101
|
Weißert K, Ammann S, Kögl T, Dettmer‐Monaco V, Schell C, Cathomen T, Ehl S, Aichele P. Adoptive T cell therapy cures mice from active hemophagocytic lymphohistiocytosis (HLH). EMBO Mol Med 2022; 14:e16085. [PMID: 36278424 PMCID: PMC9728053 DOI: 10.15252/emmm.202216085] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 12/14/2022] Open
Abstract
Primary hemophagocytic lymphohistiocytosis (HLH) is a hyperinflammatory syndrome caused by impaired lymphocyte cytotoxicity. First-line therapeutic regimens directed against activated immune cells or secreted cytokines show limited efficacy since they do not target the underlying immunological problem: defective lymphocyte cytotoxicity causing prolonged immune stimulation. A potential rescue strategy would be the adoptive transfer of ex vivo gene-corrected autologous T cells. However, transfusion of cytotoxicity-competent T cells under conditions of hyperinflammation may cause more harm than benefit. As a proof-of-concept for adoptive T cell therapy (ATCT) under hyperinflammatory conditions, we transferred syngeneic, cytotoxicity-competent T cells into mice with virally triggered active primary HLH. ATCT with functional syngeneic trigger-specific T cells cured Jinx mice from active HLH without life-threatening side effects and protected Perforin-deficient mice from lethal HLH progression by reconstituting cytotoxicity. Cured mice were protected long-term from HLH relapses. A threshold frequency of transferred T cells with functional differentiation was identified as a predictive biomarker for long-term survival. This study is the first proof-of-concept for ATCT in active HLH.
Collapse
Affiliation(s)
- Kristoffer Weißert
- Institute for Immunodeficiency, Medical Center ‐ University of Freiburg, Faculty of MedicineUniversity of FreiburgFreiburgGermany,Center for Chronic Immunodeficiency (CCI), Medical Center ‐ University of Freiburg, Faculty of MedicineUniversity of FreiburgFreiburgGermany,Faculty of BiologyAlbert‐Ludwigs‐University of FreiburgFreiburgGermany
| | - Sandra Ammann
- Institute for Immunodeficiency, Medical Center ‐ University of Freiburg, Faculty of MedicineUniversity of FreiburgFreiburgGermany,Center for Chronic Immunodeficiency (CCI), Medical Center ‐ University of Freiburg, Faculty of MedicineUniversity of FreiburgFreiburgGermany
| | - Tamara Kögl
- Center for Chronic Immunodeficiency (CCI), Medical Center ‐ University of Freiburg, Faculty of MedicineUniversity of FreiburgFreiburgGermany,Institute for Immunology, Medical Center ‐ University of Freiburg, Faculty of MedicineUniversity of FreiburgFreiburgGermany
| | - Viviane Dettmer‐Monaco
- Center for Chronic Immunodeficiency (CCI), Medical Center ‐ University of Freiburg, Faculty of MedicineUniversity of FreiburgFreiburgGermany,Institute for Transfusion Medicine and Gene Therapy, Medical CenterUniversity of FreiburgFreiburgGermany
| | - Christoph Schell
- Institute of Surgical Pathology, Medical CenterUniversity of FreiburgFreiburgGermany
| | - Toni Cathomen
- Center for Chronic Immunodeficiency (CCI), Medical Center ‐ University of Freiburg, Faculty of MedicineUniversity of FreiburgFreiburgGermany,Institute for Transfusion Medicine and Gene Therapy, Medical CenterUniversity of FreiburgFreiburgGermany
| | - Stephan Ehl
- Institute for Immunodeficiency, Medical Center ‐ University of Freiburg, Faculty of MedicineUniversity of FreiburgFreiburgGermany,Center for Chronic Immunodeficiency (CCI), Medical Center ‐ University of Freiburg, Faculty of MedicineUniversity of FreiburgFreiburgGermany,Center for Integrative Biological Signalling StudiesAlbert‐Ludwigs‐University of FreiburgFreiburgGermany
| | - Peter Aichele
- Institute for Immunodeficiency, Medical Center ‐ University of Freiburg, Faculty of MedicineUniversity of FreiburgFreiburgGermany,Center for Chronic Immunodeficiency (CCI), Medical Center ‐ University of Freiburg, Faculty of MedicineUniversity of FreiburgFreiburgGermany
| |
Collapse
|
102
|
Abstract
Histiocytic disorders of childhood represent a wide spectrum of conditions that share the common histologic feature of activated or transformed "histiocytes." Langerhans cell histiocytosis (LCH) is the most common, with an incidence of approximately 5 per million children. LCH may be difficult to distinguish from more ubiquitous causes of skin rashes, bone pain, or fever. Current chemotherapy fails to cure more than 50% of children with multifocal disease, and treatment failure is associated with increased risks of long-term sequelae. Somatic activating mitogen-activated protein kinase (MAPK) pathway-activating mutations (most often BRAFV600E) have been identified in hematopoietic precursors in patients with LCH. Opportunities to improve outcomes with targeted therapies are under investigation. Juvenile xanthogranuloma (JXG) and Rosai-Dorfman disease (RDD) are less common than LCH and are distinguished by specific histologic and clinical features. Recurrent MAPK pathway gene mutations are also identified in JXG and RDD. In many cases, these conditions spontaneously resolve, but disseminated disease can be fatal. Although there has been historic debate regarding the nature of these conditions as inflammatory versus neoplastic, LCH, JXG, and RDD are now considered myeloid neoplastic disorders. In contrast, hemophagocytic lymphohistiocytosis (HLH) is clearly a disorder of immune dysregulation. HLH is characterized by extreme immune activation driven by hyperactivated T cells. HLH arises in approximately 1 child per million and is nearly universally fatal without prompt recognition and immune suppression. Outcomes of treated children are poor, with approximately 60% survival. Emapalumab, which targets interferon-γ signaling, was recently approved for patients with recurrent or refractory HLH, and additional cytokine-directed therapies are under investigation.
Collapse
Affiliation(s)
- Olive S Eckstein
- Texas Children's Hospital Cancer and Hematology Centers, Section of Pediatric Hematology and Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Jennifer Picarsic
- Cincinnati Children's Hospital, Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH
| | - Carl E Allen
- Texas Children's Hospital Cancer and Hematology Centers, Section of Pediatric Hematology and Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| |
Collapse
|
103
|
Wen Y, Xu H, Wan W, Shang W, Jin R, Zhou F, Mei H, Wang J, Xiao G, Chen H, Wu X, Zhang L. Visualizing lymphocytic choriomeningitis virus infection in cells and living mice. iScience 2022; 25:105090. [PMID: 36185356 PMCID: PMC9519613 DOI: 10.1016/j.isci.2022.105090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/31/2022] [Accepted: 09/02/2022] [Indexed: 11/29/2022] Open
Abstract
Mammarenavirus are a large family of enveloped negative-strand RNA viruses that include several agents responsible for severe hemorrhagic fevers. Until now, no FDA-licensed drug has been admitted for treating an arenavirus infection, and only few effective anti-arenavirus drugs have been tested in vivo. In this work, we designed a recombinant reporter arenavirus lymphocytic choriomeningitis virus that stably expressed nanoluciferase (LCMV-Nluc). The LCMV-Nluc was proved to share similar biological properties with wild-type LCMV and the Nluc intensity reliably reflected viral replication both in vitro and in vivo. Replication of the Nluc-encoding virus in living mice can be visualized by real-time bioluminescent imaging, and bioluminescence can be detected in a variety of organs of infected mice. This work provides a novel approach that enables real-time study of the arenavirus infection and is a convenient and valuable tool for screening of compounds that are active against arenaviruses in vitro and in living mice. LCMV-Nluc was constructed and shared similar biological properties with LCMV-WT Replication of the LCMV-Nluc can be visualized by real-time bioluminescent imaging LCMV-Nluc is a valuable tool for screening antiviral compounds in vitro LCMV-Nluc is successfully applied for screening antiviral compounds in vivo
Collapse
Affiliation(s)
- Yuxi Wen
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Huan Xu
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Weiwei Wan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Weijuan Shang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Runming Jin
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Fen Zhou
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Heng Mei
- Institute of Haematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Clinical and Research Centre of Thrombosis and Haemostasis, Wuhan, China
| | - Jingshi Wang
- Department of Hematology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Gengfu Xiao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongbo Chen
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaoyan Wu
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Leike Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Hubei Jiangxia Laboratory,Wuhan 430000, China
| |
Collapse
|
104
|
Gothe F, Stremenova Spegarova J, Hatton CF, Griffin H, Sargent T, Cowley SA, James W, Roppelt A, Shcherbina A, Hauck F, Reyburn HT, Duncan CJA, Hambleton S. Aberrant inflammatory responses to type I interferon in STAT2 or IRF9 deficiency. J Allergy Clin Immunol 2022; 150:955-964.e16. [PMID: 35182547 DOI: 10.1016/j.jaci.2022.01.026] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 12/13/2021] [Accepted: 01/14/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Inflammatory phenomena such as hyperinflammation or hemophagocytic lymphohistiocytosis are a frequent yet paradoxical accompaniment to virus susceptibility in patients with impairment of type I interferon (IFN-I) signaling caused by deficiency of signal transducer and activator of transcription 2 (STAT2) or IFN regulatory factor 9 (IRF9). OBJECTIVE We hypothesized that altered and/or prolonged IFN-I signaling contributes to inflammatory complications in these patients. METHODS We explored the signaling kinetics and residual transcriptional responses of IFN-stimulated primary cells from individuals with complete loss of one of STAT1, STAT2, or IRF9 as well as gene-edited induced pluripotent stem cell-derived macrophages. RESULTS Deficiency of any IFN-stimulated gene factor 3 component suppressed but did not abrogate IFN-I receptor signaling, which was abnormally prolonged, in keeping with insufficient induction of negative regulators such as ubiquitin-specific peptidase 18 (USP18). In cells lacking either STAT2 or IRF9, this late transcriptional response to IFN-α2b mimicked the effect of IFN-γ. CONCLUSION Our data suggest a model wherein the failure of negative feedback of IFN-I signaling in STAT2 and IRF9 deficiency leads to immune dysregulation. Aberrant IFN-α receptor signaling in STAT2- and IRF9-deficient cells switches the transcriptional output to a prolonged, IFN-γ-like response and likely contributes to clinically overt inflammation in these individuals.
Collapse
Affiliation(s)
- Florian Gothe
- Immunity and Inflammation Theme, Translational and Clinical Research Institute, Newcastle University, Newcastle, United Kingdom; Department of Pediatrics, Dr von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Jarmila Stremenova Spegarova
- Immunity and Inflammation Theme, Translational and Clinical Research Institute, Newcastle University, Newcastle, United Kingdom
| | - Catherine F Hatton
- Immunity and Inflammation Theme, Translational and Clinical Research Institute, Newcastle University, Newcastle, United Kingdom
| | - Helen Griffin
- Immunity and Inflammation Theme, Translational and Clinical Research Institute, Newcastle University, Newcastle, United Kingdom
| | - Thomas Sargent
- Immunity and Inflammation Theme, Translational and Clinical Research Institute, Newcastle University, Newcastle, United Kingdom
| | - Sally A Cowley
- James & Lillian Martin Centre for Stem Cell Research, Sir William Dunn School of Pathology, Oxford University, Oxford, United Kingdom
| | - William James
- James & Lillian Martin Centre for Stem Cell Research, Sir William Dunn School of Pathology, Oxford University, Oxford, United Kingdom
| | - Anna Roppelt
- Department of Immunology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Anna Shcherbina
- Department of Immunology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Fabian Hauck
- Department of Pediatrics, Dr von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Hugh T Reyburn
- Department of Immunology and Oncology, Spanish Center for Biotechnology (CNB-CSIC), Madrid, Spain
| | - Christopher J A Duncan
- Immunity and Inflammation Theme, Translational and Clinical Research Institute, Newcastle University, Newcastle, United Kingdom; Infection and Tropical Medicine, Royal Victoria Infirmary, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom.
| | - Sophie Hambleton
- Immunity and Inflammation Theme, Translational and Clinical Research Institute, Newcastle University, Newcastle, United Kingdom; Children's Immunology Service, Great North Children's Hospital, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom.
| |
Collapse
|
105
|
Hong J, Sanjoba C, Fujii W, Yamagishi J, Goto Y. Leishmania infection-induced multinucleated giant cell formation via upregulation of ATP6V0D2 expression. Front Cell Infect Microbiol 2022; 12:953785. [PMID: 36211967 PMCID: PMC9539756 DOI: 10.3389/fcimb.2022.953785] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Leishmaniasis is caused by infection with protozoan parasites of the genus Leishmania. In both clinical and experimental visceral leishmaniasis, macrophage multinucleation is observed in parasitized tissues. However, the feature and the mechanism of macrophage multinucleation remained unclear. Here, we report that infection of Leishmania donovani, a causative agent of visceral leishmaniasis, induces multinucleation of bone marrow-derived macrophages (BMDMs) in vitro. When these infection-induced multinucleated macrophages were compared with cytokine-induced multinucleated giant cells, the former had higher phagocytic activity on red blood cells but no apparent changes on phagocytosis of latex beads. BMDMs infected with L. donovani had increased expression of ATP6V0D2, one of the components of V-ATPase, which was also upregulated in the spleen of infected mice. Infection-induced ATP6V0D2 localized in a cytoplasmic compartment, which did not overlap with the mitochondria, endoplasmic reticulum, or lysosomes. When ATP6V0D2 expression was recombinantly induced in BMDMs, the formation of multinucleated macrophages was induced as seen in the infected macrophages. Taken together, L. donovani infection induces multinucleation of macrophages via ATP6V0D2 upregulation leading to a unique metamorphosis of the macrophages toward hemophagocytes.
Collapse
Affiliation(s)
- Jing Hong
- Laboratory of Molecular Immunology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Chizu Sanjoba
- Laboratory of Molecular Immunology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Wataru Fujii
- Laboratory of Applied Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Junya Yamagishi
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Yasuyuki Goto
- Laboratory of Molecular Immunology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- *Correspondence: Yasuyuki Goto,
| |
Collapse
|
106
|
Shimizu M, Takei S, Mori M, Yachie A. Pathogenic roles and diagnostic utility of interleukin-18 in autoinflammatory diseases. Front Immunol 2022; 13:951535. [PMID: 36211331 PMCID: PMC9537046 DOI: 10.3389/fimmu.2022.951535] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/10/2022] [Indexed: 11/24/2022] Open
Abstract
Interleukin (IL)-18 is a pleiotropic, pro-inflammatory cytokine involved in the regulation of innate and adaptive immune responses. IL-18 has attracted increasing attention as a key mediator in autoinflammatory diseases associated with the development of macrophage activation syndrome (MAS) including systemic juvenile idiopathic arthritis and adult-onset Still’s disease. In these diseases, dysregulation of inflammasome activity and overproduction of IL-18 might be associated with the development of MAS by inducing natural killer cell dysfunction. Serum IL-18 levels are high in patients with these diseases and therefore are useful for the diagnosis and monitoring of disease activity. In contrast, a recent study revealed the overproduction of IL-18 was present in cases of autoinflammation without susceptibility to MAS such as pyogenic sterile arthritis, pyoderma gangrenosum, and acne (PAPA) syndrome. The pathogenic and causative roles of IL-18 remain unclear in these autoinflammatory diseases. Further investigations are necessary to clarify the role of IL-18 and its importance as a therapeutic target in the pathogenesis of autoinflammatory diseases.
Collapse
Affiliation(s)
- Masaki Shimizu
- Department of Child Health and Development, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- *Correspondence: Masaki Shimizu,
| | - Syuji Takei
- Department of Pediatrics, Field of Developmental Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Masaaki Mori
- Department of Lifetime Clinical Immunology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akihiro Yachie
- Division of Medical Safety, Kanazawa University Hospital, Kanazawa, Japan
| |
Collapse
|
107
|
Gleeson TA, Nordling E, Kaiser C, Lawrence CB, Brough D, Green JP, Allan SM. Looking into the IL-1 of the storm: are inflammasomes the link between immunothrombosis and hyperinflammation in cytokine storm syndromes? DISCOVERY IMMUNOLOGY 2022; 1:kyac005. [PMID: 38566906 PMCID: PMC10917224 DOI: 10.1093/discim/kyac005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/17/2022] [Accepted: 09/13/2022] [Indexed: 04/04/2024]
Abstract
Inflammasomes and the interleukin (IL)-1 family of cytokines are key mediators of both inflammation and immunothrombosis. Inflammasomes are responsible for the release of the pro-inflammatory cytokines IL-1β and IL-18, as well as releasing tissue factor (TF), a pivotal initiator of the extrinsic coagulation cascade. Uncontrolled production of inflammatory cytokines results in what is known as a "cytokine storm" leading to hyperinflammatory disease. Cytokine storms can complicate a variety of diseases and results in hypercytokinemia, coagulopathies, tissue damage, multiorgan failure, and death. Patients presenting with cytokine storm syndromes have a high mortality rate, driven in part by disseminated intravascular coagulation (DIC). While our knowledge on the factors propagating cytokine storms is increasing, how cytokine storm influences DIC remains unknown, and therefore treatments for diseases, where these aspects are a key feature are limited, with most targeting specific cytokines. Currently, no therapies target the immunothrombosis aspect of hyperinflammatory syndromes. Here we discuss how targeting the inflammasome and pyroptosis may be a novel therapeutic strategy for the treatment of hyperinflammation and its associated pathologies.
