101
|
Hey P, Gow P, Testro AG, Apostolov R, Chapman B, Sinclair M. Nutraceuticals for the treatment of sarcopenia in chronic liver disease. Clin Nutr ESPEN 2021; 41:13-22. [PMID: 33487256 DOI: 10.1016/j.clnesp.2020.11.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 11/30/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS Sarcopenia, defined as loss of muscle mass, strength and function, is associated with adverse clinical outcomes in patients with cirrhosis. Despite improved understanding of the multifaceted pathogenesis, there are few established therapies to treat or prevent muscle loss in this population. This narrative review examines the available literature investigating the role of nutraceuticals for the prevention or treatment of muscle wasting in chronic liver disease. METHODS A comprehensive search or Medline and PubMED databases was conducted. Reference lists were screened to identify additional articles. RESULTS A number of nutritional supplements and vitamins target the specific metabolic derangements that contribute to sarcopenia in cirrhosis including altered amino acid metabolism, hyperammonaemia and inflammation. Branched chain amino acid (BCAA) supplementation has proposed anabolic effects through dual pathways of enhanced ammonia clearance and stimulation of muscle protein synthesis. l-carnitine also has multimodal effects on muscle and shows promise as a therapy for muscle loss through anti-inflammatory, antioxidant and ammonia lowering properties. Other nutraceuticals including l-ornithine l-aspartate, omega-3 polyunsaturated fatty acids and zinc and vitamin D supplementation, may similarly have positive effects on muscle homeostasis, however further evidence to support their use in cirrhotic populations is required. CONCLUSION Nutraceuticals offer a promising and likely safe adjunct to standard care for sarcopenia in cirrhosis. While there is most evidence to support the use of BCAA and l-carnitine supplementation, further well-designed clinical trials are needed to elucidate their efficacy as a therapy for muscle loss in this population.
Collapse
Affiliation(s)
- Penelope Hey
- Liver Transplant Unit, Austin Health, 145 Studley Rd, Heidelberg, Victoria, Australia; The University of Melbourne, Parkville, Victoria, Australia.
| | - Paul Gow
- Liver Transplant Unit, Austin Health, 145 Studley Rd, Heidelberg, Victoria, Australia; The University of Melbourne, Parkville, Victoria, Australia.
| | - Adam G Testro
- Liver Transplant Unit, Austin Health, 145 Studley Rd, Heidelberg, Victoria, Australia; The University of Melbourne, Parkville, Victoria, Australia.
| | - Ross Apostolov
- Liver Transplant Unit, Austin Health, 145 Studley Rd, Heidelberg, Victoria, Australia; The University of Melbourne, Parkville, Victoria, Australia.
| | - Brooke Chapman
- The University of Melbourne, Parkville, Victoria, Australia; Department of Nutrition and Dietetics, Austin Health, 145 Studley Rd, Heidelberg, Victoria, Australia.
| | - Marie Sinclair
- Liver Transplant Unit, Austin Health, 145 Studley Rd, Heidelberg, Victoria, Australia; The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
102
|
Johnson H, Puppa M, van der Merwe M, Tipirneni-Sajja A. CRAFT for NMR lipidomics: Targeting lipid metabolism in leucine-supplemented tumor-bearing mice. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2021; 59:138-146. [PMID: 32876975 DOI: 10.1002/mrc.5092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/19/2020] [Accepted: 08/26/2020] [Indexed: 06/11/2023]
Abstract
Lipid profiling by 1 H-NMR has gained increasing utility in many fields because of its intrinsically quantitative, nondestructive nature and the ability to differentiate small molecules based on their spectral location. Most nuclear magnetic resonance (NMR) techniques for metabolite quantification use frequency domain analysis that involves many user-dependent steps such as phase and baseline correction and quantification by either manual integration or peak fitting. Recently, Bayesian analysis of time-domain NMR data has been shown to reduce operator bias and increase automation in NMR spectroscopy. In this study, we demonstrate the use of CRAFT (complete reduction to amplitude-frequency table), a Bayesian-based approach to automate processing in NMR-based lipidomics using lipid standards and tissue samples of healthy and tumor-bearing mice supplemented with leucine. Complex mixtures of lipid standards were prepared and examined using CRAFT to validate it against conventional Fourier transform (FT)-NMR and derive a fingerprint to be used for analyzing lipid profiles of serum and liver samples. CRAFT and FT-NMR were comparable in accuracy, with CRAFT achieving higher correlation in quantifying several lipid species. Analysis of the serum lipidome of tumor-bearing mice revealed hyperlipidemia and no signs of hepatic triglyceride accumulation compared with that of the healthy group demonstrating that the tumor-bearing mice were in a state of precachexia. Leucine-supplementation was associated with minimal changes in the lipid profile in both tissues. In conclusion, our study demonstrates that the CRAFT method can accurately identify and quantify lipids in complex lipid mixtures and murine tissue samples and, hence, will increase automation and reproducibility in NMR-based lipidomics.
Collapse
Affiliation(s)
- Hayden Johnson
- Department of Biomedical Engineering, The University of Memphis, Memphis, TN, USA
| | - Melissa Puppa
- College of Health Sciences, The University of Memphis, Memphis, TN, USA
| | | | | |
Collapse
|
103
|
The Physicochemical and Sensory Properties of Whey-Fed Pork Loin after Salting, Dry Aging, and Sous Vide Cooking. J CHEM-NY 2021. [DOI: 10.1155/2021/6624269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This study was conducted to evaluate the physicochemical properties of whey-fed pork loin subjected to salting, dry aging, and sous vide cooking. We compared raw and treated pork loin from pigs fed a basal diet (control) and those fed a diet supplemented with whey powder. Treated pork was salted, dry aged for 0–30 d, and then cooked using sous vide. The crude fat, total lipid, and cholesterol content and shear force of raw whey powder-fed pork loin were significantly lower than those of the control, while the crude protein content was higher. Cooking loss, hardness, and gumminess were found to decrease with the aging period in sous vide-treated pork. Dietary supplementation with whey had positive effects on pork color stability, texture, and sensory evaluation, and it significantly inhibited the growth of bacteria. The results suggest that supplementing the diet of pigs with whey powder can enhance meat quality, especially when combined with salting, dry aging, and sous vide cooking.
Collapse
|
104
|
Tan HC, Hsu JW, Kovalik JP, Eng A, Chan WH, Khoo CM, Tai ES, Chacko S, Jahoor F. Branched-Chain Amino Acid Oxidation Is Elevated in Adults with Morbid Obesity and Decreases Significantly after Sleeve Gastrectomy. J Nutr 2020; 150:3180-3189. [PMID: 33097955 DOI: 10.1093/jn/nxaa298] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/07/2020] [Accepted: 09/09/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Plasma concentrations of branched-chain amino acids (BCAAs) are elevated in obese individuals with insulin resistance (IR) and decrease after bariatric surgery. However, the metabolic mechanisms are unclear. OBJECTIVES Our objectives are to compare leucine kinetics between morbidly obese and healthy-weight individuals cross-sectionally, and to prospectively evaluate changes in the morbidly obese after sleeve gastrectomy. We hypothesized that leucine oxidation is slower in obese individuals and increases after surgery. METHODS Ten morbidly obese [BMI (in kg/m2) ≥32.5, age 21-50 y] and 10 healthy-weight participants (BMI <25), matched for age (median ∼30 y) but not gender, were infused with [U-13C6] leucine and [2H5] glycerol to quantify leucine and glycerol kinetics. Morbidly obese participants were studied again 6 mo postsurgery. Primary outcomes were kinetic parameters related to BCAA metabolism. Data were analyzed by nonparametric methods and presented as median (IQR). RESULTS Participants with obesity had IR with an HOMA-IR (4.89; 4.36-8.76) greater than that of healthy-weight participants (1.32; 0.99-1.49; P < 0.001) and had significantly faster leucine flux [218; 196-259 compared with 145; 138-149 μmol · kg fat-free mass (FFM)-1 · h-1], oxidation (24.0; 17.9-29.8 compared with 16.1; 14.3-18.5 μmol · kg FFM-1 · h-1), and nonoxidative disposal (204; 190-247 compared with 138; 129-140 μmol · kg FFM-1 · h-1) (P < 0.017 for all). After surgery, the morbidly obese had a marked improvement in IR (3.54; 3.06-6.08; P = 0.008) and significant reductions in BCAA concentrations (113; 95-157 μmol/L) and leucine oxidation (9.37; 6.85-15.2 μmol · kg FFM-1 · h-1) (P = 0.017 for both). Further, leucine flux in this group correlated significantly with IR (r = 0.78, P < 0.001). CONCLUSIONS BCAA oxidation is not impaired but elevated in individuals with morbid obesity. Plasma BCAA concentrations are lowered after surgery owing to slower breakdown of body proteins as insulin's ability to suppress proteolysis is restored. These findings suggest that IR is the underlying cause and not the consequence of elevated BCAAs in obesity.
Collapse
Affiliation(s)
- Hong Chang Tan
- Department of Endocrinology, Singapore General Hospital, Singapore
| | - Jean W Hsu
- USDA/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Jean-Paul Kovalik
- Cardiovascular and Metabolic Disease Program, Duke-NUS Medical School, Singapore
| | - Alvin Eng
- Department of Upper GI and Bariatric Surgery, Singapore General Hospital, Singapore
| | - Weng Hoong Chan
- Department of Upper GI and Bariatric Surgery, Singapore General Hospital, Singapore
| | - Chin Meng Khoo
- Department of Medicine, National University Health System, Singapore
| | - E Shyong Tai
- Department of Medicine, National University Health System, Singapore
| | - Shaji Chacko
- USDA/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Farook Jahoor
- USDA/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
105
|
Ma Q, Hu L, Zhu J, Chen J, Wang Z, Yue Z, Qiu M, Shan A. Valine Supplementation Does Not Reduce Lipid Accumulation and Improve Insulin Sensitivity in Mice Fed High-Fat Diet. ACS OMEGA 2020; 5:30937-30945. [PMID: 33324801 PMCID: PMC7726788 DOI: 10.1021/acsomega.0c03707] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/10/2020] [Indexed: 06/01/2023]
Abstract
Branched-chain amino acids (BCAAs), particularly leucine, were reported to decrease obesity and relevant metabolic syndrome. However, whether valine has a similar effect has rarely been investigated. In the present study, mice were assigned into four treatments (n = 10): chow diet supplemented with water (CW) or valine (CV) and high-fat diet supplemented with water (HW) or valine (HV). Valine (3%, w/v) was supplied in the drinking water. The results showed that valine treatment markedly increased serum triglyceride and insulin levels of chow diet-fed mice. The body weight, serum triglyceride level, white adipose tissue weight, and glucose and insulin intolerance were significantly elevated by valine supplementation in high-fat diet-fed mice. Metabolomics and transcriptomics showed that several genes related to fat oxidation were downregulated, and arachidonic acid and linoleic acid metabolism were altered in the HV group compared to the HW group. In conclusion, valine supplementation did not suppress lipid deposition and metabolic disorders in mice, which provides a new understanding for BCAAs in the modulation of lipid metabolism.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Anshan Shan
- . Tel.: +86 451 55190685. Fax: +86 451 55103336
| |
Collapse
|
106
|
Le Couteur DG, Solon-Biet SM, Cogger VC, Ribeiro R, de Cabo R, Raubenheimer D, Cooney GJ, Simpson SJ. Branched chain amino acids, aging and age-related health. Ageing Res Rev 2020; 64:101198. [PMID: 33132154 DOI: 10.1016/j.arr.2020.101198] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/04/2020] [Accepted: 10/16/2020] [Indexed: 02/08/2023]
Abstract
Branched chain amino acids (BCAA: leucine, valine, isoleucine) have key physiological roles in the regulation of protein synthesis, metabolism, food intake and aging. Many studies report apparently inconsistent conclusions about the relationships between blood levels of BCAAs or dietary manipulation of BCAAs with age-related changes in body composition, sarcopenia, obesity, insulin and glucose metabolism, and aging biology itself. These divergent results can be resolved by consideration of the role of BCAAs as signalling molecules and the bidirectional mechanistic relationship between BCAAs and some aging phenotypes. The effects of BCAAs are also influenced by the background nutritional composition such as macronutrient ratios and imbalance with other amino acids. Understanding the interaction between BCAAs and other components of the diet may provide new opportunities for influencing age-related outcomes through manipulation of dietary BCAAs together with titration of macronutrient ratios and other amino acids.
Collapse
|
107
|
Ha J, Jang M, Kwon YK, Park YS, Park DJ, Lee JH, Lee HJ, Ha TK, Kim YJ, Han SM, Han SU, Heo YS, Park SS. Metabolomic Profiles Predict Diabetes Remission after Bariatric Surgery. J Clin Med 2020; 9:jcm9123897. [PMID: 33271740 PMCID: PMC7760750 DOI: 10.3390/jcm9123897] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/19/2020] [Accepted: 11/23/2020] [Indexed: 12/25/2022] Open
Abstract
Background: Amino acid metabolites (AAMs) have been linked to glucose homeostasis and type 2 diabetes (T2D). We investigated whether (1) baseline AAMs predict T2D remission 12 months after bariatric surgery and (2) whether AAMs are superior for predicting T2D remission postoperatively compared with existing prediction models. Methods: Among 24 participants undergoing bariatric surgery, 16 diabetes-related AAMs were quantified at baseline and postoperative 3 and 12 months. Existing prediction models included the ABCD, DiaRem, and IMS models. Results: Baseline L-dihydroxyphenylalanine (L-DOPA) (areas under receiver operating characteristic curves (AUROC), 0.92; 95% confidence interval (CI), 0.75 to 1.00) and 3-hydroxyanthranilic acid (3-HAA) (AUROC, 0.85; 95% CI, 0.67 to 1.00) better predicted T2D remission 12 months postoperatively than the ABCD model (AUROC, 0.81; 95% CI, 0.54 to 1.00), which presented the highest AUROC value among the three models. The superior prognostic performance of L-DOPA (AUROC at 3 months, 0.97; 95% CI, 0.91 to 1.00) and 3-HAA (AUROC at 3 months, 0.86; 95% CI, 0.63 to 1.00) continued until 3 months postoperatively. Conclusions: The AAM profile predicts T2D remission after bariatric surgery more effectively than the existing prediction models.
