101
|
Ernsberger U. Role of neurotrophin signalling in the differentiation of neurons from dorsal root ganglia and sympathetic ganglia. Cell Tissue Res 2009; 336:349-84. [PMID: 19387688 DOI: 10.1007/s00441-009-0784-z] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Accepted: 02/12/2009] [Indexed: 12/17/2022]
Abstract
Manipulation of neurotrophin (NT) signalling by administration or depletion of NTs, by transgenic overexpression or by deletion of genes coding for NTs and their receptors has demonstrated the importance of NT signalling for the survival and differentiation of neurons in sympathetic and dorsal root ganglia (DRG). Combination with mutation of the proapoptotic Bax gene allows the separation of survival and differentiation effects. These studies together with cell culture analysis suggest that NT signalling directly regulates the differentiation of neuron subpopulations and their integration into neural networks. The high-affinity NT receptors trkA, trkB and trkC are restricted to subpopulations of mature neurons, whereas their expression at early developmental stages largely overlaps. trkC is expressed throughout sympathetic ganglia and DRG early after ganglion formation but becomes restricted to small neuron subpopulations during embryogenesis when trkA is turned on. The temporal relationship between trkA and trkC expression is conserved between sympathetic ganglia and DRG. In DRG, NGF signalling is required not only for survival, but also for the differentiation of nociceptors. Expression of neuropeptides calcitonin gene-related peptide and substance P, which specify peptidergic nociceptors, depends on nerve growth factor (NGF) signalling. ret expression indicative of non-peptidergic nociceptors is also promoted by the NGF-signalling pathway. Regulation of TRP channels by NGF signalling might specify the temperature sensitivity of afferent neurons embryonically. The manipulation of NGF levels "tunes" heat sensitivity in nociceptors at postnatal and adult stages. Brain-derived neurotrophic factor signalling is required for subpopulations of DRG neurons that are not fully characterized; it affects mechanical sensitivity in slowly adapting, low-threshold mechanoreceptors and might involve the regulation of DEG/ENaC ion channels. NT3 signalling is required for the generation and survival of various DRG neuron classes, in particular proprioceptors. Its importance for peripheral projections and central connectivity of proprioceptors demonstrates the significance of NT signalling for integrating responsive neurons in neural networks. The molecular targets of NT3 signalling in proprioceptor differentiation remain to be characterized. In sympathetic ganglia, NGF signalling regulates dendritic development and axonal projections. Its role in the specification of other neuronal properties is less well analysed. In vitro analysis suggests the involvement of NT signalling in the choice between the noradrenergic and cholinergic transmitter phenotype, in the expression of various classes of ion channels and for target connectivity. In vivo analysis is required to show the degree to which NT signalling regulates these sympathetic neuron properties in developing embryos and postnatally.
Collapse
Affiliation(s)
- Uwe Ernsberger
- Interdisciplinary Center for Neurosciences (IZN), INF 307, University of Heidelberg, 69120, Heidelberg, Germany.
| |
Collapse
|
102
|
Functional tetrodotoxin-resistant Na(+) channels are expressed presynaptically in rat dorsal root ganglia neurons. Neuroscience 2008; 159:559-69. [PMID: 19162133 DOI: 10.1016/j.neuroscience.2008.12.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 11/21/2008] [Accepted: 12/16/2008] [Indexed: 11/20/2022]
Abstract
The tetrodotoxin-resistant (TTX-R) voltage-gated Na(+) channels Na(v)1.8 and Na(v)1.9 are expressed by a subset of primary sensory neurons and have been implicated in various pain states. Although recent studies suggest involvement of TTX-R Na(+) channels in sensory synaptic transmission and spinal pain processing, it remains unknown whether TTX-R Na(+) channels are expressed and function presynaptically. We examined expression of TTX-R channels at sensory synapses formed between rat dorsal root ganglion (DRG) and spinal cord (SC) neurons in a DRG/SC co-culture system. Immunostaining showed extensive labeling of presynaptic axonal boutons with Na(v)1.8- and Na(v)1.9-specific antibodies. Measurements using the fluorescent Na(+) indicator SBFI demonstrated action potential-induced presynaptic Na(+) entry that was resistant to tetrodotoxin (TTX) but was blocked by lidocaine. Furthermore, presynaptic [Ca(2+)](i) elevation in response to a single action potential was not affected by TTX in TTX-resistant DRG neurons. Finally, glutamatergic synaptic transmission was not inhibited by TTX in more than 50% of synaptic pairs examined; subsequent treatment with lidocaine completely blocked these TTX-resistant excitatory postsynaptic currents. Taken together, these results provide evidence for presynaptic expression of functional TTX-R Na(+) channels that may be important for shaping presynaptic action potentials and regulating transmitter release at the first sensory synapse.
Collapse
|
103
|
Fukuoka T, Kobayashi K, Yamanaka H, Obata K, Dai Y, Noguchi K. Comparative study of the distribution of the alpha-subunits of voltage-gated sodium channels in normal and axotomized rat dorsal root ganglion neurons. J Comp Neurol 2008; 510:188-206. [PMID: 18615542 DOI: 10.1002/cne.21786] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We compared the distribution of the alpha-subunit mRNAs of voltage-gated sodium channels Nav1.1-1.3 and Nav1.6-1.9 and a related channel, Nax, in histochemically identified neuronal subpopulations of the rat dorsal root ganglia (DRG). In the naïve DRG, the expression of Nav1.1 and Nav1.6 was restricted to A-fiber neurons, and they were preferentially expressed by TrkC neurons, suggesting that proprioceptive neurons possess these channels. Nav1.7, -1.8, and -1.9 mRNAs were more abundant in C-fiber neurons compared with A-fiber ones. Nax was evenly expressed in both populations. Although Nav1.8 and -1.9 were preferentially expressed by TrkA neurons, other alpha-subunits were expressed independently of TrkA expression. Actually, all IB4(+) neurons expressed both Nav1.8 and -1.9, and relatively limited subpopulations of IB4(+) neurons (3% and 12%, respectively) expressed Nav1.1 and/or Nav1.6. These findings provide useful information in interpreting the electrophysiological characteristics of some neuronal subpopulations of naïve DRG. After L5 spinal nerve ligation, Nav1.3 mRNA was up-regulated mainly in A-fiber neurons in the ipsilateral L5 DRG. Although previous studies demonstrated that nerve growth factor (NGF) and glial cell-derived neurotrophic factor (GDNF) reversed this up-regulation, the Nav1.3 induction was independent of either TrkA or GFRalpha1 expression, suggesting that the induction of Nav1.3 may be one of the common responses of axotomized DRG neurons without a direct relationship to NGF/GDNF supply.
Collapse
Affiliation(s)
- Tetsuo Fukuoka
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan.
| | | | | | | | | | | |
Collapse
|
104
|
Wilson-Gerwing TD, Stucky CL, McComb GW, Verge VMK. Neurotrophin-3 significantly reduces sodium channel expression linked to neuropathic pain states. Exp Neurol 2008; 213:303-14. [PMID: 18601922 DOI: 10.1016/j.expneurol.2008.06.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Revised: 04/29/2008] [Accepted: 06/06/2008] [Indexed: 10/21/2022]
Abstract
Neuropathic pain resulting from chronic constriction injury (CCI) is critically linked to sensitization of peripheral nociceptors. Voltage gated sodium channels are major contributors to this state and their expression can be upregulated by nerve growth factor (NGF). We have previously demonstrated that neurotrophin-3 (NT-3) acts antagonistically to NGF in modulation of aspects of CCI-induced changes in trkA-associated nociceptor phenotype and thermal hyperalgesia. Thus, we hypothesized that exposure of neurons to increased levels of NT-3 would reduce expression of Na(v)1.8 and Na(v)1.9 in DRG neurons subject to CCI. In adult male rats, Na(v)1.8 and Na(v)1.9 mRNAs are expressed at high levels in predominantly small to medium size neurons. One week following CCI, there is reduced incidence of neurons expressing detectable Na(v)1.8 and Na(v)1.9 mRNA, but without a significant decline in mean level of neuronal expression, and similar findings observed immunohistochemically. There is also increased accumulation/redistribution of channel protein in the nerve most apparent proximal to the first constriction site. Intrathecal infusion of NT-3 significantly attenuates neuronal expression of Na(v)1.8 and Na(v)1.9 mRNA contralateral and most notably, ipsilateral to CCI, with a similar impact on relative protein expression at the level of the neuron and constricted nerve. We also observe reduced expression of the common neurotrophin receptor p75 in response to CCI that is not reversed by NT-3 in small to medium sized neurons and may confer an enhanced ability of NT-3 to signal via trkA, as has been previously shown in other cell types. These findings are consistent with an analgesic role for NT-3.
Collapse
Affiliation(s)
- Tracy D Wilson-Gerwing
- Department of Anatomy and Cell Biology, Cameco MS Neuroscience Research Center University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | | | | |
Collapse
|
105
|
Affiliation(s)
- Stephen G Waxman
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA.
| | | |
Collapse
|
106
|
Cheng JK, Ji RR. Intracellular signaling in primary sensory neurons and persistent pain. Neurochem Res 2008; 33:1970-8. [PMID: 18427980 DOI: 10.1007/s11064-008-9711-z] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Accepted: 04/07/2008] [Indexed: 02/08/2023]
Abstract
During evolution, living organisms develop a specialized apparatus called nociceptors to sense their environment and avoid hazardous situations. Intense stimulation of high threshold C- and Adelta-fibers of nociceptive primary sensory neurons will elicit pain, which is acute and protective under normal conditions. A further evolution of the early pain system results in the development of nociceptor sensitization under injury or disease conditions, leading to enhanced pain states. This sensitization in the peripheral nervous system is also called peripheral sensitization, as compared to its counterpart, central sensitization. Inflammatory mediators such as proinflammatory cytokines (TNF-alpha, IL-1beta), PGE(2), bradykinin, and NGF increase the sensitivity and excitability of nociceptors by enhancing the activity of pronociceptive receptors and ion channels (e.g., TRPV1 and Na(v)1.8). We will review the evidence demonstrating that activation of multiple intracellular signal pathways such as MAPK pathways in primary sensory neurons results in the induction and maintenance of peripheral sensitization and produces persistent pain. Targeting the critical signaling pathways in the periphery will tackle pain at the source.
