101
|
Li X, Higashida K, Kawamura T, Higuchi M. Time Course of Decrease in Skeletal Muscle Mitochondrial Biogenesis after Discontinuation of High-Fat Diet. J Nutr Sci Vitaminol (Tokyo) 2018; 64:233-238. [PMID: 29962436 DOI: 10.3177/jnsv.64.233] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
It is known that a high-fat diet induces an increase in mitochondrial biogenesis in skeletal muscle. To examine the time course of decrease in mitochondrial biogenesis in skeletal muscle after discontinuing a high-fat diet feeding, C57BL/6 mice were fed a high-fat diet for 4 wk and then switched to the control diet for another 3 or 7 d. During the high-fat diet withdrawal period, the protein content of the mitochondrial respiratory chain decreased faster than the fatty acid oxidation enzymes. The mitochondrial DNA copy number remained high for at least 1 wk after withdrawing the high-fat diet. These results suggested that after switching to the control diet following a period of high-fat diet, the increased mitochondrial biogenesis levels are maintained for a few days, and the rate of decline is divergent between the different mitochondrial components.
Collapse
Affiliation(s)
- Xi Li
- Graduate School of Sport Sciences, Waseda University
| | - Kazuhiko Higashida
- Faculty of Sport Sciences, Waseda University.,Institute of Advanced Active Aging Research, Waseda University.,Department of Food Science and Nutrition, The University of Shiga Prefecture
| | | | - Mitsuru Higuchi
- Faculty of Sport Sciences, Waseda University.,Institute of Advanced Active Aging Research, Waseda University
| |
Collapse
|
102
|
Zhang Y, Wan J, Xu Z, Hua T, Sun Q. Exercise ameliorates insulin resistance via regulating TGFβ-activated kinase 1 (TAK1)-mediated insulin signaling in liver of high-fat diet-induced obese rats. J Cell Physiol 2018; 234:7467-7474. [PMID: 30367484 DOI: 10.1002/jcp.27508] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 09/10/2018] [Indexed: 12/16/2022]
Abstract
Exercise is an effective therapy for insulin resistance. However, the underlying mechanism remains to be elucidated. Previous research demonstrated that TGFβ-activated kinase 1 (TAK1)-dependent signaling plays a crucial character in hepatic insulin resistance. Hepatic ubiquitin specific protease 4 (USP4), USP18, and dual-specificity phosphatases 14 (DUSP14) can suppress TAK1 phosphorylation, besides tumor necrosis factor receptor-associated factor 3 (TRAF3) and tripartite motif 8 (TRIM8) promote its phosphorylation. In this study, we tried to verify our hypothesis that exercise improves insulin resistance in high-fat diet (HFD)-induced obese (DIO) rats via regulating the TAK1 dependent signaling and TAK1 regulators in liver. Forty male Sprague-Dawley rats were randomized into four groups (n = 10): standard diet and sedentary as normal control; fed on HFD and DIO-sedentary; fed on HFD and DIO-chronic exercise; and fed on HFD and DIO-acute exercise. HFD feeding resulted in increased body weight, visceral fat mass, serum FFAs and hepatic lipid deposition, but decreased hepatic glycogen content and insulin sensitivity. Moreover, hepatic TRAF3 and TRIM8 protein levels increased, whereas USP4, USP18, and DUSP14 protein levels were decreased under obese status, which resulted in enhanced TAK1 phosphorylation and impaired insulin signaling. Exercise training, containing chronic and acute mode, both ameliorated insulin resistance. Meanwhile, decreased TAK1, c-Jun N-terminal kinase 1 (JNK1), and insulin receptor substrate 1 (IRS1) phosphorylation enhanced Akt phosphorylation in liver. Moreover, exercise enhanced USP4 and DUSP14 protein levels, whereas decreased TRIM8 protein levels in obese rats' liver. These results showed that exercise triggered a crucial modulation in TAK1-dependent signaling and its regulators in obese rats' liver, and distinct improvement in insulin sensitivity, which provide new insights into the mechanism by which physical exercise improves insulin resistance.
Collapse
Affiliation(s)
- Yong Zhang
- Division of Physiology, Physiology Laboratory of College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Jianyong Wan
- Division of Physiology, Physiology Laboratory of College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Zhen Xu
- Division of Immunology, The State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, China
| | - Tianmiao Hua
- Division of Neurobiology, Neurobiology Laboratory of College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Qingyan Sun
- Division of Physiology, Physiology Laboratory of College of Life Sciences, Anhui Normal University, Wuhu, China
| |
Collapse
|
103
|
Yang Y, Sadri H, Prehn C, Adamski J, Rehage J, Dänicke S, Saremi B, Sauerwein H. Acylcarnitine profiles in serum and muscle of dairy cows receiving conjugated linoleic acids or a control fat supplement during early lactation. J Dairy Sci 2018; 102:754-767. [PMID: 30343917 DOI: 10.3168/jds.2018-14685] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 08/24/2018] [Indexed: 12/21/2022]
Abstract
Acylcarnitines (ACC) are formed when fatty acid (FA)-coenzyme A enters the mitochondria for β-oxidation and the tricarboxylic acid cycle through the carnitine shuttle. Concentrations of ACC may vary depending on the metabolic conditions, but can accumulate when rates of β-oxidation exceed those of tricarboxylic acid. This study aimed to characterize muscle and blood serum acylcarnitine profiles, to determine the mRNA abundance of muscle carnitine acyltransferases, and to test whether dietary supplementation (from d 1 in milk) with conjugated linoleic acids (CLA; 100 g/d; each 12% of trans-10,cis-12 and cis-9,trans-11 CLA; n = 11) altered these compared with control fat-supplemented cows (CTR; n = 10). Blood samples and biopsies from the semitendinosus musclewere collected on d -21, 1, 21, and 70 relative to parturition. Serum and muscle ACC profiles were quantified using a targeted metabolomics approach. The CLA supplement did not affect the variables examined. The serum concentration of free carnitine decreased with the onset of lactation. The concentrations of acetylcarnitine, hydroxybutyrylcarnitine, and the sum of short-chain ACC in serum were greater from d -21 to 21 than thereafter. The serum concentrations of long-chain ACC tetradecenoylcarnitine (C14:1) and octadecenoylcarnitine (C18:1) concentrations were greater on d 1 and 21 compared with d -21. Muscle carnitine remained unchanged, whereas short- and medium-chain ACC, including propenoylcarnitine (C3:1), hydroxybutyrylcarnitine, hydroxyhexanoylcarnitine, hexenoylcarnitine (C6:1), and pimelylcarnitine were increased on d 21 compared with d -21 and decreased thereafter. In muscle, the concentrations of long-chain ACC (from C14 to C18) were elevated on d 1. The mRNA abundance of carnitine palmitoyltransferase 1, muscle isoform (CPT1B) increased 2.8-fold from d -21 to 1, followed by a decline to nearly prepartum values by d 70, whereas that of CPT2 did not change over time. The majority of serum and muscle short- and long-chain ACC were positively correlated with the FA concentrations in serum, whereas serum carnitine and C5 were negatively correlated with FA. Time-related changes in the serum and muscle ACC profiles were demonstrated that were not affected by the CLA supplement at the dosage used in the present study. The elevated concentrations of long-chain ACC species in muscle and of serum acetylcarnitine around parturition point to incomplete FA oxidation were likely due to insufficient metabolic adaptation in response to the load of FA around parturition.
Collapse
Affiliation(s)
- Y Yang
- Institute of Animal Science, Physiology and Hygiene Unit, University of Bonn, 53115 Bonn, Germany
| | - H Sadri
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz 5166616471, Iran.
| | - C Prehn
- Institute of Experimental Genetics, Genome Analysis Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - J Adamski
- Institute of Experimental Genetics, Genome Analysis Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany; Lehrstuhl für Experimentelle Genetik, Technische Universität München, Freising-Weihenstephan 85350, Germany; German Center for Diabetes Research (DZD), München-Neuherberg 85764, Germany
| | - J Rehage
- Clinic for Cattle, University for Veterinary Medicine, Foundation, 30173 Hannover, Germany
| | - S Dänicke
- Institute of Animal Nutrition, Friedrich-Loeffler-Institute (FLI), 38116 Braunschweig, Germany
| | - B Saremi
- Evonik Nutrition & Care GmbH, Rodenbacher Chaussee 4, 63457 Hanau, Germany
| | - H Sauerwein
- Institute of Animal Science, Physiology and Hygiene Unit, University of Bonn, 53115 Bonn, Germany
| |
Collapse
|
104
|
Dasari S, Newsom SA, Ehrlicher SE, Stierwalt HD, Robinson MM. Remodeling of skeletal muscle mitochondrial proteome with high-fat diet involves greater changes to β-oxidation than electron transfer proteins in mice. Am J Physiol Endocrinol Metab 2018; 315:E425-E434. [PMID: 29812987 PMCID: PMC6230708 DOI: 10.1152/ajpendo.00051.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Excess fat intake can increase lipid oxidation and expression of mitochondrial proteins, indicating remodeling of the mitochondrial proteome. Yet intermediates of lipid oxidation also accumulate, indicating a relative insufficiency to completely oxidize lipids. We investigated remodeling of the mitochondrial proteome to determine mechanisms of changes in lipid oxidation following high-fat feeding. C57BL/6J mice consumed a high-fat diet (HFD, 60% fat from lard) or a low-fat diet (LFD, 10% fat) for 12 wk. Mice were fasted for 4 h and then anesthetized by pentobarbital sodium overdose for tissue collection. A mitochondrial-enriched fraction was prepared from gastrocnemius muscles and underwent proteomic analysis by high-resolution mass spectrometry. Mitochondrial respiratory efficiency was measured as the ratio of ATP production to O2 consumption. Intramuscular acylcarnitines were measured by liquid chromatography-mass spectrometry. A total of 658 mitochondrial proteins were identified: 40 had higher abundance and 14 had lower abundance in mice consuming the HFD than in mice consuming the LFD. Individual proteins that changed with the HFD were primarily related to β-oxidation; there were fewer changes to the electron transfer system. Gene set enrichment analysis indicated that the HFD increased pathways of lipid metabolism and β-oxidation. Intramuscular concentrations of select acylcarnitines (C18:0) were greater in the HFD mice and reflected dietary lipid composition. Mitochondrial respiratory ATP production-to-O2 consumption ratio for lipids was not different between LFD and HFD mice. After the 60% fat diet, remodeling of the mitochondrial proteome revealed upregulation of proteins regulating lipid oxidation that was not evident for all mitochondrial pathways. The accumulation of lipid metabolites with obesity may occur without intrinsic dysfunction to mitochondrial lipid oxidation.
Collapse
Affiliation(s)
- Surendra Dasari
- Department of Health Sciences Research, Mayo Clinic , Rochester, Minnesota
| | - Sean A Newsom
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University , Corvallis, Oregon
| | - Sarah E Ehrlicher
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University , Corvallis, Oregon
| | - Harrison D Stierwalt
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University , Corvallis, Oregon
| | - Matthew M Robinson
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University , Corvallis, Oregon
| |
Collapse
|
105
|
Petersen MC, Shulman GI. Mechanisms of Insulin Action and Insulin Resistance. Physiol Rev 2018; 98:2133-2223. [PMID: 30067154 PMCID: PMC6170977 DOI: 10.1152/physrev.00063.2017] [Citation(s) in RCA: 1460] [Impact Index Per Article: 243.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/22/2018] [Accepted: 03/24/2018] [Indexed: 12/15/2022] Open
Abstract
The 1921 discovery of insulin was a Big Bang from which a vast and expanding universe of research into insulin action and resistance has issued. In the intervening century, some discoveries have matured, coalescing into solid and fertile ground for clinical application; others remain incompletely investigated and scientifically controversial. Here, we attempt to synthesize this work to guide further mechanistic investigation and to inform the development of novel therapies for type 2 diabetes (T2D). The rational development of such therapies necessitates detailed knowledge of one of the key pathophysiological processes involved in T2D: insulin resistance. Understanding insulin resistance, in turn, requires knowledge of normal insulin action. In this review, both the physiology of insulin action and the pathophysiology of insulin resistance are described, focusing on three key insulin target tissues: skeletal muscle, liver, and white adipose tissue. We aim to develop an integrated physiological perspective, placing the intricate signaling effectors that carry out the cell-autonomous response to insulin in the context of the tissue-specific functions that generate the coordinated organismal response. First, in section II, the effectors and effects of direct, cell-autonomous insulin action in muscle, liver, and white adipose tissue are reviewed, beginning at the insulin receptor and working downstream. Section III considers the critical and underappreciated role of tissue crosstalk in whole body insulin action, especially the essential interaction between adipose lipolysis and hepatic gluconeogenesis. The pathophysiology of insulin resistance is then described in section IV. Special attention is given to which signaling pathways and functions become insulin resistant in the setting of chronic overnutrition, and an alternative explanation for the phenomenon of ‟selective hepatic insulin resistanceˮ is presented. Sections V, VI, and VII critically examine the evidence for and against several putative mediators of insulin resistance. Section V reviews work linking the bioactive lipids diacylglycerol, ceramide, and acylcarnitine to insulin resistance; section VI considers the impact of nutrient stresses in the endoplasmic reticulum and mitochondria on insulin resistance; and section VII discusses non-cell autonomous factors proposed to induce insulin resistance, including inflammatory mediators, branched-chain amino acids, adipokines, and hepatokines. Finally, in section VIII, we propose an integrated model of insulin resistance that links these mediators to final common pathways of metabolite-driven gluconeogenesis and ectopic lipid accumulation.
