101
|
Ozana N, Lue N, Renna M, Robinson MB, Martin A, Zavriyev AI, Carr B, Mazumder D, Blackwell MH, Franceschini MA, Carp SA. Functional Time Domain Diffuse Correlation Spectroscopy. Front Neurosci 2022; 16:932119. [PMID: 35979338 PMCID: PMC9377452 DOI: 10.3389/fnins.2022.932119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
Time-domain diffuse correlation spectroscopy (TD-DCS) offers a novel approach to high-spatial resolution functional brain imaging based on the direct quantification of cerebral blood flow (CBF) changes in response to neural activity. However, the signal-to-noise ratio (SNR) offered by previous TD-DCS instruments remains a challenge to achieving the high temporal resolution needed to resolve perfusion changes during functional measurements. Here we present a next-generation optimized functional TD-DCS system that combines a custom 1,064 nm pulse-shaped, quasi transform-limited, amplified laser source with a high-resolution time-tagging system and superconducting nanowire single-photon detectors (SNSPDs). System characterization and optimization was conducted on homogenous and two-layer intralipid phantoms before performing functional CBF measurements in six human subjects. By acquiring CBF signals at over 5 Hz for a late gate start time of the temporal point spread function (TPSF) at 15 mm source-detector separation, we demonstrate for the first time the measurement of blood flow responses to breath-holding and functional tasks using TD-DCS.
Collapse
Affiliation(s)
- Nisan Ozana
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States,*Correspondence: Nisan Ozana, ,
| | - Niyom Lue
- Massachusetts Institute of Technology Lincoln Laboratory, Lexington, MA, United States
| | - Marco Renna
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Mitchell B. Robinson
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States,Massachusetts Institute of Technology, Health Sciences and Technology Program, Cambridge, MA, United States
| | - Alyssa Martin
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Alexander I. Zavriyev
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Bryce Carr
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Dibbyan Mazumder
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Megan H. Blackwell
- Massachusetts Institute of Technology Lincoln Laboratory, Lexington, MA, United States
| | - Maria A. Franceschini
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Stefan A. Carp
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
102
|
Bonnal J, Monnet F, Le BT, Pila O, Grosmaire AG, Ozsancak C, Duret C, Auzou P. Relation between Cortical Activation and Effort during Robot-Mediated Walking in Healthy People: A Functional Near-Infrared Spectroscopy Neuroimaging Study (fNIRS). SENSORS (BASEL, SWITZERLAND) 2022; 22:5542. [PMID: 35898041 PMCID: PMC9329983 DOI: 10.3390/s22155542] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 02/01/2023]
Abstract
Force and effort are important components of a motor task that can impact rehabilitation effectiveness. However, few studies have evaluated the impact of these factors on cortical activation during gait. The purpose of the study was to investigate the relation between cortical activation and effort required during exoskeleton-mediated gait at different levels of physical assistance in healthy individuals. Twenty-four healthy participants walked 10 m with an exoskeleton that provided four levels of assistance: 100%, 50%, 0%, and 25% resistance. Functional near-infrared spectroscopy (fNIRS) was used to measure cerebral flow dynamics with a 20-channel (plus two reference channels) device that covered most cortical motor regions bilaterally. We measured changes in oxyhemoglobin (HbO2) and deoxyhemoglobin (HbR). According to HbO2 levels, cortical activation only differed slightly between the assisted conditions and rest. In contrast, bilateral and widespread cortical activation occurred during the two unassisted conditions (somatosensory, somatosensory association, primary motor, premotor, and supplementary motor cortices). A similar pattern was seen for HbR levels, with a smaller number of significant channels than for HbO2. These results confirmed the hypothesis that there is a relation between cortical activation and level of effort during gait. This finding should help to optimize neurological rehabilitation strategies to drive neuroplasticity.
Collapse
Affiliation(s)
- Julien Bonnal
- Service de Neurologie, Centre Hospitalier Regional d’Orleans, 14 Avenue de l’Hôpital, 45100 Orleans, France; (J.B.); (F.M.); (B.-T.L.); (C.O.); (P.A.)
| | - Fanny Monnet
- Service de Neurologie, Centre Hospitalier Regional d’Orleans, 14 Avenue de l’Hôpital, 45100 Orleans, France; (J.B.); (F.M.); (B.-T.L.); (C.O.); (P.A.)