Collapse
Affiliation(s)
- Jane Ha
- Department of Medicine, Korea University College of Medicine, Seoul 02841, Korea;
| | - Mi Jang
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, 7491 Trondheim, Norway;
| | - Yeong-Keun Kwon
- Division of Foregut Surgery, Korea University College of Medicine, Seoul 02841, Korea;
| | - Young-Suk Park
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam 13620, Korea;
| | - Do-Joong Park
- Department of Surgery, Seoul National University Hospital, Seoul 03080, Korea; (D.J.P.); (H.-J.L.)
| | - Joo-Ho Lee
- Department of Surgery, Nowon Eulji Medical Center, Seoul 01830, Korea;
| | - Hyuk-Joon Lee
- Department of Surgery, Seoul National University Hospital, Seoul 03080, Korea; (D.J.P.); (H.-J.L.)
| | - Tae-Kyung Ha
- Department of Surgery, Hanyang University College of Medicine, Seoul 04763, Korea;
| | - Yong-Jin Kim
- Department of Surgery, H+ Yangji Hospital, Seoul 08779, Korea;
| | - Sang-Moon Han
- Department of Surgery, Cheil General Hospital, Seoul 04619, Korea;
| | - Sang-Uk Han
- Department of Surgery, Ajou University Hospital, Suwon 16499, Korea;
| | - Yoon-Seok Heo
- Department of Surgery, Inha University Hospital, Incheon 22332, Korea;
| | - Sung-Soo Park
- Division of Foregut Surgery, Korea University College of Medicine, Seoul 02841, Korea;
- Correspondence: ; Tel.: +82-2-920-6772
| |
Collapse
|
108
|
Whey Versus Casein as a Protein Source during the Weaning Period: Impact on Growth and Later Adiposity and Glucose Homeostasis in a Rat Model of Intrauterine Growth Restriction. Nutrients 2020; 12:nu12113399. [PMID: 33167459 PMCID: PMC7694472 DOI: 10.3390/nu12113399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/26/2020] [Accepted: 11/03/2020] [Indexed: 11/17/2022] Open
Abstract
The impact of early life protein source (whey vs. casein) on short- and long-term glucose homeostasis and adiposity is unknown and was investigated in this study. At the end of the suckling period, non-IUGR (intrauterine growth restriction) and IUGR pups were separated from dams and were randomized into four groups. From age 21-49 days, non-IUGR and IUGR pups were fed ad-libitum chow or a semi-synthetic diet (20% from protein; casein or whey) and from age 50-199 days, all groups were fed ad-libitum chow. Food intake, body composition, glucose, and insulin homeostasis were assessed. Among the chow groups, IUGR had slower growth and higher fasting glucose at age 42 days, as well as higher fasting and AUC glucose at age 192 days relative to non-IUGR. The whey IUGR group had a slower growth rate and higher fasting glycemia in early life (age 21-49 days) and higher HOMA-IR later in life (age 120-122 and 190-192 days) relative to casein IUGR. This study shows the potential advantage of casein relative to whey during weaning on short term energy intake, growth, and glucose homeostasis in an IUGR model and reveals, for the first time, its long term impact on insulin sensitivity, which may have implications for later metabolic health, particularly in small-for-gestational-age populations at risk of type 2 diabetes.
Collapse
|
109
|
Berger E, Colosetti P, Jalabert A, Meugnier E, Wiklander OP, Jouhet J, Errazurig-Cerda E, Chanon S, Gupta D, Rautureau GJ, Geloen A, El-Andaloussi S, Panthu B, Rieusset J, Rome S. Use of Nanovesicles from Orange Juice to Reverse Diet-Induced Gut Modifications in Diet-Induced Obese Mice. Mol Ther Methods Clin Dev 2020; 18:880-892. [PMID: 32953937 PMCID: PMC7481887 DOI: 10.1016/j.omtm.2020.08.009] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/10/2020] [Indexed: 02/06/2023]
Abstract
We have determined whether orange juice-derived nanovesicles (ONVs) could be used for the treatment of obesity-associated intestinal complications. ONVs were characterized by lipidomic, metabolomic, electron microscopy. In vitro, intestinal barriers (IBs = Caco-2+HT-29-MTX) were treated with ONVs and co-cultured with adipocytes to monitor IB fat release. In vivo, obesity was induced with a high-fat, high-sucrose diet (HFHSD mice) for 12 weeks. Then, half of HFHSD mice were gavaged with ONVs. One-month ONV treatment did not modify HFHSD-induced insulin resistance but reversed diet-induced gut modifications. In the jejunum, ONVs increased villi size, reduced triglyceride content, and modulated mRNA levels of genes involved in immune response (tumor necrosis factor [TNF]-α and interleukin [IL]-1β), barrier permeability (CLDN1, OCLN, ZO1), fat absorption, and chylomicron release. ONVs targeted microsomal triglyceride transfer protein (MTP) and angiopoietin-like protein-4 (ANGPTL4), two therapeutic targets to reduce plasma lipids and inflammation in gastrointestinal diseases. Interestingly, ONV treatment did not aggravate liver steatosis, as MTP mRNA was increased in the liver. Therefore, ONVs protected both intestine and the liver from fat overload associated with the HFHSD. As ONVs concentrated amino acids and bioactive lipids versus orange juice, which are deficient in obese patients, the use of ONVs as a dietary supplement could bring physiological relevant compounds in the jejunum to accelerate the restoration of intestinal functions during weight loss in obese patients.
Collapse
Affiliation(s)
- Emmanuelle Berger
- CarMeN Laboratory (INRAe U1397, INSERM U1060, Lyon 1 University, INSA Lyon), Bâtiment CENS ELI-2D, Pierre-Bénite, France
| | - Pascal Colosetti
- CarMeN Laboratory (INRAe U1397, INSERM U1060, Lyon 1 University, INSA Lyon), Bâtiment CENS ELI-2D, Pierre-Bénite, France
| | - Audrey Jalabert
- CarMeN Laboratory (INRAe U1397, INSERM U1060, Lyon 1 University, INSA Lyon), Bâtiment CENS ELI-2D, Pierre-Bénite, France
| | - Emmanuelle Meugnier
- CarMeN Laboratory (INRAe U1397, INSERM U1060, Lyon 1 University, INSA Lyon), Bâtiment CENS ELI-2D, Pierre-Bénite, France
| | - Oscar P.B. Wiklander
- Department of Laboratory Medicine, Division of Biomolecular and Cellular Medicine, Karolinska Institutet, 141 57 Huddinge, Sweden
| | - Juliette Jouhet
- Laboratoire de Physiologie Cellulaire & Végétale (LPCV), CNRS (UMR5168)/Université Grenoble Alpes/INRAe (UMR1417)/CEA Grenoble, Institut de Biosciences et Biotechnologies de Grenoble, France
| | | | - Stéphanie Chanon
- CarMeN Laboratory (INRAe U1397, INSERM U1060, Lyon 1 University, INSA Lyon), Bâtiment CENS ELI-2D, Pierre-Bénite, France
| | - Dhanu Gupta
- Department of Laboratory Medicine, Division of Biomolecular and Cellular Medicine, Karolinska Institutet, 141 57 Huddinge, Sweden
| | - Gilles J.P. Rautureau
- Université de Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon, Centre de RMN à Très Hauts Champs (CRMN), FRE 2034, Villeurbanne, France
| | - Alain Geloen
- CarMeN Laboratory (INRAe U1397, INSERM U1060, Lyon 1 University, INSA Lyon), Bâtiment CENS ELI-2D, Pierre-Bénite, France
| | - Samir El-Andaloussi
- Department of Laboratory Medicine, Division of Biomolecular and Cellular Medicine, Karolinska Institutet, 141 57 Huddinge, Sweden
| | - Baptiste Panthu
- CarMeN Laboratory (INRAe U1397, INSERM U1060, Lyon 1 University, INSA Lyon), Bâtiment CENS ELI-2D, Pierre-Bénite, France
| | - Jennifer Rieusset
- CarMeN Laboratory (INRAe U1397, INSERM U1060, Lyon 1 University, INSA Lyon), Bâtiment CENS ELI-2D, Pierre-Bénite, France
| | - Sophie Rome
- CarMeN Laboratory (INRAe U1397, INSERM U1060, Lyon 1 University, INSA Lyon), Bâtiment CENS ELI-2D, Pierre-Bénite, France
| |
Collapse
|
110
|
Energy metabolism profile of the effects of amino acid treatment on skeletal muscle cells: Leucine inhibits glycolysis of myotubes. Nutrition 2020; 77:110794. [DOI: 10.1016/j.nut.2020.110794] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/20/2020] [Accepted: 01/25/2020] [Indexed: 02/06/2023]
|
111
|
Murphy M, Bartges JW, Zemel MB, Kirk CA, Witzel-Rollins A. Effect of a Leucine/Pyridoxine Nutraceutical on Caloric Intake and Body Composition of Obese Dogs Losing Weight. Front Vet Sci 2020; 7:555. [PMID: 33195491 PMCID: PMC7477321 DOI: 10.3389/fvets.2020.00555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/14/2020] [Indexed: 12/02/2022] Open
Abstract
The aim of this 29-week randomized, positively and negatively controlled study was to investigate whether a nutraceutical containing 1 g leucine and 13 mg pyridoxine can enhance weight loss while maintaining lean muscle mass in obese dogs. Twenty-four healthy, 2-year-old beagles were initially divided into obesification (n = 18) or ideal body weight groups (n = 6). After obesification, the 18 dogs were divided into three weight loss groups and fed one of the following over 12 weeks: nutraceutical with canned adult diet (CAD; ObN), placebo with CAD (ObP), or a canned therapeutic weight loss diet (WLD). Dogs in the ideal body weight (IBW) group were fed maintenance calorie requirements with CAD over 12 weeks. Based on MANOVA, ObN and WLD lost similar amounts of total weight (3.6 ± 0.9 vs. 4.4 ± 1.1 kg, respectively) and fat mass (3.1 ± 0.6 vs. 3.9 ± 0.8 kg, respectively) after 12 weeks of treatment, and more than ObP (1.1 ± 1.2 kg weight; 0.9 ± 1.0 kg fat; p < 0.0001). These data show the nutraceutical is a promising option for successful weight loss in dogs. Maintenance levels of CAD were able to induce weight loss without risk of hypo- or anorexia, or the need to switch diets or restrict energy intake.
Collapse
Affiliation(s)
- Maryanne Murphy
- Department of Small Animal Clinical Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN, United States
| | - Joseph W Bartges
- Department of Small Animal Clinical Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN, United States
| | - Michael B Zemel
- NuSirt Biopharma, Research & Development, Knoxville, TN, United States
| | - Claudia A Kirk
- Department of Small Animal Clinical Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN, United States
| | - Angela Witzel-Rollins
- Department of Small Animal Clinical Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN, United States
| |
Collapse
|
112
|
Metabolomic Analysis of the Improvements in Insulin Secretion and Resistance After Sleeve Gastrectomy: Implications of the Novel Biomarkers. Obes Surg 2020; 31:43-52. [DOI: 10.1007/s11695-020-04925-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 08/07/2020] [Accepted: 08/11/2020] [Indexed: 01/07/2023]
|
113
|
The Effect of Isoleucine Supplementation on Body Weight Gain and Blood Glucose Response in Lean and Obese Mice. Nutrients 2020; 12:nu12082446. [PMID: 32823899 PMCID: PMC7468706 DOI: 10.3390/nu12082446] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/06/2020] [Accepted: 08/12/2020] [Indexed: 12/28/2022] Open
Abstract
Chronic isoleucine supplementation prevents diet-induced weight gain in rodents. Acute-isoleucine administration improves glucose tolerance in rodents and reduces postprandial glucose levels in humans. However, the effect of chronic-isoleucine supplementation on body weight and glucose tolerance in obesity is unknown. This study aimed to investigate the impact of chronic isoleucine on body weight gain and glucose tolerance in lean and high-fat-diet (HFD) induced-obese mice. Male C57BL/6-mice, fed a standard-laboratory-diet (SLD) or HFD for 12 weeks, were randomly allocated to: (1) Control: Drinking water; (2) Acute: Drinking water with a gavage of isoleucine (300 mg/kg) prior to the oral-glucose-tolerance-test (OGTT) or gastric-emptying-breath-test (GEBT); (3) Chronic: Drinking water with 1.5% isoleucine, for a further six weeks. At 16 weeks, an OGTT and GEBT was performed and at 17 weeks metabolic monitoring. In SLD- and HFD-mice, there was no difference in body weight, fat mass, and plasma lipid profiles between isoleucine treatment groups. Acute-isoleucine did not improve glucose tolerance in SLD- or HFD-mice. Chronic-isoleucine impaired glucose tolerance in SLD-mice. There was no difference in gastric emptying between any groups. Chronic-isoleucine did not alter energy intake, energy expenditure, or respiratory quotient in SLD- or HFD-mice. In conclusion, chronic isoleucine supplementation may not be an effective treatment for obesity or glucose intolerance.
