101
|
Oulhote Y, Steuerwald U, Debes F, Weihe P, Grandjean P. Behavioral difficulties in 7-year old children in relation to developmental exposure to perfluorinated alkyl substances. ENVIRONMENT INTERNATIONAL 2016; 97:237-245. [PMID: 27692925 PMCID: PMC5154805 DOI: 10.1016/j.envint.2016.09.015] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 09/13/2016] [Accepted: 09/15/2016] [Indexed: 05/17/2023]
Abstract
BACKGROUND Perfluorinated alkyl substances (PFAS) are suspected endocrine disruptors that are highly persistent and neurotoxic in animals. Human epidemiological studies of exposure-related deviations of children's behaviors are sparse. We assessed the associations between prenatal, 5- and 7-year PFAS exposures and behavioral problem scores in 7-year Faroese children. METHODS Concentrations of perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), and perfluorodecanoic acid (PFDA), perfluorooctane sulfonate (PFOS), and perfluorohexane sulfonic acid (PFHxS) were measured in maternal serum and in serum from children at ages 5 and 7years (n=539, 508, and 491, respectively). We used multivariable regressions and structural equations models to estimate the covariate-adjusted associations between serum-PFAS concentrations and behavioral difficulties, as assessed by the strengths and difficulties questionnaire (SDQ) at age 7. RESULTS Serum-PFOS and PFHxS concentrations declined over time, whereas PFOA, PFNA, and PFDA tended to increase. No associations were observed between prenatal PFAS concentrations and SDQ scores. However, a two-fold increase in 5-year serum-PFOA, PFNA, and PFDA concentrations was associated with increases in total SDQ scores by 1.03 (95% CI: 0.11, 1.95), 0.72 (95% CI: 0.07, 1.38) and 0.78 points (95% CI: 0.01, 1.55), respectively. For SDQ subscales, significant associations were found in regard to hyperactivity, peer relationship, and conduct problems, as well as internalizing and externalizing problems and autism screening composite scores. Cross-sectional analyses at age 7years showed possible sex-dimorphic associations between PFAS concentrations and SDQ scores, where girls had consistently positive associations with SDQ scores whereas boys exhibited a pattern of negative or null associations. CONCLUSIONS Higher serum PFAS concentrations at ages 5- and 7-years, but not prenatally, were associated with parent-reported behavioral problems at age 7.
Collapse
Affiliation(s)
- Youssef Oulhote
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Ulrike Steuerwald
- Department of Occupational Medicine and Public Health, Faroese Hospital System, Torshavn, Faroe Islands
| | - Frodi Debes
- Department of Occupational Medicine and Public Health, Faroese Hospital System, Torshavn, Faroe Islands
| | - Pal Weihe
- Department of Occupational Medicine and Public Health, Faroese Hospital System, Torshavn, Faroe Islands
| | - Philippe Grandjean
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, USA; Institute of Public Health, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
102
|
Jeong TY, Yuk MS, Jeon J, Kim SD. Multigenerational effect of perfluorooctane sulfonate (PFOS) on the individual fitness and population growth of Daphnia magna. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 569-570:1553-1560. [PMID: 27396314 DOI: 10.1016/j.scitotenv.2016.06.249] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 06/30/2016] [Accepted: 06/30/2016] [Indexed: 05/27/2023]
Abstract
We investigated the multigenerational effect of PFOS to individual fitness (e.g., body weight, acetylcholinesterase and glutathione S-transferase) and population growth (e.g., offspring number and time to first brood) of Daphnia magna during continuous and discontinuous exposures. The intrinsic rate of population growth was also calculated. In the continuous exposure, population growth-related adverse effects were detected during all test periods, and the adverse effect tended to be weaker in later generations. On the other hand, individual fitness-related adverse effects were observed from F1 not in F0 and deteriorated as the generation number increased. These results imply that individual fitness worsens although the population growth is restored in later generations. Upon discontinuous exposure, a few but significant adverse effects were observed during the non-exposure period and highest effects were detected during the re-exposure period. This encourages the study of different exposure scenarios, which may result in unexpected and higher PFOS toxicity. Consequently, this study confirms adverse effects of PFOS to Daphnia magna in multigenerational period and supports reasons for studies linking individual fitness changes to population dynamics and covering diverse exposure scenarios to evaluate the risk of PFOS in a water environment.
Collapse
Affiliation(s)
- Tae-Yong Jeong
- Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology, 1 Oryong dong, Buk-gu, Gwangju 500-712, Republic of Korea
| | - Min-Su Yuk
- Ewha-Solvay Research and Innovation Center, 150 Bukahyun-ro, Seodaemun-gu, Seoul 120-140, Republic of Korea
| | - Junho Jeon
- Department of Environmental Engineering, Changwon National University, 20 Changwondaehak-ro, Uichang-gu, Changwon-si 641-773, Republic of Korea
| | - Sang Don Kim
- Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology, 1 Oryong dong, Buk-gu, Gwangju 500-712, Republic of Korea.
| |
Collapse
|
103
|
Long-term consequences of prenatal stress and neurotoxicants exposure on neurodevelopment. Prog Neurobiol 2016; 155:21-35. [PMID: 27236051 DOI: 10.1016/j.pneurobio.2016.05.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 02/19/2016] [Accepted: 05/24/2016] [Indexed: 11/20/2022]
Abstract
There is a large consensus that the prenatal environment determines the susceptibility to pathological conditions later in life. The hypothesis most widely accepted is that exposure to insults inducing adverse conditions in-utero may have negative effects on the development of target organs, disrupting homeostasis and increasing the risk of diseases at adulthood. Several models have been proposed to investigate the fetal origins of adult diseases, but although these approaches hold true for almost all diseases, particular attention has been focused on disorders related to the central nervous system, since the brain is particularly sensitive to alterations of the microenvironment during early development. Neurobiological disorders can be broadly divided into developmental, neurodegenerative and neuropsychiatric disorders. Even though most of these diseases share genetic risk factors, the onset of the disorders cannot be explained solely by inheritance. Therefore, current understanding presumes that the interactions of environmental input, may lead to different disorders. Among the insults that can play a direct or indirect role in the development of neurobiological disorders are stress, infections, drug abuse, and environmental contaminants. Our laboratories have been involved in the study of the neurobiological impact of gestational stress on the offspring (Dr. Antonelli's lab) and on the effect of gestational exposure to toxicants, mainly methyl mercury (MeHg) and perfluorinated compounds (PFCs) (Dr. Ceccatelli's lab). In this focused review, we will review the specialized literature but we will concentrate mostly on our own work on the long term neurodevelopmental consequences of gestational exposure to stress and neurotoxicants.
Collapse
|
104
|
Perfluorooctane sulfonate induces neuronal vulnerability by decreasing GluR2 expression. Arch Toxicol 2016; 91:885-895. [PMID: 27155986 DOI: 10.1007/s00204-016-1731-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 04/27/2016] [Indexed: 10/21/2022]
Abstract
Perfluorooctane sulfonate (PFOS) is a persistent environmental contaminant. Although studies have described PFOS-induced neurotoxicity in animal brains and neuronal cells, the molecular mechanisms of PFOS-induced neurotoxicity based on the distribution properties, especially during developmental periods, have not been clarified. To clarify the mechanisms of PFOS-induced neuronal vulnerability during developmental periods, we examined changes in glutamate receptor 2 (GluR2) expression and related neurotoxicity in PFOS-treated primary cortical neurons and neonatal rat brains. Exposure of cortical neurons to 1 μM PFOS for 9 days resulted in decreased α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit GluR2 expression, which subsequently enhanced vulnerability to glutamate by increasing intracellular Ca2+ concentrations. The brain-plasma ratio of PFOS in pups was approximately five times higher than that in dams, although there were no differences in liver-plasma ratio between dams and pups. GluR2 expression in pup cerebral cortex decreased after exposure to 2.0 mg/kg PFOS, and kainic acid induced histopathological abnormalities in PFOS-exposed pups. Our findings suggest that decreased neuronal GluR2 expression is involved in PFOS-induced neurotoxicity, especially during the fetal and neonatal periods.
Collapse
|
105
|
Vuong AM, Yolton K, Webster GM, Sjödin A, Calafat AM, Braun JM, Dietrich KN, Lanphear BP, Chen A. Prenatal polybrominated diphenyl ether and perfluoroalkyl substance exposures and executive function in school-age children. ENVIRONMENTAL RESEARCH 2016; 147:556-64. [PMID: 26832761 PMCID: PMC4821747 DOI: 10.1016/j.envres.2016.01.008] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 01/04/2016] [Accepted: 01/05/2016] [Indexed: 05/17/2023]
Abstract
Executive function is a critical behavioral trait rarely studied in relation to potential neurotoxicants. Prenatal exposure to polybrominated diphenyl ethers (PBDEs) and perfluoroalkyl substances (PFASs) has been associated with adverse neurodevelopment, but there is limited research on executive function. Data from 256 mother-child pairs in the Health Outcomes and Measures of the Environment Study, a prospective birth cohort (2003-2006, Cincinnati, OH), was used to examine maternal serum PBDEs and PFASs and executive function in children ages 5 and 8 years. Maternal serum PBDEs and PFASs were measured at 16±3 weeks gestation. Executive function was assessed with the parent-rated Behavior Rating Inventory of Executive Function (BRIEF), which yields composite measures: behavioral regulation index, metacognition index, and global executive composite. Higher BRIEF scores indicate executive function impairments. Linear mixed models and generalized estimating equations were used to estimate covariate-adjusted associations between PBDEs and PFASs and executive function. A 10-fold increase in BDE-153 was associated with poorer behavior regulation (β=3.23, 95% CI 0.60, 5.86). Higher odds of having a score ≥60 in behavior regulation (OR=3.92, 95% CI 1.76, 8.73) or global executive functioning (OR=2.34, 95% CI 1.05, 5.23) was observed with increased BDE-153. Each ln-unit increase in perfluorooctane sulfonate (PFOS) was associated with poorer behavior regulation (β=3.14, 95% CI 0.68, 5.61), metacognition (β=3.10, 95% CI 0.62, 5.58), and global executive functioning (β=3.38, 95% CI 0.86, 5.90). However, no association was observed between perfluorooctanoate (PFOA) and executive function. Prenatal exposures to BDE-153 and PFOS may be associated with executive function deficits in school-age children.
Collapse
Affiliation(s)
- Ann M Vuong
- Division of Epidemiology, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kimberly Yolton
- Division of General and Community Pediatrics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Glenys M Webster
- Child and Family Research Institute, BC Children's and Women's Hospital and Faculty of Health Sciences, Simon Fraser University, Vancouver, British Columbia, Canada
| | - Andreas Sjödin
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Joseph M Braun
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, USA
| | - Kim N Dietrich
- Division of Epidemiology, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Bruce P Lanphear
- Child and Family Research Institute, BC Children's and Women's Hospital and Faculty of Health Sciences, Simon Fraser University, Vancouver, British Columbia, Canada
| | - Aimin Chen
- Division of Epidemiology, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
106
|
Zhang Q, Zhao H, Liu W, Zhang Z, Qin H, Luo F, Leng S. Developmental perfluorooctane sulfonate exposure results in tau hyperphosphorylation and β-amyloid aggregation in adults rats: Incidence for link to Alzheimer's disease. Toxicology 2016; 347-349:40-6. [PMID: 27018931 DOI: 10.1016/j.tox.2016.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Revised: 03/21/2016] [Accepted: 03/23/2016] [Indexed: 10/22/2022]
Abstract
With regard to the defects of the cognitive function observed after developmental exposure to perfluorooctane sulfonate (PFOS), and earlier studies on the developmental neurotoxicology, the aim of this study was to investigate the role of developmental PFOS exposure in neurodegenerative disorders in later life. Two pathological hallmarks of Alzheimer's disease (AD), Tau hyperphosphorylation and β-amyloid (Aβ) aggregation, were examined. SD rats were exposed to PFOS during only prenatal and/or postnatal period. Tau mRNA and protein levels were elevated by PFOS exposure. The phosphorylation of Tau at S199, T231 and S396 sites were also increased. Besides, PFOS exposure increased the Aβ1-42 levels, as well as the amyloid precursor protein (APP) regulation. The prenatal PFOS exposure caused alterations in the involved proteins at comparable levels with the postnatal and both prenatal and postnatal exposure. Thus, it has raised some evidence that early PFOS exposure can affect processes linked to neurodegeneration, enhancing the AD pathological risk. And PFOS exposures in early life may be of particular etiologic importance of neurodegenerative diseases.