Collapse
Affiliation(s)
- Max C Petersen
- Departments of Internal Medicine and Cellular & Molecular Physiology, Howard Hughes Medical Institute, Yale University School of Medicine , New Haven, Connecticut
| | - Gerald I Shulman
- Departments of Internal Medicine and Cellular & Molecular Physiology, Howard Hughes Medical Institute, Yale University School of Medicine , New Haven, Connecticut
| |
Collapse
|
106
|
Roura M, Catalá MG, Soto-Heras S, Hammami S, Izquierdo D, Fouladi-Nashta A, Paramio MT. Linoleic (LA) and linolenic (ALA) acid concentrations in follicular fluid of prepubertal goats and their effect on oocyte in vitro maturation and embryo development. Reprod Fertil Dev 2018; 30:286-296. [PMID: 28679464 DOI: 10.1071/rd17174] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 06/07/2017] [Indexed: 11/23/2022] Open
Abstract
In this study we assessed the concentration of linoleic acid (LA) and linolenic acid (ALA) in follicular fluid of prepubertal goats according to follicle size (<3mm or ≥3mm) by gas chromatography and tested the addition of different LA and ALA (LA:ALA) concentration ratios (50:50, 100:50 and 200:50µM) to the IVM medium on embryo development, mitochondrial activity, ATP concentration and relative gene expression (RPL19, ribosomal protein L19; SLC2A1, facilitated glucose transporter 1; ATF4, activating transcription factor 4; GPX1, glutathione peroxidase 1; HSPA5, heat-shock protein family A 70 kDa; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; DNMT1, DNA methyltransferase 1; GCLC, glutamate-cysteine ligase catalytic subunit; SOD1, superoxide dismutase 1). Oocytes were in vitro matured, fertilised or parthenogenetically activated and zygotes were cultured following conventional protocols. LA concentration ranged from 247 to 319µM and ALA concentration from 8.39 to 41.19µM without any effect of follicle size. Blastocyst production from the different groups was: control FCS (22.33%) and BSA (19.63%), treatments 50:50 (22.58%), 100:50 (21.01%) and 200:50 (9.60%). Oocytes from the 200:50 group presented higher polyspermy and mitochondrial activity compared with controls and the rest of the treatment groups. No differences were observed in ATP concentration or relative expression of the genes measured between treatment groups. In conclusion, the low number of blastocysts obtained in the 200:50 group was caused by a high number of polyspermic zygotes, which could suggest that high LA concentration impairs oocyte membranes.
Collapse
Affiliation(s)
- Montserrat Roura
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Travessera dels Turons s/n, 08193, Bellaterra, Barcelona, Catalonia, Spain
| | - María G Catalá
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Travessera dels Turons s/n, 08193, Bellaterra, Barcelona, Catalonia, Spain
| | - Sandra Soto-Heras
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Travessera dels Turons s/n, 08193, Bellaterra, Barcelona, Catalonia, Spain
| | - Sondes Hammami
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Travessera dels Turons s/n, 08193, Bellaterra, Barcelona, Catalonia, Spain
| | - Dolors Izquierdo
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Travessera dels Turons s/n, 08193, Bellaterra, Barcelona, Catalonia, Spain
| | - Ali Fouladi-Nashta
- Reproduction Genes and Development Group, Department of Veterinary Basic Sciences, The Royal Veterinary College, Hawkshead Lane Hatfield, Herts AL97TA, UK
| | - Maria-Teresa Paramio
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Travessera dels Turons s/n, 08193, Bellaterra, Barcelona, Catalonia, Spain
| |
Collapse
|
107
|
Ruegsegger GN, Creo AL, Cortes TM, Dasari S, Nair KS. Altered mitochondrial function in insulin-deficient and insulin-resistant states. J Clin Invest 2018; 128:3671-3681. [PMID: 30168804 DOI: 10.1172/jci120843] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Diabetes profoundly alters fuel metabolism; both insulin deficiency and insulin resistance are characterized by inefficient mitochondrial coupling and excessive production of reactive oxygen species (ROS) despite their association with normal to high oxygen consumption. Altered mitochondrial function in diabetes can be traced to insulin's pivotal role in maintaining mitochondrial proteome abundance and quality by enhancing mitochondrial biogenesis and preventing proteome damage and degradation, respectively. Although insulin enhances gene transcription, it also induces decreases in amino acids. Thus, if amino acid depletion is not corrected, increased transcription will not result in enhanced translation of transcripts to proteins. Mitochondrial biology varies among tissues, and although most studies in humans are performed in skeletal muscle, abnormalities have been reported in multiple organs in preclinical models of diabetes. Nutrient excess, especially fat excess, alters mitochondrial physiology by driving excess ROS emission that impairs insulin action. Excessive ROS irreversibly damages DNA and proteome with adverse effects on cellular functions. In insulin-resistant people, aerobic exercise stimulates both mitochondrial biogenesis and efficiency concurrent with enhancement of insulin action. This Review discusses the association between both insulin-deficient and insulin-resistant diabetes and alterations in mitochondrial proteome homeostasis and function that adversely affect cellular functions, likely contributing to many diabetic complications.
Collapse
|
108
|
Impact of Obesity and Hyperglycemia on Placental Mitochondria. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2378189. [PMID: 30186542 PMCID: PMC6112210 DOI: 10.1155/2018/2378189] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 06/13/2018] [Accepted: 07/12/2018] [Indexed: 01/08/2023]
Abstract
A lipotoxic placental environment is recognized in maternal obesity, with increased inflammation and oxidative stress. These changes might alter mitochondrial function, with excessive production of reactive oxygen species, in a vicious cycle leading to placental dysfunction and impaired pregnancy outcomes. Here, we hypothesize that maternal pregestational body mass index (BMI) and glycemic levels can alter placental mitochondria. We measured mitochondrial DNA (mtDNA, real-time PCR) and morphology (electron microscopy) in placentas of forty-seven singleton pregnancies at elective cesarean section. Thirty-seven women were normoglycemic: twenty-one normal-weight women, NW, and sixteen obese women, OB/GDM(−). Ten obese women had gestational diabetes mellitus, OB/GDM(+). OB/GDM(−) presented higher mtDNA levels versus NW, suggesting increased mitochondrial biogenesis in the normoglycemic obese group. These mitochondria showed similar morphology to NW. On the contrary, in OB/GDM(+), mtDNA was not significantly increased versus NW. Nevertheless, mitochondria showed morphological abnormalities, indicating impaired functionality. The metabolic response of the placenta to impairment in obese pregnancies can possibly vary depending on several parameters, resulting in opposite strains acting when insulin resistance of GDM occurs in the obese environment, characterized by inflammation and oxidative stress. Therefore, mitochondrial alterations represent a feature of obese pregnancies with changes in placental energetics that possibly can affect pregnancy outcomes.
Collapse
|
109
|
Small L, Brandon AE, Quek LE, Krycer JR, James DE, Turner N, Cooney GJ. Acute activation of pyruvate dehydrogenase increases glucose oxidation in muscle without changing glucose uptake. Am J Physiol Endocrinol Metab 2018; 315:E258-E266. [PMID: 29406780 DOI: 10.1152/ajpendo.00386.2017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Pyruvate dehydrogenase (PDH) activity is a key component of the glucose/fatty acid cycle hypothesis for the regulation of glucose uptake and metabolism. We have investigated whether acute activation of PDH in muscle can alleviate the insulin resistance caused by feeding animals a high-fat diet (HFD). The importance of PDH activity in muscle glucose disposal under insulin-stimulated conditions was determined by infusing the PDH kinase inhibitor dichloroacetate (DCA) into HFD-fed Wistar rats during a hyperinsulinemic-euglycemic clamp. Acute DCA infusion did not alter glucose infusion rate, glucose disappearance, or hepatic glucose production but did decrease plasma lactate levels. DCA substantially increased muscle PDH activity; however, this did not improve insulin-stimulated glucose uptake in insulin-resistant muscle of HFD rats. DCA infusion increased the flux of pyruvate to acetyl-CoA and reduced glucose incorporation into glycogen and alanine in muscle. Similarly, in isolated muscle, DCA treatment increased glucose oxidation and decreased glycogen synthesis without changing glucose uptake. These results suggest that, although PDH activity controls the conversion of pyruvate to acetyl-CoA for oxidation, this has little effect on glucose uptake into muscle under insulin-stimulated conditions.
Collapse
Affiliation(s)
- Lewin Small
- Diabetes and Metabolism Division, Garvan Institute , Sydney, New South Wales , Australia
| | - Amanda E Brandon
- Diabetes and Metabolism Division, Garvan Institute , Sydney, New South Wales , Australia
- School of Medical Science, The University of Sydney, Charles Perkins Centre , New South Wales , Australia
| | - Lake-Ee Quek
- School of Mathematics and Statistics, The University of Sydney, Charles Perkins Centre , New South Wales , Australia
| | - James R Krycer
- School of Life and Environmental Science, The University of Sydney, Charles Perkins Centre , New South Wales , Australia
| | - David E James
- School of Life and Environmental Science, The University of Sydney, Charles Perkins Centre , New South Wales , Australia
| | - Nigel Turner
- Department of Pharmacology, School of Medical Science, University of New South Wales , Sydney, New South Wales , Australia
| | - Gregory J Cooney
- Diabetes and Metabolism Division, Garvan Institute , Sydney, New South Wales , Australia
- School of Medical Science, The University of Sydney, Charles Perkins Centre , New South Wales , Australia
| |
Collapse
|
110
|
Metcalfe LK, Smith GC, Turner N. Defining lipid mediators of insulin resistance - controversies and challenges. J Mol Endocrinol 2018; 62:JME-18-0023. [PMID: 30068522 DOI: 10.1530/jme-18-0023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 07/04/2018] [Accepted: 07/31/2018] [Indexed: 12/31/2022]
Abstract
Essential elements of all cells, lipids play important roles in energy production, signalling and as structural components. Despite these critical functions, excessive availability and intracellular accumulation of lipid is now recognised as a major factor contributing to many human diseases, including obesity and diabetes. In the context of these metabolic disorders, ectopic deposition of lipid has been proposed to have deleterious effects of insulin action. While this relationship has been recognised for some time now, there is currently no unifying mechanism to explain how lipids precipitate the development of insulin resistance. This review summarises the evidence linking specific lipid molecules to the induction of insulin resistance, describing some of the current controversies and challenges for future studies in this field.
Collapse
Affiliation(s)
- Louise K Metcalfe
- L Metcalfe, Department of Pharmacology, School of Medical Sciences, UNSW Australia, Kensington, Australia
| | - Greg C Smith
- G Smith, Department of Pharmacology, School of Medical Sciences, UNSW Australia, Kensington, Australia
| | - Nigel Turner
- N Turner, Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, Australia
| |
Collapse
|
111
|
Takagi H, Ikehara T, Kashiwagi Y, Hashimoto K, Nanchi I, Shimazaki A, Nambu H, Yukioka H. ACC2 Deletion Enhances IMCL Reduction Along With Acetyl-CoA Metabolism and Improves Insulin Sensitivity in Male Mice. Endocrinology 2018; 159:3007-3019. [PMID: 29931154 DOI: 10.1210/en.2018-00338] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/15/2018] [Indexed: 12/13/2022]
Abstract
Intramyocellular lipid (IMCL) accumulation in skeletal muscle greatly contributes to lipid-induced insulin resistance. Because acetyl-coenzyme A (CoA) carboxylase (ACC) 2 negatively modulates mitochondrial fatty acid oxidation (FAO) in skeletal muscle, ACC2 inhibition is expected to reduce IMCL via elevation of FAO and to attenuate insulin resistance. However, the concept of substrate competition suggests that enhanced FAO results in reduced glucose use because of an excessive acetyl-CoA pool in mitochondria. To identify how ACC2-regulated FAO affects IMCL accumulation and glucose metabolism, we generated ACC2 knockout (ACC2-/-) mice and investigated skeletal muscle metabolites associated with fatty acid and glucose metabolism, as well as whole-body glucose metabolism. ACC2-/- mice displayed higher capacity of glucose disposal at the whole-body levels. In skeletal muscle, ACC2-/- mice exhibited enhanced acylcarnitine formation and reduced IMCL levels without alteration in glycolytic intermediate levels. Notably, these changes were accompanied by decreased acetyl-CoA content and enhanced mitochondrial pathways related to acetyl-CoA metabolism, such as the acetylcarnitine production and tricarboxylic acid cycle. Furthermore, ACC2-/- mice exhibited lower levels of IMCL and acetyl-CoA even under HFD conditions and showed protection against HFD-induced insulin resistance. Our findings suggest that ACC2 deletion leads to IMCL reduction without suppressing glucose use via an elevation in acetyl-CoA metabolism even under HFD conditions and offer new mechanistic insight into the therapeutic potential of ACC2 inhibition on insulin resistance.
Collapse
Affiliation(s)
- Hiroyuki Takagi
- Drug Discovery and Disease Research Laboratory, Shionogi & Co., Ltd., Osaka, Japan
| | - Tatsuya Ikehara
- Biomarker Research and Development Department, Shionogi & Co., Ltd., Osaka, Japan
| | - Yuto Kashiwagi
- Biomarker Research and Development Department, Shionogi & Co., Ltd., Osaka, Japan
| | - Kumi Hashimoto
- Drug Discovery and Disease Research Laboratory, Shionogi & Co., Ltd., Osaka, Japan
| | - Isamu Nanchi
- Drug Discovery and Disease Research Laboratory, Shionogi & Co., Ltd., Osaka, Japan
| | - Atsuyuki Shimazaki
- Drug Discovery and Disease Research Laboratory, Shionogi & Co., Ltd., Osaka, Japan
| | - Hirohide Nambu
- Drug Discovery and Disease Research Laboratory, Shionogi & Co., Ltd., Osaka, Japan
| | - Hideo Yukioka
- Drug Discovery and Disease Research Laboratory, Shionogi & Co., Ltd., Osaka, Japan
| |
Collapse
|
112
|
Bentley NL, Fiveash CE, Osborne B, Quek LE, Ogura M, Inagaki N, Cooney GJ, Polly P, Montgomery MK, Turner N. Protein hypoacylation induced by Sirt5 overexpression has minimal metabolic effect in mice. Biochem Biophys Res Commun 2018; 503:1349-1355. [PMID: 30017194 DOI: 10.1016/j.bbrc.2018.07.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 07/10/2018] [Indexed: 12/27/2022]
Abstract
Sirtuins are a family of evolutionary conserved enzymes that dynamically regulate cellular physiology. Mammals have 7 sirtuins, which are located in different cellular compartments. Sirt5, a sirtuin isoform located in multiple subcellular sites, is involved in regulating a diverse range of cellular and metabolic processes through the removal of a range of acyl-lysine modifications on target proteins. Loss of Sirt5 leads to hyper-malonylation and hyper-succinylation of both mitochondrial and extra-mitochondrial proteins, influencing oxidative phosphorylation, the TCA cycle and glycolysis. However despite these findings, the effect of Sirt5 overexpression on metabolism remains poorly investigated. Here we report that overexpression of Sirt5 has minimal effect on mitochondrial metabolism and overall physiology in mice, despite inducing widespread decreases in protein acylation. Our data confirms the role of Sirt5 as an important demalonylase and desuccinylase enzyme in vivo, but questions the relevance of physiological changes in protein acylation levels in the regulation of cellular metabolism.
