P.R. China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| | - Wenli Fan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| | - Xujia Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| | - Siyuan Zhan
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, P.R. China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| | - Tao Zhong
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, P.R. China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| | - Jiazhong Guo
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| | - Jiaxue Cao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| | - Li Li
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, P.R. China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| | - Hongping Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| | - Linjie Wang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, P.R. China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| |
Collapse
|
109
|
Pileggi C, Hooks B, McPherson R, Dent R, Harper ME. Targeting skeletal muscle mitochondrial health in obesity. Clin Sci (Lond) 2022; 136:1081-1110. [PMID: 35892309 PMCID: PMC9334731 DOI: 10.1042/cs20210506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/26/2022] [Accepted: 07/05/2022] [Indexed: 11/21/2022]
Abstract
Metabolic demands of skeletal muscle are substantial and are characterized normally as highly flexible and with a large dynamic range. Skeletal muscle composition (e.g., fiber type and mitochondrial content) and metabolism (e.g., capacity to switch between fatty acid and glucose substrates) are altered in obesity, with some changes proceeding and some following the development of the disease. Nonetheless, there are marked interindividual differences in skeletal muscle composition and metabolism in obesity, some of which have been associated with obesity risk and weight loss capacity. In this review, we discuss related molecular mechanisms and how current and novel treatment strategies may enhance weight loss capacity, particularly in diet-resistant obesity.
Collapse
Affiliation(s)
- Chantal A. Pileggi
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, Canada, K1H 8M5
- Ottawa Institute of Systems Biology, University of Ottawa, ON, Canada, K1H 8M5
| | - Breana G. Hooks
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, Canada, K1H 8M5
- Ottawa Institute of Systems Biology, University of Ottawa, ON, Canada, K1H 8M5
| | - Ruth McPherson
- Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Robert R.M. Dent
- Division of Endocrinology, Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Mary-Ellen Harper
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, Canada, K1H 8M5
- Ottawa Institute of Systems Biology, University of Ottawa, ON, Canada, K1H 8M5
| |
Collapse
|
110
|
Zhao Z, Yang R, Li M, Bao M, Huo D, Cao J, Speakman JR. Effects of ambient temperatures between 5 and 35 oC on energy balance, body mass and body composition in mice. Mol Metab 2022; 64:101551. [PMID: 35870706 PMCID: PMC9382332 DOI: 10.1016/j.molmet.2022.101551] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022] Open
Abstract
Background Considerable attention is currently focused on the potential to switch on brown adipose tissue (BAT), or promote browning of white adipose tissue, to elevate energy expenditure and thereby reduce obesity levels. These processes are already known to be switched on by cold exposure. Yet humans living in colder regions do not show lower levels of obesity. This could be because humans shield themselves from external temperatures, or because the resultant changes in BAT and thermogenesis are offset by elevated food intake, or reductions in other components of expenditure. Scope of Review We exposed mice to 11 different ambient temperatures between 5 and 35 °C and characterized their energy balance and body weight/composition. As it got colder mice progressively increased their energy expenditure coincident with changes in thyroid hormone levels and increased BAT activity. Simultaneously, these increases in expenditure were matched by elevated food intake, and body mass remained stable. Nevertheless, within this envelope of unchanged body mass there were significant changes in body composition – with increases in the sizes of the liver and small intestine, presumably to support the greater food intake, and reductions in the level of stored fat – maximally providing about 10% of the total elevated energy demands. Major Conclusions Elevating activity of BAT may be a valid strategy to reduce fat storage even if overall body mass is unchanged but if it is mostly offset by elevated food intake, as found here, then the impacts may be small. Male and female mice were exposed to 11 different ambient temperatures between 5 and 35 °C. As it got colder mice increased both energy expenditure and food intake. Increased energy expenditure was coincident with increased THs and BAT activity. Stored fat was considerably reduced in colder conditions, providing about 10% of the elevated energy requirements. Elevating activity of BAT may be a valid strategy to reduce fat storage.
Collapse
Affiliation(s)
- Zhijun Zhao
- School of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, China.
| | - Rui Yang
- School of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Min Li
- Shenzhen key laboratory of metabolic health, Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Menghuan Bao
- School of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Daliang Huo
- School of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Jing Cao
- School of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - John R Speakman
- Shenzhen key laboratory of metabolic health, Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, UK; State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100100, China.
| |
Collapse
|
111
|
Monfort-Pires M, Regeni-Silva G, Dadson P, Nogueira GA, U-Din M, Ferreira SRG, Sapienza MT, Virtanen K, Velloso LA. Brown fat triglyceride content is associated with cardiovascular risk markers in adults from a tropical region. Front Endocrinol (Lausanne) 2022; 13:919588. [PMID: 35928901 PMCID: PMC9343995 DOI: 10.3389/fendo.2022.919588] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Brown adipose tissue (BAT) is regarded as an interesting potential target for the treatment of obesity, diabetes, and cardiovascular diseases, and the detailed characterization of its structural and functional phenotype could enable an advance in these fields. Most studies evaluating BAT structure and function were performed in temperate climate regions, and we are yet to know how these findings apply to the 40% of the world's population living in tropical areas. Here, we used 18F-fluorodeoxyglucose positron emission tomography - magnetic resonance imaging to evaluate BAT in 45 lean, overweight, and obese volunteers living in a tropical area in Southeast Brazil. We aimed at investigating the associations between BAT activity, volume, metabolic activity, and BAT content of triglycerides with adiposity and cardiovascular risk markers in a sample of adults living in a tropical area and we showed that BAT glucose uptake is not correlated with leanness; instead, BAT triglyceride content is correlated with visceral adiposity and markers of cardiovascular risk. This study expands knowledge regarding the structure and function of BAT in people living in tropical areas. In addition, we provide evidence that BAT triglyceride content could be an interesting marker of cardiovascular risk.
Collapse
Affiliation(s)
- Milena Monfort-Pires
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, State University ofCampinas (UNICAMP), Campinas, Brazil
| | - Giulianna Regeni-Silva
- Department of Nutrition, School of Public Health -University of São Paulo, São Paulo, Brazil
| | - Prince Dadson
- Turku PET Centre, University of Turku, Turku, Finland
| | - Guilherme A. Nogueira
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, State University ofCampinas (UNICAMP), Campinas, Brazil
| | - Mueez U-Din
- Turku PET Centre, University of Turku, Turku, Finland
- Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Sandra R. G. Ferreira
- Department of Epidemiology, School of Public Health-University of São Paulo, São Paulo, Brazil
| | - Marcelo Tatit Sapienza
- Division of Nuclear Medicine, Department of Radiology and Oncology, Medical School of University of São Paulo (FMUSP), São Paulo, Finland
| | - Kirsi A. Virtanen
- Turku PET Centre, University of Turku, Turku, Finland
- Turku PET Centre, Turku University Hospital, Turku, Finland
- Clinical Nutrition, Institute of Public Health and Clinical Nutrition, University of Eastern Finland (UEF), Kuopio, Finland
| | - Licio A. Velloso
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, State University ofCampinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
112
|
Hayashi Y, Shimizu I, Yoshida Y, Ikegami R, Suda M, Katsuumi G, Fujiki S, Ozaki K, Abe M, Sakimura K, Okuda S, Hayano T, Nakamura K, Walsh K, Jespersen NZ, Nielsen S, Scheele C, Minamino T. Coagulation factors promote brown adipose tissue dysfunction and abnormal systemic metabolism in obesity. iScience 2022; 25:104547. [PMID: 35754738 PMCID: PMC9218513 DOI: 10.1016/j.isci.2022.104547] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/11/2022] [Accepted: 06/02/2022] [Indexed: 12/31/2022] Open
Abstract
Brown adipose tissue (BAT) has a role in maintaining systemic metabolic health in rodents and humans. Here, we show that metabolic stress induces BAT to produce coagulation factors, which then-together with molecules derived from the circulation-promote BAT dysfunction and systemic glucose intolerance. When mice were fed a high-fat diet (HFD), the levels of tissue factor, coagulation Factor VII (FVII), activated coagulation Factor X (FXa), and protease-activated receptor 1 (PAR1) expression increased significantly in BAT. Genetic or pharmacological suppression of coagulation factor-PAR1 signaling in BAT ameliorated its whitening and improved thermogenic response and systemic glucose intolerance in mice with dietary obesity. Conversely, the activation of coagulation factor-PAR1 signaling in BAT caused mitochondrial dysfunction in brown adipocytes and systemic glucose intolerance in mice fed normal chow. These results indicate that BAT produces endogenous coagulation factors that mediate pleiotropic effects via PAR1 signaling under metabolic stress.
Collapse
Affiliation(s)
- Yuka Hayashi
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | - Ippei Shimizu
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8431, Japan
- Corresponding author
| | - Yohko Yoshida
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8431, Japan
- Department of Advanced Senotherapeutics, Juntendo University Graduate School of Medicine, Tokyo 113-8431, Japan
| | - Ryutaro Ikegami
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | - Masayoshi Suda
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8431, Japan
| | - Goro Katsuumi
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8431, Japan
| | - Shinya Fujiki
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | - Kazuyuki Ozaki
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | - Manabu Abe
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, 1-757 Asahimachi-Dori, Chuo-ku, Niigata 951-8585, Japan
- Department of Animal Model Development, Brain Research Institute, Niigata University, 1-757 Asahimachi-Dori, Chuo-ku, Niigata 951-8585, Japan
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, 1-757 Asahimachi-Dori, Chuo-ku, Niigata 951-8585, Japan
- Department of Animal Model Development, Brain Research Institute, Niigata University, 1-757 Asahimachi-Dori, Chuo-ku, Niigata 951-8585, Japan
| | - Shujiro Okuda
- Division of Bioinformatics, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | - Toshiya Hayano
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Shiga 525-8577 Japan
| | - Kazuhiro Nakamura
- Department of Integrative Physiology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Kenneth Walsh
- Division of Cardiovascular Medicine, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Naja Zenius Jespersen
- The Centre of Inflammation and Metabolism and Centre for Physical Activity Research Rigshospitalet, Copenhagen, Denmark
| | - Søren Nielsen
- The Centre of Inflammation and Metabolism and Centre for Physical Activity Research Rigshospitalet, Copenhagen, Denmark
| | - Camilla Scheele
- The Centre of Inflammation and Metabolism and Centre for Physical Activity Research Rigshospitalet, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8431, Japan
- Japan Agency for Medical Research and Development-Core Research for Evolutionary Medical Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
- Corresponding author
| |
Collapse
|
113
|
Zhang P, Wu S, He Y, Li X, Zhu Y, Lin X, Chen L, Zhao Y, Niu L, Zhang S, Li X, Zhu L, Shen L. LncRNA-Mediated Adipogenesis in Different Adipocytes. Int J Mol Sci 2022; 23:ijms23137488. [PMID: 35806493 PMCID: PMC9267348 DOI: 10.3390/ijms23137488] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/29/2022] [Accepted: 07/04/2022] [Indexed: 02/01/2023] Open
Abstract
Long-chain noncoding RNAs (lncRNAs) are RNAs that do not code for proteins, widely present in eukaryotes. They regulate gene expression at multiple levels through different mechanisms at epigenetic, transcription, translation, and the maturation of mRNA transcripts or regulation of the chromatin structure, and compete with microRNAs for binding to endogenous RNA. Adipose tissue is a large and endocrine-rich functional tissue in mammals. Excessive accumulation of white adipose tissue in mammals can cause metabolic diseases. However, unlike white fat, brown and beige fats release energy as heat. In recent years, many lncRNAs associated with adipogenesis have been reported. The molecular mechanisms of how lncRNAs regulate adipogenesis are continually investigated. In this review, we discuss the classification of lncRNAs according to their transcriptional location. lncRNAs that participate in the adipogenesis of white or brown fats are also discussed. The function of lncRNAs as decoy molecules and RNA double-stranded complexes, among other functions, is also discussed.