Collapse
Affiliation(s)
- Jen-Kun Cheng
- Department of Anesthesiology, Pain Research Center, Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, MRB 611, Boston, MA 02115, USA
| | | |
Collapse
|
107
|
Drenth JPH, Waxman SG. Mutations in sodium-channel gene SCN9A cause a spectrum of human genetic pain disorders. J Clin Invest 2008; 117:3603-9. [PMID: 18060017 DOI: 10.1172/jci33297] [Citation(s) in RCA: 255] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The voltage-gated sodium-channel type IX alpha subunit, known as Na(v)1.7 and encoded by the gene SCN9A, is located in peripheral neurons and plays an important role in action potential production in these cells. Recent genetic studies have identified Na(v)1.7 dysfunction in three different human pain disorders. Gain-of-function missense mutations in Na(v)1.7 have been shown to cause primary erythermalgia and paroxysmal extreme pain disorder, while nonsense mutations in Na(v)1.7 result in loss of Na(v)1.7 function and a condition known as channelopathy-associated insensitivity to pain, a rare disorder in which affected individuals are unable to feel physical pain. This review highlights these recent developments and discusses the critical role of Na(v)1.7 in pain sensation in humans.
Collapse
Affiliation(s)
- Joost P H Drenth
- Department of Medicine, Division of Gastroenterology and Hepatology, University Medical Center St. Radboud, Nijmegen, The Netherlands.
| | | |
Collapse
|
108
|
Maingret F, Coste B, Padilla F, Clerc N, Crest M, Korogod SM, Delmas P. Inflammatory mediators increase Nav1.9 current and excitability in nociceptors through a coincident detection mechanism. ACTA ACUST UNITED AC 2008; 131:211-25. [PMID: 18270172 PMCID: PMC2248717 DOI: 10.1085/jgp.200709935] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Altered function of Na+ channels is responsible for increased hyperexcitability of primary afferent neurons that may underlie pathological pain states. Recent evidence suggests that the Nav1.9 subunit is implicated in inflammatory but not acute pain. However, the contribution of Nav1.9 channels to the cellular events underlying nociceptor hyperexcitability is still unknown, and there remains much uncertainty as to the biophysical properties of Nav1.9 current and its modulation by inflammatory mediators. Here, we use gene targeting strategy and computer modeling to identify Nav1.9 channel current signature and its impact on nociceptors' firing patterns. Recordings using internal fluoride in small DRG neurons from wild-type and Nav1.9-null mutant mice demonstrated that Nav1.9 subunits carry the TTX-resistant “persistent” Na+ current called NaN. Nav1.9−/− nociceptors showed no significant change in the properties of the slowly inactivating TTX-resistant SNS/Nav1.8 current. The loss in Nav1.9-mediated Na+ currents was associated with the inability of small DRG neurons to generate a large variety of electrophysiological behaviors, including subthreshold regenerative depolarizations, plateau potentials, active hyperpolarizing responses, oscillatory bursting discharges, and bistable membrane behaviors. We further investigated, using CsCl- and KCl-based pipette solutions, whether G-protein signaling pathways and inflammatory mediators upregulate the NaN/Nav1.9 current. Bradykinin, ATP, histamine, prostaglandin-E2, and norepinephrine, applied separately at maximal concentrations, all failed to modulate the Nav1.9 current. However, when applied conjointly as a soup of inflammatory mediators they rapidly potentiated Nav1.9 channel activity, generating subthreshold amplification and increased excitability. We conclude that Nav1.9 channel, the molecular correlate of the NaN current, is potentiated by the concerted action of inflammatory mediators that may contribute to nociceptors' hyperexcitability during peripheral inflammation.
Collapse
Affiliation(s)
- François Maingret
- CRN2M, CNRS, Universit é de la M é diterran é e, 13916 Marseille Cedex 20, France
| | | | | | | | | | | | | |
Collapse
|
109
|
Pinto V, Derkach VA, Safronov BV. Role of TTX-Sensitive and TTX-Resistant Sodium Channels in Aδ- and C-Fiber Conduction and Synaptic Transmission. J Neurophysiol 2008; 99:617-28. [DOI: 10.1152/jn.00944.2007] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Thin afferent axons conduct nociceptive signals from the periphery to the spinal cord. Their somata express two classes of Na+ channels, TTX-sensitive (TTX-S) and TTX-resistant (TTX-R), but their relative contribution to axonal conduction and synaptic transmission is not well understood. We studied this contribution by comparing effects of nanomolar TTX concentrations on currents associated with compound action potentials in the peripheral and central branches of Aδ- and C-fiber axons as well as on the Aδ- and C-fiber-mediated excitatory postsynaptic currents (EPSCs) in spinal dorsal horn neurons of rat. At room temperature, TTX completely blocked Aδ-fibers (IC50, 5–7 nM) in dorsal roots (central branch) and spinal, sciatic, and sural nerves (peripheral branch). The C-fiber responses were blocked by 85–89% in the peripheral branch and by 65–66% in dorsal roots (IC50, 14–33 nM) with simultaneous threefold reduction in their conduction velocity. At physiological temperature, the degree of TTX block in dorsal roots increased to 93%. The Aδ- and C-fiber-mediated EPSCs in dorsal horn neurons were also sensitive to TTX. At room temperature, 30 nM blocked completely Aδ-input and 84% of the C-fiber input, which was completely suppressed at 300 nM TTX. We conclude that in mammals, the TTX-S Na+ channels dominate conduction in all thin primary afferents. It is the only type of functional Na+ channel in Aδ-fibers. In C-fibers, the TTX-S Na+ channels determine the physiological conduction velocity and control synaptic transmission. TTX-R Na+ channels could not provide propagation of full-amplitude spikes able to trigger synaptic release in the spinal cord.
Collapse
|
110
|
Transcriptional and functional profiles of voltage-gated Na+ channels in injured and non-injured DRG neurons in the SNI model of neuropathic pain. Mol Cell Neurosci 2008; 37:196-208. [DOI: 10.1016/j.mcn.2007.09.007] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Revised: 09/12/2007] [Accepted: 09/17/2007] [Indexed: 11/20/2022] Open
|
111
|
Dib‐Hajj SD, Yang Y, Waxman SG. Chapter 4 Genetics and Molecular Pathophysiology of Nav1.7‐Related Pain Syndromes. ADVANCES IN GENETICS 2008; 63:85-110. [DOI: 10.1016/s0065-2660(08)01004-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
112
|
De Col R, Messlinger K, Carr RW. Conduction velocity is regulated by sodium channel inactivation in unmyelinated axons innervating the rat cranial meninges. J Physiol 2007; 586:1089-103. [PMID: 18096592 DOI: 10.1113/jphysiol.2007.145383] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Axonal conduction velocity varies according to the level of preceding impulse activity. In unmyelinated axons this typically results in a slowing of conduction velocity and a parallel increase in threshold. It is currently held that Na(+)-K(+)-ATPase-dependent axonal hyperpolarization is responsible for this slowing but this has long been equivocal. We therefore examined conduction velocity changes during repetitive activation of single unmyelinated axons innervating the rat cranial meninges. In direct contradiction to the currently accepted postulate, Na(+)-K(+)-ATPase blockade actually enhanced activity-induced conduction velocity slowing, while the degree of velocity slowing was curtailed in the presence of lidocaine (10-300 microm) and carbamazepine (30-500 microm) but not tetrodotoxin (TTX, 10-80 nm). This suggests that a change in the number of available sodium channels is the most prominent factor responsible for activity-induced changes in conduction velocity in unmyelinated axons. At moderate stimulus frequencies, axonal conduction velocity is determined by an interaction between residual sodium channel inactivation following each impulse and the retrieval of channels from inactivation by a concomitant Na(+)-K(+)-ATPase-mediated hyperpolarization. Since the process is primarily dependent upon sodium channel availability, tracking conduction velocity provides a means of accessing relative changes in the excitability of nociceptive neurons.
Collapse
Affiliation(s)
- Roberto De Col
- Institute for Physiology and Pathophysiology, University of Erlangen-Nuremberg, Erlangen, Germany
| | | | | |
Collapse
|
113
|
Wells JE, Bingham V, Rowland KC, Hatton J. Expression of Nav1.9 Channels in Human Dental Pulp and Trigeminal Ganglion. J Endod 2007; 33:1172-6. [PMID: 17889684 DOI: 10.1016/j.joen.2007.05.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Revised: 05/10/2007] [Accepted: 05/14/2007] [Indexed: 11/28/2022]
Abstract
There is a higher incidence of local anesthetic failure in endodontic patients experiencing pulpal hyperalgesia. Up-regulation of Nav1.9, a voltage-gated sodium channel isoform, might play a key role in local anesthetic failure because Nav1.9 channels increase neuronal excitability and have low sensitivity to blockade by local anesthetics. Immunocytochemistry was used to examine Nav1.9 channel expression in axons of symptomatic (painful) versus asymptomatic human dental pulp and to determine Nav1.9 expression levels in neuronal somata of the human trigeminal ganglion. Nav1.9 channel immunoreactivity on pulpal axons was significantly increased in painful teeth. Nav1.9 channels were expressed in membranes and cytoplasm of human trigeminal ganglion neurons, with the highest expression in small neuronal somata. Nav1.9 expression in the trigeminal ganglion coupled with increased expression in symptomatic pulp might contribute to hypersensitivity of inflamed pulps and local anesthetic failure. Furthermore, the present study suggests that Nav1.9 channels are potential targets for novel anesthetics.
Collapse
Affiliation(s)
- Jason E Wells
- Southern Illinois University School of Dental Medicine, Alton, Illinois 62002, USA.
| | | | | | | |
Collapse
|
114
|
Rivera R, Rozas JL, Lerma J. PKC-dependent autoregulation of membrane kainate receptors. EMBO J 2007; 26:4359-67. [PMID: 17898803 PMCID: PMC2034673 DOI: 10.1038/sj.emboj.7601865] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2007] [Accepted: 08/30/2007] [Indexed: 11/08/2022] Open
Abstract
Agonists of kainate receptors (KARs) cause both the opening of the associated ion channels and the activation of signalling pathways driven by G-proteins and PKC. Here we report the existence of an unknown mechanism of KAR autoregulation, involving the interplay of this two signalling mechanisms. Repetitive activation of native KARs evoked the rundown of the ionotropic responses in a manner that was dependent on the activation of PKC. Experiments on recombinant GluR5 expressed in neuroblastoma cells indicated that KARs trigger the activation of PKC and induce the internalization of membrane receptors. This phenomenon depends on the PKC-mediated phosphorylation of serines 879 and 885 of the GluR5-2b subunits, since mutation of these two residues abolished internalization. These results reveal that the non-canonical signalling of KARs is associated with a sensitive mechanism that detects afferent activity. Such a mechanism represents an active way to limit overactivation of the KAR system, by regulating the number of KARs in the cell membrane.