Collapse
Affiliation(s)
- Nicholas L Bentley
- Department of Pharmacology, School of Medical Sciences, UNSW Sydney, Australia; Department of Pathology, School of Medical Sciences, UNSW Sydney, Australia
| | - Corrine E Fiveash
- Department of Pharmacology, School of Medical Sciences, UNSW Sydney, Australia
| | - Brenna Osborne
- Department of Pharmacology, School of Medical Sciences, UNSW Sydney, Australia
| | - Lake-Ee Quek
- School of Mathematics and Statistics, The University of Sydney, Sydney, Australia
| | - Masahito Ogura
- Department of Diabetes, Endocrinology and Nutrition, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology and Nutrition, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Gregory J Cooney
- Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Sydney, Australia
| | - Patsie Polly
- Department of Pathology, School of Medical Sciences, UNSW Sydney, Australia
| | | | - Nigel Turner
- Department of Pharmacology, School of Medical Sciences, UNSW Sydney, Australia.
| |
Collapse
|
113
|
Ehrlicher SE, Stierwalt HD, Newsom SA, Robinson MM. Skeletal muscle autophagy remains responsive to hyperinsulinemia and hyperglycemia at higher plasma insulin concentrations in insulin-resistant mice. Physiol Rep 2018; 6:e13810. [PMID: 30047243 PMCID: PMC6060106 DOI: 10.14814/phy2.13810] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 07/02/2018] [Indexed: 12/14/2022] Open
Abstract
Skeletal muscle autophagy is suppressed by insulin, but it is not clear if such suppression is altered with insulin resistance. We investigated if the inhibitory action of insulin on autophagy remains intact despite insulin resistance to glucose metabolism. C57BL/6J mice consumed either a low-fat (10% fat) diet as control or high-fat (60% fat) diet for 12 weeks to induce insulin resistance. Following a 5-hour fast, mice underwent either hyperinsulinemic-euglycemic, hyperinsulinemic-hyperglycemic, or saline infusion to test the effect of insulin on autophagy markers in the quadriceps muscle (n = 8-10 per diet and clamp condition). Mice were anesthetized by sodium pentobarbital for tissue collection after 2 h of infusion. Despite the high-fat group having lower insulin-stimulated glucose uptake, both low-fat and high-fat groups had similar autophagosome abundance during hyperinsulinemic conditions. The lipidation of microtubule-associated proteins 1A/1B light chain 3B (LC3II/LC3I) was decreased in hyperinsulinemia versus saline control (P < 0.01) in low-fat (-54%) and high-fat groups (-47%), demonstrating similar suppression of autophagy between diet groups. Mitochondrial-associated LC3II was greater in the high-fat compared to the low-fat group (P = 0.045) across clamp conditions, suggesting a greater localization of autophagosomes with mitochondria. L6 myotubes were treated with insulin and rapamycin to determine the role of mechanistic target of rapamycin complex-1 (mTORC1) in insulin-mediated suppression of autophagy. Inhibition of mTORC1 blunted the decline of LC3II/LC3I with insulin by 40%, suggesting mTORC1 partially mediates the insulin action to suppress autophagy. Collectively, autophagy remained responsive to the suppressive effects of insulin in otherwise insulin-resistant and obese mice.
Collapse
Affiliation(s)
- Sarah E. Ehrlicher
- College of Public Health and Human SciencesOregon State UniversityCorvallisOregon
| | | | - Sean A. Newsom
- College of Public Health and Human SciencesOregon State UniversityCorvallisOregon
| | - Matthew M. Robinson
- College of Public Health and Human SciencesOregon State UniversityCorvallisOregon
| |
Collapse
|
114
|
Zhang Y, Wan J, Liu S, Hua T, Sun Q. Exercise induced improvements in insulin sensitivity are concurrent with reduced NFE2/miR-432-5p and increased FAM3A. Life Sci 2018; 207:23-29. [PMID: 29802941 DOI: 10.1016/j.lfs.2018.05.040] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 05/14/2018] [Accepted: 05/22/2018] [Indexed: 10/16/2022]
Abstract
AIMS Little is known regarding whether the NFE2/miR-423-5p and FAM3A-ATP-Akt pathway in liver mediates exercise allured alleviation of insulin resistance connected with diet-induced obesity. This research inquired the influence of exercise on liver insulin sensitivity and whole body insulin resistance in high-fat diet fed rats. MATERIALS AND METHODS Forty male Sprague-Dawley rats at seven-week-old were assigned to four groups at random: standard diet as normal control group (NC, n = 10), high-fat diet group (HFD, n = 10), high-fat diet with chronic exercise intervention group (HFD-CE, n = 10) and high-fat diet with acute exercise intervention group (HFD-AE, n = 10). KEY FINDINGS Compared with rats fed with a standard diet, eight-week high-fat diet feeding lead to elevated body weight, visceral fat content and serum FFAs, and decreased insulin sensitivity index. Moreover, high-fat diet enhanced NFE2 protein expression and miR-423-5p level, decreased FAM3A mRNA and protein expression, ATP level and Akt phosphorylation in liver. In contrast, physical exercise, both chronic and acute exercise alleviated whole body insulin resistance, reduced hepatic NFE2 and miR-423-5p expression, and serum FFAs level, meanwhile enhanced FAM3A mRNA and protein expression, ATP level and Akt phosphorylation in liver. The current findings indicated that exercise in diet-induced obesity, both chronic and acute, induce a momentous regulation in NFE2/miR-423-5p and FAM3A-ATP-Akt pathway in liver, and improve hepatic insulin sensitivity and whole body insulin resistance. SIGNIFICANCE All these results supply crucial evidence in our comprehending of the molecular mechanism that connected exercise to an alleviation of insulin resistance.
Collapse
Affiliation(s)
- Yong Zhang
- Physiology Laboratory of College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Jianyong Wan
- Physiology Laboratory of College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Shiqiang Liu
- Physiology Laboratory of College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Tianmiao Hua
- Neurobiology Laboratory of College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Qingyan Sun
- Physiology Laboratory of College of Life Sciences, Anhui Normal University, Wuhu, China.
| |
Collapse
|
115
|
Holloway GP. Nutrition and Training Influences on the Regulation of Mitochondrial Adenosine Diphosphate Sensitivity and Bioenergetics. Sports Med 2018; 47:13-21. [PMID: 28332118 PMCID: PMC5371621 DOI: 10.1007/s40279-017-0693-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Since the seminal finding almost 50 years ago that exercise training increases mitochondrial content in skeletal muscle, a considerable amount of research has been dedicated to elucidate the mechanisms inducing mitochondrial biogenesis. The discovery of peroxisome proliferator-activated receptor γ co-activator 1α as a major regulator of exercise-induced gene transcription was instrumental in beginning to understand the signals regulating this process. However, almost two decades after its discovery, our understanding of the signals inducing mitochondrial biogenesis remain poorly defined, limiting our insights into possible novel training modalities in elite athletes that can increase the oxidative potential of muscle. In particular, the role of mitochondrial reactive oxygen species has received very little attention; however, several lifestyle interventions associated with an increase in mitochondrial reactive oxygen species coincide with the induction of mitochondrial biogenesis. Furthermore, the diminishing returns of exercise training are associated with reductions in exercise-induced, mitochondrial-derived reactive oxygen species. Therefore, research focused on altering redox signaling in elite athletes may prove to be effective at inducing mitochondrial biogenesis and augmenting training regimes. In the context of exercise performance, the biological effect of increasing mitochondrial content is an attenuated rise in free cytosolic adenosine diphosphate (ADP), and subsequently decreased carbohydrate flux at a given power output. Recent evidence has shown that mitochondrial ADP sensitivity is a regulated process influenced by nutritional interventions, acute exercise, and exercise training. This knowledge raises the potential to improve mitochondrial bioenergetics in the absence of changes in mitochondrial content. Elucidating the mechanisms influencing the acute regulation of mitochondrial ADP sensitivity could have performance benefits in athletes, especially as these individuals display high levels of mitochondria, and therefore are subjects in whom it is notoriously difficult to further induce mitochondrial adaptations. In addition to changes in ADP sensitivity, an increase in mitochondrial coupling would have a similar bioenergetic response, namely a reduction in free cytosolic ADP. While classically the stoichiometry of the electron transport chain has been considered rigid, recent evidence suggests that sodium nitrate can improve the efficiency of this process, creating the potential for dietary sources of nitrate (e.g., beetroot juice) to display similar improvements in exercise performance. The current review focuses on these processes, while also discussing the biological relevance in the context of exercise performance.
Collapse
Affiliation(s)
- Graham P Holloway
- Department of Human Health and Nutritional Sciences, University of Guelph, 491 Gordon St., Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
116
|
El Hamrani D, Gin H, Gallis JL, Bouzier-Sore AK, Beauvieux MC. Consumption of Alcopops During Brain Maturation Period: Higher Impact of Fructose Than Ethanol on Brain Metabolism. Front Nutr 2018; 5:33. [PMID: 29868598 PMCID: PMC5952002 DOI: 10.3389/fnut.2018.00033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/18/2018] [Indexed: 12/26/2022] Open
Abstract
Alcopops are flavored alcoholic beverages sweetened by sodas, known to contain fructose. These drinks have the goal of democratizing alcohol among young consumers (12-17 years old) and in the past few years have been considered as fashionable amongst teenagers. Adolescence, however, is a key period for brain maturation, occurring in the prefrontal cortex and limbic system until 21 years old. Therefore, this drinking behavior has become a public health concern. Despite the extensive literature concerning the respective impacts of either fructose or ethanol on brain, the effects following joint consumption of these substrates remains unknown. Our objective was to study the early brain modifications induced by a combined diet of high fructose (20%) and moderate amount of alcohol in young rats by 13C Nuclear Magnetic Resonance (NMR) spectroscopy. Wistar rats had isocaloric pair-fed diets containing fructose (HF, 20%), ethanol (Et, 0.5 g/day/kg) or both substrates at the same time (HFEt). After 6 weeks of diet, the rats were infused with 13C-glucose and brain perchloric acid extracts were analyzed by NMR spectroscopy (1H and 13C). Surprisingly, the most important modifications of brain metabolism were observed under fructose diet. Alterations, observed after only 6 weeks of diet, show that the brain is vulnerable at the metabolic level to fructose consumption during late-adolescence throughout adulthood in rats. The main result was an increase in oxidative metabolism compared to glycolysis, which may impact lactate levels in the brain and may, at least partially, explain memory impairment in teenagers consuming alcopops.
Collapse
Affiliation(s)
- Dounia El Hamrani
- UMR5536 Centre de Resonance Magnetique des Systemes Biologiques (CRMSB), Centre National de la Recherche Scientifique (CNRS), Université de Bordeaux, LabEx TRAIL, Bordeaux, France
| | - Henri Gin
- UMR5536 Centre de Resonance Magnetique des Systemes Biologiques (CRMSB), Centre National de la Recherche Scientifique (CNRS), Université de Bordeaux, LabEx TRAIL, Bordeaux, France.,Service de Nutrition et Diabétologie, Hôpital Haut-Lévêque, Pessac, France
| | - Jean-Louis Gallis
- UMR5536 Centre de Resonance Magnetique des Systemes Biologiques (CRMSB), Centre National de la Recherche Scientifique (CNRS), Université de Bordeaux, LabEx TRAIL, Bordeaux, France
| | - Anne-Karine Bouzier-Sore
- UMR5536 Centre de Resonance Magnetique des Systemes Biologiques (CRMSB), Centre National de la Recherche Scientifique (CNRS), Université de Bordeaux, LabEx TRAIL, Bordeaux, France
| | - Marie-Christine Beauvieux
- UMR5536 Centre de Resonance Magnetique des Systemes Biologiques (CRMSB), Centre National de la Recherche Scientifique (CNRS), Université de Bordeaux, LabEx TRAIL, Bordeaux, France
| |
Collapse
|
117
|
Schönke M, Massart J, Zierath JR. Effects of high-fat diet and AMP-activated protein kinase modulation on the regulation of whole-body lipid metabolism. J Lipid Res 2018; 59:1276-1282. [PMID: 29739863 DOI: 10.1194/jlr.d082370] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 04/06/2018] [Indexed: 12/17/2022] Open
Abstract
Metabolic flexibility, the capacity to adapt to fuel availability for energy production, is crucial for maintaining whole-body energy homeostasis. An inability to adequately promote FA utilization is associated with lipid accumulation in peripheral tissues and contributes to the development of insulin resistance. In vivo assays to quantify whole-body lipid oxidation in mouse models of insulin resistance are lacking. We describe a method for assessing whole-body FA oxidation in vivo, as well as tissue-specific lipid uptake in conscious mice. The method relies on intravenous administration of [9,10-3H(N)]palmitic acid combined with a non-β-oxidizable palmitate analog, [1-14C]2-bromopalmitic acid. Pretreatment with etomoxir, a CPT1 inhibitor that prevents the shuttling of FAs into mitochondria, markedly reduced the appearance of the β-oxidation product 3H2O in circulation and reduced lipid uptake by oxidative tissues including heart and soleus muscle. Whole-body fatty oxidation was unaltered between chow- or high-fat-fed WT and transgenic mice expressing a mutant form of the AMPK γ3 subunit (AMPKγ3R225Q) in skeletal muscle. High-fat feeding increased lipid oxidation in WT and AMPKγ3R225Q transgenic mice. In conclusion, this technique allows for the assessment of the effect of pharmaceutical agents, as well as gene mutations, on whole-body FA oxidation in mice.