Collapse
Affiliation(s)
- Peiwen Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (S.W.); (Y.H.); (X.L.); (X.L.); (L.C.); (Y.Z.); (L.N.); (S.Z.); (X.L.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Shuang Wu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (S.W.); (Y.H.); (X.L.); (X.L.); (L.C.); (Y.Z.); (L.N.); (S.Z.); (X.L.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuxu He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (S.W.); (Y.H.); (X.L.); (X.L.); (L.C.); (Y.Z.); (L.N.); (S.Z.); (X.L.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xinrong Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (S.W.); (Y.H.); (X.L.); (X.L.); (L.C.); (Y.Z.); (L.N.); (S.Z.); (X.L.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Zhu
- College of Life Science, China West Normal University, Nanchong 637009, China;
| | - Xutao Lin
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (S.W.); (Y.H.); (X.L.); (X.L.); (L.C.); (Y.Z.); (L.N.); (S.Z.); (X.L.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lei Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (S.W.); (Y.H.); (X.L.); (X.L.); (L.C.); (Y.Z.); (L.N.); (S.Z.); (X.L.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Ye Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (S.W.); (Y.H.); (X.L.); (X.L.); (L.C.); (Y.Z.); (L.N.); (S.Z.); (X.L.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lili Niu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (S.W.); (Y.H.); (X.L.); (X.L.); (L.C.); (Y.Z.); (L.N.); (S.Z.); (X.L.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Shunhua Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (S.W.); (Y.H.); (X.L.); (X.L.); (L.C.); (Y.Z.); (L.N.); (S.Z.); (X.L.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xuewei Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (S.W.); (Y.H.); (X.L.); (X.L.); (L.C.); (Y.Z.); (L.N.); (S.Z.); (X.L.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Zhu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (S.W.); (Y.H.); (X.L.); (X.L.); (L.C.); (Y.Z.); (L.N.); (S.Z.); (X.L.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (L.Z.); (L.S.); Tel.: +86-28-8629-1133 (L.Z. & L.S.)
| | - Linyuan Shen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (S.W.); (Y.H.); (X.L.); (X.L.); (L.C.); (Y.Z.); (L.N.); (S.Z.); (X.L.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (L.Z.); (L.S.); Tel.: +86-28-8629-1133 (L.Z. & L.S.)
| |
Collapse
|
114
|
Huo C, Song Z, Yin J, Zhu Y, Miao X, Qian H, Wang J, Ye L, Zhou L. Effect of Acute Cold Exposure on Energy Metabolism and Activity of Brown Adipose Tissue in Humans: A Systematic Review and Meta-Analysis. Front Physiol 2022; 13:917084. [PMID: 35837014 PMCID: PMC9273773 DOI: 10.3389/fphys.2022.917084] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 06/13/2022] [Indexed: 11/29/2022] Open
Abstract
Background: The benefit of cold exposure for humans against obesity has brought the energy metabolism and activity of brown adipose tissue (BAT) induced by cold into focus. But the results are inconsistent. This review is aimed to systematically explore the effect of cold exposure on the activity of BAT and energy metabolism in humans. Methods: We searched relevant papers that were published from 1990 to 2021 and were cited in PubMed Central, Web of science, Embase and Cochrane Library databases to conduct this systematic review and meta-analysis. Energy metabolism, BAT volume, BAT activity and non-esterified fatty acids (NEFA) data reported in eligible researches were extracted. Meta-analysis was applied to combine the mean difference or standard mean difference with their 95% confidence intervals (95%CI). RevMan 5.3 software was used for meta-analysis and evaluating the risk of bias. Stata 16.0 was used for evaluating the publication bias. Results: Ten randomized controlled trials were included in meta-analysis. Compared with human exposed in room temperature at 24°C, the energy expenditure (EE) was increased after acute cold exposure at 16∼19°C (Z = 7.58, p < 0.05, mean different = 188.43kal/d, 95% CI = 139.73–237.13); BAT volume (Z = 2.62, p < 0.05; standard mean different = 0.41, 95% CI = 0.10–0.73); BAT activity (Z = 2.05, p = 0.04, standard mean difference = 1.61, 95% CI = 0.07–3.14) and the intake of BAT NEFA (Z = 2.85, p < 0.05; standard mean different = 0.53, 95% CI = 0.17–0.90) also increased. Conclusion: Acute cold exposure could improve the energy expenditure and BAT activity in adults, which is beneficial for human against obesity.
Collapse
Affiliation(s)
- Chuanyi Huo
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Zikai Song
- Department of Cardiology, the First Hospital of Jilin University, Changchun, China
| | - Jianli Yin
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Ying Zhu
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Xiaohan Miao
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Honghao Qian
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Jia Wang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Lin Ye
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Liting Zhou
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| |
Collapse
|
115
|
Takeda Y, Dai P. Chronic Fatty Acid Depletion Induces Uncoupling Protein 1 (UCP1) Expression to Coordinate Mitochondrial Inducible Proton Leak in a Human-Brown-Adipocyte Model. Cells 2022; 11:cells11132038. [PMID: 35805122 PMCID: PMC9265531 DOI: 10.3390/cells11132038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/23/2022] [Accepted: 06/25/2022] [Indexed: 11/17/2022] Open
Abstract
Thermogenic brown fat contributes to metabolic health in adult humans. Obese conditions are known to repress adipose-tissue browning and its activity. Herein, we found that chronic fatty acid (FA) depletion induced uncoupling protein 1 (UCP1) expression in the chemical-compound-induced brown adipocytes (ciBAs). The ciBAs, converted from human dermal fibroblasts under FA-free conditions, had low intracellular triglyceride levels and strongly activated UCP1 expression. Prolonged treatment with carnitine also reduced triglyceride accumulation and induced UCP1 expression. Transcriptome analysis revealed that the UCP1 induction was accompanied by the activation of lipid metabolic genes. The FA-depleted conditions repressed mitochondrial proton-leak activity and mitochondrial membrane potential (MMP), despite maintaining a high UCP1 expression. The evidence suggested that UCP1 expression was induced to compensate for the proton-leak activity under low MMP. Our study reports a regulatory mechanism underlying UCP1 expression and mitochondrial-energy status in human brown adipocytes under different nutritional conditions.
Collapse
Affiliation(s)
- Yukimasa Takeda
- Correspondence: (Y.T.); (P.D.); Tel.: +81-75-251-5444 (Y.T.); +81-75-251-5135 (P.D.)
| | - Ping Dai
- Correspondence: (Y.T.); (P.D.); Tel.: +81-75-251-5444 (Y.T.); +81-75-251-5135 (P.D.)
| |
Collapse
|
116
|
Tews D, Wabitsch M. Brown Adipose Tissue in Children and Its Metabolic Function. Horm Res Paediatr 2022; 95:104-111. [PMID: 34348306 DOI: 10.1159/000518353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/06/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND To regulate body temperature, mammals possess brown adipose tissue (BAT), which converts significant amounts of chemical energy into heat. Due to its remarkable energy demand, BAT is currently discussed as a target organ to treat obesity and obesity-related disorders. SUMMARY Although BAT is predominantly present in infants and its relative mass declines with age, new findings suggest that BAT has a relevant role in the regulation of energy homeostasis as well as in the regulation of the energy substrates glucose and lipids in older children, adolescents, and adults. In this overview, we will outline basic mechanisms of BAT thermogenesis and the recently described physiological relevance of BAT in metabolism in children and adolescents. KEY MESSAGE The connection of BAT activity with glucose metabolism and insulin sensitivity seems to be evident from recent studies, implicating BAT as an important influencing factor in the context of metabolic syndrome.
Collapse
Affiliation(s)
- Daniel Tews
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
117
|
Sugimoto S, Mena HA, Sansbury BE, Kobayashi S, Tsuji T, Wang CH, Yin X, Huang TL, Kusuyama J, Kodani SD, Darcy J, Profeta G, Pereira N, Tanzi RE, Zhang C, Serwold T, Kokkotou E, Goodyear LJ, Cypess AM, Leiria LO, Spite M, Tseng YH. Brown adipose tissue-derived MaR2 contributes to cold-induced resolution of inflammation. Nat Metab 2022; 4:775-790. [PMID: 35760872 PMCID: PMC9792164 DOI: 10.1038/s42255-022-00590-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 05/18/2022] [Indexed: 12/30/2022]
Abstract
Obesity induces chronic inflammation resulting in insulin resistance and metabolic disorders. Cold exposure can improve insulin sensitivity in humans and rodents, but the mechanisms have not been fully elucidated. Here, we find that cold resolves obesity-induced inflammation and insulin resistance and improves glucose tolerance in diet-induced obese mice. The beneficial effects of cold exposure on improving obesity-induced inflammation and insulin resistance depend on brown adipose tissue (BAT) and liver. Using targeted liquid chromatography with tandem mass spectrometry, we discovered that cold and β3-adrenergic stimulation promote BAT to produce maresin 2 (MaR2), a member of the specialized pro-resolving mediators of bioactive lipids that play a role in the resolution of inflammation. Notably, MaR2 reduces inflammation in obesity in part by targeting macrophages in the liver. Thus, BAT-derived MaR2 could contribute to the beneficial effects of BAT activation in resolving obesity-induced inflammation and may inform therapeutic approaches to combat obesity and its complications.
Collapse
Affiliation(s)
- Satoru Sugimoto
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Hebe Agustina Mena
- Department of Anesthesiology, Perioperative and Pain Medicine, Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Brian E Sansbury
- Department of Anesthesiology, Perioperative and Pain Medicine, Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Shio Kobayashi
- Section of Immunobiology, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Tadataka Tsuji
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Chih-Hao Wang
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Xuanzhi Yin
- Department of Anesthesiology, Perioperative and Pain Medicine, Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Tian Lian Huang
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Joji Kusuyama
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Sean D Kodani
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Justin Darcy
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Gerson Profeta
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Nayara Pereira
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Can Zhang
- Genetics and Aging Research Unit, McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Thomas Serwold
- Section of Immunobiology, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Efi Kokkotou
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Laurie J Goodyear
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Aaron M Cypess
- Diabetes, Endocrinology, and Obesity Branch, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA
| | - Luiz Osório Leiria
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Matthew Spite
- Department of Anesthesiology, Perioperative and Pain Medicine, Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| | - Yu-Hua Tseng
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA.
