101
|
Abstract
Transient receptor potential vanilloid type 2, TRPV2, is a calcium-permeable cation channel belonging to the TRPV channel family. This channel is activated by heat (>52 °C), various ligands, and mechanical stresses. In most of the cells, a large portion of TRPV2 is located in the endoplasmic reticulum under unstimulated conditions. Upon stimulation of the cells with phosphatidylinositol 3-kinase-activating ligands, TRPV2 is translocated to the plasma membrane and functions as a cation channel. Mechanical stress may also induce translocation of TRPV2 to the plasma membrane. The expression of TRPV2 is high in some types of cells including neurons, neuroendocrine cells, immune cells involved in innate immunity, and certain types of cancer cells. TRPV2 may modulate various cellular functions in these cells.
Collapse
Affiliation(s)
- Itaru Kojima
- Department of Cell Biology, Institute for Molecular & Cellular Regulation, Gunma University, Maebashi, Gunma Prefecture, 371-8511, Japan,
| | | |
Collapse
|
102
|
Abstract
TRPV6 (former synonyms ECAC2, CaT1, CaT-like) displays several specific features which makes it unique among the members of the mammalian Trp gene family (1) TRPV6 (and its closest relative, TRPV5) are the only highly Ca(2+)-selective channels of the entire TRP superfamily (Peng et al. 1999; Wissenbach et al. 2001; Voets et al. 2004). (2) Translation of Trpv6 initiates at a non-AUG codon, at ACG, located upstream of the annotated AUG, which is not used for initiation (Fecher-Trost et al. 2013). The ACG codon is nevertheless decoded by methionine. Not only a very rare event in eukaryotic biology, the full-length TRPV6 protein existing in vivo comprises an amino terminus extended by 40 amino acid residues compared to the annotated truncated TRPV6 protein which has been used in most studies on TRPV6 channel activity so far. (In the following numbering occurs according to this full-length protein, with the numbers of the so far annotated truncated protein in brackets). (3) Only in humans a coupled polymorphism of Trpv6 exists causing three amino acid exchanges and resulting in an ancestral Trpv6 haplotype and a so-called derived Trpv6 haplotype (Wissenbach et al. 2001). The ancestral allele encodes the amino acid residues C197(157), M418(378) and M721(681) and the derived alleles R197(157), V418(378) and T721(681). The ancestral haplotype is found in all species, the derived Trpv6 haplotype has only been identified in humans, and its frequency increases with the distance to the African continent. Apparently the Trpv6 gene has been a strong target for selection in humans, and its derived variant is one of the few examples showing consistently differences to the orthologues genes of other primates (Akey et al. 2004, 2006; Stajich and Hahn 2005; Hughes et al. 2008). (4) The Trpv6 gene expression is significantly upregulated in several human malignancies including the most common cancers, prostate and breast cancer (Wissenbach et al. 2001; Zhuang et al. 2002; Fixemer et al. 2003; Bolanz et al. 2008). (5) Male mice lacking functional TRPV6 channels are hypo-/infertile making TRPV6 one of the very few channels essential for male fertility (Weissgerber et al. 2011, 2012).
Collapse
Affiliation(s)
- Claudia Fecher-Trost
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, 66421, Homburg, Germany
| | | | | |
Collapse
|
103
|
Baez D, Raddatz N, Ferreira G, Gonzalez C, Latorre R. Gating of thermally activated channels. CURRENT TOPICS IN MEMBRANES 2014; 74:51-87. [PMID: 25366233 DOI: 10.1016/b978-0-12-800181-3.00003-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A class of ion channels that belongs to the transient receptor potential (TRP) superfamily and is present in specialized neurons that project to the skin has evolved as temperature detectors. These channels are classified into subfamilies, namely canonical (TRPC), melastatin (TRPM), ankyrin (TRPA), and vanilloid (TRPV). Some of these channels are activated by heat (TRPM2/4/5, TRPV1-4), while others by cold (TRPA1, TRPC5, and TRPM8). The general structure of these channels is closely related to that of the voltage-dependent K(+) channels, with their subunits containing six transmembrane segments that form tetramers. Thermal TRP channels are polymodal receptors. That is, they can be activated by temperature, voltage, pH, lipids, and agonists. The high temperature sensitivity in these thermal TRP channels is due to a large enthalpy change (∼100 kcal/mol), which is about five times the enthalpy change in voltage-dependent gating. The characterization of the macroscopic currents and single-channel analysis demonstrated that gating by temperature is complex and best described by branched or allosteric models containing several closed and open states. The identification of molecular determinants of temperature sensitivity in TRPV1, TRPA1, and TRPV3 strongly suggest that thermal sensitivity arises from a specific protein domain.
Collapse
Affiliation(s)
- David Baez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Natalia Raddatz
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile; Centre for Plant Biotechnology and Genomics, Universidad Politécnica de Madrid, Pozuelo de Alarcón (Madrid), Spain
| | - Gonzalo Ferreira
- Laboratorio de Canales Iónicos, Departamento de Biofísica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Carlos Gonzalez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Ramon Latorre
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
104
|
Nagy I, Friston D, Valente JS, Torres Perez JV, Andreou AP. Pharmacology of the capsaicin receptor, transient receptor potential vanilloid type-1 ion channel. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2014; 68:39-76. [PMID: 24941664 DOI: 10.1007/978-3-0348-0828-6_2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The capsaicin receptor, transient receptor potential vanilloid type 1 ion channel (TRPV1), has been identified as a polymodal transducer molecule on a sub-set of primary sensory neurons which responds to various stimuli including noxious heat (> -42 degrees C), protons and vanilloids such as capsaicin, the hot ingredient of chilli peppers. Subsequently, TRPV1 has been found indispensable for the development of burning pain and reflex hyperactivity associated with inflammation of peripheral tissues and viscera, respectively. Therefore, TRPV1 is regarded as a major target for the development of novel agents for the control of pain and visceral hyperreflexia in inflammatory conditions. Initial efforts to introduce agents acting on TRPV1 into clinics have been hampered by unexpected side-effects due to wider than expected expression in various tissues, as well as by the complex pharmacology, of TRPV1. However, it is believed that better understanding of the pharmacological properties of TRPV1 and specific targeting of tissues may eventually lead to the development of clinically useful agents. In order to assist better understanding of TRPV1 pharmacology, here we are giving a comprehensive account on the activation and inactivation mechanisms and the structure-function relationship of TRPV1.
Collapse
|
105
|
Saul S, Stanisz H, Backes CS, Schwarz EC, Hoth M. How ORAI and TRP channels interfere with each other: interaction models and examples from the immune system and the skin. Eur J Pharmacol 2013; 739:49-59. [PMID: 24291108 DOI: 10.1016/j.ejphar.2013.10.071] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 10/08/2013] [Accepted: 10/17/2013] [Indexed: 11/16/2022]
Abstract
Four types of Ca(2+) selective ion channels are known, ten voltage gated Ca(2+) (CaV) channels, four CatSper channels, three store operated CRAC channels (ORAI channels) and at least two members of the TRPV subfamily (TRPV5, TRPV6). Some of the other TRP channels also show some Ca(2+) selectivity like certain splice variants of TRPM3. In addition to Ca(2+) selective channels, various cation channels play an important role for Ca(2+) entry and furthermore, they may also regulate Ca(2+) entry through other channels by modulating the membrane potential or other means as outlined in this review. Of the different types of cation channels, TRP channels form one of the most prominent families of non-selective cation channels with functional relevance in electrically non-excitable and electrically excitable cell types. Among these, the seven channels of the TRPC subfamily are rather non-selective with very modest Ca(2+) selectivity, whereas in the other subfamilies, cation selectivity ranges from monovalent selectivity (i.e. TRPM4, TRPM5) to divalent selectivity (i.e. TRPM6, TRPM7) or Ca(2+) selectivity (i.e. TRPV5, TRPV6). Rather than discussing the heavily reviewed individual functions of ORAI or TRP channels, we summarize data and present models how TRP and ORAI may functionally interact to guide cellular functions. We focus on T lymphocytes representing a more ORAI-dominated tissue and skin as model system in which both ORAI and TRP channel have been reported to control relevant functions. We present several interaction models how ORAI and TRP may interfere with each other's function.
Collapse
Affiliation(s)
- Stephanie Saul
- Department of Biophysics, School of Medicine, Saarland University, Homburg, Germany
| | - Hedwig Stanisz
- Department of Dermatology, School of Medicine, Saarland University, Homburg, Germany
| | - Christian S Backes
- Department of Biophysics, School of Medicine, Saarland University, Homburg, Germany
| | - Eva C Schwarz
- Department of Biophysics, School of Medicine, Saarland University, Homburg, Germany
| | - Markus Hoth
- Department of Biophysics, School of Medicine, Saarland University, Homburg, Germany.
| |
Collapse
|
106
|
Abstract
Transient receptor potential (TRP) channels are cellular sensors for a wide spectrum of physical and chemical stimuli. They are involved in the formation of sight, hearing, touch, smell, taste, temperature, and pain sensation. TRP channels also play fundamental roles in cell signaling and allow the host cell to respond to benign or harmful environmental changes. As TRP channel activation is controlled by very diverse processes and, in many cases, exhibits complex polymodal properties, understanding how each TRP channel responds to its unique forms of activation energy is both crucial and challenging. The past two decades witnessed significant advances in understanding the molecular mechanisms that underlie TRP channels activation. This review focuses on our current understanding of the molecular determinants for TRP channel activation.
Collapse
Affiliation(s)
- Jie Zheng
- Department of Physiology and Membrane Biology, University of California School of Medicine, Davis, California, USA.
| |
Collapse
|
107
|
Abstract
TRP channels constitute a large superfamily of cation channel forming proteins, all related to the gene product of the transient receptor potential (trp) locus in Drosophila. In mammals, 28 different TRP channel genes have been identified, which exhibit a large variety of functional properties and play diverse cellular and physiological roles. In this article, we provide a brief and systematic summary of expression, function, and (patho)physiological role of the mammalian TRP channels.
