101
|
Conte FL, Santiago KB, Conti BJ, Cardoso EDO, Oliveira LPG, Feltran GDS, Zambuzzi WF, Golim MDA, Cruz MT, Sforcin JM. Propolis from southeastern Brazil produced by Apis mellifera affects innate immunity by modulating cell marker expression, cytokine production and intracellular pathways in human monocytes. J Pharm Pharmacol 2020; 73:135-144. [PMID: 33793799 DOI: 10.1093/jpp/rgaa023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 10/15/2020] [Indexed: 12/28/2022]
Abstract
OBJECTIVES Propolis is a bee-made product used for centuries due to its diverse biological properties, including its immunomodulatory action. This work aimed at investigating whether propolis may affect monocyte functions challenged with retinoic acid (RA), B subunit of Escherichia coli heat-labile enterotoxin (EtxB), human melanoma-associated antigen-1 (MAGE-1) and lipopolysaccharide (LPS). METHODS Monocytes from healthy donors were treated with the stimuli separately or in the presence of propolis. Cell viability was evaluated by MTT assay, cell marker expression was assessed by flow cytometry, cytokine production by ELISA, gene expression by RT-qPCR. KEY FINDINGS Propolis alone maintained TLR-2, TLR-4, HLA-DR, CD40 and CD80 expression in the monocytes; however, its combination with either MAGE-1 or LPS decreased CD40 expression triggered by the stimuli. Propolis maintained RA action on cell marker expression. Propolis inhibited TNF-α (with either EtxB or MAGE-1) and IL-6 (with either RA or MAGE-1), and increased IL-10 (with MAGE-1) production. Propolis downmodulated LC3 expression induced by LPS. It also induced a lower NF-kB expression than control cells and its combination with RA induced a higher expression than the stimulus alone. CONCLUSIONS Propolis potentially affected innate immunity by downmodulating the monocytes pro-inflammatory activity.
Collapse
Affiliation(s)
- Fernanda Lopes Conte
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Karina Basso Santiago
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Bruno José Conti
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Eliza de Oliveira Cardoso
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Lucas Pires Garcia Oliveira
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Geórgia da Silva Feltran
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Willian Fernando Zambuzzi
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Marjorie de Assis Golim
- Botucatu Blood Center, School of Medicine, São Paulo State University (UNESP), São Paulo, Brazil
| | - Maria Teresa Cruz
- Center for Neurosciences and Cellular Biology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - José Maurício Sforcin
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| |
Collapse
|
102
|
Good Cop, Bad Cop: The Opposing Effects of Macrophage Activation State on Maintaining or Damaging Functional β-Cell Mass. Metabolites 2020; 10:metabo10120485. [PMID: 33256225 PMCID: PMC7761161 DOI: 10.3390/metabo10120485] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/18/2020] [Accepted: 11/24/2020] [Indexed: 12/16/2022] Open
Abstract
Loss of functional β-cell mass is a hallmark of Type 1 and Type 2 Diabetes. Macrophages play an integral role in the maintenance or destruction of pancreatic β-cells. The effect of the macrophage β-cell interaction is dependent on the activation state of the macrophage. Macrophages can be activated across a spectrum, from pro-inflammatory to anti-inflammatory and tissue remodeling. The factors secreted by these differentially activated macrophages and their effect on β-cells define the effect on functional β-cell mass. In this review, the spectrum of macrophage activation is discussed, as are the positive and negative effects on β-cell survival, expansion, and function as well as the defined factors released from macrophages that impinge on functional β-cell mass.
Collapse
|
103
|
Bu F, Nie H, Zhu X, Wu T, Lin K, Zhao J, Huang J. A signature of 18 immune-related gene pairs to predict the prognosis of pancreatic cancer patients. IMMUNITY INFLAMMATION AND DISEASE 2020; 8:713-726. [PMID: 33128857 PMCID: PMC7654420 DOI: 10.1002/iid3.363] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 12/25/2022]
Abstract
Pancreatic cancer is one of the most lethal malignancies. With the promising prospects conveyed by immunotherapy in cancers, we aimed to construct an immune‐related gene pairs (IRGPs) signature to predict the prognosis of pancreatic cancer patients. We downloaded clinical and transcriptional data of pancreatic cancer patients from The Cancer Genome Atlas data set as the training group and GSE57495 data set as the verification group. We filtered immune‐related transcriptional data by IMMPORT. With the assistance of lasso penalized Cox regression, we constructed our prognostic IRGPs signature and divided all samples into high‐/low‐risk groups by receiver operating characteristic curve for further comparisons. The comparisons between high‐ and low‐risk groups including survival rate, multivariate, and univariate Cox proportional‐hazards analysis, infiltration of immune cells, and Gene Set Enrichment Analysis (GSEA). Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) are facilitated to analyze the proceedings in which our IRGPs signature may involve in. The results revealed that 18 IRGPs were defined as our prognostic signature. The prognostic value of this IRGPs signature was verified from the GSE57495 data set. We further demonstrated the independent prognostic value of this IRGPs signature. The contents of six immune cells between high‐/low‐risk groups were different, which was associated with the progression of diverse cancers. Results from GO, KEGG, and GSEA revealed that this IRGPs signature was involved in extracellular space, immune response, cancer pathways, cation channel, and gated channel activities. Evidently, this IRGPs signature will provide remarkable value for the therapy of pancreatic cancer patients.
Collapse
Affiliation(s)
- Fanqin Bu
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Han Nie
- Department of Vascular Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiaojian Zhu
- Zhongshan School of Medicine, Research Center of the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Ting Wu
- Infection Department of Guixi Traditional Chinese Medicine Hospital, Guixi, Jiangxi, China
| | - Kang Lin
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jiefeng Zhao
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jun Huang
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
104
|
Summers KM, Bush SJ, Hume DA. Network analysis of transcriptomic diversity amongst resident tissue macrophages and dendritic cells in the mouse mononuclear phagocyte system. PLoS Biol 2020; 18:e3000859. [PMID: 33031383 PMCID: PMC7575120 DOI: 10.1371/journal.pbio.3000859] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 10/20/2020] [Accepted: 09/08/2020] [Indexed: 02/07/2023] Open
Abstract
The mononuclear phagocyte system (MPS) is a family of cells including progenitors, circulating blood monocytes, resident tissue macrophages, and dendritic cells (DCs) present in every tissue in the body. To test the relationships between markers and transcriptomic diversity in the MPS, we collected from National Center for Biotechnology Information Gene Expression Omnibus (NCBI-GEO) a total of 466 quality RNA sequencing (RNA-seq) data sets generated from mouse MPS cells isolated from bone marrow, blood, and multiple tissues. The primary data were randomly downsized to a depth of 10 million reads and requantified. The resulting data set was clustered using the network analysis tool BioLayout. A sample-to-sample matrix revealed that MPS populations could be separated based upon tissue of origin. Cells identified as classical DC subsets, cDC1s and cDC2s, and lacking Fcgr1 (encoding the protein CD64) were contained within the MPS cluster, no more distinct than other MPS cells. A gene-to-gene correlation matrix identified large generic coexpression clusters associated with MPS maturation and innate immune function. Smaller coexpression gene clusters, including the transcription factors that drive them, showed higher expression within defined isolated cells, including monocytes, macrophages, and DCs isolated from specific tissues. They include a cluster containing Lyve1 that implies a function in endothelial cell (EC) homeostasis, a cluster of transcripts enriched in intestinal macrophages, and a generic lymphoid tissue cDC cluster associated with Ccr7. However, transcripts encoding Adgre1, Itgax, Itgam, Clec9a, Cd163, Mertk, Mrc1, Retnla, and H2-a/e (encoding class II major histocompatibility complex [MHC] proteins) and many other proposed macrophage subset and DC lineage markers each had idiosyncratic expression profiles. Coexpression of immediate early genes (for example, Egr1, Fos, Dusp1) and inflammatory cytokines and chemokines (tumour necrosis factor [Tnf], Il1b, Ccl3/4) indicated that all tissue disaggregation and separation protocols activate MPS cells. Tissue-specific expression clusters indicated that all cell isolation procedures also co-purify other unrelated cell types that may interact with MPS cells in vivo. Comparative analysis of RNA-seq and single-cell RNA-seq (scRNA-seq) data from the same lung cell populations indicated that MPS heterogeneity implied by global cluster analysis may be even greater at a single-cell level. This analysis highlights the power of large data sets to identify the diversity of MPS cellular phenotypes and the limited predictive value of surface markers to define lineages, functions, or subpopulations.
Collapse
Affiliation(s)
- Kim M. Summers
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Stephen J. Bush
- Nuffield Department of Clinical Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - David A. Hume
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
- * E-mail:
| |
Collapse
|
105
|
Karagianni AE, Lisowski ZM, Hume DA, Scott Pirie R. The equine mononuclear phagocyte system: The relevance of the horse as a model for understanding human innate immunity. Equine Vet J 2020; 53:231-249. [PMID: 32881079 DOI: 10.1111/evj.13341] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/07/2020] [Accepted: 08/13/2020] [Indexed: 12/11/2022]
Abstract
The mononuclear phagocyte system (MPS) is a family of cells of related function that includes bone marrow progenitors, blood monocytes and resident tissue macrophages. Macrophages are effector cells in both innate and acquired immunity. They are a major resident cell population in every organ and their numbers increase in response to proinflammatory stimuli. Their function is highly regulated by a wide range of agonists, including lymphokines, cytokines and products of microorganisms. Macrophage biology has been studied most extensively in mice, yet direct comparisons of rodent and human macrophages have revealed many functional differences. In this review, we provide an overview of the equine MPS, describing the variation in the function and phenotype of macrophages depending on their location and the similarities and differences between the rodent, human and equine immune response. We discuss the use of the horse as a large animal model in which to study macrophage biology and pathological processes shared with humans. Finally, following the recent update to the horse genome, facilitating further comparative analysis of regulated gene expression between the species, we highlight the importance of future transcriptomic macrophage studies in the horse, the findings of which may also be applicable to human as well as veterinary research.
Collapse
Affiliation(s)
- Anna E Karagianni
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Zofia M Lisowski
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - David A Hume
- Mater Research Institute-UQ, Translational Research Institute, Woolloongabba, QLD, Australia
| | - R Scott Pirie
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| |
Collapse
|
106
|
Kulshrestha A, Katara GK, Ibrahim SA, Riehl VE, Schneiderman S, Bilal M, Young AN, Levine S, Fleetwood S, Dolan J, Gilman-Sachs A, Beaman KD. In vivo anti-V-ATPase antibody treatment delays ovarian tumor growth by increasing antitumor immune responses. Mol Oncol 2020; 14:2436-2454. [PMID: 32797726 PMCID: PMC7530789 DOI: 10.1002/1878-0261.12782] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/19/2020] [Accepted: 08/12/2020] [Indexed: 12/18/2022] Open
Abstract
Tumor acidity is the key metabolic feature promoting cancer progression and is modulated by pH regulators on a cancer cell's surface that pump out excess protons/lactic acid for cancer cell survival. Neutralizing tumor acidity improves the therapeutic efficacy of current treatments including immunotherapies. Vacuolar-ATPase (V-ATPase) proton pumps encompass unique plasma membrane-associated subunit isoforms, making this molecule an important target for anticancer therapy. Here, we examined the in vivo therapeutic efficacy of an antibody (a2v-mAB) targeting specific V-ATPase-'V0a2' surface isoform in controlling ovarian tumor growth. In vitro a2v-mAb treatment inhibited the proton pump activity in ovarian cancer (OVCA) cells. In vivo intraperitoneal a2v-mAb treatment drastically delayed ovarian tumor growth with no measurable in vivo toxicity in a transplant tumor model. To explore the possible mechanism causing delayed tumor growth, histochemical analysis of the a2v-mAb-treated tumor tissues displayed high immune cell infiltration (M1-macrophages, neutrophils, CD103+ cells, and NK cells) and an enhanced antitumor response (iNOS, IFN-y, IL-1α) compared to control. There was marked decrease in CA-125-positive cancer cells and an enhanced active caspase-3 expression in a2v-mAb-treated tumors. RNA-seq analysis of a2v-mAb tumor tissues further revealed upregulation of apoptosis-related and toll-like receptor pathway-related genes. Indirect coculture of a2v-mAb-treated OVCA cells with human PBMCs in an unbuffered medium led to an enhanced gene expression of antitumor molecules IFN-y, IL-17, and IL-12-A in PBMCs, further validating the in vivo antitumor responses. In conclusion, V-ATPase inhibition using a monoclonal antibody directed against the V0a2 isoform increases antitumor immune responses and could therefore constitute an effective treatment strategy in OVCA.
