101
|
Cane MC, Parrington J, Rorsman P, Galione A, Rutter GA. The two pore channel TPC2 is dispensable in pancreatic β-cells for normal Ca²⁺ dynamics and insulin secretion. Cell Calcium 2015; 59:32-40. [PMID: 26769314 PMCID: PMC4751975 DOI: 10.1016/j.ceca.2015.12.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 12/08/2015] [Accepted: 12/21/2015] [Indexed: 12/21/2022]
Abstract
Ca(2+) signals are central to the stimulation of insulin secretion from pancreatic β-cells by glucose and other agents, including glucagon-like peptide-1 (GLP-1). Whilst Ca(2+) influx through voltage-gated Ca(2+) channels on the plasma membrane is a key trigger for glucose-stimulated secretion, mobilisation of Ca(2+) from acidic stores has been implicated in the control of more localised Ca(2+) changes and membrane potential. Nicotinic acid adenine dinucleotide phosphate (NAADP), generated in β-cells in response to high glucose, is a potent mobiliser of these stores, and has been proposed to act through two pore channels (TPC1 and TPC2, murine gene names Tpcn1 and Tpcn2). Whilst the role of TPC1 in the control of Ca(2+) mobilisation and insulin secretion was recently confirmed, conflicting data exist for TPC2. Here, we used the selective and efficient deleter strain, Ins1Cre to achieve β-cell selective deletion of the Tpcn2 gene in mice. βTpcn2 KO mice displayed normal intraperitoneal and oral glucose tolerance, and glucose-stimulated Ca(2+) dynamics and insulin secretion from islets were similarly normal. GLP-1-induced Ca(2+) increases involved an increase in oscillation frequency from 4.35 to 4.84 per minute (p=0.04) at 8mM glucose, and this increase was unaffected by the absence of Tpcn2. The current data thus indicate that TPC2 is not absolutely required for normal glucose- or incretin-stimulated insulin secretion from the β-cell. Our findings suggest that TPC1, whose expression tended to increase in Tpcn2 null islets, might be sufficient to support normal Ca(2+) dynamics in response to stimulation by nutrients or incretins.
Collapse
Affiliation(s)
- Matthew C Cane
- Section of Cell Biology and Functional Genomics, Imperial College London, Du Cane Road, W12 0NN London, UK
| | - John Parrington
- Department of Pharmacology, University of Oxford, Mansfield Road, OX1 3QT, UK
| | - Patrik Rorsman
- The Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford OX3 7LJ, UK
| | - Antony Galione
- Department of Pharmacology, University of Oxford, Mansfield Road, OX1 3QT, UK
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Imperial College London, Du Cane Road, W12 0NN London, UK.
| |
Collapse
|
102
|
Renner S, Blutke A, Streckel E, Wanke R, Wolf E. Incretin actions and consequences of incretin-based therapies: lessons from complementary animal models. J Pathol 2015; 238:345-58. [DOI: 10.1002/path.4655] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 10/02/2015] [Accepted: 10/05/2015] [Indexed: 12/30/2022]
Affiliation(s)
- Simone Renner
- Gene Centre, Centre for Innovative Medical Models (CiMM) and German Centre for Diabetes Research (DZD); Ludwig-Maximilians-Universität München; Germany
| | - Andreas Blutke
- Institute of Veterinary Pathology, Centre for Clinical Veterinary Medicine; Ludwig-Maximilians-Universität München; Germany
| | - Elisabeth Streckel
- Gene Centre, Centre for Innovative Medical Models (CiMM) and German Centre for Diabetes Research (DZD); Ludwig-Maximilians-Universität München; Germany
| | - Rüdiger Wanke
- Institute of Veterinary Pathology, Centre for Clinical Veterinary Medicine; Ludwig-Maximilians-Universität München; Germany
| | - Eckhard Wolf
- Gene Centre, Centre for Innovative Medical Models (CiMM) and German Centre for Diabetes Research (DZD); Ludwig-Maximilians-Universität München; Germany
| |
Collapse
|
103
|
Akter R, Cao P, Noor H, Ridgway Z, Tu LH, Wang H, Wong AG, Zhang X, Abedini A, Schmidt AM, Raleigh DP. Islet Amyloid Polypeptide: Structure, Function, and Pathophysiology. J Diabetes Res 2015; 2016:2798269. [PMID: 26649319 PMCID: PMC4662979 DOI: 10.1155/2016/2798269] [Citation(s) in RCA: 172] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 04/24/2015] [Indexed: 01/29/2023] Open
Abstract
The hormone islet amyloid polypeptide (IAPP, or amylin) plays a role in glucose homeostasis but aggregates to form islet amyloid in type-2 diabetes. Islet amyloid formation contributes to β-cell dysfunction and death in the disease and to the failure of islet transplants. Recent work suggests a role for IAPP aggregation in cardiovascular complications of type-2 diabetes and hints at a possible role in type-1 diabetes. The mechanisms of IAPP amyloid formation in vivo or in vitro are not understood and the mechanisms of IAPP induced β-cell death are not fully defined. Activation of the inflammasome, defects in autophagy, ER stress, generation of reactive oxygen species, membrane disruption, and receptor mediated mechanisms have all been proposed to play a role. Open questions in the field include the relative importance of the various mechanisms of β-cell death, the relevance of reductionist biophysical studies to the situation in vivo, the molecular mechanism of amyloid formation in vitro and in vivo, the factors which trigger amyloid formation in type-2 diabetes, the potential role of IAPP in type-1 diabetes, the development of clinically relevant inhibitors of islet amyloidosis toxicity, and the design of soluble, bioactive variants of IAPP for use as adjuncts to insulin therapy.
Collapse
Affiliation(s)
- Rehana Akter
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Ping Cao
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Harris Noor
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Zachary Ridgway
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Ling-Hsien Tu
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Hui Wang
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Amy G. Wong
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Xiaoxue Zhang
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Andisheh Abedini
- Diabetes Research Program, NYU School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Ann Marie Schmidt
- Diabetes Research Program, NYU School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Daniel P. Raleigh
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
- Research Department of Structural and Molecule Biology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
104
|
A 3D map of the islet routes throughout the healthy human pancreas. Sci Rep 2015; 5:14634. [PMID: 26417671 PMCID: PMC4586491 DOI: 10.1038/srep14634] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/02/2015] [Indexed: 12/27/2022] Open
Abstract
Islets of Langerhans are fundamental in understanding diabetes. A healthy human pancreas from a donor has been used to asses various islet parameters and their three-dimensional distribution. Here we show that islets are spread gradually from the head up to the tail section of the pancreas in the form of contracted or dilated islet routes. We also report a particular anatomical structure, namely the cluster of islets. Our observations revealed a total of 11 islet clusters which comprise of small islets that surround large blood vessels. Additional observations in the peripancreatic adipose tissue have shown lymphoid-like nodes and blood vessels captured in a local inflammatory process. Our observations are based on regional slice maps of the pancreas, comprising of 5,423 islets. We also devised an index of sphericity which briefly indicates various islet shapes that are dominant throughout the pancreas.
Collapse
|
105
|
Freeby MJ, Kringas P, Goland RS, Leibel RL, Maffei A, Divgi C, Ichise M, Harris PE. Cross-sectional and Test-Retest Characterization of PET with [(18)F]FP-(+)-DTBZ for β Cell Mass Estimates in Diabetes. Mol Imaging Biol 2015; 18:292-301. [PMID: 26370678 PMCID: PMC4783444 DOI: 10.1007/s11307-015-0888-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 07/07/2015] [Accepted: 08/06/2015] [Indexed: 12/15/2022]
Abstract
Purpose The vesicular monoamine transporter, type 2 (VMAT2) is expressed by insulin producing β cells and was evaluated as a biomarker of β cell mass (BCM) by positron emission tomography (PET) with [18F]fluoropropyl-dihydrotetrabenazine ([18F]FP-(+)-DTBZ). Procedures We evaluated the feasibility of longitudinal pancreatic PET VMAT2 quantification in the pancreas in two studies of healthy controls and patients with type 1 or 2 diabetes. VMAT2 binding potential (BPND) was estimated voxelwise using a reference tissue method in a cross-sectional study, followed by assessment of reproducibility using a test-retest paradigm. Metabolic function was evaluated by stimulated c-peptide measurements. Results Pancreatic BPND was significantly decreased in patients with type 1 diabetes relative to controls and the test-retest variability was 9.4 %. Conclusions Pancreatic VMAT2 content is significantly reduced in long-term diabetes patients relative to controls and repeat scans are sufficiently reproducible to suggest the feasibility clinically VMAT2 measurements in longitudinal studies of new onset diabetes. Electronic supplementary material The online version of this article (doi:10.1007/s11307-015-0888-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Matthew J Freeby
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90404, USA.,Naomi Berrie Diabetes Center, Columbia University Medical Center, New York, NY, 10032, USA
| | - Patricia Kringas
- Naomi Berrie Diabetes Center, Columbia University Medical Center, New York, NY, 10032, USA
| | - Robin S Goland
- Naomi Berrie Diabetes Center, Columbia University Medical Center, New York, NY, 10032, USA
| | - Rudolph L Leibel
- Naomi Berrie Diabetes Center, Columbia University Medical Center, New York, NY, 10032, USA
| | - Antonella Maffei
- Institute of Genetics and Biophysics Adriano Buzzati-Traverso, Consiglio Nazionale delle Ricerche, 80131, Naples, Italy.,Division of Endocrinology, Department of Medicine, Columbia University Medical Center, New York, NY, 10032, USA
| | - Chaitan Divgi
- Division of Nuclear Medicine and Kreitchman PET Center, Department of Radiology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Masanori Ichise
- Division of Nuclear Medicine and Kreitchman PET Center, Department of Radiology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Paul E Harris
- Naomi Berrie Diabetes Center, Columbia University Medical Center, New York, NY, 10032, USA. .,Division of Endocrinology, Department of Medicine, Columbia University Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
106
|
Ashraf GM, Greig NH, Khan TA, Hassan I, Tabrez S, Shakil S, Sheikh IA, Zaidi SK, Akram M, Jabir NR, Firoz CK, Naeem A, Alhazza IM, Damanhouri GA, Kamal MA. Protein misfolding and aggregation in Alzheimer's disease and type 2 diabetes mellitus. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2015; 13:1280-93. [PMID: 25230234 DOI: 10.2174/1871527313666140917095514] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Revised: 05/11/2014] [Accepted: 05/12/2014] [Indexed: 12/27/2022]
Abstract
In general, proteins can only execute their various biological functions when they are appropriately folded. Their amino acid sequence encodes the relevant information required for correct three-dimensional folding, with or without the assistance of chaperones. The challenge associated with understanding protein folding is currently one of the most important aspects of the biological sciences. Misfolded protein intermediates form large polymers of unwanted aggregates and are involved in the pathogenesis of many human diseases, including Alzheimer's disease (AD) and Type 2 diabetes mellitus (T2DM). AD is one of the most prevalent neurological disorders and has worldwide impact; whereas T2DM is considered a metabolic disease that detrementally influences numerous organs, afflicts some 8% of the adult population, and shares many risk factors with AD. Research data indicates that there is a widespread conformational change in the proteins involved in AD and T2DM that form β-sheet like motifs. Although conformation of these β-sheets is common to many functional proteins, the transition from α-helix to β-sheet is a typical characteristic of amyloid deposits. Any abnormality in this transition results in protein aggregation and generation of insoluble fibrils. The abnormal and toxic proteins can interact with other native proteins and consequently catalyze their transition into the toxic state. Both AD and T2DM are prevalent in the aged population. AD is characterized by the accumulation of amyloid-β (Aβ) in brain, while T2DM is characterized by the deposition of islet amyloid polypeptide (IAPP, also known as amylin) within beta-cells of the pancreas. T2DM increases pathological angiogenesis and immature vascularisation. This also leads to chronic cerebral hypoperfusion, which results in dysfunction and degeneration of neuroglial cells. With an abundance of common mechanisms underpinning both disorders, a significant question that can be posed is whether T2DM leads to AD in aged individuals and the associations between other protein misfolding diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Mohammad A Kamal
- King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Kingdom of Saudi Arabia.
| |
Collapse
|
107
|
Iyer A, Brown L, Whitehead JP, Prins JB, Fairlie DP. Nutrient and immune sensing are obligate pathways in metabolism, immunity, and disease. FASEB J 2015; 29:3612-25. [PMID: 26065858 DOI: 10.1096/fj.15-271155] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 06/02/2015] [Indexed: 12/13/2022]
Abstract
The growth and survival of multicellular organisms depend upon their abilities to acquire and metabolize nutrients, efficiently store and harness energy, and sense and fight infection. Systems for sensing and using nutrients have consequently coevolved alongside systems for sensing and responding to danger signals, including pathogens, and share many of the same cell signaling proteins and networks. Diets rich in carbohydrates and fats can overload these systems, leading to obesity, metabolic dysfunction, impaired immunity, and cardiovascular disease. Excessive nutrient intake promotes adiposity, typically altering adipocyte function and immune cell distribution, both of which trigger metabolic dysfunction. Here, we discuss novel mechanistic links between metabolism and immunity that underlie metabolic dysfunction in obesity. We aim to stimulate debate about how the endocrine and immune systems are connected through autocrine, paracrine, and neuroendocrine signaling in sophisticated networks that are only now beginning to be resolved. Understanding the expression and action of signaling proteins, together with modulating their receptors or pattern recognition using agonists or antagonists, will enable rational intervention in immunometabolism that may lead to novel treatments for obesity and metabolic dysfunction.