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
118
|
Pinto YO, Festuccia WTL, Magdalon J. The involvement of the adrenergic nervous system in activating human brown adipose tissue and browning. Hormones (Athens) 2022; 21:195-208. [PMID: 35247188 DOI: 10.1007/s42000-022-00361-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 02/24/2022] [Indexed: 11/04/2022]
Abstract
Obesity is a chronic condition of multifactorial etiology characterized by excessive body fat due to a calorie intake higher than energy expenditure. Given the intrinsic limitations of surgical interventions and the difficulties associated with lifestyle changes, pharmacological manipulation is currently one of the main therapies for metabolic diseases. Approaches aiming to promote energy expenditure through induction of thermogenesis have been explored and, in this context, brown adipose tissue (BAT) activation and browning have been shown to be promising strategies. Although such processes are physiologically stimulated by the sympathetic nervous system, not all situations that are known to increase adrenergic signaling promote a concomitant increase in BAT activation or browning in humans. Thus, a better understanding of factors involved in the thermogenesis attributed to these tissues is needed to enable the development of future therapies against obesity. Herein we carry out a critical review of original articles in humans under conditions previously known to trigger adrenergic responses-namely, cold, catecholamine-secreting tumor (pheochromocytoma and paraganglioma), burn injury, and adrenergic agonists-and discuss which of them are associated with increased BAT activation and browning. BAT is clearly stimulated in individuals exposed to cold or treated with high doses of the β3-adrenergic agonist mirabegron, whereas browning is certainly induced in patients after burn injury or with pheochromocytoma, as well as in individuals treated with β3-adrenergic agonist mirabegron for at least 10 weeks. Given the potential effect of increasing energy expenditure, adrenergic stimuli are promising strategies in the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Yolanda Oliveira Pinto
- Faculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein, Sao Paulo, SP, Brazil
| | | | - Juliana Magdalon
- Faculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein, Sao Paulo, SP, Brazil.
| |
Collapse
|
119
|
Ahmed BA, Varah N, Ong FJ, Blondin DP, Gunn E, Konyer NB, Singh NP, Noseworthy MD, Haman F, Carpentier AC, Punthakee Z, Steinberg GR, Morrison KM. Impaired Cold-Stimulated Supraclavicular Brown Adipose Tissue Activity in Young Boys With Obesity. Diabetes 2022; 71:1193-1204. [PMID: 35293989 DOI: 10.2337/db21-0799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022]
Abstract
Childhood obesity is a growing worldwide problem. In adults, lower cold-induced brown adipose tissue (BAT) activity is linked to obesity and metabolic dysfunction; this relationship remains uncertain in children. In this cross-sectional study, we compared cold-induced supraclavicular (SCV) BAT activity (percent change in proton density fat fraction [PDFF]) within the SCV region after 1 h of whole-body cold exposure (18°C), using MRI in 26 boys aged 8-10 years: 13 with normal BMI and 13 with overweight/obesity. Anthropometry, body composition, hepatic fat, visceral adipose tissue (VAT), and pre- and postcold PDFF of the subcutaneous adipose tissue (SAT) in the posterior neck region and the abdomen were measured. Boys with overweight/obesity had lower cold-induced percent decline in SCV PDFF compared with those with normal BMI (1.6 ± 0.8 vs. 4.7 ± 1.2%, P = 0.044). SCV PDFF declined significantly in boys with normal BMI (2.7 ± 0.7%, P = 0.003) but not in boys with overweight/obesity (1.1 ± 0.5%, P = 0.053). No cold-induced changes in the PDFF of either neck SAT (-0.89 ± 0.7%, P = 0.250, vs. 0.37 ± 0.3%, P = 0.230) or abdominal SAT (-0.39 ± 0.5%, P = 0.409, and 0.25 ± 0.2%, P = 0.139, for normal BMI and overweight/obesity groups, respectively) were seen. The cold-induced percent decline in SCV PDFF was inversely related to BMI (r = -0.39, P = 0.047), waist circumference (r = -0.48, P = 0.014), and VAT (r = -0.47, P = 0.014). Thus, in young boys, as in adults, BAT activity is lower in those with overweight/obesity, suggesting that restoring activity may be important for improving metabolic health.
Collapse
Affiliation(s)
- Basma A Ahmed
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Nina Varah
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Frank J Ong
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Denis P Blondin
- Division of Neurology, Department of Medicine, Faculty of Medicine and Health Sciences, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Elizabeth Gunn
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Norman B Konyer
- Imaging Research Centre, St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada
| | - Nina P Singh
- Department of Radiology, McMaster University, Hamilton, Ontario, Canada
| | - Michael D Noseworthy
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
- Imaging Research Centre, St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada
- Department of Radiology, McMaster University, Hamilton, Ontario, Canada
- Department of Electrical and Computer Engineering, McMaster University, Hamilton, Ontario, Canada
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Francois Haman
- Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Andre C Carpentier
- Division of Endocrinology, Department of Medicine, Faculty of Medicine and Health Sciences, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Zubin Punthakee
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Gregory R Steinberg
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Katherine M Morrison
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
120
|
Haman F, Souza SCS, Castellani JW, Dupuis MP, Friedl KE, Sullivan-Kwantes W, Kingma BRM. Human vulnerability and variability in the cold: Establishing individual risks for cold weather injuries. Temperature (Austin) 2022; 9:158-195. [PMID: 36106152 PMCID: PMC9467591 DOI: 10.1080/23328940.2022.2044740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 01/08/2023] Open
Abstract
Human tolerance to cold environments is extremely limited and responses between individuals is highly variable. Such physiological and morphological predispositions place them at high risk of developing cold weather injuries [CWI; including hypothermia and/or non-freezing (NFCI) and freezing cold injuries (FCI)]. The present manuscript highlights current knowledge on the vulnerability and variability of human cold responses and associated risks of developing CWI. This review 1) defines and categorizes cold stress and CWI, 2) presents cold defense mechanisms including biological adaptations, acute responses and acclimatization/acclimation and, 3) proposes mitigation strategies for CWI. This body of evidence clearly indicates that all humans are at risk of developing CWI without adequate knowledge and protective equipment. In addition, we show that while body mass plays a key role in mitigating risks of hypothermia between individuals and populations, NFCI and FCI depend mainly on changes in peripheral blood flow and associated decrease in skin temperature. Clearly, understanding the large interindividual variability in morphology, insulation, and metabolism is essential to reduce potential risks for CWI between and within populations.
Collapse
Affiliation(s)
- François Haman
- Faculty of Health Sciences, University of Ottawa, Ottawa,Ontario, Canada
| | - Sara C. S. Souza
- Faculty of Health Sciences, University of Ottawa, Ottawa,Ontario, Canada
| | - John W. Castellani
- Thermal and Mountain Medicine Division, US Army Research Institute of Environmental Medicine, Natick, Massachusetts, USA
| | - Maria-P. Dupuis
- Faculty of Health Sciences, University of Ottawa, Ottawa,Ontario, Canada
| | - Karl E. Friedl
- Thermal and Mountain Medicine Division, US Army Research Institute of Environmental Medicine, Natick, Massachusetts, USA
| | - Wendy Sullivan-Kwantes
- Biophysics and Biomedical Modeling Division, Defence Research Development Canada-Toronto, Defence Research and Development Canada, Ontario, Canada
| | - Boris R. M. Kingma
- Netherlands Organization for Applied Scientific Research, Department of Human Performance, Unit Defence, Safety and Security, Soesterberg, The Netherlands
| |
Collapse
|
121
|
Straat ME, Martinez-Tellez B, Sardjoe Mishre A, Verkleij MMA, Kemmeren M, Pelsma ICM, Alcantara JMA, Mendez-Gutierrez A, Kooijman S, Boon MR, Rensen PCN. Cold-Induced Thermogenesis Shows a Diurnal Variation That Unfolds Differently in Males and Females. J Clin Endocrinol Metab 2022; 107:1626-1635. [PMID: 35176767 PMCID: PMC9113803 DOI: 10.1210/clinem/dgac094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Indexed: 11/21/2022]
Abstract
CONTEXT Cold exposure mobilizes lipids to feed thermogenic processes in organs, including brown adipose tissue (BAT). In rodents, BAT metabolic activity exhibits a diurnal rhythm, which is highest at the start of the wakeful period. OBJECTIVE We investigated whether cold-induced thermogenesis displays diurnal variation in humans and differs between the sexes. METHODS This randomized crossover study included 24 young and lean male (n = 12) and female (n = 12) participants who underwent 2.5-hour personalized cooling using water-perfused mattresses in the morning (7:45 am) and evening (7:45 pm), with 1 day in between. We measured energy expenditure (EE) and supraclavicular skin temperature in response to cold exposure. RESULTS In males, cold-induced EE was higher in the morning than in the evening (+54% ± 10% vs +30% ± 7%; P = 0.05) but did not differ between morning and evening in females (+37% ± 9% vs +30% ± 10%; P = 0.42). Only in males, supraclavicular skin temperature upon cold increased more in morning than evening (+0.2 ± 0.1 °C vs -0.2 ± 0.2 °C; P = 0.05). In males, circulating free fatty acid (FFA) levels were increased after morning cold exposure, but not evening (+90% ± 18% vs +9% ± 8%; P < 0.001). In females, circulating FFA (+94% ± 21% vs +20% ± 5%; P = 0.006), but also triglycerides (+42% ± 5% vs +29% ± 4%, P = 0.01) and cholesterol levels (+17% ± 2% vs 11% ± 2%; P = 0.05) were more increased after cold exposure in morning than in evening. CONCLUSION Cold-induced thermogenesis is higher in morning than evening in males; however, lipid metabolism is more modulated in the morning than the evening in females.
Collapse
Affiliation(s)
- Maaike E Straat
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, ZA, Leiden, the Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, ZA, Leiden, the Netherlands
| | - Borja Martinez-Tellez
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, ZA, Leiden, the Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, ZA, Leiden, the Netherlands
| | - Aashley Sardjoe Mishre
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, ZA, Leiden, the Netherlands
- Department of Radiology, Leiden University Medical Center, ZA, Leiden, the Netherlands
| | - Magdalena M A Verkleij
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, ZA, Leiden, the Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, ZA, Leiden, the Netherlands
| | - Mirjam Kemmeren
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, ZA, Leiden, the Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, ZA, Leiden, the Netherlands
| | - Iris C M Pelsma
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, ZA, Leiden, the Netherlands
| | - Juan M A Alcantara
- PROFITH “PROmoting FITness and Health Through Physical Activity” Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical and Sports Education, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Andrea Mendez-Gutierrez
- Department of Biochemistry and Molecular Biology II, “José Mataix Verdú” Institute of Nutrition and Food Technology, Center of Biomedical Research, University of Granada, Granada, Spain
- Biohealth Research Institute in Granada (ibs.GRANADA), Granada, Spain
- CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Madrid, Spain
| | - Sander Kooijman
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, ZA, Leiden, the Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, ZA, Leiden, the Netherlands
| | - Mariëtte R Boon
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, ZA, Leiden, the Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, ZA, Leiden, the Netherlands
| | - Patrick C N Rensen
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, ZA, Leiden, the Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, ZA, Leiden, the Netherlands
| |
Collapse
|
122
|
Li A, Liao W, Xie J, Song L, Zhang X. Plasma Proteins as Occupational Hazard Risk Monitors for Populations Working in Harsh Environments: A Mendelian Randomization Study. Front Public Health 2022; 10:852572. [PMID: 35602164 PMCID: PMC9120921 DOI: 10.3389/fpubh.2022.852572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/30/2022] [Indexed: 11/25/2022] Open
Abstract
Harsh work environments can include very cold, hot, dusty, and noisy workplaces, as well as exposure in the workplace with chemicals and other fumes, cigarette smoke, and diesel exhaust. Although working in these harsh environments can have a negative effect on health, there are no effective biomarkers for monitoring health conditions until workers develop disease symptoms. Plasma protein concentrations, which reflect metabolism and immune status, have great potential as biomarkers for various health conditions. Using a Mendelian-randomization (MR) design, this study analyzed the effects of these harsh environments on plasma proteins to identify proteins that can be used as biomarkers of health status. Preliminary analysis using inverse variance weighted (IVW) method with a p-value cutoff of 0.05 showed that workplace environments could affect the concentrations of hundreds of plasma proteins. After filtering for sensitivity via MR-Egger, and Weighted Median MR approaches, 28 plasma proteins altered by workplace environments were identified. Further MR analysis showed that 20 of these plasma proteins, including UNC5D, IGFBP1, SCG3, ST3GAL6, and ST3GAL2 are affected by noisy workplace environments; TFF1, RBM39, ACYP2, STAT3, GRB2, CXCL1, EIF1AD, CSNK1G2, and CRKL that are affected by chemical fumes; ADCYAP1, NRSN1, TMEM132A, and CA10 that are affected by passive smoking; LILRB2, and TENM4 that are affected by diesel exhaust, are associated with the risk of at least one disease. These proteins have the potential to serve as biomarkers to monitor the occupational hazards risk of workers working in corresponding environments. These findings also provide clues to study the biological mechanisms of occupational hazards.