Collapse
Affiliation(s)
- Tara A Gleeson
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Erik Nordling
- Swedish Orphan Biovitrum AB, Stockholm 112 76, Sweden
| | | | - Catherine B Lawrence
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - David Brough
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Jack P Green
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Stuart M Allan
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| |
Collapse
|
108
|
Taylor ML, Hoyt KJ, Han J, Benson L, Case S, Chandler MT, Chang MH, Platt C, Cohen EM, Day-Lewis M, Dedeoglu F, Gorman M, Hausmann JS, Janssen E, Lee PY, Lo J, Priebe GP, Lo MS, Meidan E, Nigrovic PA, Roberts JE, Son MBF, Sundel RP, Alfieri M, Yeun JC, Shobiye DM, Degar B, Chang JC, Halyabar O, Hazen MM, Henderson LA. An Evidence-Based Guideline Improves Outcomes for Patients With Hemophagocytic Lymphohistiocytosis and Macrophage Activation Syndrome. J Rheumatol 2022; 49:1042-1051. [PMID: 35840156 PMCID: PMC9588491 DOI: 10.3899/jrheum.211219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To compare clinical outcomes in children with hemophagocytic lymphohistiocytosis (HLH) and macrophage activation syndrome (MAS) who were managed before and after implementation of an evidence-based guideline (EBG). METHODS A management algorithm for MAS-HLH was developed at our institution based on literature review, expert opinion, and consensus building across multiple pediatric subspecialties. An electronic medical record search retrospectively identified hospitalized patients with MAS-HLH in the pre-EBG (October 15, 2015, to December 4, 2017) and post-EBG (January 1, 2018, to January 21, 2020) time periods. Predetermined outcome metrics were evaluated in the 2 cohorts. RESULTS After the EBG launch, 57 children were identified by house staff as potential patients with MAS-HLH, and rheumatology was consulted for management. Ultimately, 17 patients were diagnosed with MAS-HLH by the treating team. Of these, 59% met HLH 2004 criteria, and 94% met 2016 classification criteria for MAS complicating systemic juvenile idiopathic arthritis. There was a statistically significant reduction in mortality from 50% before implementation of the EBG to 6% in the post-EBG cohort (P = 0.02). There was a significant improvement in time to 50% reduction in C-reactive protein level in the post-EBG vs pre-EBG cohorts (log-rank P < 0.01). There were trends toward faster time to MAS-HLH diagnosis, faster initiation of immunosuppressive therapy, shorter length of hospital stay, and more rapid normalization of MAS-HLH-related biomarkers in the patients post-EBG. CONCLUSION While the observed improvements may be partially attributed to advances in treatment of MAS-HLH that have accumulated over time, this analysis also suggests that a multidisciplinary treatment pathway for MAS-HLH contributed meaningfully to favorable patient outcomes.
Collapse
Affiliation(s)
- Maria L Taylor
- M.L. Taylor, BS, M.T. Chandler, MD, C. Platt, MD, PhD, E.M. Cohen, MD, M. Day-Lewis, RN, MSN, CPNP, F. Dedeoglu, MD, E. Janssen, MD, PhD, P.Y. Lee, MD, PhD, J. Lo, MD, M.S. Lo, MD, PhD, E. Meidan, MD, J.E. Roberts, MD, M.B.F. Son, MD, R.P. Sundel, MD, J.C. Chang, MD, MSCE, O. Halyabar, MD, M.M. Hazen, MD, L.A. Henderson, MD, MMSc, Division of Immunology, Boston Children's Hospital, Boston, Massachusetts
| | - Kacie J Hoyt
- K.J. Hoyt, MSc, Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, and Virginia Tech Carilion School of Medicine, Roanoke, Virginia
| | - Joseph Han
- J. Han, BS, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Leslie Benson
- L. Benson, MD, M. Gorman, MD, Division of Neurology, Boston Children's Hospital, Boston, Massachusetts
| | - Siobhan Case
- S. Case, MD, M.H. Chang, MD, PhD, P.A. Nigrovic, MD, Division of Immunology, Boston Children's Hospital, and Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, Massachusetts
| | - Mia T Chandler
- M.L. Taylor, BS, M.T. Chandler, MD, C. Platt, MD, PhD, E.M. Cohen, MD, M. Day-Lewis, RN, MSN, CPNP, F. Dedeoglu, MD, E. Janssen, MD, PhD, P.Y. Lee, MD, PhD, J. Lo, MD, M.S. Lo, MD, PhD, E. Meidan, MD, J.E. Roberts, MD, M.B.F. Son, MD, R.P. Sundel, MD, J.C. Chang, MD, MSCE, O. Halyabar, MD, M.M. Hazen, MD, L.A. Henderson, MD, MMSc, Division of Immunology, Boston Children's Hospital, Boston, Massachusetts
| | - Margaret H Chang
- S. Case, MD, M.H. Chang, MD, PhD, P.A. Nigrovic, MD, Division of Immunology, Boston Children's Hospital, and Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, Massachusetts
| | - Craig Platt
- M.L. Taylor, BS, M.T. Chandler, MD, C. Platt, MD, PhD, E.M. Cohen, MD, M. Day-Lewis, RN, MSN, CPNP, F. Dedeoglu, MD, E. Janssen, MD, PhD, P.Y. Lee, MD, PhD, J. Lo, MD, M.S. Lo, MD, PhD, E. Meidan, MD, J.E. Roberts, MD, M.B.F. Son, MD, R.P. Sundel, MD, J.C. Chang, MD, MSCE, O. Halyabar, MD, M.M. Hazen, MD, L.A. Henderson, MD, MMSc, Division of Immunology, Boston Children's Hospital, Boston, Massachusetts
| | - Ezra M Cohen
- M.L. Taylor, BS, M.T. Chandler, MD, C. Platt, MD, PhD, E.M. Cohen, MD, M. Day-Lewis, RN, MSN, CPNP, F. Dedeoglu, MD, E. Janssen, MD, PhD, P.Y. Lee, MD, PhD, J. Lo, MD, M.S. Lo, MD, PhD, E. Meidan, MD, J.E. Roberts, MD, M.B.F. Son, MD, R.P. Sundel, MD, J.C. Chang, MD, MSCE, O. Halyabar, MD, M.M. Hazen, MD, L.A. Henderson, MD, MMSc, Division of Immunology, Boston Children's Hospital, Boston, Massachusetts
| | - Megan Day-Lewis
- M.L. Taylor, BS, M.T. Chandler, MD, C. Platt, MD, PhD, E.M. Cohen, MD, M. Day-Lewis, RN, MSN, CPNP, F. Dedeoglu, MD, E. Janssen, MD, PhD, P.Y. Lee, MD, PhD, J. Lo, MD, M.S. Lo, MD, PhD, E. Meidan, MD, J.E. Roberts, MD, M.B.F. Son, MD, R.P. Sundel, MD, J.C. Chang, MD, MSCE, O. Halyabar, MD, M.M. Hazen, MD, L.A. Henderson, MD, MMSc, Division of Immunology, Boston Children's Hospital, Boston, Massachusetts
| | - Fatma Dedeoglu
- M.L. Taylor, BS, M.T. Chandler, MD, C. Platt, MD, PhD, E.M. Cohen, MD, M. Day-Lewis, RN, MSN, CPNP, F. Dedeoglu, MD, E. Janssen, MD, PhD, P.Y. Lee, MD, PhD, J. Lo, MD, M.S. Lo, MD, PhD, E. Meidan, MD, J.E. Roberts, MD, M.B.F. Son, MD, R.P. Sundel, MD, J.C. Chang, MD, MSCE, O. Halyabar, MD, M.M. Hazen, MD, L.A. Henderson, MD, MMSc, Division of Immunology, Boston Children's Hospital, Boston, Massachusetts
| | - Mark Gorman
- L. Benson, MD, M. Gorman, MD, Division of Neurology, Boston Children's Hospital, Boston, Massachusetts
| | - Jonathan S Hausmann
- J.S. Hausmann, MD, Division of Immunology, Boston Children's Hospital, and Division of Rheumatology and Clinical Immunology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Erin Janssen
- M.L. Taylor, BS, M.T. Chandler, MD, C. Platt, MD, PhD, E.M. Cohen, MD, M. Day-Lewis, RN, MSN, CPNP, F. Dedeoglu, MD, E. Janssen, MD, PhD, P.Y. Lee, MD, PhD, J. Lo, MD, M.S. Lo, MD, PhD, E. Meidan, MD, J.E. Roberts, MD, M.B.F. Son, MD, R.P. Sundel, MD, J.C. Chang, MD, MSCE, O. Halyabar, MD, M.M. Hazen, MD, L.A. Henderson, MD, MMSc, Division of Immunology, Boston Children's Hospital, Boston, Massachusetts
| | - Pui Y Lee
- M.L. Taylor, BS, M.T. Chandler, MD, C. Platt, MD, PhD, E.M. Cohen, MD, M. Day-Lewis, RN, MSN, CPNP, F. Dedeoglu, MD, E. Janssen, MD, PhD, P.Y. Lee, MD, PhD, J. Lo, MD, M.S. Lo, MD, PhD, E. Meidan, MD, J.E. Roberts, MD, M.B.F. Son, MD, R.P. Sundel, MD, J.C. Chang, MD, MSCE, O. Halyabar, MD, M.M. Hazen, MD, L.A. Henderson, MD, MMSc, Division of Immunology, Boston Children's Hospital, Boston, Massachusetts
| | - Jeffrey Lo
- M.L. Taylor, BS, M.T. Chandler, MD, C. Platt, MD, PhD, E.M. Cohen, MD, M. Day-Lewis, RN, MSN, CPNP, F. Dedeoglu, MD, E. Janssen, MD, PhD, P.Y. Lee, MD, PhD, J. Lo, MD, M.S. Lo, MD, PhD, E. Meidan, MD, J.E. Roberts, MD, M.B.F. Son, MD, R.P. Sundel, MD, J.C. Chang, MD, MSCE, O. Halyabar, MD, M.M. Hazen, MD, L.A. Henderson, MD, MMSc, Division of Immunology, Boston Children's Hospital, Boston, Massachusetts
| | - Gregory P Priebe
- G.P. Priebe, MD, Department of Anesthesiology, Critical Care, and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts
| | - Mindy S Lo
- M.L. Taylor, BS, M.T. Chandler, MD, C. Platt, MD, PhD, E.M. Cohen, MD, M. Day-Lewis, RN, MSN, CPNP, F. Dedeoglu, MD, E. Janssen, MD, PhD, P.Y. Lee, MD, PhD, J. Lo, MD, M.S. Lo, MD, PhD, E. Meidan, MD, J.E. Roberts, MD, M.B.F. Son, MD, R.P. Sundel, MD, J.C. Chang, MD, MSCE, O. Halyabar, MD, M.M. Hazen, MD, L.A. Henderson, MD, MMSc, Division of Immunology, Boston Children's Hospital, Boston, Massachusetts
| | - Esra Meidan
- M.L. Taylor, BS, M.T. Chandler, MD, C. Platt, MD, PhD, E.M. Cohen, MD, M. Day-Lewis, RN, MSN, CPNP, F. Dedeoglu, MD, E. Janssen, MD, PhD, P.Y. Lee, MD, PhD, J. Lo, MD, M.S. Lo, MD, PhD, E. Meidan, MD, J.E. Roberts, MD, M.B.F. Son, MD, R.P. Sundel, MD, J.C. Chang, MD, MSCE, O. Halyabar, MD, M.M. Hazen, MD, L.A. Henderson, MD, MMSc, Division of Immunology, Boston Children's Hospital, Boston, Massachusetts
| | - Peter A Nigrovic
- S. Case, MD, M.H. Chang, MD, PhD, P.A. Nigrovic, MD, Division of Immunology, Boston Children's Hospital, and Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, Massachusetts
| | - Jordan E Roberts
- M.L. Taylor, BS, M.T. Chandler, MD, C. Platt, MD, PhD, E.M. Cohen, MD, M. Day-Lewis, RN, MSN, CPNP, F. Dedeoglu, MD, E. Janssen, MD, PhD, P.Y. Lee, MD, PhD, J. Lo, MD, M.S. Lo, MD, PhD, E. Meidan, MD, J.E. Roberts, MD, M.B.F. Son, MD, R.P. Sundel, MD, J.C. Chang, MD, MSCE, O. Halyabar, MD, M.M. Hazen, MD, L.A. Henderson, MD, MMSc, Division of Immunology, Boston Children's Hospital, Boston, Massachusetts
| | - Mary Beth F Son
- M.L. Taylor, BS, M.T. Chandler, MD, C. Platt, MD, PhD, E.M. Cohen, MD, M. Day-Lewis, RN, MSN, CPNP, F. Dedeoglu, MD, E. Janssen, MD, PhD, P.Y. Lee, MD, PhD, J. Lo, MD, M.S. Lo, MD, PhD, E. Meidan, MD, J.E. Roberts, MD, M.B.F. Son, MD, R.P. Sundel, MD, J.C. Chang, MD, MSCE, O. Halyabar, MD, M.M. Hazen, MD, L.A. Henderson, MD, MMSc, Division of Immunology, Boston Children's Hospital, Boston, Massachusetts
| | - Robert P Sundel
- M.L. Taylor, BS, M.T. Chandler, MD, C. Platt, MD, PhD, E.M. Cohen, MD, M. Day-Lewis, RN, MSN, CPNP, F. Dedeoglu, MD, E. Janssen, MD, PhD, P.Y. Lee, MD, PhD, J. Lo, MD, M.S. Lo, MD, PhD, E. Meidan, MD, J.E. Roberts, MD, M.B.F. Son, MD, R.P. Sundel, MD, J.C. Chang, MD, MSCE, O. Halyabar, MD, M.M. Hazen, MD, L.A. Henderson, MD, MMSc, Division of Immunology, Boston Children's Hospital, Boston, Massachusetts
| | - Maria Alfieri
- M. Alfieri, MPH, J. Chan Yeun, MSPH, D.M. Shobiye, MPH, Department of Pediatric Quality Program, Boston Children's Hospital, Boston, Massachusetts
| | - Jenny Chan Yeun
- M. Alfieri, MPH, J. Chan Yeun, MSPH, D.M. Shobiye, MPH, Department of Pediatric Quality Program, Boston Children's Hospital, Boston, Massachusetts
| | - Damilola M Shobiye
- M. Alfieri, MPH, J. Chan Yeun, MSPH, D.M. Shobiye, MPH, Department of Pediatric Quality Program, Boston Children's Hospital, Boston, Massachusetts
| | - Barbara Degar
- B. Degar, MD, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Joyce C Chang
- M.L. Taylor, BS, M.T. Chandler, MD, C. Platt, MD, PhD, E.M. Cohen, MD, M. Day-Lewis, RN, MSN, CPNP, F. Dedeoglu, MD, E. Janssen, MD, PhD, P.Y. Lee, MD, PhD, J. Lo, MD, M.S. Lo, MD, PhD, E. Meidan, MD, J.E. Roberts, MD, M.B.F. Son, MD, R.P. Sundel, MD, J.C. Chang, MD, MSCE, O. Halyabar, MD, M.M. Hazen, MD, L.A. Henderson, MD, MMSc, Division of Immunology, Boston Children's Hospital, Boston, Massachusetts
| | - Olha Halyabar
- M.L. Taylor, BS, M.T. Chandler, MD, C. Platt, MD, PhD, E.M. Cohen, MD, M. Day-Lewis, RN, MSN, CPNP, F. Dedeoglu, MD, E. Janssen, MD, PhD, P.Y. Lee, MD, PhD, J. Lo, MD, M.S. Lo, MD, PhD, E. Meidan, MD, J.E. Roberts, MD, M.B.F. Son, MD, R.P. Sundel, MD, J.C. Chang, MD, MSCE, O. Halyabar, MD, M.M. Hazen, MD, L.A. Henderson, MD, MMSc, Division of Immunology, Boston Children's Hospital, Boston, Massachusetts
| | - Melissa M Hazen
- M.L. Taylor, BS, M.T. Chandler, MD, C. Platt, MD, PhD, E.M. Cohen, MD, M. Day-Lewis, RN, MSN, CPNP, F. Dedeoglu, MD, E. Janssen, MD, PhD, P.Y. Lee, MD, PhD, J. Lo, MD, M.S. Lo, MD, PhD, E. Meidan, MD, J.E. Roberts, MD, M.B.F. Son, MD, R.P. Sundel, MD, J.C. Chang, MD, MSCE, O. Halyabar, MD, M.M. Hazen, MD, L.A. Henderson, MD, MMSc, Division of Immunology, Boston Children's Hospital, Boston, Massachusetts
| | - Lauren A Henderson
- M.L. Taylor, BS, M.T. Chandler, MD, C. Platt, MD, PhD, E.M. Cohen, MD, M. Day-Lewis, RN, MSN, CPNP, F. Dedeoglu, MD, E. Janssen, MD, PhD, P.Y. Lee, MD, PhD, J. Lo, MD, M.S. Lo, MD, PhD, E. Meidan, MD, J.E. Roberts, MD, M.B.F. Son, MD, R.P. Sundel, MD, J.C. Chang, MD, MSCE, O. Halyabar, MD, M.M. Hazen, MD, L.A. Henderson, MD, MMSc, Division of Immunology, Boston Children's Hospital, Boston, Massachusetts;
| |
Collapse
|
109
|
Wolf A, Khimani F, Yoon B, Gerhart C, Endsley D, Ray AK, Yango AF, Flynn SD, Lip GYH, Gonzalez SA, Sathyamoorthy M. The mechanistic basis linking cytokine storm to thrombosis in COVID-19. THROMBOSIS UPDATE 2022; 8:100110. [PMID: 38620974 PMCID: PMC9116969 DOI: 10.1016/j.tru.2022.100110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/26/2022] [Accepted: 05/09/2022] [Indexed: 12/15/2022] Open
Abstract
It is now well established that infection with SARS-CoV-2 resulting in COVID-19 disease includes a severely symptomatic subset of patients in whom an aggressive and/or dysregulated host immune response leads to cytokine storm syndrome (CSS) that may be further complicated by thrombotic events, contributing to the severe morbidity and mortality observed in COVID-19. This review provides a brief overview of cytokine storm in COVID-19, and then presents a mechanistic discussion of how cytokine storm affects integrated pathways in thrombosis involving the endothelium, platelets, the coagulation cascade, eicosanoids, auto-antibody mediated thrombosis, and the fibrinolytic system.