Collapse
Affiliation(s)
- Maarten Gees
- Laboratory Ion Channel Research and TRP Research Platform Leuven (TRPLe), KU Leuven, Campus Gasthuisberg, Leuven, Belgium
| | | | | | | |
Collapse
|
108
|
Russino D, McDonald E, Hejazi L, Hanson GR, Jones CE. The tachykinin peptide neurokinin B binds copper forming an unusual [CuII(NKB)2] complex and inhibits copper uptake into 1321N1 astrocytoma cells. ACS Chem Neurosci 2013; 4:1371-81. [PMID: 23875773 DOI: 10.1021/cn4000988] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Neurokinin B (NKB) is a member of the tachykinin family of neuropeptides that have neuroinflammatory, neuroimmunological, and neuroprotective functions. In a neuroprotective role, tachykinins can help protect cells against the neurotoxic processes observed in Alzheimer's disease. A change in copper homeostasis is a clear feature of Alzheimer's disease, and the dysregulation may be a contributory factor in toxicity. Copper has recently been shown to interact with neurokinin A and neuropeptide γ and can lead to generation of reactive oxygen species and peptide degradation, which suggests that copper may have a place in tachykinin function and potentially misfunction. To explore this, we have utilized a range of spectroscopic techniques to show that NKB, but not substance P, can bind Cu(II) in an unusual [Cu(II)(NKB)2] neutral complex that utilizes two N-terminal amine and two imidazole nitrogen ligands (from each molecule of NKB) and the binding substantially alters the structure of the peptide. Using 1321N1 astrocytoma cells, we show that copper can enter the cells and subsequently open plasma membrane calcium channels but when bound to neurokinin B copper ion uptake is inhibited. This data suggests a novel role for neurokinin B in protecting cells against copper-induced calcium changes and implicates the peptide in synaptic copper homeostasis.
Collapse
Affiliation(s)
- Debora Russino
- The School of Science
and Health, The University of Western Sydney, Locked bag 1797, Penrith, New South Wales 2759, Australia
| | - Elle McDonald
- The School of Science
and Health, The University of Western Sydney, Locked bag 1797, Penrith, New South Wales 2759, Australia
| | - Leila Hejazi
- Mass Spectroscopy Laboratory, The University of Western Sydney, Locked bag 1797,
Penrith, New South Wales 2759, Australia
| | - Graeme R. Hanson
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Christopher E. Jones
- The School of Science
and Health, The University of Western Sydney, Locked bag 1797, Penrith, New South Wales 2759, Australia
| |
Collapse
|
109
|
Kol S, Braun C, Thiel G, Doyle DA, Sundström M, Gourdon P, Nissen P. Heterologous expression and purification of an active human TRPV3 ion channel. FEBS J 2013; 280:6010-21. [PMID: 24028292 DOI: 10.1111/febs.12520] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 09/06/2013] [Accepted: 09/09/2013] [Indexed: 12/01/2022]
Abstract
The transient receptor potential vanilloid 3 (TRPV3) cation channel is widely expressed in human tissues and has been shown to be activated by mild temperatures or chemical ligands. In spite of great progress in the TRP-channel characterization, very little is known about their structure and interactions with other proteins at the atomic level. This is mainly caused by difficulties in obtaining functionally active samples of high homogeneity. Here, we report on the high-level Escherichia coli expression of the human TRPV3 channel, for which no structural information has been reported to date. We selected a suitable detergent and buffer system using analytical size-exclusion chromatography and a thermal stability assay. We demonstrate that the recombinant purified protein contains high α-helical content and migrates as dimers and tetramers on native PAGE. Furthermore, the purified channel also retains its current inducing activity, as shown by electrophysiology experiments. The ability to produce the TRPV3 channel heterologously will aid future functional and structural studies.
Collapse
Affiliation(s)
- Stefan Kol
- Protein Function and Interactions, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
110
|
Pregnenolone sulfate: from steroid metabolite to TRP channel ligand. Molecules 2013; 18:12012-28. [PMID: 24084011 PMCID: PMC6270300 DOI: 10.3390/molecules181012012] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 09/20/2013] [Accepted: 09/21/2013] [Indexed: 01/16/2023] Open
Abstract
Pregnenolone sulfate is a steroid metabolite with a plethora of actions and functions. As a neurosteroid, pregnenolone sulfate modulates a variety of ion channels, transporters, and enzymes. Interestingly, as a sulfated steroid, pregnenolone sulfate is not the final- or waste-product of pregnenolone being sulfated via a phase II metabolism reaction and renally excreted, as one would presume from the pharmacology textbook knowledge. Pregnenolone sulfate is also the source and thereby the starting point for subsequent steroid synthesis pathways. Most recently, pregnenolone sulfate has been functionally “upgraded” from modulator of ion channels to an activating ion channel ligand. This review will focus on molecular aspects of the neurosteroid, pregnenolone sulfate, its metabolism, concentrations in serum and tissues and last not least will summarize the functional data.
Collapse
|
111
|
Courjaret R, Hubrack S, Daalis A, Dib M, Machaca K. The
Xenopus
TRPV6 homolog encodes a Mg
2+
‐permeant channel that is inhibited by interaction with TRPC1. J Cell Physiol 2013; 228:2386-98. [DOI: 10.1002/jcp.24411] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 05/21/2013] [Indexed: 01/29/2023]
Affiliation(s)
- Raphael Courjaret
- Department of Physiology and BiophysicsWeill Cornell Medical College in QatarEducation City, Qatar FoundationDohaQatar
| | - Satanay Hubrack
- Department of Physiology and BiophysicsWeill Cornell Medical College in QatarEducation City, Qatar FoundationDohaQatar
| | - Arwa Daalis
- Department of Physiology and BiophysicsWeill Cornell Medical College in QatarEducation City, Qatar FoundationDohaQatar
| | - Maya Dib
- Department of Physiology and BiophysicsWeill Cornell Medical College in QatarEducation City, Qatar FoundationDohaQatar
| | - Khaled Machaca
- Department of Physiology and BiophysicsWeill Cornell Medical College in QatarEducation City, Qatar FoundationDohaQatar
| |
Collapse
|
112
|
De-la-Rosa V, Rangel-Yescas GE, Ladrón-de-Guevara E, Rosenbaum T, Islas LD. Coarse architecture of the transient receptor potential vanilloid 1 (TRPV1) ion channel determined by fluorescence resonance energy transfer. J Biol Chem 2013; 288:29506-17. [PMID: 23965996 DOI: 10.1074/jbc.m113.479618] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The transient receptor potential vanilloid 1 ion channel is responsible for the perception of high temperatures and low extracellular pH, and it is also involved in the response to some pungent compounds. Importantly, it is also associated with the perception of pain and noxious stimuli. Here, we attempt to discern the molecular organization and location of the N and C termini of the transient receptor potential vanilloid 1 ion channel by measuring FRET between genetically attached enhanced yellow and cyan fluorescent protein to the N or C terminus of the channel protein, expressed in transfected HEK 293 cells or Xenopus laevis oocytes. The static measurements of the domain organization were mapped into an available cryo-electron microscopy density of the channel with good agreement. These measurements also provide novel insights into the organization of terminal domains and their proximity to the plasma membrane.
Collapse
|
113
|
Nelson P, Ngoc Tran TD, Zhang H, Zolochevska O, Figueiredo M, Feng JM, Gutierrez DL, Xiao R, Yao S, Penn A, Yang LJ, Cheng H. Transient receptor potential melastatin 4 channel controls calcium signals and dental follicle stem cell differentiation. Stem Cells 2013; 31:167-77. [PMID: 23081848 DOI: 10.1002/stem.1264] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 10/04/2012] [Indexed: 11/11/2022]
Abstract
Elevations in the intracellular Ca(2+) concentration are a phenomena commonly observed during stem cell differentiation but cease after the process is complete. The transient receptor potential melastatin 4 (TRPM4) is an ion channel that controls Ca(2+) signals in excitable and nonexcitable cells. However, its role in stem cells remains unknown. The aim of this study was to characterize TRPM4 in rat dental follicle stem cells (DFSCs) and to determine its impact on Ca(2+) signaling and the differentiation process. We identified TRPM4 gene expression in DFSCs, but not TRPM5, a closely related channel with similar function. Perfusion of cells with increasing buffered Ca(2+) resulted in a concentration-dependent activation of currents typical for TRPM4, which were also voltage-dependent and had Na(+) conductivity. Molecular suppression with shRNA decreased channel activity and cell proliferation during osteogenesis but not adipogenesis. As a result, enhanced mineralization and phosphatase enzyme activity were observed during osteoblast formation, although DFSCs failed to differentiate into adipocytes. Furthermore, the normal agonist-induced first and secondary phases of Ca(2+) signals were transformed into a gradual and sustained increase which confirmed the channels' ability to control Ca(2+) signaling. Using whole genome microarray analysis, we identified several genes impacted by TRPM4 during DFSC differentiation. These findings suggest an inhibitory role for TRPM4 on osteogenesis while it appears to be required for adipogenesis. The data also provide a potential link between the Ca(2+) signaling pattern and gene expression during stem cell differentiation.