Collapse
Affiliation(s)
- Milena Schönke
- Department of Molecular Medicine and Surgery Karolinska Institutet, Stockholm, Sweden
| | - Julie Massart
- Department of Molecular Medicine and Surgery Karolinska Institutet, Stockholm, Sweden
| | - Juleen R Zierath
- Department of Molecular Medicine and Surgery Karolinska Institutet, Stockholm, Sweden .,Department of Physiology and Pharmacology, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
118
|
Martins AR, Crisma AR, Masi LN, Amaral CL, Marzuca-Nassr GN, Bomfim LH, Teodoro BG, Queiroz AL, Serdan TD, Torres RP, Mancini-Filho J, Rodrigues AC, Alba-Loureiro TC, Pithon-Curi TC, Gorjao R, Silveira LR, Curi R, Newsholme P, Hirabara SM. Attenuation of obesity and insulin resistance by fish oil supplementation is associated with improved skeletal muscle mitochondrial function in mice fed a high-fat diet. J Nutr Biochem 2018; 55:76-88. [DOI: 10.1016/j.jnutbio.2017.11.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/28/2017] [Accepted: 11/14/2017] [Indexed: 12/14/2022]
|
119
|
Lund MT, Larsen S, Hansen M, Courraud J, Floyd AK, Støckel M, Helge JW, Dela F. Mitochondrial respiratory capacity remains stable despite a comprehensive and sustained increase in insulin sensitivity in obese patients undergoing gastric bypass surgery. Acta Physiol (Oxf) 2018; 223:e13032. [PMID: 29330917 DOI: 10.1111/apha.13032] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 01/05/2018] [Accepted: 01/05/2018] [Indexed: 12/15/2022]
Abstract
AIM It has been proposed, but not yet demonstrated by convincing evidence in published articles, that insulin resistance and mitochondrial respiratory function are causally related physiological phenomena. Here, we tested the prediction that weight loss-induced increase in insulin sensitivity will correlate with a corresponding change in mitochondrial respiratory capacity over the same time period. METHODS Insulin sensitivity was evaluated using the hyperinsulinaemic-euglycaemic clamp technique, and skeletal muscle mitochondrial respiratory capacity was evaluated by high-resolution respirometry in 26 patients with obesity. Each experiment was performed ~2 months and 1-2 weeks before, and ~4 and ~19 months after Roux-en-Y gastric bypass (RYGB) surgery. RESULTS A substantial weight loss was observed in all patients, and insulin sensitivity increased in all patients over the 21-months time period of the study. In contrast, skeletal muscle mitochondrial respiratory capacity, intrinsic mitochondrial respiratory capacity and mitochondrial content remained unchanged over the same time period. CONCLUSION Among obese patients with and without type 2 diabetes undergoing RYGB surgery, intrinsic mitochondrial respiratory capacity in skeletal muscle is not correlated with insulin sensitivity before or after the surgical intervention. Mitochondrial respiratory function may not be germane to the pathophysiology and/or aetiology of obesity and/or type 2 diabetes.
Collapse
Affiliation(s)
- M. T. Lund
- Xlab; Center for Healthy Aging; Department of Biomedical Sciences; University of Copenhagen; Copenhagen Denmark
- Department of Surgery; Holbak Hospital; Holbak Denmark
| | - S. Larsen
- Xlab; Center for Healthy Aging; Department of Biomedical Sciences; University of Copenhagen; Copenhagen Denmark
| | - M. Hansen
- Xlab; Center for Healthy Aging; Department of Biomedical Sciences; University of Copenhagen; Copenhagen Denmark
| | - J. Courraud
- Xlab; Center for Healthy Aging; Department of Biomedical Sciences; University of Copenhagen; Copenhagen Denmark
- Danish Center for Newborn screening; Department of Congenital Disorders; Statens Serum Institut; Copenhagen Denmark
| | - A. K. Floyd
- Department of Surgery; Holbak Hospital; Holbak Denmark
| | - M. Støckel
- Department of Surgery; Herlev University Hospital; Herlev Denmark
| | - J. W. Helge
- Xlab; Center for Healthy Aging; Department of Biomedical Sciences; University of Copenhagen; Copenhagen Denmark
| | - F. Dela
- Xlab; Center for Healthy Aging; Department of Biomedical Sciences; University of Copenhagen; Copenhagen Denmark
- Department of Geriatrics; Bispebjerg University Hospital; Copenhagen Denmark
| |
Collapse
|
120
|
Nakamura T, Tanimoto H, Mizuno Y, Okamoto M, Takeuchi M, Tsubamoto Y, Noda H. Gastric inhibitory polypeptide receptor antagonist, SKL-14959, suppressed body weight gain on diet-induced obesity mice. Obes Sci Pract 2018; 4:194-203. [PMID: 29670757 PMCID: PMC5893465 DOI: 10.1002/osp4.164] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/25/2018] [Accepted: 01/31/2018] [Indexed: 11/18/2022] Open
Abstract
Objective Gastric inhibitory polypeptide plays a role in glucose and lipid metabolism and is associated with obesity and insulin resistance. The objective of this study is to confirm the anti-obesity effects of the gastric inhibitory polypeptide receptor antagonist, SKL-14959, on diet-induced obesity mice. Method Diet-induced obesity mice at 20 weeks of age were administered with or without SKL-14959 for 96 d. Body weight and food intake were monitored throughout the experiment. Mice were sacrificed, and physiological and biochemical markers were measured, and then histochemical and gene expression analyses were also performed. In further studies, mice were orally gavaged with [14C]-oleic acid to investigate the excursion of digested lipids. Results SKL-14959 significantly suppressed weight gain without affecting food intake, decreased triacylglycerol contents in the liver and the muscle and the intensity stained with oil-red in the liver. It also improved plasma glutamic pyruvic transaminase and 3-hydroxybutyrate levels in addition to notably down-regulated relative gene expression of srebf1 and dgat1 in the liver despite not altering in the adipose tissue. Furthermore, SKL-14959 showed remarkable inhibition of lipid uptake in the adipose tissue after the oil challenge. Conclusion SKL-14959 inhibited lipids uptake and improved lipids metabolism, results in suppression of body-weight gain.
Collapse
Affiliation(s)
- T. Nakamura
- Biological Research Group, Drug Discovery LaboratoriesSanwa Kagaku KenkyushoInabe‐cityMieJapan
| | - H. Tanimoto
- Biological Research Group, Drug Discovery LaboratoriesSanwa Kagaku KenkyushoInabe‐cityMieJapan
| | - Y. Mizuno
- Biopharmaceutical Study Group, Pharmaceutical Research LaboratoriesSanwa Kagaku KenkyushoInabe‐cityMieJapan
| | - M. Okamoto
- Biological Research Group, Drug Discovery LaboratoriesSanwa Kagaku KenkyushoInabe‐cityMieJapan
| | - M. Takeuchi
- Biological Research Group, Drug Discovery LaboratoriesSanwa Kagaku KenkyushoInabe‐cityMieJapan
| | - Y. Tsubamoto
- Biological Research Group, Drug Discovery LaboratoriesSanwa Kagaku KenkyushoInabe‐cityMieJapan
| | - H. Noda
- Biological Research Group, Drug Discovery LaboratoriesSanwa Kagaku KenkyushoInabe‐cityMieJapan
| |
Collapse
|
121
|
Gan L, Ma D, Li M, Yang FC, Rogers RS, Wheatley JL, Koch LG, Britton SL, Thyfault JP, Geiger PC, Stanford JA. Region-specific differences in bioenergetic proteins and protein response to acute high fat diet in brains of low and high capacity runner rats. Neurosci Lett 2018. [PMID: 29522838 DOI: 10.1016/j.neulet.2018.03.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Aerobic capacity is a strong predictor of mortality. Low capacity runner (LCR) rats exhibit reduced mitochondrial function in peripheral organs. A high fat diet (HFD) can worsen metabolic phenotype in LCR rats. Little is known about metabolic changes in the brains of these rats, however. This study examined protein markers of mitochondrial function and metabolism as a function of aerobic running capacity and an acute HFD in four brain regions: the striatum, hippocampus, hypothalamus, and substantia nigra. After 3 days HFD or chow diets, we measured peroxisome proliferator-activated receptor-γ coactivator 1α (PGC1-α), nuclear respiratory factors 1 (Nrf-1), mitochondrial transcription factor A (TFAM), and phosphorylated (activated) AMP-activated protein kinase (p-AMPK) protein levels in the four brain regions. LCR rats exhibited lower levels of mitochondrial proteins (PGC1-α, Nrf-1, TFAM), and greater p-AMPK, in striatum, but not in the other brain regions. Mitochondrial protein levels were greater in HFD LCR striatum, while p-AMPK was lower in this group. Markers of lower mitochondrial biogenesis and increased metabolic demand were limited to the LCR striatum, which nevertheless maintained the capacity to respond to an acute HFD challenge.
Collapse
Affiliation(s)
- Li Gan
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Delin Ma
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA; Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Min Li
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Fu-Chen Yang
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Robert S Rogers
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Joshua L Wheatley
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Lauren G Koch
- Department of Physiology and Pharmacology, The University of Toledo, Toledo, OH, USA
| | - Steven L Britton
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - John P Thyfault
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA; Research Service, Kansas City VA Medical Center, Kansas City, MO, USA
| | - Paige C Geiger
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - John A Stanford
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA; Kansas Intellectual and Developmental Disabilities Research Center, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
122
|
Small L, Brandon AE, Turner N, Cooney GJ. Modeling insulin resistance in rodents by alterations in diet: what have high-fat and high-calorie diets revealed? Am J Physiol Endocrinol Metab 2018; 314:E251-E265. [PMID: 29118016 DOI: 10.1152/ajpendo.00337.2017] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
For over half a century, researchers have been feeding different diets to rodents to examine the effects of macronutrients on whole body and tissue insulin action. During this period, the number of different diets and the source of macronutrients employed have grown dramatically. Because of the large heterogeneity in both the source and percentage of different macronutrients used for studies, it is not surprising that different high-calorie diets do not produce the same changes in insulin action. Despite this, diverse high-calorie diets continue to be employed in an attempt to generate a "generic" insulin resistance. The high-fat diet in particular varies greatly between studies with regard to the source, complexity, and ratio of dietary fat, carbohydrate, and protein. This review examines the range of rodent dietary models and methods for assessing insulin action. In almost all studies reviewed, rodents fed diets that had more than 45% of dietary energy as fat or simple carbohydrates had reduced whole body insulin action compared with chow. However, different high-calorie diets produced significantly different effects in liver, muscle, and whole body insulin action when insulin action was measured by the hyperinsulinemic-euglycemic clamp method. Rodent dietary models remain an important tool for exploring potential mechanisms of insulin resistance, but more attention needs to be given to the total macronutrient content and composition when interpreting dietary effects on insulin action.
Collapse
Affiliation(s)
- Lewin Small
- Diabetes and Metabolism Division, Garvan Institute , Sydney, New South Wales , Australia
| | - Amanda E Brandon
- Diabetes and Metabolism Division, Garvan Institute , Sydney, New South Wales , Australia
- Sydney Medical School, Charles Perkins Centre, The University of Sydney , New South Wales , Australia
| | - Nigel Turner
- Department of Pharmacology, School of Medical Science, University of New South Wales , Sydney, New South Wales , Australia
| | - Gregory J Cooney
- Diabetes and Metabolism Division, Garvan Institute , Sydney, New South Wales , Australia
- Sydney Medical School, Charles Perkins Centre, The University of Sydney , New South Wales , Australia
| |
Collapse
|
123
|
Schönke M, Björnholm M, Chibalin AV, Zierath JR, Deshmukh AS. Proteomics Analysis of Skeletal Muscle from Leptin-Deficient ob/ob Mice Reveals Adaptive Remodeling of Metabolic Characteristics and Fiber Type Composition. Proteomics 2018; 18:e1700375. [PMID: 29350465 DOI: 10.1002/pmic.201700375] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 01/07/2018] [Indexed: 11/10/2022]
Abstract
Skeletal muscle insulin resistance, an early metabolic defect in the pathogenesis of type 2 diabetes (T2D), may be a cause or consequence of altered protein expression profiles. Proteomics technology offers enormous promise to investigate molecular mechanisms underlying pathologies, however, the analysis of skeletal muscle is challenging. Using state-of-the-art multienzyme digestion and filter-aided sample preparation (MED-FASP) and a mass spectrometry (MS)-based workflow, we performed a global proteomics analysis of skeletal muscle from leptin-deficient, obese, insulin resistant (ob/ob) and lean mice in mere two fractions in a short time (8 h per sample). We identified more than 6000 proteins with 118 proteins differentially regulated in obesity. This included protein kinases, phosphatases, and secreted and fiber type associated proteins. Enzymes involved in lipid metabolism in skeletal muscle from ob/ob mice were increased, providing evidence against reduced fatty acid oxidation in lipid-induced insulin resistance. Mitochondrial and peroxisomal proteins, as well as components of pyruvate and lactate metabolism, were increased. Finally, the skeletal muscle proteome from ob/ob mice displayed a shift toward the "slow fiber type." This detailed characterization of an obese rodent model of T2D demonstrates an efficient workflow for skeletal muscle proteomics, which may easily be adapted to other complex tissues.