Collapse
Affiliation(s)
- Abishek Iyer
- *Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia; School of Health and Wellbeing, University of Southern Queensland, Toowoomba, Queensland, Australia; and Mater Research Institute-University of Queensland, Translational Research Institute, Queensland, Australia
| | - Lindsay Brown
- *Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia; School of Health and Wellbeing, University of Southern Queensland, Toowoomba, Queensland, Australia; and Mater Research Institute-University of Queensland, Translational Research Institute, Queensland, Australia
| | - Jonathan P Whitehead
- *Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia; School of Health and Wellbeing, University of Southern Queensland, Toowoomba, Queensland, Australia; and Mater Research Institute-University of Queensland, Translational Research Institute, Queensland, Australia
| | - Johannes B Prins
- *Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia; School of Health and Wellbeing, University of Southern Queensland, Toowoomba, Queensland, Australia; and Mater Research Institute-University of Queensland, Translational Research Institute, Queensland, Australia
| | - David P Fairlie
- *Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia; School of Health and Wellbeing, University of Southern Queensland, Toowoomba, Queensland, Australia; and Mater Research Institute-University of Queensland, Translational Research Institute, Queensland, Australia
| |
Collapse
|
108
|
George AM, Jacob AG, Fogelfeld L. Lean diabetes mellitus: An emerging entity in the era of obesity. World J Diabetes 2015; 6:613-620. [PMID: 25987958 PMCID: PMC4434081 DOI: 10.4239/wjd.v6.i4.613] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 11/06/2014] [Accepted: 02/09/2015] [Indexed: 02/05/2023] Open
Abstract
Much has been published on the characteristics of type 2 diabetes mellitus and its association with the epidemic of obesity. But relatively little is known about the incidence of lean diabetes, progression of disease and fate of the patients with low-normal body mass index (< 25). Studies in developing countries have shown that the clinical characteristics of these patients include history of childhood malnutrition, poor socioeconomic status, relatively early age of onset and absence of ketosis on withdrawal of insulin. In the United States, recent studies showed that the lean, normal weight diabetes is not rare especially among minority populations. They showed that these patients are mainly males, have higher prevalence of insulin use indicating rapid beta cell failure. They might have increased total, cardiovascular and non cardiovascular mortality when compared to obese diabetic patients. In this review, the epidemiologic and clinical features of lean diabetes are presented. The potential causal mechanisms of this emerging diabetes type that may include genetic, autoimmune, acquired and behavioral factors are discussed. The need for studies to further elucidate the causation as well as specific prevention and treatment of lean diabetes is emphasized.
Collapse
|
109
|
Bueno PDG, Yochite JNU, Derigge-Pisani GF, Malmegrim de Farias KCR, de Avó LRDS, Voltarelli JC, Leal ÂMDO. Metabolic and pancreatic effects of bone marrow mesenchymal stem cells transplantation in mice fed high-fat diet. PLoS One 2015; 10:e0124369. [PMID: 25923733 PMCID: PMC4414281 DOI: 10.1371/journal.pone.0124369] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 02/27/2015] [Indexed: 12/22/2022] Open
Abstract
The purpose of this study was to investigate the effects of multiple infusions of allogeneic MSCs on glucose homeostasis and morphometry of pancreatic islets in high- fat diet (HFD) fed mice. Swiss mice were fed standard diet (C group) or HFD (HFD group). After 8 weeks, animals of HFD group received sterile phosphate-buffered saline infusions (HFD-PBS) or four infusions of MSCs one week apart (HFD-MSCs). Fasting glycemia (FG) was determined weekly and glucose (GTT) and insulin (ITT) tolerance tests were performed 4, 8, 12, and 16 weeks after the infusions of MSCs. The MSCs transplanted mice were classified as responder (FG < 180 mg/dL, 72.2% of transplanted mice) or non-responder (FG > 180mg/dL, 28.8%) Seven weeks after MSCs infusions, FG decreased in HFD-MSCs responder mice compared with the HFD-PBS group. Sixteen weeks post MSCs infusions, GTT and ITT areas under the curve (AUC) decreased in HFD-MSCs responder mice compared to HFD-PBS group. Serum insulin concentration was higher in HFD-PBS group than in control animals and was not different compared with the other groups. The relative volume of α-cells was significantly smaller in HFD-PBS group than in C group and significantly higher in HFD-MSCs-NR than in HFD-PBS and HFD-MSCs-R groups. Cell apoptosis in the islets was higher in HFD-PBS group than in C group, and lower in HFD-MSCs responder mice than in HFD-PBS group and non-responder animals. The results demonstrate the ability of multiple infusions of MSCs to promote prolonged decrease in hyperglycemia and apoptosis in pancreatic islets and increase in insulin sensitivity in HFD fed mice.
Collapse
Affiliation(s)
- Patricia de Godoy Bueno
- Department of Physiological Science, Center of Biological Sciences and Health, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Juliana Navarro Ueda Yochite
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, São Paulo, Brazil
| | - Graziela Fernanda Derigge-Pisani
- Department of Physiological Science, Center of Biological Sciences and Health, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Kelen Cristina Ribeiro Malmegrim de Farias
- Department of Clinical, Toxicological and Bromatological Analyses, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirao Preto, São Paulo, Brazil
| | | | | | | |
Collapse
|
110
|
Garcia Barrado MJ, Iglesias Osma MC, Blanco EJ, Carretero Hernández M, Sánchez Robledo V, Catalano Iniesta L, Carrero S, Carretero J. Dopamine modulates insulin release and is involved in the survival of rat pancreatic beta cells. PLoS One 2015; 10:e0123197. [PMID: 25886074 PMCID: PMC4401745 DOI: 10.1371/journal.pone.0123197] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 02/18/2015] [Indexed: 12/30/2022] Open
Abstract
The local synthesis of dopamine and its effects on insulin release have been described in isolated islets. Thus, it may be accepted that dopamine exerts an auto-paracrine regulation of insulin secretion from pancreatic beta cells. The aim of the present study is to analyze whether dopamine is a regulator of the proliferation and apoptosis of rat pancreatic beta cells after glucose-stimulated insulin secretion. Glucose stimulated pancreatic islets obtained from male Wistar rats were cultured with 1 or 10 μM dopamine from 1 to 12 h. Insulin secretion was analyzed by RIA. The cellular proliferation rate of pancreatic islets and beta cells was studied with immunocytochemical double labelling for both insulin and PCNA (proliferating cell nuclear antigen), and active caspase-3 was detected to evaluate apoptosis. The secretion of insulin from isolated islets was significantly inhibited (p<0.01), by treatment with 1 and 10 μM dopamine, with no differences between either dose as early as 1 h after treatment. The percentage of insulin-positive cells in the islets decreased significantly (p<0.01) after 1 h of treatment up to 12 h. The proliferation rate of insulin-positive cells in the islets decreased significantly (p<0.01) following treatment with dopamine. Apoptosis in pancreatic islets and beta cells was increased by treatment with 1 and 10 μM dopamine along 12 h. In conclusion, these results suggest that dopamine could modulate the proliferation and apoptosis of pancreatic beta cells and that dopamine may be involved in the maintenance of pancreatic islets.
Collapse
Affiliation(s)
- Maria Jose Garcia Barrado
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Salamanca, Salamanca, Spain
- Laboratory of Neuroendocrinology, Institute of Neurosciences of Castilla y León, and Laboratory of Neuroendocrinology and Obesity of IBSAL, University of Salamanca, Salamanca, Spain
| | - Maria Carmen Iglesias Osma
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Salamanca, Salamanca, Spain
- Laboratory of Neuroendocrinology, Institute of Neurosciences of Castilla y León, and Laboratory of Neuroendocrinology and Obesity of IBSAL, University of Salamanca, Salamanca, Spain
| | - Enrique J. Blanco
- Department of Human Anatomy and Histology, Faculty of Medicine, University of Salamanca, Salamanca, Spain
- Laboratory of Neuroendocrinology, Institute of Neurosciences of Castilla y León, and Laboratory of Neuroendocrinology and Obesity of IBSAL, University of Salamanca, Salamanca, Spain
| | - Marta Carretero Hernández
- Department of Human Anatomy and Histology, Faculty of Medicine, University of Salamanca, Salamanca, Spain
| | - Virginia Sánchez Robledo
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Salamanca, Salamanca, Spain
| | - Leonardo Catalano Iniesta
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Salamanca, Salamanca, Spain
| | - Sixto Carrero
- Laboratory of Neuroendocrinology, Institute of Neurosciences of Castilla y León, and Laboratory of Neuroendocrinology and Obesity of IBSAL, University of Salamanca, Salamanca, Spain
| | - Jose Carretero
- Department of Human Anatomy and Histology, Faculty of Medicine, University of Salamanca, Salamanca, Spain
- Laboratory of Neuroendocrinology, Institute of Neurosciences of Castilla y León, and Laboratory of Neuroendocrinology and Obesity of IBSAL, University of Salamanca, Salamanca, Spain
- * E-mail:
| |
Collapse
|
111
|
Colegrove KM, Venn-Watson S. Histomorphology of the bottlenose dolphin (Tursiops truncatus) pancreas and association of increasing islet β-cell size with chronic hypercholesterolemia. Gen Comp Endocrinol 2015; 214:17-23. [PMID: 25745813 DOI: 10.1016/j.ygcen.2015.02.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 12/12/2014] [Accepted: 02/14/2015] [Indexed: 01/09/2023]
Abstract
Bottlenose dolphins (Tursiops truncatus) can develop metabolic states mimicking prediabetes, including hyperinsulinemia, hyperlipidemia, elevated glucose, and fatty liver disease. Little is known, however, about dolphin pancreatic histomorphology. Distribution and area of islets, α, β, and δ cells were evaluated in pancreatic tissue from 22 dolphins (mean age 25.7years, range 0-51). Associations of these measurements were evaluated by sex, age, percent high glucose and lipids during the last year of life, and presence or absence of fatty liver disease and islet cell vacuolation. The most common pancreatic lesions identified were exocrine pancreas fibrosis (63.6%) and mild islet cell vacuolation (47.4%); there was no evidence of insulitis or amyloid deposition, changes commonly associated with type 2 diabetes. Dolphin islet architecture appears to be most similar to the pig, where α and β cells are localized to the central or periphery of the islet, respectively, or are well dispersed throughout the islet. Unlike pigs, large islets (greater than 10,000μm(2)) were common in dolphins, similar to that found in humans. A positive linear association was identified between dolphin age and islet area average, supporting a compensatory response similar to other species. The strongest finding in this study was a positive linear association between islet size, specifically β-cells, and percent blood samples with high cholesterol (greater than 280mg/dl, R(2)=0.57). This study is the most comprehensive assessment of the dolphin pancreas to date and may help direct future studies, including associations between chronic hypercholesterolemia and β-cell size.
Collapse
Affiliation(s)
- Kathleen M Colegrove
- Zoological Pathology Program, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, LUMC, Building 101, Room 0745, Maywood, IL 60153, USA.
| | - Stephanie Venn-Watson
- Translational Medicine and Research Program, National Marine Mammal Foundation, 2240 Shelter Island Suite 200, San Diego, CA 92106, USA.
| |
Collapse
|
112
|
Javeed N, Sagar G, Dutta SK, Smyrk TC, Lau JS, Bhattacharya S, Truty M, Petersen GM, Kaufman RJ, Chari ST, Mukhopadhyay D. Pancreatic Cancer-Derived Exosomes Cause Paraneoplastic β-cell Dysfunction. Clin Cancer Res 2015; 21:1722-33. [PMID: 25355928 PMCID: PMC4383684 DOI: 10.1158/1078-0432.ccr-14-2022] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 10/11/2014] [Indexed: 12/14/2022]
Abstract
PURPOSE Pancreatic cancer frequently causes diabetes. We recently proposed adrenomedullin as a candidate mediator of pancreatic β-cell dysfunction in pancreatic cancer. How pancreatic cancer-derived adrenomedullin reaches β cells remote from the cancer to induce β-cell dysfunction is unknown. We tested a novel hypothesis that pancreatic cancer sheds adrenomedullin-containing exosomes into circulation, which are transported to β cells and impair insulin secretion. EXPERIMENTAL METHODS We characterized exosomes from conditioned media of pancreatic cancer cell lines (n = 5) and portal/peripheral venous blood of patients with pancreatic cancer (n = 20). Western blot analysis showed the presence of adrenomedullin in pancreatic cancer-exosomes. We determined the effect of adrenomedullin-containing pancreatic cancer exosomes on insulin secretion from INS-1 β cells and human islets, and demonstrated the mechanism of exosome internalization into β cells. We studied the interaction between β-cell adrenomedullin receptors and adrenomedullin present in pancreatic cancer-exosomes. In addition, the effect of adrenomedullin on endoplasmic reticulum (ER) stress response genes and reactive oxygen/nitrogen species generation in β cells was shown. RESULTS Exosomes were found to be the predominant extracellular vesicles secreted by pancreatic cancer into culture media and patient plasma. Pancreatic cancer-exosomes contained adrenomedullin and CA19-9, readily entered β cells through caveolin-mediated endocytosis or macropinocytosis, and inhibited insulin secretion. Adrenomedullin in pancreatic cancer exosomes interacted with its receptor on β cells. Adrenomedullin receptor blockade abrogated the inhibitory effect of exosomes on insulin secretion. β cells exposed to adrenomedullin or pancreatic cancer exosomes showed upregulation of ER stress genes and increased reactive oxygen/nitrogen species. CONCLUSIONS Pancreatic cancer causes paraneoplastic β-cell dysfunction by shedding adrenomedullin(+)/CA19-9(+) exosomes into circulation that inhibit insulin secretion, likely through adrenomedullin-induced ER stress and failure of the unfolded protein response.