Collapse
Affiliation(s)
- Ang Li
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenjing Liao
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Junyang Xie
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lijuan Song
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaowen Zhang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- State Key Laboratory of Respiratory Disease, Guangzhou, China
- *Correspondence: Xiaowen Zhang
| |
Collapse
|
123
|
Frankl JA, An Y, Sherwood A, Hao G, Huang FY, Thapa P, Clegg DJ, Sun X, Scherer PE, Öz OK. Comparison of BMIPP-SPECT/CT to 18FDG-PET/CT for Imaging Brown or Browning Fat in a Preclinical Model. Int J Mol Sci 2022; 23:4880. [PMID: 35563272 PMCID: PMC9101718 DOI: 10.3390/ijms23094880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/14/2022] [Accepted: 04/25/2022] [Indexed: 11/17/2022] Open
Abstract
Obesity is a leading cause of preventable death and morbidity. To elucidate the mechanisms connecting metabolically active brown adipose tissue (BAT) and metabolic health may provide insights into methods of treatment for obesity-related conditions. 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18FDG-PET/CT) is traditionally used to image human BAT activity. However, the primary energy source of BAT is derived from intracellular fatty acids and not glucose. Beta-methyl-p-iodophenylpentadecanoic acid (BMIPP) is a fatty acid analogue amenable to in vivo imaging by single photon emission computed tomography/CT (SPECT/CT) when radiolabeled with iodine isotopes. In this study, we compare the use of 18FDG-PET/CT and 125I-BMIPP-SPECT/CT for fat imaging to ascertain whether BMIPP is a more robust candidate for the non-invasive evaluation of metabolically active adipose depots. Interscapular BAT, inguinal white adipose tissue (iWAT), and gonadal white adipose tissue (gWAT) uptake of 18FDG and 125I-BMIPP was quantified in mice following treatment with the BAT-stimulating drug CL-316,243 or saline vehicle control. After CL-316,243 treatment, uptake of both radiotracers increased in BAT and iWAT. The standard uptake value (SUVmean) for 18FDG and 125I-BMIPP significantly correlated in these depots, although uptake of 125I-BMIPP in BAT and iWAT more closely mimicked the fold-change in metabolic rate as measured by an extracellular flux analyzer. Herein, we find that imaging BAT with the radioiodinated fatty acid analogue BMIPP yields more physiologically relevant data than 18FDG-PET/CT, and its conventional use may be a pivotal tool for evaluating BAT in both mice and humans.
Collapse
Affiliation(s)
- Joseph A. Frankl
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA; (J.A.F.); (A.S.); (G.H.); (P.T.); (X.S.)
| | - Yu An
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA;
| | - Amber Sherwood
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA; (J.A.F.); (A.S.); (G.H.); (P.T.); (X.S.)
| | - Guiyang Hao
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA; (J.A.F.); (A.S.); (G.H.); (P.T.); (X.S.)
| | - Feng-Yun Huang
- Department of Medical Imaging and Radiological Sciences, Central Taiwan University of Science and Technology, No. 666, Buzih Road, Beitun District, Taichung City 406053, Taiwan;
| | - Pawan Thapa
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA; (J.A.F.); (A.S.); (G.H.); (P.T.); (X.S.)
| | - Deborah J. Clegg
- Department of Internal Medicine, Texas Tech Health Sciences Center, 5001 El Paso Dr, El Paso, TX 79905, USA;
| | - Xiankai Sun
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA; (J.A.F.); (A.S.); (G.H.); (P.T.); (X.S.)
| | - Philipp E. Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, Southwestern Medical Center, University of Texas, 5323 Harry Hines Blvd, Dallas, TX 75390, USA;
| | - Orhan K. Öz
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA; (J.A.F.); (A.S.); (G.H.); (P.T.); (X.S.)
| |
Collapse
|
124
|
Crandall J, Fraum TJ, Wahl RL. Brown adipose tissue: a protective mechanism in "pre-prediabetes"? J Nucl Med 2022; 63:1433-1440. [PMID: 35393347 DOI: 10.2967/jnumed.121.263357] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 03/21/2022] [Indexed: 11/16/2022] Open
Abstract
Brown adipose tissue (BAT) is present in a significant number of adult humans and has been postulated to exert beneficial metabolic effects. Lean, non-diabetic patients undergoing clinical positron emission tomography (PET)/computed tomography (CT) imaging are more likely to exhibit incidental BAT activation. The aim of this study was to assess metabolic changes associated with the cold-activation of BAT and to compare baseline blood metabolites in participants with varying amounts of active BAT. Methods: Serum blood samples were collected from healthy adult volunteers (body mass index 18.0-25.0 and age≤35 years) before and after 2 h cold exposure. 18F-flurodeoxyglucose (FDG) PET/CT imaging was performed immediately following cold exposure. Activated BAT was segmented and fasting glucose, insulin, lipid, and other blood metabolite levels were correlated with volume and intensity of active BAT. Using a median cutoff, subjects were classified as BATHIGH or BATLOW. Results: A higher volume of activated BAT was associated with significantly higher pre-cooling glucose and insulin levels (P<0.001 for each). Pre-cooling thyroid stimulating hormone (TSH) and triglyceride levels were significantly higher in the BATHIGH than in the BATLOW group (P = 0.002 and P<0.001, respectively). Triglyceride levels tended to increase over the cooling period in both BAT groups, but increased significantly more in the BATHIGH group (15.7±13.2 md/dl; P<0.001) than in the BATLOW group (4.5±12.2 mg/dl; P = 0.061). Conclusion: These findings may indicate that BAT is recruited to counteract incipient "pre-prediabetic" states, potentially serving as a first-line protective mechanism against very early metabolic or hormonal variations.
Collapse
|
125
|
Sanders KJC, Wierts R, van Marken Lichtenbelt WD, de Vos-Geelen J, Plasqui G, Kelders MCJM, Schrauwen-Hinderling VB, Bucerius J, Dingemans AMC, Mottaghy FM, Schols AMWJ. Brown adipose tissue activation is not related to hypermetabolism in emphysematous chronic obstructive pulmonary disease patients. J Cachexia Sarcopenia Muscle 2022; 13:1329-1338. [PMID: 35166050 PMCID: PMC8978002 DOI: 10.1002/jcsm.12881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 09/27/2021] [Accepted: 11/01/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Brown adipose tissue (BAT) has been primarily researched as a potential target for mitigating obesity. However, the physiological significance of BAT in relation to cachexia remains poorly understood. The objective of this study was to investigate the putative contribution of BAT on different components of energy metabolism in emphysematous chronic obstructive pulmonary disease (COPD) patients. METHODS Twenty COPD patients (mean ± SD age 62 ± 6, 50% female, median [range] BMI 22.4 [15.1-32.5] kg/m2 and 85% low FFMI) were studied. Basal metabolic rate (BMR) was assessed by ventilated hood, total daily energy expenditure (TDEE) by doubly labelled water and physical activity by triaxial accelerometry. BMR was adjusted for fat-free mass (FFM) as assessed by deuterium dilution. Analysis of BAT and WAT was conducted in a subset of ten patients and six age-matched, gender-matched and BMI-matched healthy controls. BAT glucose uptake was assessed by means of cold-stimulated integrated [18F]FDG positron-emission tomography and magnetic resonance imaging. WAT was collected from subcutaneous abdominal biopsies to analyse metabolic and inflammatory gene expression levels. Lung function was assessed by spirometry and body plethysmography and systemic inflammation by high sensitivity C-reactive protein. RESULTS Mean TDEE was 2209 ± 394 kcal/day, and mean BMR was 1449 ± 214 kcal/day corresponding to 120% of predicted. FFM-adjusted BMR did not correlate with lung function or C-reactive protein. Upon cooling, energy expenditure increased, resulting in a non-shivering thermogenesis of (median [range]) 20.1% [3.3-41.3] in patients and controls. Mean BAT glucose uptake was comparable between COPD and controls (1.5 [0.1-6.2] vs. 1.1 [0.7-3.9]). In addition, no correlation was found between BMR adjusted for FFM and BAT activity or between cold-induced non-shivering energy expenditure and BAT activity. Gene expression levels of the brown adipocyte or beige markers were also comparable between the groups. No (serious) adverse events were reported. CONCLUSIONS Although COPD patients were hypermetabolic at rest, no correlation was found between BMR or TDEE and BAT activity. Furthermore, both BAT activity and gene expression levels of the brown adipocyte or beige markers were comparable between COPD patients and controls.
Collapse
Affiliation(s)
- Karin J C Sanders
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Roel Wierts
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Wouter D van Marken Lichtenbelt
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Judith de Vos-Geelen
- Department of Internal Medicine, Division of Medical Oncology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Guy Plasqui
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Marco C J M Kelders
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Vera B Schrauwen-Hinderling
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands.,Department of Radiology and Nuclear Medicine, NUTRIM School for Nutrition and Translational Research in Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Jan Bucerius
- Department of Radiology and Nuclear Medicine and CARIM School for Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands.,Department of Nuclear Medicine, University Medicine Göttingen, Georg-August-University Göttingen, Göttingen, Germany
| | | | - Felix M Mottaghy
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands.,Department of Nuclear Medicine and CIO ABCD, University Hospital RWTH Aachen University, Aachen, Germany
| | - Annemie M W J Schols
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
126
|
van Eenige R, In Het Panhuis W, Schönke M, Jouffe C, Devilee TH, Siebeler R, Streefland TCM, Sips HCM, Pronk ACM, Vorderman RHP, Mei H, van Klinken JB, van Weeghel M, Uhlenhaut NH, Kersten S, Rensen PCN, Kooijman S. Angiopoietin-like 4 governs diurnal lipoprotein lipase activity in brown adipose tissue. Mol Metab 2022; 60:101497. [PMID: 35413480 PMCID: PMC9048098 DOI: 10.1016/j.molmet.2022.101497] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 11/29/2022] Open
Abstract
Objective Brown adipose tissue (BAT) burns fatty acids (FAs) to produce heat, and shows diurnal oscillation in glucose and triglyceride (TG)-derived FA-uptake, peaking around wakening. Here we aimed to gain insight in the diurnal regulation of metabolic BAT activity. Methods RNA-sequencing, chromatin immunoprecipitation (ChIP)-sequencing, and lipidomics analyses were performed on BAT samples of wild type C57BL/6J mice collected at 3-hour intervals throughout the day. Knockout and overexpression models were used to study causal relationships in diurnal lipid handling by BAT. Results We identified pronounced enrichment of oscillating genes involved in extracellular lipolysis in BAT, accompanied by oscillations of FA and monoacylglycerol content. This coincided with peak lipoprotein lipase (Lpl) expression, and was predicted to be driven by peroxisome proliferator-activated receptor gamma (PPARγ) activity. ChIP-sequencing for PPARγ confirmed oscillation in binding of PPARγ to Lpl. Of the known LPL-modulators, angiopoietin-like 4 (Angptl4) showed the largest diurnal amplitude opposite to Lpl, and both Angptl4 knockout and overexpression attenuated oscillations of LPL activity and TG-derived FA-uptake by BAT. Conclusions Our findings highlight involvement of PPARγ and a crucial role of ANGPTL4 in mediating the diurnal oscillation of TG-derived FA-uptake by BAT, and imply that time of day is essential when targeting LPL activity in BAT to improve metabolic health. The transcriptome and lipidome of brown fat show clusters with distinct circadian phases. The peak in metabolic brown fat activity is defined by activation of lipolytic processes. PPARγ shows oscillating binding to lipolytic genes and may drive diurnal brown fat activity. Genetic modulation of the lipoprotein lipase inhibitor Angptl4 flattens rhythmic activity in brown fat. Time of day should be considered when studying the metabolic benefits of targeting brown fat.