Collapse
Affiliation(s)
- Milena Schönke
- Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Marie Björnholm
- Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Alexander V Chibalin
- Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Juleen R Zierath
- Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden.,Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Integrative Physiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Atul S Deshmukh
- Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Martinsried, Germany.,Novo Nordisk Foundation Center for Protein Research, Clinical Proteomics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
124
|
Lang AL, Chen L, Poff GD, Ding WX, Barnett RA, Arteel GE, Beier JI. Vinyl chloride dysregulates metabolic homeostasis and enhances diet-induced liver injury in mice. Hepatol Commun 2018; 2:270-284. [PMID: 29507902 PMCID: PMC5831023 DOI: 10.1002/hep4.1151] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/15/2017] [Accepted: 12/31/2017] [Indexed: 12/28/2022] Open
Abstract
Vinyl chloride (VC), a common industrial organochlorine and environmental pollutant, has been shown to directly cause hepatic angiosarcoma and toxicant‐associated steatohepatitis at high exposure levels. However, the impact of lower concentrations of VC on the progression of underlying liver diseases (e.g., nonalcoholic fatty liver disease [NAFLD]) is unclear. Given the high prevalence of NAFLD in the United States (and worldwide) population, this is an important concern. Recent studies by our group with VC metabolites suggest a potential interaction between VC exposure and underlying liver disease to cause enhanced damage. Here, a novel mouse model determined the effects of VC inhalation at levels below the current Occupational Safety and Health Administration limit (<1 ppm) in the context of NAFLD to better mimic human exposure and identify potential mechanisms of VC‐induced liver injury. VC exposure caused no overt liver injury in mice fed a low‐fat diet. However, in mice fed a high‐fat diet (HFD), VC significantly increased liver damage, steatosis, and increased neutrophil infiltration. Moreover, VC further enhanced HFD‐induced oxidative and endoplasmic reticulum stress. Importantly, VC exposure dysregulated energy homeostasis and impaired mitochondrial function, even in mice fed a low‐fat diet. In toto, the results indicate that VC exposure causes metabolic stress that sensitizes the liver to steatohepatitis caused by HFD. Conclusion: The hypothesis that low‐level (below the Occupational Safety and Health Administration limit) chronic exposure to VC by inhalation enhances liver injury caused by an HFD is supported. Importantly, our data raise concerns about the potential for overlap between fatty diets (i.e., Western diet) and exposure to VC and the health implications of this co‐exposure for humans. It also emphasizes that current safety restrictions may be insufficient to account for other factors that can influence hepatotoxicity. (Hepatology Communications 2018;2:270‐284)
Collapse
Affiliation(s)
- Anna L Lang
- Department of Pharmacology and Toxicology University of Louisville Health Sciences Center Louisville KY.,Hepatobiology and Toxicology Program University of Louisville Health Sciences Center Louisville KY.,University of Louisville Alcohol Research Center University of Louisville Health Sciences Center Louisville KY
| | - Liya Chen
- Department of Pharmacology and Toxicology University of Louisville Health Sciences Center Louisville KY.,Hepatobiology and Toxicology Program University of Louisville Health Sciences Center Louisville KY.,University of Louisville Alcohol Research Center University of Louisville Health Sciences Center Louisville KY
| | - Gavin D Poff
- Department of Pharmacology and Toxicology University of Louisville Health Sciences Center Louisville KY.,Hepatobiology and Toxicology Program University of Louisville Health Sciences Center Louisville KY
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics University of Kansas Medical Center Kansas City KS
| | - Russel A Barnett
- Kentucky Institute for the Environment and Sustainable Development University of Louisville Louisville KY
| | - Gavin E Arteel
- Department of Pharmacology and Toxicology University of Louisville Health Sciences Center Louisville KY.,Hepatobiology and Toxicology Program University of Louisville Health Sciences Center Louisville KY.,University of Louisville Alcohol Research Center University of Louisville Health Sciences Center Louisville KY
| | - Juliane I Beier
- Department of Pharmacology and Toxicology University of Louisville Health Sciences Center Louisville KY.,Hepatobiology and Toxicology Program University of Louisville Health Sciences Center Louisville KY.,University of Louisville Alcohol Research Center University of Louisville Health Sciences Center Louisville KY
| |
Collapse
|
125
|
Toledo FGS, Johannsen DL, Covington JD, Bajpeyi S, Goodpaster B, Conley KE, Ravussin E. Impact of prolonged overfeeding on skeletal muscle mitochondria in healthy individuals. Diabetologia 2018; 61:466-475. [PMID: 29150696 PMCID: PMC5770194 DOI: 10.1007/s00125-017-4496-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 10/17/2017] [Indexed: 12/01/2022]
Abstract
AIMS/HYPOTHESES Reduced mitochondrial capacity in skeletal muscle has been observed in obesity and type 2 diabetes. In humans, the aetiology of this abnormality is not well understood but the possibility that it is secondary to the stress of nutrient overload has been suggested. To test this hypothesis, we examined whether sustained overfeeding decreases skeletal muscle mitochondrial content or impairs function. METHODS Twenty-six healthy volunteers (21 men, 5 women, age 25.3 ± 4.5 years, BMI 25.5 ± 2.4 kg/m2) underwent a supervised protocol consisting of 8 weeks of high-fat overfeeding (40% over baseline energy requirements). Before and after overfeeding, we measured systemic fuel oxidation by indirect calorimetry and performed skeletal muscle biopsies to measure mitochondrial gene expression, content and function in vitro. Mitochondrial function in vivo was measured by 31P NMR spectroscopy. RESULTS With overfeeding, volunteers gained 7.7 ± 1.8 kg (% change 9.8 ± 2.3). Overfeeding increased fasting NEFA, LDL-cholesterol and insulin concentrations. Indirect calorimetry showed a shift towards greater reliance on lipid oxidation. In skeletal muscle tissue, overfeeding increased ceramide content, lipid droplet content and perilipin-2 mRNA expression. Phosphorylation of AMP-activated protein kinase was decreased. Overfeeding increased mRNA expression of certain genes coding for mitochondrial proteins (CS, OGDH, CPT1B, UCP3, ANT1). Despite the stress of nutrient overload, mitochondrial content and mitochondrial respiration in muscle did not change after overfeeding. Similarly, overfeeding had no effect on either the emission of reactive oxygen species or on mitochondrial function in vivo. CONCLUSIONS/INTERPRETATION Skeletal muscle mitochondria are significantly resilient to nutrient overload. The lower skeletal muscle mitochondrial oxidative capacity in human obesity is likely to be caused by reasons other than nutrient overload per se. TRIAL REGISTRATION ClinicalTrials.gov NCT01672632.
Collapse
Affiliation(s)
- Frederico G S Toledo
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh School of Medicine, 200 Lothrop Street, BST W1054, Pittsburgh, PA, 15261, USA.
| | | | | | - Sudip Bajpeyi
- Pennington Biomedical Research Center, Baton Rouge, LA, USA
- Department of Kinesiology, University of Texas El Paso, El Paso, TX, USA
| | - Bret Goodpaster
- Translational Research Institute for Metabolism and Diabetes, Orlando, FL, USA
| | - Kevin E Conley
- University of Washington Medical Center, Seattle, WA, USA
| | - Eric Ravussin
- Pennington Biomedical Research Center, Baton Rouge, LA, USA
| |
Collapse
|
126
|
Tootsi K, Kals J, Zilmer M, Paapstel K, Ottas A, Märtson A. Medium- and long-chain acylcarnitines are associated with osteoarthritis severity and arterial stiffness in end-stage osteoarthritis patients: a case-control study. Int J Rheum Dis 2018; 21:1211-1218. [DOI: 10.1111/1756-185x.13251] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Kaspar Tootsi
- Department of Traumatology and Orthopaedics; University of Tartu; Tartu Estonia
- Endothelial Centre; University of Tartu; Tartu Estonia
- Institute of Biomedicine and Translational Medicine; Department of Biochemistry; Centre of Excellence for Genomics and Translational Medicine; University of Tartu; Tartu Estonia
| | - Jaak Kals
- Endothelial Centre; University of Tartu; Tartu Estonia
- Institute of Biomedicine and Translational Medicine; Department of Biochemistry; Centre of Excellence for Genomics and Translational Medicine; University of Tartu; Tartu Estonia
- Department of Surgery; University of Tartu; Tartu Estonia
| | - Mihkel Zilmer
- Institute of Biomedicine and Translational Medicine; Department of Biochemistry; Centre of Excellence for Genomics and Translational Medicine; University of Tartu; Tartu Estonia
| | - Kaido Paapstel
- Endothelial Centre; University of Tartu; Tartu Estonia
- Institute of Biomedicine and Translational Medicine; Department of Biochemistry; Centre of Excellence for Genomics and Translational Medicine; University of Tartu; Tartu Estonia
| | - Aigar Ottas
- Institute of Biomedicine and Translational Medicine; Department of Biochemistry; Centre of Excellence for Genomics and Translational Medicine; University of Tartu; Tartu Estonia
| | - Aare Märtson
- Department of Traumatology and Orthopaedics; University of Tartu; Tartu Estonia
- Institute of Biomedicine and Translational Medicine; Department of Biochemistry; Centre of Excellence for Genomics and Translational Medicine; University of Tartu; Tartu Estonia
- Traumatology and Orthopaedics Clinic; Tartu University Hospital; Tartu Estonia
| |
Collapse
|
127
|
Baldassini WA, Ramsey JJ, Hagopian K, Lanna DPD. The influence of Shc proteins and high-fat diet on energy metabolism of mice. Cell Biochem Funct 2018; 35:527-537. [PMID: 29243276 DOI: 10.1002/cbf.3310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/22/2017] [Accepted: 11/08/2017] [Indexed: 01/24/2023]
Abstract
The purpose of this study was to determine if Shc proteins influence the metabolic response to acute (7 days) feeding of a high-fat diet (HFD). To this end, whole animal energy expenditure (EE) and substrate oxidation were measured in the Shc knockout (ShcKO) and wild-type (WT) mice fed a control or HFD. The activities of enzymes of glycolysis, the citric acid cycle, electron transport chain (ETC), and β-oxidation were also investigated in liver and skeletal muscle of ShcKO and WT animals. The study showed that ShcKO increases (P < .05) EE adjusted for either total body weight or lean mass. This change in EE could contribute to decreases in weight gain in ShcKO versus WT mice fed an HFD. Thus, our results indicate that Shc proteins should be considered as potential targets for developing interventions to mitigate weight gain on HFD by stimulating EE. Although decreased levels of Shc proteins influenced the activity of some enzymes in response to high-fat feeding (eg, increasing the activity of acyl-CoA dehydrogenase), it did not produce concerted changes in enzymes of glycolysis, citric acid cycle, or the ETC. The physiological significance of observed changes in select enzyme activities remains to be determined. SIGNIFICANCE OF THE STUDY We report higher EE in ShcKO versus WT mice when consuming the HFD. Although decreased levels of Shc proteins influenced the activity of a central enzyme of β-oxidation in response to high-fat feeding, it did not produce concerted changes in enzymes of glycolysis, citric acid cycle, or the ETC. Thus, an increase in EE in response to consumption of an HFD may be a mechanism that leads to decreased weight gain previously reported in ShcKO mice with long-term consumption of an HFD.
Collapse
Affiliation(s)
- W A Baldassini
- Department of Animal Science, "Luiz de Queiroz" College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, São Paulo, Brazil
| | - J J Ramsey
- Veterinary Medicine, Molecular Biosciences, University of California-Davis (UC DAVIS), Davis, CA, USA
| | - K Hagopian
- Veterinary Medicine, Molecular Biosciences, University of California-Davis (UC DAVIS), Davis, CA, USA
| | - D P D Lanna
- Department of Animal Science, "Luiz de Queiroz" College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, São Paulo, Brazil
| |
Collapse
|
128
|
Associations of Mitochondrial Fatty Acid Oxidation with Body Fat in Premenopausal Women. J Nutr Metab 2017; 2017:7832057. [PMID: 29204295 PMCID: PMC5674507 DOI: 10.1155/2017/7832057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/07/2017] [Accepted: 09/17/2017] [Indexed: 11/24/2022] Open
Abstract
Higher in vivo fatty acid (FA) oxidation rates have been reported in obese individuals compared to lean counterparts; however whether this reflects a shift in substrate-specific oxidative capacity at the level of the skeletal muscle mitochondria has not been examined. The purpose of this study was to test the hypothesis that in situ measures of skeletal muscle mitochondria FA oxidation would be positively associated with total body fat. Participants were 38 premenopausal women (BMI = 26.5 ± 4.3 kg/m2). Total and regional fat were assessed by dual-energy X-ray absorptiometry (DXA). Mitochondrial FA oxidation was assessed in permeabilized myofibers using high-resolution respirometry and a palmitoyl carnitine substrate. We found positive associations of total fat mass with State 3 (ADP-stimulated respiration) (r = 0.379, p < 0.05) and the respiratory control ratio (RCR, measure of mitochondrial coupling) (r = 0.348, p < 0.05). When participants were dichotomized by high or low body fat percent, participants with high total body fat displayed a higher RCR compared to those with low body fat (p < 0.05). There were no associations between any measure of regional fat and mitochondrial FA oxidation independent of total fat mass. In conclusion, greater FA oxidation in obesity may reflect molecular processes that enhance FA oxidation capacity at the mitochondrial level.
Collapse
|
129
|
Dotzert MS, McDonald MW, Murray MR, Nickels JZ, Noble EG, Melling CWJ. Effect of Combined Exercise Versus Aerobic-Only Training on Skeletal Muscle Lipid Metabolism in a Rodent Model of Type 1 Diabetes. Can J Diabetes 2017; 42:404-411. [PMID: 29212609 DOI: 10.1016/j.jcjd.2017.09.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 09/10/2017] [Accepted: 09/25/2017] [Indexed: 12/18/2022]
Abstract
OBJECTIVES Abnormal skeletal muscle lipid metabolism is associated with insulin resistance in people with type 1 diabetes. Although lipid metabolism is restored with aerobic exercise training, the risk for postexercise hypoglycemia is increased with this modality. Integrating resistance and aerobic exercise is associated with reduced hypoglycemic risk; however, the effects of this exercise modality on lipid metabolism and insulin resistance remain unknown. We compared the effects of combined (aerobic + resistance) versus aerobic exercise training on oxidative capacity and muscle lipid metabolism in a rat model of type 1 diabetes. METHODS Male Sprague-Dawley rats were divided into 4 groups: sedentary control (C), sedentary control + diabetes (CD), diabetes + high-intensity aerobic exercise (DAE) and diabetes + combined aerobic and resistance exercise (DARE). Following diabetes induction (20 mg/kg streptozotocin over five days), DAE rats ran for 12 weeks (5 days/week for 1 hour) on a motorized treadmill (27 m/min at a 6-degree grade), and DARE rats alternated daily between running and incremental weighted ladder climbing. RESULTS After training, DAE showed reduced muscle CD36 protein content and lipid content compared to CD (p≤0.05). DAE rats also had significantly increased citrate synthase (CS) activity compared to CD (p≤0.05). DARE rats showed reduced CD36 protein content compared to CD and increased CS activity compared to CD and DAE rats (p≤0.05). DARE rats demonstrated increased skeletal muscle lipid staining, elevated lipin-1 protein content and insulin sensitivity (p≤0.05). CONCLUSIONS Integration of aerobic and resistance exercise may exert a synergistic effect, producing adaptations characteristic of the "athlete's paradox," including increased capacity to store and oxidize lipids.