Collapse
Affiliation(s)
- Arpita Kulshrestha
- Department of Microbiology and Immunology, Center for Cancer cell biology, Immunology and infection, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Gajendra K Katara
- Department of Microbiology and Immunology, Center for Cancer cell biology, Immunology and infection, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Safaa A Ibrahim
- Department of Microbiology and Immunology, Center for Cancer cell biology, Immunology and infection, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA.,Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Giza, Egypt
| | - Valerie E Riehl
- Department of Microbiology and Immunology, Center for Cancer cell biology, Immunology and infection, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Sylvia Schneiderman
- Department of Microbiology and Immunology, Center for Cancer cell biology, Immunology and infection, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Mahmood Bilal
- Department of Microbiology and Immunology, Center for Cancer cell biology, Immunology and infection, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Alexandria N Young
- Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, IL, USA
| | - Shayna Levine
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Sara Fleetwood
- Department of Microbiology and Immunology, Center for Cancer cell biology, Immunology and infection, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - James Dolan
- Department of Obstetrics & Gynecology, Advocate Lutheran General Hospital, Park Ridge, IL, USA
| | - Alice Gilman-Sachs
- Department of Microbiology and Immunology, Center for Cancer cell biology, Immunology and infection, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Kenneth D Beaman
- Department of Microbiology and Immunology, Center for Cancer cell biology, Immunology and infection, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA.,Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| |
Collapse
|
107
|
Borowczyk C, Laroche-Traineau J, Brevier J, Jacobin-Valat MJ, Marais S, Gerbaud E, Clofent-Sanchez G, Ottones F. Two-photon excited fluorescence (TPEF) may be useful to identify macrophage subsets based on their metabolic activity and cellular responses in atherosclerotic plaques. Atherosclerosis 2020; 309:47-55. [PMID: 32871394 DOI: 10.1016/j.atherosclerosis.2020.07.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/10/2020] [Accepted: 07/16/2020] [Indexed: 11/18/2022]
Abstract
BACKGROUND AND AIMS Atherosclerosis is characterized by the formation of lipid plaques within the arterial wall. In such plaques, the massive and continuous recruitment of circulating monocyte-derived macrophages induces inflammation, leading to plaque destabilization and rupture. Plaque vulnerability is linked to the presence of (i) a large lipid core that contains necrotic, "foamy" macrophages (FMs), (ii) a thin fibrous cap that cannot limit the prothrombotic lipid core, and potentially (iii) an imbalance between inflammatory and immunoregulatory macrophages. These opposite macrophage functions rely on the use of different energy pathways (glycolysis and oxidative phosphorylation, respectively) that may lead to different levels of the auto-fluorescent cofactors nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD). We hypothesized that high-resolution two-photon excited autofluorescence (TPEF) imaging of these cofactors may be used to monitor the metabolic activity and cellular responses of macrophages in atherosclerotic plaques. METHODS Different models of human FMs were generated by exposure to acetylated or oxidized low-density lipoproteins (LDL), with/without human carotid extract (CE). Their phenotype and optical properties were compared with those of extremely polarized macrophages, inflammatory M1 (MLPS+IFNγ) and immunoregulatory M2 (MIL4+IL13). RESULTS These FM models displayed an intermediate phenotype with low levels of M1 and M2 "specific" markers. Moreover, the NADH and FAD autofluorescence profiles of FMoxLDL ± CE cells were significantly distinct from those of M1 and M2 macrophages. CONCLUSIONS TPEF imaging may be useful to follow the metabolic activity and cellular responses of the different macrophage subtypes present in atherosclerotic plaques in order to detect vulnerable areas.
Collapse
Affiliation(s)
| | | | | | | | | | - Edouard Gerbaud
- Centre de Recherche Cardio Thoracique, INSERM U 1045, Bordeaux, France
| | | | | |
Collapse
|
108
|
Bush SJ, McCulloch MEB, Lisowski ZM, Muriuki C, Clark EL, Young R, Pridans C, Prendergast JGD, Summers KM, Hume DA. Species-Specificity of Transcriptional Regulation and the Response to Lipopolysaccharide in Mammalian Macrophages. Front Cell Dev Biol 2020; 8:661. [PMID: 32793601 PMCID: PMC7386301 DOI: 10.3389/fcell.2020.00661] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/01/2020] [Indexed: 02/02/2023] Open
Abstract
Mammalian macrophages differ in their basal gene expression profiles and response to the toll-like receptor 4 (TLR4) agonist, lipopolysaccharide (LPS). In human macrophages, LPS elicits a temporal cascade of transient gene expression including feed forward activators and feedback regulators that limit the response. Here we present a transcriptional network analysis of the response of sheep bone marrow-derived macrophages (BMDM) to LPS based upon RNA-seq at 0, 2, 4, 7, and 24 h post-stimulation. The analysis reveals a conserved transcription factor network with humans, and rapid induction of feedback regulators that constrain the response at every level. The gene expression profiles of sheep BMDM at 0 and 7 h post LPS addition were compared to similar data obtained from goat, cow, water buffalo, horse, pig, mouse and rat BMDM. This comparison was based upon identification of 8,200 genes annotated in all species and detected at >10TPM in at least one sample. Analysis of expression of transcription factors revealed a conserved transcriptional millieu associated with macrophage differentiation and LPS response. The largest co-expression clusters, including genes encoding cell surface receptors, endosome–lysosome components and secretory activity, were also expressed in all species and the combined dataset defines a macrophage functional transcriptome. All of the large animals differed from rodents in lacking inducible expression of genes involved in arginine metabolism and nitric oxide production. Instead, they expressed inducible transporters and enzymes of tryptophan and kynurenine metabolism. BMDM from all species expressed high levels of transcripts encoding transporters and enzymes involved in glutamine metabolism suggesting that glutamine is a major metabolic fuel. We identify and discuss transcripts that were uniquely expressed or regulated in rodents compared to large animals including ACOD1, CXC and CC chemokines, CD163, CLEC4E, CPM, CSF1, CSF2, CTSK, MARCO, MMP9, SLC2A3, SLC7A7, and SUCNR1. Conversely, the data confirm the conserved regulation of multiple transcripts for which there is limited functional data from mouse models and knockouts. The data provide a resource for functional annotation and interpretation of loci involved in susceptibility to infectious and inflammatory disease in humans and large animal species.
Collapse
Affiliation(s)
- Stephen J Bush
- Nuffield Department of Clinical Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Mary E B McCulloch
- The Roslin Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Zofia M Lisowski
- The Roslin Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Charity Muriuki
- The Roslin Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Emily L Clark
- The Roslin Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Rachel Young
- The Roslin Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Clare Pridans
- Centre for Inflammation Research, The University of Edinburgh, Edinburgh, United Kingdom.,Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | | | - Kim M Summers
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - David A Hume
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| |
Collapse
|
109
|
Effects of corticosteroids on COPD lung macrophage phenotype and function. Clin Sci (Lond) 2020; 134:751-763. [PMID: 32227160 DOI: 10.1042/cs20191202] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/17/2020] [Accepted: 03/30/2020] [Indexed: 02/06/2023]
Abstract
The numbers of macrophages are increased in the lungs of chronic obstructive pulmonary disease (COPD) patients. COPD lung macrophages have reduced ability to phagocytose microbes and efferocytose apoptotic cells. Inhaled corticosteroids (ICSs) are widely used anti-inflammatory drugs in COPD; however, their role beyond suppression of cytokine release has not been explored in COPD macrophages. We have examined the effects of corticosteroids on COPD lung macrophage phenotype and function. Lung macrophages from controls and COPD patients were treated with corticosteroids; effects on gene and protein expression of CD163, CD164, CD206, MERTK, CD64, CD80 and CD86 were studied. We also examined the effect of corticosteroids on the function of CD163, MERTK and cluster of differentiation 64 (CD64). Corticosteroid increased CD163, CD164, CD206 and MERTK expression and reduced CD64, CD80 and CD86 expression. We also observed an increase in the uptake of the haemoglobin-haptoglobin complex (CD163) from 59 up to 81% and an increase in efferocytosis of apoptotic neutrophils (MERTK) from 15 up to 28% following corticosteroid treatment. We observed no effect on bacterial phagocytosis. Corticosteroids alter the phenotype and function of COPD lung macrophages. Our findings suggest mechanisms by which corticosteroids exert therapeutic benefit in COPD, reducing iron available for bacterial growth and enhancing efferocytosis.
Collapse
|
110
|
Li X, Körner H, Liu X. Susceptibility to Intracellular Infections: Contributions of TNF to Immune Defense. Front Microbiol 2020; 11:1643. [PMID: 32760383 PMCID: PMC7374010 DOI: 10.3389/fmicb.2020.01643] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 06/24/2020] [Indexed: 12/11/2022] Open
Abstract
An interesting puzzle is the fact that an infection of a tumor necrosis factor α (TNF)-deficient host with pathogens such as bacteria or parasites that reside intracellularly inevitably ends fatally. Is this due to one specific role of TNF in the immune defense or are different functions responsible for this outcome? In this review we provide an update of the functions of TNF in the defense against the intracellular pathogens Listeria monocytogenes, Mycobacterium tuberculosis, and Leishmania major. Furthermore, we discuss the role of TNF in the generation of proinflammatory macrophages in mouse models of infection and summarize briefly the potential consequences of anti-TNF treatment for infectious diseases.
Collapse
Affiliation(s)
- Xinying Li
- Translational Research Institute, Academy of Medical Science, Henan Provincial People's Hospital, Zhengzhou, China.,School of Life Sciences, Anhui Medical University, Hefei, China
| | - Heinrich Körner
- Key Laboratory of Anti-inflammatory and Immunopharmacology, Institute of Clinical Pharmacology, Ministry of Education, Engineering Technology Research Center of Anti-inflammatory and Immunodrugs in Anhui Province, Anhui Medical University, Hefei, China
| | - Xiaoying Liu
- Translational Research Institute, Academy of Medical Science, Henan Provincial People's Hospital, Zhengzhou, China.,School of Life Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
111
|
Alfituri OA, Quintana JF, MacLeod A, Garside P, Benson RA, Brewer JM, Mabbott NA, Morrison LJ, Capewell P. To the Skin and Beyond: The Immune Response to African Trypanosomes as They Enter and Exit the Vertebrate Host. Front Immunol 2020; 11:1250. [PMID: 32595652 PMCID: PMC7304505 DOI: 10.3389/fimmu.2020.01250] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 05/18/2020] [Indexed: 12/14/2022] Open
Abstract
African trypanosomes are single-celled extracellular protozoan parasites transmitted by tsetse fly vectors across sub-Saharan Africa, causing serious disease in both humans and animals. Mammalian infections begin when the tsetse fly penetrates the skin in order to take a blood meal, depositing trypanosomes into the dermal layer. Similarly, onward transmission occurs when differentiated and insect pre-adapted forms are ingested by the fly during a blood meal. Between these transmission steps, trypanosomes access the systemic circulation of the vertebrate host via the skin-draining lymph nodes, disseminating into multiple tissues and organs, and establishing chronic, and long-lasting infections. However, most studies of the immunobiology of African trypanosomes have been conducted under experimental conditions that bypass the skin as a route for systemic dissemination (typically via intraperitoneal or intravenous routes). Therefore, the importance of these initial interactions between trypanosomes and the skin at the site of initial infection, and the implications for these processes in infection establishment, have largely been overlooked. Recent studies have also demonstrated active and complex interactions between the mammalian host and trypanosomes in the skin during initial infection and revealed the skin as an overlooked anatomical reservoir for transmission. This highlights the importance of this organ when investigating the biology of trypanosome infections and the associated immune responses at the initial site of infection. Here, we review the mechanisms involved in establishing African trypanosome infections and potential of the skin as a reservoir, the role of innate immune cells in the skin during initial infection, and the subsequent immune interactions as the parasites migrate from the skin. We suggest that a thorough identification of the mechanisms involved in establishing African trypanosome infections in the skin and their progression through the host is essential for the development of novel approaches to interrupt disease transmission and control these important diseases.
Collapse
Affiliation(s)
- Omar A. Alfituri
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Juan F. Quintana
- Wellcome Centre for Integrative Parasitology, College of Medical, Veterinary and Life Sciences, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Annette MacLeod
- Wellcome Centre for Integrative Parasitology, College of Medical, Veterinary and Life Sciences, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Paul Garside
- Wellcome Centre for Integrative Parasitology, College of Medical, Veterinary and Life Sciences, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Robert A. Benson
- Wellcome Centre for Integrative Parasitology, College of Medical, Veterinary and Life Sciences, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - James M. Brewer
- Wellcome Centre for Integrative Parasitology, College of Medical, Veterinary and Life Sciences, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Neil A. Mabbott
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Liam J. Morrison
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Paul Capewell
- College of Medical, Veterinary and Life Sciences, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
112
|
Eichwald T, Talbot S. Neuro-Immunity Controls Obesity-Induced Pain. Front Hum Neurosci 2020; 14:181. [PMID: 32581740 PMCID: PMC7295985 DOI: 10.3389/fnhum.2020.00181] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/23/2020] [Indexed: 12/16/2022] Open
Abstract
The prevalence of obesity skyrocketed over the past decades to become a significant public health problem. Obesity is recognized as a low-grade inflammatory disease and is linked with several comorbidities such as diabetes, circulatory disease, common neurodegenerative diseases, as well as chronic pain. Adipocytes are a major neuroendocrine organ that continually, and systemically, releases pro-inflammatory factors. While the exact mechanisms driving obesity-induced pain remain poorly defined, nociceptor hypersensitivity may result from the systemic state of inflammation characteristic of obesity as well as weight surplus-induced mechanical stress. Obesity and pain also share various genetic mutations, lifestyle risk factors, and metabolic pathways. For instance, fat pads are often found hyper-innervated and rich in immune cell types of multiple origins. These immunocytes release cytokines, amplifying nociceptor function, which, in turn, via locally released neuropeptides, sustain immunocytes' function. Here, we posit that along with mechanical stress stemming from extra weight, the local neuro-immune interplay occurring within the fat pads maintains the state of chronic low-grade inflammation and heightens sensory hypersensitivity. Overall, stopping such harmful neuro-immune crosstalk may constitute a novel pathway to prevent obesity-associated comorbidities, including neuronal hypersensitivity.