Collapse
Affiliation(s)
- Robin van Eenige
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Wietse In Het Panhuis
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Milena Schönke
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Céline Jouffe
- Institute for Diabetes and Endocrinology (IDE), Helmholtz Diabetes Center (HMGU) and German Center for Diabetes Research (DZD), Munich, Germany
| | - Thomas H Devilee
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Ricky Siebeler
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Trea C M Streefland
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Hetty C M Sips
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Amanda C M Pronk
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Ruben H P Vorderman
- Sequencing Analysis Support Core, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
| | - Hailiang Mei
- Sequencing Analysis Support Core, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
| | - Jan Bert van Klinken
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands; Core Facility Metabolomics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Michel van Weeghel
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands; Core Facility Metabolomics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Nina H Uhlenhaut
- Sequencing Analysis Support Core, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands; Metabolic Programming, Technical University of Munich School of Life Sciences, Freising, Germany
| | - Sander Kersten
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen, the Netherlands
| | - Patrick C N Rensen
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Sander Kooijman
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
127
|
Jain R, Simcox J. Igniting adipocyte thermogenesis. Cell 2022; 185:941-943. [DOI: 10.1016/j.cell.2022.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 10/18/2022]
|
128
|
Abstract
The role of β-adrenergic receptors (βARs) in adipose tissue to promote lipolysis and the release of fatty acids and nonshivering thermogenesis in brown fat has been studied for so many decades that one would think there is nothing left to discover. With the rediscovery of brown fat in humans and renewed interest in UCP1 and uncoupled mitochondrial respiration, it seems that a review of adipose tissue as an organ, pivotal observations, and the investigators who made them would be instructive to understanding where the field stands now. The discovery of the β3-adrenergic receptor was important for accurately defining the pharmacology of the adipocyte, while the clinical targeting of this receptor for obesity and metabolic disease has had its highs and lows. Many questions still remain about how βARs regulate adipocyte metabolism and the signaling molecules through which they do it.
Collapse
Affiliation(s)
- Sheila Collins
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA;
| |
Collapse
|
129
|
Sakers A, De Siqueira MK, Seale P, Villanueva CJ. Adipose-tissue plasticity in health and disease. Cell 2022; 185:419-446. [PMID: 35120662 PMCID: PMC11152570 DOI: 10.1016/j.cell.2021.12.016] [Citation(s) in RCA: 393] [Impact Index Per Article: 131.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/08/2021] [Accepted: 12/13/2021] [Indexed: 12/11/2022]
Abstract
Adipose tissue, colloquially known as "fat," is an extraordinarily flexible and heterogeneous organ. While historically viewed as a passive site for energy storage, we now appreciate that adipose tissue regulates many aspects of whole-body physiology, including food intake, maintenance of energy levels, insulin sensitivity, body temperature, and immune responses. A crucial property of adipose tissue is its high degree of plasticity. Physiologic stimuli induce dramatic alterations in adipose-tissue metabolism, structure, and phenotype to meet the needs of the organism. Limitations to this plasticity cause diminished or aberrant responses to physiologic cues and drive the progression of cardiometabolic disease along with other pathological consequences of obesity.
Collapse
Affiliation(s)
- Alexander Sakers
- Institute for Diabetes, Obesity & Metabolism, Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Mirian Krystel De Siqueira
- Molecular, Cellular & Integrative Physiology Program, University of California, Los Angeles, Los Angeles, CA 90095-7070 USA; Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095-7070 USA
| | - Patrick Seale
- Institute for Diabetes, Obesity & Metabolism, Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA.
| | - Claudio J Villanueva
- Molecular, Cellular & Integrative Physiology Program, University of California, Los Angeles, Los Angeles, CA 90095-7070 USA; Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095-7070 USA.
| |
Collapse
|
130
|
Brownstein AJ, Veliova M, Acin-Perez R, Liesa M, Shirihai OS. ATP-consuming futile cycles as energy dissipating mechanisms to counteract obesity. Rev Endocr Metab Disord 2022; 23:121-131. [PMID: 34741717 PMCID: PMC8873062 DOI: 10.1007/s11154-021-09690-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/24/2021] [Indexed: 12/25/2022]
Abstract
Obesity results from an imbalance in energy homeostasis, whereby excessive energy intake exceeds caloric expenditure. Energy can be dissipated out of an organism by producing heat (thermogenesis), explaining the long-standing interest in exploiting thermogenic processes to counteract obesity. Mitochondrial uncoupling is a process that expends energy by oxidizing nutrients to produce heat, instead of ATP synthesis. Energy can also be dissipated through mechanisms that do not involve mitochondrial uncoupling. Such mechanisms include futile cycles described as metabolic reactions that consume ATP to produce a product from a substrate but then converting the product back into the original substrate, releasing the energy as heat. Energy dissipation driven by cellular ATP demand can be regulated by adjusting the speed and number of futile cycles. Energy consuming futile cycles that are reviewed here are lipolysis/fatty acid re-esterification cycle, creatine/phosphocreatine cycle, and the SERCA-mediated calcium import and export cycle. Their reliance on ATP emphasizes that mitochondrial oxidative function coupled to ATP synthesis, and not just uncoupling, can play a role in thermogenic energy dissipation. Here, we review ATP consuming futile cycles, the evidence for their function in humans, and their potential employment as a strategy to dissipate energy and counteract obesity.
Collapse
Affiliation(s)
- Alexandra J Brownstein
- Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
- Molecular Cellular Integrative Physiology Interdepartmental Program, University of California, Los Angeles, CA, 90095, USA
| | - Michaela Veliova
- Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
- Department of Medicine, Division of Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Rebeca Acin-Perez
- Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
- Department of Medicine, Division of Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Marc Liesa
- Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
- Molecular Cellular Integrative Physiology Interdepartmental Program, University of California, Los Angeles, CA, 90095, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
- Department of Medicine, Division of Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA
| | - Orian S Shirihai
- Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA.
- Molecular Cellular Integrative Physiology Interdepartmental Program, University of California, Los Angeles, CA, 90095, USA.
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA.
- Department of Medicine, Division of Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
131
|
Beulens JWJ, Pinho MGM, Abreu TC, den Braver NR, Lam TM, Huss A, Vlaanderen J, Sonnenschein T, Siddiqui NZ, Yuan Z, Kerckhoffs J, Zhernakova A, Brandao Gois MF, Vermeulen RCH. Environmental risk factors of type 2 diabetes-an exposome approach. Diabetologia 2022; 65:263-274. [PMID: 34792619 DOI: 10.1007/s00125-021-05618-w] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/07/2021] [Indexed: 12/11/2022]
Abstract
Type 2 diabetes is one of the major chronic diseases accounting for a substantial proportion of disease burden in Western countries. The majority of the burden of type 2 diabetes is attributed to environmental risks and modifiable risk factors such as lifestyle. The environment we live in, and changes to it, can thus contribute substantially to the prevention of type 2 diabetes at a population level. The 'exposome' represents the (measurable) totality of environmental, i.e. nongenetic, drivers of health and disease. The external exposome comprises aspects of the built environment, the social environment, the physico-chemical environment and the lifestyle/food environment. The internal exposome comprises measurements at the epigenetic, transcript, proteome, microbiome or metabolome level to study either the exposures directly, the imprints these exposures leave in the biological system, the potential of the body to combat environmental insults and/or the biology itself. In this review, we describe the evidence for environmental risk factors of type 2 diabetes, focusing on both the general external exposome and imprints of this on the internal exposome. Studies provided established associations of air pollution, residential noise and area-level socioeconomic deprivation with an increased risk of type 2 diabetes, while neighbourhood walkability and green space are consistently associated with a reduced risk of type 2 diabetes. There is little or inconsistent evidence on the contribution of the food environment, other aspects of the social environment and outdoor temperature. These environmental factors are thought to affect type 2 diabetes risk mainly through mechanisms incorporating lifestyle factors such as physical activity or diet, the microbiome, inflammation or chronic stress. To further assess causality of these associations, future studies should focus on investigating the longitudinal effects of our environment (and changes to it) in relation to type 2 diabetes risk and whether these associations are explained by these proposed mechanisms.
Collapse
Affiliation(s)
- Joline W J Beulens
- Department of Epidemiology & Data Science, Amsterdam Public Health, Amsterdam Cardiovascular Sciences, Amsterdam UMC, location VUmc, Amsterdam, the Netherlands.
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands.
| | - Maria G M Pinho
- Department of Epidemiology & Data Science, Amsterdam Public Health, Amsterdam Cardiovascular Sciences, Amsterdam UMC, location VUmc, Amsterdam, the Netherlands
| | - Taymara C Abreu
- Department of Epidemiology & Data Science, Amsterdam Public Health, Amsterdam Cardiovascular Sciences, Amsterdam UMC, location VUmc, Amsterdam, the Netherlands
| | - Nicole R den Braver
- Department of Epidemiology & Data Science, Amsterdam Public Health, Amsterdam Cardiovascular Sciences, Amsterdam UMC, location VUmc, Amsterdam, the Netherlands
| | - Thao M Lam
- Department of Epidemiology & Data Science, Amsterdam Public Health, Amsterdam Cardiovascular Sciences, Amsterdam UMC, location VUmc, Amsterdam, the Netherlands
| | - Anke Huss
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Jelle Vlaanderen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Tabea Sonnenschein
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
- Department of Human Geography and Spatial Planning, Utrecht University, Utrecht, the Netherlands
| | - Noreen Z Siddiqui
- Department of Epidemiology & Data Science, Amsterdam Public Health, Amsterdam Cardiovascular Sciences, Amsterdam UMC, location VUmc, Amsterdam, the Netherlands
| | - Zhendong Yuan
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Jules Kerckhoffs
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Alexandra Zhernakova
- Department of Genetics, University Medical Center Groningen, Groningen, the Netherlands
| | - Milla F Brandao Gois
- Department of Genetics, University Medical Center Groningen, Groningen, the Netherlands
| | - Roel C H Vermeulen
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
132
|
Xu Z, Chen W, Wang L, You W, Wang Y, Wang Y, Zhao J, Shan T. UCP1 Knockin Induces Lipid Dynamics and Transcriptional Programs in the Skeletal Muscles of Pigs. Front Cell Dev Biol 2022; 9:808095. [PMID: 35096834 PMCID: PMC8790096 DOI: 10.3389/fcell.2021.808095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/07/2021] [Indexed: 02/02/2023] Open
Abstract
Uncoupling protein 1 (UCP1), the hallmark protein responsible for nonshivering thermogenesis in adipose tissue (especially brown adipose tissue) has regained researchers' attention in the context of metabolic disorders following the realization that UCP1 can be activated in adult humans and reconstituted in pigs. Both skeletal muscle and adipose tissue are highly dynamic tissues that interact at the metabolic and hormonal level in response to internal and external stress, and they coordinate in maintaining whole-body metabolic homeostasis. Here, we utilized lipidomics and transcriptomics to identify the altered lipid profiles and regulatory pathways in skeletal muscles from adipocyte-specific UCP1 knock-in (KI) pigs. UCP1 KI changed the contents of glycerophospholipids and acyl carnitines of skeletal muscles. Several metabolic regulatory pathways were more enriched in the UCP1 KI skeletal muscle. Comparison of the transcriptomes of adipose and skeletal muscle suggested that nervous system or chemokine signaling might account for the crosstalk between these two tissues in UCP1 KI pigs. Comparison of the lipid biomarkers from UCP1 KI pigs and other mammals suggested associations between UCP1 KI-induced metabolic alternations and metabolic and muscle dysfunction. Our study reveals the lipid dynamics and transcriptional programs in the skeletal muscle of UCP1 KI pigs and suggests that a network regulates metabolic homeostasis between skeletal muscle and adipose tissue.