Collapse
Affiliation(s)
- Naureen Javeed
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Gunisha Sagar
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Shamit K Dutta
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Thomas C Smyrk
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Julie S Lau
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Santanu Bhattacharya
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Mark Truty
- Department of Surgery, Mayo Clinic, Rochester, Minnesota
| | - Gloria M Petersen
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Randal J Kaufman
- Degenerative Disease Research Program, Sanford Burnham Medical Research Institute, La Jolla, California
| | - Suresh T Chari
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota.
| | | |
Collapse
|
113
|
Barlow AD, Thomas DC. Autophagy in Diabetes: β-Cell Dysfunction, Insulin Resistance, and Complications. DNA Cell Biol 2015; 34:252-60. [DOI: 10.1089/dna.2014.2755] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Adam D. Barlow
- Department of Surgery, University of Cambridge, Cambridge, United Kingdom
- NIHR Cambridge Biomedical Research Campus, Cambridge, United Kingdom
| | - David C. Thomas
- NIHR Cambridge Biomedical Research Campus, Cambridge, United Kingdom
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
114
|
Hannou SA, Wouters K, Paumelle R, Staels B. Functional genomics of the CDKN2A/B locus in cardiovascular and metabolic disease: what have we learned from GWASs? Trends Endocrinol Metab 2015; 26:176-84. [PMID: 25744911 DOI: 10.1016/j.tem.2015.01.008] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 01/27/2015] [Accepted: 01/27/2015] [Indexed: 01/07/2023]
Abstract
Genome-wide association studies (GWASs) provide an unprecedented opportunity to examine, on a large scale, the association of common genetic variants with complex diseases like type 2 diabetes (T2D) and cardiovascular disease (CVD), thus allowing the identification of new potential disease loci. Using this approach, numerous studies have associated SNPs on chromosome 9p21.3 situated near the cyclin-dependent kinase inhibitor 2A/B (CDKN2A/B) locus with the risk for coronary artery disease (CAD) and T2D. However, identifying the function of the nearby gene products (CDKN2A/B and ANRIL) in the pathophysiology of these conditions requires functional genomic studies. We review the current knowledge, from studies using human and mouse models, describing the function of CDKN2A/B gene products, which may mechanistically link the 9p21.3 risk locus with CVD and diabetes.
Collapse
Affiliation(s)
- Sarah Anissa Hannou
- University of Lille, F-59000, Lille, France; Inserm, U1011, F-59000, Lille, France; European Genomic Institute for Diabetes (EGID), FR3508, Lille, France; Institut Pasteur de Lille, F-59019, Lille, France; Centre National de la Recherche Scientifique (CNRS), UMR 8199, Lille, France
| | - Kristiaan Wouters
- Cardiovascular Research Institute Maastricht (CARIM), Department of Internal Medicine, Maastricht University Medical Center (MUMC), Maastricht, The Netherlands
| | - Réjane Paumelle
- University of Lille, F-59000, Lille, France; Inserm, U1011, F-59000, Lille, France; European Genomic Institute for Diabetes (EGID), FR3508, Lille, France; Institut Pasteur de Lille, F-59019, Lille, France
| | - Bart Staels
- University of Lille, F-59000, Lille, France; Inserm, U1011, F-59000, Lille, France; European Genomic Institute for Diabetes (EGID), FR3508, Lille, France; Institut Pasteur de Lille, F-59019, Lille, France.
| |
Collapse
|
115
|
Stasiuk GJ, Minuzzi F, Sae-Heng M, Rivas C, Juretschke HP, Piemonti L, Allegrini PR, Laurent D, Duckworth AR, Beeby A, Rutter GA, Long NJ. Dual-modal magnetic resonance/fluorescent zinc probes for pancreatic β-cell mass imaging. Chemistry 2015; 21:5023-33. [PMID: 25736590 PMCID: PMC4464533 DOI: 10.1002/chem.201406008] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Indexed: 11/11/2022]
Abstract
Despite the contribution of changes in pancreatic β-cell mass to the development of all forms of diabetes mellitus, few robust approaches currently exist to monitor these changes prospectively in vivo. Although magnetic-resonance imaging (MRI) provides a potentially useful technique, targeting MRI-active probes to the β cell has proved challenging. Zinc ions are highly concentrated in the secretory granule, but they are relatively less abundant in the exocrine pancreas and in other tissues. We have therefore developed functional dual-modal probes based on transition-metal chelates capable of binding zinc. The first of these, Gd⋅1, binds Zn(II) directly by means of an amidoquinoline moiety (AQA), thus causing a large ratiometric Stokes shift in the fluorescence from λem =410 to 500 nm with an increase in relaxivity from r1 =4.2 up to 4.9 mM(-1) s(-1) . The probe is efficiently accumulated into secretory granules in β-cell-derived lines and isolated islets, but more poorly by non-endocrine cells, and leads to a reduction in T1 in human islets. In vivo murine studies of Gd⋅1 have shown accumulation of the probe in the pancreas with increased signal intensity over 140 minutes.
Collapse
Affiliation(s)
- Graeme J Stasiuk
- Department of Chemistry, Imperial College LondonSouth Kensington Campus, London SW7 2AZ (UK)
| | - Florencia Minuzzi
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of MedicineImperial College London, Hammersmith Hospital, London W12 0NN (UK)
| | - Myra Sae-Heng
- Department of Chemistry, Imperial College LondonSouth Kensington Campus, London SW7 2AZ (UK)
| | - Charlotte Rivas
- Department of Chemistry, Imperial College LondonSouth Kensington Campus, London SW7 2AZ (UK)
| | - Hans-Paul Juretschke
- Sanofi-Aventis Deutschland GmbH, R&D DSAR/BiomakersBiom & Biol Ass, FF, Industriepark Hoechst, Building H825, 65926 Frankfurt (Germany)
| | - Lorenzo Piemonti
- Diabetes Research Institute, IRCCS San Raffaele Scientific InstituteVia Olgettina 60, 20132 Milano (Italy)
| | | | - Didier Laurent
- Novartis Institute for Biomedical Research, Fabrikstrasse10-2.40.4, 4056, Basel (Switzerland)
| | - Andrew R Duckworth
- Department of Chemistry, Durham University, South RoadDurham, DH1 3LE (UK)
| | - Andrew Beeby
- Department of Chemistry, Durham University, South RoadDurham, DH1 3LE (UK)
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of MedicineImperial College London, Hammersmith Hospital, London W12 0NN (UK)
| | - Nicholas J Long
- Department of Chemistry, Imperial College LondonSouth Kensington Campus, London SW7 2AZ (UK)
| |
Collapse
|
116
|
Irles E, Ñeco P, Lluesma M, Villar-Pazos S, Santos-Silva JC, Vettorazzi JF, Alonso-Magdalena P, Carneiro EM, Boschero AC, Nadal Á, Quesada I. Enhanced glucose-induced intracellular signaling promotes insulin hypersecretion: pancreatic beta-cell functional adaptations in a model of genetic obesity and prediabetes. Mol Cell Endocrinol 2015; 404:46-55. [PMID: 25633666 DOI: 10.1016/j.mce.2015.01.033] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 01/20/2015] [Accepted: 01/21/2015] [Indexed: 12/13/2022]
Abstract
Obesity is associated with insulin resistance and is known to be a risk factor for type-2 diabetes. In obese individuals, pancreatic beta-cells try to compensate for the increased insulin demand in order to maintain euglycemia. Most studies have reported that this adaptation is due to morphological changes. However, the involvement of beta-cell functional adaptations in this process needs to be clarified. For this purpose, we evaluated different key steps in the glucose-stimulated insulin secretion (GSIS) in intact islets from female ob/ob obese mice and lean controls. Obese mice showed increased body weight, insulin resistance, hyperinsulinemia, glucose intolerance and fed hyperglycemia. Islets from ob/ob mice exhibited increased glucose-induced mitochondrial activity, reflected by enhanced NAD(P)H production and mitochondrial membrane potential hyperpolarization. Perforated patch-clamp examination of beta-cells within intact islets revealed several alterations in the electrical activity such as increased firing frequency and higher sensitivity to low glucose concentrations. A higher intracellular Ca(2+) mobilization in response to glucose was also found in ob/ob islets. Additionally, they displayed a change in the oscillatory pattern and Ca(2+) signals at low glucose levels. Capacitance experiments in intact islets revealed increased exocytosis in individual ob/ob beta-cells. All these up-regulated processes led to increased GSIS. In contrast, we found a lack of beta-cell Ca(2+) signal coupling, which could be a manifestation of early defects that lead to beta-cell malfunction in the progression to diabetes. These findings indicate that beta-cell functional adaptations are an important process in the compensatory response to obesity.
Collapse
Affiliation(s)
- Esperanza Irles
- Instituto de Bioingeniería, Universidad Miguel Hernández, Elche, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Patricia Ñeco
- Instituto de Bioingeniería, Universidad Miguel Hernández, Elche, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Mónica Lluesma
- Instituto de Bioingeniería, Universidad Miguel Hernández, Elche, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Sabrina Villar-Pazos
- Instituto de Bioingeniería, Universidad Miguel Hernández, Elche, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Junia Carolina Santos-Silva
- Instituto de Bioingeniería, Universidad Miguel Hernández, Elche, Spain; Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Jean F Vettorazzi
- Instituto de Bioingeniería, Universidad Miguel Hernández, Elche, Spain; Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Paloma Alonso-Magdalena
- Instituto de Bioingeniería, Universidad Miguel Hernández, Elche, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Everardo M Carneiro
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Antonio C Boschero
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Ángel Nadal
- Instituto de Bioingeniería, Universidad Miguel Hernández, Elche, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Ivan Quesada
- Instituto de Bioingeniería, Universidad Miguel Hernández, Elche, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain.
| |
Collapse
|
117
|
Barbour SE, Nguyen PT, Park M, Emani B, Lei X, Kambalapalli M, Shultz JC, Wijesinghe D, Chalfant CE, Ramanadham S. Group VIA Phospholipase A2 (iPLA2β) Modulates Bcl-x 5'-Splice Site Selection and Suppresses Anti-apoptotic Bcl-x(L) in β-Cells. J Biol Chem 2015; 290:11021-31. [PMID: 25762722 DOI: 10.1074/jbc.m115.648956] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Indexed: 01/09/2023] Open
Abstract
Diabetes is a consequence of reduced β-cell function and mass, due to β-cell apoptosis. Endoplasmic reticulum (ER) stress is induced during β-cell apoptosis due to various stimuli, and our work indicates that group VIA phospholipase A2β (iPLA2β) participates in this process. Delineation of underlying mechanism(s) reveals that ER stress reduces the anti-apoptotic Bcl-x(L) protein in INS-1 cells. The Bcl-x pre-mRNA undergoes alternative pre-mRNA splicing to generate Bcl-x(L) or Bcl-x(S) mature mRNA. We show that both thapsigargin-induced and spontaneous ER stress are associated with reductions in the ratio of Bcl-x(L)/Bcl-x(S) mRNA in INS-1 and islet β-cells. However, chemical inactivation or knockdown of iPLA2β augments the Bcl-x(L)/Bcl-x(S) ratio. Furthermore, the ratio is lower in islets from islet-specific RIP-iPLA2β transgenic mice, whereas islets from global iPLA2β(-/-) mice exhibit the opposite phenotype. In view of our earlier reports that iPLA2β induces ceramide accumulation through neutral sphingomyelinase 2 and that ceramides shift the Bcl-x 5'-splice site (5'SS) selection in favor of Bcl-x(S), we investigated the potential link between Bcl-x splicing and the iPLA2β/ceramide axis. Exogenous C6-ceramide did not alter Bcl-x 5'SS selection in INS-1 cells, and neutral sphingomyelinase 2 inactivation only partially prevented the ER stress-induced shift in Bcl-x splicing. In contrast, 5(S)-hydroxytetraenoic acid augmented the ratio of Bcl-x(L)/Bcl-x(S) by 15.5-fold. Taken together, these data indicate that β-cell apoptosis is, in part, attributable to the modulation of 5'SS selection in the Bcl-x pre-mRNA by bioactive lipids modulated by iPLA2β.