Collapse
Affiliation(s)
- Qian Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Huimin Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Wei Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Zhou Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Hui Qin
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Fang Luo
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Song Leng
- Health Management Center, The Second Hospital of Dalian Medical University, Dalian 116023, China
| |
Collapse
|
107
|
Zhang Q, Liu W, Niu Q, Wang Y, Zhao H, Zhang H, Song J, Tsuda S, Saito N. Effects of perfluorooctane sulfonate and its alternatives on long-term potentiation in the hippocampus CA1 region of adult rats in vivo. Toxicol Res (Camb) 2016; 5:539-546. [PMID: 30090368 DOI: 10.1039/c5tx00184f] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 01/05/2016] [Indexed: 11/21/2022] Open
Abstract
With the limited but ongoing usage of perfluorooctane sulfonate (PFOS), the health effects of both PFOS and its alternatives are far from being understood. Long-term potentiation (LTP) was evaluated in rats after exposure to PFOS and its alternatives, aiming to provide some evidence about their potential to affect cognitive ability. Different dosages of PFOS and alternative chemicals, including perfluorohexane sulfonate (PFHxS), perfluorobutane sulfonate (PFBS) and chlorinated polyfluorinated ether sulfonate (Cl-PFAES), were given to rats via acute intracerebroventricular injection. The field excitatory postsynaptic potential (fEPSP) amplitude of the input/output functions, paired-pulse facilitations, and LTP in vivo were recorded. PFOS and its alternatives inhibited LTP in varying degrees, without significant effects on the normal synaptic transmission. In addition, PFHxS and Cl-PFAES exhibited comparable potential to PFOS in disturbing LTP. The results suggested that acute exposure to PFOS and its alternatives impaired the synaptic plasticity by a postsynaptic rather than a presynaptic mechanism. Besides, the fEPSP amplitude of the baseline was reduced by Cl-PFAES but not by other compounds, indicating that Cl-PFAES might act in a different mode. Providing some electrophysiological evidence and the potential mechanism of the neurotoxicity induced by PFOS and its alternatives, the present study addresses further evaluation of their safety and health risks.
Collapse
Affiliation(s)
- Qian Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE) , School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , China . ; ; , +86-411-84706263
| | - Wei Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE) , School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , China . ; ; , +86-411-84706263
| | - Qiao Niu
- Department of Occupational Health , Shanxi Medical University , Taiyuan 030001 , Shanxi , China
| | - Yu Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE) , School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , China . ; ; , +86-411-84706263
| | - Huimin Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE) , School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , China . ; ; , +86-411-84706263
| | - Huifang Zhang
- Department of Occupational Health , Shanxi Medical University , Taiyuan 030001 , Shanxi , China
| | - Jing Song
- Department of Occupational Health , Shanxi Medical University , Taiyuan 030001 , Shanxi , China
| | - Shuji Tsuda
- Research Institute for Environmental Sciences and Public Health of Iwate Prefecture , Morioka , Iwate , Japan
| | - Norimitsu Saito
- Research Institute for Environmental Sciences and Public Health of Iwate Prefecture , Morioka , Iwate , Japan
| |
Collapse
|
108
|
Liu Y, Chen S, Quan X, Yu H, Zhao H, Zhang Y. Efficient Mineralization of Perfluorooctanoate by Electro-Fenton with H2O2 Electro-generated on Hierarchically Porous Carbon. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:13528-33. [PMID: 26465252 DOI: 10.1021/acs.est.5b03147] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Perfluorochemicals are environmentally persistent, bioaccumulative, and globally distributed contaminants, which present potential toxicity to both humans and ecosystems. However, rapid mineralization of perfluorochemicals with cost-effective method remains great challenges. Here, an electro-Fenton system was reported for efficient mineralization of perfluorooctanoate (PFOA), where H2O2 was electro-generated in situ from O2 reduction on hierarchically porous carbon (HPC). Benefited from the high H2O2 production rate (41.2-14.0 mM/h) of HPC, PFOA (50 mg/L) was rapidly degraded by electro-Fenton with first-order kinetic constants of 1.15-0.69 h(-1) at low potential (-0.4 V) in a wide range of pH (2-6). Meanwhile, PFOA was effectively mineralized, as revealed by a total organic carbon removal efficiency of 90.7-70.4% (-0.4 V, pH 2-6, 4 h). Moreover, the current efficiency of this electro-Fenton system for PFOA degradation was 1 order of magnitude higher than those of electrochemical oxidation. On the basis of the intermediate analysis, we proposed a possible mechanism for PFOA degradation: PFOA lost one electron to the anode and got decarboxylated. The formed perfluoroalkyl radical was mainly oxidized by hydroxyl radical, resulting in the formation of shorter chain perfluorocarboxylic acid, which followed the same reaction cycle as PFOA until it was mineralized.
Collapse
Affiliation(s)
- Yanming Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology , Dalian 116024, China
| | - Shuo Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology , Dalian 116024, China
| | - Xie Quan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology , Dalian 116024, China
| | - Hongtao Yu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology , Dalian 116024, China
| | - Huimin Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology , Dalian 116024, China
| | - Yaobin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology , Dalian 116024, China
| |
Collapse
|
109
|
Olufsen M, Arukwe A. Endocrine, biotransformation, and oxidative stress responses in salmon hepatocytes exposed to chemically induced hypoxia and perfluorooctane sulfonamide (PFOSA), given singly or in combination. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:17350-17366. [PMID: 25471711 DOI: 10.1007/s11356-014-3847-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 11/10/2014] [Indexed: 06/04/2023]
Abstract
The effects of hypoxia and perfluorooctane sulfonamide (PFOSA), given singly and also in combination on endocrine, biotransformation, and oxidative stress responses were investigated in primary culture of salmon hepatocytes. Hypoxia was induced chemically using cobalt chloride (CoCl2) or deferroxamine (DFO). Primary culture of salmon hepatocytes were exposed to either CoCl2 (150 μM) or DFO (100 μM), in the presence or absence of PFOSA at 0, 25, and 50 μM for 24 and 48 h. Changes in transcript levels were analyzed by quantitative (real-time) PCR using gene-specific primers. CYP, catalase, GST, and SOD activities were analyzed spectrophotometrically. The hif-1α mRNA was used to validate cellular hypoxic condition, showing significantly induced transcription after 48-h exposure to DFO and CoCl2. Our data show that transcript levels for endocrine (ERα, Vtg, and Zrp), biotransformation (cyp1a, cyp3a, gst, and udpgt), and oxidative stress responses (catalase (cat), glutathione peroxidase (gpx), and glutathione reductase (gr)) were differentially modulated by PFOSA and hypoxia alone, and these effects were dependent on the response parameters and time of exposure. In combined exposure scenarios, the observed effects were apparently hypoxia-dependent. However, the observed effects at transcript levels were not concomitant with those at functional protein levels, further emphasizing the potential differences that may exist between these biological levels. Biplot of principal component analysis (PCA) showed grouping of response variables after 48 h of exposure. The distribution of observations and variables indicate that PFOSA had little effect on most response variables, while clustering show a unique association between a given hypoxia condition (i.e., CoCl2 or DFO) in combination with PFOSA and transcripts, proteins, or enzyme activities.
Collapse
Affiliation(s)
- Marianne Olufsen
- Department of Biology, Norwegian University of Science and Technology (NTNU), Høyskoleringen 5, 7491, Trondheim, Norway
| | - Augustine Arukwe
- Department of Biology, Norwegian University of Science and Technology (NTNU), Høyskoleringen 5, 7491, Trondheim, Norway.
| |
Collapse
|
110
|
Forns J, Iszatt N, White RA, Mandal S, Sabaredzovic A, Lamoree M, Thomsen C, Haug LS, Stigum H, Eggesbø M. Perfluoroalkyl substances measured in breast milk and child neuropsychological development in a Norwegian birth cohort study. ENVIRONMENT INTERNATIONAL 2015; 83:176-82. [PMID: 26159671 DOI: 10.1016/j.envint.2015.06.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 06/25/2015] [Accepted: 06/25/2015] [Indexed: 05/04/2023]
Abstract
Perfluoroalkyl substances (PFASs) are chemicals with potential neurotoxic effects although the current evidence is still limited. This study investigated the association between perinatal exposure to perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) and neuropsychological development assessed at 6, 12 and 24 months. We measured PFOS and PFOA in breast milk samples collected one month after delivery by mothers of children participating in the HUMIS study (Norway). Cognitive and psychomotor development was measured at 6 and at 24 months using the Ages and Stages Questionnaire (ASQ-II). Behavioral development was assessed using the infant-toddler symptom checklist (ITSC) at 12 and at 24 months. Weighted logistic regression and weighted negative binomial regression models were applied to analyze the associations between PFASs and ASQ-II and ITSC, respectively. The median concentration of PFOS was 110 ng/L, while the median for PFOA was 40 ng/L. We did not detect an increased risk of having an abnormal score in ASQ-II at 6 months or 24 months. Moreover, no consistent increase in behavioral problems assessed at 12 and 24 months by ITSC questionnaire was detected. We observed no association between perinatal PFOS and PFOA exposure and early neuropsychological development. Further longitudinal studies are needed to confirm the effects of these compounds on neuropsychological development in older children.
Collapse
Affiliation(s)
- J Forns
- Department of Genes and Environment, Division of Epidemiology, Norwegian Institute of Public Health, Oslo, Norway
| | - N Iszatt
- Department of Genes and Environment, Division of Epidemiology, Norwegian Institute of Public Health, Oslo, Norway
| | - R A White
- Department of Genes and Environment, Division of Epidemiology, Norwegian Institute of Public Health, Oslo, Norway
| | - S Mandal
- Department of Genes and Environment, Division of Epidemiology, Norwegian Institute of Public Health, Oslo, Norway
| | - A Sabaredzovic
- Department of Exposure and Risk Assessment, Division of Environmental Medicine, Norwegian Institute of Public Health, Oslo, Norway
| | - M Lamoree
- Institute for Environmental Studies, Faculty of Earth and Life Sciences, VU University, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - C Thomsen
- Department of Exposure and Risk Assessment, Division of Environmental Medicine, Norwegian Institute of Public Health, Oslo, Norway
| | - L S Haug
- Department of Exposure and Risk Assessment, Division of Environmental Medicine, Norwegian Institute of Public Health, Oslo, Norway
| | - H Stigum
- Department of Chronic Diseases, Norwegian Institute of Public Health, Oslo, Norway
| | - M Eggesbø
- Department of Genes and Environment, Division of Epidemiology, Norwegian Institute of Public Health, Oslo, Norway.
| |
Collapse
|
111
|
Hallgren S, Fredriksson A, Viberg H. More signs of neurotoxicity of surfactants and flame retardants - Neonatal PFOS and PBDE 99 cause transcriptional alterations in cholinergic genes in the mouse CNS. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 40:409-416. [PMID: 26254212 DOI: 10.1016/j.etap.2015.06.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 06/08/2015] [Indexed: 06/04/2023]
Abstract
Maternally and lactionally transferred persistent organic pollutants may interfere with CNS development. Here, 10-day-old male mice were exposed to single oral doses of PFOS (perflourooctanosulphonate) or PBDE 99 (2,2',4,4',5-penta-bromodiphenyl ether), and examined for changes in cholinergic gene transcription in the CNS 24h and 7 weeks later. 24h after exposure qPCR analyses revealed decreased transcription of nAChR-β2 and AChE in cortex, and increased mAChR-5 in hippocampus of PFOS treated mice. Neonatal PFOS treatment altered spontaneous behaviour at 2 months of age but did not affect gene transcription in adults. At 2 months of age neonatally PBDE 99 treated mice had altered spontaneous behaviour, and cortical transcription of AChE, nAChR-α4, nAChR-β2 and mAChR-5 were elevated. Our results indicate that PFOS and PBDE 99 affects the developing central cholinergic system by altering gene transcription in cortex and hippocampus, which may in part account for mechanisms causing changes in spontaneous behaviour.