Collapse
Affiliation(s)
- Adam Wolf
- Sathyamoorthy Laboratory, TCU School of Medicine, Fort Worth, TX, United States
- TCU School of Medicine, Fort Worth, TX, United States
| | - Faria Khimani
- Sathyamoorthy Laboratory, TCU School of Medicine, Fort Worth, TX, United States
- TCU School of Medicine, Fort Worth, TX, United States
| | - Braian Yoon
- Sathyamoorthy Laboratory, TCU School of Medicine, Fort Worth, TX, United States
- TCU School of Medicine, Fort Worth, TX, United States
| | - Coltin Gerhart
- Sathyamoorthy Laboratory, TCU School of Medicine, Fort Worth, TX, United States
- TCU School of Medicine, Fort Worth, TX, United States
| | - Dakota Endsley
- Sathyamoorthy Laboratory, TCU School of Medicine, Fort Worth, TX, United States
- TCU School of Medicine, Fort Worth, TX, United States
| | - Anish K Ray
- Cook Children's Medical Center, Fort Worth, TX, United States
- Department of Pediatrics, TCU School of Medicine, Fort Worth, TX, United States
| | - Angelito F Yango
- Department of Medicine, TCU School of Medicine, Fort Worth, TX, United States
- Annette C. and Harold C. Simmons Transplant Institute, Baylor All Saints Medical Center, Fort Worth, TX, USA
| | | | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool, United Kingdom
- Department of Clinical Medicine, Aalborg, Denmark
| | - Stevan A Gonzalez
- Department of Medicine, TCU School of Medicine, Fort Worth, TX, United States
- Annette C. and Harold C. Simmons Transplant Institute, Baylor All Saints Medical Center, Fort Worth, TX, USA
| | - Mohanakrishnan Sathyamoorthy
- Sathyamoorthy Laboratory, TCU School of Medicine, Fort Worth, TX, United States
- Department of Medicine, TCU School of Medicine, Fort Worth, TX, United States
- Consultants in Cardiovascular Medicine and Science - Fort Worth, PLLC, Fort Worth, TX, United States
| |
Collapse
|
110
|
Ehl S, Thimme R. Immune‐mediated pathology as a consequence of impaired immune reactions: the IMPATH paradox. Eur J Immunol 2022; 52:1386-1389. [DOI: 10.1002/eji.202250069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Stephan Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Faculty of Medicine Medical Center ‐ University of Freiburg Freiburg Germany
| | - Robert Thimme
- Dept. of Medicine II, Medical Center ‐ University of Freiburg and Faculty of Medicine Medical Center ‐ University of Freiburg Freiburg Germany
| |
Collapse
|
111
|
Zhang HQ, Yang SW, Fu YC, Chen MC, Yang CH, Yang MH, Liu XD, He QN, Jiang H, Zhao MY. Cytokine storm and targeted therapy in hemophagocytic lymphohistiocytosis. Immunol Res 2022; 70:566-577. [PMID: 35819695 DOI: 10.1007/s12026-022-09285-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/03/2022] [Indexed: 11/05/2022]
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is a life-threatening systemic hyperinflammatory syndrome. The central pathogenesis is an explosive cytokine storm characterized by a significant increase in proinflammatory cytokines, including IL-1β, IL-6, IL-18, IFN-γ, and TNF-α. Meanwhile, negative regulatory factors, such as IL-10 and TGF-β, are also related to the production of HLH. Exploring the specific mechanism of cytokine storms could provide ideas regarding targeted therapy, which could be helpful for early treatment to reduce the mortality of HLH. Although some research has focused on the advantages of targeted therapies, there is still a lack of a comprehensive discourse. This article attempts to summarize the mechanisms of action of various cytokines and provide a therapeutic overview of the current targeted therapies for HLH.
Collapse
Affiliation(s)
- Han-Qi Zhang
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.,Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Si-Wei Yang
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.,Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Yi-Cheng Fu
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Ming-Cong Chen
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Cheng-Hao Yang
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.,Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Ming-Hua Yang
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Xiao-Dan Liu
- Department of Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou, 510623, Guangdong, China
| | - Qing-Nan He
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| | - Hua Jiang
- Department of Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou, 510623, Guangdong, China.
| | - Ming-Yi Zhao
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
112
|
Xu HC, Huang J, Pandyra AA, Pandey P, Wang R, Zhang Z, Zhuang Y, Gertzen CG, Münk C, Herebian D, Borkhardt A, Recher M, Gohlke H, Esposito I, Oberbarnscheidt M, Häussinger D, Lang KS, Lang PA. Single MHC-I Expression Promotes Virus-Induced Liver Immunopathology. Hepatol Commun 2022; 6:1620-1633. [PMID: 35166071 PMCID: PMC9234681 DOI: 10.1002/hep4.1913] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Major histocompatibility complex I (MHC-I) molecules present epitopes on the cellular surface of antigen-presenting cells to prime cytotoxic clusters of differentiation 8 (CD8)+ T cells (CTLs), which then identify and eliminate other cells such as virus-infected cells bearing the antigen. Human hepatitis virus cohort studies have previously identified MHC-I molecules as promising predictors of viral clearance. However, the underlying functional significance of these predictions is not fully understood. Here, we show that expression of single MHC-I isomers promotes virus-induced liver immunopathology. Specifically, using the lymphocytic choriomeningitis virus (LCMV) model system, we found MHC-I proteins to be highly up-regulated during infection. Deletion of one of the two MHC-I isomers histocompatibility antigen 2 (H2)-Db or H2-Kb in C57Bl/6 mice resulted in CTL activation recognizing the remaining MHC-I with LCMV epitopes in increased paucity. This increased CTL response resulted in hepatocyte death, increased caspase activation, and severe metabolic changes in liver tissue following infection with LCMV. Moreover, depletion of CTLs abolished LCMV-induced pathology in these mice with resulting viral persistence. In turn, natural killer (NK) cell depletion further increased antiviral CTL immunity and clearance of LCMV even in the presence of a single MHC-I isomer. Conclusion: Our results suggest that uniform MHC-I molecule expression promotes enhanced CTL immunity during viral infection and contributes to increased CTL-mediated liver cell damage that was alleviated by CD8 or NK cell depletion.
Collapse
Affiliation(s)
- Haifeng C. Xu
- Department of Molecular Medicine II, Medical FacultyHeinrich Heine UniversityDüsseldorfGermany
| | - Jun Huang
- Department of Molecular Medicine II, Medical FacultyHeinrich Heine UniversityDüsseldorfGermany
| | - Aleksandra A. Pandyra
- Department of Pediatric Oncology, Hematology and Clinical ImmunologyMedical FacultyCenter of Child and Adolescent HealthHeinrich‐Heine‐UniversityDüsseldorfGermany
| | - Piyush Pandey
- Department of Molecular Medicine II, Medical FacultyHeinrich Heine UniversityDüsseldorfGermany
| | - Ruifeng Wang
- Department of Molecular Medicine II, Medical FacultyHeinrich Heine UniversityDüsseldorfGermany
| | - Zeli Zhang
- Clinic for Gastroenterology, Hepatology, and Infectious DiseasesMedical FacultyHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Yuan Zhuang
- Department of Molecular Medicine II, Medical FacultyHeinrich Heine UniversityDüsseldorfGermany
| | - Christoph G.W. Gertzen
- John von Neumann Institute for ComputingJülich Supercomputing CenterInstitute of Biological Information Processing (Structural Biochemistry) and Institute of Bio‐ and Geosciences (Bioinformatics)Forschungszentrum Jülich GmbHJülichGermany
- Institute for Pharmaceutical and Medicinal ChemistryHeinrich Heine University DüsseldorfDüsseldorfGermany
- Center for Structural StudiesHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Carsten Münk
- Clinic for Gastroenterology, Hepatology, and Infectious DiseasesMedical FacultyHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Diran Herebian
- Department of General Pediatrics, Neonatology and Pediatric CardiologyMedical FacultyHeinrich‐Heine‐UniversityDüsseldorfGermany
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical ImmunologyMedical FacultyCenter of Child and Adolescent HealthHeinrich‐Heine‐UniversityDüsseldorfGermany
| | - Mike Recher
- Immunodeficiency ClinicMedical Outpatient Unit and Immunodeficiency LabDepartment BiomedicineBasel University HospitalBaselSwitzerland
| | - Holger Gohlke
- John von Neumann Institute for ComputingJülich Supercomputing CenterInstitute of Biological Information Processing (Structural Biochemistry) and Institute of Bio‐ and Geosciences (Bioinformatics)Forschungszentrum Jülich GmbHJülichGermany
- Institute for Pharmaceutical and Medicinal ChemistryHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Irene Esposito
- Institute of PathologyMedical FacultyHeinrich‐Heine University and University Hospital of DuesseldorfDüsseldorfGermany
| | | | - Dieter Häussinger
- Clinic for Gastroenterology, Hepatology, and Infectious DiseasesMedical FacultyHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Karl S. Lang
- Institute of ImmunologyMedical FacultyUniversity of Duisburg‐EssenEssenGermany
| | - Philipp A. Lang
- Department of Molecular Medicine II, Medical FacultyHeinrich Heine UniversityDüsseldorfGermany
| |
Collapse
|
113
|
Vignesh P, Anjani G, Kumrah R, Singh A, Mondal S, Nameirakpam J, Jindal A, Suri D, Sharma M, Kaur G, Sharma S, Gupta K, Sreedharanunni S, Rawat A, Singh S. Features of Hemophagocytic Lymphohistiocytosis in Infants With Severe Combined Immunodeficiency: Our Experience From Chandigarh, North India. Front Immunol 2022; 13:867753. [PMID: 35812426 PMCID: PMC9260510 DOI: 10.3389/fimmu.2022.867753] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/09/2022] [Indexed: 11/18/2022] Open
Abstract
Background Hemophagocytic lymphohistiocytosis (HLH) is characterized by uncontrolled and excessive inflammation leading to high mortality. Aetiology of HLH can be primarily due to genetic causes or secondarily due to infections or rheumatological illness. However, rarely T-cell deficiencies like severe combined immunodeficiency (SCID) can develop HLH. Objective To describe clinical and laboratory features of SCID cases who developed HLH. Methods We collected clinical, laboratory, and molecular details of patients with SCID who developed HLH at our center at Chandigarh, North India. Results Of the 94 cases with SCID, 6 were noted to have developed HLH-like manifestations. Male-female ratio was 5:1. Median (inter-quartile range) age of onset of clinical symptoms was 4.25 months (2-5 months). Median (inter-quartile range) delay in diagnosis was 1 month (1-3.5 months). Family history of deaths was seen in 4 cases. Molecular defects in IL2RG were seen in 5 out of 6 cases. Documented infections include disseminated bacillus calmette-guerin (BCG) infection (n=2), blood stream infections (n=3) with Staphylococcal aureus (n=1), Klebsiella pneumonia (n=1), and Pseudomonas aeruginosa (n=1), pneumonia (influenza H1N1 strain, and K. pneumoniae (n=1). Conclusion Children with SCID can present with HLH-like manifestations secondary to fulminant infections. A high index of suspicion of SCID is needed in infants who present with HLH who have an associated infection or a suggestive family history. Occurrence of HLH-like manifestations in SCID suggests that T-lymphocytes may not have a significant role in immunopathogenesis of HLH.
Collapse
Affiliation(s)
- Pandiarajan Vignesh
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
- *Correspondence: Pandiarajan Vignesh, ; Amit Rawat,
| | - Gummadi Anjani
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rajni Kumrah
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ankita Singh
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sanjib Mondal
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Johnson Nameirakpam
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ankur Jindal
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Deepti Suri
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Madhubala Sharma
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Gurjit Kaur
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sathish Sharma
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Kirti Gupta
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sreejesh Sreedharanunni
- Department of Hematology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Amit Rawat
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
- *Correspondence: Pandiarajan Vignesh, ; Amit Rawat,
| | - Surjit Singh
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
114
|
The Impact of Iron Dyshomeostasis and Anaemia on Long-Term Pulmonary Recovery and Persisting Symptom Burden after COVID-19: A Prospective Observational Cohort Study. Metabolites 2022; 12:metabo12060546. [PMID: 35736479 PMCID: PMC9228477 DOI: 10.3390/metabo12060546] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/13/2022] [Accepted: 06/13/2022] [Indexed: 11/23/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is frequently associated with iron dyshomeostasis. The latter is related to acute disease severity and COVID-19 convalescence. We herein describe iron dyshomeostasis at COVID-19 follow-up and its association with long-term pulmonary and symptomatic recovery. The prospective, multicentre, observational cohort study “Development of Interstitial Lung Disease (ILD) in Patients With Severe SARS-CoV-2 Infection (CovILD)” encompasses serial extensive clinical, laboratory, functional and imaging evaluations at 60, 100, 180 and 360 days after COVID-19 onset. We included 108 individuals with mild-to-critical acute COVID-19, whereas 75% presented with severe acute disease. At 60 days post-COVID-19 follow-up, hyperferritinaemia (35% of patients), iron deficiency (24% of the cohort) and anaemia (9% of the patients) were frequently found. Anaemia of inflammation (AI) was the predominant feature at early post-acute follow-up, whereas the anaemia phenotype shifted towards iron deficiency anaemia (IDA) and combinations of IDA and AI until the 360 days follow-up. The prevalence of anaemia significantly decreased over time, but iron dyshomeostasis remained a frequent finding throughout the study. Neither iron dyshomeostasis nor anaemia were related to persisting structural lung impairment, but both were associated with impaired stress resilience at long-term COVID-19 follow-up. To conclude, iron dyshomeostasis and anaemia are frequent findings after COVID-19 and may contribute to its long-term symptomatic outcome.
Collapse
|
115
|
Diamond T, Burn TN, Nishiguchi MA, Minichino D, Chase J, Chu N, Kreiger PA, Behrens EM. Familial hemophagocytic lymphohistiocytosis hepatitis is mediated by IFN-γ in a predominantly hepatic-intrinsic manner. PLoS One 2022; 17:e0269553. [PMID: 35671274 PMCID: PMC9173616 DOI: 10.1371/journal.pone.0269553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 05/23/2022] [Indexed: 12/03/2022] Open
Abstract
Interferon gamma (IFN-γ) is the main cytokine driving organ dysfunction in Familial Hemophagocytic Lymphohistiocytosis (FHL). Blockade of IFN-γ pathway ameliorates FHL hepatitis, both in animal models and in humans with FHL. Hepatocytes are known to express IFN-γ receptor (IFN-γ-R). However, whether IFN-γ induced hepatitis in FHL is a lymphocyte or liver intrinsic response to the cytokine has yet to be elucidated. Using a IFNgR-/- bone marrow chimeric model, this study showed that non-hematopoietic IFN-γ response is critical for development of FHL hepatitis in LCMV-infected Prf1-/- mice. Lack of hepatic IFN-γ responsiveness results in reduced hepatitis as measured by hepatomegaly, alanine aminotransferase (ALT) levels and abrogated histologic endothelial inflammation. In addition, IFN-γ non-hematopoietic response was critical in activation of lymphocytes by soluble interleukin 2 receptor (sIL-2r) and recruitment of CD8+ effector T lymphocytes (CD8+ CD44hi CD62Llo) (Teff) and inflammatory monocytes. Lastly, non-hematopoietic IFN-γ response results in increased hepatic transcription of type 1 immune response and oxidative stress response pathways, while decreasing transcription of genes involved in extracellular matrix (ECM) production. In summary, these findings demonstrate that there is a hepatic transcriptional response to IFN-γ, likely critical in the pathogenesis of FHL hepatitis and hepatic specific responses could be a therapeutic target in this disorder.