Collapse
Affiliation(s)
- Rocío Rivera
- Cellular and Systems Neurobiology, Instituto de Neurociencias de Alicante, CSIC-UMH, San Juan de Alicante, Spain
| | - José Luis Rozas
- Cellular and Systems Neurobiology, Instituto de Neurociencias de Alicante, CSIC-UMH, San Juan de Alicante, Spain
| | - Juan Lerma
- Cellular and Systems Neurobiology, Instituto de Neurociencias de Alicante, CSIC-UMH, San Juan de Alicante, Spain
- Cellular and Systems Neurobiology, Instituto de Neurociencias de Alicante, CSIC-UMH, Aptdo 18, San Juan de Alicante, Alicante 3550, Spain. Tel.: +34965919239; Fax: +34965919561; E-mail:
| |
Collapse
|
115
|
Ellrich J, Makowska A. Nerve growth factor and ATP excite different neck muscle nociceptors in anaesthetized mice. Cephalalgia 2007; 27:1226-35. [PMID: 17850351 DOI: 10.1111/j.1468-2982.2007.01431.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Neck muscle nociception probably plays a major role in the pathophysiology of tension-type headache. Recent studies have demonstrated sustained facilitation of brainstem nociception due to noxious neck muscle input evoked by nerve growth factor (NGF) or alpha,beta-methylene ATP (ATP) in mice. Hypothesized different afferent pathways in NGF and ATP models were addressed by local application of tetrodotoxin (TTX) in neck muscles. Brainstem nociception was monitored in 55 anaesthetized mice by the jaw-opening reflex elicited by electrical tongue stimulation. Sole administration of 100 nmol/l ATP or 0.8 micromol/l NGF evoked sustained reflex facilitation for at least 95 min. Preceding TTX administration prevented ATP-induced facilitation, but was without effect on NGF. Subsequent administration of 100 nmol/l TTX reversed ATP-evoked facilitation, but was ineffective on NGF. Divergent effects of TTX suggest preferential excitation of group III muscle afferents by ATP and group IV by NGF. Thus, both models address different pathways in pericranial pain.
Collapse
Affiliation(s)
- J Ellrich
- Experimental Neurosurgery Section, Department of Neurosurgery, RWTH Aachen University, Aachen, Germany.
| | | |
Collapse
|
116
|
Malykhina AP. Neural mechanisms of pelvic organ cross-sensitization. Neuroscience 2007; 149:660-72. [PMID: 17920206 DOI: 10.1016/j.neuroscience.2007.07.053] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Revised: 07/05/2007] [Accepted: 07/12/2007] [Indexed: 12/12/2022]
Abstract
Clinical observations of viscerovisceral referred pain in patients with gastrointestinal and genitourinary disorders suggest an overlap of neurohumoral mechanisms underlying both bowel and urinary bladder dysfunctions. Close proximity of visceral organs within the abdominal cavity complicates identification of the exact source of chronic pelvic pain, where it originates, and how it relocates with time. Cross-sensitization among pelvic structures may contribute to chronic pelvic pain of unknown etiology and involves convergent neural pathways of noxious stimulus transmission from two or more organs. Convergence of sensory information from discrete pelvic structures occurs at different levels of nervous system hierarchy including dorsal root ganglia, the spinal cord and the brain. The cell bodies of sensory neurons projecting to the colon, urinary bladder and male/female reproductive organs express a wide range of membrane receptors and synthesize many neurotransmitters and regulatory peptides. These substances are released from nerve terminals following enhanced neuronal excitability and may lead to the occurrence of neurogenic inflammation in the pelvis. Multiple factors including inflammation, nerve injury, ischemia, peripheral hyperalgesia, metabolic disorders and other pathological conditions dramatically alter the function of directly affected pelvic structures as well as organs located next to a damaged domain. Defining precise mechanisms of viscerovisceral cross-sensitization would have implications for the development of effective pharmacological therapies for the treatment of functional disorders with chronic pelvic pain such as irritable bowel syndrome and painful bladder syndrome. The complexity of overlapping neural pathways and possible mechanisms underlying pelvic organ crosstalk are analyzed in this review at both systemic and cellular levels.
Collapse
Affiliation(s)
- A P Malykhina
- Department of Physiology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Boulevard, Oklahoma City, OK 73104, USA.
| |
Collapse
|
117
|
Cummins TR, Sheets PL, Waxman SG. The roles of sodium channels in nociception: Implications for mechanisms of pain. Pain 2007; 131:243-257. [PMID: 17766042 PMCID: PMC2055547 DOI: 10.1016/j.pain.2007.07.026] [Citation(s) in RCA: 351] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Revised: 07/20/2007] [Accepted: 07/27/2007] [Indexed: 11/17/2022]
Abstract
Understanding the role of voltage-gated sodium channels in nociception may provide important insights into pain mechanisms. Voltage-gated sodium channels are critically important for electrogenesis and nerve impulse conduction, and a target for important clinically relevant analgesics such as lidocaine. Furthermore, within the last decade studies have shown that certain sodium channel isoforms are predominantly expressed in peripheral sensory neurons associated with pain sensation, and that the expression and functional properties of voltage-gated sodium channels in peripheral sensory neurons can be dynamically regulated following axonal injury or peripheral inflammation. These data suggest that specific voltage-gated sodium channels may play crucial roles in nociception. Experiments with transgenic mice lines have clearly implicated Na(v)1.7, Na(v)1.8 and Na(v)1.9 in inflammatory, and possibly neuropathic, pain. However the most convincing and perhaps most exciting results regarding the role of voltage-gated sodium channels have come out recently from studies on human inherited disorders of nociception. Point mutations in Na(v)1.7 have been identified in patients with two distinct autosomal dominant severe chronic pain syndromes. Electrophysiological experiments indicate that these pain-associated mutations cause small yet significant changes in the gating properties of voltage-gated sodium channels that are likely to contribute substantially to the development of chronic pain. Equally exciting, recent studies indicate that recessive mutations in Na(v)1.7 that eliminate functional current can result in an apparent complete, and possibly specific, indifference to pain in humans, suggesting that isoform specific blockers could be very effective in treating pain. In this review we will examine what is known about the roles of voltage-gated sodium channels in nociception.
Collapse
Affiliation(s)
- Theodore R Cummins
- Department of Pharmacology and Toxicology, Stark Neurosciences Research Institute, Indiana University School of Medicine, 950 West Walnut Street, R2 468, Indianapolis, IN 46202, United States Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, United States Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, United States Rehabilitation Research Center, Veterans Administration Connecticut Healthcare System, West Haven, CT 06516, United States
| | | | | |
Collapse
|
118
|
Cai M, Chen T, Quirion R, Hong Y. The involvement of spinal bovine adrenal medulla 22-like peptide, the proenkephalin derivative, in modulation of nociceptive processing. Eur J Neurosci 2007; 26:1128-38. [PMID: 17767492 DOI: 10.1111/j.1460-9568.2007.05755.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bovine adrenal medulla 22 (BAM22), one of the cleavage products of proenkephalin A, possesses high affinity for opioid receptors and sensory neuron-specific receptor (SNSR). The present study was designed to examine the expression of BAM22 in the spinal cord and dorsal root ganglion (DRG) of naive rats as well as in a model of inflammation. BAM22-like immunoreactivity (BAM22-IR) was expressed in fibers in the spinal cord, with high density seen in lamina I in naïve rats. The expression of BAM22-IR in the superficial laminae was greatly reduced following dorsal rhizotomy. BAM22-IR was also located in 19% of DRG cells, mainly in the small- and medium-sized subpopulations. Following injection of complete Freund's adjuvant (CFA) in the hindpaw, the expression of BAM22-IR in the superficial laminae of the spinal cord and small-sized DRG neurons on the ipsilateral side was markedly increased. Double labeling showed that the Fos-positive nucleus was surrounded by BAM22-IR cytoplasm in the spinal dorsal horn neurons or closely associated with BAM22-IR fibers in the superficial laminae. Furthermore, CFA-induced mechanical allodynia in the inflamed paw was potentiated by intrathecal administration of anti-BAM22 antibody. Together, these results demonstrate for the first time that BAM22-like peptide is mainly located in the superficial laminae of the spinal cord and mostly originates from nociceptive DRG neurons. BAM22 could thus act as a ligand for presynaptic opioid receptors and SNSR. Our study also provides evidence suggesting that BAM22 plays a role in the modulation of nociceptive processing at the spinal level under normal and inflammatory conditions.
Collapse
Affiliation(s)
- Meifang Cai
- Key Provincial Laboratory of Developmental Biology and Neuroscience, College of Life Sciences, Fujian Normal University, Fuzhou, People's Republic of China, 350108
| | | | | | | |
Collapse
|
119
|
Henry MA, Freking AR, Johnson LR, Levinson SR. Sodium channel Nav1.6 accumulates at the site of infraorbital nerve injury. BMC Neurosci 2007; 8:56. [PMID: 17662136 PMCID: PMC1941742 DOI: 10.1186/1471-2202-8-56] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Accepted: 07/27/2007] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Sodium channel (NaCh) expressions change following nerve and inflammatory lesions and this change may contribute to the activation of pain pathways. In a previous study we found a dramatic increase in the size and density of NaCh accumulations, and a remodeling of NaChs at intact and altered myelinated sites at a location just proximal to a combined partial axotomy and chromic suture lesion of the rat infraorbital nerve (ION) with the use of an antibody that identifies all NaCh isoforms. Here we evaluate the contribution of the major nodal NaCh isoform, Nav1.6, to this remodeling of NaChs following the same lesion. Sections of the ION from normal and ION lesioned subjects were double-stained with antibodies against Nav1.6 and caspr (contactin-associated protein; a paranodal protein to identify nodes of Ranvier) and then z-series of optically sectioned images were captured with a confocal microscope. ImageJ (NIH) software was used to quantify the average size and density of Nav1.6 accumulations, while additional single fiber analyses measured the axial length of the nodal gap, and the immunofluorescence intensity of Nav1.6 in nodes and of caspr in the paranodal region. RESULTS The findings showed a significant increase in the average size and density of Nav1.6 accumulations in lesioned IONs when compared to normal IONs. The results of the single fiber analyses in caspr-identified typical nodes showed an increased axial length of the nodal gap, an increased immunofluorescence intensity of nodal Nav1.6 and a decreased immunofluorescence intensity of paranodal caspr in lesioned IONs when compared to normal IONs. In the lesioned IONs, Nav1.6 accumulations were also seen in association with altered caspr-relationships, such as heminodes. CONCLUSION The results of the present study identify Nav1.6 as one isoform involved in the augmentation and remodeling of NaChs at nodal sites following a combined partial axotomy and chromic suture ION lesion. The augmentation of Nav1.6 may result from an alteration in axon-Schwann cell signaling mechanisms as suggested by changes in caspr expression. The changes identified in this study suggest that the participation of Nav1.6 should be considered when examining changes in the excitability of myelinated axons in neuropathic pain models.