Collapse
Affiliation(s)
- Michelle S Dotzert
- Exercise Biochemistry Laboratory, School of Kinesiology, Western University, London, Ontario, Canada
| | - Matthew W McDonald
- Exercise Biochemistry Laboratory, School of Kinesiology, Western University, London, Ontario, Canada
| | - Michael R Murray
- Exercise Biochemistry Laboratory, School of Kinesiology, Western University, London, Ontario, Canada
| | - J Zachary Nickels
- Exercise Biochemistry Laboratory, School of Kinesiology, Western University, London, Ontario, Canada
| | - Earl G Noble
- Exercise Biochemistry Laboratory, School of Kinesiology, Western University, London, Ontario, Canada; Lawson Health Research Institute, London, Ontario, Canada
| | - C W James Melling
- Exercise Biochemistry Laboratory, School of Kinesiology, Western University, London, Ontario, Canada.
| |
Collapse
|
130
|
Newsom SA, Miller BF, Hamilton KL, Ehrlicher SE, Stierwalt HD, Robinson MM. Long-term rates of mitochondrial protein synthesis are increased in mouse skeletal muscle with high-fat feeding regardless of insulin-sensitizing treatment. Am J Physiol Endocrinol Metab 2017; 313:E552-E562. [PMID: 28698283 PMCID: PMC5792140 DOI: 10.1152/ajpendo.00144.2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 07/05/2017] [Accepted: 07/10/2017] [Indexed: 11/22/2022]
Abstract
Skeletal muscle mitochondrial protein synthesis is regulated in part by insulin. The development of insulin resistance with diet-induced obesity may therefore contribute to impairments to protein synthesis and decreased mitochondrial respiration. Yet the impact of diet-induced obesity and insulin resistance on mitochondrial energetics is controversial, with reports varying from decreases to increases in mitochondrial respiration. We investigated the impact of changes in insulin sensitivity on long-term rates of mitochondrial protein synthesis as a mechanism for changes to mitochondrial respiration in skeletal muscle. Insulin resistance was induced in C57BL/6J mice using 4 wk of a high-fat compared with a low-fat diet. For 8 additional weeks, diets were enriched with pioglitazone to restore insulin sensitivity compared with nonenriched control low-fat or high-fat diets. Skeletal muscle mitochondrial protein synthesis was measured using deuterium oxide labeling during weeks 10-12 High-resolution respirometry was performed using palmitoyl-l-carnitine, glutamate+malate, and glutamate+malate+succinate as substrates for mitochondria isolated from quadriceps. Mitochondrial protein synthesis and palmitoyl- l-carnitine oxidation were increased in mice consuming a high-fat diet, regardless of differences in insulin sensitivity with pioglitazone treatment. There was no effect of diet or pioglitazone treatment on ADP-stimulated respiration or H2O2 emission using glutamate+malate or glutamate+malate+succinate. The results demonstrate no impairments to mitochondrial protein synthesis or respiration following induction of insulin resistance. Instead, mitochondrial protein synthesis was increased with a high-fat diet and may contribute to remodeling of the mitochondria to increase lipid oxidation capacity. Mitochondrial adaptations with a high-fat diet appear driven by nutrient availability, not intrinsic defects that contribute to insulin resistance.
Collapse
Affiliation(s)
- Sean A Newsom
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, Oregon
| | - Benjamin F Miller
- Department of Health and Exercise Science, College of Health and Human Sciences, Colorado State University, Fort Collins, Colorado; and
| | - Karyn L Hamilton
- Department of Health and Exercise Science, College of Health and Human Sciences, Colorado State University, Fort Collins, Colorado; and
| | - Sarah E Ehrlicher
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, Oregon
| | - Harrison D Stierwalt
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, Oregon
| | - Matthew M Robinson
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, Oregon;
- Endocrine Research Unit, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
131
|
Frias FDT, Rocha KCE, de Mendonça M, Murata GM, Araujo HN, de Sousa LGO, de Sousa É, Hirabara SM, Leite NDC, Carneiro EM, Curi R, Silveira LR, Rodrigues AC. Fenofibrate reverses changes induced by high-fat diet on metabolism in mice muscle and visceral adipocytes. J Cell Physiol 2017; 233:3515-3528. [PMID: 28926107 DOI: 10.1002/jcp.26203] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 09/14/2017] [Indexed: 02/06/2023]
Abstract
The effect of fenofibrate on the metabolism of skeletal muscle and visceral white adipose tissue of diet-induced obese (DIO) mice was investigated. C57BL/6J male mice were fed either a control or high-fat diet for 8 weeks. Fenofibrate (50 mg/Kg BW, daily) was administered by oral gavage during the last two weeks of the experimental period. Insulin-stimulated glucose metabolism in soleus muscles, glucose tolerance test, insulin tolerance test, indirect calorimetry, lipolysis of visceral white adipose tissue, expression of miR-103-3p in adipose tissue, and miR-1a, miR-133a/b, miR-206, let7b-5p, miR-23b-3p, miR-29-3p, miR-143-3p in soleus muscle, genes related to glucose and fatty acid metabolism in adipose tissue and soleus muscle, and proteins (phospho-AMPKα2, Pgc1α, Cpt1b), intramuscular lipid staining, and activities of fatty acid oxidation enzymes in skeletal muscle were investigated. In DIO mice, fenofibrate prevented weight gain induced by HFD feeding by increasing energy expenditure; improved whole body glucose homeostasis, and in skeletal muscle, increased insulin dependent glucose uptake, miR-1a levels, reduced intramuscular lipid accumulation, and phospho-AMPKα2 levels. In visceral adipose tissue of obese mice, fenofibrate decreased basal lipolysis rate and visceral adipocytes hypertrophy, and induced the expression of Glut-4, Irs1, and Cav-1 mRNA and miR-103-3p suggesting a higher insulin sensitivity of the adipocytes. The evidence is presented herein that beneficial effects of fenofibrate on body weight, glucose homeostasis, and muscle metabolism might be related to its action in adipose tissue. Moreover, fenofibrate regulates miR-1a-3p in soleus and miR-103-3p in adipose tissue, suggesting these microRNAs might contribute to fenofibrate beneficial effects on metabolism.
Collapse
Affiliation(s)
- Flávia de T Frias
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Karina C E Rocha
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Mariana de Mendonça
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Gilson M Murata
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Hygor N Araujo
- Obesity and Comorbidities Research Center, Campinas, Sao Paulo, Brazil.,Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Luís G O de Sousa
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Érica de Sousa
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Sandro M Hirabara
- Interdisciplinary Post-Graduate Program in Health Science, Cruzeiro do Sul University, Sao Paulo, Brazil
| | - Nayara de C Leite
- Obesity and Comorbidities Research Center, Campinas, Sao Paulo, Brazil.,Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Everardo M Carneiro
- Obesity and Comorbidities Research Center, Campinas, Sao Paulo, Brazil.,Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Rui Curi
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil.,Interdisciplinary Post-Graduate Program in Health Science, Cruzeiro do Sul University, Sao Paulo, Brazil
| | - Leonardo R Silveira
- Obesity and Comorbidities Research Center, Campinas, Sao Paulo, Brazil.,Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Alice C Rodrigues
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
132
|
Ribel-Madsen A, Ribel-Madsen R, Brøns C, Newgard CB, Vaag AA, Hellgren LI. Plasma acylcarnitine profiling indicates increased fatty acid oxidation relative to tricarboxylic acid cycle capacity in young, healthy low birth weight men. Physiol Rep 2017; 4:4/19/e12977. [PMID: 27694528 PMCID: PMC5064135 DOI: 10.14814/phy2.12977] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 08/24/2016] [Indexed: 01/07/2023] Open
Abstract
We hypothesized that an increased, incomplete fatty acid beta‐oxidation in mitochondria could be part of the metabolic events leading to insulin resistance and thereby an increased type 2 diabetes risk in low birth weight (LBW) compared with normal birth weight (NBW) individuals. Therefore, we measured fasting plasma levels of 45 acylcarnitine species in 18 LBW and 25 NBW men after an isocaloric control diet and a 5‐day high‐fat, high‐calorie diet. We demonstrated that LBW men had higher C2 and C4‐OH levels after the control diet compared with NBW men, indicating an increased fatty acid beta‐oxidation relative to the tricarboxylic acid cycle flux. Also, they had higher C6‐DC, C10‐OH/C8‐DC, and total hydroxyl‐/dicarboxyl‐acylcarnitine levels, which may suggest an increased fatty acid omega‐oxidation in the liver. Furthermore, LBW and NBW men decreased several acylcarnitine levels in response to overfeeding, which is likely a result of an upregulation of fatty acid oxidation due to the dietary challenge. Moreover, C10‐OH/C8‐DC and total hydroxyl‐/dicarboxyl‐acylcarnitine levels tended to be negatively associated with the serum insulin level, and the total hydroxyl‐/dicarboxyl‐acylcarnitine level additionally tended to be negatively associated with the hepatic insulin resistance index. This indicates that an increased fatty acid omega‐oxidation could be a compensatory mechanism to prevent an accumulation of lipid species that impair insulin signaling.
Collapse
Affiliation(s)
- Amalie Ribel-Madsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark Department of Endocrinology, Diabetes and Metabolism, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Rasmus Ribel-Madsen
- Department of Endocrinology, Diabetes and Metabolism, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark Danish Diabetes Academy, Odense, Denmark
| | - Charlotte Brøns
- Department of Endocrinology, Diabetes and Metabolism, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Christopher B Newgard
- Sarah W. Stedman Nutrition and Metabolism, Center and Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - Allan A Vaag
- Department of Endocrinology, Diabetes and Metabolism, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Lars I Hellgren
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
133
|
Wheat germ supplementation alleviates insulin resistance and cardiac mitochondrial dysfunction in an animal model of diet-induced obesity. Br J Nutr 2017; 118:241-249. [DOI: 10.1017/s0007114517002082] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AbstractObesity is strongly associated with insulin resistance (IR), along with mitochondrial dysfunction to metabolically active tissues and increased production of reactive O2 species (ROS). Foods rich in antioxidants such as wheat germ (WG), protect tissues from damage due to ROS and modulate some negative effects of obesity. This study examined the effects of WG supplementation on markers of IR, mitochondrial substrate metabolism and innate antioxidant markers in two metabolically active tissues (i.e. liver and heart) of C57BL/6 mice fed a high-fat–high-sucrose (HFS) diet. Male C57BL/6 mice, 6-week-old, were randomised into four dietary treatment groups (n 12 mice/group): control (C, 10 % fat kcal), C+10 % WG, HFS (60 % fat kcal) or HFS+10 % WG (HFS+WG). After 12 weeks of treatment, HFS+WG mice had significantly less visceral fat (−16 %, P=0·006) compared with the HFS group. WG significantly reduced serum insulin (P=0·009), the insulinotropic hormone, gastric inhibitory peptide (P=0·0003), and the surrogate measure of IR, homoeostatic model assessment of IR (P=0·006). HFS diet significantly elevated (45 %, P=0·02) cardiac complex 2 mitochondrial VO2, suggesting increased metabolic stress, whereas WG stabilised this effect to the level of control. Consequently, genes which mediate antioxidant defense and mitochondrial biogenesis (superoxide dismutase 2 (Sod2) and PPARγ coactivator 1-α (Pgc1a), respectively) were significantly reduced (P<0·05) in the heart of the HFS group, whereas WG supplementation tended to up-regulate both genes. WG significantly increased hepatic gene expression of Sod2 (P=0·048) but not Pgc1a. Together, these results showed that WG supplementation in HFS diet, reduced IR and improved cardiac mitochondrial metabolic functions.
Collapse
|
134
|
Black AJ, Ravi S, Jefferson LS, Kimball SR, Schilder RJ. Dietary Fat Quantity and Type Induce Transcriptome-Wide Effects on Alternative Splicing of Pre-mRNA in Rat Skeletal Muscle. J Nutr 2017; 147:1648-1657. [PMID: 28768832 PMCID: PMC5572497 DOI: 10.3945/jn.117.254482] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 06/07/2017] [Accepted: 06/28/2017] [Indexed: 12/18/2022] Open
Abstract
Background: Fat-enriched diets produce metabolic changes in skeletal muscle, which in turn can mediate changes in gene regulation.Objective: We examined the high-fat-diet-induced changes in skeletal muscle gene expression by characterizing variations in pre-mRNA alternative splicing.Methods: Affymetrix Exon Array analysis was performed on the transcriptome of the gastrocnemius/plantaris complex of male obesity-prone Sprague-Dawley rats fed a 10% or 60% fat (lard) diet for 2 or 8 wk. The validation of exon array results was focused on troponin T (Tnnt3). Tnnt3 splice form analyses were extended in studies of rats fed 10% or 30% fat diets across 1- to 8-wk treatment periods and rats fed 10% or 45% fat diets with fat sources from lard or mono- or polyunsaturated fats for 2 wk. Nuclear magnetic resonance (NMR) was used to measure body composition.Results: Consumption of a 60% fat diet for 2 or 8 wk resulted in alternative splicing of 668 and 726 pre-mRNAs, respectively, compared with rats fed a 10% fat diet. Tnnt3 transcripts were alternatively spliced in rats fed a 60% fat diet for either 2 or 8 wk. The high-fat-diet-induced changes in Tnnt3 alternative splicing were observed in rats fed a 30% fat diet across 1- to 8-wk treatment periods. Moreover, this effect depended on fat type, because Tnnt3 alternative splicing occurred in response to 45% fat diets enriched with lard but not in response to diets enriched with mono- or polyunsaturated fatty acids. Fat mass (a proxy for obesity as measured by NMR) did not differ between groups in any study.Conclusions: Rat skeletal muscle responds to overconsumption of dietary fat by modifying gene expression through pre-mRNA alternative splicing. Variations in Tnnt3 alternative splicing occur independently of obesity and are dependent on dietary fat quantity and suggest a role for saturated fatty acids in the high-fat-diet-induced modifications in Tnnt3 alternative splicing.