Collapse
Affiliation(s)
- Tamir Diamond
- Division of Gastroenterology Hepatology and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Thomas N. Burn
- Perlman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States of America
| | - Mailyn A. Nishiguchi
- Perlman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States of America
| | - Danielle Minichino
- Perlman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States of America
| | - Julie Chase
- Division of Rheumatology, Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Niansheng Chu
- Division of Rheumatology, Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Portia A. Kreiger
- Department of Pathology, Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Edward M. Behrens
- Division of Rheumatology, Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| |
Collapse
|
116
|
IFNγ Regulates NAD+ Metabolism to Promote the Respiratory Burst in Human Monocytes. Blood Adv 2022; 6:3821-3834. [PMID: 35500221 DOI: 10.1182/bloodadvances.2021005776] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 04/12/2022] [Indexed: 11/20/2022] Open
Abstract
IFNγ is an essential and pleiotropic activator of human monocytes, but little is known about the changes in cellular metabolism required for IFNγ-induced activation. We sought to elucidate the mechanisms by which IFNγ reprograms monocyte metabolism to support its immunologic activities. We found that IFNγ increased oxygen consumption rates (OCR) in monocytes, indicative of reactive oxygen species generation by both mitochondria and NADPH oxidase. Transcriptional profiling revealed that this oxidative phenotype was driven by IFNγ-induced reprogramming of NAD+ metabolism, which is dependent on nicotinamide phosphoribosyltransferase (NAMPT)-mediated NAD+ salvage to generate NADH and NADPH for oxidation by mitochondrial complex I and NADPH oxidase, respectively. Consistent with this pathway, monocytes from patients with gain-of-function mutations in STAT1 demonstrated higher than normal OCR. Whereas chemical or genetic disruption of mitochondrial complex I (rotenone treatment or Leigh Syndrome patient monocytes) or NADPH oxidase (DPI treatment or chronic granulomatous disease (CGD) patient monocytes) reduced OCR. Interestingly, inhibition of NAMPT in healthy monocytes completely abrogated the IFNγ-induced oxygen consumption, comparable to levels observed in CGD monocytes. These data identify an IFNγ-induced, NAMPT-dependent, NAD+ salvage pathway that is critical for IFNγ activation of human monocytes.
Collapse
|
117
|
Expansion of CD4dimCD8+T cells characterizes macrophage activation syndrome and other secondary HLH. Blood 2022; 140:262-273. [PMID: 35500103 DOI: 10.1182/blood.2021013549] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 04/14/2022] [Indexed: 11/20/2022] Open
Abstract
CD8+ T-cell activation has been demonstrated to distinguish patients with primary and infection-associated hemophagocytic lymphohistiocytosis (pHLH and iaHLH) from patients with early sepsis. We evaluated the activation profile of CD8+ T cells in patients with various forms of secondary HLH (sHLH), including macrophage activation syndrome (MAS). Flow-cytometry analysis was performed on peripheral blood mononuclear cells isolated from children with inactive systemic juvenile idiopathic arthritis (sJIA, n=17), active sJIA (n=27), MAS in sJIA (n=14), iaHLH (n=7) and with other forms of sHLH (n=9). Compared to patients with active sJIA, in patients with MAS and sHLH of different origins, beside a significant increase in the frequency of CD38high/HLA-DR+CD8+ T cells, we found a significant increase in the frequency of CD8+ T cells expressing the CD4 antigen (CD4dimCD8+ T cells). These cells not only expressed high levels of the activation markers CD38 and HLA-DR, suggesting that they were a subset of CD38high/HLA-DR+ CD8+ T cells, but also of the activation/exhaustion markers CD25, PD1, CD95, and IFNγ. The frequency of CD4dimCD8+ T cells strongly correlated with most of the laboratory parameters of MAS severity and with levels of the MAS biomarkers CXCL9 and IL-18. These findings were confirmed in a prospective replication cohort, in which no expansion of particular TCR Vβ family in CD3+ T cells of sHLH patients was found. Finally, frequency of CD4dimCD8+, but not of CD38high/HLA-DR+ CD8+ T cells, significantly correlated with a clinical severity score. Altogether, our data, showing that CD4dimCD8+T cells are increased in patients with MAS/sHLH and associated with disease severity, strongly support their involvement in MAS/sHLH pathogenesis.
Collapse
|
118
|
Zoref-Lorenz A, Yuklea M, Topaz G, Jordan MB, Ellis M. A Case of Chronic Lymphocytic Leukemia Complicated by Hemophagocytic Lymphohistiocytosis: Identifying the Aberrant Immune Response. J Gen Intern Med 2022; 37:1542-1546. [PMID: 35178648 PMCID: PMC9086000 DOI: 10.1007/s11606-022-07395-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 01/03/2022] [Indexed: 10/19/2022]
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is a life-threatening hyperinflammatory syndrome that may complicate hematologic malignancies. HLH and malignancies have common clinical features, and HLH diagnostic criteria (HLH-2004/Hscore) were not validated in this specific population. We describe a case of a 72-year-old patient with a history of chronic lymphocytic leukemia stable for over 10 years who presented with fever and cytopenia. After excluding infectious etiologies and the progression of her disease, HLH was diagnosed. The patient was treated with etoposide, dexamethasone, intravenous immunoglobulin, and rituximab. Despite initial clinical improvement, the patient deteriorated and developed pulmonary aspergillosis and CNS involvement that reflected uncontrolled HLH. The patient died 45 days after her presentation. An unusual feature of this case was that HLH was not triggered by infection, disease transformation, or treatment. This case emphasizes the challenges of differentiating the development of overwhelming HLH from other complications associated with hematologic malignancy.
Collapse
MESH Headings
- Aged
- Etoposide/therapeutic use
- Female
- Fever
- Humans
- Immunity
- Leukemia, Lymphocytic, Chronic, B-Cell/complications
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Lymphohistiocytosis, Hemophagocytic/complications
- Lymphohistiocytosis, Hemophagocytic/diagnosis
Collapse
Affiliation(s)
- Adi Zoref-Lorenz
- Hematology Institute, Meir Medical Center, Kfar Saba, Israel.
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Division of Bone Marrow Transplantation and Immune Deficiency, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, USA.
| | - Mona Yuklea
- Hematology Institute, Meir Medical Center, Kfar Saba, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Guy Topaz
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Internal Medicine C, Meir Medical Center, Kfar Saba, Israel
| | - Michael B Jordan
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Bone Marrow Transplantation and Immune Deficiency, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, USA
| | - Martin Ellis
- Hematology Institute, Meir Medical Center, Kfar Saba, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
119
|
Abstract
Leishmaniasis is a zoonotic and vector-borne infectious disease that is caused by the genus Leishmania belonging to the trypanosomatid family. The protozoan parasite has a digenetic life cycle involving a mammalian host and an insect vector. Leishmaniasisis is a worldwide public health problem falling under the neglected tropical disease category, with over 90 endemic countries, and approximately 1 million new cases and 20,000 deaths annually. Leishmania infection can progress toward the development of species–specific pathologic disorders, ranging in severity from self-healing cutaneous lesions to disseminating muco-cutaneous and fatal visceral manifestations. The severity and the outcome of leishmaniasis is determined by the parasite’s antigenic epitope characteristics, the vector physiology, and most importantly, the immune response and immune status of the host. This review examines the nature of host–pathogen interaction in leishmaniasis, innate and adaptive immune responses, and various strategies that have been employed for vaccine development.
Collapse
|
120
|
Setiadi A, Zoref-Lorenz A, Lee CY, Jordan MB, Chen LYC. Malignancy-associated haemophagocytic lymphohistiocytosis. Lancet Haematol 2022; 9:e217-e227. [PMID: 35101205 DOI: 10.1016/s2352-3026(21)00366-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/08/2021] [Accepted: 11/15/2021] [Indexed: 01/13/2023]
Abstract
Haemophagocytic lymphohistiocytosis (HLH) is an inflammatory syndrome that can occur with cancer (malignancy-associated HLH) or with immune-activating therapies for cancer. Patients with lymphoma appear to be at particularly high risk for malignancy-associated HLH. The familial form of HLH is characterised by uncontrolled activation of macrophages and cytotoxic T cells, which can be identified by genetics or specific immune markers. However, the pathophysiology of malignancy-associated HLH is not well understood, and distinguishing pathological immune activation from the laboratory and clinical abnormalities seen in cancer and cancer treatment is challenging. Emerging diagnostic tools, such as serum cytokine or chemokine concentrations, flow cytometry, and other functional measures, are discussed. Mortality remains high with current approaches. Targeted therapy, including blockade of specific cytokines such as IL-1, IL-6, and IFNγ, and inhibition of the JAK-STAT pathways might improve outcomes for some patients. Finally, we discuss a framework for thinking of malignancy-associated HLH within a larger umbrella concept of cytokine storm syndrome.
Collapse
Affiliation(s)
- Audi Setiadi
- Department of Pathology and Laboratory Medicine, British Columbia Children's Hospital, Vancouver, BC, Canada
| | - Adi Zoref-Lorenz
- Hematology Institute, Meir Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Division of Immunobiology, Cincinnati Children's Medical Center, Cincinnati, OH, USA
| | - Christina Y Lee
- Division of Hematologic Malignancies, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael B Jordan
- Division of Immunobiology, Cincinnati Children's Medical Center, Cincinnati, OH, USA; Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Medical Center, Cincinnati, OH, USA
| | - Luke Y C Chen
- Division of Hematology, Department of Medicine, Vancouver General Hospital, Vancouver, BC, Canada; Centre for Health Education Scholarship, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
121
|
Xu XJ, Luo ZB, Song H, Xu WQ, Henter JI, Zhao N, Wu MH, Tang YM. Simple Evaluation of Clinical Situation and Subtypes of Pediatric Hemophagocytic Lymphohistiocytosis by Cytokine Patterns. Front Immunol 2022; 13:850443. [PMID: 35296096 PMCID: PMC8918565 DOI: 10.3389/fimmu.2022.850443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/04/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundHemophagocytic lymphohistiocytosis (HLH) is a rapidly fatal disease caused by immune dysregulation. Early initiation of treatment is imperative for saving lives. However, a laboratory approach that could be used to quickly evaluate the HLH subtype and clinical situation is lacking. Our previous studies indicated that cytokines such as interferon (IFN)-γ and interleukin (IL)-10 were helpful for the early diagnosis of HLH and were associated with disease severity. The purpose of this study is to clarify the different cytokine patterns of various subtypes of pediatric HLH and to investigate the role of cytokines in a simple evaluation of disease feature.Patients and MethodsWe enrolled 256 pediatric patients with newly diagnosed HLH. The clinical features and laboratory findings were collected and compared among different subtypes of HLH. A model integrating cytokines was established to stratify HLH patients into different clinical groups.ResultsTwenty-seven patients were diagnosed with primary HLH (pHLH), 179 with EBV-HLH, and 50 with other causes. The IL-6, IL-10, and IFN-γ levels and the ratios of IL-10 to IFN-γ were different among EBV-HLH, other infection-associated HLH, malignancy-associated HLH, familial HLH, and X-linked lymphoproliferative disease. Patients with the ratio of IL-10 to IFN-γ >1.33 and the concentration of IFN-γ ≤225 pg/ml were considered to have pHLH, with a sensitivity of 73% and a specificity of 84%. A four-quadrant model based on the two cutoff values was established to stratify the patients into different clinical situations. The HLH subtypes, cytokine levels, treatment regimens, treatment response, and outcomes were different among the four quadrants, with the 8-week mortality from 2.9 ± 2.9% to 21.4 ± 5.5% and the 5-year overall survival from 93.9 ± 4.2% to 52.6 ± 7.1%.ConclusionsDifferent subtypes of HLH present distinct cytokine patterns. IFN-γ and the ratio of IL-10 to IFN-γ are helpful tools to differentiate HLH subtypes. A four-quadrant model based on these two parameters is a useful tool for a simple evaluation of the HLH situation.
Collapse
Affiliation(s)
- Xiao-Jun Xu
- Division/Center of Pediatric Hematology-Oncology, the Children’s Hospital of Zhejiang University School of Medicine, Hangzhou, China
- The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, National Clinical Research Center for Child Health, Hangzhou, China
| | - Ze-Bin Luo
- Division/Center of Pediatric Hematology-Oncology, the Children’s Hospital of Zhejiang University School of Medicine, Hangzhou, China
- The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, National Clinical Research Center for Child Health, Hangzhou, China
| | - Hua Song
- Division/Center of Pediatric Hematology-Oncology, the Children’s Hospital of Zhejiang University School of Medicine, Hangzhou, China
- The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, National Clinical Research Center for Child Health, Hangzhou, China
| | - Wei-Qun Xu
- Division/Center of Pediatric Hematology-Oncology, the Children’s Hospital of Zhejiang University School of Medicine, Hangzhou, China
- The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jan-Inge Henter
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institute, Stockholm, Sweden
- Pediatric Oncology, Theme of Children’s Health, Karolinska University Hospital, Stockholm, Sweden
| | - Ning Zhao
- Division/Center of Pediatric Hematology-Oncology, the Children’s Hospital of Zhejiang University School of Medicine, Hangzhou, China
- The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, National Clinical Research Center for Child Health, Hangzhou, China
| | - Meng-Hui Wu
- Division/Center of Pediatric Hematology-Oncology, the Children’s Hospital of Zhejiang University School of Medicine, Hangzhou, China
- The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yong-Min Tang
- Division/Center of Pediatric Hematology-Oncology, the Children’s Hospital of Zhejiang University School of Medicine, Hangzhou, China
- The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, National Clinical Research Center for Child Health, Hangzhou, China
- *Correspondence: Yong-Min Tang,
| |
Collapse
|
122
|
Zoref-Lorenz A, Murakami J, Hofstetter L, Iyer S, Alotaibi AS, Mohamed SF, Miller PG, Guber E, Weinstein S, Yacobovich J, Nikiforow S, Ebert BL, Lane A, Pasvolsky O, Raanani P, Nagler A, Berliner N, Daver N, Ellis M, Jordan MB. An improved index for diagnosis and mortality prediction in malignancy-associated hemophagocytic lymphohistiocytosis. Blood 2022; 139:1098-1110. [PMID: 34780598 PMCID: PMC8854682 DOI: 10.1182/blood.2021012764] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 10/28/2021] [Indexed: 11/20/2022] Open
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is a life-threatening inflammatory syndrome that may complicate hematologic malignancies (HMs). The appropriateness of current criteria for diagnosing HLH in the context of HMs is unknown because they were developed for children with familial HLH (HLH-2004) or derived from adult patient cohorts in which HMs were underrepresented (HScore). Moreover, many features of these criteria may directly reflect the underlying HM rather than an abnormal inflammatory state. To improve and potentially simplify HLH diagnosis in patients with HMs, we studied an international cohort of 225 adult patients with various HMs both with and without HLH and for whom HLH-2004 criteria were available. Classification and regression tree and receiver-operating curve analyses were used to identify the most useful diagnostic and prognostic parameters and to optimize laboratory cutoff values. Combined elevation of soluble CD25 (>3900 U/mL) and ferritin (>1000 ng/mL) best identified HLH-2004-defining features (sensitivity, 84%; specificity, 81%). Moreover, this combination, which we term the optimized HLH inflammatory (OHI) index, was highly predictive of mortality (hazard ratio, 4.3; 95% confidence interval, 3.0-6.2) across diverse HMs. Furthermore, the OHI index identified a large group of patients with high mortality risk who were not defined as having HLH according to HLH-2004/HScore. Finally, the OHI index shows diagnostic and prognostic value when used for routine surveillance of patients with newly diagnosed HMs as well as those with clinically suspected HLH. Thus, we conclude that the OHI index identifies patients with HM and an inflammatory state associated with a high mortality risk and warrants further prospective validation.