Collapse
Affiliation(s)
- Tuany Eichwald
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montreal, QC, Canada
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Sebastien Talbot
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
113
|
Nenasheva T, Gerasimova T, Serdyuk Y, Grigor'eva E, Kosmiadi G, Nikolaev A, Dashinimaev E, Lyadova I. Macrophages Derived From Human Induced Pluripotent Stem Cells Are Low-Activated "Naïve-Like" Cells Capable of Restricting Mycobacteria Growth. Front Immunol 2020; 11:1016. [PMID: 32582159 PMCID: PMC7287118 DOI: 10.3389/fimmu.2020.01016] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/28/2020] [Indexed: 12/17/2022] Open
Abstract
In peripheral tissues, immune protection critically depends on the activity of tissue resident macrophages, which makes our understanding of the biology of these cells of great significance. Until recently, human macrophage studies were largely based on the analysis of monocyte-derived macrophages that differ from tissue resident macrophages by many characteristics. To model tissue resident macrophages, methods of generating macrophages from pluripotent stem cells have been developed. However, the immunological properties of macrophages derived from pluripotent stem cells remain under-investigated. In this study, we aimed to perform the multifarious immunological characteristics of macrophages generated from human induced pluripotent stem cells (iMϕs), including an analysis of their phenotype, secretory and antibacterial activities, as well as their comparison with macrophages derived from blood monocytes and infected lung tissue. We report that iMϕs displayed the morphology and the CD11b+CD45+CD14+ phenotype typical for mononuclear phagocytes. The cells co-expressed markers known to be associated with classically (CD80, CD86, CCR5) and alternatively (CD163 and CD206) activated macrophages, with a bias toward a higher expression of the latter. iMϕs secreted pro-inflammatory (IL-6, CXCL8, CCL2, CCL4, CXCL1, CXCL10) and anti-inflammatory (IL-10, IL-1RA, CCL22) cytokines with a high IL-10/IL-12p70 index (>20). iMϕs were phagocytic and restricted Mycobacterium tuberculosis growth in vitro by >75%. iMϕs differed from blood monocytes/macrophages by a lower expression level of HLA-DR and the CD14+CD16int phenotype and shared several phenotypic characteristics with lung macrophages. In response to LPS, iMϕs up-regulated HLA-DR and produced TNF-α. IFN-γ increased iMϕ reactivity to LPS, but did not increase iMϕ mycobactericidal capacity. The results characterize iMϕs as differentiated but low-activated/low-polarized “naïve-like” macrophages that are capable of mounting inflammatory and antibacterial responses when exposed to inflammatory stimuli or pathogens. iMϕs represent a valuable model for studying antibacterial responses of tissue resident macrophages and for developing approaches to modulating macrophage activity.
Collapse
Affiliation(s)
- Tatiana Nenasheva
- Laboratory of Cellular and Molecular Basis of Histogenesis, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia.,Laboratory of Biotechnology, Department of Immunology, Central Tuberculosis Research Institute, Moscow, Russia
| | - Tatiana Gerasimova
- Laboratory of Cellular and Molecular Basis of Histogenesis, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Yana Serdyuk
- Laboratory of Cellular and Molecular Basis of Histogenesis, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia.,Laboratory of Biotechnology, Department of Immunology, Central Tuberculosis Research Institute, Moscow, Russia
| | - Elena Grigor'eva
- Laboratory of Developmental Epigenetics, Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - George Kosmiadi
- Laboratory of Biotechnology, Department of Immunology, Central Tuberculosis Research Institute, Moscow, Russia
| | - Alexander Nikolaev
- Laboratory of Biotechnology, Department of Immunology, Central Tuberculosis Research Institute, Moscow, Russia
| | - Erdem Dashinimaev
- Center for Genome Technologies, Pirogov Russian National Research Medical University, Moscow, Russia.,Laboratory of Cell Biology, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Irina Lyadova
- Laboratory of Cellular and Molecular Basis of Histogenesis, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia.,Laboratory of Biotechnology, Department of Immunology, Central Tuberculosis Research Institute, Moscow, Russia
| |
Collapse
|
114
|
Mola S, Foisy S, Boucher G, Major F, Beauchamp C, Karaky M, Goyette P, Lesage S, Rioux JD. A transcriptome-based approach to identify functional modules within and across primary human immune cells. PLoS One 2020; 15:e0233543. [PMID: 32469933 PMCID: PMC7259617 DOI: 10.1371/journal.pone.0233543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 05/07/2020] [Indexed: 11/20/2022] Open
Abstract
Genome-wide transcriptomic analyses have provided valuable insight into fundamental biology and disease pathophysiology. Many studies have taken advantage of the correlation in the expression patterns of the transcriptome to infer a potential biologic function of uncharacterized genes, and multiple groups have examined the relationship between co-expression, co-regulation, and gene function on a broader scale. Given the unique characteristics of immune cells circulating in the blood, we were interested in determining whether it was possible to identify functional co-expression modules in human immune cells. Specifically, we sequenced the transcriptome of nine immune cell types from peripheral blood cells of healthy donors and, using a combination of global and targeted analyses of genes within co-expression modules, we were able to determine functions for these modules that were cell lineage-specific or shared among multiple cell lineages. In addition, our analyses identified transcription factors likely important for immune cell lineage commitment and/or maintenance.
Collapse
Affiliation(s)
- Saraï Mola
- Centre de recherche, Institut de cardiologie de Montréal, Montréal, Québec, Canada
| | - Sylvain Foisy
- Centre de recherche, Institut de cardiologie de Montréal, Montréal, Québec, Canada
| | - Gabrielle Boucher
- Centre de recherche, Institut de cardiologie de Montréal, Montréal, Québec, Canada
| | - François Major
- Unité de recherche en ingénierie des ARN, Institut de recherche en immunologie et en cancérologie, Montréal, Québec, Canada
- Département d’informatique et de recherche opérationnelle, Université de Montréal, Montréal, Québec, Canada
- Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, Québec, Canada
| | - Claudine Beauchamp
- Centre de recherche, Institut de cardiologie de Montréal, Montréal, Québec, Canada
| | - Mohamad Karaky
- Centre de recherche, Institut de cardiologie de Montréal, Montréal, Québec, Canada
| | - Philippe Goyette
- Centre de recherche, Institut de cardiologie de Montréal, Montréal, Québec, Canada
| | - Sylvie Lesage
- Centre de recherche, Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Québec, Canada
| | - John D. Rioux
- Centre de recherche, Institut de cardiologie de Montréal, Montréal, Québec, Canada
- Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, Québec, Canada
- * E-mail:
| |
Collapse
|
115
|
Lisowski ZM, Sauter KA, Waddell LA, Hume DA, Pirie RS, Hudson NPH. Immunohistochemical study of morphology and distribution of CD163 +ve macrophages in the normal adult equine gastrointestinal tract. Vet Immunol Immunopathol 2020; 226:110073. [PMID: 32559524 DOI: 10.1016/j.vetimm.2020.110073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 04/07/2020] [Accepted: 05/15/2020] [Indexed: 12/20/2022]
Abstract
Intestinal macrophages are the largest group of mononuclear phagocytes in the body and play a role in intestinal innate immunity, neuroimmune interactions and maintaining intestinal homeostasis. Conversely, they also are implicated in numerous pathologies of the gastrointestinal tract, such as postoperative ileus and inflammatory bowel disease. As a result, macrophages could be potential therapeutic targets. To date, there are limited studies on the morphology and distribution of macrophages in the equine gastrointestinal tract (GIT). The aim of this study was to identify the location and abundance of resident macrophages in the equine GIT using CD163 as an immunohistochemical marker. Tissue samples were obtained post-mortem from 14 sites along the gastrointestinal tracts of 10 horses free from gastrointestinal disease; sample sites extended from the stomach to the small colon. CD163+ve cells were present in all regions of the equine GIT from stomach to small colon. CD163+ve cells were also identified in all tissue layers of the intestinal wall, namely, mucosa, submucosa, muscularis externa (ME), myenteric plexus and serosa. Consistent with a proposed function in regulation of intestinal motility, CD163+ve cells were regularly distributed within the ME, with accumulations closely associated with the myenteric plexus and effector cells such as neurons and the interstitial cells of Cajal (ICC).
Collapse
Affiliation(s)
- Zofia M Lisowski
- The Royal (Dick) School of Veterinary Studies and The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom.
| | - Kristin A Sauter
- The Royal (Dick) School of Veterinary Studies and The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Lindsey A Waddell
- The Royal (Dick) School of Veterinary Studies and The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - David A Hume
- Mater Research Institute-University of Queensland, Woolloongabba, QLD, Australia
| | - R Scott Pirie
- The Royal (Dick) School of Veterinary Studies and The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Neil P H Hudson
- The Royal (Dick) School of Veterinary Studies and The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
116
|
Research progress of tumor microenvironment and tumor-associated macrophages. Clin Transl Oncol 2020; 22:2141-2152. [PMID: 32447645 DOI: 10.1007/s12094-020-02367-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/29/2020] [Indexed: 12/21/2022]
Abstract
Cancer is a health issue causing utmost concern and continuing to be one of the leading causes of mortality worldwide. Effective tumor eradication methods that will improve the prognosis and prolong human life are an important topic in modern medicine. Increasing amounts of evidence indicate that the tumor microenvironment plays a significant role in tumor development and migration. Macrophages are important immune cells that commonly infiltrate the tumor microenvironment. Several studies found that macrophages play different roles in the process of cancer development. This article focuses on the tumor microenvironment and the generation, classification, and function of tumor-associated macrophages as well as their significance for tumor immunotherapy and other aspects, it summarizes nearly 10 years of tumor microenvironment and tumor-associated macrophage research, providing a novel insight for tumor immunotherapy.
Collapse
|
117
|
Update on the Pathomechanism, Diagnosis, and Treatment Options for Rheumatoid Arthritis. Cells 2020; 9:cells9040880. [PMID: 32260219 PMCID: PMC7226834 DOI: 10.3390/cells9040880] [Citation(s) in RCA: 395] [Impact Index Per Article: 98.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/28/2020] [Accepted: 03/30/2020] [Indexed: 12/18/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease that involves multiple joints bilaterally. It is characterized by an inflammation of the tendon (tenosynovitis) resulting in both cartilage destruction and bone erosion. While until the 1990s RA frequently resulted in disability, inability to work, and increased mortality, newer treatment options have made RA a manageable disease. Here, great progress has been made in the development of disease-modifying anti-rheumatic drugs (DMARDs) which target inflammation and thereby prevent further joint damage. The available DMARDs are subdivided into (1) conventional synthetic DMARDs (methotrexate, hydrochloroquine, and sulfadiazine), (2) targeted synthetic DMARDs (pan-JAK- and JAK1/2-inhibitors), and (3) biologic DMARDs (tumor necrosis factor (TNF)-α inhibitors, TNF-receptor (R) inhibitors, IL-6 inhibitors, IL-6R inhibitors, B cell depleting antibodies, and inhibitors of co-stimulatory molecules). While DMARDs have repeatedly demonstrated the potential to greatly improve disease symptoms and prevent disease progression in RA patients, they are associated with considerable side-effects and high financial costs. This review summarizes our current understanding of the underlying pathomechanism, diagnosis of RA, as well as the mode of action, clinical benefits, and side-effects of the currently available DMARDs.
Collapse
|
118
|
Zeng MY, Tong QY. Anti-inflammation Effects of Sinomenine on Macrophages through Suppressing Activated TLR4/NF-κB Signaling Pathway. Curr Med Sci 2020; 40:130-137. [DOI: 10.1007/s11596-020-2156-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 11/18/2019] [Indexed: 12/20/2022]
|
119
|
He J, Yin P, Xu K. Effect and Molecular Mechanisms of Traditional Chinese Medicine on Tumor Targeting Tumor-Associated Macrophages. Drug Des Devel Ther 2020; 14:907-919. [PMID: 32184560 PMCID: PMC7053810 DOI: 10.2147/dddt.s223646] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 02/05/2020] [Indexed: 12/17/2022] Open
Abstract
Traditional Chinese medicine (TCM) has been used as a significant cancer treatment method for many years in China. It has been demonstrated that TCM could assist in inhibiting the growth of tumors and prolonging the survival rates of cancer patients. Although the mechanism of TCM are still not clear, accumulating evidence has shown that they may be related to the tumor microenvironment (TME). Tumor-associated macrophages (TAMs) play a significant role in TME and are polarized to two phenotypes, M1 (classically activated) and M2 (alternatively activated) TAMs. The two different phenotypes of TAMs play converse roles in the TME and M2-polarized tumor-associated macrophages (M2-TAMs) always lead to poor prognosis in cancer patients compared to M1-polarized tumor-associated macrophages (M1-TAMs). In this review, the potential correlation between TCM and TAMs (especially the M2 phenotype) in tumor progression and promising TCM strategies targeting TAMs in cancer are discussed.
Collapse
Affiliation(s)
- Jing He
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Peihao Yin
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medicine University, Anhui, People’s Republic of China
- Interventional Cancer Institute of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Ke Xu
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medicine University, Anhui, People’s Republic of China
- Interventional Cancer Institute of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| |
Collapse
|
120
|
Liu Y, Wang L, Liu H, Li C, He J. The Prognostic Significance of Metabolic Syndrome and a Related Six-lncRNA Signature in Esophageal Squamous Cell Carcinoma. Front Oncol 2020; 10:61. [PMID: 32133283 PMCID: PMC7040247 DOI: 10.3389/fonc.2020.00061] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 01/14/2020] [Indexed: 12/14/2022] Open
Abstract
Background: Metabolic syndrome (MetS) is associated with the development of esophageal squamous cell carcinoma (ESCC), and long non-coding RNAs (lncRNAs) are involved in a variety of mechanisms of MetS and tumor. This study will explore the prognostic effect of MetS and the associated lncRNA signature on ESCC. Methods: Our previous RNA-chip data (GSE53624, GSE53622) for 179 ESCC patients were reanalyzed according to MetS. The recurrence-free survival (RFS) was collected for these patients. The status of the MetS-related tumor microenvironment was analyzed with the CIBERSORT and ESTIMATE algorithms. A lncRNA signature was established with univariate and multivariate Cox proportional hazards regression (PHR) analysis and verified using the Kaplan–Meier survival curve analysis and time-dependent receiver operating characteristic (ROC) curves. A clinical predictive model was constructed based on multiple risk factors, evaluated using C-indexes and calibration curves, and verified using data from the GEO and TCGA databases. Results: The results showed that MetS was an independent risk factor for ESCC patients conferring low OS and RFS. Tumor microenvironment analysis indicated that patients with MetS have high stromal scores and M2 macrophage infiltration. A six-lncRNA signature was established by 60 ESCC patients randomly selected from GSE53624 and identified with an effective predictive ability in validation cohorts (59 patients from GSE53624 and 60 patients from GSE53622), subgroup analysis, and ESCC patients from TCGA. MetS and the six-lncRNA signature could be regarded as independent risk factors and enhanced predictive ability in the clinical predictive model. Conclusions: Our results indicated that MetS was associated with poor prognosis in ESCC patients, and the possible mechanism was related to changes in the tumor microenvironment. MetS and the six-lncRNA signature could also serve as independent risk factors with available clinical application value.