Collapse
Affiliation(s)
- Stefan Hallgren
- Department of Environmental Toxicology, Uppsala University, Norbyvägen 18A, S-752 36 Uppsala, Sweden.
| | - Anders Fredriksson
- Department of Environmental Toxicology, Uppsala University, Norbyvägen 18A, S-752 36 Uppsala, Sweden
| | - Henrik Viberg
- Department of Environmental Toxicology, Uppsala University, Norbyvägen 18A, S-752 36 Uppsala, Sweden
| |
Collapse
|
112
|
Liew Z, Ritz B, von Ehrenstein OS, Bech BH, Nohr EA, Fei C, Bossi R, Henriksen TB, Bonefeld-Jørgensen EC, Olsen J. Attention deficit/hyperactivity disorder and childhood autism in association with prenatal exposure to perfluoroalkyl substances: a nested case-control study in the Danish National Birth Cohort. ENVIRONMENTAL HEALTH PERSPECTIVES 2015; 123:367-73. [PMID: 25616253 PMCID: PMC4383573 DOI: 10.1289/ehp.1408412] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 12/18/2014] [Indexed: 05/17/2023]
Abstract
BACKGROUND Perfluoroalkyl substances (PFASs) are persistent pollutants found to be endocrine disruptive and neurotoxic in animals. Positive correlations between PFASs and neurobehavioral problems in children were reported in cross-sectional data, but findings from prospective studies are limited. OBJECTIVES We investigated whether prenatal exposure to PFASs is associated with attention deficit/hyperactivity disorder (ADHD) or childhood autism in children. METHODS Among 83,389 mother-child pairs enrolled in the Danish National Birth Cohort during 1996-2002, we identified 890 ADHD cases and 301 childhood autism cases from the Danish National Hospital Registry and the Danish Psychiatric Central Registry. From this cohort, we randomly selected 220 cases each of ADHD and autism, and we also randomly selected 550 controls frequency matched by child's sex. Sixteen PFASs were measured in maternal plasma collected in early or mid-pregnancy. We calculated risk ratios (RRs) using generalized linear models, taking into account sampling weights. RESULTS Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) were detected in all samples; four other PFASs were quantified in ≥ 90% of the samples. We did not find consistent evidence of associations between mother's PFAS plasma levels and ADHD [per natural log nanograms per milliliter increase: PFOS RR = 0.87 (95% CI: 0.74, 1.02); PFOA RR = 0.98 (95% CI: 0.82, 1.16)] or autism [per natural log nanograms per milliliter increase: PFOS RR = 0.92 (95% CI: 0.69, 1.22); PFOA RR = 0.98 (95% CI: 0.73, 1.31)]. We found positive as well as negative associations between higher PFAS quartiles and ADHD in models that simultaneously adjusted for all PFASs, but these estimates were imprecise. CONCLUSIONS In this study we found no consistent evidence to suggest that prenatal PFAS exposure increases the risk of ADHD or childhood autism in children.
Collapse
Affiliation(s)
- Zeyan Liew
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, California, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Eggers Pedersen K, Basu N, Letcher R, Greaves AK, Sonne C, Dietz R, Styrishave B. Brain region-specific perfluoroalkylated sulfonate (PFSA) and carboxylic acid (PFCA) accumulation and neurochemical biomarker responses in east Greenland polar bears (Ursus maritimus). ENVIRONMENTAL RESEARCH 2015; 138:22-31. [PMID: 25682255 DOI: 10.1016/j.envres.2015.01.015] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 01/16/2015] [Accepted: 01/20/2015] [Indexed: 05/24/2023]
Abstract
Perfluoroalkyl substances (PFASs) is a growing class of contaminants in the Arctic environment, and include the established perfluorinated sulfonates (PFSAs; especially perfluorooctane sulfonate (PFOS)) and carboxylic acids (PFCAs). PFSAs and PFCAs of varying chain length have been reported to bioaccumulate in lipid rich tissues of the brain among other tissues such as liver, and can reach high concentrations in top predators including the polar bear. PFCA and PFSA bioaccummulation in the brain has the potential to pose neurotoxic effects and therefore we conducted a study to investigate if variations in neurochemical transmitter systems i.e. the cholinergic, glutaminergic, dopaminergic and GABAergic, could be related to brain-specific bioaccumulation of PFASs in East Greenland polar bears. Nine brain regions from nine polar bears were analyzed for enzyme activity (monoamine oxidase (MAO), acetylcholinesterase (AChE) and glutamine synthetase (GS)) and receptor density (dopamine-2 (D2), muscarinic cholinergic (mAChR) and gamma-butyric acid type A (GABA-A)) along with PFSA and PFCA concentrations. Average brain ∑PFSA concentration was 25ng/g ww where PFOS accounted for 91%. Average ∑PFCA concentration was 88ng/g ww where PFUnDA, PFDoDA and PFTrDA combined accounted for 79%. The highest concentrations of PFASs were measured in brain stem, cerebellum and hippocampus. Correlative analyses were performed both across and within brain regions. Significant positive correlations were found between PFASs and MAO activity in occipital lobe (e.g. ∑PFCA; rp=0.83, p=0.041, n=6) and across brain regions (e.g. ∑PFCA; rp=0.47, p=0.001, ∑PFSA; rp=0.44, p>0.001; n=50). GABA-A receptor density was positively correlated with two PFASs across brain regions (PFOS; rp=0.33, p=0.02 and PFDoDA; rp=0.34, p=0.014; n=52). Significant negative correlations were found between mAChR density and PFASs in cerebellum (e.g. ∑PFCA; rp=-0.95, p=0.013, n=5) and across brain regions (e.g. ∑PFCA; rp=-0.40, p=0.003, ∑PFSA; rp=-0.37, p=0.007; n=52). AChE activity and D2 density were negatively correlated with single PFCAs in several brain regions, whereas GS activity was positively correlated with PFASs primarily in occipital lobe. Results from the present study support the hypothesis that PFAS concentrations in polar bears from East Greenland have exceeded the threshold limits for neurochemical alterations. It is not known whether the observed alterations in neurochemical signaling are currently having negative effects on neurochemistry in East Greenland polar bears. However given the importance of these systems in cognitive processes and motor function, the present results indicate an urgent need for a better understanding of neurochemical effects of PFAS exposure to wildlife.
Collapse
Affiliation(s)
- Kathrine Eggers Pedersen
- Toxicology Laboratory, Section of Advanced Drug Analysis, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Niladri Basu
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Quebec, Canada
| | - Robert Letcher
- Wildlife and Landscape Science Directorate, Science and Technology Branch, Environment Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON, Canada
| | - Alana K Greaves
- Wildlife and Landscape Science Directorate, Science and Technology Branch, Environment Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON, Canada
| | - Christian Sonne
- Aarhus University, Faculty of Science and Technology, Department of Bioscience, Arctic Research Centre, Roskilde, Denmark
| | - Rune Dietz
- Aarhus University, Faculty of Science and Technology, Department of Bioscience, Arctic Research Centre, Roskilde, Denmark
| | - Bjarne Styrishave
- Toxicology Laboratory, Section of Advanced Drug Analysis, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
114
|
Perfluoroalkyl substances and ovarian hormone concentrations in naturally cycling women. Fertil Steril 2015; 103:1261-70.e3. [PMID: 25747128 DOI: 10.1016/j.fertnstert.2015.02.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/23/2015] [Accepted: 02/02/2015] [Indexed: 01/09/2023]
Abstract
OBJECTIVE To examine associations between environmental exposure to perfluoroalkyl substances (PFASs) and ovarian hormone concentrations in naturally cycling women. DESIGN E2 and P were measured in saliva samples collected daily for a single menstrual cycle and concentrations of PFASs (including perfluoroctane sulfonate [PFOS] and perfluoroctanoic acid) were measured in serum samples collected during the same cycle. SETTING Not applicable. PATIENT(S) A total of 178 healthy, naturally cycling women, aged 25-35 years. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Mean follicular E2 (cycle days -7 to -1, where 0 is the day of ovulation); mean luteal P (cycle days +2 to 10). RESULT(S) Among nulliparous, but not parous women, PFOS concentrations were inversely associated with E2 (β = -0.025, 95% CI -0.043, -0.007) and P (β = -0.027, 95% CI -0.048, -0.007). Similar, but weaker results were observed for perfluorooctanesulfonic acid. No associations were observed between other PFASs (including perfluoroctanoic acid) and ovarian steroid concentrations, nor were any associations noted in parous women. CONCLUSION(S) Our results demonstrate that PFOS and perfluorooctanesulfonic acid may be associated with decreased production of E2 and P in reproductive age women. These results suggest a possible mechanism by which PFASs affect women's health, and underscore the importance of parity in research on PFASs and women's reproductive health.
Collapse
|
115
|
Fu Z, Wang Y, Wang Z, Xie H, Chen J. Transformation Pathways of Isomeric Perfluorooctanesulfonate Precursors Catalyzed by the Active Species of P450 Enzymes: In Silico Investigation. Chem Res Toxicol 2015; 28:482-9. [DOI: 10.1021/tx500470f] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Zhiqiang Fu
- Key
Laboratory of Industrial Ecology and Environmental Engineering (MOE),
School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
- State
Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of
Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yong Wang
- State
Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of
Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhongyu Wang
- Key
Laboratory of Industrial Ecology and Environmental Engineering (MOE),
School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Hongbin Xie
- Key
Laboratory of Industrial Ecology and Environmental Engineering (MOE),
School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jingwen Chen
- Key
Laboratory of Industrial Ecology and Environmental Engineering (MOE),
School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
116
|
Liew Z, Ritz B, Bonefeld-Jørgensen EC, Henriksen TB, Nohr EA, Bech BH, Fei C, Bossi R, von Ehrenstein OS, Streja E, Uldall P, Olsen J. Prenatal exposure to perfluoroalkyl substances and the risk of congenital cerebral palsy in children. Am J Epidemiol 2014; 180:574-81. [PMID: 25139206 DOI: 10.1093/aje/kwu179] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Perfluoroalkyl substances (PFASs) are persistent pollutants and endocrine disruptors that may affect fetal brain development. We investigated whether prenatal exposure to PFASs increases the risk of congenital cerebral palsy (CP). The source population for this study includes 83,389 liveborn singletons and mothers enrolled in the Danish National Birth Cohort during 1996-2002. We identified 156 CP cases by linking the cohort to the Danish National Cerebral Palsy Register, and we randomly selected 550 controls using a case-cohort design. We measured 16 PFASs in maternal plasma collected in early or midpregnancy, and 6 PFASs were quantifiable in more than 90% of the samples. We found a higher risk of CP in boys with higher maternal PFAS levels; per 1-unit (natural-log ng/mL) increase, the risk ratios were 1.7 (95% confidence interval: 1.0, 2.8) for perfluorooctane sulfonate and 2.1 (95% confidence interval: 1.2, 3.6) for perfluorooctanoic acid. We also observed a dose-response pattern of CP risk in boys per quartile of maternal level of perfluorooctane sulfonate and perfluorooctanoic acid (P for trend < 0.01). PFASs were associated with both unilateral and bilateral spastic CP subphenotypes. No association between PFASs and CP was found in girls. Prenatal exposures to PFASs may increase the risk of CP in boys, but the finding is novel and replication is needed.