Collapse
Affiliation(s)
- Adi Zoref-Lorenz
- Hematology Institute, Meir Medical Center, Kfar Saba, Israel
- Division of Immunobiology, Cincinnati Children's Medical Center, Cincinnati, OH
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jun Murakami
- Clinical Laboratory, Transfusion Medicine and Cell Therapy, University of Toyama, Toyama, Japan
| | - Liron Hofstetter
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Institute of Hematology, Davidoff Cancer Center, Rabin Medical Center, Petah-Tikva, Israel
| | | | - Ahmad S Alotaibi
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX
- Oncology Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | | | - Peter G Miller
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
- Broad Institute of MIT and Harvard, Cambridge, MA
| | - Elad Guber
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Pulmonary Institute, Meir Medical Center, Kfar Saba, Israel
| | - Shiri Weinstein
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Internal Medicine "D," Sheba Medical Center, Ramat Gan, Israel
| | - Joanne Yacobovich
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Schneider Children's Medical Center of Israel, Petah Tikva, Israel
| | - Sarah Nikiforow
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Benjamin L Ebert
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Broad Institute of MIT and Harvard, Cambridge, MA
- Howard Hughes Medical Institute, Bethesda, MD
| | - Adam Lane
- Department of Pediatrics, University of Cincinnati, and Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Oren Pasvolsky
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Institute of Hematology, Davidoff Cancer Center, Rabin Medical Center, Petah-Tikva, Israel
| | - Pia Raanani
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Institute of Hematology, Davidoff Cancer Center, Rabin Medical Center, Petah-Tikva, Israel
| | - Arnon Nagler
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Hematology Institute, Sheba Medical Center, Ramat Gan, Israel; and
| | - Nancy Berliner
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Naval Daver
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Martin Ellis
- Hematology Institute, Meir Medical Center, Kfar Saba, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Michael B Jordan
- Division of Immunobiology, Cincinnati Children's Medical Center, Cincinnati, OH
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH
| |
Collapse
|
123
|
Taylor MD, Fernandes TD, Yaipen O, Higgins CE, Capone CA, Leisman DE, Nedeljkovic-Kurepa A, Abraham MN, Brewer MR, Deutschman CS. T cell activation and IFNγ modulate organ dysfunction in LPS-mediated inflammation. J Leukoc Biol 2022; 112:221-232. [PMID: 35141943 PMCID: PMC9351424 DOI: 10.1002/jlb.4hi0921-492r] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/30/2021] [Accepted: 01/16/2022] [Indexed: 12/18/2022] Open
Abstract
LPS challenge is used to model inflammation-induced organ dysfunction. The effects of T cell activation on LPS-mediated organ dysfunction and immune responses are unknown. We studied these interactions through in vivo administration of anti-CD3ε (CD3) T cell activating antibody and LPS. Mortality in response to high-dose LPS (LPSHi; 600 μg) was 60%; similar mortality was observed with a 10-fold reduction in LPS dose (LPSLo; 60 μg) when administered with CD3 (CD3LPSLo). LPSHi and CD3LPSLo cohorts suffered severe organ dysfunction. CD3LPSLo led to increased IFNγ and IL12p70 produced by T cells and dendritic cells (cDCs) respectively. CD3LPSLo caused cDC expression of CD40 and MHCII and prevented PD1 expression in response to CD3. These interactions led to the generation of CD4 and CD8 cytolytic T cells. CD3LPSLo responded to IFNγ or IL12p40 blockade, in contrast to LPSHi. The combination of TCR activation and LPS (CD3LPSLo) dysregulated T cell activation and increased LPS-associated organ dysfunction and mortality through T cell and cDC interactions.
Collapse
Affiliation(s)
- Matthew D Taylor
- The Division of Critical Care Medicine, Department of Pediatrics, The Feinstein Institutes for Medical Research, Manhasset, New York, USA.,Department of Pediatrics, Cohen Children's Medical Center/Northwell Health, New Hyde Park, New York, USA
| | - Tiago D Fernandes
- The Division of Critical Care Medicine, Department of Pediatrics, The Feinstein Institutes for Medical Research, Manhasset, New York, USA.,Department of Pediatrics, Cohen Children's Medical Center/Northwell Health, New Hyde Park, New York, USA
| | - Omar Yaipen
- The Division of Critical Care Medicine, Department of Pediatrics, The Feinstein Institutes for Medical Research, Manhasset, New York, USA.,Department of Pediatrics, Cohen Children's Medical Center/Northwell Health, New Hyde Park, New York, USA
| | - Cassidy E Higgins
- The Division of Critical Care Medicine, Department of Pediatrics, The Feinstein Institutes for Medical Research, Manhasset, New York, USA.,Department of Pediatrics, Cohen Children's Medical Center/Northwell Health, New Hyde Park, New York, USA
| | - Christine A Capone
- The Division of Critical Care Medicine, Department of Pediatrics, The Feinstein Institutes for Medical Research, Manhasset, New York, USA.,Department of Pediatrics, Cohen Children's Medical Center/Northwell Health, New Hyde Park, New York, USA
| | - Daniel E Leisman
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Ana Nedeljkovic-Kurepa
- The Division of Critical Care Medicine, Department of Pediatrics, The Feinstein Institutes for Medical Research, Manhasset, New York, USA.,Department of Pediatrics, Cohen Children's Medical Center/Northwell Health, New Hyde Park, New York, USA
| | - Mabel N Abraham
- The Division of Critical Care Medicine, Department of Pediatrics, The Feinstein Institutes for Medical Research, Manhasset, New York, USA.,Department of Pediatrics, Cohen Children's Medical Center/Northwell Health, New Hyde Park, New York, USA
| | - Mariana R Brewer
- The Division of Critical Care Medicine, Department of Pediatrics, The Feinstein Institutes for Medical Research, Manhasset, New York, USA.,Department of Pediatrics, Cohen Children's Medical Center/Northwell Health, New Hyde Park, New York, USA
| | - Clifford S Deutschman
- The Division of Critical Care Medicine, Department of Pediatrics, The Feinstein Institutes for Medical Research, Manhasset, New York, USA.,Department of Pediatrics, Cohen Children's Medical Center/Northwell Health, New Hyde Park, New York, USA
| |
Collapse
|
124
|
Hoste L, Roels L, Naesens L, Bosteels V, Vanhee S, Dupont S, Bosteels C, Browaeys R, Vandamme N, Verstaen K, Roels J, Van Damme KF, Maes B, De Leeuw E, Declercq J, Aegerter H, Seys L, Smole U, De Prijck S, Vanheerswynghels M, Claes K, Debacker V, Van Isterdael G, Backers L, Claes KB, Bastard P, Jouanguy E, Zhang SY, Mets G, Dehoorne J, Vandekerckhove K, Schelstraete P, Willems J, MIS-C Clinicians, Stordeur P, Janssens S, Beyaert R, Saeys Y, Casanova JL, Lambrecht BN, Haerynck F, Tavernier SJ. TIM3+ TRBV11-2 T cells and IFNγ signature in patrolling monocytes and CD16+ NK cells delineate MIS-C. J Exp Med 2022; 219:e20211381. [PMID: 34914824 PMCID: PMC8685281 DOI: 10.1084/jem.20211381] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/01/2021] [Accepted: 11/23/2021] [Indexed: 12/24/2022] Open
Abstract
In rare instances, pediatric SARS-CoV-2 infection results in a novel immunodysregulation syndrome termed multisystem inflammatory syndrome in children (MIS-C). We compared MIS-C immunopathology with severe COVID-19 in adults. MIS-C does not result in pneumocyte damage but is associated with vascular endotheliitis and gastrointestinal epithelial injury. In MIS-C, the cytokine release syndrome is characterized by IFNγ and not type I interferon. Persistence of patrolling monocytes differentiates MIS-C from severe COVID-19, which is dominated by HLA-DRlo classical monocytes. IFNγ levels correlate with granzyme B production in CD16+ NK cells and TIM3 expression on CD38+/HLA-DR+ T cells. Single-cell TCR profiling reveals a skewed TCRβ repertoire enriched for TRBV11-2 and a superantigenic signature in TIM3+/CD38+/HLA-DR+ T cells. Using NicheNet, we confirm IFNγ as a central cytokine in the communication between TIM3+/CD38+/HLA-DR+ T cells, CD16+ NK cells, and patrolling monocytes. Normalization of IFNγ, loss of TIM3, quiescence of CD16+ NK cells, and contraction of patrolling monocytes upon clinical resolution highlight their potential role in MIS-C immunopathogenesis.
Collapse
Affiliation(s)
- Levi Hoste
- Primary Immune Deficiency Research Laboratory, Department of Internal Diseases and Pediatrics, Centre for Primary Immunodeficiency Ghent, Jeffrey Modell Diagnosis and Research Centre, Ghent University, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Division of Pediatric Pulmonology, Infectious Diseases and Inborn Errors of Immunity, Ghent University Hospital, Ghent, Belgium
| | - Lisa Roels
- Primary Immune Deficiency Research Laboratory, Department of Internal Diseases and Pediatrics, Centre for Primary Immunodeficiency Ghent, Jeffrey Modell Diagnosis and Research Centre, Ghent University, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Division of Pediatric Pulmonology, Infectious Diseases and Inborn Errors of Immunity, Ghent University Hospital, Ghent, Belgium
| | - Leslie Naesens
- Primary Immune Deficiency Research Laboratory, Department of Internal Diseases and Pediatrics, Centre for Primary Immunodeficiency Ghent, Jeffrey Modell Diagnosis and Research Centre, Ghent University, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Division of Pediatric Pulmonology, Infectious Diseases and Inborn Errors of Immunity, Ghent University Hospital, Ghent, Belgium
| | - Victor Bosteels
- Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium
- Center for Inflammation Research, Laboratory for Endoplasmic Reticulum Stress and Inflammation, VIB, Ghent, Belgium
| | - Stijn Vanhee
- Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium
- Center for Inflammation Research, Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium
| | - Sam Dupont
- Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium
- Center for Inflammation Research, Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium
| | - Cedric Bosteels
- Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium
- Center for Inflammation Research, Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium
| | - Robin Browaeys
- Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Niels Vandamme
- Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Kevin Verstaen
- Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Jana Roels
- Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Karel F.A. Van Damme
- Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium
- Center for Inflammation Research, Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium
| | - Bastiaan Maes
- Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium
- Center for Inflammation Research, Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium
| | - Elisabeth De Leeuw
- Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium
- Center for Inflammation Research, Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium
| | - Jozefien Declercq
- Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium
- Center for Inflammation Research, Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium
| | - Helena Aegerter
- Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium
- Center for Inflammation Research, Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium
| | - Leen Seys
- Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium
- Center for Inflammation Research, Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium
| | - Ursula Smole
- Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium
- Center for Inflammation Research, Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium
| | - Sofie De Prijck
- Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium
- Center for Inflammation Research, Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium
| | - Manon Vanheerswynghels
- Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium
- Center for Inflammation Research, Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium
| | - Karlien Claes
- Primary Immune Deficiency Research Laboratory, Department of Internal Diseases and Pediatrics, Centre for Primary Immunodeficiency Ghent, Jeffrey Modell Diagnosis and Research Centre, Ghent University, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Division of Pediatric Pulmonology, Infectious Diseases and Inborn Errors of Immunity, Ghent University Hospital, Ghent, Belgium
| | - Veronique Debacker
- Primary Immune Deficiency Research Laboratory, Department of Internal Diseases and Pediatrics, Centre for Primary Immunodeficiency Ghent, Jeffrey Modell Diagnosis and Research Centre, Ghent University, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Division of Pediatric Pulmonology, Infectious Diseases and Inborn Errors of Immunity, Ghent University Hospital, Ghent, Belgium
| | | | - Lynn Backers
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University and Ghent University Hospital, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent University, Ghent, Belgium
| | - Kathleen B.M. Claes
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University and Ghent University Hospital, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent University, Ghent, Belgium
| | - Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Emmanuelle Jouanguy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Shen-Ying Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Gilles Mets
- Department of Internal Medicine and Pediatrics, Division of Pediatric Cardiology, Ghent University Hospital, Ghent, Belgium
| | - Joke Dehoorne
- Department of Internal Medicine and Pediatrics, Division of Pediatric Rheumatology, Ghent University Hospital, Ghent, Belgium
| | - Kristof Vandekerckhove
- Department of Internal Medicine and Pediatrics, Division of Pediatric Cardiology, Ghent University Hospital, Ghent, Belgium
| | - Petra Schelstraete
- Department of Internal Medicine and Pediatrics, Division of Pediatric Pulmonology, Infectious Diseases and Inborn Errors of Immunity, Ghent University Hospital, Ghent, Belgium
| | - Jef Willems
- Department of Critical Care, Division of Pediatric Intensive Care, Ghent University Hospital, Ghent, Belgium
| | | | - Patrick Stordeur
- Belgian National Reference Center for the Complement System, Laboratory of Immunology, LHUB-ULB, Université Libre de Bruxelles, Brussels, Belgium
| | - Sophie Janssens
- Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium
- Center for Inflammation Research, Laboratory for Endoplasmic Reticulum Stress and Inflammation, VIB, Ghent, Belgium
| | - Rudi Beyaert
- Center for Inflammation Research, Laboratory of Molecular Signal Transduction in Inflammation, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Yvan Saeys
- Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Howard Hughes Medical Institute, New York, NY
- Pediatric Hematology and Immunology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Bart N. Lambrecht
- Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium
- Center for Inflammation Research, Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Pulmonary Medicine, ErasmusMC, Rotterdam, The Netherlands
| | - Filomeen Haerynck
- Primary Immune Deficiency Research Laboratory, Department of Internal Diseases and Pediatrics, Centre for Primary Immunodeficiency Ghent, Jeffrey Modell Diagnosis and Research Centre, Ghent University, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Division of Pediatric Pulmonology, Infectious Diseases and Inborn Errors of Immunity, Ghent University Hospital, Ghent, Belgium
| | - Simon J. Tavernier
- Primary Immune Deficiency Research Laboratory, Department of Internal Diseases and Pediatrics, Centre for Primary Immunodeficiency Ghent, Jeffrey Modell Diagnosis and Research Centre, Ghent University, Ghent, Belgium
- Center for Inflammation Research, Laboratory of Molecular Signal Transduction in Inflammation, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
125
|
Aichele P, Neumann-Haefelin C, Ehl S, Thimme R, Cathomen T, Boerries M, Hofmann M. Immunopathology caused by impaired CD8+ T cell responses. Eur J Immunol 2022; 52:1390-1395. [PMID: 35099807 DOI: 10.1002/eji.202149528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 11/16/2021] [Accepted: 01/24/2022] [Indexed: 11/12/2022]
Abstract
Recent findings indicate that many immunopathologies are at their roots a consequence of impaired immune responses ("too little" immunity) and not the result of primarily exaggerated immune responses ("too much" immunity). We have summarized this conceptional view as "IMPATH paradox". In this review, we will focus on impaired immune reactions in the context of CD8+ T cell-mediated immunopathologies. In particular, we will exemplify this concept in two disease models: Virus-triggered primary hemophagocytic lymphohistiocytosis, an inflammatory syndrome caused by genetically impaired cytolytic functions of T cells, and viral hepatitis, where T cell exhaustion is a major underlying mechanism for impaired effector functions. In both situations, T cells fail to eliminate the source of immune stimulation, which usually serves as an important negative feedback loop curtailing immune reactions. Persistent antigen presentation by antigen-presenting and/or infected cells results in continuous stimulation causing chronic inflammation and immunopathology mediated by residual T cell functions. Hence, immune stimulation or reconstitution rather than immune suppression may be strategies for therapeutic interventions. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Peter Aichele
- Institute for Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christoph Neumann-Haefelin
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stephan Ehl
- Institute for Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Robert Thimme
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Toni Cathomen
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, Freiburg, Germany
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Maike Hofmann
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
126
|
Lindahl H, Bryceson YT. Neuroinflammation Associated With Inborn Errors of Immunity. Front Immunol 2022; 12:827815. [PMID: 35126383 PMCID: PMC8807658 DOI: 10.3389/fimmu.2021.827815] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 12/27/2021] [Indexed: 01/16/2023] Open
Abstract
The advent of high-throughput sequencing has facilitated genotype-phenotype correlations in congenital diseases. This has provided molecular diagnosis and benefited patient management but has also revealed substantial phenotypic heterogeneity. Although distinct neuroinflammatory diseases are scarce among the several thousands of established congenital diseases, elements of neuroinflammation are increasingly recognized in a substantial proportion of inborn errors of immunity, where it may even dominate the clinical picture at initial presentation. Although each disease entity is rare, they collectively can constitute a significant proportion of neuropediatric patients in tertiary care and may occasionally also explain adult neurology patients. We focus this review on the signs and symptoms of neuroinflammation that have been reported in association with established pathogenic variants in immune genes and suggest the following subdivision based on proposed underlying mechanisms: autoinflammatory disorders, tolerance defects, and immunodeficiency disorders. The large group of autoinflammatory disorders is further subdivided into IL-1β-mediated disorders, NF-κB dysregulation, type I interferonopathies, and hemophagocytic syndromes. We delineate emerging pathogenic themes underlying neuroinflammation in monogenic diseases and describe the breadth of the clinical spectrum to support decisions to screen for a genetic diagnosis and encourage further research on a neglected phenomenon.