Collapse
|
114
|
Huska B, Niccoli S, Phenix CP, Lees SJ. Leucine Potentiates Glucose-mediated 18F-FDG Uptake in Brown Adipose Tissue via β-Adrenergic Activation. Biomedicines 2020; 8:biomedicines8060159. [PMID: 32545834 PMCID: PMC7345234 DOI: 10.3390/biomedicines8060159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/27/2020] [Accepted: 06/10/2020] [Indexed: 01/07/2023] Open
Abstract
Significant depots of brown adipose tissue (BAT) have been identified in many adult humans through positron emission tomography (PET), with the amount of BAT being inversely correlated with obesity. As dietary activation of BAT has implications for whole body glucose metabolism, leucine was used in the present study to determine its ability to promote BAT activation resulting in increased glucose uptake. In order to assess this, 2-deoxy-2-(fluorine-18)fluoro-d-glucose (18F-FDG) uptake was measured in C57BL/6 mice using microPET after treatment with leucine, glucose, or both in interscapular BAT (IBAT). Pretreatment with propranolol (PRP) was used to determine the role of β-adrenergic activation in glucose and leucine-mediated 18F-FDG uptake. Analysis of maximum standardized uptake values (SUVMAX) determined that glucose administration increased 18F-FDG uptake in IBAT by 25.3%. While leucine did not promote 18F-FDG uptake alone, it did potentiate glucose-mediated 18F-FDG uptake, increasing 18F-FDG uptake in IBAT by 22.5%, compared to glucose alone. Pretreatment with PRP prevented the increase in IBAT 18F-FDG uptake following the combination of glucose and leucine administration. These data suggest that leucine is effective in promoting BAT 18F-FDG uptake through β-adrenergic activation in combination with glucose.
Collapse
Affiliation(s)
- Brenda Huska
- Biology, Lakehead University, Thunder Bay, ON P7B 5E1, Canada;
| | - Sarah Niccoli
- Medical Sciences, Lakehead University Faculty of Medicine, Thunder Bay, ON P7B 5E1, Canada;
- Northern Ontario School of Medicine, Medical Sciences Division, Thunder Bay, ON P7B 5E1, Canada
| | - Christopher P. Phenix
- Northern Ontario School of Medicine, Medical Sciences Division, Thunder Bay, ON P7B 5E1, Canada
- Chemistry, University of Saskatchewan, Saskatoon, SK S7N 5C9, Canada
- Thunder Bay Regional Health Research Institute, Thunder Bay, ON P7A 7T1, Canada
- Correspondence: (C.P.P.); (S.J.L.); Tel.: +1-(306)-966-4193 (C.P.P.); +1-(807)-766-7435 (S.J.L.); Fax: +1-(306)-966-4730 (C.P.P.); +1-(807)-766-7362 (S.J.L.)
| | - Simon J. Lees
- Biology, Lakehead University, Thunder Bay, ON P7B 5E1, Canada;
- Medical Sciences, Lakehead University Faculty of Medicine, Thunder Bay, ON P7B 5E1, Canada;
- Northern Ontario School of Medicine, Medical Sciences Division, Thunder Bay, ON P7B 5E1, Canada
- Correspondence: (C.P.P.); (S.J.L.); Tel.: +1-(306)-966-4193 (C.P.P.); +1-(807)-766-7435 (S.J.L.); Fax: +1-(306)-966-4730 (C.P.P.); +1-(807)-766-7362 (S.J.L.)
| |
Collapse
|
115
|
Bishop CA, Schulze MB, Klaus S, Weitkunat K. The branched‐chain amino acids valine and leucine have differential effects on hepatic lipid metabolism. FASEB J 2020; 34:9727-9739. [DOI: 10.1096/fj.202000195r] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/21/2020] [Accepted: 05/15/2020] [Indexed: 01/17/2023]
Affiliation(s)
- Christopher A. Bishop
- Department of Physiology of Energy Metabolism German Institute of Human Nutrition Potsdam‐Rehbruecke (DIfE) Nuthetal Germany
- Institute of Nutrition Science University of Potsdam Nuthetal Germany
| | - Matthias B. Schulze
- Institute of Nutrition Science University of Potsdam Nuthetal Germany
- Department of Molecular Epidemiology German Institute of Human Nutrition Potsdam‐Rehbruecke (DIfE) Nuthetal Germany
| | - Susanne Klaus
- Department of Physiology of Energy Metabolism German Institute of Human Nutrition Potsdam‐Rehbruecke (DIfE) Nuthetal Germany
- Institute of Nutrition Science University of Potsdam Nuthetal Germany
| | - Karolin Weitkunat
- Department of Physiology of Energy Metabolism German Institute of Human Nutrition Potsdam‐Rehbruecke (DIfE) Nuthetal Germany
| |
Collapse
|
116
|
Zhao H, Zhang F, Sun D, Wang X, Zhang X, Zhang J, Yan F, Huang C, Xie H, Lin C, Liu Y, Fan M, Yan W, Chen Y, Lian K, Li Y, Zhang L, Wang S, Tao L. Branched-Chain Amino Acids Exacerbate Obesity-Related Hepatic Glucose and Lipid Metabolic Disorders via Attenuating Akt2 Signaling. Diabetes 2020; 69:1164-1177. [PMID: 32184272 DOI: 10.2337/db19-0920] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 03/09/2020] [Indexed: 01/08/2023]
Abstract
Branched chain amino acids (BCAAs) are associated with the progression of obesity-related metabolic disorders, including type 2 diabetes and nonalcoholic fatty liver disease. However, whether BCAAs disrupt the homeostasis of hepatic glucose and lipid metabolism remains unknown. In this study, we observed that BCAAs supplementation significantly reduced high-fat (HF) diet-induced hepatic lipid accumulation while increasing the plasma lipid levels and promoting muscular and renal lipid accumulation. Further studies demonstrated that BCAAs supplementation significantly increased hepatic gluconeogenesis and suppressed hepatic lipogenesis in HF diet-induced obese (DIO) mice. These phenotypes resulted from severe attenuation of Akt2 signaling via mTORC1- and mTORC2-dependent pathways. BCAAs/branched-chain α-keto acids (BCKAs) chronically suppressed Akt2 activation through mTORC1 and mTORC2 signaling and promoted Akt2 ubiquitin-proteasome-dependent degradation through the mTORC2 pathway. Moreover, the E3 ligase Mul1 played an essential role in BCAAs/BCKAs-mTORC2-induced Akt2 ubiquitin-dependent degradation. We also demonstrated that BCAAs inhibited hepatic lipogenesis by blocking Akt2/SREBP1/INSIG2a signaling and increased hepatic glycogenesis by regulating Akt2/Foxo1 signaling. Collectively, these data demonstrate that in DIO mice, BCAAs supplementation resulted in serious hepatic metabolic disorder and severe liver insulin resistance: insulin failed to not only suppress gluconeogenesis but also activate lipogenesis. Intervening BCAA metabolism is a potential therapeutic target for severe insulin-resistant disease.
Collapse
Affiliation(s)
- Huishou Zhao
- Department of Cardiology, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Fuyang Zhang
- Department of Cardiology, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Dan Sun
- Department of Assisted Reproduction Center, Tangdu Hospital, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Xiong Wang
- Department of Cardiology, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Xiaomeng Zhang
- Department of Cardiology, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Jinglong Zhang
- Department of Cardiology, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Feng Yan
- Department of Cardiology, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Chong Huang
- Department of Cardiology, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Huaning Xie
- Department of Cardiology, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Chen Lin
- Department of Cardiology, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Yi Liu
- Department of Cardiology, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Miaomiao Fan
- Department of Cardiology, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Wenjun Yan
- Department of Cardiology, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Youhu Chen
- Department of Cardiology, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Kun Lian
- Department of Cardiology, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Yueyang Li
- Department of Cardiology, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Ling Zhang
- Department of Cardiology, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Shan Wang
- Department of Cardiology, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Ling Tao
- Department of Cardiology, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
117
|
Zhang L, Li F, Guo Q, Duan Y, Wang W, Zhong Y, Yang Y, Yin Y. Leucine Supplementation: A Novel Strategy for Modulating Lipid Metabolism and Energy Homeostasis. Nutrients 2020; 12:E1299. [PMID: 32370170 PMCID: PMC7282259 DOI: 10.3390/nu12051299] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 02/07/2023] Open
Abstract
Lipid metabolism is an important and complex biochemical process involved in the storage of energy and maintenance of normal biological functions. Leucine, a branched amino acid, has anti-obesity effects on glucose tolerance, lipid metabolism, and insulin sensitivity. Leucine also modulates mitochondrial dysfunction, representing a new strategy to target aging, neurodegenerative disease, obesity, diabetes, and cardiovascular disease. Although various studies have been carried out, much uncertainty still exists and further studies are required to fully elucidate the relationship between leucine and lipid metabolism. This review offers an up-to-date report on leucine, as key roles in both lipid metabolism and energy homeostasis in vivo and in vitro by acceleration of fatty acid oxidation, lipolysis, activation of the adenosine 5'-monophosphate-activated protein kinase (AMPK)-silent information regulator of transcription 1 (SIRT1)-proliferator-activated receptor γ coactivator-1α (PGC-1α) pathway, synthesis, and/or secretion of adipokines and stability of the gut microbiota.
Collapse
Affiliation(s)
- Lingyu Zhang
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (L.Z.); (Q.G.); (Y.D.); (W.W.); (Y.Y.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Fengna Li
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (L.Z.); (Q.G.); (Y.D.); (W.W.); (Y.Y.)
| | - Qiuping Guo
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (L.Z.); (Q.G.); (Y.D.); (W.W.); (Y.Y.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yehui Duan
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (L.Z.); (Q.G.); (Y.D.); (W.W.); (Y.Y.)
| | - Wenlong Wang
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (L.Z.); (Q.G.); (Y.D.); (W.W.); (Y.Y.)
- Laboratory of Animal Nutrition and Human Health, School of Biology, Hunan Normal University, Changsha 410018, China
| | - Yinzhao Zhong
- Guangdong Provincial Key Laboratory of Animal Nutrition Regulation, South China Agricultural University, Guangzhou 510642, China;
| | - Yuhuan Yang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China;
| | - Yulong Yin
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (L.Z.); (Q.G.); (Y.D.); (W.W.); (Y.Y.)
| |
Collapse
|
118
|
Ma Q, Zhou X, Sun Y, Hu L, Zhu J, Shao C, Meng Q, Shan A. Threonine, but Not Lysine and Methionine, Reduces Fat Accumulation by Regulating Lipid Metabolism in Obese Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4876-4883. [PMID: 32293174 DOI: 10.1021/acs.jafc.0c01023] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Some amino acids (AAs) have been proven to suppress fat mass and improve insulin sensitivity. However, the impact of important essential AAs, threonine, lysine, and methionine, on obesity has not been clarified. In the present study, after an 8 week period of obesity induction, mice were grouped to receive either a high-fat diet (HFD) or HFD supplemented with lysine, threonine, or methionine (3% in drinking water) for another 10 weeks. The results showed that dietary supplementation with threonine significantly decreased body weight, epididymal and perirenal fat pad weights, serum concentrations of glucose, triacylglycerols, total cholesterol, and LDL-cholesterol compared to the HFD group. HOMA-IR and serum leptin and adiponectin were improved by threonine supplementation. In epididymal adipose tissue, threonine treatment significantly down-regulated the expression levels of lipogenesis and up-regulated expressions of lipolysis compared to the HFD group. Threonine addition stimulated the expression of UCP-1 and related genes in brown adipose tissue. However, lysine or methionine supplementation showed little effect on body weight, WAT weight, serum lipid profiles, and lipid-metabolism-related gene expressions of HFD-fed mice. These findings suggest that threonine inhibited fat mass and improved lipid metabolism of already obese mice, providing a potential agent in treating obesity.
Collapse
Affiliation(s)
- Qingquan Ma
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China
| | - Xinbo Zhou
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China
| | - Yuchen Sun
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China
| | - Linlin Hu
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China
| | - Jialiang Zhu
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China
| | - Changxuan Shao
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China
| | - Qingwei Meng
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
119
|
Selle PH, Dorigam JCDP, Lemme A, Chrystal PV, Liu SY. Synthetic and Crystalline Amino Acids: Alternatives to Soybean Meal in Chicken-Meat Production. Animals (Basel) 2020; 10:E729. [PMID: 32331461 PMCID: PMC7222841 DOI: 10.3390/ani10040729] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/17/2020] [Accepted: 04/17/2020] [Indexed: 12/26/2022] Open
Abstract
: This review explores the premise that non-bound (synthetic and crystalline) amino acids are alternatives to soybean meal, the dominant source of protein, in diets for broiler chickens. Non-bound essential and non-essential amino acids can partially replace soybean meal so that requirements are still met but dietary crude protein levels are reduced. This review considers the production of non-bound amino acids, soybeans, and soybean meal and discusses the concept of reduced-crude protein diets. There is a focus on specific amino acids, including glycine, serine, threonine, and branched-chain amino acids, because they may be pivotal to the successful development of reduced-crude protein diets. Presently, moderate dietary crude protein reductions of approximately 30 g/kg are feasible, but more radical reductions compromise broiler performance. In theory, an 'ideal' amino acid profile would prevent this, but this is not necessarily the case in practice. The dependence of the chicken-meat industry on soybean meal will be halved if crude protein reductions in the order of 50 g/kg are attained without compromising the growth performance of broiler chickens. In this event, synthetic and crystalline, or non-bound, amino acids will become viable alternatives to soybean meal in chicken-meat production.
Collapse
Affiliation(s)
- Peter H. Selle
- Poultry Research Foundation, The University of Sydney, Camden NSW2570, Australia; (P.H.S.); (P.V.C.)
| | | | - Andreas Lemme
- Evonik Nutrition and Care GmbH, 63457 Hanau-Wolfgang, Germany (A.L.)
| | - Peter V. Chrystal
- Poultry Research Foundation, The University of Sydney, Camden NSW2570, Australia; (P.H.S.); (P.V.C.)
- Baiada Poultry Pty Limited, Pendle Hill NSW2145, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camden NSW2570, Australia
| | - Sonia Y. Liu
- Poultry Research Foundation, The University of Sydney, Camden NSW2570, Australia; (P.H.S.); (P.V.C.)