Collapse
|
117
|
Lee YJ, Choi SY, Yang JH. NMDA receptor-mediated ERK 1/2 pathway is involved in PFHxS-induced apoptosis of PC12 cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 491-492:227-34. [PMID: 24534200 DOI: 10.1016/j.scitotenv.2014.01.114] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Revised: 01/29/2014] [Accepted: 01/29/2014] [Indexed: 05/15/2023]
Abstract
Perfluorohexanesulfonate (PFHxS) is one of the major perfluoroalkyl compounds (PFCs) found in human blood and its possible neurotoxicity has been suggested. However, the neuronal responses to PFHxS are not much known. Many studies have demonstrated that the early exposure to environmental chemicals increases the risk of neurodegenerative diseases such as Parkinson's disease in later life. In this study, the effects of PFHxS on the neuronal cell death and the underlying mechanisms were examined using PC12 cells as a model of dopaminergic neuron. The treatment with PFHxS reduced cell viability in a dose-dependent manner. PFHxS increased cell apoptosis which was measured by caspase-3 activity and TUNEL staining. MK801, a NMDA receptor antagonist reduced PFHxS-induced apoptosis. PFHxS increased the activations of ERK1/2, JNK and p38 MAPK with different temporal activations. The treatment with PD98059, an ERK inhibitor, significantly reduced apoptosis, whereas SB203580, a p38 MAPK inhibitor, had no effect. JNK inhibition by SP600125 significantly increased apoptosis. PFHxS exposure also increased ROS formation, which was completely blocked by antioxidants, Trolox or N-acetylcysteine (NAC). However, neither Trolox nor NAC reduced PFHxS-increased apoptosis, suggesting that ROS may not be a critical mediator for PFHxS-induced apoptosis of cells. Moreover, ERK activation induced by PFHxS was blocked by MK801 but not antioxidants. Taken together, these results have demonstrated that PFHxS induces the apoptosis of dopaminergic neuronal cells, where NMDA receptor-mediated ERK pathway plays a pro-apoptotic role and JNK plays an anti-apoptotic role. Our results may contribute to understanding cellular mechanisms for PFHxS-induced neurotoxicity.
Collapse
Affiliation(s)
- Youn Ju Lee
- Department of Pharmacology/Toxicology, School of Medicine, Catholic University of Daegu, Daegu, Republic of Korea.
| | - So-Young Choi
- Department of Pharmacology/Toxicology, School of Medicine, Catholic University of Daegu, Daegu, Republic of Korea
| | - Jae H Yang
- Department of Pharmacology/Toxicology, School of Medicine, Catholic University of Daegu, Daegu, Republic of Korea
| |
Collapse
|
118
|
Bonefeld-Jørgensen EC, Long M, Fredslund SO, Bossi R, Olsen J. Breast cancer risk after exposure to perfluorinated compounds in Danish women: a case-control study nested in the Danish National Birth Cohort. Cancer Causes Control 2014; 25:1439-48. [PMID: 25148915 PMCID: PMC4215104 DOI: 10.1007/s10552-014-0446-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 07/18/2014] [Indexed: 01/30/2023]
Abstract
OBJECTIVE Animal studies have indicated that perfluoroalkylated substances (PFAS) increase mammary fibroadenomas. A recent case-control study in Greenlandic Inuit women showed an association between the PFAS serum levels and breast cancer (BC) risk. The present study evaluates the association between serum levels of PFAS in pregnant Danish women and the risk of premenopausal BC during a follow-up period of 10-15 years using prospectively collected exposure data during the pregnancy. METHODS Questionnaire and blood samples were taken during 1996-2002 and at the end of follow-up, all 250 BC cases and 233 frequency-matched controls were chosen for further analyses. Serum levels of ten perfluorocarboxylated acids, five perfluorosulfonated acids, and one sulfonamide (perflurooctane-sulfonamide, PFOSA) were determined by liquid chromatography-tandem mass spectrometry with electrospray ionization in negative mode. Computer-assisted telephone interviews taken during pregnancy provided data on potential confounders. RESULTS Weak positive and negative insignificant associations were found between BC risk and levels of perfluorooctane sulfonamide (PFOSA) and perfluorohexanesulfonate (PFHxS), respectively. Grouped into quintile, the BC cases had a significant positive association with PFOSA at the highest quintiles and a negatively association for PFHxS. Sensitivity analyses excluding uncertain cases caused stronger data for PFOSA and weaker for PFHxS. No further significant associations were observed. CONCLUSIONS This study does not provide convincing evidence for a causal link between PFAS exposures and premenopausal BC risks 10-15 years later.
Collapse
Affiliation(s)
- Eva C Bonefeld-Jørgensen
- Department of Public Health, Centre for Arctic Health & Cellular and Molecular Toxicology, Aarhus University, Aarhus, Denmark,
| | | | | | | | | |
Collapse
|
119
|
Osuna CE, Grandjean P, Weihe P, El-Fawal HAN. Autoantibodies associated with prenatal and childhood exposure to environmental chemicals in Faroese children. Toxicol Sci 2014; 142:158-66. [PMID: 25124724 DOI: 10.1093/toxsci/kfu163] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Methylmercury, polychlorinated biphenyls (PCBs), and perfluorinated compounds (PFCs) are ubiquitous and persistent environmental chemicals with known or suspected toxic effects on the nervous system and the immune system. Animal studies have shown that tissue damage can elicit production of autoantibodies. However, it is not known if autoantibodies similarly will be generated and detectable in humans following toxicant exposures. Therefore, we conducted a pilot study to investigate if autoantibodies specific for neural and non-neural antigens could be detected in children at age 7 years who have been exposed to environmental chemicals. Both prenatal and age-7 exposures to mercury, PCBs, and PFCs were measured in 38 children in the Faroe Islands who were exposed to widely different levels of these chemicals due to their seafood-based diet. Concentrations of IgM and IgG autoantibodies specific to both neural (neurofilaments, cholineacetyltransferase, astrocyte glial fibrillary acidic protein, and myelin basic protein) and non-neural (actin, desmin, and keratin) antigens were measured and the associations of these autoantibody concentrations with chemical exposures were assessed using linear regression. Age-7 blood-mercury concentrations were positively associated with titers of multiple neural- and non-neural-specific antibodies, mostly of the IgM isotype. Additionally, prenatal blood-mercury and -PCBs were negatively associated with anti-keratin IgG and prenatal PFOS was negatively associated with anti-actin IgG. These exploratory findings demonstrate that autoantibodies can be detected in the peripheral blood following exposure to environmental chemicals. The unexpected association of exposures with antibodies specific for non-neural antigens suggests that these chemicals may have toxicities that have not yet been recognized.
Collapse
Affiliation(s)
- Christa E Osuna
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts 02215 Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215
| | - Philippe Grandjean
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts 02215 Department of Environmental Medicine, Institute of Public Health, University of Southern Denmark, Winsloewparken 17, DK-5000 Odense, Denmark
| | - Pál Weihe
- Department of Occupational Medicine and Public Health, Faroese Hospital System, Tórshavn, Faroe Islands
| | - Hassan A N El-Fawal
- Neurotoxicology Laboratory, Albany College of Pharmacy and Health Sciences, Albany, New York 12208
| |
Collapse
|
120
|
Olufsen M, Cangialosi MV, Arukwe A. Modulation of membrane lipid composition and homeostasis in salmon hepatocytes exposed to hypoxia and perfluorooctane sulfonamide, given singly or in combination. PLoS One 2014; 9:e102485. [PMID: 25047721 PMCID: PMC4105415 DOI: 10.1371/journal.pone.0102485] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 06/18/2014] [Indexed: 12/19/2022] Open
Abstract
The relative importance of environmental hypoxia due to global climate change on organismal ability to adapt to chemical insult and/or mechanisms of these responses is not well understood. Therefore, we have studied the effects of combined exposure to perfluorooctane sulfonamide (PFOSA) and chemically induced hypoxia on membrane lipid profile and homeostasis. Primary salmon hepatocytes were exposed to PFOSA at 0, 25 and 50 µM singly or in combination with either cobalt chloride (CoCl2: 0 and 150 µM) or deferroxamine (DFO: 0 and 100 µM) for 24 and 48 h. CoCl2 and DFO were used to induce cellular hypoxia because these two chemicals have been commonly used in animal experiments for this purpose and have been shown to increase hypoxia-inducible factor 1-alpha (HIF-1α) and vascular endothelial growth factor (VEGF) levels. Fatty acid (FA) profiles were determined by GC-MS, while gene expression patterns were determined by quantitative PCR. Hypoxic condition was confirmed with time-related increases of HIF-1α mRNA levels in CoCl2 and DFO exposed cells. In general, significant alterations of genes involved in lipid homeostasis were predominantly observed after 48 h exposure. Gene expression analysis showed that biological responses related to peroxisome proliferation (peroxisome proliferator-activated receptors (PPARs) and acyl coenzyme A (ACOX)) and FA desaturation (Δ5- and Δ6-desaturases: FAD5 and FAD6, respectively) and elongation (FAE) were elevated slightly by single exposure (i.e. either PFOSA, CoCl2 or DFO exposure alone), and these responses were potentiated in combined exposure conditions. Principal component analysis (PCA) showed a clustering of peroxisome proliferation responses at transcript levels and FA desaturation against membrane FAs levels whose changes were explained by PFOSA and chemically induced hypoxia exposures. Overall, our data show that most of the observed responses were stronger in combined stressor exposure conditions, compared to individual stressor exposure. In general, our data show that hypoxia may, singly or in combination with PFOSA produce deleterious health, physiological and developmental consequences through the alteration of membrane lipid profile in organisms.
Collapse
Affiliation(s)
- Marianne Olufsen
- Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Maria V. Cangialosi
- Department of Food and Environmental Science “Prof. G. Stagno d’Alcontres”, University of Messina, Messina, Italy
| | - Augustine Arukwe
- Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
121
|
Ode A, Källén K, Gustafsson P, Rylander L, Jönsson BAG, Olofsson P, Ivarsson SA, Lindh CH, Rignell-Hydbom A. Fetal exposure to perfluorinated compounds and attention deficit hyperactivity disorder in childhood. PLoS One 2014; 9:e95891. [PMID: 24760015 PMCID: PMC3997434 DOI: 10.1371/journal.pone.0095891] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 03/31/2014] [Indexed: 11/22/2022] Open
Abstract
Background The association between exposure to perfluorinated compounds (PFCs) and attention deficit hyperactivity disorder (ADHD) diagnosis has been sparsely investigated in humans and the findings are inconsistent. Objectives A matched case-control study was conducted to investigate the association between fetal exposure to PFCs and ADHD diagnosis in childhood. Methods The study base comprised children born in Malmö, Sweden, between 1978 and 2000 that were followed up until 2005. Children with ADHD (n = 206) were identified at the Department of Child and Adolescent Psychiatry. Controls (n = 206) were selected from the study base and were matched for year of birth and maternal country of birth. PFC concentrations were measured in umbilical cord serum samples. The differences of the PFC concentrations between cases and controls were investigated using Wilcoxon's paired test. Possible threshold effects (above the upper quartile for perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) and above limit of detection [LOD] for perfluorononanoic acid (PFNA)) were evaluated by conditional logistic regression. Results The median umbilical cord serum concentrations of PFOS were 6.92 ng/ml in the cases and 6.77 ng/ml in the controls. The corresponding concentrations of PFOA were 1.80 and 1.83 ng/ml. No associations between PFCs and ADHD were observed. Odds ratios adjusted for smoking status, parity, and gestational age were 0.81 (95% confidence interval [CI] 0.50 to 1.32) for PFOS, 1.07 (95% CI 0.67 to 1.7) for PFOA, and 1.1 (95% CI 0.75 to 1.7) for PFNA. Conclusions The current study revealed no support for an association between fetal exposure to PFOS, PFOA, or PFNA and ADHD.