Collapse
Affiliation(s)
- Michael A Henry
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Angelique R Freking
- Department of Physiology and Biophysics, University of Colorado at Denver and Health Sciences Center, Aurora, CO 80045, USA
| | - Lonnie R Johnson
- Department of Surgical Dentistry, University of Colorado at Denver and Health Sciences Center, Aurora, CO 80045, USA
| | - S Rock Levinson
- Department of Physiology and Biophysics, University of Colorado at Denver and Health Sciences Center, Aurora, CO 80045, USA
| |
Collapse
|
120
|
Zhao J, Ziane R, Chatelier A, O'leary ME, Chahine M. Lidocaine Promotes the Trafficking and Functional Expression of Nav1.8 Sodium Channels in Mammalian Cells. J Neurophysiol 2007; 98:467-77. [PMID: 17507497 DOI: 10.1152/jn.00117.2007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Nociceptive neurons of the dorsal root ganglion (DRG) express a combination of rapidly gating TTX-sensitive and slowly gating TTX-resistant Na currents, and the channels that produce these currents have been cloned. The Nav1.7 and Nav1.8 channels encode for the rapidly inactivating TTX-sensitive and slowly inactivating TTX-resistant Na currents, respectively. Although the Nav1.7 channel expresses well in cultured mammalian cell lines, attempts to express the Nav1.8 channel using similar approaches has been met with limited success. The inability to heterologously express Nav1.8 has hampered detailed characterization of the biophysical properties and pharmacology of these channels. In this study, we investigated the determinants of Nav1.8 expression in tsA201 cells, a transformed variant of HEK293 cells, using a combination of biochemistry, immunochemistry, and electrophysiology. Our data indicate that the unusually low expression levels of Nav1.8 in tsA201 cells results from a trafficking defect that traps the channel protein in the endoplasmic reticulum. Incubating the cultured cells with the local anesthetic lidocaine dramatically enhanced the cell surface expression of functional Nav1.8 channels. The biophysical properties of the heterologously expressed Nav1.8 channel are similar but not identical to those of the TTX-resistant Na current of native DRG neurons, recorded under similar conditions. Our data indicate that the lidocaine acts as a molecular chaperone that promotes efficient trafficking and increased cell surface expression of Nav1.8 channels.
Collapse
Affiliation(s)
- Juan Zhao
- Le Centre de Recherche Université Laval Robert-Giffard, 2601 Chemin de la Canardière, Québec, Québec, Canada
| | | | | | | | | |
Collapse
|
121
|
Goss JR, Goins WF, Glorioso JC. Gene therapy applications for the treatment of neuropathic pain. Expert Rev Neurother 2007; 7:487-506. [PMID: 17492900 DOI: 10.1586/14737175.7.5.487] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Neuropathic pain is notoriously difficult to treat; currently available pharmaceutical drugs result in moderate analgesia in approximately a third of patients. As our understanding of the biological processes involved in the establishment and maintenance of neuropathic pain increases, so does the development of novel treatment options. Significant advancements have been made in the past few years in gene transfer, a very powerful potential therapy that can be used to directly target affected areas of the neuraxis or body tissues involved in neuropathic pain. Candidate gene products include directly analgesic proteins as well as proteins that interfere with pain-associated biochemical changes in nerve or other tissues underlying the disease process.
Collapse
Affiliation(s)
- James R Goss
- University of Pittsburgh, Molecular Genetics & Biochemistry, Pittsburgh, PA 15219, USA.
| | | | | |
Collapse
|
122
|
Abstract
In this article, we review the key basic mechanisms associated with this phenomena and more recently identified mechanisms that are current areas of interest. Although many of these pain mechanisms apply throughout the body, we attempt to describe these mechanisms in the context of trigeminal pain.
Collapse
Affiliation(s)
- Michael A Henry
- Department of Endodontics, University of Texas Health Science Center at San Antonio School of Dentistry, Mail Code 7892, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA.
| | | |
Collapse
|
123
|
Padilla F, Couble ML, Coste B, Maingret F, Clerc N, Crest M, Ritter AM, Magloire H, Delmas P. Expression and localization of the Nav1.9 sodium channel in enteric neurons and in trigeminal sensory endings: implication for intestinal reflex function and orofacial pain. Mol Cell Neurosci 2007; 35:138-52. [PMID: 17363266 DOI: 10.1016/j.mcn.2007.02.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Revised: 02/07/2007] [Accepted: 02/09/2007] [Indexed: 11/21/2022] Open
Abstract
The Nav1.9 sodium channel is expressed in nociceptive DRG neurons where it contributes to spontaneous pain behavior after peripheral inflammation. Here, we used a newly developed antibody to investigate the distribution of Nav1.9 in rat and mouse trigeminal ganglion (TG) nerve endings and in enteric nervous system (ENS). In TGs, Nav1.9 was expressed in the soma of small- and medium-sized, peripherin-positive neurons. Nav1.9 was present along trigeminal afferent fibers and at terminals in lip skin and dental pulp. In the ENS, Nav1.9 was detected within the soma and proximal axons of sensory, Dogiel type II, myenteric and submucosal neurons. Immunological data were correlated with the detection of persistent TTX-resistant Na(+) currents sharing similar properties in DRG, TG and myenteric neurons. Collectively, our data support a potential role of Nav1.9 in the transmission of trigeminal pain and the regulation of intestinal reflexes. Nav1.9 might therefore constitute a molecular target for therapeutic treatments of orofacial pain and gastrointestinal syndromes.
Collapse
Affiliation(s)
- Françoise Padilla
- Laboratoire de Neurophysiologie Cellulaire, CNRS, UMR 6150, Faculté de Médecine, IFR Jean Roche, Bd. Pierre Dramard, 13916 Marseille Cedex 20, France
| | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Choi JS, Dib-Hajj SD, Waxman SG. Differential Slow Inactivation and Use-Dependent Inhibition of Nav1.8 Channels Contribute to Distinct Firing Properties in IB4+ and IB4− DRG Neurons. J Neurophysiol 2007; 97:1258-65. [PMID: 17108087 DOI: 10.1152/jn.01033.2006] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Nociceptive dorsal root ganglion (DRG) neurons can be classified into nonpeptidergic IB4+ and peptidergic IB4− subtypes, which terminate in different layers in dorsal horn and transmit pain along different ascending pathways, and display different firing properties. Voltage-gated, tetrodotoxin-resistant (TTX-R) Nav1.8 channels are expressed in both IB4+ and IB4− cells and produce most of the current underlying the depolarizing phase of action potential (AP). Slow inactivation of TTX-R channels has been shown to regulate repetitive DRG neuron firing behavior. We show in this study that use-dependent reduction of Nav1.8 current in IB4+ neurons is significantly stronger than that in IB4− neurons, although voltage dependency of activation and steady-state inactivation are not different. The time constant for entry of Nav1.8 into slow inactivation in IB4+ neurons is significantly faster and more Nav1.8 enter the slow inactivation state than in IB4− neurons. In addition, recovery from slow inactivation of Nav1.8 in IB4+ neurons is slower than that in IB4− neurons. Using current-clamp recording, we demonstrate a significantly higher current threshold for generation of APs and a longer latency to onset of firing in IB4+, compared with those of IB4− neurons. In response to a ramp stimulus, IB4+ neurons produce fewer APs and display stronger adaptation, with a faster decline of AP peak than IB4− neurons. Our data suggest that differential use-dependent reduction of Nav1.8 current in these two DRG subpopulations, which results from their different rate of entry into and recovery from the slow inactivation state, contributes to functional differences between these two neuronal populations.
Collapse
Affiliation(s)
- Jin-Sung Choi
- Department of Neurology, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
| | | | | |
Collapse
|
125
|
Coste B, Crest M, Delmas P. Pharmacological dissection and distribution of NaN/Nav1.9, T-type Ca2+ currents, and mechanically activated cation currents in different populations of DRG neurons. J Gen Physiol 2007; 129:57-77. [PMID: 17190903 PMCID: PMC2151607 DOI: 10.1085/jgp.200609665] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Accepted: 12/04/2006] [Indexed: 02/04/2023] Open
Abstract
Low voltage-activated (LVA) T-type Ca(2+) (I(Ca)T) and NaN/Nav1.9 currents regulate DRG neurons by setting the threshold for the action potential. Although alterations in these channels have been implicated in a variety of pathological pain states, their roles in processing sensory information remain poorly understood. Here, we carried out a detailed characterization of LVA currents in DRG neurons by using a method for better separation of NaN/Nav1.9 and I(Ca)T currents. NaN/Nav1.9 was inhibited by inorganic I(Ca) blockers as follows (IC(50), microM): La(3+) (46) > Cd(2+) (233) > Ni(2+) (892) and by mibefradil, a non-dihydropyridine I(Ca)T antagonist. Amiloride, however, a preferential Cav3.2 channel blocker, had no effects on NaN/Nav1.9 current. Using these discriminative tools, we showed that NaN/Nav1.9, Cav3.2, and amiloride- and Ni(2+)-resistant I(Ca)T (AR-I(Ca)T) contribute differentially to LVA currents in distinct sensory cell populations. NaN/Nav1.9 carried LVA currents into type-I (CI) and type-II (CII) small nociceptors and medium-Adelta-like nociceptive cells but not in low-threshold mechanoreceptors, including putative Down-hair (D-hair) and Aalpha/beta cells. Cav3.2 predominated in CII-nociceptors and in putative D-hair cells. AR-I(Ca)T was restricted to CII-nociceptors, putative D-hair cells, and Aalpha/beta-like cells. These cell types distinguished by their current-signature displayed different types of mechanosensitive channels. CI- and CII-nociceptors displayed amiloride-sensitive high-threshold mechanical currents with slow or no adaptation, respectively. Putative D-hair and Aalpha/beta-like cells had low-threshold mechanical currents, which were distinguished by their adapting kinetics and sensitivity to amiloride. Thus, subspecialized DRG cells express specific combinations of LVA and mechanosensitive channels, which are likely to play a key role in shaping responses of DRG neurons transmitting different sensory modalities.