Collapse
Affiliation(s)
- Ziye Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Wentao Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Liyi Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Wenjing You
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Yanfang Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yizhen Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China
| | - Jianguo Zhao
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Zhejiang University, Hangzhou, China
| |
Collapse
|
133
|
Los posibles mecanismos de pardeamiento del tejido adiposo blanco: una diana novedosa para el tratamiento de la obesidad. NUTR HOSP 2022; 39:411-424. [PMID: 35001637 DOI: 10.20960/nh.03852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
The increase of the obesity pandemic worldwide over the last several decades has generated a constant need for the scientific world to develop new possibilities to combat obesity. Since the discovery that brown adipose tissue (BAT) exists in adult humans, and BAT activation contributes to a negative energy balance, much more attention has been focused on the understanding of the molecular switches and their different regulatory mechanisms turning on energy expenditure. Recent insights have revealed that a range of stimuli including cold exposure, physical activity and diet, and critical transcription molecules such as PPARγ, PRDM16, PGC-1α and UCP1, aiming at the induction of BAT activation, could cause the browning of white adipose tissue, thereby dissipating energy and increasing heat production. An increasing number of studies that point to the white adipose tissue (WAT) browning strategies aiming at diet-induced and/or genetically determined obesity have been tested in mouse models as well as in human studies. Findings suggested that browning stimulating drugs have been currently or previously assayed as a therapy against obesity. As PPARα agonists, fibrate drugs effectively reduced plasma triglyceride, increased high-density lipoproteins, and improved glycemic control and heat production in brown adipose tissue, which has been used in the treatment of metabolic disorders. Many kinds of natural products promote white adipose tissue browning, such as alkaloids, flavonoids, terpenoids, and long-chain fatty acids, which can also ameliorate metabolic disorders including obesity, insulin resistance and diabetes. The aim of this review is to summarize the transcriptional regulators as well as the various mediators that have been regarded as potential therapeutic targets in the process of WAT browning.
Collapse
|
134
|
Mills EL, Harmon C, Jedrychowski MP, Xiao H, Gruszczyk AV, Bradshaw GA, Tran N, Garrity R, Laznik-Bogoslavski D, Szpyt J, Prendeville H, Lynch L, Murphy MP, Gygi SP, Spiegelman BM, Chouchani ET. Cysteine 253 of UCP1 regulates energy expenditure and sex-dependent adipose tissue inflammation. Cell Metab 2022; 34:140-157.e8. [PMID: 34861155 PMCID: PMC8732317 DOI: 10.1016/j.cmet.2021.11.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 09/15/2021] [Accepted: 11/08/2021] [Indexed: 01/07/2023]
Abstract
Uncoupling protein 1 (UCP1) is a major regulator of brown and beige adipocyte energy expenditure and metabolic homeostasis. However, the widely employed UCP1 loss-of-function model has recently been shown to have a severe deficiency in the entire electron transport chain of thermogenic fat. As such, the role of UCP1 in metabolic regulation in vivo remains unclear. We recently identified cysteine-253 as a regulatory site on UCP1 that elevates protein activity upon covalent modification. Here, we examine the physiological importance of this site through the generation of a UCP1 cysteine-253-null (UCP1 C253A) mouse, a precise genetic model for selective disruption of UCP1 in vivo. UCP1 C253A mice exhibit significantly compromised thermogenic responses in both males and females but display no measurable effect on fat accumulation in an obesogenic environment. Unexpectedly, we find that a lack of C253 results in adipose tissue redox stress, which drives substantial immune cell infiltration and systemic inflammatory pathology in adipose tissues and liver of male, but not female, mice. Elevation of systemic estrogen reverses this male-specific pathology, providing a basis for protection from inflammation due to loss of UCP1 C253 in females. Together, our results establish the UCP1 C253 activation site as a regulator of acute thermogenesis and sex-dependent tissue inflammation.
Collapse
Affiliation(s)
- Evanna L Mills
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Cathal Harmon
- Department of Immunology, Harvard Medical School, Boston, MA, USA; Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, USA
| | - Mark P Jedrychowski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Haopeng Xiao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Anja V Gruszczyk
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| | - Gary A Bradshaw
- Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
| | - Nhien Tran
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ryan Garrity
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - John Szpyt
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Hannah Prendeville
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Lydia Lynch
- Department of Immunology, Harvard Medical School, Boston, MA, USA; Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, USA; School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Michael P Murphy
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK; Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Bruce M Spiegelman
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Edward T Chouchani
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
135
|
Abstract
Brown adipose tissue (BAT) was first identified by Conrad Gessner in 1551, but it was only in 1961 that it was firmly identified as a thermogenic organ. Key developments in the subsequent two decades demonstrated that: (1) BAT is quantitatively important to non-shivering thermogenesis in rodents, (2) uncoupling of oxidative phosphorylation through a mitochondrial proton conductance pathway is the central mechanism by which heat is generated, (3) uncoupling protein-1 is the critical factor regulating proton leakage in BAT mitochondria. Following pivotal studies on cafeteria-fed rats and obese ob/ob mice, BAT was then shown to have a central role in the regulation of energy balance and the etiology of obesity. The application of fluorodeoxyglucose positron emission tomography in the late 2000s confirmed that BAT is present and active in adults, resulting in renewed interest in the tissue in human energetics and obesity. Subsequent studies have demonstrated a broad metabolic role for BAT, the tissue being an important site of glucose disposal and triglyceride clearance, as well as of insulin action. BAT continues to be a potential target for the treatment of obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Paul Trayhurn
- Obesity Biology Unit, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK.
- Clore Laboratory, University of Buckingham, Buckingham, UK.
| |
Collapse
|
136
|
Chen KY, Brychta RJ, Israni NS, Jiang A, Lea HJ, Lentz TN, Pierce AE, Cypess AM. Activating Human Adipose Tissue with the β3-Adrenergic Agonist Mirabegron. Methods Mol Biol 2022; 2448:83-96. [PMID: 35167091 DOI: 10.1007/978-1-0716-2087-8_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
An appealing strategy for treatment of metabolic disease in humans is activation of brown adipose tissue (BAT), a thermogenic organ best visualized through 18F-FDG PET/CT. BAT has been activated to varying degrees by mild cold exposure. However, this approach can cause undesirable stress, and there remains no consensus protocol. Here, we describe standardized methods for both acute and chronic activation of BAT using the orally administered β3-adrenergic receptor (AR) agonist, mirabegron. Acute pharmacological stimulation has enabled quantification of whole-body BAT volume and metabolic activity using PET/CT imaging, and chronic stimulation increases these properties of BAT over time.
Collapse
Affiliation(s)
- Kong Y Chen
- Diabetes, Endocrinology, and Obesity Branch, Intramural Research Program, National Institute of Diabetes, Bethesda, MD, USA.
- Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Robert J Brychta
- Diabetes, Endocrinology, and Obesity Branch, Intramural Research Program, National Institute of Diabetes, Bethesda, MD, USA
- Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nikita S Israni
- Diabetes, Endocrinology, and Obesity Branch, Intramural Research Program, National Institute of Diabetes, Bethesda, MD, USA
- Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Alex Jiang
- Diabetes, Endocrinology, and Obesity Branch, Intramural Research Program, National Institute of Diabetes, Bethesda, MD, USA
- Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Hannah J Lea
- Diabetes, Endocrinology, and Obesity Branch, Intramural Research Program, National Institute of Diabetes, Bethesda, MD, USA
- Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Taylor N Lentz
- Diabetes, Endocrinology, and Obesity Branch, Intramural Research Program, National Institute of Diabetes, Bethesda, MD, USA
- Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Anne E Pierce
- Diabetes, Endocrinology, and Obesity Branch, Intramural Research Program, National Institute of Diabetes, Bethesda, MD, USA
- Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Aaron M Cypess
- Diabetes, Endocrinology, and Obesity Branch, Intramural Research Program, National Institute of Diabetes, Bethesda, MD, USA.
- Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
137
|
Sorensen J. PET imaging of heart diseases by Acetate. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00209-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
138
|
Jung SM, Le J, Doxsey WG, Haley JA, Park G, Guertin DA, Jang C. Stable Isotope Tracing and Metabolomics to Study In Vivo Brown Adipose Tissue Metabolic Fluxes. Methods Mol Biol 2022; 2448:119-130. [PMID: 35167094 PMCID: PMC9924221 DOI: 10.1007/978-1-0716-2087-8_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Brown adipose tissue (BAT) demonstrates extraordinary metabolic capacity. Previous research using conventional radio tracers reveals that BAT can act as a sink for a diverse menu of nutrients; still, the question of how BAT utilizes these nutrients remains unclear. Recent advances in mass spectrometry (MS) coupled to stable isotope tracing methods have greatly improved our understanding of metabolism in biology. Here, we have developed a BAT-tailored metabolomics and stable isotope tracing protocol using, as an example, the universally labeled 13C-glucose, a key nutrient heavily utilized by BAT. This method enables metabolic roadmaps to be drawn and pathway fluxes to be inferred for each nutrient tracer within BAT and its application could uncover new metabolic pathways not previously appreciated for BAT physiology.
Collapse
Affiliation(s)
- Su Myung Jung
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| | - Johnny Le
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA
| | - Will G Doxsey
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - John A Haley
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Grace Park
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA
| | - David A Guertin
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| | - Cholsoon Jang
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
139
|
Liu X, Zhang Z, Song Y, Xie H, Dong M. An update on brown adipose tissue and obesity intervention: Function, regulation and therapeutic implications. Front Endocrinol (Lausanne) 2022; 13:1065263. [PMID: 36714578 PMCID: PMC9874101 DOI: 10.3389/fendo.2022.1065263] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 12/19/2022] [Indexed: 01/13/2023] Open
Abstract
Overweight and obesity have become a world-wide problem. However, effective intervention approaches are limited. Brown adipose tissue, which helps maintain body temperature and contributes to thermogenesis, is dependent on uncoupling protein1. Over the last decade, an in-creasing number of studies have found that activating brown adipose tissue and browning of white adipose tissue can protect against obesity and obesity-related metabolic disease. Brown adipose tissue has gradually become an appealing therapeutic target for the prevention and re-versal of obesity. However, some important issues remain unresolved. It is not certain whether increasing brown adipose tissue activity is the cause or effect of body weight loss or what the risks might be for sympathetic nervous system-dependent non-shivering thermogenesis. In this review, we comprehensively summarize approaches to activating brown adipose tissue and/or browning white adipose tissue, such as cold exposure, exercise, and small-molecule treatment. We highlight the functional mechanisms of small-molecule treatment and brown adipose tissue transplantation using batokine, sympathetic nervous system and/or gut microbiome. Finally, we discuss the causality between body weight loss induced by bariatric surgery, exercise, and brown adipose tissue activity.