Collapse
Affiliation(s)
- Amanda Ode
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
- * E-mail:
| | - Karin Källén
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Peik Gustafsson
- Child and Adolescent Psychiatry Unit, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Lars Rylander
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Bo A. G. Jönsson
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Per Olofsson
- Obstetrics and Gynecology Unit, Department of Clinical Sciences, Skåne University Hospital, Lund University, Malmö, Sweden
| | - Sten A. Ivarsson
- Department of Clinical Sciences, Unit of Pediatric Endocrinology, Lund University/Clinical Research Centre (CRC), Malmö, Sweden
| | - Christian H. Lindh
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Anna Rignell-Hydbom
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| |
Collapse
|
122
|
Spulber S, Kilian P, Wan Ibrahim WN, Onishchenko N, Ulhaq M, Norrgren L, Negri S, Di Tuccio M, Ceccatelli S. PFOS induces behavioral alterations, including spontaneous hyperactivity that is corrected by dexamfetamine in zebrafish larvae. PLoS One 2014; 9:e94227. [PMID: 24740186 PMCID: PMC3989208 DOI: 10.1371/journal.pone.0094227] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 03/10/2014] [Indexed: 01/22/2023] Open
Abstract
Perfluorooctane sulfonate (PFOS) is a widely spread environmental contaminant. It accumulates in the brain and has potential neurotoxic effects. The exposure to PFOS has been associated with higher impulsivity and increased ADHD prevalence. We investigated the effects of developmental exposure to PFOS in zebrafish larvae, focusing on the modulation of activity by the dopaminergic system. We exposed zebrafish embryos to 0.1 or 1 mg/L PFOS (0.186 or 1.858 µM, respectively) and assessed swimming activity at 6 dpf. We analyzed the structure of spontaneous activity, the hyperactivity and the habituation during a brief dark period (visual motor response), and the vibrational startle response. The findings in zebrafish larvae were compared with historical data from 3 months old male mice exposed to 0.3 or 3 mg/kg/day PFOS throughout gestation. Finally, we investigated the effects of dexamfetamine on the alterations in spontaneous activity and startle response in zebrafish larvae. We found that zebrafish larvae exposed to 0.1 mg/L PFOS habituate faster than controls during a dark pulse, while the larvae exposed to 1 mg/L PFOS display a disorganized pattern of spontaneous activity and persistent hyperactivity. Similarly, mice exposed to 0.3 mg/kg/day PFOS habituated faster than controls to a new environment, while mice exposed to 3 mg/kg/day PFOS displayed more intense and disorganized spontaneous activity. Dexamfetamine partly corrected the hyperactive phenotype in zebrafish larvae. In conclusion, developmental exposure to PFOS in zebrafish induces spontaneous hyperactivity mediated by a dopaminergic deficit, which can be partially reversed by dexamfetamine in zebrafish larvae.
Collapse
Affiliation(s)
- Stefan Spulber
- Dept of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Pascal Kilian
- Dept of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Wan Norhamidah Wan Ibrahim
- Dept of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | | | - Mazhar Ulhaq
- Department of Biomedicine and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Leif Norrgren
- Department of Biomedicine and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Sara Negri
- Environmental Research Center, Salvatore Maugeri Foundation – IRCCS, Pavia, Italy
| | - Marcello Di Tuccio
- Environmental Research Center, Salvatore Maugeri Foundation – IRCCS, Pavia, Italy
| | | |
Collapse
|
123
|
Cao J, Wei Y, Cheng Y, Guo LH. Study on the binding interaction between perfluoroalkyl acids and DNA. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:8355-8363. [PMID: 23645002 DOI: 10.1007/s11356-013-1760-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Accepted: 04/22/2013] [Indexed: 06/02/2023]
Abstract
Perfluoroalkyl acids (PFAAs) are carcinogens, and elucidating their DNA binding properties is crucial for understanding PFAA genotoxicity. We have investigated the binding mode and affinity of five PFAAs to seven DNA molecules using fluorescence displacement and molecular docking analysis. DNA conformational changes upon PFAA binding were also examined by circular dichroism (CD). The data revealed that DNA intercalation was the dominant interaction mode of the PFAAs; however, these molecules also bound to grooves. The dissociation constants for the PFAAs ranged between 0.11 and 1,217.14 μM, and between 3.46 and 2,141.21 μM for DNA intercalation and groove binding, respectively. PFAAs that contain longer carbon chains had stronger DNA intercalation affinities. Binding to DNA was stronger for perfluoroalkyl sulfonates than for perfluorcarboxyl acids that contain the same number of carbons. This observation is postulated to arise from the presence of more fluorine and oxygen atoms in perfluoroalkyl sulfonates acting as hydrogen bond donors that facilitate stronger DNA intercalation. The binding of the PFAAs to DNA showed some CT-DNA sequence selectivity. Molecular docking analysis confirmed the DNA binding mode and affinities of the PFAAs. CD analysis revealed that the PFAAs weakened DNA base stacking and loosened DNA helicity. The present study has improved our understanding of the formation of PFAA-DNA adducts.
Collapse
Affiliation(s)
- Jie Cao
- AQSIQ Key Laboratory of Drug Detection, Fujian International Travel Healthcare Center, Fujian Entry-Exit Inspection and Quarantine Bureau of P.R.C., Fujian, 350001, China
| | | | | | | |
Collapse
|
124
|
|
125
|
Galatius A, Bossi R, Sonne C, Rigét FF, Kinze CC, Lockyer C, Teilmann J, Dietz R. PFAS profiles in three North Sea top predators: metabolic differences among species? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:8013-20. [PMID: 23532533 DOI: 10.1007/s11356-013-1633-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 03/12/2013] [Indexed: 05/03/2023]
Abstract
Profiles of seven compounds of perfluoro-alkyl substances (PFASs) were compared among three species of top predators from the Danish North Sea: the white-beaked dolphin (Lagenorhynchus albirostris), the harbor porpoise (Phocoena phocoena), and the harbor seal (Phoca vitulina). The seals had higher total burdens (757.8 ng g(-1) ww) than the dolphins (439.9 ng g(-1) ww) and the porpoises (355.8 ng g(-1) ww), probably a reflection of feeding closer to the shore and thus contamination sources. The most striking difference among the species was the relative contribution of perfluorooctanesulfonamide (PFOSA) to the profiles; the seals (0.1%) had much lower levels than porpoises (8.3%) and dolphins (26.0%). In combination with the values obtained from the literature, this result indicates that Carnivora species including Pinnipedia have a much higher capacity of transforming PFOSA to perfluorooctane sulfonic acid (PFOS) than cetacean species. Another notable difference among the species was that the two smaller species (seals and porpoises) with supposedly higher metabolic rates had lower concentrations of the perfluorinated carboxylic acids, which are generally more easily excreted than perfluorinated sulfonamides. Species-specific characteristics should be recognized when PFAS contamination in marine mammals is investigated, for example, several previous studies of PFASs in cetaceans have not quantified PFOSA.
Collapse
Affiliation(s)
- Anders Galatius
- Department of Bioscience, Aarhus University, Frederiksborgvej 399, DK-4000, Roskilde, Denmark,
| | | | | | | | | | | | | | | |
Collapse
|
126
|
Choi SK, Kim JH, Park JK, Lee KM, Kim E, Jeon WB. Cytotoxicity and inhibition of intercellular interaction in N2a neurospheroids by perfluorooctanoic acid and perfluorooctanesulfonic acid. Food Chem Toxicol 2013; 60:520-9. [PMID: 23948355 DOI: 10.1016/j.fct.2013.07.070] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 07/17/2013] [Accepted: 07/24/2013] [Indexed: 12/31/2022]
Abstract
Effects of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) on the neuronal lineage marker expression, cell-cell interaction, caspase-3 mRNA transcription and reactive oxygen species production by N2a neuronal cells were assesses in 3-dimensional (3D) spheroid cultures, and the cytotoxicity were thoroughly compared with those of a conventional 2D monolayer-based toxicity assay. Increasing concentrations of PFOA or PFOS resulted in an increase in cell death. The half maximal inhibitory concentrations measured with spheroids were approximately one and a half times greater than the respective values for monolayer cells. Necrosis was prevalent in spheroids regardless of the dose, whereas the major injury mechanism in monolayers was dependent on compound concentration. Both PFOA and PFOS inhibited neuronal, astrocyte and oligodendrocyte marker gene expression by monolayers and spheroids grown under undifferentiated and all-trans-retinoic acid-induced differentiating conditions. In the presence of PFOA or PFOS, expression levels of E-cadherin and connexin-43 mRNAs were significantly downregulated, and spheroids were dissociated into single cell populations, indicating that the compounds affect the synthesis of E-cadherin and connexin-43 at the transcriptional level. Results from 3D cultures may provide an insight into potential inhibitory mode of action on gap junctional intercellular communication.
Collapse
Affiliation(s)
- Seong-Kyoon Choi
- Laboratory of Biochemistry and Cellular Engineering, Division of NanoBio Technology, Daegu Gyeongbuk Institute of Science and Technology, Daegu 711-873, South Korea
| | | | | | | | | | | |
Collapse
|
127
|
Slotkin TA, Card J, Seidler FJ. Adverse benzo[a]pyrene effects on neurodifferentiation are altered by other neurotoxicant coexposures: interactions with dexamethasone, chlorpyrifos, or nicotine in PC12 cells. ENVIRONMENTAL HEALTH PERSPECTIVES 2013; 121:825-31. [PMID: 23603068 PMCID: PMC3702011 DOI: 10.1289/ehp.1306528] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 04/18/2013] [Indexed: 05/26/2023]
Abstract
BACKGROUND Polycyclic aromatic hydrocarbons are suspected developmental neurotoxicants, but human exposures typically occur in combination with other neurotoxic contaminants. OBJECTIVE AND METHODS We explored the effects of benzo[a]pyrene (BaP) on neurodifferentiation in PC12 cells, in combination with a glucocorticoid (dexamethasone, used in preterm labor), an organophosphate pesticide (chlorpyrifos), or nicotine. RESULTS In cells treated with BaP alone, the transition from cell division to neurodifferentiation was suppressed, resulting in increased cell numbers at the expense of cell growth, neurite formation, and development of dopaminergic and cholinergic phenotypes. Dexamethasone enhanced the effect of BaP on cell numbers and altered the impact on neurotransmitter phenotypes. Whereas BaP alone shifted differentiation away from the cholinergic phenotype and toward the dopaminergic phenotype, the addition of dexamethasone along with BaP did the opposite. Chlorpyrifos coexposure augmented BaP inhibition of cell growth and enhanced the BaP-induced shift in phenotype toward a higher proportion of dopaminergic cells. Nicotine had no effect on BaP-induced changes in cell number or growth, but it synergistically enhanced the BaP suppression of differentiation into both dopaminergic and cholinergic phenotypes equally. CONCLUSION Our results indicate that, although BaP can act directly as a developmental neurotoxicant, its impact is greatly modified by coexposure to other commonly encountered neurotoxicants from prenatal drug therapy, pesticides, or tobacco. Accordingly, neurodevelopmental effects attributable to polycyclic aromatic hydrocarbons may be quite different depending on which other agents are present and on their concentrations relative to each other.