Collapse
Affiliation(s)
- Suzanne E Barbour
- From the Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia 23298-0614
| | - Phuong T Nguyen
- From the Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia 23298-0614
| | - Margaret Park
- From the Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia 23298-0614
| | - Bhargavi Emani
- From the Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia 23298-0614
| | - Xiaoyong Lei
- the Department of Cell, Developmental, and Integrative Biology and Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Mamatha Kambalapalli
- From the Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia 23298-0614
| | - Jacqueline C Shultz
- From the Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia 23298-0614
| | - Dayanjan Wijesinghe
- From the Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia 23298-0614, the Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, Virginia 23249
| | - Charles E Chalfant
- From the Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia 23298-0614, the Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, Virginia 23249, the Massey Cancer Center, Richmond, Virginia 23298, and the Virginia Commonwealth University Reanimation Engineering Science Center, Richmond, Virginia 23298
| | - Sasanka Ramanadham
- the Department of Cell, Developmental, and Integrative Biology and Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, Alabama 35294,
| |
Collapse
|
118
|
Park SH, Park JH, Shim HM, Na AY, Bae KC, Lim JG, Song DK. Protection of pancreatic β-cells against glucotoxicity by short-term treatment with GLP-1. Biochem Biophys Res Commun 2015; 459:561-7. [PMID: 25757909 DOI: 10.1016/j.bbrc.2015.02.139] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 02/24/2015] [Indexed: 12/15/2022]
Abstract
Glucagon-like peptide-1 (GLP-1) reduces pancreatic β-cell apoptosis in type 2 diabetes. Glucotoxiciy is a main cause of β-cell apoptosis in type 2 diabetes. The aims of this study were to investigate the anti-apoptotic mechanisms of GLP-1 against glucotoxicity and whether physiological short-term treatment with GLP-1 can protect β-cells from glucotoxicity-induced apoptosis. GLP-1 treatment for only 30 min alleviated high glucose-induced β-cell apoptosis. The effect of GLP-1 was related with phosphoinositide 3-kinase (PI3K)/AKT-S473 phosphorylation. The increase in pAKT-S473 led to suppression of FoxO-1. GLP-1-induced AKT-S473 activation and FoxO-1 suppression were abolished by the selective inactivation of mTOR complex (mTORC) 2 using small interfering RNA directed towards the rapamycin-insensitive companion of mTOR. The protective effect of GLP-1 on β-cell apoptosis was also abolished by the selective inactivation of mTORC2. Hence, the protective effect of GLP-1 against glucotoxicity may be mediated by FoxO-1 suppression through the PI3K/mTORC2/AKT-S473 phosphorylation. This report provides evidence that short-term treatment with GLP-1 is beneficial to protect against glucotoxicity-induced β-cell apoptosis.
Collapse
Affiliation(s)
- Sun-Hyun Park
- Department of Physiology & Obesity-mediated Disease Research Center, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Jae-Hyung Park
- Department of Physiology & Obesity-mediated Disease Research Center, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Hye-Min Shim
- Department of Physiology & Obesity-mediated Disease Research Center, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Ann-Yae Na
- Department of Physiology & Obesity-mediated Disease Research Center, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Ki-Churl Bae
- Department of Physiology & Obesity-mediated Disease Research Center, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Jeung-Geun Lim
- Department of Physiology & Obesity-mediated Disease Research Center, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Dae-Kyu Song
- Department of Physiology & Obesity-mediated Disease Research Center, Keimyung University School of Medicine, Daegu, Republic of Korea.
| |
Collapse
|
119
|
Nguyen KH, Yao XH, Erickson AG, Mishra S, Nyomba BLG. Glucose intolerance in aging male IGFBP-3 transgenic mice: differential effects of human IGFBP-3 and its mutant IGFBP-3 devoid of IGF binding ability. Endocrinology 2015; 156:462-74. [PMID: 25490144 DOI: 10.1210/en.2014-1271] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We have reported a reduction of insulin secretion and glucose intolerance in young mice overexpressing human IGFBP-3 (phosphoglycerate kinase [PGK]BP3) or its mutant Gly56/Gly80/Gly81-IGFBP-3 (PGKmutBP3) under the PGK promoter. Here, we investigated changes in glucose and lipid homeostasis with age in PGKBP3 and PGKmutBP3 mice compared with wild-type mice. Body weight, glucose tolerance, insulin tolerance, visceral fat, interscapular brown adipose tissue (BAT), serum lipids, and pancreas histology were examined at age 3, 6, and 12 months. Murine IGFBP-3 was similar in all mouse genotypes and decreased with age in parallel with total IGF-1. Visceral fat and BAT masses increased in PGKmutBP3 mice, but not in PGKBP3 mice. Glucose tolerance was impaired in both PGKBP3 and PGKmutBP3 mice. However, PGKBP3 mice had increased expression of uncoupling protein-1 in BAT and reduced adiposity, and continued to have smaller pancreatic β-cell mass and reduced insulin secretion through age 12 months. In contrast, PGKmutBP3 mice developed insulin resistance with age in association with pancreatic β-cell hyperplasia, impaired expression of uncoupling protein-1 in BAT, and increased adiposity. In addition, both PGKBP3 and PGKmutBP3 mice had elevated glycerol in the circulation, but only PGKBP3 mice had elevated free fatty acids and only PGKmutBP3 mice had elevated triglycerides. Estimated free IGF-1 did not increase with age in transgenic mice, as it did in wild-type mice. Thus, overexpression of human IGFBP-3 or its mutant devoid of IGF binding ability leads to glucose intolerance with, however, different effects on insulin secretion, insulin sensitivity, and lipid homeostasis in aging mice.
Collapse
Affiliation(s)
- K Hoa Nguyen
- Department of Internal Medicine, University of Manitoba, Winnipeg, Canada R3E3P4
| | | | | | | | | |
Collapse
|
120
|
Kimura T, Kaneto H, Shimoda M, Hirukawa H, Okauchi S, Kohara K, Hamamoto S, Tawaramoto K, Hashiramoto M, Kaku K. Protective effects of pioglitazone and/or liraglutide on pancreatic β-cells in db/db mice: Comparison of their effects between in an early and advanced stage of diabetes. Mol Cell Endocrinol 2015; 400:78-89. [PMID: 25463759 DOI: 10.1016/j.mce.2014.11.018] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 11/14/2014] [Accepted: 11/20/2014] [Indexed: 12/24/2022]
Abstract
The aim was to compare the protective effects of pioglitazone (PIO) and/or liraglutide (LIRA) on β-cells with the progression of diabetes. Male db/db mice were treated with PIO and/or LIRA for 2 weeks in an early and advanced stage. In an early stage insulin biosynthesis and secretion were markedly increased by PIO and LIRA which was not observed in an advanced stage. In concomitant with such phenomena, expression levels of various β-cell-related factors were up-regulated by PIO and LIRA only in an early stage. Furthermore, β-cell mass was also increased by the treatment only in an early stage. Although there was no difference in apoptosis ratio between the two stages, β-cell proliferation was augmented by the treatment only in an early stage. In conclusion, protective effects of pioglitazone and/or liraglutide on β-cells were more powerful in an early stage of diabetes compared to an advanced stage.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Blood Glucose/metabolism
- Caspases/genetics
- Caspases/metabolism
- Cell Proliferation/drug effects
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Disease Models, Animal
- Disease Progression
- Gene Expression/drug effects
- Glucagon/blood
- Glucagon-Like Peptide 1/analogs & derivatives
- Glucagon-Like Peptide 1/pharmacology
- Hypoglycemic Agents/pharmacology
- Insulin/blood
- Insulin-Secreting Cells/drug effects
- Insulin-Secreting Cells/metabolism
- Insulin-Secreting Cells/pathology
- Ki-67 Antigen/genetics
- Ki-67 Antigen/metabolism
- Liraglutide
- Male
- Mice
- Mice, Transgenic
- Organ Size/drug effects
- Pioglitazone
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-bcl-2/metabolism
- RNA, Ribosomal, 18S/genetics
- RNA, Ribosomal, 18S/metabolism
- Thiazolidinediones/pharmacology
- Time Factors
- Triglycerides/blood
Collapse
Affiliation(s)
- Tomohiko Kimura
- Division of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, 577 Matsushima, Kurashiki-city, Okayama 701-0192, Japan.
| | - Hideaki Kaneto
- Division of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, 577 Matsushima, Kurashiki-city, Okayama 701-0192, Japan
| | - Masashi Shimoda
- Division of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, 577 Matsushima, Kurashiki-city, Okayama 701-0192, Japan
| | - Hidenori Hirukawa
- Division of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, 577 Matsushima, Kurashiki-city, Okayama 701-0192, Japan
| | - Seizo Okauchi
- Division of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, 577 Matsushima, Kurashiki-city, Okayama 701-0192, Japan
| | - Kenji Kohara
- Division of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, 577 Matsushima, Kurashiki-city, Okayama 701-0192, Japan
| | - Sumiko Hamamoto
- Division of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, 577 Matsushima, Kurashiki-city, Okayama 701-0192, Japan
| | - Kazuhito Tawaramoto
- Division of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, 577 Matsushima, Kurashiki-city, Okayama 701-0192, Japan
| | - Mitsuru Hashiramoto
- Division of Diabetes and Endocrinology, Yodogawa Christian Hospital, 1-7-50 Shibajima, Osaka-city, Osaka 533-0024, Japan
| | - Kohei Kaku
- Division of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, 577 Matsushima, Kurashiki-city, Okayama 701-0192, Japan; Department of General Internal Medicine 1, Kawasaki Hospital, Kawasaki Medical School, 2-1-80 Nakasange, Okayama-city, Okayama 700-8505, Japan
| |
Collapse
|
121
|
Uppal SS, Naveed AK, Baig S, Chaudhry B. Expression of REG Iα gene in type 2 diabetics in Pakistan. Diabetol Metab Syndr 2015; 7:96. [PMID: 26568772 PMCID: PMC4643495 DOI: 10.1186/s13098-015-0092-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 11/02/2015] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The escalating rate of diabetes' has prompted researchers around the world to explore for early markers. A deficit of functional β-cell mass plays a central role in the pathophysiology of type 2 diabetes. The REG (Regenerating) gene, encoding a 166 amino acid REG protein was discovered in rats and humans which is released in response to β-cells damage and play a role in their regeneration. The objective of this study was to characterize serum levels of REG Iα proteins in type 2 diabetic patients as indicator of β-cell apoptosis as well as regeneration. METHODS Unrelated type 2 diabetic patients (n = 55) of different age groups and disease duration were recruited from the Medical OPD of PNS Shifa Hospital. Age and sex matched non diabetic controls (n = 20) without family history of diabetes were selected from the same setting. Demographical details were recorded on a structured questionnaire. Biochemical parameters like FBG, HbA1c, TC and TG levels were measured. Serum levels of REG Iα protein were determined by ELISA. RESULTS Levels of REG Iα protein were found significantly raised in type 2 diabetic patients compared to controls (p < 001). Patients with short duration of the disease had higher levels of REG Iα as compared to patients with longer duration of the disease. Although the patients were on anti hyperglycemic agents, a positive correlation was found between REG Iα serum levels, FBG and HbA1c levels. Patients with higher BMI had higher levels of serum REG Iα levels. Serum TC, TG and Hb levels showed no correlation. CONCLUSION REG Iα may be used as a marker/predictor of type 2 diabetes especially in the early stages of the disease.
Collapse
Affiliation(s)
- Sadaf Saleem Uppal
- />Department of Biochemistry and Molecular Biology, Army Medical College, Rawalpindi and National University of Science and Technology, Islamabad, Pakistan
| | - Abdul Khaliq Naveed
- />Department of Biochemistry, Islamic International Medical College, Riphah International University, Islamabad, Pakistan
| | - Saeeda Baig
- />Department of Biochemistry, Ziauddin University, Karachi, Pakistan
| | - Bushra Chaudhry
- />Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| |
Collapse
|
122
|
Tomasello MF, Sinopoli A, Pappalardo G. On the Environmental Factors Affecting the Structural and Cytotoxic Properties of IAPP Peptides. J Diabetes Res 2015; 2015:918573. [PMID: 26582441 PMCID: PMC4637107 DOI: 10.1155/2015/918573] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 02/05/2015] [Indexed: 12/18/2022] Open
Abstract
Pancreatic islets in type 2 diabetes mellitus (T2DM) patients are characterized by reduced β-cells mass and diffuse extracellular amyloidosis. Amyloid deposition involves the islet amyloid polypeptide (IAPP), a neuropancreatic hormone cosecreted with insulin by β-cells. IAPP is physiologically involved in glucose homeostasis, but it may turn toxic to β-cells owing to its tendency to misfold giving rise to oligomers and fibrils. The process by which the unfolded IAPP starts to self-assemble and the overall factors promoting this conversion are poorly understood. Other open questions are related to the nature of the IAPP toxic species and how exactly β-cells die. Over the last decades, there has been growing consensus about the notion that early molecular assemblies, notably small hIAPP oligomers, are the culprit of β-cells decline. Numerous environmental factors might affect the conformational, aggregation, and cytotoxic properties of IAPP. Herein we review recent progress in the field, focusing on the influences that membranes, pH, and metal ions may have on the conformational conversion and cytotoxicity of full-length IAPP as well as peptide fragments thereof. Current theories proposed for the mechanisms of toxicity will be also summarized together with an outline of the underlying molecular links between IAPP and amyloid beta (Aβ) misfolding.