Collapse
Affiliation(s)
- Piper Nelson
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Winter Z, Buhala A, Ötvös F, Jósvay K, Vizler C, Dombi G, Szakonyi G, Oláh Z. Functionally important amino acid residues in the transient receptor potential vanilloid 1 (TRPV1) ion channel--an overview of the current mutational data. Mol Pain 2013; 9:30. [PMID: 23800232 PMCID: PMC3707783 DOI: 10.1186/1744-8069-9-30] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 06/17/2013] [Indexed: 12/30/2022] Open
Abstract
This review aims to create an overview of the currently available results of site-directed mutagenesis studies on transient receptor potential vanilloid type 1 (TRPV1) receptor. Systematization of the vast number of data on the functionally important amino acid mutations of TRPV1 may provide a clearer picture of this field, and may promote a better understanding of the relationship between the structure and function of TRPV1. The review summarizes information on 112 unique mutated sites along the TRPV1, exchanged to multiple different residues in many cases. These mutations influence the effect or binding of different agonists, antagonists, and channel blockers, alter the responsiveness to heat, acid, and voltage dependence, affect the channel pore characteristics, and influence the regulation of the receptor function by phosphorylation, glycosylation, calmodulin, PIP2, ATP, and lipid binding. The main goal of this paper is to publish the above mentioned data in a form that facilitates in silico molecular modelling of the receptor by promoting easier establishment of boundary conditions. The better understanding of the structure-function relationship of TRPV1 may promote discovery of new, promising, more effective and safe drugs for treatment of neurogenic inflammation and pain-related diseases and may offer new opportunities for therapeutic interventions.
Collapse
Affiliation(s)
- Zoltán Winter
- Institute of Pharmaceutical Analysis, Faculty of Pharmacy, University of Szeged, Szeged, Hungary.
| | | | | | | | | | | | | | | |
Collapse
|
115
|
Brown TE, Chirila AM, Schrank BR, Kauer JA. Loss of interneuron LTD and attenuated pyramidal cell LTP in Trpv1 and Trpv3 KO mice. Hippocampus 2013; 23:662-71. [PMID: 23536486 DOI: 10.1002/hipo.22125] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2013] [Indexed: 02/03/2023]
Abstract
TRPV (transient receptor potential, vanilloid) channels are a family of nonselective cation channels that are activated by a wide variety of chemical and physical stimuli. TRPV1 channels are highly expressed in sensory neurons in the peripheral nervous system. However, a number of studies have also reported TRPV channels in the brain, though their functions are less well understood. In the hippocampus, the TRPV1 channel is a novel mediator of long-term depression (LTD) at excitatory synapses on interneurons. Here we tested the role of other TRPV channels in hippocampal synaptic plasticity, using hippocampal slices from Trpv1, Trpv3 and Trpv4 knockout (KO) mice. LTD at excitatory synapses on s. radiatum hippocampal interneurons was attenuated in slices from Trpv3 KO mice (as well as in Trpv1 KO mice as previously reported), but not in slices from Trpv4 KO mice. A previous study found that in hippocampal area CA1, slices from Trpv1 KO mice have reduced tetanus-induced long-term potentiation (LTP) following high-frequency stimulation; here we confirmed this and found a similar reduction in Trpv3 KO mice. We hypothesized that the loss of LTD at the excitatory synapses on local inhibitory interneurons caused the attenuated LTP in the mutants. Consistent with this idea, blocking GABAergic inhibition rescued LTP in slices from Trpv1 KO and Trpv3 KO mice. Our findings suggest a novel role for TRPV3 channels in synaptic plasticity and provide a possible mechanism by which TRPV1 and TRPV3 channels modulate hippocampal output.
Collapse
Affiliation(s)
- Travis E Brown
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, Rhode Island, USA
| | | | | | | |
Collapse
|
116
|
Perálvarez-Marín A, Doñate-Macian P, Gaudet R. What do we know about the transient receptor potential vanilloid 2 (TRPV2) ion channel? FEBS J 2013; 280:5471-87. [PMID: 23615321 DOI: 10.1111/febs.12302] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Revised: 03/22/2013] [Accepted: 04/14/2013] [Indexed: 12/30/2022]
Abstract
Transient receptor potential (TRP) ion channels are emerging as a new set of membrane proteins involved in a vast array of cellular processes and regulated by a large number of physical and chemical stimuli, which involves them with sensory cell physiology. The vanilloid TRP subfamily (TRPV) named after the vanilloid receptor 1 (TRPV1) consists of six members, and at least four of them (TRPV1-TRPV4) have been related to thermal sensation. One of the least characterized members of the TRP subfamily is TRPV2. Although initially characterized as a noxious heat sensor, TRPV2 now seems to have little to do with temperature sensing but a much more complex physiological profile. Here we review the available information and research progress on the structure, physiology and pharmacology of TRPV2 in an attempt to shed some light on the physiological and pharmacological deorphanization of TRPV2.
Collapse
Affiliation(s)
- Alex Perálvarez-Marín
- Centre d'Estudis en Biofísica, Departament de Bioquímica i de Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, Spain
| | | | | |
Collapse
|
117
|
Fecher-Trost C, Wissenbach U, Beck A, Schalkowsky P, Stoerger C, Doerr J, Dembek A, Simon-Thomas M, Weber A, Wollenberg P, Ruppert T, Middendorff R, Maurer HH, Flockerzi V. The in vivo TRPV6 protein starts at a non-AUG triplet, decoded as methionine, upstream of canonical initiation at AUG. J Biol Chem 2013; 288:16629-16644. [PMID: 23612980 DOI: 10.1074/jbc.m113.469726] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TRPV6 channels function as epithelial Ca(2+) entry pathways in the epididymis, prostate, and placenta. However, the identity of the endogenous TRPV6 protein relies on predicted gene coding regions and is only known to a certain level of approximation. We show that in vivo the TRPV6 protein has an extended N terminus. Translation initiates at a non-AUG codon, at ACG, which is decoded by methionine and which is upstream of the annotated AUG, which is not used for initiation. The in vitro properties of channels formed by the extended full-length TRPV6 proteins and the so-far annotated and smaller TRPV6 are similar, but the extended N terminus increases trafficking to the plasma membrane and represents an additional scaffold for channel assembly. The increased translation of the smaller TRPV6 cDNA version may overestimate the in vivo situation where translation efficiency may represent an additional mechanism to tightly control the TRPV6-mediated Ca(2+) entry to prevent deleterious Ca(2+) overload.
Collapse
Affiliation(s)
- Claudia Fecher-Trost
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, 66421 Homburg, Germany.
| | - Ulrich Wissenbach
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, 66421 Homburg, Germany.
| | - Andreas Beck
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, 66421 Homburg, Germany
| | - Pascal Schalkowsky
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, 66421 Homburg, Germany
| | - Christof Stoerger
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, 66421 Homburg, Germany
| | - Janka Doerr
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, 66421 Homburg, Germany
| | - Anna Dembek
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, 66421 Homburg, Germany
| | - Martin Simon-Thomas
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, 66421 Homburg, Germany
| | - Armin Weber
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, 66421 Homburg, Germany
| | - Peter Wollenberg
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, 66421 Homburg, Germany
| | - Thomas Ruppert
- Zentrum für Molekulare Biologie der Universität Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Ralf Middendorff
- Institut für Anatomie und Zellbiologie, Justus Liebig Universität Gieβen, Aulweg 123, 35385 Giessen, Germany
| | - Hans H Maurer
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, 66421 Homburg, Germany
| | - Veit Flockerzi
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, 66421 Homburg, Germany.
| |
Collapse
|
118
|
Buckinx R, Van Nassauw L, Avula LR, Alpaerts K, Adriaensen D, Timmermans JP. Transient receptor potential vanilloid type 1 channel (TRPV1) immunolocalization in the murine enteric nervous system is affected by the targeted C-terminal epitope of the applied antibody. J Histochem Cytochem 2013; 61:421-32. [PMID: 23482327 DOI: 10.1369/0022155413484764] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The expression of transient receptor potential vanilloid type 1 channel (TRPV1) in the enteric nervous system is still the subject of debate. Although a number of studies have reported that TRPV1 is limited to extrinsic afferent fibers, other studies argue for an intrinsic expression of TRPV1. In the present study, reverse transcriptase PCR was employed to establish the expression of TRPV1 mRNA throughout the gastrointestinal tract. Using two antibodies directed against different epitopes of TRPV1, we were able to show at the protein level that the observed distribution pattern of TRPV1 is dependent on the antibody used in the immunohistochemical staining. A first antibody indeed mainly stained neuronal fibers, whereas a second antibody exclusively stained perikarya of enteric neurons throughout the mouse gastrointestinal tract. We argue that these different distribution patterns are due to the antibodies discriminating between different modulated forms of TRPV1 that influence the recognition of the targeted immunogen and as such distinguish intracellular from plasmalemmal forms of TRPV1. Our study is the first to directly compare these two antibodies within the same species and in identical conditions. Our observations underline that detailed knowledge of the epitope that is recognized by the antibodies employed in immunohistochemical procedures is a prerequisite for correctly interpreting experimental results.
Collapse
Affiliation(s)
- Roeland Buckinx
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | | | | | | | | | | |
Collapse
|
119
|
Lei L, Cao X, Yang F, Shi DJ, Tang YQ, Zheng J, Wang K. A TRPV4 channel C-terminal folding recognition domain critical for trafficking and function. J Biol Chem 2013; 288:10427-39. [PMID: 23457335 DOI: 10.1074/jbc.m113.457291] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The Ca(2+)-permeable transient receptor potential vanilloid subtype 4 (TRPV4) channel mediates crucial physiological functions, such as calcium signaling, temperature sensing, and maintaining cell volume and energy homeostasis. Noticeably, most disease-causing genetic mutations are concentrated in the cytoplasmic domains. In the present study, we focused on the role of the TRPV4 C terminus in modulating protein folding, trafficking, and activity. By examining a series of C-terminal deletions, we identified a 20-amino acid distal region covering residues 838-857 that is critical for channel folding, maturation, and trafficking. Surface biotinylation, confocal imaging, and fluorescence-based calcium influx assay demonstrated that mutant proteins missing this region were trapped in the endoplasmic reticulum and unglycosylated, leading to accelerated degradation and loss of channel activity. Rosetta de novo structural modeling indicated that residues 838-857 assume a defined conformation, with Gly(849) and Pro(851) located at critical positions. Patch clamp recordings confirmed that lowering the temperature from 37 to 30 °C rescued channel activity of folding-defective mutants. Moreover, biochemical tests demonstrated that, in addition to participating in C-C interaction, the C terminus also interacts with the N terminus. Taken together, our findings indicate that the C-terminal region of TRPV4 is critical for channel protein folding and maturation, and the short distal segment plays an essential role in this process. Therefore, selectively disrupting the folding-sensitive region may present therapeutic potential for treating overactive TRPV4-mediated diseases, such as pain and skeletal dysplasias.