Collapse
Affiliation(s)
- Hannes Lindahl
- Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Yenan T. Bryceson
- Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Brogelmann Research Laboratory, Department of Clinical Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
127
|
Lichtenstein DA, Schischlik F, Shao L, Steinberg SM, Yates B, Wang HW, Wang Y, Inglefield J, Dulau-Florea A, Ceppi F, Hermida LC, Stringaris K, Dunham K, Homan P, Jailwala P, Mirazee J, Robinson W, Chisholm KM, Yuan C, Stetler-Stevenson M, Ombrello AK, Jin J, Fry TJ, Taylor N, Highfill SL, Jin P, Gardner RA, Shalabi H, Ruppin E, Stroncek DF, Shah NN. Characterization of HLH-like manifestations as a CRS variant in patients receiving CD22 CAR T cells. Blood 2021; 138:2469-2484. [PMID: 34525183 PMCID: PMC8832442 DOI: 10.1182/blood.2021011898] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 08/26/2021] [Indexed: 11/20/2022] Open
Abstract
Chimeric antigen receptor (CAR) T-cell toxicities resembling hemophagocytic lymphohistiocytosis (HLH) occur in a subset of patients with cytokine release syndrome (CRS). As a variant of conventional CRS, a comprehensive characterization of CAR T-cell-associated HLH (carHLH) and investigations into associated risk factors are lacking. In the context of 59 patients infused with CD22 CAR T cells where a substantial proportion developed carHLH, we comprehensively describe the manifestations and timing of carHLH as a CRS variant and explore factors associated with this clinical profile. Among 52 subjects with CRS, 21 (40.4%) developed carHLH. Clinical features of carHLH included hyperferritinemia, hypertriglyceridemia, hypofibrinogenemia, coagulopathy, hepatic transaminitis, hyperbilirubinemia, severe neutropenia, elevated lactate dehydrogenase, and occasionally hemophagocytosis. Development of carHLH was associated with preinfusion natural killer(NK) cell lymphopenia and higher bone marrow T-cell:NK cell ratio, which was further amplified with CAR T-cell expansion. Following CRS, more robust CAR T-cell and CD8 T-cell expansion in concert with pronounced NK cell lymphopenia amplified preinfusion differences in those with carHLH without evidence for defects in NK cell mediated cytotoxicity. CarHLH was further characterized by persistent elevation of HLH-associated inflammatory cytokines, which contrasted with declining levels in those without carHLH. In the setting of CAR T-cell mediated expansion, clinical manifestations and immunophenotypic profiling in those with carHLH overlap with features of secondary HLH, prompting consideration of an alternative framework for identification and management of this toxicity profile to optimize outcomes following CAR T-cell infusion.
Collapse
Affiliation(s)
- Daniel A Lichtenstein
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Fiorella Schischlik
- Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Lipei Shao
- Center for Cellular Engineering, Department of Transfusion Medicine, NIH Clinical Center, Bethesda, MD
| | - Seth M Steinberg
- Biostatistics and Data Management Section, Center for Cancer Research, Bethesda, MD
| | - Bonnie Yates
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Hao-Wei Wang
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Yanyu Wang
- Applied Developmental Research Directorate, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD
| | - Jon Inglefield
- Applied Developmental Research Directorate, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD
| | - Alina Dulau-Florea
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Francesco Ceppi
- Department of Pediatrics, Seattle Children's Hospital, Seattle, WA
- Paediatric Haematology-Oncology Unit, Division of Paediatrics, Department Woman-Mother-Child, University Hospital of Lausanne, Lausanne, Switzerland
| | - Leandro C Hermida
- Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD
| | - Kate Stringaris
- Transplantation Immunology, National Heart, Lung and Blood Institute, Bethesda, MD
| | - Kim Dunham
- Applied Developmental Research Directorate, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD
| | - Philip Homan
- Center for Cancer Research Collaborative Bioinformatics Resource, National Cancer Institute, National Institutes of Health, Bethesda, MD
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Fredrick, MD
| | - Parthav Jailwala
- Center for Cancer Research Collaborative Bioinformatics Resource, National Cancer Institute, National Institutes of Health, Bethesda, MD
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Fredrick, MD
| | - Justin Mirazee
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Welles Robinson
- Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD
- Paediatric Haematology-Oncology Unit, Division of Paediatrics, Department Woman-Mother-Child, University Hospital of Lausanne, Lausanne, Switzerland
| | - Karen M Chisholm
- Department of Laboratories, Seattle Children's Hospital, Seattle, WA
| | - Constance Yuan
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | | | - Amanda K Ombrello
- Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD; and
| | - Jianjian Jin
- Center for Cellular Engineering, Department of Transfusion Medicine, NIH Clinical Center, Bethesda, MD
| | - Terry J Fry
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
- University of Colorado Anschutz Medical Campus and Center for Cancer and Blood Disorders, Children's Hospital of Colorado, Aurora, CO
| | - Naomi Taylor
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Steven L Highfill
- Center for Cellular Engineering, Department of Transfusion Medicine, NIH Clinical Center, Bethesda, MD
| | - Ping Jin
- Center for Cellular Engineering, Department of Transfusion Medicine, NIH Clinical Center, Bethesda, MD
| | - Rebecca A Gardner
- Applied Developmental Research Directorate, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD
| | - Haneen Shalabi
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Eytan Ruppin
- Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - David F Stroncek
- Center for Cellular Engineering, Department of Transfusion Medicine, NIH Clinical Center, Bethesda, MD
| | - Nirali N Shah
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
128
|
Li Y, Sun C, Cui L, Wang Q. NLRC4 Gene Single Nucleotide Polymorphisms Are Associated with the Prognosis of Hemophagocytic Lymphohistiocytosis. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:8581746. [PMID: 34925545 PMCID: PMC8683185 DOI: 10.1155/2021/8581746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 11/23/2021] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To analyze and study the correlation between NLR family CARD domain-containing 4 (NLRC4) gene single nucleotide polymorphisms and the prognosis of patients with hemophagocytic lymphohistiocytosis (HLH). METHODS In this study, we retrospectively studied the clinical data of 62 HLH patients, including 40 males and 22 females. The genomic DNA was extracted, and the genotypes at rs385076 locus and rs479333 locus of the NLRC4 gene were analyzed. The level of blood interleukin-18 (IL-18) was analyzed by enzyme-linked immunosorbent assay (ELISA). RESULTS Compared with the TT genotype at the NLRC4 gene rs385076 locus, the mortality of HLH patients with TC genotype and CC genotype was higher (RR = 3.205, 95% CI: 1.277-4.788, p = 0.012; RR = 3.052, 95% CI: 1.098-4.753, p = 0.031). Taking the CC genotype at rs479333 of the NLRC4 gene as a reference, HLH patients with CG genotype and GG genotype had a higher risk of death (RR = 3.475, 95% CI: 1.488-5.775, p = 0.003; RR = 2.986, 95% CI: 1.014-5.570, p = 0.047). NLRC4 gene rs385076 T>C and rs479333 C>G were significantly related to the poor prognosis of HLH patients. The area under the curve (AUC) of the receiver operating curve (ROC) for the prognostic outcome of HLH with serum IL-18 level was 0.6813 (95% CI: 0.5365-0.8260, p = 0.0189). NLRC4 gene rs385076 T>C and rs479333 C>G were related to higher serum IL-18 levels. CONCLUSION NLRC4 gene rs385076 T>C and rs479333 C>G are related to the poor prognosis of HLH patients.
Collapse
Affiliation(s)
- Yan Li
- Department of Hematology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Chengdong Sun
- Department of Infectious Diseases, Beijing Jishuitan Hospital, Beijing 100096, China
| | - Liying Cui
- Department of Hematology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Qiuying Wang
- Department of Hematology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| |
Collapse
|
129
|
Cui Y, Shi J, Lu G, Wang Y, Zhu X, Ren H, Zhu Y, Yan G, Wang C, Zhang Y. Prognostic death factors in secondary hemophagocytic lymphohistiocytosis children with multiple organ dysfunction syndrome receiving continuous renal replacement therapy: A multicenter prospective nested case-control study. Ther Apher Dial 2021; 26:1023-1029. [PMID: 34877787 PMCID: PMC9540864 DOI: 10.1111/1744-9987.13775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/01/2021] [Accepted: 12/05/2021] [Indexed: 11/30/2022]
Abstract
Introduction Multiple organ dysfunction syndrome (MODS) with secondary hemophagocytic lymphohistiocytosis (SHLH) causes significant mortality. We aimed to identify the predictor factors for death in pediatric patients with SHLH‐associated MODS receiving continuous renal replacement therapy (CRRT). Methods This multicentered nested case–control study was conducted from 2016 to 2020. The characteristics were compared between survivors and non‐survivors. Logistic regression was applied to identify the risk factors for death. The cutoff values were assessed by receiver operating characteristics curves. Results Fifty two patients were enrolled in this study. Interleukin‐6 level (p = 0.018) and the number of organ dysfunction (p = 0.047) were independent risk factors for death. The cutoff value of 13.12 pg/ml interleukin‐6 and three organs dysfunction at CRRT initiation presented a high sensitivity and specificity. Conclusion The number of organ dysfunction and interleukin‐6 at CRRT initiation are independent risk factors for death in pediatric patients with SHLH‐associated MODS.
Collapse
Affiliation(s)
- Yun Cui
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jingyi Shi
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Guoping Lu
- Department of Critical Care Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Ying Wang
- Department of Critical Care Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaodong Zhu
- Department of Pediatric Critical Care Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Ren
- Department of Critical Care Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yueniu Zhu
- Department of Pediatric Critical Care Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gangfeng Yan
- Department of Critical Care Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Chunxia Wang
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Institute of Pediatric Critical Care, Shanghai Jiao Tong University, Shanghai, China
| | - Yucai Zhang
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Institute of Pediatric Critical Care, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
130
|
Isringhausen S, Mun Y, Kovtonyuk L, Kräutler NJ, Suessbier U, Gomariz A, Spaltro G, Helbling PM, Wong HC, Nagasawa T, Manz MG, Oxenius A, Nombela-Arrieta C. Chronic viral infections persistently alter marrow stroma and impair hematopoietic stem cell fitness. J Exp Med 2021; 218:e20192070. [PMID: 34709350 PMCID: PMC8558839 DOI: 10.1084/jem.20192070] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 08/11/2021] [Accepted: 10/05/2021] [Indexed: 11/04/2022] Open
Abstract
Chronic viral infections are associated with hematopoietic suppression, bone marrow (BM) failure, and hematopoietic stem cell (HSC) exhaustion. However, how persistent viral challenge and inflammatory responses target BM tissues and perturb hematopoietic competence remains poorly understood. Here, we combine functional analyses with advanced 3D microscopy to demonstrate that chronic infection with lymphocytic choriomeningitis virus leads to (1) long-lasting decimation of the BM stromal network of mesenchymal CXCL12-abundant reticular cells, (2) proinflammatory transcriptional remodeling of remaining components of this key niche subset, and (3) durable functional defects and decreased competitive fitness in HSCs. Mechanistically, BM immunopathology is elicited by virus-specific, activated CD8 T cells, which accumulate in the BM via interferon-dependent mechanisms. Combined antibody-mediated inhibition of type I and II IFN pathways completely preempts degeneration of CARc and protects HSCs from chronic dysfunction. Hence, viral infections and ensuing immune reactions durably impact BM homeostasis by persistently decreasing the competitive fitness of HSCs and disrupting essential stromal-derived, hematopoietic-supporting cues.
Collapse
Affiliation(s)
- Stephan Isringhausen
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
| | - YeVin Mun
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
| | - Larisa Kovtonyuk
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
| | | | - Ute Suessbier
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
| | - Alvaro Gomariz
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
| | - Gianluca Spaltro
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
| | - Patrick M. Helbling
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
| | - Hui Chyn Wong
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
| | - Takashi Nagasawa
- Department of Microbiology and Immunology, Osaka University, Osaka, Japan
| | - Markus G. Manz
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
| | | | - César Nombela-Arrieta
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
131
|
Fava A, Rao DA. Cellular and molecular heterogeneity in systemic lupus erythematosus. Semin Immunol 2021; 58:101653. [PMID: 36184357 DOI: 10.1016/j.smim.2022.101653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/15/2021] [Accepted: 11/15/2021] [Indexed: 12/14/2022]
Affiliation(s)
- Andrea Fava
- Division of Rheumatology, Johns Hopkins University, Baltimore, MD, USA.
| | - Deepak A Rao
- Division of Rheumatology, Inflammation, Immunity, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
132
|
Ruscitti P, Berardicurti O, Giacomelli R, Cipriani P. The clinical heterogeneity of adult onset Still's disease may underlie different pathogenic mechanisms. Implications for a personalised therapeutic management of these patients. Semin Immunol 2021; 58:101632. [PMID: 35787972 DOI: 10.1016/j.smim.2022.101632] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Adult-onset Still's disease (AOSD) is a rare inflammatory disease of unknown aetiology usually affecting young adults and manifesting with a clinical triad of spiking fever, arthritis, and evanescent cutaneous rash. AOSD may be considered a highly heterogeneous disease, despite a similar clinical presentation, the disease course may be completely different. Some patients may have a single episode of the disease whereas others may evolve toward a chronic course and experience life-threatening complications. On these bases, to dissect the clinical heterogeneity of this disease, four different subsets were identified combining the manifestations at the beginning with possible diverse outcomes over time. Each one of these derived subsets would be characterised by a prominent different clinical feature from others, thus proposing dissimilar underlying pathogenic mechanisms, at least partially. Consequently, a distinct management of AOSD may be suggested to appropriately tailor the therapeutic strategy to these patients, according to principles of the precision medicine. These findings would also provide the rationale to recognise a different genetic and molecular profile of patients with AOSD. Taking together these findings, the basis for a precision medicine approach may be suggested in AOSD, which would drive a tailored therapeutic approach in these patients. A better patient stratification may also help in arranging specific designed studies to improve the management of patients with AOSD. Behind these different clinical phenotypes, distinct endotypes of AOSD may be suggested, probably differing in pathogenesis, outcomes, and response to therapies.
Collapse
Affiliation(s)
- Piero Ruscitti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.
| | - Onorina Berardicurti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Roberto Giacomelli
- Unit of Rheumatology and Clinical Immunology, University of Rome "Campus Biomedico", Rome, Italy
| | - Paola Cipriani
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
133
|
Dokouhaki P, van der Merwe DE, Vats K, Said SM, D’Agati VD, Nasr SH. Histiocytic Glomerulopathy Associated With Hemophagocytic Lymphohistiocytosis. Kidney Med 2021; 4:100396. [PMID: 35243308 PMCID: PMC8861970 DOI: 10.1016/j.xkme.2021.10.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is a systemic inflammatory syndrome characterized by heightened activation and proliferation of nonmalignant macrophages and excessive cytokine release. Whereas acute kidney injury is common in this syndrome, direct glomerular involvement by activated histiocytes is very rare. We present the case of a man in his 20s who presented with fevers, malaise, flank pain, anemia, thrombocytopenia, severe acute kidney injury, and proteinuria. A kidney biopsy revealed histiocytic glomerulopathy and subacute thrombotic microangiopathy, and he was diagnosed with HLH. Recovery of kidney function occurred following steroid therapy. A review of kidney involvement by HLH is provided.
Collapse
|
134
|
Gholizadeh M, Kianersi S, Noorazar L, Kaveh V, Roshandel E, Salari S. The rare Hematological disorder; A man with Hemophagocytic Lymphohistiocytosis (HLH). CASPIAN JOURNAL OF INTERNAL MEDICINE 2021; 12:S439-S442. [PMID: 34760101 PMCID: PMC8559648 DOI: 10.22088/cjim.12.0.439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 10/26/2020] [Accepted: 11/27/2020] [Indexed: 11/28/2022]
Abstract
Background: Hemophagocytic lymphohistiocytosis (HLH) is a rare disease with different causes. HLH has been categorized into two sub-groups; primary HLH which is associated with some gene mutations and secondary HLH that is developed by various causes, such as autoimmune disease, infections, and malignancies. However, the symptoms of both groups are identical and if left untreated, it will result in death. Case Presentation: In this study, we reported a 39 years old man had symptoms such as fever, weakness and chill for a month period of time. Firstly, due to pancytopenia in peripheral blood findings and clinical manifestations, he had been diagnosed with myelodysplastic syndrome (MDS) with an excess blast but the elevated liver enzymes and bilirubin were not consistent with this diagnosis. Hence, we recommended more investigation such as CT scan, bone marrow aspiration and bone marrow biopsy with immunohistochemistry tests. Finally, we found macrophages and histiocyte in bone marrow biopsy smear with Wright-Giemsa staining that engulfed the cells such as platelets and lymphocytes, so HLH syndrome was confirmed and treatment program with latest approved protocols started for the patient. Conclusion: HLH syndrome is a life-threatening disease that can be saved if timely diagnosed. Therefore, more consideration of all the laboratory findings and clinical signs of the patient can help to diagnose the disease more accurately. Also, we did a review of its pathophysiology, symptoms and therapeutic treatments.
Collapse
Affiliation(s)
- Majid Gholizadeh
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shirin Kianersi
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,department of adult Hematology & Oncology ,School of Medicine, Ayatollah Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Noorazar
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Kaveh
- Firouzgar Hospital, Iran University of Medical Sciences, Tehran, Iran.,Department of Hematology and Medical Oncology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Elham Roshandel
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sina Salari
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,department of adult Hematology & Oncology ,School of Medicine, Ayatollah Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
135
|
Meeths M, Bryceson YT. Genetics and pathophysiology of haemophagocytic lymphohistiocytosis. Acta Paediatr 2021; 110:2903-2911. [PMID: 34192386 DOI: 10.1111/apa.16013] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/21/2021] [Accepted: 06/29/2021] [Indexed: 12/11/2022]
Abstract
Haemophagocytic lymphohistiocytosis (HLH) represents a life-threatening hyperinflammatory syndrome. Familial studies have established autosomal and X-linked recessive causes of HLH, highlighting a pivotal role for lymphocyte cytotoxicity in the control of certain virus infections and immunoregulation. Recently, a more complex etiological framework has emerged, linking HLH predisposition to variants in genes required for metabolism or immunity to intracellular pathogens. We review genetic predisposition to HLH and discuss how molecular insights have provided fundamental knowledge of the immune system as well as detailed pathophysiological understanding of hyperinflammatory diseases, highlighting new treatment strategies.