Collapse
Affiliation(s)
| | - Alessandro Sinopoli
- International PhD Program in Translational Biomedicine, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Giuseppe Pappalardo
- CNR Institute of Biostructures and Bioimaging, Via P. Gaifami 18, 95126 Catania, Italy
- *Giuseppe Pappalardo:
| |
Collapse
|
123
|
Javeed N, Sagar G, Dutta SK, Smyrk TC, Lau JS, Bhattacharya S, Truty M, Petersen GM, Kaufman RJ, Chari ST, Mukhopadhyay D. Pancreatic Cancer-Derived Exosomes Cause Paraneoplastic β-cell Dysfunction. Clin Cancer Res 2014. [PMID: 25355928 DOI: 10.1158/1078-0432.ccr-14-2022.pancreatic] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE Pancreatic cancer frequently causes diabetes. We recently proposed adrenomedullin as a candidate mediator of pancreatic β-cell dysfunction in pancreatic cancer. How pancreatic cancer-derived adrenomedullin reaches β cells remote from the cancer to induce β-cell dysfunction is unknown. We tested a novel hypothesis that pancreatic cancer sheds adrenomedullin-containing exosomes into circulation, which are transported to β cells and impair insulin secretion. EXPERIMENTAL METHODS We characterized exosomes from conditioned media of pancreatic cancer cell lines (n = 5) and portal/peripheral venous blood of patients with pancreatic cancer (n = 20). Western blot analysis showed the presence of adrenomedullin in pancreatic cancer-exosomes. We determined the effect of adrenomedullin-containing pancreatic cancer exosomes on insulin secretion from INS-1 β cells and human islets, and demonstrated the mechanism of exosome internalization into β cells. We studied the interaction between β-cell adrenomedullin receptors and adrenomedullin present in pancreatic cancer-exosomes. In addition, the effect of adrenomedullin on endoplasmic reticulum (ER) stress response genes and reactive oxygen/nitrogen species generation in β cells was shown. RESULTS Exosomes were found to be the predominant extracellular vesicles secreted by pancreatic cancer into culture media and patient plasma. Pancreatic cancer-exosomes contained adrenomedullin and CA19-9, readily entered β cells through caveolin-mediated endocytosis or macropinocytosis, and inhibited insulin secretion. Adrenomedullin in pancreatic cancer exosomes interacted with its receptor on β cells. Adrenomedullin receptor blockade abrogated the inhibitory effect of exosomes on insulin secretion. β cells exposed to adrenomedullin or pancreatic cancer exosomes showed upregulation of ER stress genes and increased reactive oxygen/nitrogen species. CONCLUSIONS Pancreatic cancer causes paraneoplastic β-cell dysfunction by shedding adrenomedullin(+)/CA19-9(+) exosomes into circulation that inhibit insulin secretion, likely through adrenomedullin-induced ER stress and failure of the unfolded protein response.
Collapse
Affiliation(s)
- Naureen Javeed
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Gunisha Sagar
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Shamit K Dutta
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Thomas C Smyrk
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Julie S Lau
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Santanu Bhattacharya
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Mark Truty
- Department of Surgery, Mayo Clinic, Rochester, Minnesota
| | - Gloria M Petersen
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Randal J Kaufman
- Degenerative Disease Research Program, Sanford Burnham Medical Research Institute, La Jolla, California
| | - Suresh T Chari
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota.
| | | |
Collapse
|
124
|
Katsuda Y, Ohta T, Miyajima K, Kemmochi Y, Sasase T, Tong B, Shinohara M, Yamada T. Diabetic complications in obese type 2 diabetic rat models. Exp Anim 2014; 63:121-32. [PMID: 24770637 PMCID: PMC4160981 DOI: 10.1538/expanim.63.121] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We overviewed the pathophysiological features of diabetes and its complications in obese
type 2 diabetic rat models: Otsuka Long-Evans Tokushima fatty (OLETF) rat, Wistar fatty
rat, Zucker diabetic fatty (ZDF) rat and Spontaneously diabetic Torii (SDT) fatty rat.
Pancreatic changes with progression of diabetes were classified into early changes, such
as islet hypertrophy and degranulation of β cells, and degenerative changes, such as islet
atrophy and fibrosis of islet with infiltration of inflammatory cells. Renal lesions in
tubuli and glomeruli were observed, and nodular lesions in glomeruli were notable changes
in OLETF and SDT fatty rats. Among retinal changes, folding and thickening were
interesting findings in SDT fatty rats. A decrease of motor nerve conduction velocity with
progression of diabetes was presented in obese diabetic rats. Other diabetic
complications, osteoporosis and sexual dysfunction, were also observed. Observation of
bone metabolic abnormalities, including decrease of osteogenesis and bone mineral density,
and sexual dysfunction, including hypotestosteronemia and erectile dysfunction, in obese
type 2 diabetic rats have been reported.
Collapse
Affiliation(s)
- Yoshiaki Katsuda
- Japan Tobacco Inc., Central Pharmaceutical Research Institute, 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | | | | | | | | | | | | | | |
Collapse
|
125
|
Zhang S, Liu H, Chuang CL, Li X, Au M, Zhang L, Phillips ARJ, Scott DW, Cooper GJS. The pathogenic mechanism of diabetes varies with the degree of overexpression and oligomerization of human amylin in the pancreatic islet β cells. FASEB J 2014; 28:5083-96. [PMID: 25138158 DOI: 10.1096/fj.14-251744] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The aggregation of human amylin (hA) to form cytotoxic structures has been closely associated with the causation of type 2 diabetes. We sought to advance understanding of how altered expression and aggregation of hA might link β-cell degeneration with diabetes onset and progression, by comparing phenotypes between homozygous and hemizygous hA-transgenic mice. The homozygous mice displayed elevated islet hA that correlated positively with measures of oligomer formation (r=0.91; P<0.0001). They also developed hyperinsulinemia with transient insulin resistance during the prediabetes stage and then underwent rapid β-cell loss, culminating in severe juvenile-onset diabetes. The prediabetes stage was prolonged in the hemizygous mice, wherein β-cell dysfunction and extensive oligomer formation occurred in adulthood at a much later stage, when hA levels were lower (r=-0.60; P<0.0001). This is the first report to show that hA-evoked diabetes is associated with age, insulin resistance, progressive islet dysfunction, and β-cell apoptosis, which interact variably to cause the different diabetes syndromes. The various levels of hA elevation cause different extents of oligomer formation in the disease stages, thus eliciting early- or adult-onset diabetes syndromes, reminiscent of type 1 and 2 diabetes, respectively. Thus, the hA-evoked diabetes phenotypes differ substantively according to degree of amylin overproduction. These findings are relevant to the understanding of the pathogenesis and the development of experimental therapeutics for diabetes.
Collapse
Affiliation(s)
- Shaoping Zhang
- The School of Biological Sciences and The Maurice Wilkins Centre for Molecular BioDiscovery, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Hong Liu
- The School of Biological Sciences and
| | | | | | - Maggie Au
- The School of Biological Sciences and
| | - Lin Zhang
- The School of Biological Sciences and
| | - Anthony R J Phillips
- The School of Biological Sciences and The Maurice Wilkins Centre for Molecular BioDiscovery, Faculty of Science, University of Auckland, Auckland, New Zealand
| | | | - Garth J S Cooper
- The School of Biological Sciences and The Maurice Wilkins Centre for Molecular BioDiscovery, Faculty of Science, University of Auckland, Auckland, New Zealand Centre for Advanced Discovery and Experimental Therapeutics, Central Manchester University Hospitals National Health Service (NHS) Foundation Trust, Manchester, UK; and Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Medical and Human Sciences, Manchester Academic Health Sciences Centre, The University of Manchester, Manchester, UK
| |
Collapse
|
126
|
Schvartz D, Couté Y, Sanchez JC. Quantitative proteomics reveals the link between minichromosome maintenance complex and glucose-induced proliferation of rat pancreatic INS-1E β-cells. J Proteomics 2014; 108:163-70. [DOI: 10.1016/j.jprot.2014.05.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 05/16/2014] [Accepted: 05/19/2014] [Indexed: 12/21/2022]
|
127
|
Hiddinga HJ, Sakagashira S, Ishigame M, Madde P, Sanke T, Nanjo K, Kudva YC, Lee JJ, van Deursen J, Eberhardt NL. Expression of wild-type and mutant S20G hIAPP in physiologic knock-in mouse models fails to induce islet amyloid formation, but induces mild glucose intolerance. J Diabetes Investig 2014; 3:138-47. [PMID: 24843557 PMCID: PMC4020731 DOI: 10.1111/j.2040-1124.2011.00166.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Aims/Introduction: Human islet polypeptide S20G mutation (hIAPPS20G) is associated with earlier onset type 2 diabetes and increased amyloidogenicity and cytotoxicity in vitro vs wild‐type hIAPP (hIAPPWT), suggesting that amyloidogenesis may be pathogenic for type 2 diabetes. We compared the contributions of hIAPPS20G and hIAPPWT toward intra islet amyloid formation and development of type 2 diabetes in a unique physiologic knock‐in mouse model. Materials and Methods: We replaced the mouse IAPP gene (M allele) with hIAPPWT (W allele) and hIAPPS20G (G allele) via homologous recombination and backbred transgenic mice against C57Bl/6 strain 5 generations to minimize genetic variation. Mice (3 month old) were maintained on control (CD) or high fat diet (HFD) for 15 months and studied at 3 month intervals by oral glucose tolerance testing (OGTT) and pancreas histology to assess glucose homeostastis, amyloidogeneisis, islet mass, β cell replication, and apoptosis. Results: IAPP blood levels were indistinguishable in all mice. WW and GW mice maintained on both diets lacked intraislet amyloid at all ages. On both diets relative to MM controls WW and GW mice exhibit glucose intolerance (P < 0.008) with no differences in insulin secretion. However, GW mice secreted significantly more insulin (P < 0.03 that WW mice on both diets throughout the study. By 12 months on the high fat diet all mice increased their β cell mass about 3‐fold and were indistinguishable. Conclusions: Physiologic expression of hIAPPWT and hIAPPS20G in C57Bl/6 mice produces mild glucose intolerance with inappropriately normal insulin secretion that is independent of intraislet amyloid formation. (J Diabetes Invest, doi: 10.1111/j.2040‐1124.2011.00166.x, 2011)
Collapse
Affiliation(s)
| | | | - Masayuki Ishigame
- The First Department of Medicine, Wakayama University of Medical Science
| | | | - Tokio Sanke
- Department of Clinical Laboratory Medicine, Wakayama Medical University, Wakayama, Japan
| | - Kishio Nanjo
- The First Department of Medicine, Wakayama University of Medical Science
| | - Yogish C Kudva
- Department of Medicine/Divisions of Endocrinology ; Human Cellular Therapy Laboratory, Mayo Clinic Rochester, Rochester, MN
| | - James J Lee
- Department of Biochemistry/Molecular Biology, Mayo Clinic Scottsdale, Scottsdale, AZ, USA
| | | | - Norman L Eberhardt
- Department of Medicine/Divisions of Endocrinology ; Biochemistry/Molecular Biology
| |
Collapse
|
128
|
Shimodaira M, Niwa T, Nakajima K, Kobayashi M, Hanyu N, Nakayama T. Serum Triglyceride Levels Correlated with the Rate of Change in Insulin Secretion Over Two Years in Prediabetic Subjects. ANNALS OF NUTRITION AND METABOLISM 2014; 64:38-43. [DOI: 10.1159/000360012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 01/26/2014] [Indexed: 11/19/2022]
|
129
|
Zhu B, Gong Y, Chen P, Zhang H, Zhao T, Li P. Increased DNase I activity in diabetes might be associated with injury of pancreas. Mol Cell Biochem 2014; 393:23-32. [PMID: 24676545 DOI: 10.1007/s11010-014-2043-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 03/14/2014] [Indexed: 02/04/2023]
Abstract
DNase I is an endonuclease responsible to destruction of chromatin during apoptosis. However, its role in diabetes is still unclear. With blood samples from our previous study related to type 2 diabetes, we examined the DNase I activity in the serum of these patients and the role of DNase I in the injury of pancreas was further investigated in rats and INS-1 cells. Serum and pancreatic tissues from human and rats were used for the study. Insulin resistance and diabetes were induced by high fat diet and STZ injection, respectively. DNase I activity was determined by radial enzyme-diffusion method. Expressions of DNase I and caspase-3 in pancreas were determined in rat pancreatic tissues and INS-1 cells. Apoptosis of INS-1 cells was determined by both TUNEL assay and Flow Cytometry. There was a significant elevation of DNase I activity in serum of patients with type 2 diabetes and rats with STZ injection. Moreover, increase in DNase I expression was observed in the pancreas of diabetic person and rats. Furthermore, high glucose induced both DNase I and caspase-3 expression and at the same time increased apoptosis rate of INS-1 cells. In conclusion, elevated DNase I in diabetes may be related to pancreatic injury and could be one of the causes that induce diabetes.