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camden NSW2570, Australia
| |
Collapse
|
120
|
Beneficial Effects of Acetyl-DL-Leucine (ADLL) in a Mouse Model of Sandhoff Disease. J Clin Med 2020; 9:jcm9041050. [PMID: 32276303 PMCID: PMC7230825 DOI: 10.3390/jcm9041050] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/23/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022] Open
Abstract
Sandhoff disease is a rare neurodegenerative lysosomal storage disease associated with the storage of GM2 ganglioside in late endosomes/lysosomes. Here, we explored the efficacy of acetyl-DL-leucine (ADLL), which has been shown to improve ataxia in observational studies in patients with Niemann-Pick Type C1 and other cerebellar ataxias. We treated a mouse model of Sandhoff disease (Hexb-/-) (0.1 g/kg/day) from 3 weeks of age with this orally available drug. ADLL produced a modest but significant increase in life span, accompanied by improved motor function and reduced glycosphingolipid (GSL) storage in the forebrain and cerebellum, in particular GA2. ADLL was also found to normalize altered glucose and glutamate metabolism, as well as increasing autophagy and the reactive oxygen species (ROS) scavenger, superoxide dismutase (SOD1). Our findings provide new insights into metabolic abnormalities in Sandhoff disease, which could be targeted with new therapeutic approaches, including ADLL.
Collapse
|
121
|
Wu YHS, Lin YL, Huang C, Chiu CH, Nakthong S, Chen YC. Cardiac protection of functional chicken-liver hydrolysates on the high-fat diet induced cardio-renal damages via sustaining autophagy homeostasis. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:2443-2452. [PMID: 31951016 DOI: 10.1002/jsfa.10261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/02/2020] [Accepted: 01/10/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Cardio-renal syndrome (CRS) is an integrative problem related to chronic malnutrition, obesity, etc. Amino acids and peptides are regarded as protective and essential for tissues. Pepsin-digested chicken liver hydrolysates (CLHs), which are made from the byproducts of the poultry industry, are amino-acid based and of animal origin, and may be protective against the myocardial and renal damage induced by a high-fat diet (HFD). RESULTS Our results showed that CLHs contain large quantities of anserine, taurine, and branched-chain amino acids (BCAAs), and supplementing the diet with CLHs reduced (P < 0.05) weight gain, liver weight, peri-renal fat mass / adipocyte-area sizes, serum total cholesterol (TC), aspartate aminotransferase (AST), and low-density lipoprotein cholesterol (LDLC) levels in HFD-fed mice but increased (P < 0.05) serum high-density lipoprotein cholesterol (HDLC) levels. By histological analyses, CLHs alleviated (P < 0.05) renal lipid deposition and fibrosis, as well as cardiac fibrosis and inflammation of HFD-fed mice. Meanwhile, increased (P < 0.05) inflammatory and fibrotic cytokines levels in the myocardia of the HFD-fed mice were downregulated (P < 0.05) by CLH supplementation. Regarding autophagy-related protein levels, protective effects of CLHs on the myocardia against HFD feeding may result from the early blockade of the autophagy pathway to prevent autophagosome accumulation. CONCLUSION Functional CLHs could be a novel food ingredient as a cardio-renal protective agent against a high-fat dietary habit in a niche market. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yi-Hsieng Samuel Wu
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Yi-Ling Lin
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Chien Huang
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Chih-Hsien Chiu
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Sasitorn Nakthong
- Department of Animal Science, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom, Thailand
| | - Yi-Chen Chen
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
122
|
Shou J, Chen PJ, Xiao WH. The Effects of BCAAs on Insulin Resistance in Athletes. J Nutr Sci Vitaminol (Tokyo) 2020; 65:383-389. [PMID: 31666474 DOI: 10.3177/jnsv.65.383] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The toxic catabolic intermediates of branched chain amino acids can cause insulin resistance, and are involved in different mechanisms in different metabolic tissues. In skeletal muscle, 3-hydroxy-isobutyrate produced by valine promotes skeletal muscle fatty acid uptake, resulting in the accumulation of incompletely oxidized lipids in skeletal muscle, causing skeletal muscle insulin resistance. In the liver, branched-chain α-keto acids decompose in large amounts, promote hepatic gluconeogenesis, and lead to the accumulation of multiple acylcarnitines, which damages the mitochondrial tricarboxylic acid cycle, resulting in the accumulation of incomplete oxidation products, oxidative stress in mitochondria, and hepatic insulin resistance. In adipose tissue, the expression of branched-chain amino acid catabolic enzymes (branched-chain amino acid transaminase, branched-chain α-keto acid dehydrogenase) is reduced, resulting in an increased level of plasma branched-chain amino acids, thereby causing massive decomposition of branched-chain amino acids in tissues such as skeletal muscle and liver, and inducing insulin resistance. However, branched-chain amino acids, as a common nutritional supplement for athletes, do not induce insulin resistance. A possible explanation for this phenomenon is that exercise can enhance the mitochondrial oxidative potential of branched-chain amino acids, alleviate or even eliminate the accumulation of branched-chain amino acid catabolic intermediates, and promotes branched-chain amino acids catabolism into beta-aminoisobutyric acid, increasing plasma beta-aminoisobutyric acid concentration, improving insulin resistance. This article reveals the mechanism of BCAA-induced insulin resistance and the relationship between exercise and BCAAs metabolism, adds a guarantee for the use of BCAAs, and provides a new explanation for the occurrence of diabetes and how exercise improves diabetes.
Collapse
Affiliation(s)
- Jian Shou
- School of Kinesiology, Shanghai University of Sport
| | - Pei-Jie Chen
- School of Kinesiology, Shanghai University of Sport
| | - Wei-Hua Xiao
- School of Kinesiology, Shanghai University of Sport
| |
Collapse
|
123
|
Chen JW, Lin YL, Chou CH, Wu YHS, Wang SY, Chen YC. Antiobesity and hypolipidemic effects of protease A-digested crude-chalaza hydrolysates in a high-fat diet. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
124
|
Lim LL, Lau ESH, Fung E, Lee HM, Ma RCW, Tam CHT, Wong WKK, Ng ACW, Chow E, Luk AOY, Jenkins A, Chan JCN, Kong APS. Circulating branched-chain amino acids and incident heart failure in type 2 diabetes: The Hong Kong Diabetes Register. Diabetes Metab Res Rev 2020; 36:e3253. [PMID: 31957226 DOI: 10.1002/dmrr.3253] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 10/14/2019] [Accepted: 11/19/2019] [Indexed: 12/12/2022]
Abstract
AIM Levels of branched-chain amino acids (BCAAs, namely, isoleucine, leucine, and valine) are modulated by dietary intake and metabolic/genetic factors. BCAAs are associated with insulin resistance and increased risk of type 2 diabetes (T2D). Although insulin resistance predicts heart failure (HF), the relationship between BCAAs and HF in T2D remains unknown. METHODS In this prospective observational study, we measured BCAAs in fasting serum samples collected at inception from 2139 T2D patients free of cardiovascular-renal diseases. The study outcome was the first hospitalization for HF. RESULTS During 29 103 person-years of follow-up, 115 primary events occurred (age: 54.8 ± 11.2 years, 48.2% men, median [interquartile range] diabetes duration: 5 years [1-10]). Patients with incident HF had 5.6% higher serum BCAAs than those without HF (median 639.3 [561.3-756.3] vs 605.2 [524.8-708.7] μmol/L; P = .01). Serum BCAAs had a positive linear association with incident HF (per-SD increase in logarithmically transformed BCAAs: hazard ratio [HR] 1.22 [95% CI 1.07-1.39]), adjusting for age, sex, and diabetes duration. The HR remained significant after sequential adjustment of risk factors including incident coronary heart disease (1.24, 1.09-1.41); blood pressure, low-density lipoprotein cholesterol, and baseline use of related medications (1.31, 1.14-1.50); HbA1c , waist circumference, triglyceride, and baseline use of related medications (1.28, 1.11-1.48); albuminuria and estimated glomerular filtration rate (1.28, 1.11-1.48). The competing risk of death analyses showed similar results. CONCLUSIONS Circulating levels of BCAAs are independently associated with incident HF in patients with T2D. Prospective cohort analysis and randomized trials are needed to evaluate the long-term safety and efficacy of using different interventions to optimize BCAAs levels in these patients.
Collapse
Affiliation(s)
- Lee-Ling Lim
- Faculty of Medicine, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong
- Asia Diabetes Foundation, Shatin, Hong Kong
- Faculty of Medicine, Department of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Eric S H Lau
- Faculty of Medicine, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong
- Asia Diabetes Foundation, Shatin, Hong Kong
| | - Erik Fung
- Faculty of Medicine, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong
- Laboratory for Heart Failure and Circulation Research, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
- Faculty of Medicine, Gerald Choa Cardiac Research Centre, The Chinese University of Hong Kong, Shatin, Hong Kong
- Faculty of Medicine, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Heung-Man Lee
- Faculty of Medicine, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Shatin, Hong Kong
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ronald C W Ma
- Faculty of Medicine, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Shatin, Hong Kong
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Claudia H T Tam
- Faculty of Medicine, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Shatin, Hong Kong
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Willy K K Wong
- Faculty of Medicine, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Shatin, Hong Kong
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Alex C W Ng
- Faculty of Medicine, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Shatin, Hong Kong
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Elaine Chow
- Faculty of Medicine, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Andrea O Y Luk
- Faculty of Medicine, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Alicia Jenkins
- National Health and Medical Research Council Clinical Trials Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Juliana C N Chan
- Faculty of Medicine, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong
- Asia Diabetes Foundation, Shatin, Hong Kong
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Shatin, Hong Kong
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Alice P S Kong
- Faculty of Medicine, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Shatin, Hong Kong
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
125
|
Leucine and mTORc1 act independently to regulate 2-deoxyglucose uptake in L6 myotubes. Amino Acids 2020; 52:477-486. [PMID: 32108266 DOI: 10.1007/s00726-020-02829-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 02/08/2020] [Indexed: 01/15/2023]
Abstract
Chronic mTORc1 hyperactivation via obesity-induced hyperleucinaemia has been implicated in the development of insulin resistance, yet the direct impact of leucine on insulin-stimulated glucose uptake in muscle cells remains unclear. To address this, differentiated L6 myotubes were subjected to various compounds designed to either inhibit mTORc1 activity (rapamycin), blunt leucine intracellular import (BCH), or activate mTORc1 signalling (3BDO), prior to the determination of the uptake of the glucose analogue, 2-deoxyglucose (2-DG), in response to 1 mM insulin. In separate experiments, L6 myotubes were subject to various media concentrations of leucine (0-0.8 mM) for 24 h before 2-DG uptake in response to insulin was assessed. Both rapamycin and BCH blunted 2-DG uptake, irrespective of insulin administration, and this occurred in parallel with a decline in mTOR, 4E-BP1, and p70S6K phosphorylation status, but little effect on AKT phosphorylation. In contrast, reducing leucine media concentrations suppressed 2-DG uptake, both under insulin- and non-insulin-stimulated conditions, but did not alter the phosphorylation state of AKT-mTORc1 components examined. Unexpectedly, 3BDO failed to stimulate mTORc1 signalling, but, nonetheless, caused a significant increase in 2-DG uptake under non-insulin-stimulated conditions. Both leucine and mTORc1 influence glucose uptake in muscle cells independent of insulin administration, and this likely occurs via distinct but overlapping mechanisms.
Collapse
|
126
|
Yoshii K, Ogasawara M, Wada J, Yamamoto Y, Inouye K. Exploration of dipeptidyl-peptidase IV (DPP IV) inhibitors in a low-molecular mass extract of the earthworm Eisenia fetida and identification of the inhibitors as amino acids like methionine, leucine, histidine, and isoleucine. Enzyme Microb Technol 2020; 137:109534. [PMID: 32423671 DOI: 10.1016/j.enzmictec.2020.109534] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 12/27/2022]
Abstract
We have reported previously that the water extract of the earthworm Eisenia fetida has inhibitory effect on human dipeptidyl-peptidase IV (DPP IV) in vitro. Here we studied to identify DPP IV inhibitors in a low-molecular mass extract (designated U3EE) under 3 kDa prepared from the water extract. U3EE showed 50 % inhibition (IC50) at the concentration of 5.3 ± 0.3 mg/mL. An inhibitory active fraction obtained by solid-phase extraction of U3EE was separated into three parts by reversed-phase HPLC. These parts were shown by GC/MS to be composed of ten (Ala, Gly, Thr, Ser, Asn, Asp, Lys, His, Orn, and cystine), two (Leu and Ile), and one (Met) amino acids, respectively. Among them, Met, Leu, and His showed strong inhibition with IC50 values of 3.4 ± 0.3, 6.1 ± 0.3 and 14.7 ± 1.2 mM, respectively; Ala, Lys, Orn, and Ile showed rather weaker inhibition than those, while the others showed no inhibition. Met, Leu, and Ile were competitive inhibitors and His was a mixed-type one. DPP IV inhibition by U3EE might be due to additive and/or synergistic effects of the inhibitory amino acids, suggesting that it could be useful as pharmaceutical and supplement for diabetes prevention.