Collapse
Affiliation(s)
- Yu Liu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liyu Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hengchang Liu
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
121
|
Li K, Liang Z, Zhang J, Zuo X, Sun J, Zheng Q, Song J, Ding T, Hu X, Wang Z. Attenuation of the inflammatory response and polarization of macrophages by photobiomodulation. Lasers Med Sci 2020; 35:1509-1518. [PMID: 32065300 DOI: 10.1007/s10103-019-02941-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 12/22/2019] [Indexed: 12/11/2022]
Abstract
In spinal cord injury (SCI), inflammation is a major mediator of damage and loss of function and is regulated primarily by the bone marrow-derived macrophages (BMDMs). Photobiomodulation (PBM) or low-level light stimulation is known to have anti-inflammatory effects and has previously been used in the treatment of SCI, although its precise cellular mechanisms remain unclear. In the present study, the effect of PBM at 810 nm on classically activated BMDMs was evaluated to investigate the mechanisms underlying its anti-inflammatory effects. BMDMs were cultured and irradiated (810 nm, 2 mW/cm2) following stimulation with lipopolysaccharide and interferon-γ. CCK-8 assay, 2',7'-dichlorofluorescein diacetate assay, and ELISA and western blot analysis were performed to measure cell viability, reactive oxygen species production, and inflammatory marker production, respectively. PBM irradiation of classically activated macrophages significantly increased the cell viability and inhibited reactive oxygen species generation. PBM suppressed the expression of a marker of classically activated macrophages, inducible nitric oxide synthase; decreased the mRNA expression and secretion of pro-inflammatory cytokines, tumor necrosis factor alpha, and interleukin-1 beta; and increased the secretion of monocyte chemotactic protein 1. Exposure to PBM likewise significantly reduced the expression and phosphorylation of NF-κB p65 in classically activated BMDMs. Taken together, these results suggest that PBM can successfully modulate inflammation and polarization in classically activated BMDMs. The present study provides a theoretical basis to support wider clinical application of PBM in the treatment of SCI.
Collapse
Affiliation(s)
- Kun Li
- Xijing Orthopaedics Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Zhuowen Liang
- Xijing Orthopaedics Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jiawei Zhang
- Xijing Orthopaedics Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xiaoshuang Zuo
- Xijing Orthopaedics Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jiakai Sun
- Xijing Orthopaedics Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Qiao Zheng
- Xijing Orthopaedics Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jiwei Song
- Xijing Orthopaedics Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Tan Ding
- Xijing Orthopaedics Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xueyu Hu
- Xijing Orthopaedics Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Zhe Wang
- Xijing Orthopaedics Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
122
|
Gong M, Wen S, Nguyen T, Wang C, Jin J, Zhou L. Converging Relationships of Obesity and Hyperuricemia with Special Reference to Metabolic Disorders and Plausible Therapeutic Implications. Diabetes Metab Syndr Obes 2020; 13:943-962. [PMID: 32280253 PMCID: PMC7125338 DOI: 10.2147/dmso.s232377] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 03/09/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Obesity and hyperuricemia mutually influence metabolic syndrome. This study discusses the metabolic relationships between obesity and hyperuricemia in terms of pathophysiology, complications, and treatments. METHODS We searched for preclinical or clinical studies on the pathophysiology, complications, and therapy of obesity and hyperuricemia on the PubMed database. RESULTS In this systemic review, we summarized our searching results on topics of pathophysiology, complications and therapeutic strategy. In pathophysiology, we firstly introduce genetic variations for obesity, hyperuricemia and their relationships by genetic studies. Secondly, we talk about the epigenetic influences on obesity and hyperuricemia. Thirdly, we describe the central metabolic regulation and the role of hyperuricemia. Then, we refer to the character of adipose tissue inflammation and oxidative stress in the obesity and hyperuricemia. In the last part of this topic, we reviewed the critical links of gut microbiota in the obesity and hyperuricemia. In the following part, we review the pathophysiology of major complications in obesity and hyperuricemia including insulin resistance and type 2 diabetes mellitus, chronic kidney disease, cardiovascular diseases, and cancers. Finally, we recapitulate the therapeutic strategies especially the novel pharmaceutic interventions for obesity and hyperuricemia, which concurrently show the mutual metabolic influences between two diseases. CONCLUSION The data reviewed here delineate the metabolic relationships between obesity and hyperuricemia, and provide a comprehensive overview of the therapeutic targets for the management of metabolic syndromes.
Collapse
Affiliation(s)
- Min Gong
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai201399, People’s Republic of China
| | - Song Wen
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai201399, People’s Republic of China
| | - Thiquynhnga Nguyen
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai201399, People’s Republic of China
| | - Chaoxun Wang
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai201399, People’s Republic of China
| | - Jianlan Jin
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai201399, People’s Republic of China
| | - Ligang Zhou
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai201399, People’s Republic of China
- Correspondence: Ligang Zhou Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai201399, ChinaTel +8613611927616 Email
| |
Collapse
|
123
|
Faure-Dupuy S, Delphin M, Aillot L, Dimier L, Lebossé F, Fresquet J, Parent R, Matter MS, Rivoire M, Bendriss-Vermare N, Salvetti A, Heide D, Flores L, Klumpp K, Lam A, Zoulim F, Heikenwälder M, Durantel D, Lucifora J. Hepatitis B virus-induced modulation of liver macrophage function promotes hepatocyte infection. J Hepatol 2019; 71:1086-1098. [PMID: 31349000 DOI: 10.1016/j.jhep.2019.06.032] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 05/31/2019] [Accepted: 06/27/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Liver macrophages can be involved in both pathogen clearance and/or pathogenesis. To get further insight on their role during chronic hepatitis B virus (HBV) infections, our aim was to phenotypically and functionally characterize in vivo and ex vivo the interplay between HBV, primary human liver macrophages (PLMs) and primary blood monocytes differentiated into pro-inflammatory or anti-inflammatory macrophages (M1-MDMs or M2-MDMs, respectively). METHODS PLMs or primary blood monocytes, either ex vivo differentiated into M1-MDMs or M2-MDMs, were exposed to HBV and their activation followed by ELISA or quantitative reverse transcription PCR (RT-qPCR). Liver biopsies from HBV-infected patients were analysed by RT-qPCR or immunohistochemistry. Viral parameters in HBV-infected primary human hepatocytes and differentiated HepaRG cells were followed by ELISA, qPCR and RT-qPCR analyses. RESULTS HBc protein was present within the macrophages of liver biopsies taken from HBV-infected patients. Macrophages from HBV-infected patients also expressed higher levels of anti-inflammatory macrophage markers than those from non-infected patients. Ex vivo exposure of naive PLMs to HBV led to reduced secretion of pro-inflammatory cytokines. Upon exposure to HBV or HBV-producing cells during differentiation and activation, M1-MDMs secreted less IL-6 and IL-1β, whereas M2-MDMs secreted more IL-10 when exposed to HBV during activation. Finally, cytokines produced by M1-MDMs, but not those produced by HBV-exposed M1-MDMs, decreased HBV infection of hepatocytes. CONCLUSIONS Altogether, our data strongly suggest that HBV modulates liver macrophage functions to favour the establishment of infection. LAY SUMMARY Hepatitis B virus modulates liver macrophage function in order to favour the establishment and likely maintenance of infection. It impairs the production of the antiviral cytokine IL-1β, while promoting that of IL-10 in the microenvironment. This phenotype can be recapitulated in naive liver macrophages or monocyte-derived-macrophages ex vivo by short exposure to the virus or cells replicating the virus, thus suggesting an "easy to implement" mechanism of inhibition.
Collapse
Affiliation(s)
- Suzanne Faure-Dupuy
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR_5286, France; Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marion Delphin
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR_5286, France
| | - Ludovic Aillot
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR_5286, France
| | - Laura Dimier
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR_5286, France
| | - Fanny Lebossé
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR_5286, France; Department of Hepatology, Croix-Rousse Hospital, Hospices Civils de Lyon, Lyon, France
| | - Judith Fresquet
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR_5286, France
| | - Romain Parent
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR_5286, France
| | | | | | - Nathalie Bendriss-Vermare
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR_5286, France
| | - Anna Salvetti
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR_5286, France
| | - Danijela Heide
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lalo Flores
- Novira Therapeutics, Part of the Janssen Pharmaceutical Companies, United States
| | - Klaus Klumpp
- Novira Therapeutics, Part of the Janssen Pharmaceutical Companies, United States
| | - Angela Lam
- Novira Therapeutics, Part of the Janssen Pharmaceutical Companies, United States
| | - Fabien Zoulim
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR_5286, France; Department of Hepatology, Croix-Rousse Hospital, Hospices Civils de Lyon, Lyon, France; DEVweCAN Laboratory of Excellence, Lyon, France
| | - Mathias Heikenwälder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David Durantel
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR_5286, France; DEVweCAN Laboratory of Excellence, Lyon, France.
| | - Julie Lucifora
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR_5286, France.
| |
Collapse
|
124
|
Huang H, Feng H, Zhuge D. M1 Macrophage Activated by Notch Signal Pathway Contributed to Ventilator-Induced Lung Injury in Chronic Obstructive Pulmonary Disease Model. J Surg Res 2019; 244:358-367. [PMID: 31323391 DOI: 10.1016/j.jss.2019.06.060] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 05/10/2019] [Accepted: 06/14/2019] [Indexed: 01/22/2023]
Abstract
BACKGROUND Ventilator-induced lung injury (VILI) in chronic obstructive pulmonary disease (COPD) is still a problem. We intended to explore the role of macrophage polarity in VILI and the underlying mechanism. MATERIALS AND METHODS COPD model was created by cigarette smoke and ventilated. Macrophages were isolated, and the wet/dry (W/D) ratio was determined after modeling, and proteins in bronchoalveolar lavage fluid (BALF) were assessed by bicinchoninic acid assay. Histopathology was observed by Hematoxylin-Eosin staining. Tumor necrosis factor (TNF)-α and interleukin (IL)-6 levels were measured by enzyme-linked immunosorbent assay. Macrophage polarity was assessed by flow cytometry. Protein levels were measured by Western blot and mRNA by quantitative real-time polymerase chain reaction. RESULTS Pathology statement was worsened, and the W/D ratio, protein level in BALF, TNF-α level, and IL-6 levels were elevated in cigarette smoke-induced COPD model. Notch-1 intracellular domain, hairy and enhancer of split (Hes) 1, Hes5, hairy/enhancer-of-split related with YRPW motif protein 1, CD86, TNF-α, and inducible nitric oxide synthases expressions were raised, whereas CD206, IL-4, and IL-10 expressions were decreased in macrophages after ventilation, shifting macrophage polarity to M1 phenotype. After the inhibition of Notch signaling, pathology statement was improved, and the W/D ratio, protein level in BALF, TNF-α, IL-6, Notch-1 intracellular domain, Hes1, Hes5, hairy/enhancer-of-split related with YRPW motif protein 1, CD86, TNF-α, and inducible nitric oxide synthases expressions were decreased while CD206, IL-4, and IL-10 expressions were elevated after ventilation, shifting macrophage polarity to M2 phenotype partially. CONCLUSIONS Mechanical ventilation in cigarette-induced COPD could activate the Notch signal pathway and further shift the polarity of macrophage toward M1 phenotype, leading to VILI in cigarette-induced COPD.
Collapse
Affiliation(s)
- Hongping Huang
- Department of Eastern Respiratory Medicine, Linyi People's Hospital, Linyi, China
| | - Hui Feng
- Linyi People's Hospital Office, Linyi People's Hospital, Linyi, China.
| | - Dong Zhuge
- Department of Eastern General Internal Medicine, Linyi People's Hospital, Linyi, China
| |
Collapse
|
125
|
Muriuki C, Bush SJ, Salavati M, McCulloch ME, Lisowski ZM, Agaba M, Djikeng A, Hume DA, Clark EL. A Mini-Atlas of Gene Expression for the Domestic Goat ( Capra hircus). Front Genet 2019; 10:1080. [PMID: 31749840 PMCID: PMC6844187 DOI: 10.3389/fgene.2019.01080] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/09/2019] [Indexed: 12/12/2022] Open
Abstract
Goats (Capra hircus) are an economically important livestock species providing meat and milk across the globe. They are of particular importance in tropical agri-systems contributing to sustainable agriculture, alleviation of poverty, social cohesion, and utilisation of marginal grazing. There are excellent genetic and genomic resources available for goats, including a highly contiguous reference genome (ARS1). However, gene expression information is limited in comparison to other ruminants. To support functional annotation of the genome and comparative transcriptomics, we created a mini-atlas of gene expression for the domestic goat. RNA-Seq analysis of 17 transcriptionally rich tissues and 3 cell-types detected the majority (90%) of predicted protein-coding transcripts and assigned informative gene names to more than 1000 previously unannotated protein-coding genes in the current reference genome for goat (ARS1). Using network-based cluster analysis, we grouped genes according to their expression patterns and assigned those groups of coexpressed genes to specific cell populations or pathways. We describe clusters of genes expressed in the gastro-intestinal tract and provide the expression profiles across tissues of a subset of genes associated with functional traits. Comparative analysis of the goat atlas with the larger sheep gene expression atlas dataset revealed transcriptional similarities between macrophage associated signatures in the sheep and goats sampled in this study. The goat transcriptomic resource complements the large gene expression dataset we have generated for sheep and contributes to the available genomic resources for interpretation of the relationship between genotype and phenotype in small ruminants.