Collapse
Affiliation(s)
- Xiaomeng Liu
- Institute of Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
- Department of Nutrition and Food Hygiene, College of Public Health, Xinxiang Medical University, Xinxiang, Henan, China
| | - Zhi Zhang
- Institute of Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yajie Song
- Institute of Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Hengchang Xie
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- *Correspondence: Meng Dong, ; Hengchang Xie,
| | - Meng Dong
- Department of Nutrition and Food Hygiene, College of Public Health, Xinxiang Medical University, Xinxiang, Henan, China
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Meng Dong, ; Hengchang Xie,
| |
Collapse
|
140
|
Niclou A, Ocobock C. Weather permitting: Increased seasonal efficiency of nonshivering thermogenesis through brown adipose tissue activation in the winter. Am J Hum Biol 2021; 34:e23716. [PMID: 34942026 DOI: 10.1002/ajhb.23716] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES We investigated seasonal changes in brown adipose tissue (BAT) activation and metabolism in a temperate-climate Albany, NY population. METHODS Data were collected among 58 participants (21 males, 37 females, ages: 18-51) in the summer and 59 participants (23 males, 36 females, ages: 18-63) in the winter in Albany, New York. BAT activity was inferred by comparing metabolic rate, heat dissipation in the supraclavicular area, and respiratory quotient at room temperature and cold exposure. Seasonal variation in BAT was determined by comparing these measurements from summer and winter. RESULTS At mild cold exposure, heat dissipation of the supraclavicular area was significantly greater in the winter compared to summer (p < .001); however, no significant differences were found between seasons in metabolic rate measurements. This suggests BAT activation may be metabolically more efficient in the winter, due to prolonged lower seasonal temperatures relative to summer. Respiratory quotient significantly increased upon mild cold exposure in the winter compared to summer (p < .001). While carbohydrate utilization increased in the winter, fat remained the primary metabolic substrate for BAT activity across both seasons. CONCLUSION The seasonal variations in the effects of nonshivering thermogenesis on metabolic rate and substrate metabolism suggest a buffering of energy expenditure and an increased use of glucose as fuel by BAT as a result of acclimatization to cold in the winter. These findings point towards a potential role of BAT in human whole-body mediated glucose disposal and cold adaptation.
Collapse
Affiliation(s)
- Alexandra Niclou
- Department of Anthropology, University of Notre Dame, Notre Dame, Indiana, USA
| | - Cara Ocobock
- Department of Anthropology, University of Notre Dame, Notre Dame, Indiana, USA
- Eck Institute for Global Health, Institute for Educational Initiatives, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
141
|
Wade G, McGahee A, Ntambi JM, Simcox J. Lipid Transport in Brown Adipocyte Thermogenesis. Front Physiol 2021; 12:787535. [PMID: 35002769 PMCID: PMC8733649 DOI: 10.3389/fphys.2021.787535] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/02/2021] [Indexed: 12/30/2022] Open
Abstract
Non-shivering thermogenesis is an energy demanding process that primarily occurs in brown and beige adipose tissue. Beyond regulating body temperature, these thermogenic adipocytes regulate systemic glucose and lipid homeostasis. Historically, research on thermogenic adipocytes has focused on glycolytic metabolism due to the discovery of active brown adipose tissue in adult humans through glucose uptake imaging. The importance of lipids in non-shivering thermogenesis has more recently been appreciated. Uptake of circulating lipids into thermogenic adipocytes is necessary for body temperature regulation and whole-body lipid homeostasis. A wide array of circulating lipids contribute to thermogenic potential including free fatty acids, triglycerides, and acylcarnitines. This review will summarize the mechanisms and regulation of lipid uptake into brown adipose tissue including protein-mediated uptake, lipoprotein lipase activity, endocytosis, vesicle packaging, and lipid chaperones. We will also address existing gaps in knowledge for cold induced lipid uptake into thermogenic adipose tissue.
Collapse
Affiliation(s)
| | | | | | - Judith Simcox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
142
|
Thibonnier M, Ghosh S, Blanchard A. Effects of a short-term cold exposure on circulating microRNAs and metabolic parameters in healthy adult subjects. J Cell Mol Med 2021; 26:548-562. [PMID: 34921497 PMCID: PMC8743656 DOI: 10.1111/jcmm.17121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/19/2021] [Accepted: 11/29/2021] [Indexed: 11/28/2022] Open
Abstract
This discovery study investigated in healthy subjects whether a short‐term cold exposure may alter circulating microRNAs and metabolic parameters and if co‐expression networks between these factors could be identified. This open randomized crossover (cold vs no cold exposure) study with blind end‐ point evaluation was conducted at 1 center with 10 healthy adult male volunteers. Wearing a cooling vest perfused at 14°C for 2 h reduced the local skin temperature without triggering shivering, increased norepinephrine and blood pressure while decreasing copeptin, C‐peptide and heart rate. Circulating microRNAs measured before and after wearing the cooling vest twice (4 time points) identified 196 mature microRNAs with excellent reproducibility over 72 h. Significant correlations of microRNA expression with copeptin, norepinephrine and C‐peptide were found. A co‐expression‐based microRNA‐microRNA network, as well as microRNA pairs displaying differential correlation as a function of temperature were also detected. This study demonstrates that circulating miRNAs are differentially expressed and coregulated upon cold exposure in humans, supporting their use as predictive and dynamic biomarkers of cardio‐metabolic disorders.
Collapse
Affiliation(s)
| | - Sujoy Ghosh
- Duke-NUS Medical School, Singapore City, Singapore.,Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Anne Blanchard
- Clinical Investigation Center, Hôpital Européen Georges Pompidou, Paris, France
| |
Collapse
|
143
|
Adipose Lipolysis Regulates Cardiac Glucose Uptake and Function in Mice under Cold Stress. Int J Mol Sci 2021; 22:ijms222413361. [PMID: 34948160 PMCID: PMC8703875 DOI: 10.3390/ijms222413361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 02/04/2023] Open
Abstract
The heart primarily uses fatty acids as energy substrates. Adipose lipolysis is a major source of fatty acids, particularly under stress conditions. In this study, we showed that mice with selective inactivation of the lipolytic coactivator comparative gene identification-58 (CGI-58) in adipose tissue (FAT-KO mice), relative to their littermate controls, had lower circulating FA levels in the fed and fasted states due to impaired adipose lipolysis. They preferentially utilized carbohydrates as energy fuels and were more insulin sensitive and glucose tolerant. Under cold stress, FAT-KO versus control mice had >10-fold increases in glucose uptake in the hearts but no increases in other tissues examined. Plasma concentrations of atrial natriuretic peptide and cardiac mRNAs for atrial and brain-type natriuretic peptides, two sensitive markers of cardiac remodeling, were also elevated. After one week of cold exposure, FAT-KO mice showed reduced cardiac expression of several mitochondrial oxidative phosphorylation proteins. After one month of cold exposure, hearts of these animals showed depressed functions, reduced SERCA2 protein, and increased proteins for MHC-β, collagen I proteins, Glut1, Glut4 and phospho-AMPK. Thus, CGI-58-dependent adipose lipolysis critically regulates cardiac metabolism and function, especially during cold adaptation. The adipose-heart axis may be targeted for the management of cardiac dysfunction.
Collapse
|
144
|
Nishi M, Ogata T, Kobayakawa K, Kobayakawa R, Matsuo T, Cannistraci CV, Tomita S, Taminishi S, Suga T, Kitani T, Higuchi Y, Sakamoto A, Tsuji Y, Soga T, Matoba S. Energy-sparing by 2-methyl-2-thiazoline protects heart from ischaemia/reperfusion injury. ESC Heart Fail 2021; 9:428-441. [PMID: 34854235 PMCID: PMC8787978 DOI: 10.1002/ehf2.13732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 10/13/2021] [Accepted: 11/11/2021] [Indexed: 11/06/2022] Open
Abstract
AIMS Cardiac ischaemia/reperfusion (I/R) injury remains a critical issue in the therapeutic management of ischaemic heart failure. Although mild hypothermia has a protective effect on cardiac I/R injury, more rapid and safe methods that can obtain similar results to hypothermia therapy are required. 2-Methyl-2-thiazoline (2MT), an innate fear inducer, causes mild hypothermia resulting in resistance to critical hypoxia in cutaneous or cerebral I/R injury. The aim of this study is to demonstrate the protective effect of systemically administered 2MT on cardiac I/R injury and to elucidate the mechanism underlying this effect. METHODS AND RESULTS A single subcutaneous injection of 2MT (50 mg/kg) was given prior to reperfusion of the I/R injured 10 week-old male mouse heart and its efficacy was evaluated 24 h after the ligation of the left anterior descending coronary artery. 2MT preserved left ventricular systolic function following I/R injury (ejection fraction, %: control 37.9 ± 6.7, 2MT 54.1 ± 6.4, P < 0.01). 2MT also decreased infarct size (infarct size/ischaemic area at risk, %: control 48.3 ± 12.1, 2MT 25.6 ± 4.2, P < 0.05) and serum cardiac troponin levels (ng/mL: control 8.9 ± 1.1, 2MT 1.9 ± 0.1, P < 0.01) after I/R. Moreover, 2MT reduced the oxidative stress-exposed area within the heart (%: control 25.3 ± 4.7, 2MT 10.8 ± 1.4, P < 0.01). These results were supported by microarray analysis of the mouse hearts. 2MT induced a transient, mild decrease in core body temperature (°C: -2.4 ± 1.4), which gradually recovered over several hours. Metabolome analysis of the mouse hearts suggested that 2MT minimized energy metabolism towards suppressing oxidative stress. Furthermore, 18F-fluorodeoxyglucose-positron emission tomography/computed tomography imaging revealed that 2MT reduced the activity of brown adipose tissue (standardized uptake value: control 24.3 ± 6.4, 2MT 18.4 ± 5.8, P < 0.05). 2MT also inhibited mitochondrial respiration and glycolysis in rat cardiomyoblasts. CONCLUSIONS We identified the cardioprotective effect of systemically administered 2MT on cardiac I/R injury by sparing energy metabolism with reversible hypothermia. Our results highlight the potential of drug-induced hypothermia therapy as an adjunct to coronary intervention in severe ischaemic heart disease.
Collapse
Affiliation(s)
- Masahiro Nishi
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.,Cardiovascular Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Takehiro Ogata
- Department of Pathology and Cell Regulation, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Ko Kobayakawa
- Functional Neuroscience Lab, Kansai Medical University, Hirakata, Japan
| | - Reiko Kobayakawa
- Functional Neuroscience Lab, Kansai Medical University, Hirakata, Japan
| | - Tomohiko Matsuo
- Functional Neuroscience Lab, Kansai Medical University, Hirakata, Japan
| | - Carlo Vittorio Cannistraci
- Center for Complex Network Intelligence (CCNI), Tsinghua Laboratory of Brain and Intelligence (THBI), Department of Computer Science, Department of Biomedical Engineering, Tsinghua University, China.,Center for Systems Biology Dresden (CSBD), Dresden, Germany
| | - Shinya Tomita
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shunta Taminishi
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takaomi Suga
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tomoya Kitani
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yusuke Higuchi
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Akira Sakamoto
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yumika Tsuji
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Satoaki Matoba
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
145
|
Tournissac M, Leclerc M, Valentin-Escalera J, Vandal M, Bosoi CR, Planel E, Calon F. Metabolic determinants of Alzheimer's disease: A focus on thermoregulation. Ageing Res Rev 2021; 72:101462. [PMID: 34534683 DOI: 10.1016/j.arr.2021.101462] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/09/2021] [Accepted: 09/11/2021] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is a complex age-related neurodegenerative disease, associated with central and peripheral metabolic anomalies, such as impaired glucose utilization and insulin resistance. These observations led to a considerable interest not only in lifestyle-related interventions, but also in repurposing insulin and other anti-diabetic drugs to prevent or treat dementia. Body temperature is the oldest known metabolic readout and mechanisms underlying its maintenance fail in the elderly, when the incidence of AD rises. This raises the possibility that an age-associated thermoregulatory deficit contributes to energy failure underlying AD pathogenesis. Brown adipose tissue (BAT) plays a central role in thermogenesis and maintenance of body temperature. In recent years, the modulation of BAT activity has been increasingly demonstrated to regulate energy expenditure, insulin sensitivity and glucose utilization, which could also provide benefits for AD. Here, we review the evidence linking thermoregulation, BAT and insulin-related metabolic defects with AD, and we propose mechanisms through which correcting thermoregulatory impairments could slow the progression and delay the onset of AD.