Collapse
Affiliation(s)
- Katsuhiro Yoshii
- Research and Development Division, Waki Pharmaceutical Co., Ltd., Room 307, Advanced Chemical Technology Center in Kyoto (ACT Kyoto), 105 Jibu-cho, Fushimi-ku, Kyoto, 612-8374, Japan
| | - Masako Ogasawara
- Research and Development Division, Waki Pharmaceutical Co., Ltd., Room 307, Advanced Chemical Technology Center in Kyoto (ACT Kyoto), 105 Jibu-cho, Fushimi-ku, Kyoto, 612-8374, Japan
| | - Jun Wada
- Kyoto Municipal Institute of Industrial Technology and Culture, 91 Chudoji Awata-cho, Shimogyo-ku, Kyoto, 600-8815, Japan
| | - Yoshihiro Yamamoto
- Kyoto Municipal Institute of Industrial Technology and Culture, 91 Chudoji Awata-cho, Shimogyo-ku, Kyoto, 600-8815, Japan
| | - Kuniyo Inouye
- Research and Development Division, Waki Pharmaceutical Co., Ltd., Room 307, Advanced Chemical Technology Center in Kyoto (ACT Kyoto), 105 Jibu-cho, Fushimi-ku, Kyoto, 612-8374, Japan.
| |
Collapse
|
127
|
Ma C, Liu Y, Liu S, Lévesque CL, Zhao F, Yin J, Dong B. Branched chain amino acids alter fatty acid profile in colostrum of sows fed a high fat diet. J Anim Sci Biotechnol 2020; 11:9. [PMID: 32095236 PMCID: PMC7025410 DOI: 10.1186/s40104-019-0423-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/24/2019] [Indexed: 02/02/2023] Open
Abstract
Background Branched chain amino acids (BCAAs) are important substrates for milk protein synthesis in the mammary gland, and are tightly related to lipid metabolism. No study has been performed examining the role of BCAAs with high fat diets on milk fat synthesis. This study was designed to investigate the effect of dietary BCAAs on growth performance of piglets, progeny body weight, and milk fat composition in sows fed a high fat diet. Four diets (CON = control diet; HF = high fat diet with 8% soybean oil; HF-MB=HF plus 0.39% BCAAs; HF-HB=HF plus 0.78% BCAAs) were fed to sows from late gestation to weaning. Results Compared to HF, BCAAs (HF-MB and HF-HB) increased the litter weight (P < 0.05) and overall litter weight gain (P < 0.05) at weaning and increased colostrum fat content by 27.3–35.8% (P < 0.01). Fatty acid profiles between the two doses of BCAAs were similar. Compared with HF, HF-MB tended to decrease the percentage of C18:3n3 (P = 0.063) and increased the percentage of C18:1n9c (P = 0.03). In addition, BCAAs in HF-MB increased the concentration of total fatty acid by 22.1% in colostrum (P = 0.03) but decreased that in serum at parturition by 53.2% (P = 0.027). The fatty acids in colostrum that increased with BCAAs were C15:0, C17:0, C20:3n6, C20:4n6, C20:5n3 and C22:6n3 (P = 0.00~0.04). Colostrum fatty acids of C20:0, C21:0, C22:0, C16:1, C20:1, C18:1n9c also tended to be increased (0.05 < P < 0.1) with BCAAs. The change in sow serum fatty acid profile due to BCAAs was different from that in colostrum. Conclusions BCAAs in high fat diet of sows altered the fatty acid composition in colostrum and enhanced litter growth. Our study indicated that BCAAs supplementation can enhance mammary fatty acid uptake and mammary fat synthesis and that supplemental BCAAs and fat in late gestation and lactation diets for sows can improve reproductive performance.
Collapse
Affiliation(s)
- Chang Ma
- 1State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Yajng Liu
- 1State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Shaoshuai Liu
- 1State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Crystal L Lévesque
- 2Department of Animal Science, College of Agriculture and Biological Sciences, South Dakota State University, Brookings, SD 57007 USA
| | - Fengqi Zhao
- 3Department of Animal and Veterinary Sciences, University of Vermont, Burlington, VT 05405 USA
| | - Jindong Yin
- 1State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Bing Dong
- 1State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
128
|
Wu H, Dridi S, Huang Y, Baum JI. Leucine decreases intramyocellular lipid deposition in an mTORC1-independent manner in palmitate-treated C2C12 myotubes. Am J Physiol Endocrinol Metab 2020; 318:E152-E163. [PMID: 31770014 DOI: 10.1152/ajpendo.00241.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Higher intramyocellular lipid (IMCL) deposition in skeletal muscle is commonly observed in patients with obesity, resulting in mitochondrial damage. Palmitic acid, a saturated fatty acid, has been reported to induce obesogenic conditions in C2C12 myotubes. Leucine has been shown to improve obesity-related metabolic signatures; however, evidence for the effect of leucine on IMCL and the underlying mechanisms are still lacking. The objective of this study was to determine the effect of leucine on IMCL deposition and identify the potential mechanisms. Palmitate-treated C2C12 myotubes were used as an in vitro model of obesity. Two doses of leucine were used: 0.5 mM (postprandial physiological plasma concentration) and 1.5 mM (supraphysiological plasma concentration). Rapamycin was used to determine the role of mammalian target of rapamycin complex 1 (mTORC1) in leucine's regulation of lipid deposition in C2C12 myotubes. One-way ANOVA followed by Tukey's post hoc test was used to calculate differences between treatment groups. Our results demonstrate that leucine reduces IMCL deposition in an mTORC1-independent fashion. Furthermore, leucine acts independently of mTORC1 to upregulate gene expression related to fatty acid metabolism and works through both mTORC1-dependent and mTORC1-independent pathways to regulate mitochondrial biogenesis in palmitate-treated C2C12 myotubes. In agreement with increased mitochondrial biogenesis, increased mitochondrial content, circularity, and decreased autophagy are observed in the presence of 1.5 mM leucine. Taken together, the results indicate leucine reduces IMCL potentially through an mTORC1-independent pathway in palmitate-treated C2C12 myotubes.
Collapse
Affiliation(s)
- Hexirui Wu
- Center for Human Nutrition, Department of Food Science, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas
| | - Sami Dridi
- Department of Poultry Science, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas
| | - Yan Huang
- Department of Animal Science, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas
| | - Jamie I Baum
- Center for Human Nutrition, Department of Food Science, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas
| |
Collapse
|
129
|
Ceglarek VM, Coelho ML, Coelho RL, Almeida DL, de Souza Rodrigues WDN, Camargo RL, Barella LF, de Freitas Mathias PC, Grassiolli S. Chronic leucine supplementation does not prevent the obesity and metabolic abnormalities induced by monosodium glutamate. CLINICAL NUTRITION EXPERIMENTAL 2020. [DOI: 10.1016/j.yclnex.2019.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
130
|
Heinonen S, Jokinen R, Rissanen A, Pietiläinen KH. White adipose tissue mitochondrial metabolism in health and in obesity. Obes Rev 2020; 21:e12958. [PMID: 31777187 DOI: 10.1111/obr.12958] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 08/27/2019] [Accepted: 09/03/2019] [Indexed: 12/11/2022]
Abstract
White adipose tissue is one of the largest organs of the body. It plays a key role in whole-body energy status and metabolism; it not only stores excess energy but also secretes various hormones and metabolites to regulate body energy balance. Healthy adipose tissue capable of expanding is needed for metabolic well-being and to prevent accumulation of triglycerides to other organs. Mitochondria govern several important functions in the adipose tissue. We review the derangements of mitochondrial function in white adipose tissue in the obese state. Downregulation of mitochondrial function or biogenesis in the white adipose tissue is a central driver for obesity-associated metabolic diseases. Mitochondrial functions compromised in obesity include oxidative functions and renewal and enlargement of the adipose tissue through recruitment and differentiation of adipocyte progenitor cells. These changes adversely affect whole-body metabolic health. Dysfunction of the white adipose tissue mitochondria in obesity has long-term consequences for the metabolism of adipose tissue and the whole body. Understanding the pathways behind mitochondrial dysfunction may help reveal targets for pharmacological or nutritional interventions that enhance mitochondrial biogenesis or function in adipose tissue.
Collapse
Affiliation(s)
- Sini Heinonen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Riikka Jokinen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Aila Rissanen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Psychiatry, Helsinki University Hospital, Helsinki, Finland
| | - Kirsi H Pietiläinen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Endocrinology, Abdominal Center, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
131
|
Heng J, Wu Z, Tian M, Chen J, Song H, Chen F, Guan W, Zhang S. Excessive BCAA regulates fat metabolism partially through the modification of m 6A RNA methylation in weanling piglets. Nutr Metab (Lond) 2020; 17:10. [PMID: 31998401 PMCID: PMC6979292 DOI: 10.1186/s12986-019-0424-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 12/29/2019] [Indexed: 12/13/2022] Open
Abstract
Background Fat percentage and distribution in pigs are associated with their productive efficiency and meat quality. Dietary branched-chain amino acids (BCAA) regulate fat metabolism in weanling piglets with unknown mechanism. It is reported that N6-methyl-adenosine (m6A) is involved in fat metabolism in mice. The current study was designed to investigate the relationship between dietary branched-chain amino acids and fat metabolism through N6-methyl-adenosine (m6A) in weanling piglets. Methods A total of 18 healthy crossbred weaned piglets (Duroc × Landrace × Large White, 10.45 ± 0.41 kg) were divided into 3 treatments and were fed the low BCAA dose diet (L-BCAA), the normal dose BCAA diet (N-BCAA), or the high dose BCAA (H-BCAA) diet for 3 weeks. Results Our results show that compared with the N-BCAA group, the L-BCAA group had higher concentration of serum leptin (P < 0.05), while the H-BCAA group had lower concentration of serum adiponectin (P < 0.05). Fatty acid synthesis in pigs from the H-BCAA group was lower than those from the N-BCAA group with the down-regulation of lipogenic genes (ACACA, FASN, PPAR-r, SREBP-1c in ventral and dorsal fat, SREBP-1c in liver) and up-regulation of lipolysis genes (HSL, ATGL, CPT-1A, FABP4 in ventral fat, HSL in liver) (P < 0.05). Similarly, fatty acid synthesis in pigs from the L-BCAA group was also lower than those from the N-BCAA group with the decrease of lipogenic genes (ACACA in ventral, ACACA and FASN in dorsal fat, ACACA, FASN, SREBP-1c in liver) and the increase of lipolysis genes (ATGL, CPT-1A CD36, FABP4 in ventral fat and HSL, ATGL, CPT-1A in dorsal fat, CPT-1A) (P < 0.05). Feeding H-BCAA diet significantly reduced total m6A levels in ventral and dorsal fat and liver tissues (P < 0.05). The decrease of total m6A is associated with down-regulation of METTL3, METTL14 and FTO in dorsal fat and METTL3 and FTO in liver (P < 0.05). Decreased m6A modification of ACACA and FASN in ventral and dorsal adipose tissues was observed in pig fed with excessive BCAA. Conclusion These results suggest that insufficient or excessive BCAA decreased the fat deposition by increasing lipolysis and deceasing lipogenesis in adipose and liver tissues. Dietary excessive BCAA might regulate the process of lipid metabolism partly through the m6A RNA methylation.
Collapse
Affiliation(s)
- Jinghui Heng
- 1Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Wushan Avenue, Tianhe District, Guangzhou, 510642 China
| | - Zhihui Wu
- 1Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Wushan Avenue, Tianhe District, Guangzhou, 510642 China
| | - Min Tian
- 1Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Wushan Avenue, Tianhe District, Guangzhou, 510642 China
| | - Jiaming Chen
- 1Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Wushan Avenue, Tianhe District, Guangzhou, 510642 China
| | - Hanqing Song
- 1Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Wushan Avenue, Tianhe District, Guangzhou, 510642 China
| | - Fang Chen
- 1Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Wushan Avenue, Tianhe District, Guangzhou, 510642 China
| | - Wutai Guan
- 1Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Wushan Avenue, Tianhe District, Guangzhou, 510642 China.,2College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Wushan Avenue, Tianhe District, Guangzhou, 510642 China
| | - Shihai Zhang
- 1Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Wushan Avenue, Tianhe District, Guangzhou, 510642 China.,2College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Wushan Avenue, Tianhe District, Guangzhou, 510642 China
| |
Collapse
|
132
|
Althwab SA, Alsudais MA, Mousa HM, Ashoush IS, Hamad EM. Reduction of Lipid Profile and Adipocyte Size in Rats Fed on High-fat Diet Using Camel Milk and Whey Protein Mixture. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2020. [DOI: 10.3136/fstr.26.527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Sami A. Althwab
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University
| | - Monther A. Alsudais
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University
| | - Hassan M. Mousa
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University
| | - Ihab S. Ashoush
- Food Science Department, Faculty of Agriculture, Ain Shams University
| | - Essam M. Hamad
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University
- Dairy Sci. Dept., Faculty of Agriculture, Cairo University
| |
Collapse
|
133
|
Ma Q, Zhou X, Hu L, Chen J, Zhu J, Shan A. Leucine and isoleucine have similar effects on reducing lipid accumulation, improving insulin sensitivity and increasing the browning of WAT in high-fat diet-induced obese mice. Food Funct 2020; 11:2279-2290. [DOI: 10.1039/c9fo03084k] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Leucine (Leu) and isoleucine (Ile) have similar effects in the management of obesity and related disorders.
Collapse
Affiliation(s)
- Qingquan Ma
- Institute of Animal Nutrition
- Northeast Agricultural University
- Harbin
- China
| | - Xinbo Zhou
- Institute of Animal Nutrition
- Northeast Agricultural University
- Harbin
- China
| | - Linlin Hu
- Institute of Animal Nutrition
- Northeast Agricultural University
- Harbin
- China
| | - Jiayi Chen
- Institute of Animal Nutrition
- Northeast Agricultural University
- Harbin
- China
| | - Jialiang Zhu
- Institute of Animal Nutrition
- Northeast Agricultural University
- Harbin
- China
| | - Anshan Shan
- Institute of Animal Nutrition
- Northeast Agricultural University
- Harbin
- China
| |
Collapse
|
134
|
Ye Z, Wang S, Zhang C, Zhao Y. Coordinated Modulation of Energy Metabolism and Inflammation by Branched-Chain Amino Acids and Fatty Acids. Front Endocrinol (Lausanne) 2020; 11:617. [PMID: 33013697 PMCID: PMC7506139 DOI: 10.3389/fendo.2020.00617] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/28/2020] [Indexed: 12/18/2022] Open
Abstract
As important metabolic substrates, branched-chain amino acids (BCAAs) and fatty acids (FAs) participate in many significant physiological processes, such as mitochondrial biogenesis, energy metabolism, and inflammation, along with intermediate metabolites generated in their catabolism. The increased levels of BCAAs and fatty acids can lead to mitochondrial dysfunction by altering mitochondrial biogenesis and adenosine triphosphate (ATP) production and interfering with glycolysis, fatty acid oxidation, the tricarboxylic acid cycle (TCA) cycle, and oxidative phosphorylation. BCAAs can directly activate the mammalian target of rapamycin (mTOR) signaling pathway to induce insulin resistance, or function together with fatty acids. In addition, elevated levels of BCAAs and fatty acids can activate the canonical nuclear factor-κB (NF-κB) signaling pathway and inflammasome and regulate mitochondrial dysfunction and metabolic disorders through upregulated inflammatory signals. This review provides a comprehensive summary of the mechanisms through which BCAAs and fatty acids modulate energy metabolism, insulin sensitivity, and inflammation synergistically.