Collapse
Affiliation(s)
- Charity Muriuki
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Tropical Livestock Genetics and Health (CTLGH), Edinburgh, United Kingdom
| | - Stephen J. Bush
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
- Nuffield Department of Clinical Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Mazdak Salavati
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Tropical Livestock Genetics and Health (CTLGH), Edinburgh, United Kingdom
| | - Mary E.B. McCulloch
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Zofia M. Lisowski
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Morris Agaba
- Biosciences Eastern and Central Africa - International Livestock Research Institute (BecA - ILRI) Hub, Nairobi, Kenya
| | - Appolinaire Djikeng
- Centre for Tropical Livestock Genetics and Health (CTLGH), Edinburgh, United Kingdom
| | - David A. Hume
- Mater Research Institute-University of Queensland, Woolloongabba, QLD, Australia
| | - Emily L. Clark
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Tropical Livestock Genetics and Health (CTLGH), Edinburgh, United Kingdom
| |
Collapse
|
126
|
Cox N, Geissmann F. Macrophage ontogeny in the control of adipose tissue biology. Curr Opin Immunol 2019; 62:1-8. [PMID: 31670115 DOI: 10.1016/j.coi.2019.08.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 08/07/2019] [Indexed: 02/06/2023]
Abstract
Macrophages are found in large numbers in the adipose tissue where they closely associate with the adipocytes and the vasculature. Adipose tissue macrophages are a heterogenous population of cells with 'hard wired' diversity brought upon by distinct developmental lineages. The purpose of this review is to provide a brief history of macrophages in control of adipose tissue metabolism with the emphasis on the importance of macrophage ontogeny.
Collapse
Affiliation(s)
- Nehemiah Cox
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Frederic Geissmann
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| |
Collapse
|
127
|
Stewart TA, Hughes K, Hume DA, Davis FM. Developmental Stage-Specific Distribution of Macrophages in Mouse Mammary Gland. Front Cell Dev Biol 2019; 7:250. [PMID: 31709255 PMCID: PMC6821639 DOI: 10.3389/fcell.2019.00250] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 10/09/2019] [Indexed: 12/13/2022] Open
Abstract
Mammary gland development begins in the embryo and continues throughout the reproductive life of female mammals. Tissue macrophages (Mϕs), dependent on signals from the Mϕ colony stimulating factor 1 receptor (CSF1R), have been shown to regulate the generation, regression and regeneration of this organ, which is central for mammalian offspring survival. However, the distribution of Mϕs in the pre- and post-natal mammary gland, as it undergoes distinct phases of development and regression, is unknown or has been inferred from immunostaining of thin tissue sections. Here, we used optical tissue clearing and 3-dimensional imaging of mammary tissue obtained from Csf1r-EGFP mice. Whilst tissue Mϕs were observed at all developmental phases, their abundance, morphology, localization and association with luminal and basal epithelial cells exhibited stage-specific differences. Furthermore, sexual dimorphism was observed at E14.5, when the male mammary bud is severed from the overlying epidermis. These findings provide new insights into the localization and possible functions of heterogeneous tissue Mϕ populations in mammogenesis.
Collapse
Affiliation(s)
- Teneale A. Stewart
- Faculty of Medicine, Mater Research Institute-The University of Queensland, Brisbane, QLD, Australia
- Translational Research Institute, Brisbane, QLD, Australia
| | - Katherine Hughes
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - David A. Hume
- Faculty of Medicine, Mater Research Institute-The University of Queensland, Brisbane, QLD, Australia
- Translational Research Institute, Brisbane, QLD, Australia
| | - Felicity M. Davis
- Faculty of Medicine, Mater Research Institute-The University of Queensland, Brisbane, QLD, Australia
- Translational Research Institute, Brisbane, QLD, Australia
| |
Collapse
|
128
|
Yin M, Shen J, Yu S, Fei J, Zhu X, Zhao J, Zhai L, Sadhukhan A, Zhou J. Tumor-Associated Macrophages (TAMs): A Critical Activator In Ovarian Cancer Metastasis. Onco Targets Ther 2019; 12:8687-8699. [PMID: 31695427 PMCID: PMC6814357 DOI: 10.2147/ott.s216355] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/24/2019] [Indexed: 12/13/2022] Open
Abstract
Tumor-associated macrophages (TAMs) that appear in every stage of cancer progression are usually tumor-promoting cells and are present abundantly in the tumor-associated microenvironment. In ovarian cancer, the overall and intratumoral M1/M2 ratio is a relatively efficient TAM parameter for predicting the prognosis of patients, especially for serous tissue type cancer. TAMs exhibit immunological checkpoint modulators, such as the B7 family and programmed death-ligand 1 (PD-L1), and play a key role in the development, metastasis and invasion of ovarian cancer, but the underlying mechanism is barely understood. Ovarian cancer is a severe gynecological malignancy with high mortality. Ovarian cancer-associated death can primarily be attributed to cancer metastasis. The majority of patients are diagnosed with wide dissemination in the peritoneum and omentum, limiting the effectiveness of surgery and chemotherapy. In addition, unlike other well-documented cancers, metastasis through vasculature is not a usual dissemination pathway in ovarian cancer. This review sheds light on TAMs and the main process and mechanism of ovarian cancer metastasis.
Collapse
Affiliation(s)
- Meichen Yin
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Jiayu Shen
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Shuqian Yu
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Jing Fei
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Xiaoqing Zhu
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Jiayao Zhao
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Lingyun Zhai
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Annapurna Sadhukhan
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Jianwei Zhou
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
129
|
Singh AK, Curtiss R, Sun W. A Recombinant Attenuated Yersinia pseudotuberculosis Vaccine Delivering a Y. pestis YopE Nt138-LcrV Fusion Elicits Broad Protection against Plague and Yersiniosis in Mice. Infect Immun 2019; 87:e00296-19. [PMID: 31331960 PMCID: PMC6759313 DOI: 10.1128/iai.00296-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/18/2019] [Indexed: 12/22/2022] Open
Abstract
In this study, a novel recombinant attenuated Yersinia pseudotuberculosis PB1+ strain (χ10069) engineered with ΔyopK ΔyopJ Δasd triple mutations was used to deliver a Y. pestis fusion protein, YopE amino acid 1 to 138-LcrV (YopENt138-LcrV), to Swiss Webster mice as a protective antigen against infections by yersiniae. χ10069 bacteria harboring the pYA5199 plasmid constitutively synthesized the YopENt138-LcrV fusion protein and secreted it via the type 3 secretion system (T3SS) at 37°C under calcium-deprived conditions. The attenuated strain χ10069(pYA5199) was manifested by the establishment of controlled infection in different tissues without developing conspicuous signs of disease in histopathological analysis of microtome sections. A single-dose oral immunization of χ10069(pYA5199) induced strong serum antibody titers (log10 mean value, 4.2), secretory IgA in bronchoalveolar lavage (BAL) fluid from immunized mice, and Yersinia-specific CD4+ and CD8+ T cells producing high levels of tumor necrosis factor alpha (TNF-α), gamma interferon (IFN-γ), and interleukin 2 (IL-2), as well as IL-17, in both lungs and spleens of immunized mice, conferring comprehensive Th1- and Th2-mediated immune responses and protection against bubonic and pneumonic plague challenges, with 80% and 90% survival, respectively. Mice immunized with χ10069(pYA5199) also exhibited complete protection against lethal oral infections by Yersinia enterocolitica WA and Y. pseudotuberculosis PB1+. These findings indicated that χ10069(pYA5199) as an oral vaccine induces protective immunity to prevent bubonic and pneumonic plague, as well as yersiniosis, in mice and would be a promising oral vaccine candidate for protection against plague and yersiniosis for human and veterinary applications.
Collapse
Affiliation(s)
- Amit K Singh
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| | - Roy Curtiss
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Wei Sun
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| |
Collapse
|
130
|
Mulens-Arias V, Rojas JM, Sanz-Ortega L, Portilla Y, Pérez-Yagüe S, Barber DF. Polyethylenimine-coated superparamagnetic iron oxide nanoparticles impair in vitro and in vivo angiogenesis. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 21:102063. [DOI: 10.1016/j.nano.2019.102063] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 12/12/2018] [Accepted: 07/10/2019] [Indexed: 01/08/2023]
|
131
|
Jin L, Deng Z, Zhang J, Yang C, Liu J, Han W, Ye P, Si Y, Chen G. Mesenchymal stem cells promote type 2 macrophage polarization to ameliorate the myocardial injury caused by diabetic cardiomyopathy. J Transl Med 2019; 17:251. [PMID: 31382970 PMCID: PMC6683374 DOI: 10.1186/s12967-019-1999-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 07/23/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Diabetic cardiomyopathy (DCM) is a common complication of diabetes and is characterized by chronic myocardial inflammation. Mesenchymal stem cell (MSC) infusions have recently been suggested to alleviate myocardial injury and ameliorate cardiac function. However, few studies have focused on the effects of MSCs in DCM. Therefore, we explored the effects of MSC-regulated macrophage polarization on myocardial repair in DCM. METHODS A DCM rat model was induced by a high-fat diet and streptozotocin (STZ) administration and infused 4 times with MSCs. Rat blood and heart tissue were analyzed for blood glucose levels, lipid levels, echocardiography, histopathology, macrophage phenotype ratios and inflammatory cytokines, respectively. We mimicked chronic inflammation in vitro by inducing peritoneal macrophages with high glucose and LPS, then cocultured these macrophages with MSCs to explore the specific mechanism of MSCs on macrophage polarization. RESULTS DCM rats exhibited abnormal blood glucose levels and lipid metabolism, cardiac inflammation and dysfunction. MSC infusion ameliorated metabolic abnormalities and preserved cardiac structure and function in DCM rats. Moreover, MSC infusion significantly increased the M2 phenotype macrophages and alleviated cardiac inflammation. Interestingly, this in vitro study revealed that the MSCs pretreated with a COX-2 inhibitor had little effect on M2 macrophage polarization, but this phenomenon could be reversed by adding prostaglandin E2 (PGE2). CONCLUSIONS Our results suggested that MSC infusions can protect against cardiac injury in DCM rats. The underlying mechanisms may include MSC-enhanced M2 macrophage polarization via the COX-2-PGE2 pathway.
Collapse
Affiliation(s)
- Liyuan Jin
- Chinese People’s Liberation Army Medical School, Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853 China
- Department of Geriatric Cardiology, Chinese PLA General Hospital, No. 28, Fuxing Road, Beijing, 100853 China
| | - Zihui Deng
- Institute of Basic Medicine Science, Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853 China
| | - Jinying Zhang
- Institute of Basic Medicine Science, Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853 China
| | - Chen Yang
- Department of Cardiology, Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853 China
| | - Jiejie Liu
- Institute of Basic Medicine Science, Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853 China
| | - Weidong Han
- Institute of Basic Medicine Science, Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853 China
| | - Ping Ye
- Department of Geriatric Cardiology, Chinese PLA General Hospital, No. 28, Fuxing Road, Beijing, 100853 China
| | - Yiling Si
- Institute of Basic Medicine Science, Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853 China
| | - Guanghui Chen
- Department of Cardiology, Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853 China
| |
Collapse
|
132
|
Ge P, Wang W, Li L, Zhang G, Gao Z, Tang Z, Dang X, Wu Y. Profiles of immune cell infiltration and immune-related genes in the tumor microenvironment of colorectal cancer. Biomed Pharmacother 2019; 118:109228. [PMID: 31351430 DOI: 10.1016/j.biopha.2019.109228] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/07/2019] [Accepted: 07/15/2019] [Indexed: 12/16/2022] Open
Abstract
PURPOSE tumor-infiltrating immune cells are highly relevant to the progression and prognosis of colorectal cancer (CRC). The aim of this study is to explore the immune cells and immune-related gene expression in tumor microenvironment of CRC. METHODS CIBERSORT, a deconvolution algorithm, was used to analyze the infiltration of 22 immune cell types in the tumor microenvironment and immune-related gene expression in 404 CRC and 40 adjacent non-tumorous tissues. RESULTS a wide heterogeneity of immune cells among different paired tissues and in tumor stages was uncovered. M0 macrophages, M1 macrophages and CD4 memory activated T cells were infiltrated significantly more in CRC compared with normal tissues in both TCGA and GEO cohorts. CRC with T1-2 tumor stage showed increased CD4 memory activated T cells compared with T3-4 tumors. M0 macrophages were the highest in stage N1 tumors. Significant immune-related genes were identified to build prognostic models by Cox regression analysis. The concordance index of the prognostic model for TNM stage I-II was 0.69, and 0.71 for stage III-IV. The AUC values for 1-, 3-, and 5-year survivals were 0.674, 0.773, 0.812 for TNM stage I-II, respectively, and 0.764, 0.782, 0.803 for stage III-IV, respectively. CONCLUSION these results could assist clinicians in selecting targets for immunotherapies and individualize treatment strategies for patients with CRC.
Collapse
Affiliation(s)
- Penglei Ge
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, Henan Province, China.
| | - Weiwei Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, Henan Province, China
| | - Lin Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, Henan Province, China
| | - Gong Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, Henan Province, China
| | - Zhiqiang Gao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, Henan Province, China
| | - Zhe Tang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, Henan Province, China
| | - Xiaowei Dang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, Henan Province, China
| | - Yang Wu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, Henan Province, China.
| |
Collapse
|
133
|
Liu G, Zhai H, Zhang T, Li S, Li N, Chen J, Gu M, Qin Z, Liu X. New therapeutic strategies for IPF: Based on the "phagocytosis-secretion-immunization" network regulation mechanism of pulmonary macrophages. Biomed Pharmacother 2019; 118:109230. [PMID: 31351434 DOI: 10.1016/j.biopha.2019.109230] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/19/2019] [Accepted: 07/15/2019] [Indexed: 12/15/2022] Open
Abstract
Pulmonary fibrosis is a chronic and progressive interstitial lung disease of known and unknown etiology. Over the past decades, macrophages have been recognized to play a significant role in IPF pathogenesis. According to their anatomical loci, macrophages can be divided to alveolar macrophages (AMs) subtypes and interstitial macrophages subtypes (IMs) with different responsibility in the damage defense response. Depending on diverse chemokines and cytokines in local microenvironments, macrophages can be induced and polarized to either classically activated (M1) or alternatively activated (M2) phenotypes in different stages of immunity. Therefore, we hypothesize that there is a "phagocytosis-secretion-immunization" network regulation of pulmonary macrophages related to a number of chemokines and cytokines. In this paper, we summarize and discuss the role of chemokines and cytokines involved in the "phagocytosis-secretion-immunization" network regulation mechanism of pulmonary macrophages, pointing toward novel therapeutic approaches based on the network target regulation in the field. Therapeutic strategies focused on modifying the chemokines, cytokines and the network are promising for the pharmacotherapy of IPF. Some Traditional Chinese medicines may have more superiorities in delaying the progression of pulmonary fibrosis for their multi-target activities of this network regulation.