Collapse
Affiliation(s)
- Lei Lei
- Department of Neurobiology, Neuroscience Research Institute, Peking University Health Science Center, Beijing 100191, China
| | | | | | | | | | | | | |
Collapse
|
120
|
Kaßmann M, Harteneck C, Zhu Z, Nürnberg B, Tepel M, Gollasch M. Transient receptor potential vanilloid 1 (TRPV1), TRPV4, and the kidney. Acta Physiol (Oxf) 2013; 207:546-64. [PMID: 23253200 DOI: 10.1111/apha.12051] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 11/15/2012] [Accepted: 12/11/2012] [Indexed: 12/13/2022]
Abstract
Recent preclinical data indicate that activators of transient receptor potential channels of the vanilloid receptor subtype 1 (TRPV1) may improve the outcome of ischaemic acute kidney injury (AKI). The underlying mechanisms are unclear, but may involve TRPV1 channels in dorsal root ganglion neurones that innervate the kidney. Recent data identified TRPV4, together with TRPV1, to serve as major calcium influx channels in endothelial cells. In these cells, gating of individual TRPV4 channels within a four-channel cluster provides elementary calcium influx (calcium sparklets) to open calcium-activated potassium channels and promote vasodilation. The TRPV receptors can also form heteromers that exhibit unique conductance and gating properties, further increasing their spatio-functional diversity. This review summarizes data on electrophysiological properties of TRPV1/4 and their modulation by endogenous channel agonists such as 20-HETE, phospholipase C and phosphatidylinositide 3-kinase (PI3 kinase). We review important roles of TRPV1 and TRPV4 in kidney physiology and renal ischaemia reperfusion injury; further studies are warranted to address renoprotective mechanism of vanilloid receptors in ischaemic AKI including the role of the capsaicin receptor TRPV1 in primary sensory nerves and/or endothelium. Particular attention should be paid to understand the kidneys' ability to respond to ischaemic stimuli after catheter-based renal denervation therapy in man, whereas the discovery of novel pharmacological TRPV modulators may be a successful strategy for better treatment of acute or chronic kidney failure.
Collapse
Affiliation(s)
- M. Kaßmann
- Charité University Medicine, Section Nephrology/Intensive Care, Campus Virchow, and Experimental and Clinical Research Center (ECRC); Berlin; Germany
| | - C. Harteneck
- Institut für Experimentelle & Klinische Pharmakologie & Toxikologie and Interfaculty Center of Pharmacogenomics and Pharmaceutical Research (ICePhA); Eberhard-Karls-Universität; Tübingen; Germany
| | - Z. Zhu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases; Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension; Chongqing; China
| | - B. Nürnberg
- Institut für Experimentelle & Klinische Pharmakologie & Toxikologie and Interfaculty Center of Pharmacogenomics and Pharmaceutical Research (ICePhA); Eberhard-Karls-Universität; Tübingen; Germany
| | - M. Tepel
- Department of Nephrology, and University of Southern Denmark, Institute of Molecular Medicine, Cardiovascular and Renal Research, Institute of Clinical Research; Odense University Hospital; Odense; Denmark
| | - M. Gollasch
- Charité University Medicine, Section Nephrology/Intensive Care, Campus Virchow, and Experimental and Clinical Research Center (ECRC); Berlin; Germany
| |
Collapse
|
121
|
Guo Z, Grimm C, Becker L, Ricci AJ, Heller S. A novel ion channel formed by interaction of TRPML3 with TRPV5. PLoS One 2013; 8:e58174. [PMID: 23469151 PMCID: PMC3585263 DOI: 10.1371/journal.pone.0058174] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 01/31/2013] [Indexed: 01/15/2023] Open
Abstract
TRPML3 and TRPV5 are members of the mucolipin (TRPML) and TRPV subfamilies of transient receptor potential (TRP) cation channels. Based on sequence similarities of the pore forming regions and on structure-function evidence, we hypothesized that the pore forming domains of TRPML and TRPV5/TRPV6 channels have similarities that indicate possible functional interactions between these TRP channel subfamilies. Here we show that TRPML3 and TRPV5 associate to form a novel heteromeric ion channel. This novel conductance is detectable under conditions that do not activate either TRPML3 or TRPV5. It has pharmacological similarity with TRPML3 and requires functional TRPML3 as well as functional TRPV5. Single channel analyses revealed that TRPML3 and TRPV5 heteromers have different features than the respective homomers, and furthermore, that they occur in potentially distinct stoichiometric configurations. Based on overlapping expression of TRPML3 and TRPV5 in the kidney and the inner ear, we propose that TRPML3 and TRPV5 heteromers could have a biological function in these organs.
Collapse
Affiliation(s)
- Zhaohua Guo
- Departments of Otolaryngology – HNS and Molecular & Cellular Physiology, Stanford University School of Medicine, Palo Alto, California, United States of America
| | - Christian Grimm
- Department of Pharmacy – Center for Drug Research and Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität, München, Germany
| | - Lars Becker
- Departments of Otolaryngology – HNS and Molecular & Cellular Physiology, Stanford University School of Medicine, Palo Alto, California, United States of America
| | - Anthony J. Ricci
- Departments of Otolaryngology – HNS and Molecular & Cellular Physiology, Stanford University School of Medicine, Palo Alto, California, United States of America
| | - Stefan Heller
- Departments of Otolaryngology – HNS and Molecular & Cellular Physiology, Stanford University School of Medicine, Palo Alto, California, United States of America
- * E-mail:
| |
Collapse
|
122
|
Kim SY, Yang D, Myeong J, Ha K, Kim SH, Park EJ, Kim IG, Cho NH, Lee KP, Jeon JH, So I. Regulation of calcium influx and signaling pathway in cancer cells via TRPV6-Numb1 interaction. Cell Calcium 2013; 53:102-11. [PMID: 23140583 DOI: 10.1016/j.ceca.2012.10.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 10/10/2012] [Accepted: 10/12/2012] [Indexed: 11/19/2022]
Abstract
Ca(2+) is a critical factor in the regulation of signal transduction and Ca(2+) homeostasis is altered in different human diseases. The level of Ca(2+) in cells is highly regulated through a diverse class of regulators. Among them is the transient receptor potential vanilloid 6 (TRPV6), which is a Ca(2+) selective channel that absorbs Ca(2+) in the small intestine. TRPV6 is overexpressed in some cancers and exhibits oncogenic potential, but its exact mechanism is still poorly understood. The Numb protein is a cell fate determinant that functions in endocytosis and as a tumor suppressor via the stabilization of p53. Numb protein consisted of four isoforms. Here, we showed a novel function of Numb1, which negatively regulates TRPV6 activity. The expression of Numb1 decreased cytosolic Ca(2+) concentrations in TRPV6-transfected HEK293 cells. When all the isoforms of Numb were depleted using siRNA in a TRPV6 stable cell line, the levels of cytosolic Ca(2+) increased. We observed an interaction between Numb1 and TRPV6 using co-immunoprecipitation. We confirmed this interaction using Fluorescence Resolution Energy Transfer (FRET). We identified the TRPV6 and Numb1 binding site using TRPV6 C-terminal truncation mutants and Numb1 deletion mutants. The binding site in TRPV6 was an aspartic acid at amino acid residue 716, and that binding site in Numb1 was arginine at amino acid residue 434. A Numb1 mutant, lacking TRPV6 binding activity, failed to inhibit TRPV6 activity. Every isoform of Numb knockdown, using an siRNA-based approach in MCF-7 breast cancer cells, not only showed enhanced TRPV6 expression but also both the cytosolic Ca(2+) concentration and cell proliferation were increased. The down-regulated expression of TRPV6 using siRNA increased Numb protein expression; however, the cytosolic influx of Ca(2+) and proliferation of the cell were decreased. To examine downstream signaling during Ca(2+) influx, we performed Western blotting analysis on TRPV6 upregulated cancer cells (MCF-7, PC-3). Taken together, these results demonstrated that Numb1 interacts with TRPV6 through charged residues and inhibits its activity via the regulation of protein expression. Moreover, we provided evidence for a Ca(2+)-regulated cancer cell signaling pathway and that the Ca(2+) channel is a target of cancer cells.
Collapse
Affiliation(s)
- Sung-Young Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Kang SS, Shin SH, Auh CK, Chun J. Human skeletal dysplasia caused by a constitutive activated transient receptor potential vanilloid 4 (TRPV4) cation channel mutation. Exp Mol Med 2012; 44:707-22. [PMID: 23143559 PMCID: PMC3538978 DOI: 10.3858/emm.2012.44.12.080] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2012] [Indexed: 12/23/2022] Open
Abstract
The transient receptor potential vanilloid 4 (TRPV4) cation channel, a member of the TRP vanilloid subfamily, is expressed in a broad range of tissues where it participates in the generation of Ca²⁺ signals and/or depolarization of the membrane potential. Regulation of TRPV4 abundance at the cell surface is critical for osmo- and mechanotransduction. Defects in TRPV4 are the cause of several human diseases, including brachyolmia type 3 (MIM:113500) (also known as brachyrachia or spondylometaphyseal dysplasia Kozlowski type [MIM:118452]), and metatropic dysplasia (MIM:156530) (also called metatropic dwarfism or parastremmatic dwarfism [MIM:168400]). These bone dysplasia mutants are characterized by severe dwarfism, kyphoscoliosis, distortion and bowing of the extremities, and contractures of the large joints. These diseases are characterized by a combination of decreased bone density, bowing of the long bones, platyspondyly, and striking irregularities of endochondral ossification with areas of calcific stippling and streaking in radiolucent epiphyses, metaphyses, and apophyses. In this review, we discuss the potential effect of the mutation on the regulation of TRPV4 functions, which are related to human diseases through deviated function. In particular, we emphasize how the constitutive active TRPV4 mutant affects endochondral ossification with a reduced number of hypertrophic chondrocytes and the presence of cartilage islands within the zone of primary mineralization. In addition, we summarize current knowledge about the role of TRPV4 in the pathogenesis of several diseases.