Collapse
Affiliation(s)
- Zhenhong Ye
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University, Beijing, China
| | - Siyu Wang
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University, Beijing, China
| | - Chunmei Zhang
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University, Beijing, China
| | - Yue Zhao
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University, Beijing, China
- Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Yue Zhao
| |
Collapse
|
135
|
Polis B, Samson AO. Role of the metabolism of branched-chain amino acids in the development of Alzheimer's disease and other metabolic disorders. Neural Regen Res 2020; 15:1460-1470. [PMID: 31997805 PMCID: PMC7059578 DOI: 10.4103/1673-5374.274328] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Alzheimer’s disease is an incurable chronic neurodegenerative disorder and the leading cause of dementia, imposing a growing economic burden upon society. The disease progression is associated with gradual deposition of amyloid plaques and the formation of neurofibrillary tangles within the brain parenchyma, yet severe dementia is the culminating phase of the enduring pathology. Converging evidence suggests that Alzheimer’s disease-related cognitive decline is the outcome of an extremely complex and persistent pathophysiological process. The disease is characterized by distinctive abnormalities apparent at systemic, histological, macromolecular, and biochemical levels. Moreover, besides the well-defined and self-evident characteristic profuse neurofibrillary tangles, dystrophic neurites, and amyloid-beta deposits, the Alzheimer’s disease-associated pathology includes neuroinflammation, substantial neuronal loss, apoptosis, extensive DNA damage, considerable mitochondrial malfunction, compromised energy metabolism, and chronic oxidative stress. Likewise, distinctive metabolic dysfunction has been named a leading cause and a hallmark of Alzheimer’s disease that is apparent decades prior to disease manifestation. State-of-the-art metabolomics studies demonstrate that altered branched-chain amino acids (BCAAs) metabolism accompanies Alzheimer’s disease development. Lower plasma valine levels are correlated with accelerated cognitive decline, and, conversely, an increase in valine concentration is associated with reduced risk of Alzheimer’s disease. Additionally, a clear BCAAs-related metabolic signature has been identified in subjects with obesity, diabetes, and atherosclerosis. Also, arginine metabolism is dramatically altered in Alzheimer’s disease human brains and animal models. Accordingly, a potential role of the urea cycle in the Alzheimer’s disease development has been hypothesized, and preclinical studies utilizing intervention in the urea cycle and/or BCAAs metabolism have demonstrated clinical potential. Continual failures to offer a competent treatment strategy directed against amyloid-beta or Tau proteins-related lesions, which could face all challenges of the multifaceted Alzheimer’s disease pathology, led to the hypothesis that hyperphosphorylated Tau and deposited amyloid-beta proteins are just hallmarks or epiphenomena, but not the ultimate causes of Alzheimer’s disease. Therefore, approaches targeting amyloid-beta or Tau are not adequate to cure the disease. Accordingly, the modern scientific vision of Alzheimer’s disease etiology and pathogenesis must reach beyond the hallmarks, and look for alternative strategies and areas of research.
Collapse
Affiliation(s)
- Baruh Polis
- Drug Discovery Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Abraham O Samson
- Drug Discovery Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| |
Collapse
|
136
|
Donati Zeppa S, Agostini D, Gervasi M, Annibalini G, Amatori S, Ferrini F, Sisti D, Piccoli G, Barbieri E, Sestili P, Stocchi V. Mutual Interactions among Exercise, Sport Supplements and Microbiota. Nutrients 2019; 12:nu12010017. [PMID: 31861755 PMCID: PMC7019274 DOI: 10.3390/nu12010017] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/10/2019] [Accepted: 12/17/2019] [Indexed: 12/18/2022] Open
Abstract
The adult gut microbiota contains trillions of microorganisms of thousands of different species. Only one third of gut microbiota are common to most people; the rest are specific and contribute to enhancing genetic variation. Gut microorganisms significantly affect host nutrition, metabolic function, immune system, and redox levels, and may be modulated by several environmental conditions, including physical activity and exercise. Microbiota also act like an endocrine organ and is sensitive to the homeostatic and physiological changes associated with training; in turn, exercise has been demonstrated to increase microbiota diversity, consequently improving the metabolic profile and immunological responses. On the other side, adaptation to exercise might be influenced by the individual gut microbiota that regulates the energetic balance and participates to the control of inflammatory, redox, and hydration status. Intense endurance exercise causes physiological and biochemical demands, and requires adequate measures to counteract oxidative stress, intestinal permeability, electrolyte imbalance, glycogen depletion, frequent upper respiratory tract infections, systemic inflammation and immune responses. Microbiota could be an important tool to improve overall general health, performance, and energy availability while controlling inflammation and redox levels in endurance athletes. The relationship among gut microbiota, general health, training adaptation and performance, along with a focus on sport supplements which are known to exert some influence on the microbiota, will be discussed.
Collapse
Affiliation(s)
- Sabrina Donati Zeppa
- Correspondence: (D.A.); (S.D.Z.); Tel.: +39-0722-303-423 (D.A.); +39-0722-303-422 (S.D.Z.); Fax: +39-0722-303-401 (D.A. & S.D.Z.)
| | - Deborah Agostini
- Correspondence: (D.A.); (S.D.Z.); Tel.: +39-0722-303-423 (D.A.); +39-0722-303-422 (S.D.Z.); Fax: +39-0722-303-401 (D.A. & S.D.Z.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Zhang J, Xu W, Han H, Zhang L, Wang T. Dietary Leucine Supplementation Restores Serum Glucose Levels, and Modifying Hepatic Gene Expression Related to the Insulin Signal Pathway in IUGR Piglets. Animals (Basel) 2019; 9:ani9121138. [PMID: 31847151 PMCID: PMC6941017 DOI: 10.3390/ani9121138] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/09/2019] [Accepted: 12/11/2019] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Intrauterine malnutrition may compromise the size and structure of fetal organs and tissues, which leads to lower birth weight and a slower rate of growth after weaning. Intrauterine growth restriction/retardation (IUGR) impairs pancreas function, resulting in the decreased glucose levels in serum. Leucine, one of branched chain amino acids, is an essential amino acid and the substrate of protein synthesis. Leucine also acts as a major regulator of hormone signal transduction, like insulin. Dietary branched chain amino acids or leucine have beneficial effects on the glucose metabolism and glycogen synthesis of muscle. Leucine supplementation improves the insulin sensitivity in liver and muscle and then influences the systemic glucose homeostasis. However, it is still unclear whether leucine supplementation would alter insulin sensitivity in IUGR neonatal piglets. Our results showed that dietary leucine supplementation restored serum glucose concentrations, increased insulin and creatinine concentrations, and enhanced protein kinase adenosine monophosphate-activated γ 3-subunit and glucose transporter type 2 expression. These findings suggest that leucine might play a positive role in hepatic lipid metabolism and glucose metabolism in IUGR. Abstract This study aimed to investigate the effects of leucine with different levels on the insulin resistance in intrauterine growth restriction/retardation (IUGR) piglets. Thirty-two weaned piglets were arranged in a 2 × 2 factorial design and four treatments (n = 8) were as follow: (1) normal weaned piglets fed a basal diet (CONT), (2) IUGR weaned piglets fed a basal diet (IUGR), (3) normal weaned piglets fed a basal diet with the addition of 0.35% l-leucine (C-LEU), and (4) IUGR fed a basal diet with the addition of 0.35% l-leucine (I-LEU) for a 21-days trial. The results showed that compared to the IUGR group, the I-LEU group had higher final body weight and body weight gain, higher serum glucose concentrations, and higher serum insulin concentrations (p < 0.05). The gene expression of phosphatidylinositol 3-kinase p110 gamma, protein kinase adenosine monophosphate-activated γ 3-subunit, glycogen synthase kinase-3 alpha, and glucose transporter type 2 were increased in the I-LEU group as compared to the IUGR group (p < 0.05). It was concluded that dietary leucine supplementation restored serum glucose concentrations, increased insulin and creatinine concentrations, and enhanced protein kinase adenosine monophosphate-activated γ 3-subunit and glucose transporter type 2 expression, suggesting that leucine might play a positive role in hepatic lipid metabolism and glucose metabolism in IUGR.
Collapse
Affiliation(s)
| | | | | | | | - Tian Wang
- Correspondence: ; Tel./Fax: +86-25-84395156
| |
Collapse
|
138
|
Tian S, Teng M, Meng Z, Yan S, Jia M, Li R, Liu L, Yan J, Zhou Z, Zhu W. Toxicity effects in zebrafish embryos (Danio rerio) induced by prothioconazole. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113269. [PMID: 31574395 DOI: 10.1016/j.envpol.2019.113269] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 09/10/2019] [Accepted: 09/17/2019] [Indexed: 06/10/2023]
Abstract
Triazole fungicides are widely used in agriculture production and have adverse impacts on aquatic organisms. As one of the triazole fungicides, prothioconazole has been reported to cause many toxicological effects, but its risks to aquatic organisms are unknown. In this study, we systematically explored the toxicity effects of prothioconazole exposure on zebrafish embryos (Danio rerio) involving in developmental toxicity, oxidative damage and metabolism disorders. The results showed that prothioconazole exposure to zebrafish embryos produced a series of toxic symptoms, including hatching inhibition, shortening of body length, pericardial cyst and yolk cyst. In addition, prothioconazole exposure caused significant lipid peroxidation and oxidative damage. Particularly, we also found that metabolites and genes involved in lipid metabolism also showed significant changes. This study may provide theoretical basis for systematically assessing the potential risks of zebrafish embryos with prothioconazole exposure.
Collapse
Affiliation(s)
- Sinuo Tian
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Miaomiao Teng
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Zhiyuan Meng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Sen Yan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Ming Jia
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Ruisheng Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Li Liu
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Jin Yan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Zhiqiang Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Wentao Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
139
|
Endoplasmic reticulum retention signaling and transmembrane channel proteins predicted for oilseed ω3 fatty acid desaturase 3 (FAD3) genes. Funct Integr Genomics 2019; 20:433-458. [PMID: 31781992 DOI: 10.1007/s10142-019-00718-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 09/19/2019] [Accepted: 09/23/2019] [Indexed: 10/25/2022]
Abstract
Oilseed crop oils contain a variety of unsaturated fatty acids that are synthesized and regulated by fatty acid desaturases (FADs). In this study, 14 FAD3 (ω3 desaturase) protein sequences from oilseeds are analyzed and presented through the application of several computational tools. The results indicated a close relationship between Brassica napus and Camelina sativa, as well as between Salvia hispanica and Perilla frutescens FAD3s, due to a high similarity in codon preferences in codon usage clusters and the phylogenetic tree. The cis-acting element results reveal that the seed-specific promoter region of BnFAD3 contains the critical conserved boxes such as HSE and ABRE, which are involved in responsiveness to heat stress and abscisic acid. The presence of the aforementioned conserved boxes may increase cold acclimation as well as tolerance to drought and high salinity. Omega(ω)3 desaturases contain a Skn-1 motif which is a cis-acting regulatory element required involved in endosperm development. In oilseed FAD3s, leucine is the most repeated amino acid in FAD3 proteins. The study conveyed that B. napus, Camelina sativa, Linum usitatissimum, Vernicia fordii, Gossypium hirsutum, S. hispanica, Cannabis sativa, and P. frutescens have retention signal KXKXX/XKXX at their c-terminus sites, which is one of the most important characteristics of FADs. Additionally, it was found that BnFAD3 is a transmembrane protein that can convert ω6 to ω3 fatty acids and may simultaneously act as a potassium ion channel in the ER.
Collapse
|
140
|
D Avila LSP, de Oliveira KA, de Abreu ES, Vasconcelos RP, Nascimento JDF, Bezerra Pontes EO, Rickli S, Coelho de Souza AN, Leal Cardoso JH, Silveira LR, Carneiro EM, de Carvalho DP, Torres Leal FL, de Oliveira AC. Hypoglycaemic effect of resveratrol in streptozotocin-induced diabetic rats is impaired when supplemented in association with leucine. Int J Food Sci Nutr 2019; 71:529-539. [PMID: 31694434 DOI: 10.1080/09637486.2019.1687660] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Studies have shown synergistic and independent effects of leucine and resveratrol (RSV) as possible therapeutic agents to ameliorate metabolic disorders. Thus, the objective of this study was to investigate the effects of supplementation with leucine and RSV, alone and in combination, on metabolic changes in white adipose tissue of neonatally STZ-induced diabetic rats. After weaning, the rats were treated with trans-resveratrol (0.6 mg/kg/dose) and/or leucine (1.35 mg/kg/dose) administered orally. The animals were euthanized at age 16 weeks for blood analyses. Subcutaneous (SC), periepididymal (PE) and retroperitoneal (RP) fat pads were weighed. Adipocytes from PE and RP pads were isolated for morphometric analysis. Long-term supplementation with RSV promoted adiposity recovery, prevented hypoinsulinemia and improved the metabolic profile of the diabetic rats. However, some of these effects were impaired when RSV was associated with leucine. The diabetic rats supplemented with leucine alone showed no significant improvement in metabolic disorders.