Collapse
Affiliation(s)
- Adam J Black
- Intercollege Graduate Degree Program in Physiology and,Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA; and
| | - Suhana Ravi
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA; and
| | - Leonard S Jefferson
- Intercollege Graduate Degree Program in Physiology and,Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA; and
| | - Scot R Kimball
- Intercollege Graduate Degree Program in Physiology and,Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA; and
| | - Rudolf J Schilder
- Departments of Entomology and Biology, Penn State University, University Park, State College, PA
| |
Collapse
|
135
|
Lai N, Kummitha C, Hoppel C. Defects in skeletal muscle subsarcolemmal mitochondria in a non-obese model of type 2 diabetes mellitus. PLoS One 2017; 12:e0183978. [PMID: 28850625 PMCID: PMC5574550 DOI: 10.1371/journal.pone.0183978] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/15/2017] [Indexed: 11/18/2022] Open
Abstract
Skeletal muscle resistance to insulin is related to accumulation of lipid-derived products, but it is not clear whether this accumulation is caused by skeletal muscle mitochondrial dysfunction. Diabetes and obesity are reported to have a selective effect on the function of subsarcolemmal and interfibrillar mitochondria in insulin-resistant skeletal muscle. The current study investigated the role of the subpopulations of mitochondria in the pathogenesis of insulin resistance in the absence of obesity. A non-obese spontaneous rat model of type 2 diabetes mellitus, (Goto-Kakizaki), was used to evaluate function and biochemical properties in both populations of skeletal muscle mitochondria. In subsarcolemmal mitochondria, minor defects are observed whereas in interfibrillar mitochondria function is preserved. Subsarcolemmal mitochondria defects characterized by a mild decline of oxidative phosphorylation efficiency are related to ATP synthase and structural alterations of inner mitochondria membrane but are considered unimportant because of the absence of defects upstream as shown with polarographic and spectrophometric assays. Fatty acid transport and oxidation is preserved in both population of mitochondria, whereas palmitoyl-CoA increased 25% in interfibrillar mitochondria of diabetic rats. Contrary to popular belief, these data provide compelling evidence that mitochondrial function is unaffected in insulin-resistant skeletal muscle from T2DM non-obese rats.
Collapse
Affiliation(s)
- Nicola Lai
- Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, Virginia, United States of America
- Biomedical Engineering Institute, Old Dominion University, Norfolk, Virginia, United States of America
- Department of Biomedical Engineering, School of Engineering, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail:
| | - China Kummitha
- Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, Virginia, United States of America
- Biomedical Engineering Institute, Old Dominion University, Norfolk, Virginia, United States of America
- Department of Biomedical Engineering, School of Engineering, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Charles Hoppel
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- Center for Mitochondrial Disease, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| |
Collapse
|
136
|
Vartanian V, Tumova J, Dobrzyn P, Dobrzyn A, Nakabeppu Y, Lloyd RS, Sampath H. 8-oxoguanine DNA glycosylase (OGG1) deficiency elicits coordinated changes in lipid and mitochondrial metabolism in muscle. PLoS One 2017; 12:e0181687. [PMID: 28727777 PMCID: PMC5519207 DOI: 10.1371/journal.pone.0181687] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 07/04/2017] [Indexed: 12/04/2022] Open
Abstract
Oxidative stress resulting from endogenous and exogenous sources causes damage to cellular components, including genomic and mitochondrial DNA. Oxidative DNA damage is primarily repaired via the base excision repair pathway that is initiated by DNA glycosylases. 8-oxoguanine DNA glycosylase (OGG1) recognizes and cleaves oxidized and ring-fragmented purines, including 8-oxoguanine, the most commonly formed oxidative DNA lesion. Mice lacking the OGG1 gene product are prone to multiple features of the metabolic syndrome, including high-fat diet-induced obesity, hepatic steatosis, and insulin resistance. Here, we report that OGG1-deficient mice also display skeletal muscle pathologies, including increased muscle lipid deposition and alterations in genes regulating lipid uptake and mitochondrial fission in skeletal muscle. In addition, expression of genes of the TCA cycle and of carbohydrate and lipid metabolism are also significantly altered in muscle of OGG1-deficient mice. These tissue changes are accompanied by marked reductions in markers of muscle function in OGG1-deficient animals, including decreased grip strength and treadmill endurance. Collectively, these data indicate a role for skeletal muscle OGG1 in the maintenance of optimal tissue function.
Collapse
Affiliation(s)
- Vladimir Vartanian
- From the Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Jana Tumova
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Pawel Dobrzyn
- Nencki Institute of Experimental Biology, Warsaw, Poland
| | | | - Yusaku Nakabeppu
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - R. Stephen Lloyd
- From the Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, Oregon, United States of America
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Harini Sampath
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey, United States of America
- Rutgers Center for Lipid Research and Center for Digestive Health, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey, United States of America
| |
Collapse
|
137
|
Callahan ZJ, Oxendine MJ, Schaeffer PJ. Intramuscular triglyceride content precedes impaired glucose metabolism without evidence for mitochondrial dysfunction during early development of a diabetic phenotype. Appl Physiol Nutr Metab 2017; 42:963-972. [PMID: 28538106 DOI: 10.1139/apnm-2016-0685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The incidence of type 2 diabetes is highly correlated with obesity; however, there is a lack of research elucidating the temporal progression. Transgenic FVB/N UCP-dta mice, which develop a diabetic phenotype, and their nontransgenic littermates were fed either a high-fat or normal-chow diet and were studied at 6, 9, 12, 15, 18, 21, and 24 weeks of age to test the hypothesis that increased lipid accumulation in skeletal muscle causes mitochondrial dysfunction, leading to the development of insulin resistance. Body composition, intramuscular triglyceride (IMTG) content, glucose metabolism, and mitochondrial function were measured to determine if IMTG drove mitochondrial dysfunction, leading to the development of type 2 diabetes. High-fat-fed transgenic mice had a significantly greater body mass, lipid mass, and IMTG content beginning early in the experiment. Glucose tolerance tests revealed that high-fat-fed transgenic mice developed a significantly insulin resistant response compared with the other 3 groups toward the end of the time course while plasma insulin was elevated very early in the time course. There was no significant difference in several measures of metabolic function throughout the time course. Long-term high-fat feeding in transgenic mice produced increases in IMTG, adiposity, body mass, and plasma insulin accompanied by decreases in glucose metabolism, but did not reveal any deficits in mitochondrial function or regulation during the early stage of the development of type 2 diabetes. It does not appear that lipotoxicity is driving defects in mitochondrial function prior to the onset of insulin resistance.
Collapse
Affiliation(s)
- Zachary J Callahan
- Department of Biology, Miami University, Oxford, OH 45056, USA.,Department of Biology, Miami University, Oxford, OH 45056, USA
| | - Michael J Oxendine
- Department of Biology, Miami University, Oxford, OH 45056, USA.,Department of Biology, Miami University, Oxford, OH 45056, USA
| | - Paul J Schaeffer
- Department of Biology, Miami University, Oxford, OH 45056, USA.,Department of Biology, Miami University, Oxford, OH 45056, USA
| |
Collapse
|
138
|
Acevedo LM, Raya AI, Ríos R, Aguilera-Tejero E, Rivero JLL. Obesity-induced discrepancy between contractile and metabolic phenotypes in slow- and fast-twitch skeletal muscles of female obese Zucker rats. J Appl Physiol (1985) 2017; 123:249-259. [PMID: 28522764 DOI: 10.1152/japplphysiol.00282.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/10/2017] [Accepted: 05/10/2017] [Indexed: 01/02/2023] Open
Abstract
A clear picture of skeletal muscle adaptations to obesity and related comorbidities remains elusive. This study describes fiber-type characteristics (size, proportions, and oxidative enzyme activity) in two typical hindlimb muscles with opposite structure and function in an animal model of genetic obesity. Lesser fiber diameter, fiber-type composition, and histochemical succinic dehydrogenase activity (an oxidative marker) of muscle fiber types were assessed in slow (soleus)- and fast (tibialis cranialis)-twitch muscles of obese Zucker rats and compared with age (16 wk)- and sex (females)-matched lean Zucker rats (n = 16/group). Muscle mass and lesser fiber diameter were lower in both muscle types of obese compared with lean animals even though body weights were increased in the obese cohort. A faster fiber-type phenotype also occurred in slow- and fast-twitch muscles of obese rats compared with lean rats. These adaptations were accompanied by a significant increment in histochemical succinic dehydrogenase activity of slow-twitch fibers in the soleus muscle and fast-twitch fiber types in the tibialis cranialis muscle. Obesity significantly increased plasma levels of proinflammatory cytokines but did not significantly affect protein levels of peroxisome proliferator-activated receptors PPARγ or PGC1α in either muscle. These data demonstrate that, in female Zucker rats, obesity induces a reduction of muscle mass in which skeletal muscles show a diminished fiber size and a faster and more oxidative phenotype. It was noteworthy that this discrepancy in muscle's contractile and metabolic features was of comparable nature and extent in muscles with different fiber-type composition and antagonist functions.NEW & NOTEWORTHY This study demonstrates a discrepancy between morphological (reduced muscle mass), contractile (shift toward a faster phenotype), and metabolic (increased mitochondrial oxidative enzyme activity) characteristics in skeletal muscles of female Zucker fatty rats. It is noteworthy that this inconsistency was comparable (in nature and extent) in muscles with different structure and function.
Collapse
Affiliation(s)
- Luz M Acevedo
- Laboratorio de Biopatología Muscular, Departamento de Anatomía y Anatomía Patológica Comparadas, Universidad de Córdoba, Córdoba, Spain.,Departamento de Ciencias Biomédicas, Universidad Central de Venezuela, Maracay, Venezuela
| | - Ana I Raya
- Departamento de Medicina y Cirugía Animal, Universidad de Córdoba, Córdoba, Spain.,Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofia, Universidad de Córdoba, Córdoba, Spain; and
| | - Rafael Ríos
- Departamento de Medicina y Cirugía Animal, Universidad de Córdoba, Córdoba, Spain.,Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofia, Universidad de Córdoba, Córdoba, Spain; and
| | - Escolástico Aguilera-Tejero
- Departamento de Medicina y Cirugía Animal, Universidad de Córdoba, Córdoba, Spain.,Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofia, Universidad de Córdoba, Córdoba, Spain; and
| | - José-Luis L Rivero
- Laboratorio de Biopatología Muscular, Departamento de Anatomía y Anatomía Patológica Comparadas, Universidad de Córdoba, Córdoba, Spain;
| |
Collapse
|
139
|
Neuregulin 1 improves complex 2-mediated mitochondrial respiration in skeletal muscle of healthy and diabetic mice. Sci Rep 2017; 7:1742. [PMID: 28496106 PMCID: PMC5431817 DOI: 10.1038/s41598-017-02029-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 04/04/2017] [Indexed: 12/12/2022] Open
Abstract
It has been reported that neuregulin1 (NRG1) improves glucose tolerance in healthy and diabetic rodents. In vitro studies also suggest that NRG1 regulates myocyte oxidative capacity. To confirm this observation in vivo, we evaluated the effect on mitochondrial function of an 8-week treatment with NRG1 in db/db diabetic mice and C57BL/6JRJ healthy controls. NRG1 treatment improved complex 2-mediated mitochondrial respiration in the gastrocnemius of both control and diabetic mice and increased mitochondrial complex 2 subunit content by 2-fold. This effect was not associated with an increase in mitochondrial biogenesis markers. Enhanced ERBB4 phosphorylation could mediate NRG1 effects on mitochondrial function through signalling pathways, independently of ERK1/2, AKT or AMPK.
Collapse
|
140
|
Eshima H, Tamura Y, Kakehi S, Kurebayashi N, Murayama T, Nakamura K, Kakigi R, Okada T, Sakurai T, Kawamori R, Watada H. Long-term, but not short-term high-fat diet induces fiber composition changes and impaired contractile force in mouse fast-twitch skeletal muscle. Physiol Rep 2017; 5:5/7/e13250. [PMID: 28408640 PMCID: PMC5392533 DOI: 10.14814/phy2.13250] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 03/20/2017] [Indexed: 12/25/2022] Open
Abstract
In this study, we investigated the effects of a short-term and long-term high-fat diet (HFD) on morphological and functional features of fast-twitch skeletal muscle. Male C57BL/6J mice were fed a HFD (60% fat) for 4 weeks (4-week HFD) or 12 weeks (12-week HFD). Subsequently, the fast-twitch extensor digitorum longus muscle was isolated, and the composition of muscle fiber type, expression levels of proteins involved in muscle contraction, and force production on electrical stimulation were analyzed. The 12-week HFD, but not the 4-week HFD, resulted in a decreased muscle tetanic force on 100 Hz stimulation compared with control (5.1 ± 1.4 N/g in the 12-week HFD vs. 7.5 ± 1.7 N/g in the control group; P < 0.05), whereas muscle weight and cross-sectional area were not altered after both HFD protocols. Morphological analysis indicated that the percentage of type IIx myosin heavy chain fibers, mitochondrial oxidative enzyme activity, and intramyocellular lipid levels increased in the 12-week HFD group, but not in the 4-week HFD group, compared with controls (P < 0.05). No changes in the expression levels of calcium handling-related proteins and myofibrillar proteins (myosin heavy chain and actin) were detected in the HFD models, whereas fast-troponin T-protein expression was decreased in the 12-week HFD group, but not in the 4-week HFD group (P < 0.05). These findings indicate that a long-term HFD, but not a short-term HFD, impairs contractile force in fast-twitch muscle fibers. Given that skeletal muscle strength largely depends on muscle fiber type, the impaired muscle contractile force by a HFD might result from morphological changes of fiber type composition.
Collapse
Affiliation(s)
- Hiroaki Eshima
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yoshifumi Tamura
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan .,Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Saori Kakehi
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Nagomi Kurebayashi
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takashi Murayama
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kyoko Nakamura
- Department of Physiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ryo Kakigi
- Department of Physiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takao Okada
- Department of Physiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takashi Sakurai
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ryuzo Kawamori
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hirotaka Watada
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Center for Therapeutic Innovations in Diabetes, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Center for Molecular Diabetology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
141
|
Epigenetic regulation of skeletal muscle metabolism. Clin Sci (Lond) 2017; 130:1051-63. [PMID: 27215678 DOI: 10.1042/cs20160115] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 03/15/2016] [Indexed: 01/04/2023]
Abstract
Normal skeletal muscle metabolism is essential for whole body metabolic homoeostasis and disruptions in muscle metabolism are associated with a number of chronic diseases. Transcriptional control of metabolic enzyme expression is a major regulatory mechanism for muscle metabolic processes. Substantial evidence is emerging that highlights the importance of epigenetic mechanisms in this process. This review will examine the importance of epigenetics in the regulation of muscle metabolism, with a particular emphasis on DNA methylation and histone acetylation as epigenetic control points. The emerging cross-talk between metabolism and epigenetics in the context of health and disease will also be examined. The concept of inheritance of skeletal muscle metabolic phenotypes will be discussed, in addition to emerging epigenetic therapies that could be used to alter muscle metabolism in chronic disease states.