- Institut Denis Poisson, Université d’Orléans Collegium Sciences et Techniques Bâtiment de Mathématiques, Rue de Chartres, B.P. 6759, CEDEX 2, 45067 Orleans, France
| | - Ba-Thien Le
- Service de Neurologie, Centre Hospitalier Regional d’Orleans, 14 Avenue de l’Hôpital, 45100 Orleans, France; (J.B.); (F.M.); (B.-T.L.); (C.O.); (P.A.)
| | - Ophélie Pila
- Unité de Neurorééducation, Médecine Physique et de Réadaptation, Centre de Rééducation Fonctionnelle Les Trois Soleils, Rue du Château, 77310 Boissise-Le-Roi, France; (O.P.); (A.-G.G.)
| | - Anne-Gaëlle Grosmaire
- Unité de Neurorééducation, Médecine Physique et de Réadaptation, Centre de Rééducation Fonctionnelle Les Trois Soleils, Rue du Château, 77310 Boissise-Le-Roi, France; (O.P.); (A.-G.G.)
| | - Canan Ozsancak
- Service de Neurologie, Centre Hospitalier Regional d’Orleans, 14 Avenue de l’Hôpital, 45100 Orleans, France; (J.B.); (F.M.); (B.-T.L.); (C.O.); (P.A.)
| | - Christophe Duret
- Unité de Neurorééducation, Médecine Physique et de Réadaptation, Centre de Rééducation Fonctionnelle Les Trois Soleils, Rue du Château, 77310 Boissise-Le-Roi, France; (O.P.); (A.-G.G.)
| | - Pascal Auzou
- Service de Neurologie, Centre Hospitalier Regional d’Orleans, 14 Avenue de l’Hôpital, 45100 Orleans, France; (J.B.); (F.M.); (B.-T.L.); (C.O.); (P.A.)
| |
Collapse
|
103
|
Monitoring the Impact of Spaceflight on the Human Brain. LIFE (BASEL, SWITZERLAND) 2022; 12:life12071060. [PMID: 35888147 PMCID: PMC9323314 DOI: 10.3390/life12071060] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 11/17/2022]
Abstract
Extended exposure to radiation, microgravity, and isolation during space exploration has significant physiological, structural, and psychosocial effects on astronauts, and particularly their central nervous system. To date, the use of brain monitoring techniques adopted on Earth in pre/post-spaceflight experimental protocols has proven to be valuable for investigating the effects of space travel on the brain. However, future (longer) deep space travel would require some brain function monitoring equipment to be also available for evaluating and monitoring brain health during spaceflight. Here, we describe the impact of spaceflight on the brain, the basic principles behind six brain function analysis technologies, their current use associated with spaceflight, and their potential for utilization during deep space exploration. We suggest that, while the use of magnetic resonance imaging (MRI), positron emission tomography (PET), and computerized tomography (CT) is limited to analog and pre/post-spaceflight studies on Earth, electroencephalography (EEG), functional near-infrared spectroscopy (fNIRS), and ultrasound are good candidates to be adapted for utilization in the context of deep space exploration.
Collapse
|
104
|
Zhang F, Reid A, Schroeder A, Cutter M, Kim K, Ding L, Yuan H. Clenching-Related Motion Artifacts in Functional Near-Infrared Spectroscopy in the Auditory Cortex. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:4649-4652. [PMID: 36086024 DOI: 10.1109/embc48229.2022.9870940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Functional near-infrared spectroscopy (fNIRS), a non-invasive optical neuroimaging technique, has demonstrated its great potential in monitoring cerebral activity as an alternative to functional magnetic resonance imaging (fMRI) in research and clinical usage. fNIRS has seen increasing applications in studying the auditory cortex in healthy subjects and cochlear implant users. However, fNIRS is susceptible to motion artifacts, especially those related to jaw movement, which can affect fNIRS signals in speech and auditory tasks. This study aimed to investigate the motion artifacts related to jaw movements including clenching, speaking, swallowing, and sniffing in a group of human subjects, and test whether our previously established denoising algorithm namely PCA-GLM can reduce the motion artifacts. Our results have shown that the jaw movements introduced artifacts that resemble task-evoked activations and that the PCA-GLM method effectively reduced the motion artifacts due to the clenching movements. The preliminary results of the present study underline the importance of the removal of the jaw-movement-related artifacts in fNIRS signals and suggest the efficacy of our PCA-GLM method in reducing the motion artifacts. Clinical Relevance- This work studies the motion artifacts due to jaw movements that frequently occur in speech perception and production tasks and validates the efficacy of an established denoising algorithm which benefits fNIRS studies on auditory and language functions.