Collapse
Affiliation(s)
- Sang Sun Kang
- Department of Biology Education Chungbuk National University Cheongju 361-763, Korea.
| | | | | | | |
Collapse
|
124
|
Solinski HJ, Zierler S, Gudermann T, Breit A. Human sensory neuron-specific Mas-related G protein-coupled receptors-X1 sensitize and directly activate transient receptor potential cation channel V1 via distinct signaling pathways. J Biol Chem 2012; 287:40956-71. [PMID: 23074220 DOI: 10.1074/jbc.m112.408617] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Sensory neuron-specific Mas-related G protein-coupled receptors-X1 (MRGPR-X1) are primate-specific proteins that are exclusively expressed in primary sensory neurons and provoke pain in humans. Hence, MRGPR-X1 represent promising targets for future pain therapy, but signaling pathways activated by MRGPR-X1 are poorly understood. The transient receptor potential cation channel V1 (TRPV1) is also expressed in primary sensory neurons and detects painful stimuli such as protons and heat. G(q)-promoted signaling has been shown to sensitize TRPV1 via protein kinase C (PKC)-dependent phosphorylation. In addition, recent studies suggested TRPV1 activation via a G(q)-mediated mechanism involving diacylglycerol (DAG) or phosphatidylinositol-4,5-bisphosphate (PIP(2)). However, it is not clear if DAG-promoted TRPV1 activation occurs independently from classic TRPV1 activation modes induced by heat and protons. Herein, we analyzed putative functional interactions between MRGPR-X1 and TRPV1 in a previously reported F11 cell line stably over-expressing MRGPR-X1. First, we found that MRGPR-X1 sensitized TRPV1 to heat and protons in a PKC-dependent manner. Second, we observed direct MRGPR-X1-mediated TRPV1 activation independent of MRGPR-X1-induced Ca(2+)-release and PKC activity or other TRPV1 affecting enzymes such as lipoxygenase, extracellular signal-regulated kinases-1/2, sarcoma, or phosphoinositide 3-kinase. Investigating several TRPV1 mutants, we observed that removal of the TRPV1 binding site for DAG and of the putative PIP(2) sensor decreased MRGPR-X1-induced TRPV1 activation by 71 and 43%, respectively. Therefore, we demonstrate dual functional interactions between MRGPR-X1 and TRPV1, resulting in PKC-dependent TRPV1 sensitization and DAG/PIP(2)-mediated activation. The molecular discrimination between TRPV1 sensitization and activation may help improve the specificity of current pain therapies.
Collapse
Affiliation(s)
- Hans Jürgen Solinski
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Ludwig-Maximilians-Universität München 80336 München, Germany
| | | | | | | |
Collapse
|
125
|
Schindl R, Fritsch R, Jardin I, Frischauf I, Kahr H, Muik M, Riedl MC, Groschner K, Romanin C. Canonical transient receptor potential (TRPC) 1 acts as a negative regulator for vanilloid TRPV6-mediated Ca2+ influx. J Biol Chem 2012; 287:35612-35620. [PMID: 22932896 PMCID: PMC3471760 DOI: 10.1074/jbc.m112.400952] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
TRP proteins mostly assemble to homomeric channels but can also heteromerize, preferentially within their subfamilies. The TRPC1 protein is the most versatile member and forms various TRPC channel combinations but also unique channels with the distantly related TRPP2 and TRPV4. We show here a novel cross-family interaction between TRPC1 and TRPV6, a Ca2+ selective member of the vanilloid TRP subfamily. TRPV6 exhibited substantial co-localization and in vivo interaction with TRPC1 in HEK293 cells, however, no interaction was observed with TRPC3, TRPC4, or TRPC5. Ca2+ and Na+ currents of TRPV6-overexpressing HEK293 cells are significantly reduced by co-expression of TRPC1, correlating with a dramatically suppressed plasma membrane targeting of TRPV6. In line with their intracellular retention, remaining currents of TRPC1 and TRPV6 co-expression resemble in current-voltage relationship that of TRPV6. Studying the N-terminal ankyrin like repeat domain, structurally similar in the two proteins, we have found that these cytosolic segments were sufficient to mediate a direct heteromeric interaction. Moreover, the inhibitory role of TRPC1 on TRPV6 influx was also maintained by expression of only its N-terminal ankyrin-like repeat domain. Our experiments provide evidence for a functional interaction of TRPC1 with TRPV6 that negatively regulates Ca2+ influx in HEK293 cells.
Collapse
Affiliation(s)
- Rainer Schindl
- Institute for Biophysics, University of Linz, A-4020 Linz, Austria.
| | - Reinhard Fritsch
- Institute for Biophysics, University of Linz, A-4020 Linz, Austria
| | - Isaac Jardin
- Department of Physiology, University of Extremadura, 10003 Caceres, Spain
| | - Irene Frischauf
- Institute for Biophysics, University of Linz, A-4020 Linz, Austria
| | - Heike Kahr
- School of Engineering/Enviromental/Sciences, University of Applied Sciences Upper Austria, A-4600 Wels, Austria
| | - Martin Muik
- Institute for Biophysics, University of Linz, A-4020 Linz, Austria
| | | | - Klaus Groschner
- Institute of Pharmacology and Toxicology, University of Graz, A-8010 Graz, Austria
| | | |
Collapse
|
126
|
Ho TC, Horn NA, Huynh T, Kelava L, Lansman JB. Evidence TRPV4 contributes to mechanosensitive ion channels in mouse skeletal muscle fibers. Channels (Austin) 2012; 6:246-54. [PMID: 22785252 DOI: 10.4161/chan.20719] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We recorded the activity of single mechanosensitive (MS) ion channels from membrane patches on single muscle fibers isolated from mice. We investigated the actions of various TRP (transient receptor potential) channel blockers on MS channel activity. 2-aminoethoxydiphenyl borate (2-APB) neither inhibited nor facilitated single channel activity at submillimolar concentrations. The absence of an effect of 2-APB indicates MS channels are not composed purely of TRPC or TRPV1, 2 or 3 proteins. Exposing patches to 1-oleolyl-2-acetyl-sn-glycerol (OAG), a potent activator of TRPC channels, also had no effect on MS channel activity. In addition, flufenamic acid and spermidine had no effect on the activity of single MS channels. By contrast, SKF-96365 and ruthenium red blocked single-channel currents at micromolar concentrations. SKF-96365 produced a rapid block of the open channel current. The blocking rate depended linearly on blocker concentration, while the unblocking rate was independent of concentration, consistent with a simple model of open channel block. A fit to the concentration-dependence of block gave k(on) = 13 x 10 ( 6) M (-1) s (-1) and k(off) = 1609 sec (-1) with K(D) = ~124 µM. Block by ruthenium red was complex, involving both reduction of the amplitude of the single-channel current and increased occupancy of subconductance levels. The reduction in current amplitude with increasing concentration of ruthenium red gave a K(D) = ~49 µM. The high sensitivity of MS channels to block by ruthenium red suggests MS channels in skeletal muscle contain TRPV subunits. Recordings from skeletal muscle isolated from TRPV4 knockout mice failed to show MS channel activity, consistent with a contribution of TRPV4. In addition, exposure to hypo-osmotic solutions increases opening of MS channels in muscle. Our results provide evidence TRPV4 contributes to MS channels in skeletal muscle.
Collapse
Affiliation(s)
- Tiffany C Ho
- Department of Cellular and Molecular Pharmacology, School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | | | | | | | | |
Collapse
|
127
|
Freichel M, Almering J, Tsvilovskyy V. The Role of TRP Proteins in Mast Cells. Front Immunol 2012; 3:150. [PMID: 22701456 PMCID: PMC3372879 DOI: 10.3389/fimmu.2012.00150] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 05/22/2012] [Indexed: 01/16/2023] Open
Abstract
Transient receptor potential (TRP) proteins form cation channels that are regulated through strikingly diverse mechanisms including multiple cell surface receptors, changes in temperature, in pH and osmolarity, in cytosolic free Ca(2+) concentration ([Ca(2+)](i)), and by phosphoinositides which makes them polymodal sensors for fine tuning of many cellular and systemic processes in the body. The 28 TRP proteins identified in mammals are classified into six subfamilies: TRPC, TRPV, TRPM, TRPA, TRPML, and TRPP. When activated, they contribute to cell depolarization and Ca(2+) entry. In mast cells, the increase of [Ca(2+)](i) is fundamental for their biological activity, and several entry pathways for Ca(2+) and other cations were described including Ca(2+) release activated Ca(2+) (CRAC) channels. Like in other non-excitable cells, TRP channels could directly contribute to Ca(2+) influx via the plasma membrane as constituents of Ca(2+) conducting channel complexes or indirectly by shifting the membrane potential and regulation of the driving force for Ca(2+) entry through independent Ca(2+) entry channels. Here, we summarize the current knowledge about the expression of individual Trp genes with the majority of the 28 members being yet identified in different mast cell models, and we highlight mechanisms how they can regulate mast cell functions. Since specific agonists or blockers are still lacking for most members of the TRP family, studies to unravel their function and activation mode still rely on experiments using genetic approaches and transgenic animals. RNAi approaches suggest a functional role for TRPC1, TRPC5, and TRPM7 in mast cell derived cell lines or primary mast cells, and studies using Trp gene knock-out mice reveal a critical role for TRPM4 in mast cell activation and for mast cell mediated cutaneous anaphylaxis, whereas a direct role of cold- and menthol-activated TRPM8 channels seems to be unlikely for the development of cold urticaria at least in mice.