Collapse
Affiliation(s)
- Bertrand Coste
- Laboratoire de Neurophysiologie Cellulaire, Centre National de la Recherche Scientifique, UMR 6150, Faculté de Médecine, IFR Jean Roche, 13916 Marseille Cedex 20, France
| | | | | |
Collapse
|
126
|
Abstract
The distribution of ion channels in neurons associated with pain pathways is becoming better understood. In particular, we now have insights into the molecular nature of the channels that are activated by tissue-damaging stimuli, as well as the mechanisms by which voltage-gated channels alter the sensitivity of peripheral neurons to change pain thresholds. This chapter details the evidence that individual channels may be associated with particular pain states, and describes genetic approaches to test the possible utility of targeting individual channels to treat pain.
Collapse
Affiliation(s)
- Tamara Rosenbaum
- Departamento de Biofísica, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México
- Correspondence should be addressed to León D. Islas or Tamara Rosenbaum, León D. Islas, Departamento de Fisiología, Facultad de Medicina, Apartado Postal 70-600. Circuito Escolar S/N; Ciudad Universitaria, Universidad Nacional Autónoma de México, México, D.F., 04510, México, Phone +(52) 55 5623 2132; Fax +(52) 55 5623 2241, , Tamara Rosenbaum, Departamento de Biofísica, Instituto de Fisiología Celular, Apartado Postal 70-600. Circuito Exterior S/N, Ciudad Universitaria, Universidad Nacional Autónoma de México, México, D.F., 04510, México. Phone +(52) 55 5622 5624; Fax +(52) 55 5622 5607,
| | - Sidney A. Simon
- Department of Neurobiology and Center of Neuroengineering Duke University Medical Center, Durham, NC 27710, USA
| | - Leon D. Islas
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, México
- Correspondence should be addressed to León D. Islas or Tamara Rosenbaum, León D. Islas, Departamento de Fisiología, Facultad de Medicina, Apartado Postal 70-600. Circuito Escolar S/N; Ciudad Universitaria, Universidad Nacional Autónoma de México, México, D.F., 04510, México, Phone +(52) 55 5623 2132; Fax +(52) 55 5623 2241, , Tamara Rosenbaum, Departamento de Biofísica, Instituto de Fisiología Celular, Apartado Postal 70-600. Circuito Exterior S/N, Ciudad Universitaria, Universidad Nacional Autónoma de México, México, D.F., 04510, México. Phone +(52) 55 5622 5624; Fax +(52) 55 5622 5607,
| |
Collapse
|
127
|
Rush AM, Cummins TR, Waxman SG. Multiple sodium channels and their roles in electrogenesis within dorsal root ganglion neurons. J Physiol 2006; 579:1-14. [PMID: 17158175 PMCID: PMC2075388 DOI: 10.1113/jphysiol.2006.121483] [Citation(s) in RCA: 315] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Dorsal root ganglion neurons express an array of sodium channel isoforms allowing precise control of excitability. An increasing body of literature indicates that regulation of firing behaviour in these cells is linked to their patterns of expression of specific sodium channel isoforms, which have been discovered to possess distinct biophysical characteristics. The pattern of expression of sodium channels differs in different subclasses of DRG neurons and is not fixed but, on the contrary, changes in response to a variety of disease insults. Moreover, modulation of channels by their environment has been found to play an important role in the response of these neurons to stimuli. In this review we illustrate how excitability can be finely tuned to provide contrasting firing templates in different subclasses of DRG neurons by selective deployment of various sodium channel isoforms, by plasticity of expression of these proteins, and by interactions of these sodium channel isoforms with each other and with other modulatory molecules.
Collapse
|
128
|
Xie W, Strong JA, Li H, Zhang JM. Sympathetic sprouting near sensory neurons after nerve injury occurs preferentially on spontaneously active cells and is reduced by early nerve block. J Neurophysiol 2006; 97:492-502. [PMID: 17065247 PMCID: PMC1774587 DOI: 10.1152/jn.00899.2006] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Some chronic pain conditions are maintained or enhanced by sympathetic activity. In animal models of pathological pain, abnormal sprouting of sympathetic fibers around large- and medium-sized sensory neurons is observed in dorsal root ganglia (DRGs). Large- and medium-sized cells are also more likely to be spontaneously active, suggesting that sprouting may be related to neuron activity. We previously showed that sprouting could be reduced by systemic or locally applied lidocaine. In the complete sciatic nerve transection model in rats, spontaneous activity initially originates in the injury site; later, the DRGs become the major source of spontaneous activity. In this study, spontaneous activity reaching the DRG soma was reduced by early nerve blockade (local perfusion of the transected nerve with TTX for the 1st 7 days after injury). This significantly reduced sympathetic sprouting. Conversely, increasing spontaneous activity by local nerve perfusion with K(+) channel blockers increased sprouting. The hyperexcitability and spontaneous activity of DRG neurons observed in this model were also significantly reduced by early nerve blockade. These effects of early nerve blockade on sprouting, excitability, and spontaneous activity were all observed 4-5 wk after the end of early nerve blockade, indicating that the early period of spontaneous activity in the injured nerve is critical for establishing the more long-lasting pathologies observed in the DRG. Individual spontaneously active neurons, labeled with fluorescent dye, were five to six times more likely than quiescent cells to be co-localized with sympathetic fibers, suggesting a highly localized correlation of activity and sprouting.
Collapse
Affiliation(s)
| | | | | | - Jun-Ming Zhang
- Send correspondence to: Jun-Ming Zhang, M.Sc., M.D., Department of Anesthesiology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, PO BOX 670531, Cincinnati, OH 45267-0531, Tel: 513-558-2427, FAX: 513-558-0995,
| |
Collapse
|
129
|
Tripathi PK, Trujillo L, Cardenas CA, Cardenas CG, de Armendi AJ, Scroggs RS. Analysis of the variation in use-dependent inactivation of high-threshold tetrodotoxin-resistant sodium currents recorded from rat sensory neurons. Neuroscience 2006; 143:923-38. [PMID: 17027172 DOI: 10.1016/j.neuroscience.2006.08.052] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2006] [Revised: 08/18/2006] [Accepted: 08/22/2006] [Indexed: 01/19/2023]
Abstract
This study addressed variation in the use-dependent inactivation (UDI) of high-threshold tetrodotoxin-resistant Na+ currents (TTX-R currents) and action potential firing behavior among acutely isolated rat dorsal root ganglion (DRG) cells. UDI was quantified as the percent decrease in current amplitude caused by increasing the current activation rate from 0.1-1.0 Hz for 20 s. TTX-R current UDI varied from 6% to 66% among 122 DRG cells examined, suggesting the existence of two or more levels of UDI. The voltage-dependency of the TTX-R currents was consistent with Na(V)1.8, regardless of UDI. However, TTX-R currents with more UDI had a more negative voltage-dependency of inactivation, a greater tendency to enter slow inactivation, and a slower recovery rate from slow inactivation, compared with those with less UDI. TTX-R currents with more UDI ran down faster than those with less UDI. However, UDI itself changed little over time, regardless of the initial UDI level observed in a particular DRG cell. Together, these two observations suggest that individual DRG cells did not express mixtures of TTX-R channels that varied regarding UDI. TTX-R current UDI was correlated with expression of a low-threshold A-current and whole-cell capacitance, suggesting that it varied among different nociceptor types. Whole-cell inward currents (WCI-currents), recorded without channel blockers, also exhibited UDI. WCI-current UDI varied similarly to TTX-R current UDI in magnitude, and relative to whole-cell capacitance and A-current expression, suggesting that the WCI-currents were carried predominantly by TTX-R channels. DRG cells with more WCI-current UDI exhibited a greater decrease in action potential amplitude and number, and a greater increase in action potential threshold over seven ramp depolarizations, compared with DRG cells with less WCI-current UDI. Variation in UDI of Na(V)1.8 channels expressed by different nociceptor types could contribute to shaping their individual firing patterns in response to noxious stimuli.
Collapse
Affiliation(s)
- P K Tripathi
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, 855 Monroe Avenue, Memphis, TN 38163, USA
| | | | | | | | | | | |
Collapse
|
130
|
Abstract
Our knowledge of the ion channels, receptors and signalling mechanisms involved in pain pathophysiology, and which specific channels play a role in subtypes of pain such as neuropathic and inflammatory pain, has expanded considerably in recent years. It is now clear that in the neuropathic state the expression of certain channels is modified, and that these changes underlie the plasticity of responses that occur to generate inappropriate pain signals from normally trivial inputs. Pain is modulated by a subset of the voltage-gated sodium channels, including Nav1.3, Nav1.7, Nav1.8 and Nav1.9. These isoforms display unique expression patterns within specific tissues, and are either up- or down-regulated upon injury to the nervous system. Here we describe our current understanding of the roles of sodium channels in pain and nociceptive information processing, with a particular emphasis on neuropathic pain and drugs useful for the treatment of neuropathic pain that act through mechanisms involving block of sodium channels. One of the future challenges in the development of novel sodium channel blockers is to design and synthesise isoform-selective channel inhibitors. This should provide substantial benefits over existing pain treatments.
Collapse
Affiliation(s)
- Marc Rogers
- Xention Ltd., Iconix Park, Pampisford, Cambridge CB2 4EF, United Kingdom
| | | | | | | |
Collapse
|
131
|
Liu CJ, Priest BT, Bugianesi RM, Dulski PM, Felix JP, Dick IE, Brochu RM, Knaus HG, Middleton RE, Kaczorowski GJ, Slaughter RS, Garcia ML, Köhler MG. A high-capacity membrane potential FRET-based assay for NaV1.8 channels. Assay Drug Dev Technol 2006; 4:37-48. [PMID: 16506887 DOI: 10.1089/adt.2006.4.37] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Clinical treatment of neuropathic pain can be achieved with a number of different drugs, some of which interact with all members of the voltage-gated sodium channel (NaV1) family. However, block of central nervous system and cardiac NaV1 channels can cause dose-limiting side effects, preventing many patients from achieving adequate pain relief. Expression of the tetrodotoxin-resistant NaV1.8 subtype is restricted to small-diameter sensory neurons, and several lines of evidence indicate a role for NaV1.8 in pain processing. Given these features, NaV1.8 subtype-selective blockers are predicted to be efficacious in the treatment of neuropathic pain and to be associated with fewer adverse effects than currently available therapies. To facilitate the identification of NaV1.8-specific inhibitors, we stably expressed the human NaV1.8 channel together with the auxiliary human beta1 subunit (NaV beta1) in human embryonic kidney 293 cells. Heterologously expressed human NaV1.8/NaV beta1 channels display biophysical properties that are similar to those of tetrodotoxin-resistant channels present in mouse dorsal root ganglion neurons. A membrane potential, fluorescence resonance energy transfer-based functional assay on a fluorometric imaging plate reader (FLIPR-Tetra, Molecular Devices, Sunnyvale, CA) platform has been established. This highcapacity assay is sensitive to known state-dependent NaV1 modulators and can be used to identify novel and selective NaV1.8 inhibitors.