Collapse
|
105
|
Truong NCD, Wang X, Wanniarachchi H, Liu H. Enhancement of Frequency-Specific Hemodynamic Power and Functional Connectivity by Transcranial Photobiomodulation in Healthy Humans. Front Neurosci 2022; 16:896502. [PMID: 35757526 PMCID: PMC9226485 DOI: 10.3389/fnins.2022.896502] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/09/2022] [Indexed: 12/03/2022] Open
Abstract
Transcranial photobiomodulation (tPBM) has been considered a safe and effective brain stimulation modality being able to enhance cerebral oxygenation and neurocognitive function. To better understand the underlying neurophysiological effects of tPBM in the human brain, we utilized a 111-channel functional near infrared spectroscopy (fNIRS) system to map cerebral hemodynamic responses over the whole head to 8-min tPBM with 1,064-nm laser given on the forehead of 19 healthy participants. Instead of analyzing broad-frequency hemodynamic signals (0–0.2 Hz), we investigated frequency-specific effects of tPBM on three infra-slow oscillation (ISO) components consisting of endogenic, neurogenic, and myogenic vasomotions. Significant changes induced by tPBM in spectral power of oxygenated hemoglobin concentration (Δ[HbO]), functional connectivity (FC), and global network metrics at each of the three ISO frequency bands were identified and mapped topographically for frequency-specific comparisons. Our novel findings revealed that tPBM significantly increased endogenic Δ[HbO] powers over the right frontopolar area near the stimulation site. Also, we demonstrated that tPBM enabled significant enhancements of endogenic and myogenic FC across cortical regions as well as of several global network metrics. These findings were consistent with recent reports and met the expectation that myogenic oscillation is highly associated with endothelial activity, which is stimulated by tPBM-evoked nitric oxide (NO) release.
Collapse
Affiliation(s)
- Nghi Cong Dung Truong
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States
| | - Xinlong Wang
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States
| | - Hashini Wanniarachchi
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States
| | - Hanli Liu
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States
| |
Collapse
|
106
|
Yuan Z, Xu W, Bao J, Gao H, Li W, Peng Y, Wang L, Zhao Y, Song S, Qiao J, Wang G. Task-State Cortical Motor Network Characteristics by Functional Near-Infrared Spectroscopy in Subacute Stroke Show Hemispheric Dominance. Front Aging Neurosci 2022; 14:932318. [PMID: 35813955 PMCID: PMC9263394 DOI: 10.3389/fnagi.2022.932318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Background There was a reorganization of the brain network after stroke. Some studies have compared the characteristics of activation or functional connectivity (FC) of cortical and subcortical regions between the dominant and non-dominant hemisphere stroke. Objectives To analyze hemispheric dominance differences in task-state motor network properties in subacute stroke by functional near-infrared spectroscopy (fNIRS). Materials and Methods Patients with first ischemic stroke in the basal ganglia within 1–3 months after onset and age- and sex-matched right-handed healthy subjects (HS) were enrolled. fNIRS with 29 channels was used to detect the oxyhemoglobin concentration changes when performing the hand grasping task. Activation patterns of motor cortex and two macroscale and two mesoscale brain network indicators based on graph theory were compared between dominant and non-dominant hemisphere stroke. Results We enrolled 17 subjects in each of left hemisphere stroke (LHS), right hemisphere stroke (RHS), and HS groups. Both patient groups showed bilateral activation. The average weighted clustering coefficient and global efficiency of patients were lower than those of healthy people, and the inter-density was higher than that of the HS group, but the significance was different between LHS and RHS groups. The intra-density changes in the RHS group were opposite to those in the LHS group. The correlation between mesoscale indicators and motor function differed between dominant and non-dominant hemisphere stroke. Conclusion The changes in macroscale cortical network indicators were similar between the two patient groups, while those of the mesoscale indicators were different. The mesoscale brain network characteristics were affected by the severity of dysfunction to varying degrees in the LHS and RHS patients.
Collapse
Affiliation(s)
- Ziwen Yuan
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Engineering, School of Life Sciences and Technology, Xi’an Jiaotong University, Xi’an, China
- Department of Rehabilitation, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Weiwei Xu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Engineering, School of Life Sciences and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Jiameng Bao
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Engineering, School of Life Sciences and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Hui Gao
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Wen Li
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Engineering, School of Life Sciences and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Yu Peng
- Department of Rehabilitation, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Lisha Wang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Engineering, School of Life Sciences and Technology, Xi’an Jiaotong University, Xi’an, China
- Department of Rehabilitation, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Ye Zhao
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Engineering, School of Life Sciences and Technology, Xi’an Jiaotong University, Xi’an, China
- Department of Rehabilitation, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Siming Song
- Department of Rehabilitation, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jin Qiao
- Department of Rehabilitation, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Jin Qiao,
| | - Gang Wang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Engineering, School of Life Sciences and Technology, Xi’an Jiaotong University, Xi’an, China
- Gang Wang,
| |
Collapse
|
107
|
Kennedy CM, Burma JS, Newel KT, Brassard P, Smirl JD. Time course recovery of cerebral blood velocity metrics post aerobic exercise: A systematic review. J Appl Physiol (1985) 2022; 133:471-489. [PMID: 35708702 DOI: 10.1152/japplphysiol.00630.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Currently, the standard approach for restricting exercise prior to cerebrovascular data collection varies widely between 6-24 hours. This universally employed practice is a conservative approach to safeguard physiological alterations that could potentially confound one's study design. Therefore, the purpose of this systematic review was to amalgamate the literature that examines the extent and duration cerebrovascular function is impacted following aerobic exercise measured via transcranial Doppler ultrasound. Further, an exploratory aim was to scrutinize and discuss common biases/limitations in the previous studies to help guide future investigations. Search strategies were developed and imported into PubMed, SPORTDiscus, and Medline databases. A total of 595 records were screened and 35 articles met the inclusion criteria in this review, which included assessments of basic cerebrovascular metrics (n=35), dynamic cerebral autoregulation (dCA; n=9), neurovascular coupling (NVC; n=2); and/or cerebrovascular reactivity (CVR-CO2; n=1) following acute bouts of aerobic exercise. Across all studies, it was found NVC was impacted for 1-hour, basic cerebrovascular parameters and CVR-CO2 parameters 2-hours, and dCA metrics 6-hours post-exercise. Therefore, future studies can provide participants with these evidence-based time restrictions, regarding the minimum time to abstain from exercise prior to data collection. However, it should be noted, other physiological mechanisms could still be altered (e.g., metabolic, hormonal, and/or autonomic influences), despite cerebrovascular function returning to baseline levels. Thus, future investigations should seek to control for as many physiological influences when employing cerebrovascular assessments, immediately following these time restraints. The main limitations/biases were lack of female participants, cardiorespiratory fitness, and consideration for vessel diameter.