Collapse
Affiliation(s)
- Marc Freichel
- Pharmakologisches Institut, Universität HeidelbergHeidelberg, Germany
| | - Julia Almering
- Pharmakologisches Institut, Universität HeidelbergHeidelberg, Germany
| | | |
Collapse
|
128
|
Sherkheli MA, Gisselmann G, Hatt H. Supercooling agent icilin blocks a warmth-sensing ion channel TRPV3. ScientificWorldJournal 2012; 2012:982725. [PMID: 22548000 PMCID: PMC3324214 DOI: 10.1100/2012/982725] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Accepted: 11/30/2011] [Indexed: 12/05/2022] Open
Abstract
Transient receptor potential vanilloid subtype 3 (TRPV3) is a thermosensitive ion channel expressed in a variety of neural cells and in keratinocytes. It is activated by warmth (33–39°C), and its responsiveness is dramatically increased at nociceptive temperatures greater than 40°C. Monoterpenoids and 2-APB are chemical activators of TRPV3 channels. We found that Icilin, a known cooling substance and putative ligand of TRPM8, reversibly inhibits TRPV3 activity at nanomolar concentrations in expression systems like Xenopus laeves oocytes, HEK-293 cells, and in cultured human keratinocytes. Our data show that icilin's antagonistic effects for the warm-sensitive TRPV3 ion channel occurs at very low concentrations. Therefore, the cooling effect evoked by icilin may at least in part be due to TRPV3 inhibition in addition to TRPM8 potentiation. Blockade of TRPV3 activity by icilin at such low concentrations might have important implications for overall cooling sensations detected by keratinocytes and free nerve endings in skin. We hypothesize that blockage of TRPV3 might be a signal for cool-sensing systems (like TRPM8) to beat up the basal activity resulting in increased cold perception when warmth sensors (like TRPV3) are shut off.
Collapse
|
129
|
Berg KA, Patwardhan AM, Akopian AN. Receptor and channel heteromers as pain targets. Pharmaceuticals (Basel) 2012; 5:249-78. [PMID: 24281378 PMCID: PMC3763638 DOI: 10.3390/ph5030249] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 02/04/2012] [Accepted: 02/15/2012] [Indexed: 12/20/2022] Open
Abstract
Recent discoveries indicate that many G-protein coupled receptors (GPCRs) and channels involved in pain modulation are able to form receptor heteromers. Receptor and channel heteromers often display distinct signaling characteristics, pharmacological properties and physiological function in comparison to monomer/homomer receptor or ion channel counterparts. It may be possible to capitalize on such unique properties to augment therapeutic efficacy while minimizing side effects. For example, drugs specifically targeting heteromers may have greater tissue specificity and analgesic efficacy. This review will focus on current progress in our understanding of roles of heteromeric GPCRs and channels in pain pathways as well as strategies for controlling pain pathways via targeting heteromeric receptors and channels. This approach may be instrumental in the discovery of novel classes of drugs and expand our repertoire of targets for pain pharmacotherapy.
Collapse
Affiliation(s)
- Kelly A. Berg
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (K.A.B.)
| | - Amol M. Patwardhan
- Department of Anesthesiology, Arizona Health Sciences Center, Tucson, AZ 85724, USA; (A.M.P.)
| | - Armen N. Akopian
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (K.A.B.)
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
130
|
Yu Q, Wang Y, Yu Y, Li Y, Zhao S, Chen Y, Waqar AB, Fan J, Liu E. Expression of TRPV1 in rabbits and consuming hot pepper affects its body weight. Mol Biol Rep 2012; 39:7583-9. [PMID: 22327653 DOI: 10.1007/s11033-012-1592-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 01/31/2012] [Indexed: 02/08/2023]
Abstract
The capsaicin receptor, known as transient receptor potential vanilloid subfamily member 1 (TRPV1), is an important membrane receptor that has been implicated in obesity, diabetes, metabolic syndrome and cardiovascular diseases. The rabbit model is considered excellent for studying cardiovascular and metabolic diseases, however, the tissue expression of TRPV1 and physiological functions of its ligand capsaicin on diet-induced obesity have not been fully defined in this model. In the current study, we investigated the tissue expression of TRPV1 in normal rabbits using real-time RT-PCR and Western blot analysis. Rabbit TRPV1 mRNA was highly expressed in a variety of organs, including the kidneys, adrenal gland, spleen and brain. A phylogenetic analysis showed that the amino acid sequence of rabbit TRPV1 was closer to human TRPV1 than rodent TRPV1. To examine the effect of capsaicin (a pungent compound in hot pepper) on body weight, rabbits were fed with either a high fat diet (as control) or high fat diet containing 1% hot pepper. We found that the body weight of the hot pepper-fed rabbits was significantly lower than the control group. We conclude that the intake of capsaicin can prevent diet-induced obesity and rabbit model is useful for the study of TRPV1 function in cardiovascular and metabolic diseases.
Collapse
Affiliation(s)
- Qi Yu
- Research Institute of Atherosclerotic Disease, Xi'an Jiaotong University School of Medicine, Xi'an 710061, China
| | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Mutations in TRPV4 cause an inherited arthropathy of hands and feet. Nat Genet 2011; 43:1142-6. [DOI: 10.1038/ng.945] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 08/24/2011] [Indexed: 11/09/2022]
|
132
|
Bossus M, Charmantier G, Lorin-Nebel C. Transient receptor potential vanilloid 4 in the European sea bass Dicentrarchus labrax: A candidate protein for osmosensing. Comp Biochem Physiol A Mol Integr Physiol 2011; 160:43-51. [DOI: 10.1016/j.cbpa.2011.04.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 04/26/2011] [Accepted: 04/27/2011] [Indexed: 10/18/2022]
|
133
|
Abstract
Transient receptor potential channels, of the vanilloid subtype (TRPV), act as sensory mediators, being activated by endogenous ligands, heat, mechanical and osmotic stress. Within the vasculature, TRPV channels are expressed in smooth muscle cells, endothelial cells, as well as in peri-vascular nerves. Their varied distribution and polymodal activation properties make them ideally suited to a role in modulating vascular function, perceiving and responding to local environmental changes. In endothelial cells, TRPV1 is activated by endocannabinoids, TRPV3 by dietary agonists and TRPV4 by shear stress, epoxyeicosatrienoic acids (EETs) and downstream of Gq-coupled receptor activation. Upon activation, these channels contribute to vasodilation via nitric oxide, prostacyclin and intermediate/small conductance potassium channel-dependent pathways. In smooth muscle, TRPV4 is activated by endothelial-derived EETs, leading to large conductance potassium channel activation and smooth muscle hyperpolarization. Conversely, smooth muscle TRPV2 channels contribute to global calcium entry and may aid constriction. TRPV1 and TRPV4 are expressed in sensory nerves and can cause vasodilation through calcitonin gene-related peptide and substance P release as well as mediating vascular function via the baroreceptor reflex (TRPV1) or via increasing sympathetic outflow during osmotic stress (TRPV4). Thus, TRPV channels play important roles in the regulation of normal and pathological cellular function in the vasculature.
Collapse
Affiliation(s)
- R L Baylie
- Department of Pharmacology, University of Vermont College of Medicine, Burlington, USA.
| | | |
Collapse
|
134
|
Abstract
The past decade has witnessed the cloning of a new family of ion channels that are responsive to temperature. Six of these transient receptor potential (TRP) channels are proposed to be involved in thermosensation and are located in sensory nerves and skin. The TRPV1, TRPV2, TRPV3, and TRPV4 channels have incompletely overlapping functions over a broad thermal range from warm to hot. Deletion of the individual TRPV1, TRPV3, and TRPV4 channels in mice has established their physiological role in thermosensation. In all cases thermosensation is not completely abolished - suggesting some functional redundancy among the channels. Notably, the TRPV2 channel is responsive to hot temperatures in heterologous systems, but its physiological relevance in vivo has not been established. Cool and cold temperatures are sensed by TRPM8 and TRPA1 family members. Currently, the pharmaceutical industry is developing agonists and antagonists for the various TRP channels. For instance, TRPV1 receptor agonists produce hypothermia, while antagonists induce hyperthermia. Recent investigations have found that different regions of the TRPV1 receptor are responsive to temperature, nociceptive stimuli, and various chemical agents. With this information, it has been possible to develop a TRPV1 compound that blocks responses to capsaicin and acid while leaving temperature sensitivity intact. These channels have important implications for hyperthermia research and may help to identify previously unexplored mechanisms in different tissues that are responsive to thermal stress.
Collapse
Affiliation(s)
- William C Wetsel
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
135
|
Sinke AP, Deen PMT. The physiological implication of novel proteins in systemic osmoregulation. FASEB J 2011; 25:3279-89. [PMID: 21737616 DOI: 10.1096/fj.11-188433] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Maintenance of the osmobalance is important for life. In this process, in which brain and kidney act in concert, mammals have to cope with significant deviations as drinking water reduces plasma osmolality, whereas salty food increases it. To restore homeostasis, specialized nuclei within the hypothalamus play a pivotal role in detecting changes in plasma osmolality and initiating appropriate responses. These responses are accomplished by either changing the intake of water or the excretion of water by the kidney. In the past decade, several novel findings have made significant contributions to our insights in the process of systemic osmoregulation. Novel proteins have been identified in the brain as well as in the kidney that are fulfilling important roles in the process of systemic osmoregulation. In this review, recent evidence of the involvement of TRPV channels (TRPV1, TRPV2, and TRPV4) and proteins, such as sodium channels NALCN and Na(x), in neuronal osmoregulation, as well as; e.g., the purinergic P2Y2 receptor in renal osmoregulation, are discussed, and integrated with existing knowledge of systemic osmoregulation.