Collapse
Affiliation(s)
- Marie Meeths
- Childhood Cancer Research Unit Department of Women’s and Children’s Health Karolinska Institutet Stockholm Sweden
- Theme of Children’s Health Karolinska University Hospital Stockholm Sweden
| | - Yenan T. Bryceson
- Centre for Hematology and Regenerative Medicine Department of Medicine Karolinska Institute Stockholm Sweden
- Division of Clinical Immunology and Transfusion Medicine Karolinska University Hospital Stockholm Sweden
- Broegelmann Research Laboratory Department of Clinical Sciences University of Bergen Bergen Norway
| |
Collapse
|
136
|
Targeting interferon-γ in hyperinflammation: opportunities and challenges. Nat Rev Rheumatol 2021; 17:678-691. [PMID: 34611329 DOI: 10.1038/s41584-021-00694-z] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2021] [Indexed: 02/08/2023]
Abstract
Interferon-γ (IFNγ) is a pleiotropic cytokine with multiple effects on the inflammatory response and on innate and adaptive immunity. Overproduction of IFNγ underlies several, potentially fatal, hyperinflammatory or immune-mediated diseases. Several data from animal models and/or from translational research in patients point to a role of IFNγ in hyperinflammatory diseases, such as primary haemophagocytic lymphohistiocytosis, various forms of secondary haemophagocytic lymphohistiocytosis, including macrophage activation syndrome, and cytokine release syndrome, all of which are often managed by rheumatologists or in consultation with rheumatologists. Given the effects of IFNγ on B cells and T follicular helper cells, a role for IFNγ in systemic lupus erythematosus pathogenesis is emerging. To improve our understanding of the role of IFNγ in human disease, IFNγ-related biomarkers that are relevant for the management of hyperinflammatory diseases are progressively being identified and studied, especially because circulating levels of IFNγ do not always reflect its overproduction in tissue. These biomarkers include STAT1 (specifically the phosphorylated form), neopterin and the chemokine CXCL9. IFNγ-neutralizing agents have shown efficacy in the treatment of primary haemophagocytic lymphohistiocytosis in clinical trials and initial promising results have been obtained in various forms of secondary haemophagocytic lymphohistiocytosis, including macrophage activation syndrome. In clinical practice, there is a growing body of evidence supporting the usefulness of circulating CXCL9 levels as a biomarker reflecting IFNγ production.
Collapse
|
137
|
Jacqmin P, Laveille C, Snoeck E, Jordan MB, Locatelli F, Ballabio M, de Min C. Emapalumab in primary haemophagocytic lymphohistiocytosis and the pathogenic role of interferon gamma: A pharmacometric model-based approach. Br J Clin Pharmacol 2021; 88:2128-2139. [PMID: 34935183 PMCID: PMC9305196 DOI: 10.1111/bcp.15133] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/31/2021] [Accepted: 10/19/2021] [Indexed: 12/01/2022] Open
Abstract
Aim Primary haemophagocytic lymphohistiocytosis (HLH) is a rare, life‐threatening, hyperinflammatory syndrome generally occurring in early childhood. The monoclonal antibody emapalumab binds and neutralises interferon γ (IFNγ). This study aimed to determine an emapalumab dosing regimen when traditional dose‐finding approaches are not applicable, using pharmacokinetic‐pharmacodynamic analyses to further clarify HLH pathogenesis and confirm IFNγ neutralisation as the relevant therapeutic target in pHLH. Methods Initial emapalumab dosing (1 mg/kg) for pHLH patients participating in a pivotal multicentre, open‐label, single‐arm, phase 2/3 study was based on anticipated IFNγ levels and allometrically scaled pharmacokinetic parameters estimated in healthy volunteers. Emapalumab dosing was adjusted based on estimated IFNγ‐mediated clearance and HLH clinical and laboratory criteria. Frequent dosing and emapalumab dose adaptation were used to account for highly variable IFNγ levels and potential target‐mediated drug disposition. Results High inter‐ and intra‐individual variability in IFNγ production (assessed by total IFNγ levels, range: 102‐106 pg/mL) was observed in pHLH patients. Administering emapalumab reduced IFNγ activity, resulting in significant improvements in clinical and laboratory parameters and a reduced risk of adverse events, mainly related to pHLH. Modelled outcomes supported dose titration starting from 1 mg/kg, with possible increases to 3, 6 or 10 mg/kg based on re‐evaluation of parameters of disease activity every 3 days. Conclusions The variable and unanticipated extremely high IFNγ concentrations in patients with pHLH are reflected in parameters of disease activity. Improved outcomes can be achieved by neutralising IFNγ using frequent emapalumab dosing and dose adaptation guided by clinical and laboratory observations.
Collapse
Affiliation(s)
| | | | | | - Michael B Jordan
- Divisions of Immunobiology and Bone Marrow Transplantation and Immune Deficiency, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Franco Locatelli
- Department of Pediatrics, Sapienza, University of Rome, Rome, Italy.,Department of Pediatric Hematology-Oncology and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | | | | |
Collapse
|
138
|
Pai TS, Stancampiano FF, Rivera C. Hemophagocytic Lymphohistiocytosis for the Internist and Other Primary Care Providers. J Prim Care Community Health 2021; 12:21501327211053756. [PMID: 34704505 PMCID: PMC8554543 DOI: 10.1177/21501327211053756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hemophagocytic lymphohistiocytosis (HLH) syndrome is a hyperinflammatory state that leads to life-threatening, disproportionate activation of the immune system and may be confused for and concomitantly exist with sepsis. However, its treatment differs from sepsis, requiring early initiation of immunosuppressive treatment. While HLH syndrome is more commonly diagnosed in children, internists and other primary care providers must be familiar with the diagnosis and treatment of adult patients with HLH in the hospital and outpatient setting. In this article, we review the essentials that an internist and other primary care providers managing adult HLH patients should know.
Collapse
Affiliation(s)
| | | | - Candido Rivera
- Department of Internal Medicine, Mayo Clinic, Jacksonville, FL, USA
| |
Collapse
|
139
|
Significance of serum Th1/Th2 cytokine levels in underlying disease classification of childhood HLH. Cytokine 2021; 149:155729. [PMID: 34673333 DOI: 10.1016/j.cyto.2021.155729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/20/2021] [Accepted: 09/24/2021] [Indexed: 12/14/2022]
Abstract
OBJECT Goal of this research was to investigate values of serum cytokines in childhood HLH with different triggers, with the expectation to find secretion spectrum of 5 main types of underlying diseases. METHOD 118 newly diagnosed HLH were included, and serum concentrations of 6 cytokines were tested before treatment began. Absolute cytokine levels and ratios between them were then studied in the HLH groups collectively and separately RESULTS: In general, IFN-γ, IL-10 and IL-6 showed differences among 5 HLH groups. Specifically, relative levels of these three cytokines to each other were meaningful in distinguishing 4 types of HLH. Level of IL-6 was higher than those of IFN-γ or IL-10 in HLH driven by Systemic auto-inflammatory disorders (SAIDs) or Langerhans Cell Histiocytosis (LCH), while primary HLH and EBV-HLH shared elevated ratio of IL-10 to IL-6. Although more than one distinctive ratios were found in 3 HLH groups, combination of these parameters didn't offer optimal balance between sensitivity and specificity. CONCLUSION As a group of easily gained laboratory findings, cytokine levels were reliable in the procedure of roughly classifying HLH cases with the help of patients' clinical phenotype. However, adequate data is still needed to explore the significance of these indicators in identifying one particular underlying disease accurately.
Collapse
|
140
|
Erkens R, Esteban Y, Towe C, Schulert G, Vastert S. Pathogenesis and Treatment of Refractory Disease Courses in Systemic Juvenile Idiopathic Arthritis: Refractory Arthritis, Recurrent Macrophage Activation Syndrome and Chronic Lung Disease. Rheum Dis Clin North Am 2021; 47:585-606. [PMID: 34635293 DOI: 10.1016/j.rdc.2021.06.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Systemic juvenile idiopathic arthritis is a distinct and heterogeneous disease presently classified under the umbrella of juvenile idiopathic arthritis, with some patients following a monophasic remitting course, whereas others have persistent disease with chronic organ- and life-threatening complications. Although biologic therapies have revolutionized treatment, recent follow-up studies report significant numbers of children with persistently active disease on long term follow-up. This review focuses on refractory disease courses, specifically refractory arthritis, systemic juvenile idiopathic arthritis with recurrent, or longstanding signs of macrophage activation syndrome, and systemic juvenile idiopathic arthritis associated with suspected, probable, or definite lung disease.
Collapse
Affiliation(s)
- Remco Erkens
- Division of Pediatric Rheumatology & Immunology, Wilhelmina Children's Hospital, University Medical Center Utrecht, the Netherlands; Center for Translational Immunology, University Medical Center Utrecht, University of Utrecht, the Netherlands
| | - Ysabella Esteban
- Division of Rheumatology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Christopher Towe
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Grant Schulert
- Division of Rheumatology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Sebastiaan Vastert
- Division of Pediatric Rheumatology & Immunology, Wilhelmina Children's Hospital, University Medical Center Utrecht, the Netherlands; Center for Translational Immunology, University Medical Center Utrecht, University of Utrecht, the Netherlands.
| |
Collapse
|
141
|
McClain KL, Bigenwald C, Collin M, Haroche J, Marsh RA, Merad M, Picarsic J, Ribeiro KB, Allen CE. Histiocytic disorders. Nat Rev Dis Primers 2021; 7:73. [PMID: 34620874 PMCID: PMC10031765 DOI: 10.1038/s41572-021-00307-9] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/07/2021] [Indexed: 12/18/2022]
Abstract
The historic term 'histiocytosis' meaning 'tissue cell' is used as a unifying concept for diseases characterized by pathogenic myeloid cells that share histological features with macrophages or dendritic cells. These cells may arise from the embryonic yolk sac, fetal liver or postnatal bone marrow. Prior classification schemes align disease designation with terminal phenotype: for example, Langerhans cell histiocytosis (LCH) shares CD207+ antigen with physiological epidermal Langerhans cells. LCH, Erdheim-Chester disease (ECD), juvenile xanthogranuloma (JXG) and Rosai-Dorfman disease (RDD) are all characterized by pathological ERK activation driven by activating somatic mutations in MAPK pathway genes. The title of this Primer (Histiocytic disorders) was chosen to differentiate the above diseases from Langerhans cell sarcoma and malignant histiocytosis, which are hyperproliferative lesions typical of cancer. By comparison LCH, ECD, RDD and JXG share some features of malignant cells including activating MAPK pathway mutations, but are not hyperproliferative. 'Inflammatory myeloproliferative neoplasm' may be a more precise nomenclature. By contrast, haemophagocytic lymphohistiocytosis is associated with macrophage activation and extreme inflammation, and represents a syndrome of immune dysregulation. These diseases affect children and adults in varying proportions depending on which of the entities is involved.
Collapse
Affiliation(s)
- Kenneth L McClain
- Texas Children's Cancer Center, Department of Paediatrics, Baylor College of Medicine, Houston, TX, USA.
| | - Camille Bigenwald
- Department of Oncological Sciences and Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew Collin
- Human Dendritic Cell Lab, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Julien Haroche
- Department of Internal Medicine, Institut E3M French Reference Centre for Histiocytosis, Pitié-Salpȇtrière Hospital, Assistance Publique-Hôpitaux de Paris, Sorbonne Université, Paris, France
| | - Rebecca A Marsh
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, and University of Cincinnati, Cincinnati, OH, USA
| | - Miriam Merad
- Department of Oncological Sciences and Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jennifer Picarsic
- Division of Pathology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Karina B Ribeiro
- Faculdade de Ciȇncias Médicas da Santa Casa de São Paulo, Department of Collective Health, São Paulo, Brazil
| | - Carl E Allen
- Texas Children's Cancer Center, Department of Paediatrics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
142
|
Cleavage of DNA and RNA by PLD3 and PLD4 limits autoinflammatory triggering by multiple sensors. Nat Commun 2021; 12:5874. [PMID: 34620855 PMCID: PMC8497607 DOI: 10.1038/s41467-021-26150-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 09/15/2021] [Indexed: 11/26/2022] Open
Abstract
Phospholipase D3 (PLD3) and PLD4 polymorphisms have been associated with several important inflammatory diseases. Here, we show that PLD3 and PLD4 digest ssRNA in addition to ssDNA as reported previously. Moreover, Pld3−/−Pld4−/− mice accumulate small ssRNAs and develop spontaneous fatal hemophagocytic lymphohistiocytosis (HLH) characterized by inflammatory liver damage and overproduction of Interferon (IFN)-γ. Pathology is rescued in Unc93b13d/3dPld3−/−Pld4−/− mice, which lack all endosomal TLR signaling; genetic codeficiency or antibody blockade of TLR9 or TLR7 ameliorates disease less effectively, suggesting that both RNA and DNA sensing by TLRs contributes to inflammation. IFN-γ made a minor contribution to pathology. Elevated type I IFN and some other remaining perturbations in Unc93b13d/3dPld3−/−Pld4−/− mice requires STING (Tmem173). Our results show that PLD3 and PLD4 regulate both endosomal TLR and cytoplasmic/STING nucleic acid sensing pathways and have implications for the treatment of nucleic acid-driven inflammatory disease. Loss of function polymorphisms of phospholipase D3 and D4 are associated with inflammatory diseases and their function is unclear. Here the authors show that PLD3/4 function as RNAses and deletion of these proteins in mice leads to accumulation of ssRNA which exacerbates inflammation through TLR signalling.
Collapse
|
143
|
Bichon A, Bourenne J, Allardet-Servent J, Papazian L, Hraiech S, Guervilly C, Pauly V, Kaplanski G, Mokart D, Gainnier M, Carvelli J. High Mortality of HLH in ICU Regardless Etiology or Treatment. Front Med (Lausanne) 2021; 8:735796. [PMID: 34692727 PMCID: PMC8526960 DOI: 10.3389/fmed.2021.735796] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 08/31/2021] [Indexed: 01/30/2023] Open
Abstract
Background: Adult hemophagocytic lymphohistiocytosis (HLH) is highly lethal in the ICU. The diagnostic and therapeutic emergency that HLH represents is compounded by its unknown pathophysiological mechanisms. Here, we report on a large cohort of adult HLH in the ICU (ICU-HLH). We analyzed prognostic factors associated with mortality to define the diagnostic and therapeutic challenges in this specific population. Methods: This retrospective study included adult patients diagnosed with HLH in four ICUs in Marseille, France between 2010 and 2020. Patients who fulfilled the HLH-2004 criteria (≥ 4/8) and/or had an HScore ≥ 169 were diagnosed with HLH. HLH was categorized into four groups according to etiology: sepsis-associated HLH, intracellular infection-associated HLH, malignancy-associated HLH, and idiopathic HLH. Results: Two hundred and sixty patients were included: 121 sepsis-associated HLH (47%), 84 intracellular infection-associated HLH (32%), 28 malignancy-associated HLH (11%), and 27 idiopathic HLH (10%). The ICU mortality rate reached 57% (n = 147/260) without a statistical difference between etiological groups. Independent factors associated with mortality in multivariate analysis included age (OR (5 years) = 1.31 [1.16-1.48], p < 0.0001), SOFA score at ICU admission (OR = 1.37 [1.21-1.56], p < 0.0001), degradation of the SOFA score between ICU arrival and HLH diagnosis (Delta SOFA) (OR = 1.47 [1.28-1.70], p < 0.0001), the presence of bone-marrow hemophagocytosis (OR = 5.27 [1.11-24.97], p = 0.04), highly severe anemia (OR = 1.44 [1.09-1.91], p = 0.01), and hypofibrinogenemia (OR = 1.21 [1.04-1.41], p = 0.02). Conclusions: In this large retrospective cohort study of critically ill patients, ICU-HLH in adults was associated with a 57% mortality rate, regardless of HLH etiology or specific treatment. Factors independently associated with prognosis included age, presence of hemophagocytosis in bone-marrow aspirates, organ failure at admission, and worsening organ failure during the ICU stay. Whether a rapid diagnosis and the efficacy of specific therapy improve outcome is yet to be prospectively investigated.