Collapse
Affiliation(s)
- Theodore A Slotkin
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710 , USA
| | | | | |
Collapse
|
128
|
Zhang J, Liang J, Zhu H, Li C, Wu Q. PFOS and PCB 153 have direct adverse effects on neonatal testis modeled using a coculture of primary gonocyte and sertoli cells. ENVIRONMENTAL TOXICOLOGY 2013; 28:322-331. [PMID: 21544924 DOI: 10.1002/tox.20723] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 03/21/2011] [Indexed: 05/30/2023]
Abstract
Perfluorooctane sulfonate (PFOS) is widely used in industry; it is nonbiodegradable and persistent in the human body and in the environment. Although reports have indicated that young people might have higher PFOS levels in serum or blood than do older people, its adverse effects on neonatal testicular cells had not been investigated previously. PCB 153 is one of the most prevalent polychlorinated biphenyl (PCB) congeners in biological tissues, but the direct adverse effect of PCB 153 on neonatal testis remains unclear. In this study, we exposed a neonatal Sertoli cell/gonocyte coculture system to PFOS and PCB 153 individually at concentrations of 0, 1, 10, 50, and 100 μM for 24 h. Exposure to either compound reduced the cell viability and induced the production of reactive oxygen species (ROS) in dose-dependent manners, with PCB 153 having a greater effect than PFOS. Whereas PCB 153 induced apoptosis significantly from 10 μM, PFOS induced no obvious change. Morphologically, both PCB 153 and PFOS induced changes in the vimentin and actin filaments in the Sertoli cells, as investigated using confocal argon ion laser scanning microscopy; here, PFOS exhibited a more dramatic effect than did PCB 153. Furthermore, doses of 50 μM for PFOS and 10 μM for PCB 153 were the key concentrations that produced significant differences between the control and exposure groups. We suggest that both PCB 153 and PFOS directly affect neonatal gonocyte and Sertoli cells; the production of ROS and the change in the cytoskeleton in Sertoli cells might be causes.
Collapse
Affiliation(s)
- Jie Zhang
- School of Public Health, Fudan University, 130 DongAn Road, Shanghai 200032, China
| | | | | | | | | |
Collapse
|
129
|
Wan Ibrahim WN, Tofighi R, Onishchenko N, Rebellato P, Bose R, Uhlén P, Ceccatelli S. Perfluorooctane sulfonate induces neuronal and oligodendrocytic differentiation in neural stem cells and alters the expression of PPARγ in vitro and in vivo. Toxicol Appl Pharmacol 2013; 269:51-60. [PMID: 23500012 DOI: 10.1016/j.taap.2013.03.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 02/20/2013] [Accepted: 03/05/2013] [Indexed: 01/25/2023]
Abstract
Perfluorinated compounds are ubiquitous chemicals of major concern for their potential adverse effects on the human population. We have used primary rat embryonic neural stem cells (NSCs) to study the effects of perfluorooctane sulfonate (PFOS) on the process of NSC spontaneous differentiation. Upon removal of basic fibroblast growth factor, NSCs were exposed to nanomolar concentrations of PFOS for 48 h, and then allowed to differentiate for additional 5 days. Exposure to 25 or 50 nM concentration resulted in a lower number of proliferating cells and a higher number of neurite-bearing TuJ1-positive cells, indicating an increase in neuronal differentiation. Exposure to 50 nM also significantly increased the number of CNPase-positive cells, pointing to facilitation of oligodendrocytic differentiation. PPAR genes have been shown to be involved in PFOS toxicity. By q-PCR we detected an upregulation of PPARγ with no changes in PPARα or PPARδ genes. One of the downstream targets of PPARs, the mitochondrial uncoupling protein 2 (UCP2) was also upregulated. The number of TuJ1- and CNPase-positive cells increased after exposure to PPARγ agonist rosiglitazone (RGZ, 3 μM) and decreased after pre-incubation with the PPARγ antagonist GW9662 (5 μM). RGZ also upregulated the expression of PPARγ and UCP2 genes. Meanwhile GW9662 abolished the UCP2 upregulation and decreased Ca²⁺ activity induced by PFOS. Interestingly, a significantly higher expression of PPARγ and UCP3 genes was also detected in mouse neonatal brain after prenatal exposure to PFOS. These data suggest that PPARγ plays a role in the alteration of spontaneous differentiation of NSCs induced by nanomolar concentrations of PFOS.
Collapse
|
130
|
Perfluoroalkylated compounds induce cell death and formation of reactive oxygen species in cultured cerebellar granule cells. Toxicol Lett 2013; 218:56-60. [DOI: 10.1016/j.toxlet.2013.01.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 01/07/2013] [Accepted: 01/12/2013] [Indexed: 11/24/2022]
|
131
|
Greaves AK, Letcher RJ, Sonne C, Dietz R. Brain region distribution and patterns of bioaccumulative perfluoroalkyl carboxylates and sulfonates in east greenland polar bears (Ursus maritimus). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2013; 32:713-722. [PMID: 23280712 DOI: 10.1002/etc.2107] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 05/17/2012] [Accepted: 10/16/2012] [Indexed: 06/01/2023]
Abstract
The present study investigated the comparative accumulation of perfluoroalkyl acids (PFAAs) in eight brain regions of polar bears (Ursus maritimus, n = 19) collected in 2006 from Scoresby Sound, East Greenland. The PFAAs studied were perfluoroalkyl carboxylates (PFCAs, C(6) -C(15) chain lengths) and sulfonates (C(4) , C(6) , C(8) , and C(10) chain lengths) as well as selected precursors including perfluorooctane sulfonamide. On a wet-weight basis, blood-brain barrier transport of PFAAs occurred for all brain regions, although inner regions of the brain closer to incoming blood flow (pons/medulla, thalamus, and hypothalamus) contained consistently higher PFAA concentrations compared to outer brain regions (cerebellum, striatum, and frontal, occipital, and temporal cortices). For pons/medulla, thalamus, and hypothalamus, the most concentrated PFAAs were perfluorooctane sulfonate (PFOS), ranging from 47 to 58 ng/g wet weight, and perfluorotridecanoic acid, ranging from 43 to 49 ng/g wet weight. However, PFOS and the longer-chain PFCAs (C(10) -C(15) ) were significantly (p < 0.002) positively correlated with lipid content for all brain regions. Lipid-normalized PFOS and PFCA (C(10) -C(15) ) concentrations were not significantly (p > 0.05) different among brain regions. The burden of the sum of PFCAs, perfluoroalkyl sulfonates, and perfluorooctane sulfonamide in the brain (average mass, 392 g) was estimated to be 46 µg. The present study demonstrates that both PFCAs and perfluoroalkyl sulfonates cross the blood-brain barrier in polar bears and that wet-weight concentrations are brain region-specific.
Collapse
Affiliation(s)
- Alana K Greaves
- National Wildlife Research Centre and Department of Chemistry, Carleton University, Ottawa, Ontario, Canada
| | | | | | | |
Collapse
|
132
|
Slotkin TA, Card J, Infante A, Seidler FJ. BDE99 (2,2',4,4',5-pentabromodiphenyl ether) suppresses differentiation into neurotransmitter phenotypes in PC12 cells. Neurotoxicol Teratol 2013; 37:13-7. [PMID: 23422510 DOI: 10.1016/j.ntt.2013.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 01/23/2013] [Accepted: 02/02/2013] [Indexed: 11/29/2022]
Abstract
Early-life exposures to brominated diphenyl ethers (BDEs) lead to neurobehavioral abnormalities later in life. Although these agents are thyroid disruptors, it is not clear whether this mechanism alone accounts for the adverse effects. We evaluated the impact of 2,2',4,4',5-pentabromodiphenyl ether (BDE99) on PC12 cells undergoing neurodifferentiation, contrasting the effects with chlorpyrifos, a known developmental neurotoxicant. BDE99 elicited decrements in the number of cells, evidenced by a reduction in DNA levels, to a lesser extent than did chlorpyrifos. This did not reflect cytotoxicity from oxidative stress, since cell enlargement, monitored by the total protein/DNA ratio, was not only unimpaired by BDE99, but was actually enhanced. Importantly, BDE99 impaired neurodifferentiation into both the dopamine and acetylcholine neurotransmitter phenotypes. The cholinergic phenotype was affected to a greater extent, so that neurotransmitter fate was diverted away from acetylcholine and toward dopamine. Chlorpyrifos produced the same imbalance, but through a different underlying mechanism, promoting dopaminergic development at the expense of cholinergic development. In our earlier work, we did not find these effects with BDE47, a BDE that has greater endocrine disrupting and cytotoxic effects than BDE99. Thus, our results point to interference with neurodifferentiation by specific BDE congeners, distinct from cytotoxic or endocrine mechanisms.
Collapse
Affiliation(s)
- Theodore A Slotkin
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC, 27710, USA.
| | | | | | | |
Collapse
|
133
|
Lee YJ, Lee HG, Yang JH. Perfluorooctane sulfonate-induced apoptosis of cerebellar granule cells is mediated by ERK 1/2 pathway. CHEMOSPHERE 2013; 90:1597-1602. [PMID: 22990021 DOI: 10.1016/j.chemosphere.2012.08.033] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 08/12/2012] [Accepted: 08/20/2012] [Indexed: 06/01/2023]
Abstract
Perfluorooctane sulfonate (PFOS), a ubiquitous environmental pollutant, is considered as a neurotoxicant to mammalian species. However, the underlying mechanism of its neurotoxicity is largely unknown. In the present study, we examined roles of mitogen-activated protein kinases (MAPKs) in PFOS-induced apoptosis of neuronal cells to elucidate the molecular mechanism. Cerebellar granule cells were isolated from 7-d old rats and maintained in culture for additional 7 d. Cells were exposed to PFOS and caspase-3 activity and nuclear morphology were evaluated by enzyme activity assay and Hoechst 33342 staining, respectively, to determine its effects on apoptosis. The treatment with PFOS resulted in caspase-3 activation and nuclear condensation and fragmentation. PFOS exposure selectively increased activation of ERK that remained above control over 6 h. The inhibitor of ERK pathway, PD98059, substantially blocked caspase-3 activation induced by PFOS, whereas inhibitors of JNK and p38 MAPK, SP600125 and SB203580, respectively, had no effect. PKC inhibitors, bisindolylmaleimide I and Gö6976, dampened caspase-3 activity and ERK activation induced by PFOS. Collectively, it is suggested that PKC and ERK play proapoptotic roles in PFOS-induced apoptosis of cerebellar granule cells and PKC act as an upstream regulator of ERK activation.