Collapse
Affiliation(s)
- Chou J Liu
- Department of Ion Channels, Merck Research Laboratories, Rahway, NJ 07065, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Amir R, Argoff CE, Bennett GJ, Cummins TR, Durieux ME, Gerner P, Gold MS, Porreca F, Strichartz GR. The Role of Sodium Channels in Chronic Inflammatory and Neuropathic Pain. THE JOURNAL OF PAIN 2006; 7:S1-29. [PMID: 16632328 DOI: 10.1016/j.jpain.2006.01.444] [Citation(s) in RCA: 243] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2005] [Revised: 01/13/2006] [Accepted: 01/20/2006] [Indexed: 11/25/2022]
Abstract
UNLABELLED Clinical and experimental data indicate that changes in the expression of voltage-gated sodium channels play a key role in the pathogenesis of neuropathic pain and that drugs that block these channels are potentially therapeutic. Clinical and experimental data also suggest that changes in voltage-gated sodium channels may play a role in inflammatory pain, and here too sodium-channel blockers may have therapeutic potential. The sodium-channel blockers of interest include local anesthetics, used at doses far below those that block nerve impulse propagation, and tricyclic antidepressants, whose analgesic effects may at least partly be due to blockade of sodium channels. Recent data show that local anesthetics may have pain-relieving actions via targets other than sodium channels, including neuronal G protein-coupled receptors and binding sites on immune cells. Some of these actions occur with nanomolar drug concentrations, and some are detected only with relatively long-term drug exposure. There are 9 isoforms of the voltage-gated sodium channel alpha-subunit, and several of the isoforms that are implicated in neuropathic and inflammatory pain states are expressed by somatosensory primary afferent neurons but not by skeletal or cardiovascular muscle. This restricted expression raises the possibility that isoform-specific drugs might be analgesic and lacking the cardiotoxicity and neurotoxicity that limit the use of current sodium-channel blockers. PERSPECTIVE Changes in the expression of neuronal voltage-gated sodium channels may play a key role in the pathogenesis of both chronic neuropathic and chronic inflammatory pain conditions. Drugs that block these channels may have therapeutic efficacy with doses that are far below those that impair nerve impulse propagation or cardiovascular function.
Collapse
Affiliation(s)
- Ron Amir
- Department of Cell and Animal Biology, Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Chapter 2 Physiology and function. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/s1567-4231(09)70063-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
134
|
Willis WD. Chapter 3 The Nociceptive Membrane: Historical Overview. CURRENT TOPICS IN MEMBRANES 2006. [DOI: 10.1016/s1063-5823(06)57002-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
135
|
Chapter 2 History of Ion Channels in the Pain Sensory System. CURRENT TOPICS IN MEMBRANES 2006. [DOI: 10.1016/s1063-5823(06)57001-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
136
|
Priestley T, Hunter JC. Voltage-gated sodium channels as molecular targets for neuropathic pain. Drug Dev Res 2006. [DOI: 10.1002/ddr.20100] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
137
|
Connor M, Naves LA, McCleskey EW. Contrasting phenotypes of putative proprioceptive and nociceptive trigeminal neurons innervating jaw muscle in rat. Mol Pain 2005; 1:31. [PMID: 16242047 PMCID: PMC1283980 DOI: 10.1186/1744-8069-1-31] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2005] [Accepted: 10/24/2005] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Despite the clinical significance of muscle pain, and the extensive investigation of the properties of muscle afferent fibers, there has been little study of the ion channels on sensory neurons that innervate muscle. In this study, we have fluorescently tagged sensory neurons that innervate the masseter muscle, which is unique because cell bodies for its muscle spindles are in a brainstem nucleus (mesencephalic nucleus of the 5th cranial nerve, MeV) while all its other sensory afferents are in the trigeminal ganglion (TG). We examine the hypothesis that certain molecules proposed to be used selectively by nociceptors fail to express on muscle spindles afferents but appear on other afferents from the same muscle. RESULTS MeV muscle afferents perfectly fit expectations of cells with a non-nociceptive sensory modality: Opiates failed to inhibit calcium channel currents (I(Ca)) in 90% of MeV neurons, although ICa were inhibited by GABA(B) receptor activation. All MeV afferents had brief (1 msec) action potentials driven solely by tetrodotoxin (TTX)-sensitive Na channels and no MeV afferent expressed either of three ion channels (TRPV1, P2X3, and ASIC3) thought to be transducers for nociceptive stimuli, although they did express other ATP and acid-sensing channels. Trigeminal masseter afferents were much more diverse. Virtually all of them expressed at least one, and often several, of the three putative nociceptive transducer channels, but the mix varied from cell to cell. Calcium currents in 80% of the neurons were measurably inhibited by mu-opioids, but the extent of inhibition varied greatly. Almost all TG masseter afferents expressed some TTX-insensitive sodium currents, but the amount compared to TTX sensitive sodium current varied, as did the duration of action potentials. CONCLUSION Most masseter muscle afferents that are not muscle spindle afferents express molecules that are considered characteristic of nociceptors, but these putative muscle nociceptors are molecularly diverse. This heterogeneity may reflect the mixture of metabosensitive afferents which can also signal noxious stimuli and purely nociceptive afferents characteristic of muscle.
Collapse
Affiliation(s)
- Mark Connor
- Vollum Institute, Oregon Health & Sciences University, Portland, Oregon, USA
- Pain Management Research Institute, Kolling Institute, University of Sydney at Royal North Shore Hospital E25, St Leonards, NSW 2065, Australia
| | - Ligia A Naves
- Vollum Institute, Oregon Health & Sciences University, Portland, Oregon, USA
- Department of Physiology and Biophysic, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Edwin W McCleskey
- Vollum Institute, Oregon Health & Sciences University, Portland, Oregon, USA
| |
Collapse
|
138
|
Natura G, von Banchet GS, Schaible HG. Calcitonin gene-related peptide enhances TTX-resistant sodium currents in cultured dorsal root ganglion neurons from adult rats. Pain 2005; 116:194-204. [PMID: 15927395 DOI: 10.1016/j.pain.2005.04.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2004] [Revised: 03/11/2005] [Accepted: 04/04/2005] [Indexed: 10/25/2022]
Abstract
The neuropeptide calcitonin gene-related peptide (CGRP) binds to a subpopulation of dorsal root ganglion (DRG) neurons, elevates intracellular calcium, and causes inward currents in about 30% of lumbar DRG neurons. Using whole-cell patch clamp recordings, we found in the present study that application of CGRP to isolated and cultured DRG neurons from the adult rat enhances voltage-gated TTX-resistant (TTX-R) Na(+) inward currents in about 30% of small- to medium-sized DRG neurons. During CGRP, peak densities of Na(+) currents increased significantly. CGRP shifted the membrane conductance of the CGRP-responsive cells towards hyperpolarization without changing the slope of the peak conductance curve. The effect of CGRP was blocked by coadministration of CGRP8-37, an antagonist at the CGRP receptor. The effect of CGRP was also blocked after bath application of PKA14-22, a membrane-permeant blocker of protein kinase A, and PKC19-31, a PKC inhibitor, in the recording pipette. These data show pronounced facilitatory effects of CGRP on TTX-R Na(+) currents in DRG neurons which are mediated through CGRP receptors and intracellular pathways involving protein kinases A and C. Thus, in addition to prostaglandins, CGRP is another mediator that affects TTX-R Na(+) currents which are thought to occur mainly in nociceptive DRG neurons.
Collapse
Affiliation(s)
- Gabriel Natura
- Institut für Physiologie, University of Jena, Teichgraben 8, D-07740 Jena, Germany
| | | | | |
Collapse
|
139
|
Abstract
Neuropathic pain might best be considered as a collection of various pain states with a common feature, that being symptoms suggestive of dysfunction of peripheral nerves. The development of therapeutic options for the treatment of neuropathic pain is complicated significantly by several factors. Neuropathic pain may arise from widely diverse etiologies such as physical trauma, disease, infection, or chemotherapy. Symptoms indicative of neuropathic pain may also arise in individuals with no evidence of any type of nerve trauma (idiopathic). Although neuropathic pain is a substantial health care issue, it is relatively uncommon and only occurs in a small fraction (<10%) of individuals with these initiating factors. Moreover, the efficacy of treatment protocols, even against the same type of symptoms, differ depending on the underlying initiating cause of the neuropathy. Although these observations strongly suggest that there are predisposing factors that may impart susceptibility to the development of neuropathic pain, no common predisposing factors or genetic markers have been satisfactorily identified. Because of these vagaries, treatment of neuropathic pain has been based on trial and error. However, recent progress in the understanding of neurophysiologic changes that accompany peripheral nerve dysfunction indicate that regulation of ion channels that maintain membrane potentials or generate action potentials may provide an important therapeutic approach. Neuropathic pain is accompanied by increased activity of peripheral nociceptors, which is produced in part by changes in levels of specific calcium and sodium channels. The identification of sodium and/or calcium channels subtypes that are expressed almost exclusively on nociceptors may provide a way of regulating the activity of exaggerated nociceptor function without altering other sensory modalities. Thus, the selective targeting of ion channels may represent a viable therapeutic target for the management of the neuropathic pain state, regardless of etiology.