Collapse
|
142
|
Faecalibacterium prausnitzii treatment improves hepatic health and reduces adipose tissue inflammation in high-fat fed mice. ISME JOURNAL 2017; 11:1667-1679. [PMID: 28375212 DOI: 10.1038/ismej.2017.24] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 11/10/2016] [Accepted: 01/27/2017] [Indexed: 02/06/2023]
Abstract
Faecalibacterium prausnitzii is considered as one of the most important bacterial indicators of a healthy gut. We studied the effects of oral F. prausnitzii treatment on high-fat fed mice. Compared to the high-fat control mice, F. prausnitzii-treated mice had lower hepatic fat content, aspartate aminotransferase and alanine aminotransferase, and increased fatty acid oxidation and adiponectin signaling in liver. Hepatic lipidomic analyses revealed decreases in several species of triacylglycerols, phospholipids and cholesteryl esters. Adiponectin expression was increased in the visceral adipose tissue, and the subcutaneous and visceral adipose tissues were more insulin sensitive and less inflamed in F. prausnitzii-treated mice. Further, F. prausnitzii treatment increased muscle mass that may be linked to enhanced mitochondrial respiration, modified gut microbiota composition and improved intestinal integrity. Our findings show that F. prausnitzii treatment improves hepatic health, and decreases adipose tissue inflammation in mice and warrant the need for further studies to discover its therapeutic potential.
Collapse
|
143
|
Di Meo S, Iossa S, Venditti P. Skeletal muscle insulin resistance: role of mitochondria and other ROS sources. J Endocrinol 2017; 233:R15-R42. [PMID: 28232636 DOI: 10.1530/joe-16-0598] [Citation(s) in RCA: 193] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 01/31/2017] [Indexed: 12/12/2022]
Abstract
At present, obesity is one of the most important public health problems in the world because it causes several diseases and reduces life expectancy. Although it is well known that insulin resistance plays a pivotal role in the development of type 2 diabetes mellitus (the more frequent disease in obese people) the link between obesity and insulin resistance is yet a matter of debate. One of the most deleterious effects of obesity is the deposition of lipids in non-adipose tissues when the capacity of adipose tissue is overwhelmed. During the last decade, reduced mitochondrial function has been considered as an important contributor to 'toxic' lipid metabolite accumulation and consequent insulin resistance. More recent reports suggest that mitochondrial dysfunction is not an early event in the development of insulin resistance, but rather a complication of the hyperlipidemia-induced reactive oxygen species (ROS) production in skeletal muscle, which might promote mitochondrial alterations, lipid accumulation and inhibition of insulin action. Here, we review the literature dealing with the mitochondria-centered mechanisms proposed to explain the onset of obesity-linked IR in skeletal muscle. We conclude that the different pathways leading to insulin resistance may act synergistically because ROS production by mitochondria and other sources can result in mitochondrial dysfunction, which in turn can further increase ROS production leading to the establishment of a harmful positive feedback loop.
Collapse
Affiliation(s)
- Sergio Di Meo
- Department of BiologyUniversity of Naples 'Federico II', Naples, Italy
| | - Susanna Iossa
- Department of BiologyUniversity of Naples 'Federico II', Naples, Italy
| | - Paola Venditti
- Department of BiologyUniversity of Naples 'Federico II', Naples, Italy
| |
Collapse
|
144
|
Spahis S, Borys JM, Levy E. Metabolic Syndrome as a Multifaceted Risk Factor for Oxidative Stress. Antioxid Redox Signal 2017; 26:445-461. [PMID: 27302002 DOI: 10.1089/ars.2016.6756] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
SIGNIFICANCE Metabolic syndrome (MetS) is associated with a greater risk of diabetes and cardiovascular diseases. It is estimated that this multifactorial condition affects 20%-30% of the world's population. A detailed understanding of MetS mechanisms is crucial for the development of effective prevention strategies and adequate intervention tools that could curb its increasing prevalence and limit its comorbidities, particularly in younger age groups. With advances in basic redox biology, oxidative stress (OxS) involvement in the complex pathophysiology of MetS has become widely accepted. Nevertheless, its clear association with and causative effects on MetS require further elucidation. Recent Advances: Although a better understanding of the causes, risks, and effects of MetS is essential, studies suggest that oxidant/antioxidant imbalance is a key contributor to this condition. OxS is now understood to be a major underlying mechanism for mitochondrial dysfunction, ectopic lipid accumulation, and gut microbiota impairment. CRITICAL ISSUES Further studies, particularly in the field of translational research, are clearly required to understand and control the production of reactive oxygen species (ROS) levels, especially in the mitochondria, since the various therapeutic trials conducted to date have not targeted this major ROS-generating system, aimed to delay MetS onset, or prevent its progression. FUTURE DIRECTIONS Multiple relevant markers need to be identified to clarify the role of ROS in the etiology of MetS. Future clinical trials should provide important proof of concept for the effectiveness of antioxidants as useful therapeutic approaches to simultaneously counteract mitochondrial OxS, alleviate MetS symptoms, and prevent complications. Antioxid. Redox Signal. 26, 445-461.
Collapse
Affiliation(s)
- Schohraya Spahis
- 1 Research Center , Ste-Justine MUHC, Montreal, Canada .,2 Department of Nutrition, Université de Montréal , Montreal, Canada
| | | | - Emile Levy
- 1 Research Center , Ste-Justine MUHC, Montreal, Canada .,2 Department of Nutrition, Université de Montréal , Montreal, Canada .,3 EPODE International Network , Paris, France
| |
Collapse
|
145
|
López-Lluch G. Mitochondrial activity and dynamics changes regarding metabolism in ageing and obesity. Mech Ageing Dev 2017; 162:108-121. [DOI: 10.1016/j.mad.2016.12.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/24/2016] [Accepted: 12/13/2016] [Indexed: 12/14/2022]
|
146
|
Oh S, Lee MS, Jung S, Kim S, Park H, Park S, Kim SY, Kim CT, Jo YH, Kim IH, Kim Y. Ginger extract increases muscle mitochondrial biogenesis and serum HDL-cholesterol level in high-fat diet-fed rats. J Funct Foods 2017. [DOI: 10.1016/j.jff.2016.12.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
147
|
Dietary supplementation with bovine-derived milk fat globule membrane lipids promotes neuromuscular development in growing rats. Nutr Metab (Lond) 2017; 14:9. [PMID: 28127382 PMCID: PMC5259894 DOI: 10.1186/s12986-017-0161-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 01/15/2017] [Indexed: 12/11/2022] Open
Abstract
Background The milk fat globule membrane (MFGM) is primarily composed of polar phospho- and sphingolipids, which have established biological effects on neuroplasticity. The present study aimed to investigate the effect of dietary MFGM supplementation on the neuromuscular system during post-natal development. Methods Growing rats received dietary supplementation with bovine-derived MFGM mixtures consisting of complex milk lipids (CML), beta serum concentrate (BSC) or a complex milk lipid concentrate (CMLc) (which lacks MFGM proteins) from post-natal day 10 to day 70. Results Supplementation with MFGM mixtures enriched in polar lipids (BSC and CMLc, but not CML) increased the plasma phosphatidylcholine (PC) concentration, with no effect on plasma phosphatidylinositol (PI), phosphatidylethanolamine (PE), phosphatidylserine (PS) or sphingomyelin (SM). In contrast, muscle PC was reduced in rats receiving supplementation with both BSC and CMLc, whereas muscle PI, PE, PS and SM remained unchanged. Rats receiving BSC and CMLc (but not CML) displayed a slow-to-fast muscle fibre type profile shift (MyHCI → MyHCIIa) that was associated with elevated expression of genes involved in myogenic differentiation (myogenic regulatory factors) and relatively fast fibre type specialisation (Myh2 and Nfatc4). Expression of neuromuscular development genes, including nerve cell markers, components of the synaptogenic agrin–LRP4 pathway and acetylcholine receptor subunits, was also increased in muscle of rats supplemented with BSC and CMLc (but not CML). Conclusions These findings demonstrate that dietary supplementation with bovine-derived MFGM mixtures enriched in polar lipids can promote neuromuscular development during post-natal growth in rats, leading to shifts in adult muscle phenotype. Electronic supplementary material The online version of this article (doi:10.1186/s12986-017-0161-y) contains supplementary material, which is available to authorized users.
Collapse
|
148
|
Gonzalez-Franquesa A, Patti ME. Insulin Resistance and Mitochondrial Dysfunction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 982:465-520. [DOI: 10.1007/978-3-319-55330-6_25] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
149
|
Badin PM, Sopariwala DH, Lorca S, Narkar VA. Muscle Arnt/Hif1β Is Dispensable in Myofiber Type Determination, Vascularization and Insulin Sensitivity. PLoS One 2016; 11:e0168457. [PMID: 28005939 PMCID: PMC5178999 DOI: 10.1371/journal.pone.0168457] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 12/01/2016] [Indexed: 02/07/2023] Open
Abstract
Aryl Hydrocarbon Receptor Nuclear Translocator/ hypoxia-inducible factor 1 beta (ARNT/ HIF1β), a member of bHLH-PAS family of transcriptional factors, plays a critical role in metabolic homeostasis, insulin resistance and glucose intolerance. The contributions of ARNT in pancreas, liver and adipose tissue to energy balance through gene regulation have been described. Surprisingly, the impact of ARNT signaling in the skeletal muscles, one of the major organs involved in glucose disposal, has not been investigated, especially in type II diabetes. Here we report that ARNT is expressed in the skeletal muscles, particularly in the energy-efficient oxidative slow-twitch myofibers, which are characterized by increased oxidative capacity, mitochondrial content, vascular supply and insulin sensitivity. However, muscle-specific deletion of ARNT did not change myofiber type distribution, oxidative capacity, mitochondrial content, capillarity, or the expression of genes associated with these features. Consequently, the lack of ARNT in the skeletal muscle did not affect weight gain, lean/fat mass, insulin sensitivity and glucose tolerance in lean mice, nor did it impact insulin resistance and glucose intolerance in high fat diet-induced obesity. Therefore, skeletal muscle ARNT is dispensable for controlling muscle fiber type and metabolic regulation, as well as diet-induced weight control, insulin sensitivity and glucose tolerance.
Collapse
Affiliation(s)
- Pierre-Marie Badin
- Metabolic and Degenerative Diseases, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, UTHealth, Houston, TX, United States of America
| | - Danesh H. Sopariwala
- Metabolic and Degenerative Diseases, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, UTHealth, Houston, TX, United States of America
| | - Sabina Lorca
- Metabolic and Degenerative Diseases, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, UTHealth, Houston, TX, United States of America
| | - Vihang A. Narkar
- Metabolic and Degenerative Diseases, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, UTHealth, Houston, TX, United States of America
- Integrative Biology and Pharmacology, McGovern Medical School, UTHealth, Houston, TX, United States of America
- Graduate School of Biomedical Sciences, McGovern Medical School, UTHealth, Houston, TX, United States of America
- * E-mail:
| |
Collapse
|
150
|
Acosta W, Meek TH, Schutz H, Dlugosz EM, Garland T. Preference for Western diet coadapts in High Runner mice and affects voluntary exercise and spontaneous physical activity in a genotype-dependent manner. Behav Processes 2016; 135:56-65. [PMID: 27908664 DOI: 10.1016/j.beproc.2016.11.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 11/19/2016] [Accepted: 11/27/2016] [Indexed: 01/06/2023]
Abstract
Do animals evolve (coadapt) to choose diets that positively affect their performance abilities? We addressed this question from a microevolutionary perspective by examining preference for Western diet (WD: high in fat and sugar, but lower in protein) versus standard rodent chow in adults of both sexes from 4 lines of mice selectively bred for high levels of voluntary wheel running (High Runner or HR lines) and 4 non-selected control (C) lines. We also assessed whether food preference or substitution affects physical activity (wheel running and/or spontaneous physical activity [SPA] in the attached home cages). In experiment 1 (generation 56), mice were given 6days of wheel acclimation (as is used routinely to pick breeders in the selection experiment) prior to a 2-day food choice trial. In experiment 2 (generation 56), 17days of wheel acclimation allowed mice to reach a stable level of daily running, followed by a 7-day food-choice trial. In experiment 3 (generation 58), mice had 6days of wheel acclimation with standard chow, after which half were switched to WD for two days. In experiment 1, WD was highly preferred by all mice, with somewhat greater preference in male C mice. In experiment 2, wheel running increased and SPA decreased continuously for the first 14days of adult wheel testing, followed by 3-day plateaus in both. During the subsequent 7-day food choice trial, HR mice of both sexes preferred WD significantly more than did C mice; moreover, wheel running increased in all groups except males from C lines, with the increase being significantly greater in HR than C, while SPA declined further in all groups. In experiment 3, the effect of being switched to WD depended on both linetype and sex. On standard chow, only HR females showed a significant change in wheel running during nights 7+8, increasing by 10%. In contrast, when switched to WD, C females (+28%), HR females (+33%), and HR males (+10%) all significantly increased their daily wheel-running distances. Our results show for the first time that dietary preferences can coadapt in response to selection on activity levels.
Collapse
Affiliation(s)
- Wendy Acosta
- Department of Biology, University of California, Riverside, CA 92521, USA
| | - Thomas H Meek
- Department of Biology, University of California, Riverside, CA 92521, USA
| | - Heidi Schutz
- Department of Biology, University of California, Riverside, CA 92521, USA
| | | | - Theodore Garland
- Department of Biology, University of California, Riverside, CA 92521, USA.
| |
Collapse
|