Collapse
Affiliation(s)
- Guoxiu Liu
- Beijing University of Chinese Medicine, China
| | | | | | - Siyu Li
- Beijing University of Chinese Medicine, China
| | - Ningning Li
- Beijing University of Chinese Medicine, China
| | - Jiajia Chen
- Beijing University of Chinese Medicine, China
| | - Min Gu
- Beijing University of Chinese Medicine, China
| | - Zinan Qin
- Beijing University of Chinese Medicine, China
| | - Xin Liu
- Beijing University of Chinese Medicine, China.
| |
Collapse
|
134
|
Wang G, Zhao J, Zhang M, Wang Q, Chen B, Hou Y, Lu K. Ferumoxytol and CpG oligodeoxynucleotide 2395 synergistically enhance antitumor activity of macrophages against NSCLC with EGFR L858R/T790M mutation. Int J Nanomedicine 2019; 14:4503-4515. [PMID: 31417255 PMCID: PMC6599896 DOI: 10.2147/ijn.s193583] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 04/22/2019] [Indexed: 12/24/2022] Open
Abstract
Purpose: Drug resistance is a major challenge for epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) treatment of lung cancer. Ferumoxytol (FMT) drives macrophage (MΦ) transformation towards a M1-like phenotype and thereby inhibits tumor growth. CpG oligodeoxynucleotide 2395 (CpG), a toll-like receptor 9 (TLR9) agonist, is an effective therapeutic agent to induce anticancer immune responses. Herein, the effect of co-administered FMT and CpG on MΦ activation for treating non-small cell lung cancer (NSCLC) was explored. Methods: The mRNA expression levels of M1-like genes in RAW 264.7 MΦ cells stimulated by FMT, CpG and FMT and CpG (FMT/CpG) were evaluated by quantitative reverse transcription PCR (qRT-PCR). Then, the effects of FMT/CpG-pretreated MΦ supernatant on apoptosis and proliferation of H1975 cells were detected by flow cytometry, and the expression of EGFR and its downstream signaling pathway in H1975 cells were explored by western blotting. Finally, a H1975 cell xenograft mouse model was used to study the anti-tumor effect of the combination of FMT and CpG in vivo. Results: FMT and CpG synergistically enhanced M1-like gene expression in MΦ, including tumor necrosis factor-α, interleukin (IL)-12, IL-1α, IL-1β, IL-6 and inducible nitric oxide synthase (iNOS). FMT/CpG-pretreated MΦ supernatant inhibited proliferation and induced apoptosis of H1975 cells, accompanied by down-regulation of cell cycle-associated proteins and up-regulation of apoptosis-related proteins. Further studies indicated that the FMT/CpG-pretreated MΦ supernatant suppressed p-EGFR and its downstream AKT/mammalian target of rapamycin signaling pathway in H1975 cells. Furthermore, FMT/CpG suppressed tumor growth in mice accompanied by a decline in the EGFR-positive tumor cell fraction and increased M1 phenotype macrophage infiltration. Conclusion: FMT acted synergistically with CpG to activate MΦ for suppressed proliferation and promoted apoptosis of NSCLC cells via EGFR signaling. Thus, combining FMT and CpG is an effective strategy for the treatment of NSCLC with EGFRL858R/T790M mutation.
Collapse
Affiliation(s)
- Guoqun Wang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Jiaojiao Zhao
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, People's Republic of China
| | - Meiling Zhang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Qian Wang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Bo Chen
- Institute of Materials Science and Devices, Suzhou University of Science and Technology, Suzhou 215009, People's Republic of China
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, People's Republic of China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, People's Republic of China
| | - Kaihua Lu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| |
Collapse
|
135
|
Meziane W, Mekkaoui Z, Hai I, Kacimi K, Djilali K, Touil-Boukoffa C, Lefranc G, Fernandez A, Lamb N, Mennechet F, Aribi M. Combination of metformin with sodium selenite induces a functional phenotypic switch of human GM-CSF monocyte-derived macrophages. Int Immunopharmacol 2019; 73:212-224. [PMID: 31108386 DOI: 10.1016/j.intimp.2019.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 04/03/2019] [Accepted: 05/04/2019] [Indexed: 10/26/2022]
Abstract
OBJECTIVES We evaluated the effects of metformin (Met, 1,1‑dimethylbiguanide hydrochloride) combined or not with sodium selenite (Ss, Na2SeO3) on the functional activities of LPS-activated GM-CSF monocyte-derived macrophages (GM-MDM). MATERIALS AND METHODS Human GM-MDMs from three healthy donors were treated with Met or Ss alone, or with the combination of Met and Ss, and assayed for various biological activities and cytokines expression. RESULTS Met alone and Ss alone had significantly different effects on phagocytosis and killing capacities and IL-β production, but had similar effects on the downregulation of inducible nitric oxide synthase (iNOS) activity, relative nicotinamide adenine dinucleotide reduced (NADH) dehydrogenase (Complex I), intracellular free calcium ions (ifCa2+), and on the upregulation of arginase activity. Additionally, iNOS activity-to-arginase activity ratio was downregulated in Met or Ss treated-GM-MDMs, and, conversely, upregulated in GM-MDMs treated with Met + Ss in combination, indicating that arginase activity dominates that of iNOS when the two treatments are associated. Moreover, combination of Met with Ss significantly upregulated hydrogen peroxide (H2O2) production and phagocytic capacity, but significantly downregulated the production of IL-1β, iNOS activity and killing capacity. On the contrary, we show that Met alone induced significant downregulation of phagocytic capacity and slight upregulation of killing capacity. Nevertheless, Ss seems to accentuate the effect of Met on the downregulation of NO production, as well as to reverse its effect on both phagocytic and killing capacities. On the other hand, all treatments induced a sharp decrease in relative levels of NADH dehydrogenase, and a marked decrease in the levels of ifCa2+. Finally, we found that GM-MDMs treated with Met or Ss, or Met combined with Ss exhibited different functional activation phenotypes, as indicated by the surface expression of co-stimulatory and cell activation and presentation molecules CD14, CD80, CD86 and HLA-DR. CONCLUSIONS Our results demonstrated that Met/Ss combination can play an important role in the modulation of functional activities of human LPS-activated GM-MDMs. Additionally, the overall effects of Met and the induction of "M2" GM-MDMs-associated arginase could be influenced by its combination with Ss.
Collapse
Affiliation(s)
- Warda Meziane
- Laboratory of Applied Molecular Biology and Immunology, BioMolim, W0414100, University of Tlemcen, 13000 Tlemcen, Algeria
| | - Zineb Mekkaoui
- Laboratory of Applied Molecular Biology and Immunology, BioMolim, W0414100, University of Tlemcen, 13000 Tlemcen, Algeria
| | - Ismahane Hai
- Laboratory of Applied Molecular Biology and Immunology, BioMolim, W0414100, University of Tlemcen, 13000 Tlemcen, Algeria
| | - Kamila Kacimi
- Laboratory of Applied Molecular Biology and Immunology, BioMolim, W0414100, University of Tlemcen, 13000 Tlemcen, Algeria
| | - Khuira Djilali
- Laboratory of Applied Molecular Biology and Immunology, BioMolim, W0414100, University of Tlemcen, 13000 Tlemcen, Algeria
| | - Chafia Touil-Boukoffa
- Cytokines and NO Synthases Team, Laboratory of Cellular and Molecular Biology (LBCM), Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene (USTHB), BP 32 El-Alia Bab-Ezzouar, Algiers, Algeria
| | - Gérard Lefranc
- Institut de Génétique Humaine, UMR 9002 CNRS-Université de Montpellier, Montpellier, France
| | - Anne Fernandez
- Institut de Génétique Humaine, UMR 9002 CNRS-Université de Montpellier, Montpellier, France
| | - Ned Lamb
- Institut de Génétique Humaine, UMR 9002 CNRS-Université de Montpellier, Montpellier, France
| | - Franck Mennechet
- Institut de Génétique Moléculaire de Montpellier (IGMM) - UMR5535, CNRS et Université de Montpellier, France
| | - Mourad Aribi
- Laboratory of Applied Molecular Biology and Immunology, BioMolim, W0414100, University of Tlemcen, 13000 Tlemcen, Algeria.
| |
Collapse
|
136
|
Li C, Menoret A, Farragher C, Ouyang Z, Bonin C, Holvoet P, Vella AT, Zhou B. Single cell transcriptomics based-MacSpectrum reveals novel macrophage activation signatures in diseases. JCI Insight 2019; 5:126453. [PMID: 30990466 DOI: 10.1172/jci.insight.126453] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Adipose tissue macrophages (ATM) are crucial for maintaining adipose tissue homeostasis and mediating obesity-induced metabolic abnormalities, including prediabetic conditions and type 2 diabetes mellitus. Despite their key functions in regulating adipose tissue metabolic and immunologic homeostasis under normal and obese conditions, a high-resolution transcriptome annotation system that can capture ATM multifaceted activation profiles has not yet been developed. This is primarily attributed to the complexity of their differentiation/activation process in adipose tissue and their diverse activation profiles in response to microenvironmental cues. Although the concept of multifaceted macrophage action is well-accepted, no current model precisely depicts their dynamically regulated in vivo features. To address this knowledge gap, we generated single-cell transcriptome data from primary bone marrow-derived macrophages under polarizing and non-polarizing conditions to develop new high-resolution algorithms. The outcome was creation of a two-index platform, MacSpectrum (https://macspectrum.uconn.edu), that enables comprehensive high-resolution mapping of macrophage activation states from diverse mixed cell populations. MacSpectrum captured dynamic transitions of macrophage subpopulations under both in vitro and in vivo conditions. Importantly, MacSpectrum revealed unique "signature" gene sets in ATMs and circulating monocytes that displayed significant correlation with BMI and homeostasis model assessment of insulin resistance (HOMA-IR) in obese human patients. Thus, MacSpectrum provides unprecedented resolution to decode macrophage heterogeneity and will open new areas of clinical translation.
Collapse
Affiliation(s)
- Chuan Li
- Department of Immunology, School of Medicine, University of Connecticut, Farmington, Connecticut, USA
| | - Antoine Menoret
- Department of Immunology, School of Medicine, University of Connecticut, Farmington, Connecticut, USA.,Institute for Systems Genomics, University of Connecticut, Farmington, Connecticut, USA
| | - Cullen Farragher
- College of Liberal Arts and Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - Zhengqing Ouyang
- Institute for Systems Genomics, University of Connecticut, Farmington, Connecticut, USA.,The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA.,Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, USA.,Department of Genetics and Genome Sciences, University of Connecticut, Farmington, Connecticut, USA
| | - Christopher Bonin
- School of Medicine, University of Connecticut, Farmington, Connecticut, USA
| | - Paul Holvoet
- Experimental Cardiology, Department of Cardiovascular Sciences, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Anthony T Vella
- Department of Immunology, School of Medicine, University of Connecticut, Farmington, Connecticut, USA
| | - Beiyan Zhou
- Department of Immunology, School of Medicine, University of Connecticut, Farmington, Connecticut, USA.,Institute for Systems Genomics, University of Connecticut, Farmington, Connecticut, USA
| |
Collapse
|
137
|
Gutiérrez JA, Gómez I, Chiarello DI, Salsoso R, Klein AD, Guzmán-Gutiérrez E, Toledo F, Sobrevia L. Role of proteases in dysfunctional placental vascular remodelling in preeclampsia. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165448. [PMID: 30954558 DOI: 10.1016/j.bbadis.2019.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 12/20/2018] [Accepted: 01/06/2019] [Indexed: 12/14/2022]
Abstract
Preeclampsia is a syndrome characterised by vascular dysfunction, impaired angiogenesis, and hypertension during pregnancy. Even when the precise pathophysiology of preeclampsia remains elusive, impaired vascular remodelling and placental angiogenesis in the placental villi and defective trophoblast invasion of the uterus are proposed as crucial mechanisms in this syndrome. Reduced trophoblast invasion leads to reduced uteroplacental blood flow and oxygen availability and increased oxidative stress. These phenomena trigger the release of soluble factors into the maternal and foetoplacental circulation that are responsible of the clinical features of preeclampsia. New blood vessels generation as well as vascular remodelling are mechanisms that require expression and activity of different proteases, including matrix metalloproteases, a-disintegrin and metalloproteases, and a-disintegrin and metalloprotease with thrombospondin motifs. These proteases exert proteolysis of the extracellular matrix. Additionally, cathepsins, a family of proteolytic enzymes, are primarily located in lysosomes but are also released by cells to the extracellular space. This review focuses on the role that these proteases play in the regulation of the uterine trophoblast invasion and the placental vascular remodelling associated with preeclampsia.