Collapse
Affiliation(s)
- Bin Zhu
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | | | | | | | | | | |
Collapse
|
130
|
Takahashi K, Furuya F, Shimura H, Kaneshige M, Kobayashi T. Impaired oxidative endoplasmic reticulum stress response caused by deficiency of thyroid hormone receptor α. J Biol Chem 2014; 289:12485-93. [PMID: 24644288 DOI: 10.1074/jbc.m113.544122] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Thyroid hormone receptor α (TRα) is critical to postnatal pancreatic β-cell maintenance. To investigate the association between TRα and the survival of pancreatic β-cells under endoplasmic reticulum (ER) stress, the expression of endogenous TRα was inhibited by infection with an adenovirus expressing double-stranded short hairpin RNA against TRα (AdshTRα). In control adenovirus-infected pancreatic β-cells, palmitate enhanced the expression of activating transcription factor 4 (ATF4) and heme oxygenase 1, which facilitates adaptation to oxidative ER stress. However, in AdshTRα-infected pancreatic β-cells, palmitate did not induce ATF4-mediated integrated stress response, and oxidative stress-associated apoptotic cell death was significantly enhanced. TRα-deficient mice or wild-type mice (WT) were fed a high fat diet (HFD) for 30 weeks, and the effect of oxidative ER stress on pancreatic β-cells was analyzed. HFD-treated TRα-deficient mice had high blood glucose levels and low plasma insulin levels. In HFD-treated TRα-deficient mice, ATF4 was not induced, and apoptosis was enhanced compared with HFD-treated WT mice. Furthermore, the expression level of 8-hydroxydeoxyguanosine, an oxidative stress marker, was enhanced in the β-cells of HFD-treated TRα-deficient mice. These results indicate that endogenous TRα plays an important role for the expression of ATF4 and facilitates reduced apoptosis in pancreatic β-cells under ER stress.
Collapse
Affiliation(s)
- Kazuya Takahashi
- From the Third Department of Internal Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo-shi, Yamanashi 409-3898, Japan and
| | | | | | | | | |
Collapse
|
131
|
Apoptosis induced by islet amyloid polypeptide soluble oligomers is neutralized by diabetes-associated specific antibodies. Sci Rep 2014; 4:4267. [PMID: 24589570 PMCID: PMC3940978 DOI: 10.1038/srep04267] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 02/05/2014] [Indexed: 11/24/2022] Open
Abstract
Soluble oligomeric assemblies of amyloidal proteins appear to act as major pathological agents in several degenerative disorders. Isolation and characterization of these oligomers is a pivotal step towards determination of their pathological relevance. Here we describe the isolation of Type 2 diabetes-associated islet amyloid polypeptide soluble cytotoxic oligomers; these oligomers induced apoptosis in cultured pancreatic cells, permeated model lipid vesicles and interacted with cell membranes following complete internalization. Moreover, antibodies which specifically recognized these assemblies, but not monomers or amyloid fibrils, were exclusively identified in diabetic patients and were shown to neutralize the apoptotic effect induced by these oligomers. Our findings support the notion that human IAPP peptide can form highly toxic oligomers. The presence of antibodies identified in the serum of diabetic patients confirms the pathological relevance of the oligomers. In addition, the newly identified structural epitopes may also provide new mechanistic insights and a molecular target for future therapy.
Collapse
|
132
|
Guadarrama-López AL, Valdés-Ramos R, Martínez-Carrillo BE. Type 2 diabetes, PUFAs, and vitamin D: their relation to inflammation. J Immunol Res 2014; 2014:860703. [PMID: 24741627 PMCID: PMC3987931 DOI: 10.1155/2014/860703] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 01/08/2014] [Indexed: 02/06/2023] Open
Abstract
Chronic diseases have become one of the most important public health problems, due to their high costs for treatment and prevention. Until now, researchers have considered that the etiology of Type 2 diabetes mellitus (T2DM) is multifactorial. Recently, the study of the innate immune system has offered an explanation model of the pathogenesis of T2DM. On the other hand, there is evidence about the beneficial effect of polyunsaturated fatty acids (PUFA) n-3 and n-6 in patients with chronic inflammatory diseases including diabetes. Furthermore, high vitamin D plasmatic concentrations have been associated with the best performance of pancreatic β cells and the improving of this disease. In conclusion, certain fatty acids in the adequate proportion as well as 25-hydroxivitamin D can modulate the inflammatory response in diabetic people, modifying the evolution of this disease.
Collapse
Affiliation(s)
- Ana L. Guadarrama-López
- Center for Research and Graduate Studies in Health Sciences, Faculty of Medicine, Autonomous University of the State of Mexico, Paseo Tollocan Esquina, Jesús Carranza, Col. Moderna de la Cruz Toluca, 50180 México, MEX, Mexico
| | - Roxana Valdés-Ramos
- Center for Research and Graduate Studies in Health Sciences, Faculty of Medicine, Autonomous University of the State of Mexico, Paseo Tollocan Esquina, Jesús Carranza, Col. Moderna de la Cruz Toluca, 50180 México, MEX, Mexico
| | - Beatríz E. Martínez-Carrillo
- Center for Research and Graduate Studies in Health Sciences, Faculty of Medicine, Autonomous University of the State of Mexico, Paseo Tollocan Esquina, Jesús Carranza, Col. Moderna de la Cruz Toluca, 50180 México, MEX, Mexico
| |
Collapse
|
133
|
Migliorini A, Bader E, Lickert H. Islet cell plasticity and regeneration. Mol Metab 2014; 3:268-74. [PMID: 24749056 PMCID: PMC3986629 DOI: 10.1016/j.molmet.2014.01.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 01/13/2014] [Accepted: 01/15/2014] [Indexed: 01/09/2023] Open
Abstract
Insulin-dependent diabetes is a complex multifactorial disorder characterized by loss or dysfunction of β-cells resulting in failure of metabolic control. Even though type 1 and 2 diabetes differ in their pathogenesis, restoring β-cell function is the overarching goal for improved therapy of both diseases. This could be achieved either by cell-replacement therapy or by triggering intrinsic regenerative mechanisms of the pancreas. For type 1 diabetes, a combination of β-cell replacement and immunosuppressive therapy could be a curative treatment, whereas for type 2 diabetes enhancing endogenous mechanisms of β-cell regeneration might optimize blood glucose control. This review will briefly summarize recent efforts to allow β-cell regeneration where the most promising approaches are currently (1) increasing β-cell self-replication or neogenesis from ductal progenitors and (2) conversion of α-cells into β-cells.
Collapse
Affiliation(s)
- Adriana Migliorini
- Institute of Stem Cell Research, Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Am Parkring 11, D-85748, Business Campus Garching, Germany
| | - Erik Bader
- Institute of Stem Cell Research, Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Am Parkring 11, D-85748, Business Campus Garching, Germany
- Research Unit of Molecular Epidemiology Institute of Epidemiology II, Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Heiko Lickert
- Institute of Stem Cell Research, Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Am Parkring 11, D-85748, Business Campus Garching, Germany
- German Center for Diabetes Research (DZD), Germany
- Corresponding author at: Helmholtz Zentrum München, Am Parkring 11, D-85748, Business Campus Garching, Germany. Tel.: +49 89 3187 3760; fax: +49 89 3187 2060.
| |
Collapse
|
134
|
de Haan W, Bhattacharjee A, Ruddle P, Kang MH, Hayden MR. ABCA1 in adipocytes regulates adipose tissue lipid content, glucose tolerance, and insulin sensitivity. J Lipid Res 2014; 55:516-23. [PMID: 24443560 DOI: 10.1194/jlr.m045294] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Adipose tissue contains one of the largest reservoirs of cholesterol in the body. Adipocyte dysfunction in obesity is associated with intracellular cholesterol accumulation, and alterations in cholesterol homeostasis have been shown to alter glucose metabolism in cultured adipocytes. ABCA1 plays a major role in cholesterol efflux, suggesting a role for ABCA1 in maintaining cholesterol homeostasis in the adipocyte. However, the impact of adipocyte ABCA1 on adipose tissue function and glucose metabolism is unknown. Our aim was to determine the impact of adipocyte ABCA1 on adipocyte lipid metabolism, body weight, and glucose metabolism in vivo. To address this, we used mice lacking ABCA1 specifically in adipocytes (ABCA1(-ad/-ad)). When fed a high-fat, high-cholesterol diet, ABCA1(-ad/-ad) mice showed increased cholesterol and triglyceride stores in adipose tissue, developed enlarged fat pads, and had increased body weight. Associated with these phenotypic changes, we observed significant changes in the expression of genes involved in cholesterol and glucose homeostasis, including ldlr, abcg1, glut-4, adiponectin, and leptin. ABCA1(-ad/-ad) mice also demonstrated impaired glucose tolerance, lower insulin sensitivity, and decreased insulin secretion. We conclude that ABCA1 in adipocytes influences adipocyte lipid metabolism, body weight, and whole-body glucose homeostasis.
Collapse
Affiliation(s)
- Willeke de Haan
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | |
Collapse
|
135
|
Ludwig B, Barthel A, Reichel A, Block NL, Ludwig S, Schally AV, Bornstein SR. Modulation of the pancreatic islet-stress axis as a novel potential therapeutic target in diabetes mellitus. VITAMINS AND HORMONES 2014; 95:195-222. [PMID: 24559919 DOI: 10.1016/b978-0-12-800174-5.00008-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Loss of pancreatic islet function and insulin-producing beta cell mass is a central hallmark in the pathogenesis of both type 1 and type 2 diabetes. While in type 1 diabetes this phenomenon is due to an extensive destruction of beta cells caused by an autoimmune process, the mechanisms resulting in beta cell failure in type 2 diabetes are different and less clear. Also, beta cell destruction in type 1 diabetes occurs early and is the initial step in the pathogenetic process, while beta cell loss in type 2 diabetes after an initial phase of hyperinsulinemia due to the underlying insulin resistance occurs relatively late and it is less pronounced. Since diabetes mellitus is the most frequent endocrine disease, with an increasing high prevalence worldwide, huge efforts have been made over the past many decades to identify predisposing genetic, environmental, and nutritional factors in order to develop effective strategies to prevent the disease. In parallel, extensive studies in different cell systems and animal models have helped to elucidate our understanding of the physiologic function of islets and to gain insight into the immunological and non-immunological mechanisms of beta cell destruction and failure. Furthermore, currently emerging concepts of beta cell regeneration (e.g., the restoration of the beta cell pool by regenerative, proliferative and antiapoptotic processes, and recovery of physiologic islet function) apparently is yielding the first promising results. Recent insights into the complex endocrine and paracrine mechanisms regulating the physiologic function of pancreatic islets, as well as beta cell life and death, constitute an essential part of this new and exciting area of diabetology. For example, understanding of the physiological role of glucagon-like peptide 1 has resulted in the successful clinical implementation of incretin-based therapies over the last years. Further, recent data suggesting paracrine effects of growth hormone-releasing hormone and corticotropin-releasing hormone on the regulation of pancreatic islet function, survival, and proliferation as well as on local glucocorticoid metabolism provide evidence for a potential role of the pancreatic islet-stress axis in the pathophysiology of diabetes mellitus. In this chapter, we provide a comprehensive overview of current preventive and regenerative concepts as a basis for the development of novel therapeutic approaches to the treatment of diabetes mellitus. A particular focus is given on the potential of the pancreatic islet-stress axis in the development of novel regenerative strategies.