Collapse
Affiliation(s)
- Amandine Bichon
- APHM, University Timone Hospital, Réanimation des Urgences, Marseille, France
- Aix-Marseille University, Marseille, France
| | - Jérémy Bourenne
- APHM, University Timone Hospital, Réanimation des Urgences, Marseille, France
- Aix-Marseille University, Marseille, France
| | | | - Laurent Papazian
- Aix-Marseille University, Marseille, France
- Department of Respiratory and Infectious Intensive Care, APHM, University Nord Hospital, Marseille, France
| | - Sami Hraiech
- Aix-Marseille University, Marseille, France
- Department of Respiratory and Infectious Intensive Care, APHM, University Nord Hospital, Marseille, France
| | - Christophe Guervilly
- Aix-Marseille University, Marseille, France
- Department of Respiratory and Infectious Intensive Care, APHM, University Nord Hospital, Marseille, France
| | - Vanessa Pauly
- Department of Medical Information, CEReSS - Health Service Research and Quality of Life Center, APHM, Aix-Marseille University, Marseille, France
| | - Gilles Kaplanski
- Aix-Marseille University, Marseille, France
- Department of Internal Medicine and Clinical Immunology, APHM, University Conception Hospital, Marseille, France
| | - Djamel Mokart
- Department of Onco-Hematological Intensive Care, Paoli Calmette Institute, Marseille, France
| | - Marc Gainnier
- APHM, University Timone Hospital, Réanimation des Urgences, Marseille, France
- Aix-Marseille University, Marseille, France
| | - Julien Carvelli
- APHM, University Timone Hospital, Réanimation des Urgences, Marseille, France
- Aix-Marseille University, Marseille, France
| |
Collapse
|
144
|
Greene JT, Brian BF, Senevirathne SE, Freedman TS. Regulation of myeloid-cell activation. Curr Opin Immunol 2021; 73:34-42. [PMID: 34601225 DOI: 10.1016/j.coi.2021.09.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 12/24/2022]
Abstract
Myeloid cells (macrophages, monocytes, dendritic cells, and granulocytes) survey the body for signs of infection and damage and regulate tissue homeostasis, organogenesis, and immunity. They express receptors that initiate the inflammatory response, send signals that alter the vascular and cytokine milieu, and oversee the recruitment, differentiation, and activation of other myeloid and adaptive immune cells. Their activation must therefore be tightly regulated, optimized for maximal innate-immune protection with a minimum of collateral tissue damage or disorganization. In this review we discuss what it means for myeloid cells to become activated, with emphasis on the receptors and signaling molecules important for the recognition of pathogen-associated and damage-associated molecular patterns. We also outline how these signals are regulated by the steric properties of proteins, by adhesive and cytoskeletal interactions, and by negative feedback to keep inflammation in check and support healthy tissue development and homeostasis. Throughout the text we highlight recent publications and reviews and direct readers therein for a comprehensive bibliography.
Collapse
Affiliation(s)
- Joseph T Greene
- Department of Pharmacology, Center for Immunology, Masonic Cancer Center, and Center for Autoimmune Diseases Research, University of Minnesota, Minneapolis, MN, 55455, United States
| | - Ben F Brian
- Department of Pharmacology, Center for Immunology, Masonic Cancer Center, and Center for Autoimmune Diseases Research, University of Minnesota, Minneapolis, MN, 55455, United States
| | - S Erandika Senevirathne
- Department of Pharmacology, Center for Immunology, Masonic Cancer Center, and Center for Autoimmune Diseases Research, University of Minnesota, Minneapolis, MN, 55455, United States
| | - Tanya S Freedman
- Department of Pharmacology, Center for Immunology, Masonic Cancer Center, and Center for Autoimmune Diseases Research, University of Minnesota, Minneapolis, MN, 55455, United States.
| |
Collapse
|
145
|
Zhou P, Chen J, He J, Zheng T, Yunis J, Makota V, Alexandre YO, Gong F, Zhang X, Xie W, Li Y, Shao M, Zhu Y, Sinclair JE, Miao M, Chen Y, Short KR, Mueller SN, Sun X, Yu D, Li Z. Low-dose IL-2 therapy invigorates CD8+ T cells for viral control in systemic lupus erythematosus. PLoS Pathog 2021; 17:e1009858. [PMID: 34618873 PMCID: PMC8525737 DOI: 10.1371/journal.ppat.1009858] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 10/19/2021] [Accepted: 07/30/2021] [Indexed: 01/10/2023] Open
Abstract
Autoimmune diseases are often treated by glucocorticoids and immunosuppressive drugs that could increase the risk for infection, which in turn deteriorate disease and cause mortality. Low-dose IL-2 (Ld-IL2) therapy emerges as a new treatment for a wide range of autoimmune diseases. To examine its influence on infection, we retrospectively studied 665 patients with systemic lupus erythematosus (SLE) including about one third receiving Ld-IL2 therapy, where Ld-IL2 therapy was found beneficial in reducing the incidence of infections. In line with this clinical observation, IL-2 treatment accelerated viral clearance in mice infected with influenza A virus or lymphocytic choriomeningitis virus (LCMV). Noticeably, despite enhancing anti-viral immunity in LCMV infection, IL-2 treatment exacerbated CD8+ T cell-mediated immunopathology. In summary, Ld-IL2 therapy reduced the risk of infections in SLE patients and enhanced the control of viral infection, but caution should be taken to avoid potential CD8+ T cell-mediated immunopathology.
Collapse
Affiliation(s)
- Pengcheng Zhou
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Australia
| | - Jiali Chen
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Jing He
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Ting Zheng
- Laboratory of Immunology for Environment and Health, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Joseph Yunis
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Australia
| | - Victor Makota
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Yannick O. Alexandre
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Fang Gong
- Department of Laboratory Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Xia Zhang
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Wuxiang Xie
- Peking University Clinical Research Institute, Peking University Health Science Center, Beijing, China
| | - Yuhui Li
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Miao Shao
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Yanshan Zhu
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Jane E. Sinclair
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Miao Miao
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Yaping Chen
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Kirsty R. Short
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Scott N. Mueller
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Xiaolin Sun
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Di Yu
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Australia
- Laboratory of Immunology for Environment and Health, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Zhanguo Li
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
- Peking-Tsinghua Center for Life Sciences, Beijing, China
| |
Collapse
|
146
|
Mendoza-Pinto C, García-Carrasco M, Munguía Realpozo P, Méndez-Martínez S. [Therapeutic Options for the Management of Severe COVID-19: A Rheumatology Perspective]. REUMATOLOGIA CLINICA 2021; 17:431-436. [PMID: 38620231 PMCID: PMC7229930 DOI: 10.1016/j.reuma.2020.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 05/08/2020] [Indexed: 01/20/2023]
Abstract
The novel SARS-CoV-2 human coronavirus in Wuhan, China, has triggered a worldwide respiratory disease outbreak (COVID-19). Acute respiratory distress syndrome, multiorgan dysfunction and thrombotic events are among the leading causes of death in critically ill patients with COVID-19. The elevated inflammatory cytokines suggest that a "cytokine storm", also known as cytokine release syndrome, may play a major role in the pathology of COVID-19. In addition to anti-viral therapy and supportive treatment in critically ill patients, unique medications for this condition are also under investigation. Here we reviewed therapeutic options, including the antibody therapy that might be an immediate strategy for SARS-CoV-2 therapy.
Collapse
Affiliation(s)
- Claudia Mendoza-Pinto
- Unidad de Investigación de Enfermedades Autoinmunes Sistémicas, Hospital de Especialidades, UMAE-Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Puebla, México
- Departamento de Reumatología e Inmunología, Facultad de Medicina, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Mario García-Carrasco
- Unidad de Investigación de Enfermedades Autoinmunes Sistémicas, Hospital de Especialidades, UMAE-Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Puebla, México
- Departamento de Reumatología e Inmunología, Facultad de Medicina, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Pamela Munguía Realpozo
- Departamento de Reumatología e Inmunología, Facultad de Medicina, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Socorro Méndez-Martínez
- Coordinación de Investigación en Salud, Delegación Puebla, Instituto Mexicano del Seguro Social, Puebla, México
| |
Collapse
|
147
|
Imashuku S, Morimoto A, Ishii E. Virus-triggered secondary hemophagocytic lymphohistiocytosis. Acta Paediatr 2021; 110:2729-2736. [PMID: 34096649 DOI: 10.1111/apa.15973] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/18/2021] [Accepted: 06/04/2021] [Indexed: 12/16/2022]
Abstract
Primary (familial/hereditary) and secondary (non-familial/hereditary) hemophagocytic lymphohistiocytosis (HLH) are hyperinflammatory and hypercytokinemic syndromes. Secondary HLH includes infection- (eg viral/bacterial/fungal/parasitic) and non-infection- (eg collagen disease or malignancy) related diseases. Viral HLH is the major type among all age groups. Secondary viral HLH and primary HLH must be differentiated carefully because primary HLH can be associated with viral infection(s), and the outcome is dismal without a timely diagnosis and hematopoietic stem cell transplantation (HSCT). Epstein-Barr virus (EBV)-related HLH (EBV-HLH) is the most common type of viral HLH in childhood. For non-EBV-HLH, appropriate treatment of viral infection, followed by immunomodulatory agent(s) such as corticosteroids, intravenous immunoglobulin or cyclosporine A, is usually successful; however, recent SARS-CoV-2-related HLH may become life-threatening. EBV-HLH may occur heterogeneously associated with the primary infection, with chronic active EBV infection or with underlying primary HLH. Although immunomodulatory agent(s) are effective in the majority of EBV-HLH cases, management differs from that of non-EBV-HLH because severe and refractory cases may require etoposide-containing HLH-1994/2004 regimens or other experimental agents. The novel agent, emapalumab (an anti-IFN-γ monoclonal antibody) can be used to treat EBV-HLH cases to avoid the risk of secondary malignancy due to etoposide. Finally, HSCT is required for refractory EBV-HLH cases and can also be curative in some other cases.
Collapse
Affiliation(s)
- Shinsaku Imashuku
- Department of Laboratory Medicine Uji‐Tokushukai Medical Center Uji Kyoto Japan
| | - Akira Morimoto
- Department of Pediatrics Jichi Medical University School of Medicine Shimotsuke, Tochigi Japan
| | - Eiichi Ishii
- Director Imabari City Hospital Imabari, Ehime Japan
| |
Collapse
|
148
|
Janka GE, Aricò M. Clinical features, diagnosis and therapy of familial haemophagocytic lymphohistiocytosis. Acta Paediatr 2021; 110:2723-2728. [PMID: 33908089 DOI: 10.1111/apa.15889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/04/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023]
Abstract
Familial haemophagocytic lymphohistiocytosis (FHL) is an inherited immune deficiency with defective cytotoxicity of natural killer cells and cytotoxic T lymphocytes. A highly stimulated, but ineffective immune response leads to severe hyperinflammation. Clinical and laboratory features are characteristic, but unspecific; thus awareness of FHL is important for early diagnosis. FHL is rapidly fatal without treatment. Standard-of-care therapy is etoposide and corticosteroids, followed by haematopoietic stem cell transplantation (HSCT). CONCLUSION: FHL has become a curable disease with present treatment. Additional cytokine-directed therapy still has to prove its value. Earlier HSCT and less toxic conditioning regimens will lead to improved cure rates.
Collapse
Affiliation(s)
- Gritta E. Janka
- Department of Paediatric Haematology and Oncology University Medical Center Hamburg Germany
| | - Maurizio Aricò
- Strategic Direction Staff, Children's Hospital Giovanni XXIII, Azienda Ospedaliero Universitaria Consorziale Policlinico Bari Italy
| |
Collapse
|
149
|
Mendoza-Pinto C, García-Carrasco M, Munguía Realpozo P, Méndez-Martínez S. Therapeutic options for the management of severe COVID-19: A rheumatology perspective. REUMATOLOGIA CLINICA 2021; 17:431-436. [PMID: 34625144 PMCID: PMC7561336 DOI: 10.1016/j.reumae.2020.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 05/08/2020] [Indexed: 12/15/2022]
Abstract
The novel SARS-CoV-2 human coronavirus in Wuhan, China, has triggered a worldwide respiratory disease outbreak (COVID-19). Acute respiratory distress syndrome (ARDS), multiorgan dysfunction and thrombotic events are among the leading causes of death in critically ill patients with COVID-19. The elevated inflammatory cytokines suggest that a "cytokine storm", also known as cytokine release syndrome (CRS), may play a major role in the pathology of COVID-19. In addition to anti-viral therapy and supportive treatment in critically ill patients, unique medications for this condition are also under investigation. Here we reviewed therapeutic options, including the antibody therapy that might be an immediate strategy for SARS-CoV-2 therapy.
Collapse
Affiliation(s)
- Claudia Mendoza-Pinto
- Unidad de Investigación de Enfermedades Autoinmunes Sistémicas, Hospital de Especialidades, UMAE-Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Puebla, Mexico; Departamento de Reumatología e Inmunología, Facultad de Medicina, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Mario García-Carrasco
- Unidad de Investigación de Enfermedades Autoinmunes Sistémicas, Hospital de Especialidades, UMAE-Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Puebla, Mexico; Departamento de Reumatología e Inmunología, Facultad de Medicina, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico.
| | - Pamela Munguía Realpozo
- Departamento de Reumatología e Inmunología, Facultad de Medicina, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Socorro Méndez-Martínez
- Coordinación de Investigación en Salud, Delegación Puebla, Instituto Mexicano del Seguro Social, Puebla, Mexico
| |
Collapse
|
150
|
Lin H, Scull BP, Goldberg BR, Abhyankar HA, Eckstein OE, Zinn DJ, Lubega J, Agrusa J, El Mallawaney N, Gulati N, Forbes L, Chinn I, Chakraborty R, Velasquez J, Goldman J, Bashir D, Lam F, Muscal E, Henry MM, Greenberg JN, Ladisch S, Hermiston ML, Meyer LK, Jeng M, Naqvi A, McClain K, Nguyen T, Wong H, Man TK, Jordan MB, Allen CE. IFN-γ signature in the plasma proteome distinguishes pediatric hemophagocytic lymphohistiocytosis from sepsis and SIRS. Blood Adv 2021; 5:3457-3467. [PMID: 34461635 PMCID: PMC8525230 DOI: 10.1182/bloodadvances.2021004287] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/10/2021] [Indexed: 12/17/2022] Open
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is a syndrome characterized by pathologic immune activation in which prompt recognition and initiation of immune suppression is essential for survival. Children with HLH have many overlapping clinical features with critically ill children with sepsis and systemic inflammatory response syndrome (SIRS) in whom alternative therapies are indicated. To determine whether plasma biomarkers could differentiate HLH from other inflammatory conditions and to better define a core inflammatory signature of HLH, concentrations of inflammatory plasma proteins were compared in 40 patients with HLH to 47 pediatric patients with severe sepsis or SIRS. Fifteen of 135 analytes were significantly different in HLH plasma compared with SIRS/sepsis, including increased interferon-γ (IFN-γ)-regulated chemokines CXCL9, CXCL10, and CXCL11. Furthermore, a 2-analyte plasma protein classifier including CXCL9 and interleukin-6 was able to differentiate HLH from SIRS/sepsis. Gene expression in CD8+ T cells and activated monocytes from blood were also enriched for IFN-γ pathway signatures in peripheral blood cells from patients with HLH compared with SIRS/sepsis. This study identifies differential expression of inflammatory proteins as a diagnostic strategy to identify critically ill children with HLH, and comprehensive unbiased analysis of inflammatory plasma proteins and global gene expression demonstrates that IFN-γ signaling is uniquely elevated in HLH. In addition to demonstrating the ability of diagnostic criteria for HLH and sepsis or SIRS to identify groups with distinct inflammatory patterns, results from this study support the potential for prospective evaluation of inflammatory biomarkers to aid in diagnosis of and optimizing therapeutic strategies for children with distinctive hyperinflammatory syndromes.
Collapse
Affiliation(s)
- Howard Lin
- Section of Pediatric Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Brooks P Scull
- Section of Pediatric Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Baruch R Goldberg
- Children's Healthcare of Atlanta, Division of Rheumatology, Emory University School of Medicine, Atlanta, GA
- Section of Rheumatology
| | - Harshal A Abhyankar
- Section of Pediatric Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Olive E Eckstein
- Section of Pediatric Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Daniel J Zinn
- Section of Pediatric Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Joseph Lubega
- Section of Pediatric Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Jennifer Agrusa
- Section of Pediatric Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Nader El Mallawaney
- Section of Pediatric Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Nitya Gulati
- Section of Pediatric Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | | | | | - Rikhia Chakraborty
- Section of Pediatric Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Jessica Velasquez
- Section of Pediatric Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Jordana Goldman
- Section of Critical Care Medicine, Department of Pediatrics, Texas Children's Hospital, Houston, TX
| | - Dalia Bashir
- Section of Critical Care Medicine, Department of Pediatrics, Texas Children's Hospital, Houston, TX
| | - Fong Lam
- Section of Critical Care Medicine, Department of Pediatrics, Texas Children's Hospital, Houston, TX
| | | | - Michael M Henry
- Center for Cancer and Blood Disorders, Phoenix Children's Hospital, Phoenix, AZ
| | - Jay N Greenberg
- Division of Hematology, Children's National Medical Center, Washington, DC
| | - Stephan Ladisch
- Division of Hematology, Children's National Medical Center, Washington, DC
| | - Michelle L Hermiston
- Department of Pediatric Hematology/Oncology, University of California, San Francisco, CA
| | - Lauren K Meyer
- Department of Pediatric Hematology/Oncology, University of California, San Francisco, CA
| | - Michael Jeng
- Department of Pediatrics, Pediatric Hematology/Oncology, Lucile Packard Children's Hospital, Stanford University, Palo Alto, CA
| | - Ahmed Naqvi
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Kenneth McClain
- Section of Pediatric Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Trung Nguyen
- Section of Critical Care Medicine, Department of Pediatrics, Texas Children's Hospital, Houston, TX
- Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX
| | | | - Tsz-Kwong Man
- Section of Pediatric Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Michael B Jordan
- Divisions of Immunobiology and Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Carl E Allen
- Section of Pediatric Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| |
Collapse
|