Collapse
Affiliation(s)
- Jaime A Gutiérrez
- Cellular Signaling and Differentiation Laboratory (CSDL), School of Medical Technology, Health Sciences Faculty, Universidad San Sebastián, Santiago 7510157, Chile; Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile.
| | - Isabel Gómez
- Cellular Signaling and Differentiation Laboratory (CSDL), School of Medical Technology, Health Sciences Faculty, Universidad San Sebastián, Santiago 7510157, Chile
| | - Delia I Chiarello
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Rocío Salsoso
- Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville E-41012, Spain; Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Andrés D Klein
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7590943, Chile
| | - Enrique Guzmán-Gutiérrez
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, Universidad de Concepción, Concepción, Chile
| | - Fernando Toledo
- Department of Basic Sciences, Faculty of Sciences, Universidad del Bío-Bío, Chillán 3780000, Chile; Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Luis Sobrevia
- Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville E-41012, Spain; University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, 4029, Queensland, Australia; Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile.
| |
Collapse
|
138
|
Cui W, Zhang W, Yuan X, Liu S, Li M, Niu J, Zhang P, Li D. Vitamin A deficiency execrates Lewis lung carcinoma via induction of type 2 innate lymphoid cells and alternatively activates macrophages. Food Sci Nutr 2019; 7:1288-1294. [PMID: 31024701 PMCID: PMC6475724 DOI: 10.1002/fsn3.961] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/19/2019] [Accepted: 01/25/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Lung carcinoma is still associated with high rates of morbidity and mortality despite the advances in cancer therapy achieved in last decades. Recent studies showed that immune responses played a crucial role in the developments of cancers including lung cancer. Type 1 immune response could promote classical activated macrophages (CAMs) with antitumor properties. On the contrast, type 2 immune response could lead to the polarization of alternatively activated macrophages (AAMs) which could promote the growth and metastasis of tumor. Our previous research showed that vitamin A deficiency could promote the type 2 immune response but not the type 1 immune response. Whether vitamin A deficiency has detrimental effect for lung carcinoma need further investigate. AIM To investigate the effect of vitamin A deficiency in lung cancer and the potential mechanisms. METHODS Mice were fed with normal diet or vitamin A deficiency diet for 2 weeks, and then, Lewis lung cancer (LLC) cells dissolved in Matrigel Matrix were planted on the left lower lope of lungs. Mice were sacrificed 28 days after the plantation of tumor cells, the tumor size, cytokine profile in bronchoalveolar lavage fluid (BALF), numbers of type 2 innate lymphoid cells (ILC2s), and macrophage phenotypes in the lung were measured. The overall survival rate was also monitored throughout the experiments. RESULTS Vitamin A deficiency diet fed tumor-bearing mice have lower survival rate (χ 2 = 6.862, p < 0.001), larger tumor size (t = 2.651, p < 0.05), more ILC2s (t = 7.680, p < 0.001), and AAMs (t = 6.315, p < 0.001) in the lung tissue; also, type 2 cytokines concentrations in the BALF were higher compared to normal diet fed ones. CONCLUSION Vitamin A deficiency could promote the pathogeneses of lung carcinoma via induction of ILC2s and polarizing AAMs.
Collapse
Affiliation(s)
- Weiwei Cui
- Department of Nutrition and Food Hygiene, School of Public HealthJilin UniversityChangchunChina
| | - Wenxin Zhang
- Department of PathologyThe First Hospital of Jilin UniversityChangchunChina
| | - Xiaofeng Yuan
- Department of PediatricsAffiliated Hospital of Changchun University of Chinese MedicineChangchunChina
| | - Shanshan Liu
- Department of Immunology, College of Basic Medical SciencesJilin UniversityChangchunChina
| | - Meng Li
- Department of Epidemiology and Biostatistics, School of Public HealthJilin UniversityChangchunChina
| | - Junqi Niu
- Department of HepatologyThe First Hospital of Jilin UniversityChangchunChina
| | - Peng Zhang
- Department of Thoracic SurgeryThe First Hospital of Jilin UniversityChangchunChina
| | - Dong Li
- Department of Immunology, College of Basic Medical SciencesJilin UniversityChangchunChina
- Department of HepatologyThe First Hospital of Jilin UniversityChangchunChina
- Department of PathologyUniversity of CambridgeCambridgeUK
| |
Collapse
|
139
|
Wehr P, Purvis H, Law S, Thomas R. Dendritic cells, T cells and their interaction in rheumatoid arthritis. Clin Exp Immunol 2019; 196:12-27. [PMID: 30589082 PMCID: PMC6422662 DOI: 10.1111/cei.13256] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2018] [Indexed: 12/27/2022] Open
Abstract
Dendritic cells (DCs) are the key professional antigen-presenting cells which bridge innate and adaptive immune responses, inducing the priming and differentiation of naive to effector CD4+ T cells, the cross-priming of CD8+ T cells and the promotion of B cell antibody responses. DCs also play a critical role in the maintenance of immune homeostasis and tolerance. DC-T cell interactions underpin the generation of an autoimmune response in rheumatoid arthritis (RA). Here we describe the function of DCs and review evidence for DC and T cell involvement in RA pathogenesis, in particular through the presentation of self-peptide by DCs that triggers differentiation and activation of autoreactive T cells. Finally, we discuss the emerging field of targeting the DC-T cell interaction for antigen-specific immunotherapy of RA.
Collapse
Affiliation(s)
- P. Wehr
- The University of Queensland Diamantina Institute, Translational Research Institute, Princess Alexandra HospitalBrisbaneAustralia
| | - H. Purvis
- King's College London, Academic Department of Rheumatology, Centre for Inflammation Biology and Cancer Immunology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and MedicineLondonUK
| | - S.‐C. Law
- The University of Queensland Diamantina Institute, Translational Research Institute, Princess Alexandra HospitalBrisbaneAustralia
| | - R. Thomas
- The University of Queensland Diamantina Institute, Translational Research Institute, Princess Alexandra HospitalBrisbaneAustralia
| |
Collapse
|
140
|
Gong T, Song X, Yang L, Chen T, Zhao T, Zheng T, Sun X, Gong T, Zhang Z. Spontaneously formed porous structure and M1 polarization effect of Fe3O4 nanoparticles for enhanced antitumor therapy. Int J Pharm 2019; 559:329-340. [DOI: 10.1016/j.ijpharm.2019.01.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 01/03/2019] [Accepted: 01/27/2019] [Indexed: 01/24/2023]
|
141
|
Noe JT, Mitchell RA. Tricarboxylic acid cycle metabolites in the control of macrophage activation and effector phenotypes. J Leukoc Biol 2019; 106:359-367. [DOI: 10.1002/jlb.3ru1218-496r] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/04/2019] [Accepted: 02/05/2019] [Indexed: 12/22/2022] Open
Affiliation(s)
- Jordan T. Noe
- Department of Biochemistry and Molecular GeneticsUniversity of Louisville Louisville Kentucky USA
- J.G. Brown Cancer CenterUniversity of Louisville Louisville Kentucky USA
| | - Robert A. Mitchell
- Department of Biochemistry and Molecular GeneticsUniversity of Louisville Louisville Kentucky USA
- J.G. Brown Cancer CenterUniversity of Louisville Louisville Kentucky USA
- Department of Microbiology and ImmunologyUniversity of Louisville Louisville Kentucky USA
- Department of MedicineUniversity of Louisville Louisville Kentucky USA
| |
Collapse
|
142
|
Abstract
Redox signalling in the gastrointestinal mucosa is held in an intricate balance. Potent microbicidal mechanisms can be used by infiltrating immune cells, such as neutrophils, to protect compromised mucosae from microbial infection through the generation of reactive oxygen species. Unchecked, collateral damage to the surrounding tissue from neutrophil-derived reactive oxygen species can be detrimental; thus, maintenance and restitution of a breached intestinal mucosal barrier are paramount to host survival. Redox reactions and redox signalling have been studied for decades with a primary focus on contributions to disease processes. Within the past decade, an upsurge of exciting findings have implicated subtoxic levels of oxidative stress in processes such as maintenance of mucosal homeostasis, the control of protective inflammation and even regulation of tissue wound healing. Resident gut microbial communities have been shown to trigger redox signalling within the mucosa, which expresses similar but distinct enzymes to phagocytes. At the fulcrum of this delicate balance is the colonic mucosal epithelium, and emerging evidence suggests that precise control of redox signalling by these barrier-forming cells may dictate the outcome of an inflammatory event. This Review will address both the spectrum and intensity of redox activity pertaining to host-immune and host-microbiota crosstalk during homeostasis and disease processes in the gastrointestinal tract.
Collapse
|
143
|
Pemmari A, Leppänen T, Paukkeri EL, Scotece M, Hämäläinen M, Moilanen E. Attenuating Effects of Nortrachelogenin on IL-4 and IL-13 Induced Alternative Macrophage Activation and on Bleomycin-Induced Dermal Fibrosis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:13405-13413. [PMID: 30458613 DOI: 10.1021/acs.jafc.8b03023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Excessive alternative macrophage activation contributes to fibrosis. We studied the effects of nortrachelogenin, the major lignan component of Pinus sylvestris knot extract, on alternative (M2) macrophage activation. J774 murine and THP-1 human macrophages were cultured with IL-4+IL-13 to induce alternative activation, together with the extract and its components. Effects of nortrachelogenin were also studied in bleomycin-induced murine dermal fibrosis model. Knot extract significantly decreased the expression of alternative activation markers-arginase 1 in murine macrophages (97.4 ± 1.3% inhibition at 30 μg/mL) and CCL13 and PDGF in human macrophages-as did nortrachelogenin (94.9 ± 2.4% inhibition of arginase 1 at 10 μM). Nortrachelogenin also decreased PPARγ expression but had no effect on STAT6 phosphorylation. In vivo, nortrachelogenin reduced bleomycin-induced increase in skin thickness as well as the expression of collagens COL1A1, COL1A2, and COL3A1 (all by >50%). In conclusion, nortrachelogenin suppressed IL-4+IL-13-induced alternative macrophage activation and ameliorated bleomycin-induced fibrosis, indicating therapeutic potential in fibrosing conditions.
Collapse
Affiliation(s)
- Antti Pemmari
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology , Tampere University and Tampere University Hospital , Tampere , Finland
| | - Tiina Leppänen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology , Tampere University and Tampere University Hospital , Tampere , Finland
| | - Erja-Leena Paukkeri
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology , Tampere University and Tampere University Hospital , Tampere , Finland
| | - Morena Scotece
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology , Tampere University and Tampere University Hospital , Tampere , Finland
| | - Mari Hämäläinen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology , Tampere University and Tampere University Hospital , Tampere , Finland
| | - Eeva Moilanen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology , Tampere University and Tampere University Hospital , Tampere , Finland
| |
Collapse
|
144
|
Colavite PM, Vieira AE, Palanch Repeke CE, de Araujo Linhari RP, De Andrade RGCS, Borrego A, De Franco M, Trombone APF, Garlet GP. Alveolar bone healing in mice genetically selected in the maximum (AIRmax) or minimum (AIRmin) inflammatory reaction. Cytokine 2018; 114:47-60. [PMID: 30584949 DOI: 10.1016/j.cyto.2018.11.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/09/2018] [Accepted: 11/27/2018] [Indexed: 01/15/2023]
Abstract
The exact role of inflammatory immune response in bone healing process is still unclear, but the success of the alveolar bone healing process seems to be associated with a moderate and transitory inflammatory response, while insufficient or exacerbated responses seems to have a detrimental influence in the healing outcome. In this context, we performed a comparative analysis of mice strains genetically selected for maximum (AIRmax) or minimum (AIRmin) acute inflammatory response to address the influence of inflammation genes in alveolar bone healing outcome. Experimental groups comprised 8-week-old male or female AIRmax and AIRmin submitted to extraction of upper right incisor, and evaluated at 0, 3, 7, 14 and 21 days after upper incision extraction by micro-computed tomography (μCT), histomorphometry, birefringence, immunohistochemistry and molecular (PCRArray) analysis. Overall, the results demonstrate a similar successful bone healing outcome at the endpoint was evidenced in both AIRmin and AIRmax strains. The histormophometric analysis reveal a slight but significant decrease in blood clot and inflammatory cells density, as well a delay in the bone formation in AIRmax strain in the early times, associated with a decreased expression of BMP2, BMP4, BMP7, TGFb1, RUNX2, and ALP. The evaluation of inflammatory cells nature reveals increased GR1+ cells counts in AIRmax strain at 3d, associated with increased levels of neutrophil chemoattractants such as CXCL1 and CXCL2, and its receptor CXCR1, while F4/80+ cell prevails in AIRmin strain at 7d. Also, our results demonstrate a relative predominance of M2 macrophages in AIRmin strain, associated with an increased expression of ARG1, IL10, TGFb, while M1 macrophages prevail in AIRmax, which parallel with increased IL-1B, IL-6 and TNF expression. At late repair stage, AIRmax presents evidences of increased bone remodeling, characterized by increased density of blood vessels and osteoclasts in parallel with decreased bone matrix density, as well increased levels of MMPs, osteoclastogenic and osteocyte markers. In the view of contrasting inflammatory and healing phenotypes of AIRmin and AIRmax strains in other models, the unpredicted phenotype observed suggests the existence of specific QTLs (Quantitative trait loci) responsible for the regulation 'sterile' inflammation and bone healing events. Despite the similar endpoint healing, AIRmax strain delayed repair was associated with increased presence of neutrophils and M1 macrophages, supporting the association of M2 cells with faster bone healing. Further studies are required to clarify the elements responsible for the regulation of inflammatory events at bone healing sites, as well the determinants of bone healing outcome.