Collapse
Affiliation(s)
- Michael H Ossipov
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, USA
| | | |
Collapse
|
140
|
Rush AM, Craner MJ, Kageyama T, Dib-Hajj SD, Waxman SG, Ranscht B. Contactin regulates the current density and axonal expression of tetrodotoxin-resistant but not tetrodotoxin-sensitive sodium channels in DRG neurons. Eur J Neurosci 2005; 22:39-49. [PMID: 16029194 DOI: 10.1111/j.1460-9568.2005.04186.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Contactin, a glycosyl-phosphatidylinositol (GPI)-anchored predominantly neuronal cell surface glycoprotein, associates with sodium channels Nav1.2, Nav1.3 and Nav1.9, and enhances the density of these channels on the plasma membrane in mammalian expression systems. However, a detailed functional analysis of these interactions and of untested putative interactions with other sodium channel isoforms in mammalian neuronal cells has not been carried out. We examined the expression and function of sodium channels in small-diameter dorsal root ganglion (DRG) neurons from contactin-deficient (CNTN-/-) mice, compared to CNTN+/+ litter mates. Nav1.9 is preferentially expressed in isolectin B4 (IB4)-positive neurons and thus we used this marker to subdivide small-diameter DRG neurons. Using whole-cell patch-clamp recording, we observed a greater than two-fold reduction of tetrodotoxin-resistant (TTX-R) Nav1.8 and Nav1.9 current densities in IB4+ DRG neurons cultured from CNTN-/- vs. CNTN+/+ mice. Current densities for TTX-sensitive (TTX-S) sodium channels were unaffected. Contactin's effect was selective for IB4+ neurons as current densities for both TTX-R and TTX-S channels were not significantly different in IB4- DRG neurons from the two genotypes. Consistent with these results, we have demonstrated a reduction in Nav1.8 and Nav1.9 immunostaining on peripherin-positive unmyelinated axons in sciatic nerves from CNTN-/- mice but detected no changes in the expression for the two major TTX-S channels Nav1.6 and Nav1.7. These data provide evidence of a role for contactin in selectively regulating the cell surface expression and current densities of TTX-R but not TTX-S Na+ channel isoforms in nociceptive DRG neurons; this regulation could modulate the membrane properties and excitability of these neurons.
Collapse
MESH Headings
- Animals
- Axons/drug effects
- Axons/metabolism
- Cell Adhesion Molecules, Neuronal/genetics
- Cell Adhesion Molecules, Neuronal/metabolism
- Cell Adhesion Molecules, Neuronal/physiology
- Cell Membrane/drug effects
- Cell Membrane/metabolism
- Cells, Cultured
- Contactins
- Down-Regulation/drug effects
- Down-Regulation/genetics
- Ganglia, Spinal/drug effects
- Ganglia, Spinal/metabolism
- Membrane Potentials/drug effects
- Membrane Potentials/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- NAV1.8 Voltage-Gated Sodium Channel
- NAV1.9 Voltage-Gated Sodium Channel
- Nerve Fibers, Unmyelinated/drug effects
- Nerve Fibers, Unmyelinated/metabolism
- Neurons, Afferent/drug effects
- Neurons, Afferent/metabolism
- Neuropeptides/drug effects
- Neuropeptides/metabolism
- Nociceptors/drug effects
- Nociceptors/metabolism
- Patch-Clamp Techniques
- Plant Lectins
- Sodium Channel Blockers/pharmacology
- Sodium Channels/drug effects
- Sodium Channels/metabolism
- Tetrodotoxin/pharmacology
Collapse
Affiliation(s)
- Anthony M Rush
- Department of Neurology, Yale School of Medicine, LCI 707, 333 Cedar St., New Haven, CT 06510, USA
| | | | | | | | | | | |
Collapse
|
141
|
Shao PP, Ok D, Fisher MH, Garcia ML, Kaczorowski GJ, Li C, Lyons KA, Martin WJ, Meinke PT, Priest BT, Smith MM, Wyvratt MJ, Ye F, Parsons WH. Novel cyclopentane dicarboxamide sodium channel blockers as a potential treatment for chronic pain. Bioorg Med Chem Lett 2005; 15:1901-7. [PMID: 15780630 DOI: 10.1016/j.bmcl.2005.02.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2004] [Revised: 01/31/2005] [Accepted: 02/01/2005] [Indexed: 11/20/2022]
Abstract
A series of new voltage-gated sodium channel blockers were prepared based on the screening lead succinic diamide BPBTS. Replacement of the succinimide linker with the more rigid cyclic 1,2-trans-diamide linker was well tolerated. N-Methylation on the biphenylsulfonamide side of the amide moiety significantly reduced the clearance rate in rat pharmacokinetic studies.
Collapse
Affiliation(s)
- Pengchang P Shao
- Department of Medicinal Chemistry, Merck Research Laboratories, Rahway, NJ 07065, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Baker MD. Protein kinase C mediates up-regulation of tetrodotoxin-resistant, persistent Na+ current in rat and mouse sensory neurones. J Physiol 2005; 567:851-67. [PMID: 16002450 PMCID: PMC1474230 DOI: 10.1113/jphysiol.2005.089771] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The tetrodotoxin-resistant (TTX-r) persistent Na(+) current, attributed to Na(V)1.9, was recorded in small (< 25 mum apparent diameter) dorsal root ganglion (DRG) neurones cultured from P21 rats and from adult wild-type and Na(V)1.8 null mice. In conventional whole-cell recordings intracellular GTP-gamma-S caused current up-regulation, an effect inhibited by the PKC pseudosubstrate inhibitor, PKC19-36. The current amplitude was also up-regulated by 25 microM intracellular 1-oleoyl-2-acetyl-sn-glycerol (OAG) consistent with PKC involvement. In perforated-patch recordings, phorbol 12-myristate 13-acetate (PMA) up-regulated the current, whereas membrane-permeant activators of protein kinase A (PKA) were without effect. PGE(2) did not acutely up-regulate the current. Conversely, both PGE(2) and PKA activation up-regulated the major TTX-r Na(+) current, Na(V)1.8. Extracellular ATP up-regulated the persistent current with an average apparent K(d) near 13 microM, possibly consistent with P2Y receptor activation. Numerical simulation of the up-regulation qualitatively reproduced changes in sensory neurone firing properties. The activation of PKC appears to be a necessary step in the GTP-dependent up-regulation of persistent Na(+) current.
Collapse
Affiliation(s)
- Mark D Baker
- Molecular Nociception Group, Department of Biology, Medawar Building, University College London, UK.
| |
Collapse
|
143
|
Priest BT, Murphy BA, Lindia JA, Diaz C, Abbadie C, Ritter AM, Liberator P, Iyer LM, Kash SF, Kohler MG, Kaczorowski GJ, MacIntyre DE, Martin WJ. Contribution of the tetrodotoxin-resistant voltage-gated sodium channel NaV1.9 to sensory transmission and nociceptive behavior. Proc Natl Acad Sci U S A 2005; 102:9382-7. [PMID: 15964986 PMCID: PMC1166597 DOI: 10.1073/pnas.0501549102] [Citation(s) in RCA: 209] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2005] [Accepted: 05/05/2005] [Indexed: 01/02/2023] Open
Abstract
The transmission of pain signals after injury or inflammation depends in part on increased excitability of primary sensory neurons. Nociceptive neurons express multiple subtypes of voltage-gated sodium channels (NaV1s), each of which possesses unique features that may influence primary afferent excitability. Here, we examined the contribution of NaV1.9 to nociceptive signaling by studying the electrophysiological and behavioral phenotypes of mice with a disruption of the SCN11A gene, which encodes NaV1.9. Our results confirm that NaV1.9 underlies the persistent tetrodotoxin-resistant current in small-diameter dorsal root ganglion neurons but suggest that this current contributes little to mechanical thermal responsiveness in the absence of injury or to mechanical hypersensitivity after nerve injury or inflammation. However, the expression of NaV1.9 contributes to the persistent thermal hypersensitivity and spontaneous pain behavior after peripheral inflammation. These results suggest that inflammatory mediators modify the function of NaV1.9 to maintain inflammation-induced hyperalgesia.
Collapse
Affiliation(s)
- Birgit T Priest
- Merck Research Laboratories, P.O. Box 2000, Rahway, NJ 07065
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Wang S, Davis BM, Zwick M, Waxman SG, Albers KM. Reduced thermal sensitivity and Nav1.8 and TRPV1 channel expression in sensory neurons of aged mice. Neurobiol Aging 2005; 27:895-903. [PMID: 15979214 PMCID: PMC2841704 DOI: 10.1016/j.neurobiolaging.2005.04.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2004] [Revised: 04/13/2005] [Accepted: 04/26/2005] [Indexed: 10/25/2022]
Abstract
Sensory neurons in aging mammals undergo changes in anatomy, physiology and gene expression that correlate with reduced sensory perception. In this study we compared young and aged mice to identify proteins that might contribute to this loss of sensation. We first show using behavioral testing that thermal sensitivity in aged male and female mice is reduced. Expression of sodium channel (Nav1.8 and Nav1.9) and transient receptor potential vanilloid (TRPV) channels in DRG and peripheral nerves of young and old male mice was then examined. Immunoblotting and RT-PCR assays showed reduced Nav1.8 levels in aged mice. No change was measured in TRPV1 mRNA levels in DRG though TRPV1 protein appeared reduced in the DRG and peripheral nerves. The GFRalpha3 receptor, which binds the growth factor artemin and is expressed by TRPV1-positive neurons, was also decreased in the DRG of aged animals. These findings indicate that loss of thermal sensitivity in aging animals may result from a decreased level of TRPV1 and Nav1.8 and decreased trophic support that inhibits efficient transport of channel proteins to peripheral afferents.
Collapse
Affiliation(s)
- Shuying Wang
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | | | | | |
Collapse
|
145
|
Fang X, McMullan S, Lawson SN, Djouhri L. Electrophysiological differences between nociceptive and non-nociceptive dorsal root ganglion neurones in the rat in vivo. J Physiol 2005; 565:927-43. [PMID: 15831536 PMCID: PMC1464557 DOI: 10.1113/jphysiol.2005.086199] [Citation(s) in RCA: 178] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/05/2005] [Accepted: 04/13/2005] [Indexed: 12/31/2022] Open
Abstract
Intracellular recordings were made from 1022 somatic lumbar dorsal root ganglion (DRG) neurones in anaesthetized adult rats, classified from dorsal root conduction velocities (CVs) as C, Adelta or Aalpha/beta, and according to their responses to mechanical and thermal stimuli as nociceptive (including high-threshold mechanoreceptive (HTM) units), and non-nociceptive (including low-threshold mechanoreceptive (LTM) and cooling units). Of these, 463 met electrophysiological criteria for analysis of action potentials (APs) evoked by dorsal root stimulation. These included 47 C-, 71 Adelta- and 102 Aalpha/beta-nociceptive, 10 C-, 8 Adelta- and 178 Aalpha/beta-LTM, 18 C- and 19 Adelta- unresponsive, and 4 C-cooling units. Medians of AP and afterhyperpolarization (AHP) durations and AP overshoots were significantly greater for nociceptive than LTM units in all CV groups. AP overshoots and AHP durations were similar in nociceptors of all CV groups whereas AP durations were greater in slowly conducting, especially C-fibre, nociceptors. C-cooling units had faster CVs, smaller AP overshoots and shorter AP durations than C-HTM units. A subgroup of Aalpha/beta-HTM, moderate pressure units, had faster CVs and AP kinetics than other Aalpha/beta-HTM units. Of the Aalpha/beta-LTM units, muscle spindle afferents had the fastest CV and AP kinetics, while rapidly adapting cutaneous units had the slowest AP kinetics. AP variables in unresponsive and nociceptive units were similar in both C- and Adelta-fibre CV groups. The ability of fibres to follow rapid stimulus trains (fibre maximum following frequency) was correlated with CV but not sensory modality. These findings indicate both the usefulness and limitations of using electrophysiological criteria for identifying neurones acutely in vitro as nociceptive.