Collapse
Affiliation(s)
| | | | - Ewerton Sousa de Abreu
- Superior Institute of Biomedical Sciences, State University of Ceará, Fortaleza, CE, Brazil
| | | | | | | | - Sarah Rickli
- Research Center on Obesity and Comorbidities, Campinas, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
141
|
Mariotti F. Animal and Plant Protein Sources and Cardiometabolic Health. Adv Nutr 2019; 10:S351-S366. [PMID: 31728490 PMCID: PMC6855969 DOI: 10.1093/advances/nmy110] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/24/2018] [Accepted: 11/09/2018] [Indexed: 12/22/2022] Open
Abstract
The sources or types of protein in the diet have long been overlooked regarding their link to cardiometabolic health. The picture is complicated by the fact that animal and plant proteins are consumed along with other nutrients and substances which make up the "protein package" so plant and animal protein come with clear nutrient clusters. This review aimed at deciphering the relation between plant and animal protein and cardiometabolic health by examining different nutritional levels (such as amino acids, protein type, protein foods, protein patterns, and associated overall dietary and nutrient patterns) and varying levels of scientific evidence [basic science, randomized controlled trials (RCTs), observational data]. Plant protein in Western countries is a robust marker of nutrient adequacy of the diet, whereas the contribution of animal protein is highly heterogeneous. Yet recent data from large cohorts have confirmed that total and animal proteins are associated with the risk of cardiovascular disease and diabetes, even when fully adjusting for lifestyle and dietary or nutritional factors. Here again, there is marked variability depending on the type of animal protein. Protein from processed red meat and total red meat on the one hand, and from legumes, nuts, and seeds on the other, are often reported at the extremes of the risk range. RCTs using purified proteins have contributed little to the topic to date, inasmuch as the findings cannot readily be extrapolated to current or near-future diets, but RCTs studying whole protein foods have shown a beneficial effect of pulses. Despite the fact that many of the benefits of plant protein reported in observational or interventional studies may stem from the protein package that they convey and the nutrients that they displace, there are also important indications that protein per se may affect cardiometabolic health via the many amino acids that are present in typically contrasting levels in plant compared with animal proteins.
Collapse
Affiliation(s)
- François Mariotti
- UMR PNCA, AgroParisTech, INRA, Université Paris-Saclay, 75005, Paris, France
| |
Collapse
|
142
|
Leucine increases muscle mitochondrial respiration and attenuates glucose intolerance in diet-induced obesity in Swiss mice. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103544] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
143
|
Elovaris RA, Hutchison AT, Lange K, Horowitz M, Feinle-Bisset C, Luscombe-Marsh ND. Plasma Free Amino Acid Responses to Whey Protein and Their Relationships with Gastric Emptying, Blood Glucose- and Appetite-Regulatory Hormones and Energy Intake in Lean Healthy Men. Nutrients 2019; 11:2465. [PMID: 31618863 PMCID: PMC6835323 DOI: 10.3390/nu11102465] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/01/2019] [Accepted: 10/09/2019] [Indexed: 02/07/2023] Open
Abstract
This study determined the effects of increasing loads of whey protein on plasma amino acid (AA) concentrations, and their relationships with gastric emptying, blood glucose- and appetite-regulatory hormones, blood glucose and energy intake. Eighteen healthy lean men participated in a double-blinded study, in which they consumed, on 3 separate occasions, in randomised order, 450-mL drinks containing either 30 g (L) or 70 g (H) of pure whey protein isolate, or control with 0 g of protein (C). Gastric emptying, serum concentrations of AAs, ghrelin, cholecystokinin (CCK), glucagon-like-peptide 1 (GLP-1), insulin, glucagon and blood glucose were measured before and after the drinks over 180 min. Then energy intake was quantified. All AAs were increased, and 7/20 AAs were increased more by H than L. Incremental areas under the curve (iAUC0-180 min) for CCK, GLP-1, insulin and glucagon were correlated positively with iAUCs of 19/20 AAs (p < 0.05). The strongest correlations were with the branched-chain AAs as well as lysine, tyrosine, methionine, tryptophan, and aspartic acid (all R2 > 0.52, p < 0.05). Blood glucose did not correlate with any AA (all p > 0.05). Ghrelin and energy intake correlated inversely, but only weakly, with 15/20 AAs (all R2 < 0.34, p < 0.05). There is a strong relationship between gluco-regulatory hormones with a number of (predominantly essential) AAs. However, the factors mediating the effects of protein on blood glucose and energy intake are likely to be multifactorial.
Collapse
Affiliation(s)
- Rachel A Elovaris
- Adelaide Medical School and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Health and Medical Sciences Building, Corner North Terrace and George Street, Adelaide 5005, Australia.
| | - Amy T Hutchison
- Adelaide Medical School and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Health and Medical Sciences Building, Corner North Terrace and George Street, Adelaide 5005, Australia.
- Nutrition and Metabolism Theme, South Australian Health and Medical Research Institute, Adelaide 5000, Australia.
| | - Kylie Lange
- Adelaide Medical School and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Health and Medical Sciences Building, Corner North Terrace and George Street, Adelaide 5005, Australia.
| | - Michael Horowitz
- Adelaide Medical School and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Health and Medical Sciences Building, Corner North Terrace and George Street, Adelaide 5005, Australia.
| | - Christine Feinle-Bisset
- Adelaide Medical School and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Health and Medical Sciences Building, Corner North Terrace and George Street, Adelaide 5005, Australia.
| | - Natalie D Luscombe-Marsh
- Adelaide Medical School and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Health and Medical Sciences Building, Corner North Terrace and George Street, Adelaide 5005, Australia.
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Nutrition and Health Program, P.O. Box 10097, Adelaide 5000, Australia.
| |
Collapse
|
144
|
Vahdatpour T, Nokhodchi A, Zakeri‐Milani P, Mesgari‐Abbasi M, Ahmadi‐Asl N, Valizadeh H. Leucine-glycine and carnosine dipeptides prevent diabetes induced by multiple low-doses of streptozotocin in an experimental model of adult mice. J Diabetes Investig 2019; 10:1177-1188. [PMID: 30710452 PMCID: PMC6717823 DOI: 10.1111/jdi.13018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 01/29/2019] [Accepted: 01/29/2019] [Indexed: 01/01/2023] Open
Abstract
AIMS/INTRODUCTION Peptides are considered to be quasi-hormones and effective molecules for regulation of the cells function and prevention of metabolic disorders. Di- and tripeptides gastrointestinal absorption ability have been proposed to prevent diabetes progression. MATERIALS AND METHODS Small peptides with different sequences of specific amino acids were synthesized based on a solid phase peptide synthesis protocol, and carnosine (A) and glutathione were examined for the prevention of diabetes induced by multiple low-doses of streptozotocin in mice. RESULTS The peptides A, Leu-Gly (D) and Pro-Pro showed preventive effects on blood glucose elevation and impairment of the signaling and performance of β-cells. The β-cell function assessed by immunofluorescence and blood glucose level in mice exposed to diabetes treated by the peptides A and D was similar to the normal mice. The peptide D prevented bodyweight loss caused by diabetes induction. The use of D and A peptides dramatically prevented the incidence of disruption in β-cells signaling by maintaining the natural balance of intracellular Akt-2 and cyclic adenosine monophosphate. CONCLUSIONS The results proved that peptide D (Leu-Gly), named Hannaneh, inhibits the bodyweight loss caused by diabetes induction. The Hannaneh and carnosine dipeptides, with preservation of normal β-cell signaling and anti dipeptidyl peptidase-4 activity, prevented blood glucose increases in mice at risk of diabetes. These dipeptides might be regarded as the pharmaceutical agents for the prevention of diabetes.
Collapse
Affiliation(s)
- Tohid Vahdatpour
- Drug Applied Research CenterTabriz University of Medical SciencesTabrizIran
- Department of PhysiologyFaculty of Animal and Veterinary SciencesShabestar Branch, Islamic Azad UniversityShabestarIran
| | - Ali Nokhodchi
- Pharmaceutics Research LaboratorySchool of Life SciencesUniversity of SussexBrightonUK
| | - Parvin Zakeri‐Milani
- Liver and Gastrointestinal Diseases Research CenterTabriz University of Medical SciencesTabrizIran
- Department of PharmaceuticsFaculty of PharmacyTabriz University of Medical SciencesTabrizIran
| | | | - Naser Ahmadi‐Asl
- Drug Applied Research CenterTabriz University of Medical SciencesTabrizIran
- Department of PhysiologyFaculty of MedicineTabriz University of Medical SciencesTabrizIran
| | - Hadi Valizadeh
- Drug Applied Research CenterTabriz University of Medical SciencesTabrizIran
- Department of PharmaceuticsFaculty of PharmacyTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
145
|
Almeida JA, Santana HAP, Motta-Santos D, Nogueira ME, Silva KKS, Miotto H, Medeiros CS, Faria-Ravagnani CC, Voltarelli FA, Guimarães RDCA. High-Protein Diet Associated with Bocaiuva Supplementation Decreases Body Fat and Improves Glucose Tolerance in Resistance-Trained Rats. J Med Food 2019; 23:258-265. [PMID: 31464557 DOI: 10.1089/jmf.2019.0072] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
High-protein diets (HPDs) are widely used for health and performance. However, the combination of whey protein and natural foods (i.e., fruits) is still unclear. Thus, we evaluated the role of supplemental HPD with Bocaiuva (Acrocomia sp.) in metabolic and body composition parameters of rats submitted to resistance training (RT). Wistar rats (203.3 ± 30 g) were randomly allocated to five groups: normoproteic control (CON, n = 5), sedentary high-protein (SH, n = 5), RT + H (trained high-protein [TH], n = 5), sedentary+Bocaiuva (SH+B, n = 4), and RT+Bocaiuva (TH+B, n = 4) diet groups. After 12 weeks of RT, the maximal strength increased in both trained groups (P < .05). The TH + B group had lower values of adiposity index (AI) (3.8 ± 0.7% vs. 6.8 ± 1.3%) and visceral fat (0.038 ± 0.004 g/g vs. 0.067 ± 0.012 g/g) compared with the SH group, respectively (P < .05). The other groups did not show differences in values of AI (CON, 5.4 ± 1.6%, TH, 5.4 ± 1.3%, and SH+B, 5.5 ± 1.2%). In addition, the fasting glucose of trained groups (TH, 106.0 ± 4.5, and TH+B, 100.4 ± 13.5 dL/mg) was significantly lower when compared with controls (SH, 120.0 ± 14.4, and SH+B, 119 ± 6.4 dL/mg) (P < .05). Bocaiuva combined with an HPD reduced visceral fat and AI in addition to improving glucose tolerance of rats submitted to RT.
Collapse
Affiliation(s)
- Jeeser A Almeida
- Graduate Program in Health and Development in the Midwest Region, Faculty of Medicine, Federal University of Mato Grosso do Sul, Campo Grande, Brazil.,Research in Exercise and Nutrition in Health and Sports Performance-PENSARE, Graduate Program in Movement Sciences, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | - Hugo Alexandre P Santana
- Research in Exercise and Nutrition in Health and Sports Performance-PENSARE, Graduate Program in Movement Sciences, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | - Daisy Motta-Santos
- Graduate Program in Sports Science, Department of Sports, School of Physical Education, Physiotherapy, and Occupational Therapy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Murilo E Nogueira
- Graduate Program in Health and Development in the Midwest Region, Faculty of Medicine, Federal University of Mato Grosso do Sul, Campo Grande, Brazil.,Research in Exercise and Nutrition in Health and Sports Performance-PENSARE, Graduate Program in Movement Sciences, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | - Keemilyn Karla S Silva
- Research in Exercise and Nutrition in Health and Sports Performance-PENSARE, Graduate Program in Movement Sciences, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | - Hamilton Miotto
- Graduate Program in Health and Development in the Midwest Region, Faculty of Medicine, Federal University of Mato Grosso do Sul, Campo Grande, Brazil.,Research in Exercise and Nutrition in Health and Sports Performance-PENSARE, Graduate Program in Movement Sciences, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | - Claudia S Medeiros
- Graduate Program in Health and Development in the Midwest Region, Faculty of Medicine, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | - Christianne C Faria-Ravagnani
- Research in Exercise and Nutrition in Health and Sports Performance-PENSARE, Graduate Program in Movement Sciences, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | - Fabrício A Voltarelli
- Graduation Program in Health Sciences, Faculty of Medicine, Federal University of Mato Grosso, Cuiabá, Brazil
| | - Rita de Cássia A Guimarães
- Graduate Program in Health and Development in the Midwest Region, Faculty of Medicine, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| |
Collapse
|
146
|
Hu C, Li F, Duan Y, Yin Y, Kong X. Dietary Supplementation With Leucine or in Combination With Arginine Decreases Body Fat Weight and Alters Gut Microbiota Composition in Finishing Pigs. Front Microbiol 2019; 10:1767. [PMID: 31456756 PMCID: PMC6700229 DOI: 10.3389/fmicb.2019.01767] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 07/17/2019] [Indexed: 12/14/2022] Open
Abstract
Obesity was associated with change in gut microbiota composition and their metabolites. We investigated the effects of dietary supplementation with leucine (Leu) in combination with arginine (Arg) or glutamic acid (Glu) on body fat weight, composition of gut microbiota, and short-chain fatty acids (SCFAs) concentration in the colon. Forty-eight Duroc × Large White × Landrace pigs with an initial body weight of 77.08 ± 1.29 kg were randomly assigned to one of the four groups (12 pigs per group). The pigs in the control group were fed a basal diet supplemented with 2.05% alanine (isonitrogenous control, BD group), and those in the three experimental groups were fed a basal diet supplemented with 1.00% Leu + 1.37% alanine (Leu group), 1.00% Leu + 1.00% Arg (Leu_Arg group), or 1.00% Leu + 1.00% Glu (Leu_Glu group). We found that dietary supplementation with Leu alone or in combination with Arg decreased (p < 0.05) body fat weight, and increased (p < 0.05) colonic propionate and butyrate concentrations compared to the BD group. The mRNA expression levels of genes related to lipolysis increased (p < 0.05) in the Leu or Leu_Arg group compared to the BD group. Negative relationships (p < 0.05) were observed between body fat weight, colonic propionate, and butyrate concentrations. Compared to the BD group, the abundance of Actinobacteria was higher (p < 0.05) in the Leu group, and that of Clostridium_sensu_stricto_1, Terrisporobacter, and Escherichia-Shigella were higher in the Leu_Arg group. The abundance of Deinococcus-Thermus was negatively correlated (p < 0.05) with body fat weight, and was positively correlated (p < 0.05) with butyrate, isovalerate, propionate, and isobutyrate concentrations, and that of Cyanobacteria was positively correlated (p < 0.05) with butyrate, propionate, and isobutyrate concentrations. In conclusion, these findings suggest that decreased body fat weight in pigs can be induced by Leu supplementation alone or in combination with Arg and is associated with increased colonic butyrate and propionate concentrations. This provides new insights for potential therapy for obesity.