Collapse
Affiliation(s)
- Anne P Sinke
- Department of Physiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | |
Collapse
|
136
|
Ruparel NB, Patwardhan AM, Akopian AN, Hargreaves KM. Desensitization of transient receptor potential ankyrin 1 (TRPA1) by the TRP vanilloid 1-selective cannabinoid arachidonoyl-2 chloroethanolamine. Mol Pharmacol 2011; 80:117-23. [PMID: 21441412 PMCID: PMC3127531 DOI: 10.1124/mol.110.068940] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 03/25/2011] [Indexed: 12/22/2022] Open
Abstract
Recent studies on cannabinoid-induced analgesia implicate certain transient receptor potential (TRP) channels as a therapeutic target along with metabotropic cannabinoid receptors. Although TRP ankyrin 1 (TRPA1)-selective cannabinoids, such as (R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl) pyrrolo-[1,2,3-d,e]-1,4-benzoxazin-6-yl]-1-naphthalenyl-methanone (WIN55,212), are effective at desensitizing TRPA1 and TRP vanilloid 1 (TRPV1), there is a gap in knowledge in understanding the opposite situation, namely whether TRPV1-selective cannabinoids desensitize TRPA1. We selected the TRPV1-specific synthetic cannabinoid, arachidonoyl-2 chloroethanolamine (ACEA), to study peripheral antihyperalgesic properties because ACEA is known to activate TRPV1. Hence, we used in vitro as well as in vivo assays to evaluate the following: 1) the effects of ACEA on the TRPA1-selective agonist, mustard oil (MO), for calcitonin gene-related peptide (CGRP) release from rat hindpaw skin in vitro; 2) the effects of a peripherally selective dose of ACEA on MO-induced nocifensive behavior in vivo; and 3) the effects of five ACEA-insensitive TRPV1 mutations on ACEA-inhibition of MO-evoked calcium accumulation using a Chinese hamster ovary cell expression system. Our results demonstrate that 1) ACEA significantly attenuated (∼40%) MO-evoked CGRP release from rat hindpaw skin, and this effect was not antagonized by the TRPV1 antagonist, capsazepine; 2) ACEA significantly inhibited (∼40%) MO-induced nocifensive behavior in wild-type mice but not in TRPV1 knockout mice; and 3) all TRPV1 mutations insensitive to ACEA lacked the ability to inhibit MO-evoked calcium accumulation in Chinese hamster ovary cells transfected with TRPV1 and TRPA1. Taken together, the results indicate that a TRPV1-selective cannabinoid, ACEA, inhibits MO-evoked responses via a TRPV1-dependent mechanism. This study strengthens the hypothesis that cannabinoids mediate their peripheral analgesic properties, at least in part, via the TRP channels.
Collapse
Affiliation(s)
- Nikita B Ruparel
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, Texas 78229, USA
| | | | | | | |
Collapse
|
137
|
Jin M, Wu Z, Chen L, Jaimes J, Collins D, Walters ET, O'Neil RG. Determinants of TRPV4 activity following selective activation by small molecule agonist GSK1016790A. PLoS One 2011; 6:e16713. [PMID: 21339821 PMCID: PMC3038856 DOI: 10.1371/journal.pone.0016713] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 01/11/2011] [Indexed: 11/19/2022] Open
Abstract
TRPV4 (Transient Receptor Potential Vanilloid 4) channels are activated by a wide range of stimuli, including hypotonic stress, non-noxious heat and mechanical stress and some small molecule agonists (e.g. phorbol ester 4α-PDD). GSK1016790A (GSK101) is a recently discovered specific small molecule agonist of TRPV4. Its effects on physical determinants of TRPV4 activity were evaluated in HeLa cells transiently transfected with TRPV4 (HeLa-TRPV4). GSK101 (10 nM) causes a TRPV4 specific Ca(2+) influx in HeLa-TRPV4 cells, but not in control transfected cells, which can be inhibited by ruthenium red and Ca(2+)-free medium more significantly at the early stage of the activation rather than the late stage, reflecting apparent partial desensitization. Western blot analysis showed that GSK101 activation did not induce an increase in TRPV4 expression at the plasma membrane, but caused an immediate and sustained downregulation of TRPV4 on the plasma membrane in HeLa-TRPV4 cells. Patch clamp analysis also revealed an early partial desensitization of the channel which was Ca(2+)-independent. FRET analysis of TRPV4 subunit assembly demonstrated that the GSK101-induced TRPV4 channel activation/desensitization was not due to alterations in homotetrameric channel formation on the plasma membrane. It is concluded that GSK101 specifically activates TRPV4 channels, leading to a rapid partial desensitization and downregulation of the channel expression on the plasma membrane. TRPV4 subunit assembly appears to occur during trafficking from the ER/Golgi to the plasma membrane and is not altered by agonist stimulation.
Collapse
Affiliation(s)
- Min Jin
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center, Houston, Texas, United States of America
| | - Zizhen Wu
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center, Houston, Texas, United States of America
| | - Ling Chen
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center, Houston, Texas, United States of America
| | - Jose Jaimes
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center, Houston, Texas, United States of America
| | - Diana Collins
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center, Houston, Texas, United States of America
| | - Edgar T. Walters
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center, Houston, Texas, United States of America
| | - Roger G. O'Neil
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
138
|
Transient Receptor Potential Genes and Human Inherited Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 704:1011-32. [DOI: 10.1007/978-94-007-0265-3_52] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
139
|
Sudbury JR, Ciura S, Sharif-Naeini R, Bourque CW. Osmotic and thermal control of magnocellular neurosecretory neurons - role of an N-terminal variant of trpv1. Eur J Neurosci 2010; 32:2022-30. [DOI: 10.1111/j.1460-9568.2010.07512.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
140
|
Ca2+-dependent desensitization of TRPV2 channels is mediated by hydrolysis of phosphatidylinositol 4,5-bisphosphate. J Neurosci 2010; 30:13338-47. [PMID: 20926660 DOI: 10.1523/jneurosci.2108-10.2010] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
TRPV2 is a member of the transient receptor potential family of ion channels involved in chemical and thermal pain transduction. Unlike the related TRPV1 channel, TRPV2 does not appear to bind either calmodulin or ATP in its N-terminal ankyrin repeat domain. In addition, it does not contain a calmodulin-binding site in the distal C-terminal region, as has been proposed for TRPV1. We have found that TRPV2 channels transiently expressed in F-11 cells undergo Ca(2+)-dependent desensitization, similar to the other TRPVs, suggesting that the mechanism of desensitization may be conserved in the subfamily of TRPV channels. TRPV2 desensitization was not altered in whole-cell recordings in the presence of calmodulin inhibitors or on coexpression of mutant calmodulin but was sensitive to changes in membrane phosphatidylinositol 4,5-bisphosphate (PIP(2)), suggesting a role of membrane PIP(2) in TRPV2 desensitization. Simultaneous confocal imaging and electrophysiological recording of cells expressing TRPV2 and a fluorescent PIP(2)-binding probe demonstrated that TRPV2 desensitization was concomitant with depletion of PIP(2). We conclude that the decrease in PIP(2) levels on channel activation underlies a major component of Ca(2+)-dependent desensitization of TRPV2 and may play a similar role in other TRP channels.
Collapse
|
141
|
Heteromerization of TRP channel subunits: extending functional diversity. Protein Cell 2010; 1:802-10. [PMID: 21203922 DOI: 10.1007/s13238-010-0108-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 09/01/2010] [Indexed: 01/03/2023] Open
Abstract
Transient receptor potential (TRP) channels are widely found throughout the animal kingdom. By serving as cellular sensors for a wide spectrum of physical and chemical stimuli, they play crucial physiological roles ranging from sensory transduction to cell cycle modulation. TRP channels are tetrameric protein complexes. While most TRP subunits can form functional homomeric channels, heteromerization of TRP channel subunits of either the same subfamily or different subfamilies has been widely observed. Heteromeric TRP channels exhibit many novel properties compared to their homomeric counterparts, indicating that co-assembly of TRP channel subunits has an important contribution to the diversity of TRP channel functions.
Collapse
|
142
|
Bindels RJ. 2009 Homer W. Smith Award: Minerals in Motion: From New Ion Transporters to New Concepts. J Am Soc Nephrol 2010; 21:1263-9. [DOI: 10.1681/asn.2010010001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
143
|
Huang J, Zhang X, McNaughton PA. Inflammatory pain: the cellular basis of heat hyperalgesia. Curr Neuropharmacol 2010; 4:197-206. [PMID: 18615146 DOI: 10.2174/157015906778019554] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Revised: 06/30/2006] [Accepted: 06/30/2006] [Indexed: 12/20/2022] Open
Abstract
Injury or inflammation release a range of inflammatory mediators that increase the sensitivity of sensory neurons to noxious thermal or mechanical stimuli. The heat- and capsaicin-gated channel TRPV1, which is an important detector of multiple noxious stimuli, plays a critical role in the development of thermal hyperalgesia induced by a wide range of inflammatory mediators. We review here recent findings on the molecular mechanisms of sensitisation of TRPV1 by inflammatory mediators, including bradykinin, ATP, NGF and prostaglandins. We describe the signalling pathways believed to be involved in the potentiation of TRPV1, and our current understanding of how inflammatory mediators couple to these pathways.
Collapse
Affiliation(s)
- Jiehong Huang
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD, United Kingdom
| | | | | |
Collapse
|
144
|
Story GM. The emerging role of TRP channels in mechanisms of temperature and pain sensation. Curr Neuropharmacol 2010; 4:183-96. [PMID: 18615141 DOI: 10.2174/157015906778019482] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Accepted: 05/17/2006] [Indexed: 01/13/2023] Open
Abstract
Pain is universal and vital to survival. It is an essential component of our sense of touch; together, touch and pain have evolved to enable our awareness of the intricacies of our environment and to warn us of danger and possible injury. There is a clear link between temperature sensation and pain-painful temperature sensations occur acutely and are a hallmark of inflammatory and chronic pain disorders of the nervous system. Mounting evidence suggests a subset of Transient Receptor Potential (TRP) ion channels activated by temperature (thermoTRPs) are important molecular players in acute, inflammatory and chronic pain states. Varying degrees of heat activate four of these channels (TRPV1-4), while cooling temperatures ranging from pleasant to painful activate two distantly related thermoTRP channels (TRPM8 and TRPA1). ThermoTRP channels are also chemosensitive, being activated and or modulated by plant-derived small molecules and endogenous inflammatory mediators. All thermoTRPs are expressed in tissues essential to cutaneous thermal and pain sensation. This review examines the contribution of thermoTRP channels to our understanding of temperature and pain transduction at the molecular level.