Collapse
Affiliation(s)
- Youn Ju Lee
- Department of Pharmacology and Toxicology, School of Medicine, Catholic University of Daegu, Daegu, Republic of Korea
| | | | | |
Collapse
|
134
|
Chen J, Huang C, Das SR, La Du J, Corvi MM, Bai C, Chen Y, Tanguay RL, Dong Q. Chronic PFOS exposures induce life stage-specific behavioral deficits in adult zebrafish and produce malformation and behavioral deficits in F1 offspring. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2013; 32:201-6. [PMID: 23059794 PMCID: PMC4049192 DOI: 10.1002/etc.2031] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 06/26/2012] [Accepted: 08/30/2012] [Indexed: 05/19/2023]
Abstract
Perfluorooctane sulfonic acid (PFOS) is an organic contaminant that is ubiquitous in the environment. Few studies have assessed the behavioral effects of chronic PFOS exposure in aquatic organisms. The present study defined the behavioral effects of varying life span chronic exposures to PFOS in zebrafish. Specifically, zebrafish were exposed to control or 0.5 µM PFOS during 1 to 20, 21 to 120, or 1 to 120 d postfertilization (dpf). Exposure to PFOS impaired the adult zebrafish behavior mode under the tapping stimulus. The movement speed of male and female fish exposed for 1 to 120 dpf was significantly increased compared with control before and after tapping, whereas in the groups exposed for 1 to 20 and 21 to 120 dpf, only the males exhibited elevated swim speed before tapping. Residues of PFOS in F1 embryos derived from parental exposure for 1 to 120 and 21 to 120 dpf were significantly higher than control, and F1 embryos in these two groups also showed high malformation and mortality. The F1 larvae of parental fish exposed to PFOS for 1 to 20 or 21 to 120 dpf exhibited a higher swimming speed than control larvae in a light-to-dark behavior assessment test. The F1 larvae derived from parental fish exposed to PFOS for 1 to 120 dpf showed a significantly lower speed in the light period and a higher speed in the dark period compared with controls. Although there was little PFOS residue in embryos derived from the 1- to 20-dpf parental PFOS-exposed group, the adverse behavioral effects on both adult and F1 larvae indicate that exposure during the first 21 dpf induces long-term neurobehaviorial toxicity. The authors' findings demonstrate that chronic PFOS exposure during different life stages adversely affects adult behavior and F1 offspring morphology, behavior, and survival.
Collapse
Affiliation(s)
- Jiangfei Chen
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms; Institute of Watershed Science and Environmental Ecology, Wenzhou Medical College, Wenzhou 325035, China
| | - Changjiang Huang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms; Institute of Watershed Science and Environmental Ecology, Wenzhou Medical College, Wenzhou 325035, China
| | - Siba R. Das
- Environmental and Molecular Toxicology, The Sinnhuber Aquatic Research Laboratory and The Environmental Health Sciences Center, Oregon State University, Corvallis, Oregon 97333, USA
| | - Jane La Du
- Environmental and Molecular Toxicology, The Sinnhuber Aquatic Research Laboratory and The Environmental Health Sciences Center, Oregon State University, Corvallis, Oregon 97333, USA
| | - Margaret M. Corvi
- Environmental and Molecular Toxicology, The Sinnhuber Aquatic Research Laboratory and The Environmental Health Sciences Center, Oregon State University, Corvallis, Oregon 97333, USA
| | - Chenglian Bai
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms; Institute of Watershed Science and Environmental Ecology, Wenzhou Medical College, Wenzhou 325035, China
| | - Yuanhong Chen
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms; Institute of Watershed Science and Environmental Ecology, Wenzhou Medical College, Wenzhou 325035, China
| | - Robert L. Tanguay
- Environmental and Molecular Toxicology, The Sinnhuber Aquatic Research Laboratory and The Environmental Health Sciences Center, Oregon State University, Corvallis, Oregon 97333, USA
- Corresponding authors: ;
| | - Qiaoxiang Dong
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms; Institute of Watershed Science and Environmental Ecology, Wenzhou Medical College, Wenzhou 325035, China
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
- Corresponding authors: ;
| |
Collapse
|
135
|
Oldham ED, Xie W, Farnoud AM, Fiegel J, Lehmler HJ. Disruption of phosphatidylcholine monolayers and bilayers by perfluorobutane sulfonate. J Phys Chem B 2012; 116:9999-10007. [PMID: 22834732 PMCID: PMC3464004 DOI: 10.1021/jp304412p] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Perfluoroalkyl acids (PFAAs) are persistent environmental contaminants resistant to biological and chemical degradation due to the presence of carbon-fluorine bonds. These compounds exhibit developmental toxicity in vitro and in vivo. The mechanisms of toxicity may involve partitioning into lipid bilayers. We investigated the interaction between perfluorobutane sulfonate (PFBS), an emerging PFAA, and model phosphatidylcholine (PC) lipid assemblies (i.e., dimyristoyl-, dipalmitoyl- and distearoylphosphatidylcholine) using fluorescence anisotropy and Langmuir monolayer techniques. PFBS decreased the transition temperature and transition width of PC bilayers. The apparent membrane partition coefficients ranged from 4.9 × 10(2) to 8.2 × 10(2). The effects on each PC were comparable. The limiting molecular area of PC monolayers increased, and the surface pressure at collapse decreased in a concentration-dependent manner. The compressibility of all three PCs was decreased by PFBS. In summary, PFBS disrupted different model lipid assemblies, indicating potential for PFBS to be a human toxicant. However, the effects of PFBS are not as pronounced as those seen with longer chain PFAAs.
Collapse
Affiliation(s)
- E. Davis Oldham
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, Iowa 52242
| | - Wei Xie
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, Iowa 52242
| | - Amir M. Farnoud
- Department of Chemical and Biochemical Engineering, College of Engineering, University of Iowa, Iowa City, Iowa, 52242
| | - Jennifer Fiegel
- Department of Chemical and Biochemical Engineering, College of Engineering, University of Iowa, Iowa City, Iowa, 52242
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa 52242
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, Iowa 52242
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
136
|
Cassone CG, Taylor JJ, O'Brien JM, Williams A, Yauk CL, Crump D, Kennedy SW. Transcriptional profiles in the cerebral hemisphere of chicken embryos following in ovo perfluorohexane sulfonate exposure. Toxicol Sci 2012; 129:380-91. [PMID: 22790973 DOI: 10.1093/toxsci/kfs219] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In a recent egg injection study, we showed that in ovo exposure to perfluorohexane sulfonate (PFHxS) affects the pipping success of developing chicken (Gallus gallus domesticus) embryos. We also found evidence of thyroid hormone (TH) pathway interference at multiple levels of biological organization (i.e., somatic growth, messenger RNA expression, and circulating free thyroxine levels). Based on these findings, we hypothesize that PFHxS exposure interferes with TH-dependent neurodevelopmental pathways. This study investigates global transcriptional profiles in cerebral hemispheres of chicken embryos following exposure to a solvent control, 890 or 38,000 ng PFHxS/g egg (n = 4-5 per group); doses that lead to the adverse effects indicated above. PFHxS significantly alters the expression (≥ 1.5-fold, p ≤ 0.001) of 11 transcripts at the low dose (890 ng/g) and 101 transcripts at the high dose (38,000 ng/g). Functional enrichment analysis shows that PFHxS affects genes involved in tissue development and morphology, cellular assembly and organization, and cell-to-cell signaling. Pathway and interactome analyses suggest that genes may be affected through several potential regulatory molecules, including integrin receptors, myelocytomatosis viral oncogene, and CCAAT/enhancer-binding protein. This study identifies key functional and regulatory modes of PFHxS action involving TH-dependent and -independent neurodevelopmental pathways. Some of these TH-dependent mechanisms that occur during embryonic development include tight junction formation, signal transduction, and integrin signaling, whereas TH-independent mechanisms include gap junction intercellular communication.
Collapse
Affiliation(s)
- Cristina G Cassone
- Environment Canada, National Wildlife Research Centre, Ottawa, Ontario, Canada K1A 0H3
| | | | | | | | | | | | | |
Collapse
|
137
|
Lee HG, Lee YJ, Yang JH. Perfluorooctane sulfonate induces apoptosis of cerebellar granule cells via a ROS-dependent protein kinase C signaling pathway. Neurotoxicology 2012; 33:314-20. [DOI: 10.1016/j.neuro.2012.01.017] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 01/11/2012] [Accepted: 01/27/2012] [Indexed: 01/30/2023]
|
138
|
Wågbø AM, Cangialosi MV, Cicero N, Letcher RJ, Arukwe A. Perfluorooctane Sulfonamide-Mediated Modulation of Hepatocellular Lipid Homeostasis and Oxidative Stress Responses in Atlantic Salmon Hepatocytes. Chem Res Toxicol 2012; 25:1253-64. [DOI: 10.1021/tx300110u] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ane Marit Wågbø
- Department
of Biology, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, 7491 Trondheim, Norway
| | - Maria V. Cangialosi
- Department of Food and Environmental
Science “Prof. G. Stagno d’Alcontres”, University of Messina, Salita Sperone 31, 98166, S.
Agata, Messina, Italy
| | - Nicola Cicero
- Department of Food and Environmental
Science “Prof. G. Stagno d’Alcontres”, University of Messina, Salita Sperone 31, 98166, S.
Agata, Messina, Italy
| | - Robert J. Letcher
- Ecotoxicology
and Wildlife Health
Division, Environment Canada, National
Wildlife Research Centre, Carleton University, Ottawa, ON K1A 0H3,
Canada
| | - Augustine Arukwe
- Department
of Biology, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, 7491 Trondheim, Norway
| |
Collapse
|
139
|
Neurotoxic effects of perfluoroalkylated compounds: mechanisms of action and environmental relevance. Arch Toxicol 2012; 86:1349-67. [DOI: 10.1007/s00204-012-0822-6] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 02/14/2012] [Indexed: 01/09/2023]
|
140
|
Perfluorooctanoic acid induces gene promoter hypermethylation of glutathione-S-transferase Pi in human liver L02 cells. Toxicology 2012; 296:48-55. [PMID: 22425687 DOI: 10.1016/j.tox.2012.03.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 03/02/2012] [Accepted: 03/07/2012] [Indexed: 12/31/2022]
Abstract
Perfluorooctanoic acid (PFOA) is one of the most commonly used perfluorinated compounds. Being a persistent environmental pollutant, it can accumulate in human tissues via various exposure routes. PFOA may interfere in a toxic fashion on the immune system, liver, development, and endocrine systems. In utero human exposure had been associated with cord serum global DNA hypomethylation. In light of this, we investigated possible PFOA-induced DNA methylation alterations in L02 cells in order to shed light into its epigenetic-mediated mechanisms of toxicity in human liver. L02 cells were exposed to 5, 10, 25, 50 or 100 mg/L PFOA for 72h. Global DNA methylation levels were determined by LC/ESI-MS, glutathione-S-transferase Pi (GSTP) gene promoter DNA methylation was investigated by methylation-specific polymerase chain reaction (PCR) with bisulfite sequencing, and consequent mRNA expression levels were measured with quantitative real-time reverse transcriptase PCR. A dose-related increase of GSTP promoter methylation at the transcription factor specificity protein 1 (SP1) binding site was observed. However, PFOA did not significantly influence global DNA methylation; nor did it markedly alter the promoter gene methylation of p16 (cyclin-dependent kinase inhibitor 2A), ERα (estrogen receptor α) or PRB (progesterone receptor B). In addition, PFOA significantly elevated mRNA transcript levels of DNMT3A (which mediates de novo DNA methylation), Acox (lipid metabolism) and p16 (cell apoptosis). Considering the role of GSTP in detoxification, aberrant methylation may be pivotal in PFOA-mediated toxicity response via the inhibition of SP1 binding to GSTP promoter.