Collapse
Affiliation(s)
- Chengjun Hu
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Fengna Li
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Yehui Duan
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Yulong Yin
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xiangfeng Kong
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| |
Collapse
|
147
|
Singh H, Pragasam SJ, Venkatesan V. Emerging Therapeutic Targets for Metabolic Syndrome: Lessons from Animal Models. Endocr Metab Immune Disord Drug Targets 2019; 19:481-489. [DOI: 10.2174/1871530319666181130142642] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 08/26/2018] [Accepted: 10/30/2018] [Indexed: 01/01/2023]
Abstract
Background:
Metabolic syndrome is a cluster of medical conditions that synergistically
increase the risk of heart diseases and diabetes. The current treatment strategy for metabolic syndrome
focuses on treating its individual components. A highly effective agent for metabolic syndrome has yet
to be developed. To develop a target for metabolic syndrome, the mechanism encompassing different
organs - nervous system, pancreas, skeletal muscle, liver and adipose tissue - needs to be understood.
Many animal models have been developed to understand the pathophysiology of metabolic syndrome.
Promising molecular targets have emerged while characterizing these animals. Modulating these targets
is expected to treat some components of metabolic syndrome.
Objective:
o discuss the emerging molecular targets in an animal model of metabolic syndrome.
Methods:
A literature search was performed for the retrieval of relevant articles.
Conclusion:
Multiple genes/pathways that play important role in the development of Metabolic Syndrome
are discussed.
Collapse
Affiliation(s)
- Himadri Singh
- Stem Cell Research/Biochemistry, National Institute of Nutrition, Hyderabad-500007, India
| | - Samuel Joshua Pragasam
- Stem Cell Research/Biochemistry, National Institute of Nutrition, Hyderabad-500007, India
| | | |
Collapse
|
148
|
Duan Y, Zhong Y, Xiao H, Zheng C, Song B, Wang W, Guo Q, Li Y, Han H, Gao J, Xu K, Li T, Yin Y, Li F, Yin J, Kong X. Gut microbiota mediates the protective effects of dietary β‐hydroxy‐β‐methylbutyrate (HMB) against obesity induced by high‐fat diets. FASEB J 2019; 33:10019-10033. [DOI: 10.1096/fj.201900665rr] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Yehui Duan
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic ProcessKey Laboratory of Agro‐ecological Processes in Subtropical RegionInstitute of Subtropical AgricultureChinese Academy of SciencesHunan Provincial Engineering Research Center for Healthy Livestock and Poultry ProductionScientific Observing and Experimental Station of Animal Nutrition and Feed Science in South‐CentralMinistry of Agriculture Changsha China
| | - Yinzhao Zhong
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic ProcessKey Laboratory of Agro‐ecological Processes in Subtropical RegionInstitute of Subtropical AgricultureChinese Academy of SciencesHunan Provincial Engineering Research Center for Healthy Livestock and Poultry ProductionScientific Observing and Experimental Station of Animal Nutrition and Feed Science in South‐CentralMinistry of Agriculture Changsha China
- Guangdong Provincial Key Laboratory of Animal Nutrition RegulationSouth China Agricultural University Guangzhou China
| | - Hao Xiao
- Guangdong Academy of Agricultural SciencesKey Laboratory of Animal Nutrition and Feed Science in South ChinaInstitute of Animal ScienceMinistry of Agriculture Guangzhou China
| | - Changbing Zheng
- Guangdong Provincial Key Laboratory of Animal Nutrition RegulationSouth China Agricultural University Guangzhou China
| | - Bo Song
- Guangdong Provincial Key Laboratory of Animal Nutrition RegulationSouth China Agricultural University Guangzhou China
| | - Wenlong Wang
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic ProcessKey Laboratory of Agro‐ecological Processes in Subtropical RegionInstitute of Subtropical AgricultureChinese Academy of SciencesHunan Provincial Engineering Research Center for Healthy Livestock and Poultry ProductionScientific Observing and Experimental Station of Animal Nutrition and Feed Science in South‐CentralMinistry of Agriculture Changsha China
| | - Qiuping Guo
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic ProcessKey Laboratory of Agro‐ecological Processes in Subtropical RegionInstitute of Subtropical AgricultureChinese Academy of SciencesHunan Provincial Engineering Research Center for Healthy Livestock and Poultry ProductionScientific Observing and Experimental Station of Animal Nutrition and Feed Science in South‐CentralMinistry of Agriculture Changsha China
| | - Yuying Li
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic ProcessKey Laboratory of Agro‐ecological Processes in Subtropical RegionInstitute of Subtropical AgricultureChinese Academy of SciencesHunan Provincial Engineering Research Center for Healthy Livestock and Poultry ProductionScientific Observing and Experimental Station of Animal Nutrition and Feed Science in South‐CentralMinistry of Agriculture Changsha China
| | - Hui Han
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic ProcessKey Laboratory of Agro‐ecological Processes in Subtropical RegionInstitute of Subtropical AgricultureChinese Academy of SciencesHunan Provincial Engineering Research Center for Healthy Livestock and Poultry ProductionScientific Observing and Experimental Station of Animal Nutrition and Feed Science in South‐CentralMinistry of Agriculture Changsha China
| | - Jing Gao
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic ProcessKey Laboratory of Agro‐ecological Processes in Subtropical RegionInstitute of Subtropical AgricultureChinese Academy of SciencesHunan Provincial Engineering Research Center for Healthy Livestock and Poultry ProductionScientific Observing and Experimental Station of Animal Nutrition and Feed Science in South‐CentralMinistry of Agriculture Changsha China
| | - Kang Xu
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic ProcessKey Laboratory of Agro‐ecological Processes in Subtropical RegionInstitute of Subtropical AgricultureChinese Academy of SciencesHunan Provincial Engineering Research Center for Healthy Livestock and Poultry ProductionScientific Observing and Experimental Station of Animal Nutrition and Feed Science in South‐CentralMinistry of Agriculture Changsha China
| | - Tiejun Li
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic ProcessKey Laboratory of Agro‐ecological Processes in Subtropical RegionInstitute of Subtropical AgricultureChinese Academy of SciencesHunan Provincial Engineering Research Center for Healthy Livestock and Poultry ProductionScientific Observing and Experimental Station of Animal Nutrition and Feed Science in South‐CentralMinistry of Agriculture Changsha China
| | - Yulong Yin
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic ProcessKey Laboratory of Agro‐ecological Processes in Subtropical RegionInstitute of Subtropical AgricultureChinese Academy of SciencesHunan Provincial Engineering Research Center for Healthy Livestock and Poultry ProductionScientific Observing and Experimental Station of Animal Nutrition and Feed Science in South‐CentralMinistry of Agriculture Changsha China
- Guangdong Provincial Key Laboratory of Animal Nutrition RegulationSouth China Agricultural University Guangzhou China
| | - Fengna Li
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic ProcessKey Laboratory of Agro‐ecological Processes in Subtropical RegionInstitute of Subtropical AgricultureChinese Academy of SciencesHunan Provincial Engineering Research Center for Healthy Livestock and Poultry ProductionScientific Observing and Experimental Station of Animal Nutrition and Feed Science in South‐CentralMinistry of Agriculture Changsha China
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional IngredientsHunan Co‐Innovation Center of Animal Production Safety (CICAPS) Changsha China
| | - Jie Yin
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic ProcessKey Laboratory of Agro‐ecological Processes in Subtropical RegionInstitute of Subtropical AgricultureChinese Academy of SciencesHunan Provincial Engineering Research Center for Healthy Livestock and Poultry ProductionScientific Observing and Experimental Station of Animal Nutrition and Feed Science in South‐CentralMinistry of Agriculture Changsha China
| | - Xiangfeng Kong
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic ProcessKey Laboratory of Agro‐ecological Processes in Subtropical RegionInstitute of Subtropical AgricultureChinese Academy of SciencesHunan Provincial Engineering Research Center for Healthy Livestock and Poultry ProductionScientific Observing and Experimental Station of Animal Nutrition and Feed Science in South‐CentralMinistry of Agriculture Changsha China
| |
Collapse
|
149
|
Iida A, Kuranuki S, Yamamoto R, Uchida M, Ohta M, Ichimura M, Tsuneyama K, Masaki T, Seike M, Nakamura T. Analysis of amino acid profiles of blood over time and biomarkers associated with non-alcoholic steatohepatitis in STAM mice. Exp Anim 2019; 68:417-428. [PMID: 31155606 PMCID: PMC6842803 DOI: 10.1538/expanim.18-0152] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The changes in free amino acid (AA) levels in blood during the progression from
non-alcoholic steatohepatitis (NASH) to hepatocellular carcinoma (HCC) are unclear. We
investigated serum AA levels, along with biochemical and histological events, in a mouse
model of NASH. We induced NASH in male C57BL/6J mice with a streptozotocin injection and
high-fat diet after 4 weeks of age (STAM group). We chronologically (6, 8, 10, 12, and 16
weeks, n=4–12 mice/group) evaluated the progression from steatohepatitis to HCC by
biochemical and histological analyses. The serum AA levels were determined using an AA
analyzer. Serum aspartate aminotransferase and alanine aminotransferase levels were higher
in the STAM group than in the normal group (non-NASH-induced mice). Histological analysis
revealed that STAM mice had fatty liver, NASH, and fibrosis at 6, 8, and 10 weeks,
respectively. Moreover, the mice exhibited fibrosis and HCC at 16 weeks. The serum
branched-chain AA levels were higher in the STAM group than in the normal group,
especially at 8 and 10 weeks. The Fischer ratio decreased at 16 weeks in the STAM group,
with increasing aromatic AA levels. These results suggested that this model sequentially
depicts the development of fatty liver, NASH, cirrhosis, HCC, and AA metabolism disorders
within a short experimental period. Additionally, serum amyloid A was suggested to be a
useful inflammation biomarker associated with NASH. We believe that the STAM model will be
useful for studying AA metabolism and/or pharmacological effects in NASH.
Collapse
Affiliation(s)
- Ayaka Iida
- School of Nutrition and Dietetics, Faculty of Health and Social Services, Kanagawa University of Human Services, 1-10-1 Heisei-cho, Yokosuka, Kanagawa 238-8522, Japan.,Graduate School of Health and Environmental Sciences, Fukuoka Women's University, 1-1-1 Kasumigaoka, Higashi-ku, Fukuoka 813-8529, Japan
| | - Sachi Kuranuki
- School of Nutrition and Dietetics, Faculty of Health and Social Services, Kanagawa University of Human Services, 1-10-1 Heisei-cho, Yokosuka, Kanagawa 238-8522, Japan
| | - Ryoko Yamamoto
- Department of Applied Biology and Food Sciences, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori 036-8560, Japan
| | - Masaya Uchida
- Department of Creative Engineering, National Institute of Technology, Ariake College, 150 Higashi hagio-machi, Omuta, Fukuoka 836-8585, Japan
| | - Masanori Ohta
- Graduate School of Health and Environmental Sciences, Fukuoka Women's University, 1-1-1 Kasumigaoka, Higashi-ku, Fukuoka 813-8529, Japan
| | - Mayuko Ichimura
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Takayuki Masaki
- Department of Endocrinology, Metabolism, Rheumatology and Nephrology, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita 879-5593, Japan
| | - Masataka Seike
- Department of Gastroenterology, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita 879-5593, Japan
| | - Tsuyoshi Nakamura
- Graduate School of Health and Environmental Sciences, Fukuoka Women's University, 1-1-1 Kasumigaoka, Higashi-ku, Fukuoka 813-8529, Japan
| |
Collapse
|
150
|
Biswas D, Duffley L, Pulinilkunnil T. Role of branched‐chain amino acid–catabolizing enzymes in intertissue signaling, metabolic remodeling, and energy homeostasis. FASEB J 2019; 33:8711-8731. [DOI: 10.1096/fj.201802842rr] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Dipsikha Biswas
- Department of Biochemistry and Molecular Biology Faculty of Medicine Dalhousie Medicine New Brunswick Dalhousie University Saint John New Brunswick Canada
| | - Luke Duffley
- Department of Biochemistry and Molecular Biology Faculty of Medicine Dalhousie Medicine New Brunswick Dalhousie University Saint John New Brunswick Canada
| | - Thomas Pulinilkunnil
- Department of Biochemistry and Molecular Biology Faculty of Medicine Dalhousie Medicine New Brunswick Dalhousie University Saint John New Brunswick Canada
| |
Collapse
|