Collapse
Affiliation(s)
- Barbara Ludwig
- Department of Medicine III, University Hospital Carl Gustav Carus, Dresden, Germany; The Paul Langerhans Institute, Dresden, Germany; Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany.
| | - Andreas Barthel
- Department of Medicine III, University Hospital Carl Gustav Carus, Dresden, Germany; Endokrinologikum Ruhr, Bochum, Germany
| | - Andreas Reichel
- Department of Medicine III, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Norman L Block
- Department of Pathology, University of Miami Miller School of Medicine, Miami, Florida, USA; Department of Medicine, Division of Hematology-Oncology, University of Miami Miller School of Medicine, Miami, Florida, USA; Veterans Administration Medical Center, Miami, Florida, USA
| | - Stefan Ludwig
- Department of Visceral, Thorax and Vascular Surgery, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Andrew V Schally
- Department of Pathology, University of Miami Miller School of Medicine, Miami, Florida, USA; Department of Medicine, Division of Endocrinology, University of Miami Miller School of Medicine, Miami, Florida, USA; Department of Medicine, Division of Hematology-Oncology, University of Miami Miller School of Medicine, Miami, Florida, USA; Veterans Administration Medical Center, Miami, Florida, USA
| | - Stefan R Bornstein
- Department of Medicine III, University Hospital Carl Gustav Carus, Dresden, Germany; The Paul Langerhans Institute, Dresden, Germany; Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany
| |
Collapse
|
136
|
Zhou J, Huang K, Lei XG. Selenium and diabetes--evidence from animal studies. Free Radic Biol Med 2013; 65:1548-1556. [PMID: 23867154 PMCID: PMC3859733 DOI: 10.1016/j.freeradbiomed.2013.07.012] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 07/06/2013] [Accepted: 07/09/2013] [Indexed: 02/07/2023]
Abstract
Whereas selenium was found to act as an insulin mimic and to be antidiabetic in earlier studies, recent animal experiments and human trials have shown an unexpected risk of prolonged high Se intake in potentiating insulin resistance and type 2 diabetes. Elevating dietary Se intake (0.4 to 3.0mg/kg of diet) above the nutrient requirements, similar to overproduction of selenoproteins, led to insulin resistance and/or diabetes-like phenotypes in mice, rats, and pigs. Although its diabetogenic mechanism remains unclear, high Se intake elevated activity or production of selenoproteins including GPx1, MsrB1, SelS, and SelP. This upregulation diminished intracellular reactive oxygen species and then dysregulated key regulators of β cells and insulin synthesis and secretion, leading to chronic hyperinsulinemia. Overscavenging intracellular H2O2 also attenuated oxidative inhibition of protein tyrosine phosphatases and suppressed insulin signaling. High Se intake might affect expression and/or function of key regulators of glycolysis, gluconeogenesis, and lipogenesis. Future research is needed to find out if certain forms of Se metabolites in addition to selenoproteins and if mechanisms other than intracellular redox control mediate the diabetogenic effects of high Se intake. Furthermore, a potential interactive role of high Se intake in the interphase of carcinogenesis and diabetogenesis should be explored to make optimal use of Se in human nutrition and health.
Collapse
Affiliation(s)
- Jun Zhou
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Kaixun Huang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xin Gen Lei
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
137
|
Watve M, Bodas A, Diwekar M. Altered autonomic inputs as a cause of pancreatic β-cell amyloid. Med Hypotheses 2013; 82:49-53. [PMID: 24321738 DOI: 10.1016/j.mehy.2013.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 11/03/2013] [Indexed: 01/09/2023]
Abstract
A partial loss of β-cell mass and β-cell dysfunction in Type 2 Diabetes Mellitus (T2DM) is associated with amyloid deposition but whether it is causal or consequential is debated. Although the in vitro polymerization of amylin has been studied in detail, the exact trigger for the mechanism in vivo has not been identified. One suggestion is that an increased load on β-cells results in inefficient handling of proteins leading to misfolding and aggregation, but this hypothesis is faced with certain paradoxes. We suggest an alternative mechanism based on the assumption that polymerization is a spontaneous process. The concentration of the polypeptide in β-cell granules is shown to be sufficient to allow polymerization. However if the rate of turnover in normal cells is greater than the rate of polymerization, amyloid deposition will not be observed. If this is true, it follows that amyloid deposition could be a result of increased retention time of amylin in the β-cell granules. In T2D, the sympathetic inputs are known to increase which could result in suppression of the secretion process. The increase in the retention time due to this suppression can allow polymerization. In addition to this in a prediabetic state parasympathetic stimulation increases β-cell proliferation. This reduces the insulin demand per cell thereby increasing the mean retention time. Thus a combination of contrasting actions of sympathetic and parasympathetic systems could lead to increase in the amyloid deposition. We suggest testable predictions of the alternative hypotheses and the lines of research needed to test them.
Collapse
Affiliation(s)
- Milind Watve
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Arushi Bodas
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Manawa Diwekar
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| |
Collapse
|
138
|
Mechanism of IAPP amyloid fibril formation involves an intermediate with a transient β-sheet. Proc Natl Acad Sci U S A 2013; 110:19285-90. [PMID: 24218609 DOI: 10.1073/pnas.1314481110] [Citation(s) in RCA: 225] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Amyloid formation is implicated in more than 20 human diseases, yet the mechanism by which fibrils form is not well understood. We use 2D infrared spectroscopy and isotope labeling to monitor the kinetics of fibril formation by human islet amyloid polypeptide (hIAPP or amylin) that is associated with type 2 diabetes. We find that an oligomeric intermediate forms during the lag phase with parallel β-sheet structure in a region that is ultimately a partially disordered loop in the fibril. We confirm the presence of this intermediate, using a set of homologous macrocyclic peptides designed to recognize β-sheets. Mutations and molecular dynamics simulations indicate that the intermediate is on pathway. Disrupting the oligomeric β-sheet to form the partially disordered loop of the fibrils creates a free energy barrier that is the origin of the lag phase during aggregation. These results help rationalize a wide range of previous fragment and mutation studies including mutations in other species that prevent the formation of amyloid plaques.
Collapse
|
139
|
Barbosa-Sampaio HC, Liu B, Drynda R, Rodriguez de Ledesma AM, King AJ, Bowe JE, Malicet C, Iovanna JL, Jones PM, Persaud SJ, Muller DS. Nupr1 deletion protects against glucose intolerance by increasing beta cell mass. Diabetologia 2013; 56:2477-86. [PMID: 23900510 DOI: 10.1007/s00125-013-3006-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 07/05/2013] [Indexed: 01/08/2023]
Abstract
AIMS/HYPOTHESIS The stress-activated nuclear protein transcription regulator 1 (NUPR1) is induced in response to glucose and TNF-α, both of which are elevated in type 2 diabetes, and Nupr1 has been implicated in cell proliferation and apoptosis cascades. We used Nupr1(-/-) mice to study the role of Nupr1 in glucose homeostasis under normal conditions and following maintenance on a high-fat diet (HFD). METHODS Glucose homeostasis in vivo was determined by measuring glucose tolerance, insulin sensitivity and insulin secretion. Islet number, morphology and beta cell area were assessed by immunofluorescence and morphometric analysis, and islet cell proliferation was quantified by analysis of BrdU incorporation. Islet gene expression was measured by gene arrays and quantitative RT-PCR, and gene promoter activities were monitored by measuring luciferase activity. RESULTS Nupr1(-/-) mice had increased beta cell mass as a consequence of enhanced islet cell proliferation. Nupr1-dependent suppression of beta cell Ccna2 and Tcf19 promoter activities was identified as a mechanism through which Nupr1 may regulate beta cell cycle progression. Nupr1(-/-) mice maintained on a normal diet were mildly insulin resistant, but were normoglycaemic with normal glucose tolerance because of compensatory increases in basal and glucose-induced insulin secretion. Nupr1 deletion was protective against HFD-induced obesity, insulin resistance and glucose intolerance. CONCLUSIONS/INTERPRETATION Inhibition of NUPR1 expression or activity has the potential to protect against the metabolic defects associated with obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Helena C Barbosa-Sampaio
- Diabetes Research Group, Division of Diabetes and Nutritional Sciences, School of Medicine, King's College London, 2.9N Hodgkin Building, Guy's Campus, London, SE1 1UL, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Gonzalez A, Merino B, Marroquí L, Ñeco P, Alonso-Magdalena P, Caballero-Garrido E, Vieira E, Soriano S, Gomis R, Nadal A, Quesada I. Insulin hypersecretion in islets from diet-induced hyperinsulinemic obese female mice is associated with several functional adaptations in individual β-cells. Endocrinology 2013; 154:3515-24. [PMID: 23867214 DOI: 10.1210/en.2013-1424] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Insulin resistance and hyperinsulinemia are generally associated with obesity. Obese nondiabetic individuals develop a compensatory β-cell response to adjust insulin levels to the increased demand, maintaining euglycemia. Although several studies indicate that this compensation relies on structural changes, the existence of β-cell functional adaptations is incompletely understood. Here, we fed female mice with a high-fat diet (HFD) for 12 weeks. These animals became obese, hyperinsulinemic, insulin-resistant, and mildly glucose-intolerant while fed, and fasting glycemia was comparable in HFD and control mice. Islets from HFD animals exhibited increased β-cell mass and hypertrophy. Additionally, they had enhanced insulin gene expression and content and augmented glucose-induced insulin secretion. Electrophysiological examination of β-cells from both groups showed no differences in KATP channel open probability and conductance. However, action potentials elicited by glucose had larger amplitude in obese mice. Glucose-induced Ca²⁺ signals in intact islets, in isolated β-cells, and individual β-cells within islets were also increased in HFD mice. Additionally, a higher proportion of glucose-responsive cells was present in obese mice. In contrast, whole-cell Ca²⁺ current densities were similar in both groups. Capacitance measurements showed that depolarization-evoked exocytosis was enhanced in HFD β-cells compared with controls. Although this augment was not significant when capacitance increases of the whole β-cell population were normalized to cell size, the exocytotic output varied significantly when β-cells were distributed by size ranges. All these findings indicate that β-cell functional adaptations are present in the islet compensatory response to obesity.
Collapse
Affiliation(s)
- Alejandro Gonzalez
- Universidad Miguel Hernández, Avenida de la Universidad s/n, 03202 Elche, Spain.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Abstract
Over the past two decades, insulin resistance has been considered essential to the aetiology of type 2 diabetes mellitus (T2DM). However, insulin resistance does not lead to T2DM unless it is accompanied by pancreatic β-cell dysfunction, because healthy β cells can compensate for insulin resistance by increasing in number and functional output. Furthermore, β-cell mass is decreased in patients with diabetes mellitus, suggesting a primary role for β-cell dysfunction in the pathogenesis of T2DM. The dysfunction of β cells can develop through various mechanisms, including oxidative, endoplasmic reticulum or hypoxic stress, as well as via induction of cytokines; these processes lead to apoptosis, uncontrolled autophagy and failure to proliferate. Transdifferentiation between β cells and α cells occurs under certain pathological conditions, and emerging evidence suggests that β-cell dedifferentiation or transdifferentiation might account for the reduction in β-cell mass observed in patients with severe T2DM. FOXO1, a key transcription factor in insulin signalling, is implicated in these mechanisms. This Review discusses advances in our understanding of the contribution of FOXO1 signalling to the development of β-cell failure in T2DM.
Collapse
Affiliation(s)
- Tadahiro Kitamura
- Metabolic Signal Research Centre, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15, Showa-machi, Maebashi, Gunma 371-8512, Japan.
| |
Collapse
|
142
|
Oh YS, Lee YJ, Park K, Choi HH, Yoo S, Jun HS. Treatment with glucokinase activator, YH-GKA, increases cell proliferation and decreases glucotoxic apoptosis in INS-1 cells. Eur J Pharm Sci 2013; 51:137-45. [PMID: 24056026 DOI: 10.1016/j.ejps.2013.09.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 08/31/2013] [Accepted: 09/09/2013] [Indexed: 12/17/2022]
Abstract
Glucokinase (GK), an enzyme that phosphorylates glucose to form glucose-6-phosphate, has a role in regulating insulin secretion and proliferation in beta cells. GK activators (GKAs) have been developed as new therapies for type 2 diabetes. In this study, we evaluated the proliferation and anti-apoptotic actions of YH-GKA, a novel and potent GKA, in INS-1 pancreatic β-cells. YH-GKA treatment increased cell numbers at 3 mM glucose via upregulation of insulin receptor substrate-2 and subsequent activation of AKT/protein kinase B phosphorylation. YH-GKA also increased beta-catenin and cyclin D2 mRNA expression and inactivated GSK3β by increasing phosphorylation. These proliferative effects of YH-GKA were attenuated by IRS-2 downregulation. Moreover, YH-GKA reduced annexin-V-stained cells and expression levels of cleaved poly (ADP-ribose) polymerase and caspase-3 induced by glucotoxicity. YH-GKA inhibited apoptotic signaling via induction of ATP content, mitochondrial membrane potential, and citrate synthase activity and was correlated with changes of the mitochondrial function-related genes. YH-GKA also increased interaction between GK and voltage-dependent anion-selective channel protein. Our results suggest that the novel GKA, YH-GKA, promotes beta cell growth and prevents glucotoxic beta cell apoptosis. Therefore, YH-GKA may provide a therapy that compensates for beta cell loss in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Yoon Sin Oh
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, 7-45 Songdo-dong, Yeonsu-ku, Incheon, Republic of Korea; Gachon Medical Research Institute, Gil Hospital, 1198, Guwol-dong, Namdong-Gu, Incheon, Republic of Korea
| | | | | | | | | | | |
Collapse
|
143
|
Yu H, Zheng X, Zhang Z. Mechanism of Roux-en-Y gastric bypass treatment for type 2 diabetes in rats. J Gastrointest Surg 2013; 17:1073-83. [PMID: 23580087 PMCID: PMC3653054 DOI: 10.1007/s11605-013-2188-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 03/18/2013] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Roux-en-Y gastric bypass (RYGB) is a novel therapy for diabetes. We aimed to explore the therapeutic mechanism of RYGB. METHODS After RYGB, animal models were established, and gene expression profile of islets was assessed. Additionally, gastrointestinal hormones were measured using enzyme-linked immunosorbent assays. Ca(2+) was studied using confocal microscopy and patch-clamp technique. The morphology of islets and beta cells was observed using optical microscopy and electron microscopy. RESULTS RYGB was an effective treatment in diabetic rats. Expression profiling data showed that RYGB produced a new metabolic environment and that gene expression changed to adapt to the new environment. The differential expression of genes associated with hormones, Ca(2+) and cellular proliferation was closely related to RYGB and diabetes metabolism. Furthermore, the data verified that RYGB led to changes in hormone level and enhanced Ca(2+) concentration changes and Ca(2+) channel activity. Morphological data showed that RYGB induced the proliferation of islets and improved the function of beta cells. CONCLUSIONS RYGB promoted a new metabolic environment while triggering changes to adapt to the new environment. These changes promoted the cellular proliferation of islets and improved the function of beta cells. The quantity of beta cells increased, and their quality improved, ultimately leading to insulin secretion enhancement.