Collapse
|
141
|
|
142
|
IMAI S, KAWANAKA Y, TSUCHIYA Y, YUN SJ. Concentrations and Composition Profiles of Perfluorinated Organic Compounds in Tap Water in Tokyo. ACTA ACUST UNITED AC 2012. [DOI: 10.2965/jswe.35.57] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
143
|
Exposure to environmental and lifestyle factors and attention-deficit / hyperactivity disorder in children — A review of epidemiological studies. Int J Occup Med Environ Health 2012; 25:330-55. [DOI: 10.2478/s13382-012-0048-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 07/06/2012] [Indexed: 11/21/2022] Open
Abstract
AbstractAttention-deficit/hyperactivity disorder (ADHD) is one of the most common neurodevelopmental disorders in children. Although the mechanisms that lead to the development of ADHD remain unclear, genetic and environmental factors have been implicated. These include heavy metals and chemical exposures, nutritional and lifestyle/psychosocial factors. The aim of this review was to investigate the association between ADHD or ADHD-related symptoms and widespread environmental factors such as phthalates, bisphenol A (BPA), tobacco smoke, polycyclic aromatic hydrocarbons (PAHs), polyfluoroalkyl chemicals (PFCs) and alcohol. Medline, PubMed and Ebsco search was performed to identify the studies which analyze the association of prenatal and postnatal child exposure to environmental toxicants and lifestyle factors and ADHD or ADHD-related symptoms. The review is restricted to human studies published since 2000 in English in peer reviewed journals. Despite much research has been done on the association between environmental risk factors and ADHD or ADHD symptoms, results are not consistent. Most studies in this field, focused on exposure to tobacco smoke, found an association between that exposure and ADHD and ADHD symptoms. On the other hand, the impact of phthalates, BPA, PFCs, PAHs and alcohol is less frequently investigated and does not allow a firm conclusion regarding the association with the outcomes of interest.
Collapse
|
144
|
Ek CJ, Dziegielewska KM, Habgood MD, Saunders NR. Barriers in the developing brain and Neurotoxicology. Neurotoxicology 2011; 33:586-604. [PMID: 22198708 DOI: 10.1016/j.neuro.2011.12.009] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 12/11/2011] [Accepted: 12/11/2011] [Indexed: 01/16/2023]
Abstract
The brain develops and grows within a well-controlled internal environment that is provided by cellular exchange mechanisms in the interfaces between blood, cerebrospinal fluid and brain. These are generally referred to by the term "brain barriers": blood-brain barrier across the cerebral endothelial cells and blood-CSF barrier across the choroid plexus epithelial cells. An essential component of barrier mechanisms is the presence of tight junctions between the endothelial and epithelial cells of these interfaces. This review outlines historical evidence for the presence of effective barrier mechanisms in the embryo and newborn and provides an up to date description of recent morphological, biochemical and molecular data for the functional effectiveness of these barriers. Intercellular tight junctions between cerebral endothelial cells and between choroid plexus epithelial cells are functionally effective as soon as they differentiate. Many of the influx and efflux mechanisms are not only present from early in development, but the genes for some are expressed at much higher levels in the embryo than in the adult and there is physiological evidence that these transport systems are functionally more active in the developing brain. This substantial body of evidence supporting the concept of well developed barrier mechanisms in the developing brain is contrasted with the widespread belief amongst neurotoxicologists that "the" blood-brain barrier is immature or even absent in the embryo and newborn. A proper understanding of the functional capacity of the barrier mechanisms to restrict the entry of harmful substances or administered therapeutics into the developing brain is critical. This knowledge would assist the clinical management of pregnant mothers and newborn infants and development of protocols for evaluation of risks of drugs used in pregnancy and the neonatal period prior to their introduction into clinical practice.
Collapse
Affiliation(s)
- C Joakim Ek
- Department of Pharmacology, University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | |
Collapse
|
145
|
Zhang L, Li YY, Chen T, Xia W, Zhou Y, Wan YJ, Lv ZQ, Li GQ, Xu SQ. Abnormal development of motor neurons in perfluorooctane sulphonate exposed zebrafish embryos. ECOTOXICOLOGY (LONDON, ENGLAND) 2011; 20:643-652. [PMID: 21298338 DOI: 10.1007/s10646-011-0604-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/27/2011] [Indexed: 05/30/2023]
Abstract
Perfluorooctane sulfonate (PFOS) is an environmental organic pollutant, the potential neurotoxicity of which is causing great concern in fish. In the present study, we examined the effects of PFOS on motor neurons, and investigated the potential toxicological mechanisms oxidative stress in zebrafish embryos. Six-hour post-fertilization (hpf) zebrafish embryos were exposed to 1.0 mg/L PFOS, then we examined the expression of alpha-tubulin, proliferating cell nuclear antigen (PCNA), cyclin-dependent kinase 5 (CDK5), and peroxiredoxin 2 (PRX2) after PFOS exposure until 120 hpf. The results showed that PFOS increased alpha-tubulin in the coccygeal spinal cord (CSC) at 96 hpf, whereas decreased alpha-tubulin in the brain and spinal cord at 120 hpf. PCNA expression was highly increased in CSC and abdomen compared with control at 96 and 120 hpf after PFOS exposure. In addition, PFOS exposure caused CDK5 expression to be highly increased in brain region following by down-regulation of PRX2 expression at 96 hpf. These results indicated that, at least in part, the effect on motor neurons induced by PFOS was mediated by dynamically interfering with the expression of alpha-tubulin and PCNA. Furthermore, PFOS-induced toxicity was associated with oxidative stress by deregulating CDK5 and PRX2.
Collapse
Affiliation(s)
- Ling Zhang
- Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Zhao B, Lian Q, Chu Y, Hardy DO, Li XK, Ge RS. The inhibition of human and rat 11β-hydroxysteroid dehydrogenase 2 by perfluoroalkylated substances. J Steroid Biochem Mol Biol 2011; 125:143-7. [PMID: 21237268 DOI: 10.1016/j.jsbmb.2010.12.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 12/24/2010] [Accepted: 12/31/2010] [Indexed: 10/18/2022]
Abstract
11β-Hydroxysteroid dehydrogenase 2 (11β-HSD2) regulates active glucocorticoid access to glucocorticoid and mineralocorticoid receptors by metabolizing it to an inactive form. Perfluoroalkylated substances (PFASs) are man-made polyfluorinated compounds that are widely used and persistent in the environment. We tested the inhibitory potencies of four PFASs including perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS), perfluorohexanesulfonate (PFHxS) and perfluorobutane sulfonate (PFBS) on human and rat 11β-HSD2. PFOS was a potent inhibitor of both human (IC(50)=48 nM) and rat (IC(50)=293 nM) 11β-HSD2 activities. The potencies for the inhibition of human and rat 11β-HSD2 activities were PFOS>PFOA>PFHxS>PFBS. PFASs showed competitive inhibition of both human and rat 11β-HSD2 activities. This observation indicates that PFOS is a potent endocrine disruptor for glucocorticoid metabolism. Article from the Special issue on Targeted Inhibitors.
Collapse
Affiliation(s)
- Binghai Zhao
- Heilongjiang Key Laboratory of Anti-fibrosis Biotherapy, Mudanjiang Medical University, Heilongjiang 157011, PR China
| | | | | | | | | | | |
Collapse
|
147
|
Fei C, Olsen J. Prenatal exposure to perfluorinated chemicals and behavioral or coordination problems at age 7 years. ENVIRONMENTAL HEALTH PERSPECTIVES 2011; 119:573-8. [PMID: 21062688 PMCID: PMC3080943 DOI: 10.1289/ehp.1002026] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2010] [Accepted: 11/09/2010] [Indexed: 05/17/2023]
Abstract
OBJECTIVE Potential neurotoxic effects of perfluorinated compounds (PFCs) have been reported in highly exposed animals, but whether these chemicals are neurotoxic in humans is not known. We therefore investigated whether prenatal exposure to perfluorooctanoic acid (PFOA) or perfluorooctane sulfate (PFOS), two of the most prevalent PFCs, are associated with behavioral or coordination problems in early childhood. METHODS We used data from the Danish National Birth Cohort, which enrolled mothers in early pregnancy, and we measured maternal blood levels of PFOA and PFOS using specimens drawn around 8 weeks of gestation. When the children reached 7 years of age, mothers completed the Strengths and Difficulties Questionnaire (SDQ, n=787) and the Developmental Coordination Disorder Questionnaire (DCDQ, n=526) to assess behavioral health and motor coordination of their children. SDQ scores above the 90th percentile were a priori defined to identify behavioral problems and DCDQ scores below the 10th percentile were defined as a potential DCD. RESULTS The median concentrations of PFOS and PFOA in maternal blood were 34.4 ng/mL [interquartile range (IQR), 26.6-44.5] and 5.4 ng/mL (IQR, 4.0-7.1), respectively, similar to distributions reported for populations without occupational exposure. We found no association between higher SDQ scores and maternal levels of PFOS or PFOA, nor did we see any statistically significant association with motor coordination disorders. CONCLUSION The findings suggest that background levels of PFOA and PFOS are not associated with behavioral and motor coordination problems in childhood. However, effects on other developmental end points, including cognitive, attentional, and clinical mental disorders not measured in this study, cannot be ruled out.
Collapse
Affiliation(s)
- Chunyuan Fei
- Department of Epidemiology, University of California, Los Angeles, Los Angeles, California 90095, USA.
| | | |
Collapse
|
148
|
|
149
|
Carpenter DO. Health effects of persistent organic pollutants: the challenge for the Pacific Basin and for the world. REVIEWS ON ENVIRONMENTAL HEALTH 2011; 26:61-69. [PMID: 21714383 DOI: 10.1515/reveh.2011.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Persistent organic pollutants include some organo-metals, such as methylmercury; lipophilic halogenated organics, such as dioxins, polychlorinated biphenyls, chlorinated pesticides, and polybrominated flame retardants; and perfluorinated compounds used as repellants. These compounds are resistant to degradation both in the environment and in the human body and tend to bioaccumulate within the food chain. Persistent organic pollutants cause a variety of adverse health effects, including cancer, immune system suppression, decrements in cognitive and neurobehavioral function, disruption of sex steroid and thyroid function, and at least some of them increase the risk of chronic diseases, such as hypertension, cardiovascular disease, and diabetes. Some compounds are byproducts of industry and combustion. Although the manufacture and use of most man-made chemicals has been reduced in recent years, the levels currently present in the population are still associated with an elevated risk of human disease. Others are still manufactured and used. These are dangerous chemicals that have contaminated even areas remote from the industrialized world, such as the polar regions.
Collapse
Affiliation(s)
- David O Carpenter
- Institute for Health and the Environment, University of Albany, Rensselaer, NY 12144, USA.
| |
Collapse
|
150
|
Braune BM, Mallory ML, Butt CM, Mabury SA, Muir DCG. Persistent halogenated organic contaminants and mercury in northern fulmars (Fulmarus glacialis) from the Canadian Arctic. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2010; 158:3513-3519. [PMID: 20863605 DOI: 10.1016/j.envpol.2010.08.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 08/16/2010] [Accepted: 08/19/2010] [Indexed: 05/29/2023]
Abstract
Northern fulmars from two breeding colonies in the Canadian Arctic, Cape Vera and Prince Leopold Island, were analyzed for organochlorine pesticides, PCBs, perfluorinated compounds (PFCs) and total mercury (Hg). Hepatic concentrations of organochlorines and Hg were highest in the male fulmars from Cape Vera. Perfluorooctane sulfonate (PFOS) concentrations did not vary significantly between sexes or colonies. However, concentrations of the perfluorinated carboxylates (PFCAs) were higher in fulmars from Cape Vera than Prince Leopold Island. The C(11)-C(15) PFCAs averaged 90% of the PFCA profile at both colonies. Polychorinated dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs) and non-ortho PCBs (NO-PCBs) were measured only in birds from Prince Leopold Island. Concentrations of PCDDs, PCDFs, NO-PCBs and Toxic Equivalents (TEQs) did not differ significantly between sexes. ΣTEQ was comprised mainly of ΣTEQ(PCDF). Concentrations of Hg and the persistent halogenated compounds reported in this study were below published toxicological threshold values for wild birds.
Collapse
Affiliation(s)
- Birgit M Braune
- Environment Canada, National Wildlife Research Centre, Carleton University, Raven Road, Ottawa, Ontario, Canada K1A 0H3.
| | | | | | | | | |
Collapse
|