Collapse
Affiliation(s)
- Priscila Maria Colavite
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | - Andreia Espindola Vieira
- Histology and Embryology Laboratory, Institute of Biological and Health Sciences (ICBS), Federal University of Alagoas (UFAL), Maceió, AL, Brazil
| | | | | | | | - Andrea Borrego
- Laboratory of Immunogenetics, Butantan Institute, Secretary of Health, Government of the State of São Paulo, SP, Brazil
| | - Marcelo De Franco
- Diagnostic Section, Pasteur Institute, Secretary of Health, Government of the State of São Paulo, SP, Brazil
| | | | - Gustavo Pompermaier Garlet
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil.
| |
Collapse
|
145
|
Metabolic Signaling into Chromatin Modifications in the Regulation of Gene Expression. Int J Mol Sci 2018; 19:ijms19124108. [PMID: 30567372 PMCID: PMC6321258 DOI: 10.3390/ijms19124108] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/11/2018] [Accepted: 12/14/2018] [Indexed: 12/20/2022] Open
Abstract
The regulation of cellular metabolism is coordinated through a tissue cross-talk by hormonal control. This leads to the establishment of specific transcriptional gene programs which adapt to environmental stimuli. On the other hand, recent advances suggest that metabolic pathways could directly signal into chromatin modifications and impact on specific gene programs. The key metabolites acetyl-CoA or S-adenosyl-methionine (SAM) are examples of important metabolic hubs which play in addition a role in chromatin acetylation and methylation. In this review, we will discuss how intermediary metabolism impacts on transcription regulation and the epigenome with a particular focus in metabolic disorders.
Collapse
|
146
|
Verjans E, Kanzler S, Ohl K, Rieg AD, Ruske N, Schippers A, Wagner N, Tenbrock K, Uhlig S, Martin C. Initiation of LPS-induced pulmonary dysfunction and its recovery occur independent of T cells. BMC Pulm Med 2018; 18:174. [PMID: 30466430 PMCID: PMC6251177 DOI: 10.1186/s12890-018-0741-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 11/14/2018] [Indexed: 12/19/2022] Open
Abstract
Background The acute respiratory distress syndrome (ARDS) is a serious disease in critically ill patients that is characterized by pulmonary dysfunctions, hypoxemia and significant mortality. Patients with immunodeficiency (e.g. SCID with T and B cell deficiency) are particularly susceptible to the development of severe ARDS. However, the role of T cells on pulmonary dysfunctions in immune-competent patients with ARDS is only incompletely understood. Methods Wild-type (wt) and RAG2−/− mice (lymphocyte deficient) received intratracheal instillations of LPS (4 mg/kg) or saline. On day 1, 4 and 10 lung mechanics and bronchial hyperresponsiveness towards acetylcholine were measured with the flexiVent ventilation set-up. The bronchoalveolar lavage fluid (BALF) was examined for leukocytes (FACS analysis) and pro-inflammatory cytokines (ELISA). Results In wt mice, lung mechanics, body weight and body temperature deteriorated in the LPS-group during the early phase (up to d4); these alterations were accompanied by increased leukocyte numbers and inflammatory cytokine levels in the BALF. During the late phase (day 10), both lung mechanics and the cell/cytokine homeostasis recovered in LPS-treated wt mice. RAG2−/− mice experienced changes in body weight, lung mechanics, BAL neutrophil numbers, BAL inflammatory cytokines levels that were comparable to wt mice. Conclusion Following LPS instillation, lung mechanics deteriorate within the first 4 days and recover towards day 10. This response is not altered by the lack of T lymphocytes suggesting that T cells play only a minor role for the initiation, propagation or recovery of LPS-induced lung dysfunctions or function of T lymphocytes can be compensated by other immune cells, such as alveolar macrophages. Electronic supplementary material The online version of this article (10.1186/s12890-018-0741-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Eva Verjans
- Department of Pediatrics, Medical Faculty, RWTH Aachen, Aachen, Germany. .,Institute of Pharmacology and Toxicology, RWTH Aachen, Aachen, Germany.
| | - Stephanie Kanzler
- Institute of Pharmacology and Toxicology, RWTH Aachen, Aachen, Germany
| | - Kim Ohl
- Department of Pediatrics, Medical Faculty, RWTH Aachen, Aachen, Germany
| | - Annette D Rieg
- Institute of Pharmacology and Toxicology, RWTH Aachen, Aachen, Germany.,Department of Anaesthesiology, Medical Faculty, RWTH Aachen, Aachen, Germany
| | - Nadine Ruske
- Institute of Pharmacology and Toxicology, RWTH Aachen, Aachen, Germany
| | - Angela Schippers
- Department of Pediatrics, Medical Faculty, RWTH Aachen, Aachen, Germany
| | - Norbert Wagner
- Department of Pediatrics, Medical Faculty, RWTH Aachen, Aachen, Germany
| | - Klaus Tenbrock
- Department of Pediatrics, Medical Faculty, RWTH Aachen, Aachen, Germany
| | - Stefan Uhlig
- Institute of Pharmacology and Toxicology, RWTH Aachen, Aachen, Germany
| | - Christian Martin
- Institute of Pharmacology and Toxicology, RWTH Aachen, Aachen, Germany
| |
Collapse
|
147
|
Menzyanova NG, Pyatina SА, Nikolaeva ED, Shabanov AV, Nemtsev IV, Stolyarov DP, Dryganov DB, Sakhnov EV, Shishatskaya EI. Screening of biopolymeric materials for cardiovascular surgery toxicity-Evaluation of their surface relief with assessment of morphological aspects of monocyte/macrophage polarization in atherosclerosis patients. Toxicol Rep 2018; 6:74-90. [PMID: 30581762 PMCID: PMC6297908 DOI: 10.1016/j.toxrep.2018.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/13/2018] [Accepted: 11/16/2018] [Indexed: 12/16/2022] Open
Abstract
The morphotypes of human macrophages (MPh) were studied in the culture on nano-structured biopolymer substrates, made from polyhydroxyalcanoates (PHAs) of five various monomer compositions, followed by the solvent evaporation. Its surface relief, which was further in direct contact with human cells in vitro, was analyzed by atomic force microscopy (AFM) and scanning electron microscopy (SEM). It was shown, that the features of the micro/nano relief depend on the monomeric composition of the polymer substrates. Monocytes (MN) of patients with atherosclerosis and cardiac ischemia, undergoing stenting and conventional anti-atherosclerotic therapy, were harvested prior and after stenting. MN were isolated and cultured, with the transformation into MPh in direct contact with biopolymer culture substrates with different monomer composition and nano-reliefs, and transformed into MPh, in comparison with the same process on standard culture plastic. Sub-populations of cells with characteristic morphology in each phenotypic class were described, and their quantitative ratios for each sample of polymers were counted as an intermediate result in the development of "smart" material for cardiovascular devices. The results obtained allow us to assume, that the processes of MPh differentiation and polarization in vitro depend not only on the features of the micro/nano relief of biopolymer substrates, but also on the initial state of MN in vivo and general response of patients.
Collapse
Key Words
- AFM, atomic force microscopy
- Atherosclerosis
- Cell morphology
- Intravascular stenting
- MN, monocytes
- MOC, mononuclear cells
- MPh, macrophages
- MUC, multinucleated cells
- Macrophages
- Monocytes
- P(3HB), poly-3-hydroxybutyrate
- P(3HB/3HV), copolymers of 3-hydroxybutyrate and 3-hydroxyvalerate
- P(3HB/3HV/3HHx), copolymers of 3-hydroxybutyrate, 3-hydroxyvalerate and 3-hydroxyhexanoate
- P(3HB/3HV/4HB/3HHx), copolymers of 3-hydroxybutyrate, 3-hydroxyvalerate, 4-hydroxybutyrate and 3-hydroxyhexanoate
- P(3HB/4HB), copolymers of 3-hydroxybutyrate and 4-hydroxybutyrate
- PHAs, polyhydroxyalcanoates
- Polyhydroxyalkanoates
- SEM, scanning electron microscopy
Collapse
Affiliation(s)
| | | | - Elena D. Nikolaeva
- Institute of Biophysics, Siberian Branch of the Russian Academy of Sciences, 50/50 Akademgorodok, Krasnoyarsk, 660036, Russia
| | - Alexander V. Shabanov
- L.V. Kirensky Institute of Physics, Siberian Branch of the Russian Academy of Sciences, 50/38 Akademgorodok, Krasnoyarsk, 660036, Russia
| | - Ivan V. Nemtsev
- Federal Research Center Krasnoyarsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences, 50 Akademgorodok, Krasnoyarsk, 660036, Russia
| | - Dmitry P. Stolyarov
- Federal Center for Cardiovascular Surgery, 45 Karaulnaya, Krasnoyarsk, 660020, Russia
| | - Dmitry B. Dryganov
- Federal Center for Cardiovascular Surgery, 45 Karaulnaya, Krasnoyarsk, 660020, Russia
| | - Eugene V. Sakhnov
- Federal Center for Cardiovascular Surgery, 45 Karaulnaya, Krasnoyarsk, 660020, Russia
| | - Ekaterina I. Shishatskaya
- Siberian Federal University, 79, Svobodny av., Krasnoyarsk, 660041, Russia
- Institute of Biophysics, Siberian Branch of the Russian Academy of Sciences, 50/50 Akademgorodok, Krasnoyarsk, 660036, Russia
| |
Collapse
|
148
|
Permanent neuroglial remodeling of the retina following infiltration of CSF1R inhibition-resistant peripheral monocytes. Proc Natl Acad Sci U S A 2018; 115:E11359-E11368. [PMID: 30442669 PMCID: PMC6275537 DOI: 10.1073/pnas.1807123115] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
This work contributes to the understanding of the enigmatic progressive retinal damage following acute ocular surface injury. Clinical findings in patients suggest that such injuries can adversely affect the retina. This study demonstrates that corneal injury leads to rapid infiltration of blood-derived monocytes into the retina and to subsequent remodeling of the neuroglial system. In contrast to previously held belief, this study shows that the blood-derived monocytes engraft permanently into the retina and differentiate into microglia-like cells. Although these cells are morphologically indistinguishable from native microglia, they retain a distinct signature and insensitivity to CSF1R inhibition and exhibit a reactive phenotype which persists long after the noxious stimuli is removed, ultimately contributing to progressive neuroretinal degeneration. Previous studies have demonstrated that ocular injury can lead to prompt infiltration of bone-marrow–derived peripheral monocytes into the retina. However, the ability of these cells to integrate into the tissue and become microglia has not been investigated. Here we show that such peripheral monocytes that infiltrate into the retina after ocular injury engraft permanently, migrate to the three distinct microglia strata, and adopt a microglia-like morphology. In the absence of ocular injury, peripheral monocytes that repopulate the retina after depletion with colony-stimulating factor 1 receptor (CSF1R) inhibitor remain sensitive to CSF1R inhibition and can be redepleted. Strikingly, consequent to ocular injury, the engrafted peripheral monocytes are resistant to depletion by CSF1R inhibitor and likely express low CSF1R. Moreover, these engrafted monocytes remain proinflammatory, expressing high levels of MHC-II, IL-1β, and TNF-α over the long term. The observed permanent neuroglia remodeling after injury constitutes a major immunological change that may contribute to progressive retinal degeneration. These findings may also be relevant to other degenerative conditions of the retina and the central nervous system.
Collapse
|
149
|
Hu Y, Wei X, Liao Z, Gao Y, Liu X, Su J, Yuan G. Transcriptome Analysis Provides Insights into the Markers of Resting and LPS-Activated Macrophages in Grass Carp ( Ctenopharyngodon idella). Int J Mol Sci 2018; 19:ijms19113562. [PMID: 30424518 PMCID: PMC6274997 DOI: 10.3390/ijms19113562] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/05/2018] [Accepted: 11/06/2018] [Indexed: 12/20/2022] Open
Abstract
Macrophages are very versatile immune cells, with the characteristics of a proinflammatory phenotype in response to pathogen-associated molecular patterns. However, the specific activation marker genes of macrophages have not been systematically investigated in teleosts. In this work, leukocytes (WBC) were isolated using the Percoll gradient method. Macrophages were enriched by the adherent culture of WBC, then stimulated with lipopolysaccharide (LPS). Macrophages were identified by morphological features, functional activity and authorized cytokine expression. Subsequently, we collected samples, constructed and sequenced transcriptomic libraries including WBC, resting macrophage (Mø) and activated macrophage (M(LPS)) groups. We gained a total of 20.36 Gb of clean data including 149.24 million reads with an average length of 146 bp. Transcriptome analysis showed 708 differential genes between WBC and Mø, 83 differentially expressed genes between Mø and M(LPS). Combined with RT-qPCR, we proposed that four novel cell surface marker genes (CD22-like, CD63, CD48 and CD276) and two chemokines (CXCL-like and CCL39.3) would be emerging potential marker genes of macrophage in grass carp. Furthermore, CD69, CD180, CD27, XCL32a.2 and CXCL8a genes can be used as marker genes to confirm whether macrophages are activated. Transcriptome profiling reveals novel molecules associated with macrophages in C. Idella, which may represent a potential target for macrophages activation.
Collapse
Affiliation(s)
- Yazhen Hu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
- Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Wuhan 430070, China.
| | - Xiaolei Wei
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
- Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Wuhan 430070, China.
| | - Zhiwei Liao
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
- Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Wuhan 430070, China.
| | - Yu Gao
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China.
| | - Xiaoling Liu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
- Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Wuhan 430070, China.
| | - Jianguo Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
- Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Wuhan 430070, China.
| | - Gailing Yuan
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
- Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Wuhan 430070, China.
| |
Collapse
|
150
|
Pan J, Ye Z, Zhang N, Lou T, Cao Z. MicroRNA-217 regulates interstitial pneumonia via IL-6. BIOTECHNOL BIOTEC EQ 2018. [DOI: 10.1080/13102818.2018.1519379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Jiongwei Pan
- Department of Respiratory Medicine, Sixth Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhaiting Ye
- Department of Radiology, Sixth Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ning Zhang
- Intense Care Unit, First Affiliated Hospital of Lishui University, Lishui, Zhejiang, China
| | - Tianzheng Lou
- Intense Care Unit, First Affiliated Hospital of Lishui University, Lishui, Zhejiang, China
| | - Zhuo Cao
- Department of Respiratory Medicine, Sixth Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Respiratory Medicine, First Affiliated Hospital of Lishui University, Lishui, Zhejiang, China
| |
Collapse
|