Collapse
Affiliation(s)
- Hongwei Yu
- School of Medicine, Tsinghua University, Beijing, People’s Republic of China
| | - Xiyan Zheng
- School of Medicine, Tsinghua University, Beijing, People’s Republic of China
| | - Zongming Zhang
- School of Medicine, Tsinghua University, Beijing, People’s Republic of China
- Department of Hepatobiliary Surgery, Futian Hospital, Guangdong Medical College, Shenzhen, People’s Republic of China
| |
Collapse
|
144
|
Suzuki T, Dai P, Hatakeyama T, Harada Y, Tanaka H, Yoshimura N, Takamatsu T. TGF-β Signaling Regulates Pancreatic β-Cell Proliferation through Control of Cell Cycle Regulator p27 Expression. Acta Histochem Cytochem 2013; 46:51-8. [PMID: 23720603 PMCID: PMC3661777 DOI: 10.1267/ahc.12035] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 01/31/2013] [Indexed: 02/06/2023] Open
Abstract
Proliferation of pancreatic β-cells is an important mechanism underlying β-cell mass adaptation to metabolic demands. Increasing β-cell mass by regeneration may ameliorate or correct both type 1 and type 2 diabetes, which both result from inadequate production of insulin by β-cells of the pancreatic islet. Transforming growth factor β (TGF-β) signaling is essential for fetal development and growth of pancreatic islets. In this study, we exposed HIT-T15, a clonal pancreatic β-cell line, to TGF-β signaling. We found that inhibition of TGF-β signaling promotes proliferation of the cells significantly, while TGF-β signaling stimulation inhibits proliferation of the cells remarkably. We confirmed that this proliferative regulation by TGF-β signaling is due to the changed expression of the cell cycle regulator p27. Furthermore, we demonstrated that there is no observed effect on transcriptional activity of p27 by TGF-β signaling. Our data show that TGF-β signaling mediates the cell-cycle progression of pancreatic β-cells by regulating the nuclear localization of CDK inhibitor, p27. Inhibition of TGF-β signaling reduces the nuclear accumulation of p27, and as a result this inhibition promotes proliferation of β-cells.
Collapse
Affiliation(s)
- Tomoyuki Suzuki
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine
- Department of Transplantation and Regenerative Surgery, Kyoto Prefectural University of Medicine
| | - Ping Dai
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine
| | - Tomoya Hatakeyama
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine
- Division of Digestive Surgery, Department of Surgery, Graduate School of Medical Science, Kyoto Prefectural University of Medicine
| | - Yoshinori Harada
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine
| | - Hideo Tanaka
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine
| | - Norio Yoshimura
- Department of Transplantation and Regenerative Surgery, Kyoto Prefectural University of Medicine
| | - Tetsuro Takamatsu
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine
| |
Collapse
|
145
|
Hamamoto S, Kanda Y, Shimoda M, Tatsumi F, Kohara K, Tawaramoto K, Hashiramoto M, Kaku K. Vildagliptin preserves the mass and function of pancreatic β cells via the developmental regulation and suppression of oxidative and endoplasmic reticulum stress in a mouse model of diabetes. Diabetes Obes Metab 2013; 15:153-63. [PMID: 22950702 PMCID: PMC3558804 DOI: 10.1111/dom.12005] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 06/26/2012] [Accepted: 09/02/2012] [Indexed: 01/10/2023]
Abstract
AIM We investigated the molecular mechanisms by which vildagliptin preserved pancreatic β cell mass and function. METHODS Morphological, biochemical and gene expression profiles of the pancreatic islets were investigated in male KK-A(y) -TaJcl(KK-A(y) ) and C57BL/6JJcl (B6) mice aged 8 weeks which received either vildagliptin or a vehicle for 4 weeks. RESULTS Body weight, food intake, fasting blood glucose, plasma insulin and active glucagon-like peptide-1 were unchanged with vildagliptin treatment in both mice. In KK-A(y) mice treated with vildagliptin, increased plasma triglyceride (TG) level and islet TG content were decreased, insulin sensitivity significantly improved, and the glucose tolerance ameliorated with increases in plasma insulin levels. Furthermore, vildagliptin increased glucose-stimulated insulin secretion, islet insulin content and pancreatic β cell mass in both strains. By vildagliptin, the expression of genes involved in cell differentiation/proliferation was upregulated in both strains, those related to apoptosis, endoplasmic reticulum stress and lipid synthesis was decreased and those related to anti-apoptosis and anti-oxidative stress was upregulated, in KK-A(y) mice. The morphological results were consistent with the gene expression profiles. CONCLUSION Vildagliptin increases β cell mass by not only directly affecting cell kinetics but also by indirectly reducing cell apoptosis, oxidative stress and endoplasmic reticulum stress in diabetic mice.
Collapse
Affiliation(s)
- S Hamamoto
- Division of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, Kurashiki, Japan
| | | | | | | | | | | | | | | |
Collapse
|
146
|
Abstract
The islet in type 2 diabetes (T2DM) is characterized by a deficit in β-cells, increased β-cell apoptosis, and extracellular amyloid deposits derived from islet amyloid polypeptide (IAPP). In the absence of longitudinal studies, it is unknown if the low β-cell mass in T2DM precedes diabetes onset (is a risk factor for diabetes) or develops as a consequence of the disease process. Although insulin resistance is a risk factor for T2DM, most individuals who are insulin resistant do not develop diabetes. By inference, an increased β-cell workload results in T2DM in some but not all individuals. We propose that the extent of the β-cell mass that develops during childhood may underlie subsequent successful or failed adaptation to insulin resistance in later life. We propose that a low innate β-cell mass in the face of subsequent insulin resistance may expose β-cells to a burden of insulin and IAPP biosynthetic demand that exceeds the cellular capacity for protein folding and trafficking. If this threshold is crossed, intracellular toxic IAPP membrane permeant oligomers (cylindrins) may form, compromising β-cell function and inducing β-cell apoptosis.
Collapse
Affiliation(s)
- Safia Costes
- Division of Endocrinology, Larry L. Hillblom Islet Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA.
| | | | | | | | | |
Collapse
|
147
|
Cao P, Marek P, Noor H, Patsalo V, Tu LH, Wang H, Abedini A, Raleigh DP. Islet amyloid: from fundamental biophysics to mechanisms of cytotoxicity. FEBS Lett 2013; 587:1106-18. [PMID: 23380070 DOI: 10.1016/j.febslet.2013.01.046] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 01/22/2013] [Accepted: 01/23/2013] [Indexed: 12/21/2022]
Abstract
Pancreatic islet amyloid is a characteristic feature of type 2 diabetes. The major protein component of islet amyloid is the polypeptide hormone known as islet amyloid polypeptide (IAPP, or amylin). IAPP is stored with insulin in the β-cell secretory granules and is released in response to the stimuli that lead to insulin secretion. IAPP is normally soluble and is natively unfolded in its monomeric state, but forms islet amyloid in type 2 diabetes. Islet amyloid is not the cause of type 2 diabetes, but it leads to β-cell dysfunction and cell death, and contributes to the failure of islet cell transplantation. The mechanism of IAPP amyloid formation is not understood and the mechanisms of cytotoxicity are not fully defined.
Collapse
Affiliation(s)
- Ping Cao
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | | | | | | | | | | | | | | |
Collapse
|
148
|
Abedini A, Schmidt AM. Mechanisms of islet amyloidosis toxicity in type 2 diabetes. FEBS Lett 2013; 587:1119-27. [PMID: 23337872 DOI: 10.1016/j.febslet.2013.01.017] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 01/10/2013] [Accepted: 01/10/2013] [Indexed: 12/19/2022]
Abstract
Amyloid formation by the neuropancreatic hormone, islet amyloid polypeptide (IAPP or amylin), one of the most amyloidogenic sequences known, leads to islet amyloidosis in type 2 diabetes and to islet transplant failure. Under normal conditions, IAPP plays a role in the maintenance of energy homeostasis by regulating several metabolic parameters, such as satiety, blood glucose levels, adiposity and body weight. The mechanisms of IAPP amyloid formation, the nature of IAPP toxic species and the cellular pathways that lead to pancreatic β-cell toxicity are not well characterized. Several mechanisms of toxicity, including receptor and non-receptor-mediated events, have been proposed. Analogs of IAPP have been approved for the treatment of diabetes and are under investigation for the treatment of obesity.
Collapse
Affiliation(s)
- Andisheh Abedini
- Diabetes Research Program, Division of Endocrinology, Department of Medicine, New York University Medical Center, 550 First Avenue, Smilow 906, New York, NY 10016, USA.
| | | |
Collapse
|
149
|
Gastrointestinal Tract and Endocrine System. Regen Med 2013. [DOI: 10.1007/978-94-007-5690-8_39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
150
|
Lei X, Bone RN, Ali T, Wohltmann M, Gai Y, Goodwin KJ, Bohrer AE, Turk J, Ramanadham S. Genetic modulation of islet β-cell iPLA₂β expression provides evidence for its impact on β-cell apoptosis and autophagy. Islets 2013; 5:29-44. [PMID: 23411472 PMCID: PMC3662380 DOI: 10.4161/isl.23758] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
β-cell apoptosis is a significant contributor to β-cell dysfunction in diabetes and ER stress is among the factors that contributes to β-cell death. We previously identified that the Ca²⁺-independent phospholipase A₂β (iPLA₂β), which in islets is localized in β-cells, participates in ER stress-induced β-cell apoptosis. Here, direct assessment of iPLA₂β role was made using β-cell-specific iPLA₂β overexpressing (RIP-iPLA₂β-Tg) and globally iPLA₂β-deficient (iPLA₂β-KO) mice. Islets from Tg, but not KO, express higher islet iPLA₂β and neutral sphingomyelinase, decrease in sphingomyelins, and increase in ceramides, relative to WT group. ER stress induces iPLA₂β, ER stress factors, loss of mitochondrial membrane potential (∆Ψ), caspase-3 activation, and β-cell apoptosis in the WT and these are all amplified in the Tg group. Surprisingly, β-cells apoptosis while reduced in the KO is higher than in the WT group. This, however, was not accompanied by greater caspase-3 activation but with larger loss of ∆Ψ, suggesting that iPLA₂β deficiency impacts mitochondrial membrane integrity and causes apoptosis by a caspase-independent manner. Further, autophagy, as reflected by LC3-II accumulation, is increased in Tg and decreased in KO, relative to WT. Our findings suggest that (1) iPLA₂β impacts upstream (UPR) and downstream (ceramide generation and mitochondrial) pathways in β-cells and (2) both over- or under-expression of iPLA₂β is deleterious to the β-cells. Further, we present for the first time evidence for potential regulation of autophagy by iPLA₂β in islet β-cells. These findings support the hypothesis that iPLA₂β induction under stress, as in diabetes, is a key component to amplifying β-cell death processes.
Collapse
Affiliation(s)
- Xiaoyong Lei
- Department of Cell, Developmental, and Integrative Biology; University of Alabama at Birmingham; Birmingham, AL USA
| | - Robert N. Bone
- Department of Pathology; University of Alabama at Birmingham; Birmingham, AL USA
| | - Tomader Ali
- Department of Cell, Developmental, and Integrative Biology; University of Alabama at Birmingham; Birmingham, AL USA
| | - Mary Wohltmann
- Department of Medicine; Mass Spectrometry Resource; Division of Endocrinology, Metabolism and Lipid Research; Washington University School of Medicine; St. Louis, MO USA
| | - Ying Gai
- Department of Cell, Developmental, and Integrative Biology; University of Alabama at Birmingham; Birmingham, AL USA
| | - Karen J. Goodwin
- Department of Cell, Developmental, and Integrative Biology; University of Alabama at Birmingham; Birmingham, AL USA
| | - Alan E. Bohrer
- Department of Medicine; Mass Spectrometry Resource; Division of Endocrinology, Metabolism and Lipid Research; Washington University School of Medicine; St. Louis, MO USA
| | - John Turk
- Department of Medicine; Mass Spectrometry Resource; Division of Endocrinology, Metabolism and Lipid Research; Washington University School of Medicine; St. Louis, MO USA
| | - Sasanka Ramanadham
- Department of Cell, Developmental, and Integrative Biology; University of Alabama at Birmingham; Birmingham, AL USA
- Correspondence to: Sasanka Ramanadham,
| |
Collapse
|