Collapse
Affiliation(s)
- X Fang
- Department of Physiology, University of Bristol, Medical School, University Walk, Bristol BS8 1TD, UK
| | | | | | | |
Collapse
|
146
|
Faisal AA, White JA, Laughlin SB. Ion-Channel Noise Places Limits on the Miniaturization of the Brain’s Wiring. Curr Biol 2005; 15:1143-9. [PMID: 15964281 DOI: 10.1016/j.cub.2005.05.056] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2005] [Revised: 05/09/2005] [Accepted: 05/10/2005] [Indexed: 11/20/2022]
Abstract
The action potential (AP) is transmitted by the concerted action of voltage-gated ion channels. Thermodynamic fluctuations in channel proteins produce probabilistic gating behavior, causing channel noise. Miniaturizing signaling systems increases susceptibility to noise, and with many cortical, cerebellar, and peripheral axons <0.5 mum diameter [1, 2 and 3], channel noise could be significant [4 and 5]. Using biophysical theory and stochastic simulations, we investigated channel-noise limits in unmyelinated axons. Axons of diameter below 0.1 microm become inoperable because single, spontaneously opening Na channels generate spontaneous AP at rates that disrupt communication. This limiting diameter is relatively insensitive to variations in biophysical parameters (e.g., channel properties and density, membrane conductance and leak) and will apply to most spiking axons. We demonstrate that the essential molecular machinery can, in theory, fit into 0.06 microm diameter axons. However, a comprehensive survey of anatomical data shows a lower limit for AP-conducting axons of 0.08-0.1 microm diameter. Thus, molecular fluctuations constrain the wiring density of brains. Fluctuations have implications for epilepsy and neuropathic pain because changes in channel kinetics or axonal properties can change the rate at which channel noise generates spontaneous activity.
Collapse
Affiliation(s)
- A Aldo Faisal
- Department of Zoology, University of Cambridge, Downing Street, CB2 3EJ Cambridge, United Kingdom.
| | | | | |
Collapse
|
147
|
Kwong K, Lee LY. Prostaglandin E2 potentiates a TTX-resistant sodium current in rat capsaicin-sensitive vagal pulmonary sensory neurones. J Physiol 2005; 564:437-50. [PMID: 15705651 PMCID: PMC1464437 DOI: 10.1113/jphysiol.2004.078725] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Capsaicin-sensitive vagal pulmonary neurones (pulmonary C neurones) play an important role in regulating airway function. During airway inflammation, the level of prostaglandin E(2) (PGE(2)) increases in the lungs and airways. PGE(2) has been shown to sensitize isolated pulmonary C neurones. The somatosensory correlate of the pulmonary C neurone, the small-diameter nociceptive neurone of the dorsal root ganglion, contains a high percentage of tetrodotoxin-resistant sodium currents (TTX-R I(Na)). Therefore, this study was carried out to determine whether these channel currents are involved in the PGE(2)-induced sensitization of pulmonary C neurones. We used the perforated patch-clamp technique to study the effects of PGE(2) on the TTX-R I(Na) in acutely cultured capsaicin-sensitive pulmonary neurones that were identified by retrograde labelling with a fluorescent tracer, DiI. We found that the pulmonary neurones sensitive to capsaicin had a higher percentage of TTX-R I(Na) than that of capsaicin-insensitive pulmonary neurones. PGE(2) exposure increased the evoked TTX-R I(Na) when experiments were performed at both room temperature and at 37 degrees C. Furthermore, stimulation of the adenylyl cyclase/protein kinase A pathway with either forskolin or Sp-5,6-DCl-cBiMPS potentiated the TTX-R I(Na) in a manner similar to that of PGE(2). We conclude that these modulatory effects of PGE(2) on TTX-R I(Na) play an important role in the sensitization of pulmonary C neurones.
Collapse
Affiliation(s)
- Kevin Kwong
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | | |
Collapse
|
148
|
Rush AM, Waxman SG. PGE2 increases the tetrodotoxin-resistant Nav1.9 sodium current in mouse DRG neurons via G-proteins. Brain Res 2005; 1023:264-71. [PMID: 15374752 DOI: 10.1016/j.brainres.2004.07.042] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2004] [Indexed: 11/25/2022]
Abstract
Inflammation caused by tissue damage results in pain, reflecting an increase in excitability of the primary afferent neurons innervating the area. There is some evidence to suggest that altered function of voltage-gated sodium channels is responsible for the hyperexcitability produced by inflammatory agents, possibly acting through G-proteins, but the role of different channel subtypes has not been fully explored. The tetrodotoxin-resistant (TTX-R) sodium channel Na(v)1.9 is expressed selectively in C- and A-fibre nociceptive-type units and is upregulated by G-protein activation. In this study, we examined the effects of the inflammatory agent prostaglandin-E(2) (PGE(2)) on Na(v)1.9 current in both Na(v)1.8-null and wild-type (WT) mice and explored the role of specific G-proteins in modulation. PGE(2) caused a twofold increase in Na(v)1.9 current (p<0.05) in both systems. Steady-state activation was shifted in a hyperpolarizing direction by 6-8 mV and availability of channels by 12 mV. No differences in the activation and inactivation kinetics could be detected. The increase in current was blocked by pertussis toxin (PTX) but not cholera toxin (CTX), showing involvement of G(i/o) but not G(s) subunits. Our data indicate that Na(v)1.9 current can be increased during inflammation via a G-protein dependent mechanism and suggest that this could contribute to the regulation of electrogenesis in dorsal root ganglia (DRG) neurons.
Collapse
Affiliation(s)
- Anthony M Rush
- Department of Neurology, Yale University School of Medicine, LCI 707, 333 Cedar St., New Haven, CT 06510, USA
| | | |
Collapse
|
149
|
Han SH, Murchison D, Griffith WH. Low voltage-activated calcium and fast tetrodotoxin-resistant sodium currents define subtypes of cholinergic and noncholinergic neurons in rat basal forebrain. ACTA ACUST UNITED AC 2005; 134:226-38. [PMID: 15836920 DOI: 10.1016/j.molbrainres.2004.10.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2004] [Revised: 10/22/2004] [Accepted: 10/24/2004] [Indexed: 11/26/2022]
Abstract
Neurons of the basal forebrain (BF) possess unique combinations of voltage-gated membrane currents. Here, we describe subtypes of rat basal forebrain neurons based on patch-clamp analysis of low-voltage activated (LVA) calcium and tetrodotoxin-resistant (TTX-R) sodium currents combined with single-cell RT-PCR analysis. Neurons were identified by mRNA expression of choline acetyltransferase (ChAT+, cholinergic) and glutamate decarboxylase (GAD67, GABAergic). Four cell types were encountered: ChAT+, GAD+, ChAT+/GAD+ and ChAT-/GAD- cells. Both ChAT+ and ChAT+/GAD+ cells (71/75) displayed LVA currents and most (34/39) expressed mRNA for LVA Ca(2+) channel subunits. Ca(v)3.2 was detected in 31/34 cholinergic neurons and Ca(v)3.1 was expressed in 6/34 cells. Three cells expressed both subunits. No single neurons showed Ca(v)3.3 mRNA expression, although BF tissue expression was observed. In young rats (2-4 mo), ChAT+/GAD+ cells displayed larger LVA current densities compared to ChAT+ neurons, while these latter neurons displayed an age-related increase in current densities. Most (29/38) noncholinergic neurons (GAD+ and ChAT-/GAD-) possessed fast TTX-R sodium currents resembling those mediated by Na(+) channel subunit Na(v)1.5. This subunit was expressed predominately in noncholinergic neurons. No cholinergic cells (0/75) displayed fast TTX-R currents. The TTX-R currents were faster and larger in GAD+ neurons compared to ChAT-/GAD- neurons. The properties of ChAT+/GAD+ neurons resemble those of ChAT+ neurons, rather than of GAD+ neurons. These results suggest novel features of subtypes of cholinergic and noncholinergic neurons within the BF that may provide new insights for understanding normal BF function.
Collapse
Affiliation(s)
- Sun-Ho Han
- Department of Medical Pharmacology and Toxicology, College of Medicine, Texas A and M University System Health Science Center, 1114-TAMU, College Station, TX 77843-1114, USA
| | | | | |
Collapse
|
150
|
Malykhina AP, Qin C, Foreman RD, Akbarali HI. Colonic inflammation increases Na+ currents in bladder sensory neurons. Neuroreport 2004; 15:2601-5. [PMID: 15570160 DOI: 10.1097/00001756-200412030-00008] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The purpose of this study was to determine whether sensitization of pre-spinal afferents induced by colonic inflammation can affect the physiology of the urinary bladder. Tetrodotoxin-resistant (TTX-R) Na+ currents were examined in bladder sensory neurons after experimental colitis. Cell bodies of bladder dorsal root ganglia were retrogradely labeled and TTX-R Na+ currents were recorded in capsaicin-sensitive neurons. Colitis significantly enhanced response of bladder neurons to capsaicin by approximately 60% and the peak amplitude of TTX-R Na+ current by 51%. These results suggest that colonic inflammation leads to increased excitability of nociceptive bladder neurons.
Collapse
Affiliation(s)
- Anna P Malykhina
- Department of Physiology, University of Oklahoma Health Sciences Center, 940 Stanton L.Young Blvd, Oklahoma City, OK 73104, USA
| | | | | | | |
Collapse
|