Collapse
Affiliation(s)
- Gina M Story
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine, 660 S. Euclid Avenue, Campus Box 8054, St. Louis, MO 63110, USA.
| |
Collapse
|
145
|
Schumacher MA, Eilers H. TRPV1 splice variants: structure and function. Front Biosci (Landmark Ed) 2010; 15:872-82. [PMID: 20515731 DOI: 10.2741/3651] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The capsaicin receptor (TRPV1) is a non-selective cation channel predominantly expressed in specialized sensory neurons that detect painful stimuli. Although its many functional roles continue to be revealed, it has been confirmed to play a critical role in the perception of peripheral inflammatory hyperalgesia and pain. TRPV1 not only is sensitized and/or activated under a wide range of conditions including inflammation and nerve injury but also undergoes changes in expressed levels in response to these same pathologic conditions. Just as our understanding of the structural requirements of TRPV1 activation has grown, there is evidence that TRPV1 forms heteromeric channel complexes. This review is focused on the structural and functional consequence of TRPV1 splice variants: VR.5'sv, TRPV1b/beta and TRPV1var. Through their co-expression and formation of heteromeric complexes with TRPV1, they have been shown to modulate TRPV1 activation. Moreover, TRPV1 splice variant subunits may also contribute unique properties of activation such as the detection of hypertonic conditions.
Collapse
Affiliation(s)
- Mark A Schumacher
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94143-0427, USA.
| | | |
Collapse
|
146
|
Interdomain interactions control Ca2+-dependent potentiation in the cation channel TRPV4. PLoS One 2010; 5:e10580. [PMID: 20485495 PMCID: PMC2867956 DOI: 10.1371/journal.pone.0010580] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Accepted: 04/20/2010] [Indexed: 11/24/2022] Open
Abstract
Several Ca2+-permeable channels, including the non-selective cation channel TRPV4, are subject to Ca2+-dependent facilitation. Although it has been clearly demonstrated in functional experiments that calmodulin (CaM) binding to intracellular domains of TRP channels is involved in this process, the molecular mechanism remains elusive. In this study, we provide experimental evidence for a comprehensive molecular model that explains Ca2+-dependent facilitation of TRPV4. In the resting state, an intracellular domain from the channel N terminus forms an autoinhibitory complex with a C-terminal domain that includes a high-affinity CaM binding site. CaM binding, secondary to rises in intracellular Ca2+, displaces the N-terminal domain which may then form a homologous interaction with an identical domain from a second subunit. This represents a novel potentiation mechanism that may also be relevant in other Ca2+-permeable channels.
Collapse
|
147
|
Zimoń M, Baets J, Auer-Grumbach M, Berciano J, Garcia A, Lopez-Laso E, Merlini L, Hilton-Jones D, McEntagart M, Crosby AH, Barisic N, Boltshauser E, Shaw CE, Landouré G, Ludlow CL, Gaudet R, Houlden H, Reilly MM, Fischbeck KH, Sumner CJ, Timmerman V, Jordanova A, Jonghe PD. Dominant mutations in the cation channel gene transient receptor potential vanilloid 4 cause an unusual spectrum of neuropathies. ACTA ACUST UNITED AC 2010; 133:1798-809. [PMID: 20460441 DOI: 10.1093/brain/awq109] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Hereditary neuropathies form a heterogeneous group of disorders for which over 40 causal genes have been identified to date. Recently, dominant mutations in the transient receptor potential vanilloid 4 gene were found to be associated with three distinct neuromuscular phenotypes: hereditary motor and sensory neuropathy 2C, scapuloperoneal spinal muscular atrophy and congenital distal spinal muscular atrophy. Transient receptor potential vanilloid 4 encodes a cation channel previously implicated in several types of dominantly inherited bone dysplasia syndromes. We performed DNA sequencing of the coding regions of transient receptor potential vanilloid 4 in a cohort of 145 patients with various types of hereditary neuropathy and identified five different heterozygous missense mutations in eight unrelated families. One mutation arose de novo in an isolated patient, and the remainder segregated in families. Two of the mutations were recurrent in unrelated families. Four mutations in transient receptor potential vanilloid 4 targeted conserved arginine residues in the ankyrin repeat domain, which is believed to be important in protein-protein interactions. Striking phenotypic variability between and within families was observed. The majority of patients displayed a predominantly, or pure, motor neuropathy with axonal characteristics observed on electrophysiological testing. The age of onset varied widely, ranging from congenital to late adulthood onset. Various combinations of additional features were present in most patients including vocal fold paralysis, scapular weakness, contractures and hearing loss. We identified six asymptomatic mutation carriers, indicating reduced penetrance of the transient receptor potential vanilloid 4 defects. This finding is relatively unusual in the context of hereditary neuropathies and has important implications for diagnostic testing and genetic counselling.
Collapse
Affiliation(s)
- Magdalena Zimoń
- Neurogenetics Group, VIB Department of Molecular Genetics, University of Antwerp, Universiteitsplein 1, B-2610 Antwerpen, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Abstract
Neuropathic pain, a severe chronic pain condition characterized by a complex pathophysiology, is a largely unmet medical need. Ion channels, which underlie cell excitability, are heavily implicated in the biological mechanisms that generate and sustain neuropathic pain. This review highlights the biological evidence supporting the involvement of voltage-, proton- and ligand-gated ion channels in the neuropathic pain setting. Ion channel modulators at different research or development stages are reviewed and referenced. Ion channel modulation is one of the main avenues to achieve novel, improved neuropathic pain treatments. Voltage-gated sodium and calcium channel and glutamate receptor modulators are likely to produce new, improved agents in the future. Rationally targeting subtypes of known ion channels, tackling recently discovered ion channel targets or combining drugs with different mechanism of action will be primary sources of new drugs in the longer term.
Collapse
|
149
|
Staruschenko A, Jeske NA, Akopian AN. Contribution of TRPV1-TRPA1 interaction to the single channel properties of the TRPA1 channel. J Biol Chem 2010; 285:15167-15177. [PMID: 20231274 DOI: 10.1074/jbc.m110.106153] [Citation(s) in RCA: 158] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Several lines of evidence suggest that TRPA1 and TRPV1 mutually control the transduction of inflammation-induced noxious stimuli in sensory neurons. It was recently shown that certain TRPA1 properties are modulated by TRPV1. However, direct interaction between TRPA1 and TRPV1 as well as regulation of TRPA1 intrinsic characteristics by the TRPV1 channel have not been examined. To address these questions, we have studied a complex formation between TRPA1 and TRPV1 and characterized the influence of TRPV1 on single channel TRPA1-mediated currents. Co-immunoprecipitation analysis revealed direct interactions between TRPA1 and TRPV1 in an expression system as well as in sensory neurons. Data generated with total internal reflection fluorescence-based fluorescence resonance energy transfer indicate that a TRPA1-TRPV1 complex can be formed on the plasma membrane. The fluorescence resonance energy transfer interaction between TRPA1 and TRPV1 channels is as effective as for TRPV1 or TRPA1 homomers. Single channel analysis in a heterologous expression system and in sensory neurons of wild type and TRPV1 knock-out mice demonstrated that co-expression of TRPV1 with TRPA1 results in outward rectification of single channel mustard oil (I(MO)) current-voltage relationships (I-V) and substantial modulation of the open probability at negative holding potentials. TRPV1 also does not influence the characteristics of single channel I(MO) in Ca(2+)-free extracellular solution. However, association of TRPA1 with TRPV1 was not affected in Ca(2+)-free media. To assess a role of intracellular Ca(2+) in TRPV1-dependent modulation of TRPA1 modulation, the TRPA1-mediated single channel WIN55,212-2-gated current (I(WIN)) was recorded in inside-out configuration. Our data indicate that single channel properties of TRPA1 are regulated by TRPV1 independently of intracellular Ca(2+). In summary, our results support the hypothesis that TRPV1 and TRPA1 form a complex and that TRPV1 influences intrinsic characteristics of the TRPA1 channel.
Collapse
Affiliation(s)
- Alexander Staruschenko
- Department of Physiology and Kidney Disease Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226-0509
| | - Nathaniel A Jeske
- Departments of Oral and Maxillofacial Surgery, University of Texas Health Science Center, San Antonio, Texas 78229
| | - Armen N Akopian
- Departments of Endodontics, University of Texas Health Science Center, San Antonio, Texas 78229.
| |
Collapse
|
150
|
Abstract
Although a unifying characteristic common to all transient receptor potential (TRP) channel functions remains elusive, they could be described as tetramers formed by subunits with six transmembrane domains and containing cation-selective pores, which in several cases show high calcium permeability. TRP channels constitute a large superfamily of ion channels, and can be grouped into seven subfamilies based on their amino acid sequence homology: the canonical or classic TRPs, the vanilloid receptor TRPs, the melastatin or long TRPs, ankyrin (whose only member is the transmembrane protein 1 [TRPA1]), TRPN after the nonmechanoreceptor potential C (nonpC), and the more distant cousins, the polycystins and mucolipins. Because of their role as cellular sensors, polymodal activation and gating properties, many TRP channels are activated by a variety of different stimuli and function as signal integrators. Thus, how TRP channels function and how function relates to given structural determinants contained in the channel-forming protein has attracted the attention of biophysicists as well as molecular and cell biologists. The main purpose of this review is to summarize our present knowledge on the structure of channels of the TRP ion channel family. In the absence of crystal structure information for a complete TRP channel, we will describe important protein domains present in TRP channels, structure-function mutagenesis studies, the few crystal structures available for some TRP channel modules, and the recent determination of some TRP channel structures using electron microscopy.
Collapse
|