Collapse
|
146
|
Li F, Jing J, Movahed M, Cui X, Cao Q, Wu R, Chen Z, Yu L, Pan Y, Shi H, Shi H, Xue B. Epigenetic interaction between UTX and DNMT1 regulates diet-induced myogenic remodeling in brown fat. Nat Commun 2021; 12:6838. [PMID: 34824202 PMCID: PMC8617140 DOI: 10.1038/s41467-021-27141-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/05/2021] [Indexed: 02/04/2023] Open
Abstract
Brown adipocytes share the same developmental origin with skeletal muscle. Here we find that a brown adipocyte-to-myocyte remodeling also exists in mature brown adipocytes, and is induced by prolonged high fat diet (HFD) feeding, leading to brown fat dysfunction. This process is regulated by the interaction of epigenetic pathways involving histone and DNA methylation. In mature brown adipocytes, the histone demethylase UTX maintains persistent demethylation of the repressive mark H3K27me3 at Prdm16 promoter, leading to high Prdm16 expression. PRDM16 then recruits DNA methyltransferase DNMT1 to Myod1 promoter, causing Myod1 promoter hypermethylation and suppressing its expression. The interaction between PRDM16 and DNMT1 coordinately serves to maintain brown adipocyte identity while repressing myogenic remodeling in mature brown adipocytes, thus promoting their active brown adipocyte thermogenic function. Suppressing this interaction by HFD feeding induces brown adipocyte-to-myocyte remodeling, which limits brown adipocyte thermogenic capacity and compromises diet-induced thermogenesis, leading to the development of obesity.
Collapse
Affiliation(s)
- Fenfen Li
- grid.256304.60000 0004 1936 7400Department of Biology, Georgia State University, Atlanta, GA 30303 USA
| | - Jia Jing
- grid.256304.60000 0004 1936 7400Department of Biology, Georgia State University, Atlanta, GA 30303 USA
| | - Miranda Movahed
- grid.256304.60000 0004 1936 7400Department of Biology, Georgia State University, Atlanta, GA 30303 USA
| | - Xin Cui
- grid.256304.60000 0004 1936 7400Department of Biology, Georgia State University, Atlanta, GA 30303 USA
| | - Qiang Cao
- grid.256304.60000 0004 1936 7400Department of Biology, Georgia State University, Atlanta, GA 30303 USA
| | - Rui Wu
- grid.256304.60000 0004 1936 7400Department of Biology, Georgia State University, Atlanta, GA 30303 USA
| | - Ziyue Chen
- grid.256304.60000 0004 1936 7400Department of Computer Science, Georgia State University, Atlanta, GA 30303 USA
| | - Liqing Yu
- grid.411024.20000 0001 2175 4264Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Yi Pan
- grid.256304.60000 0004 1936 7400Department of Computer Science, Georgia State University, Atlanta, GA 30303 USA ,grid.458489.c0000 0001 0483 7922Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 P.R. China
| | - Huidong Shi
- grid.410427.40000 0001 2284 9329Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912 USA ,grid.410427.40000 0001 2284 9329Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912 USA
| | - Hang Shi
- grid.256304.60000 0004 1936 7400Department of Biology, Georgia State University, Atlanta, GA 30303 USA
| | - Bingzhong Xue
- grid.256304.60000 0004 1936 7400Department of Biology, Georgia State University, Atlanta, GA 30303 USA
| |
Collapse
|
147
|
Augmented CCL5/CCR5 signaling in brown adipose tissue inhibits adaptive thermogenesis and worsens insulin resistance in obesity. Clin Sci (Lond) 2021; 136:121-137. [PMID: 34821367 DOI: 10.1042/cs20210959] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 11/17/2022]
Abstract
Chemokine (C-C motif) ligand 5 (CCL5) and CCR5, one of its receptors have been reported to be highly expressed in white adipose tissue (WAT) and are associated with the progression of inflammation and the development of insulin resistance in obese humans and mice. However, the role of CCL5/CCR5 signaling in obesity-associated dysregulation of energy metabolism remains unclear. Here, we demonstrate that global CCL5/CCR5 double knockout (DKO) mice have higher cold stress-induced energy expenditure and thermogenic function in BAT than wild-type (WT) mice. DKO mice have higher cold stress-induced energy expenditure and thermogenic function in BAT than wild-type mice. KEGG pathway analysis indicated that deletion of CCL5/CCR5 further facilitated the cold-induced expression of genes related to oxidative phosphorylation and lipid metabolic pathways. In primary brown adipocytes of DKO mice, the augmentation of CL-316243-stimulated thermogenic and lipolysis responses was reversed by co-treatment with AMPKα1 and α2 siRNA. Overexpression of BAT CCL5/CCR5 genes by local lentivirus injection in WT mice suppressed cold stress-induced lipolytic processes and thermogenic activities. In contrast, knockdown of BAT CCL5/CCR5 signaling further upregulated AMPK phosphorylation as well as thermogenic and lipolysis responses to chronic adrenergic stimuli and subsequently decreased level of body weight gain. Chronic knockdown of BAT CCL5/CCR5 signaling improved HFD-induced insulin resistance in WT mice. It is suggested that obesity-induced augmentation of AT CCL5/CCR5 signaling could, at least in part, suppress energy expenditure and adaptive thermogenesis by inhibiting AMPK-mediated lipolysis and oxidative metabolism in thermogenic AT to exacerbate the development of obesity and insulin resistance.
Collapse
|
148
|
Law JM, Morris DE, Robinson LJ, Symonds ME, Budge H. Semi-automated analysis of supraclavicular thermal images increases speed of brown adipose tissue analysis without increasing variation in results. Curr Res Physiol 2021; 4:177-182. [PMID: 34746836 PMCID: PMC8562194 DOI: 10.1016/j.crphys.2021.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 04/22/2021] [Accepted: 07/07/2021] [Indexed: 12/03/2022] Open
Abstract
Interest in brown adipose tissue remains high a decade after it was determined to be present outside of the neonatal period. In vivo imaging, however, has remained a challenge due to the lack of a imaging modality suitable for large healthy-volunteer studies, post-prandial investigations and vulnerable groups, such as children. Infrared thermography is increasingly accepted as a valid, non-invasive and flexible alternative but there is a wide approach to analysis between different groups. Defining the region of interest with anatomical borders rather than using a simple polygon may have advantages in terms of consistency but makes image analysis slower, limiting some applications. Our novel semi-automated method, using a custom-built graphical user interface, allows an 86% improvement in speed of image analysis (54.9 (38.3–71.4) seconds/image) without increases in variation between analysers or with repeated analysis. The improved efficiency demonstrated makes feasible larger studies, longer imaging periods or increased image acquisition frequency, providing an opportunity to study novel features of brown adipose tissue function. Brown adipose tissue is a key heat-generating tissue but is difficult to measure. Thermal imaging can measure brown adipose tissue response without radiation. A semi-automated approach increases image analysis efficiency. Thermal video analysis and imaging over longer periods is now feasible.
Collapse
Affiliation(s)
- James M Law
- Early Life Research Unit, Division of Child Health, Obstetrics & Gynaecology, University of Nottingham, United Kingdom
| | - David E Morris
- Bioengineering Research Group, Faculty of Engineering, University of Nottingham, United Kingdom
| | - Lindsay J Robinson
- Early Life Research Unit, Division of Child Health, Obstetrics & Gynaecology, University of Nottingham, United Kingdom
| | - Michael E Symonds
- Early Life Research Unit, Division of Child Health, Obstetrics & Gynaecology, University of Nottingham, United Kingdom.,Nottingham Digestive Disease Centre and Biomedical Research Centre, School of Medicine, University of Nottingham, NG7 2UH, United Kingdom
| | - Helen Budge
- Early Life Research Unit, Division of Child Health, Obstetrics & Gynaecology, University of Nottingham, United Kingdom
| |
Collapse
|
149
|
Human Brown Adipose Tissue and Metabolic Health: Potential for Therapeutic Avenues. Cells 2021; 10:cells10113030. [PMID: 34831253 PMCID: PMC8616549 DOI: 10.3390/cells10113030] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 12/31/2022] Open
Abstract
Obesity-associated metabolic abnormalities comprise a cluster of conditions including dyslipidemia, insulin resistance, diabetes and cardiovascular diseases that has affected more than 650 million people all over the globe. Obesity results from the accumulation of white adipose tissues mainly due to the chronic imbalance of energy intake and energy expenditure. A variety of approaches to treat or prevent obesity, including lifestyle interventions, surgical weight loss procedures and pharmacological approaches to reduce energy intake and increase energy expenditure have failed to substantially decrease the prevalence of obesity. Brown adipose tissue (BAT), the primary source of thermogenesis in infants and small mammals may represent a promising therapeutic target to treat obesity by promoting energy expenditure through non-shivering thermogenesis mediated by mitochondrial uncoupling protein 1 (UCP1). Since the confirmation of functional BAT in adult humans by several groups, approximately a decade ago, and its association with a favorable metabolic phenotype, intense interest on the significance of BAT in adult human physiology and metabolic health has emerged within the scientific community to explore its therapeutic potential for the treatment of obesity and metabolic diseases. A substantially decreased BAT activity in individuals with obesity indicates a role for BAT in the setting of human obesity. On the other hand, BAT mass and its prevalence correlate with lower body mass index (BMI), decreased age and lower glucose levels, leading to a lower incidence of cardio-metabolic diseases. The increased cold exposure in adult humans with undetectable BAT was associated with decreased body fat mass and increased insulin sensitivity. A deeper understanding of the role of BAT in human metabolic health and its interrelationship with body fat distribution and deciphering proper strategies to increase energy expenditure, by either increasing functional BAT mass or inducing white adipose browning, holds the promise for possible therapeutic avenues for the treatment of obesity and associated metabolic disorders.
Collapse
|
150
|
Yuko OO, Saito M. Brown Fat as a Regulator of Systemic Metabolism beyond Thermogenesis. Diabetes Metab J 2021; 45:840-852. [PMID: 34176254 PMCID: PMC8640153 DOI: 10.4093/dmj.2020.0291] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/26/2021] [Indexed: 12/01/2022] Open
Abstract
Brown adipose tissue (BAT) is a specialized tissue for nonshivering thermogenesis to dissipate energy as heat. Although BAT research has long been limited mostly in small rodents, the rediscovery of metabolically active BAT in adult humans has dramatically promoted the translational studies on BAT in health and diseases. Moreover, several remarkable advancements have been made in brown fat biology over the past decade: The molecular and functional analyses of inducible thermogenic adipocytes (socalled beige adipocytes) arising from a developmentally different lineage from classical brown adipocytes have been accelerated. In addition to a well-established thermogenic activity of uncoupling protein 1 (UCP1), several alternative thermogenic mechanisms have been discovered, particularly in beige adipocytes. It has become clear that BAT influences other peripheral tissues and controls their functions and systemic homeostasis of energy and metabolic substrates, suggesting BAT as a metabolic regulator, other than for thermogenesis. This notion is supported by discovering that various paracrine and endocrine factors are secreted from BAT. We review the current understanding of BAT pathophysiology, particularly focusing on its role as a metabolic regulator in small rodents and also in humans.
Collapse
Affiliation(s)
| | - Masayuki Saito
- Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- Department of Nutrition, Tenshi College, Sapporo, Japan
- Corresponding author: Masayuki Saito https://orcid.org/0000-0002-3058-3003 Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan E-mail:
| |
Collapse
|