Collapse
Affiliation(s)
- Courtney M Kennedy
- Cerebrovascular Concussion Lab, Faculty of Kinesiology, University of Calgary, Alberta, Canada.,Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute of Alberta, University of Calgary, Alberta, Canada
| | - Joel S Burma
- Cerebrovascular Concussion Lab, Faculty of Kinesiology, University of Calgary, Alberta, Canada.,Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute of Alberta, University of Calgary, Alberta, Canada
| | - Kailey T Newel
- Cerebrovascular Concussion Lab, Faculty of Kinesiology, University of Calgary, Alberta, Canada.,Faculty of Health and Exercise Science, University of British Columbia, Kelowna, BC, Canada
| | - Patrice Brassard
- Department of Kinesiology, Université Laval, Québec, Québec, Canada.,Research center of the Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Québec, Canada
| | - Jonathan David Smirl
- Cerebrovascular Concussion Lab, Faculty of Kinesiology, University of Calgary, Alberta, Canada.,Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute of Alberta, University of Calgary, Alberta, Canada
| |
Collapse
|
108
|
Cerebral Responses to Different Reinforcing-reducing Acupuncture Manipulations: Study Protocol for a Randomized Crossover Functional Near-Infrared Spectroscopy (fNIRS) Trial. Eur J Integr Med 2022. [DOI: 10.1016/j.eujim.2022.102150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
109
|
Pérez-Denia L, Claffey P, Byrne L, Rice C, Kenny RA, Finucane C. Increased multimorbidity is associated with impaired cerebral and peripheral hemodynamic stabilization during active standing. J Am Geriatr Soc 2022; 70:1973-1986. [PMID: 35535653 PMCID: PMC9545463 DOI: 10.1111/jgs.17810] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 11/30/2022]
Abstract
Background Age‐related morbidities and frailty are associated with impaired blood pressure (BP) and heart rate (HR) recovery after standing. Here we investigate how multimorbidity affects cerebral and peripheral hemodynamics during standing in a large sample of older patients. Methods Patients were recruited from a national Falls and Syncope Unit. They underwent an active stand test (5–10 min lying +3 min standing) with monitoring of continuous BP, HR, total peripheral resistance (TPR), stroke volume (SV), and a near‐infrared spectroscopy (NIRS) derived cerebral tissue saturation index (TSI). A multimorbidity count was derived from a 26‐item list of conditions. Features derived from the signals included: nadir, overshoot, value at 30 s, steady‐state and recovery rate. Robust linear regression was used to assess the association between multimorbidity, TSI and peripheral hemodynamics while correcting for covariates. A p‐value <0.05 was considered statistically significant. Results Multimorbidity was associated with poorer recovery of TSI at 30 s after standing (β: −0.15, CI:[−0.25–0.06], p = 0.009) independent of all peripheral hemodynamics. Impaired diastolic BP (DBP) recovery at 30s (β:−1.34, CI:[−2.29–0.40], p = 0.032), DBP steady‐state (β:−1.18, CI:[−2.04–0.32], p = 0.032), TPR overshoot‐to‐nadir difference (β:−0.041, CI:[−0.070–0.013], p = 0.045), and SV at 30s (β:1.30, CI:[0.45 2.15], p = 0.027) were also associated with increasing multimorbidity. After sex stratification, only females demonstrated impaired TSI with multimorbidity at overshoot (β: −0.19, CI: [−0.32 ‐0.07], p = 0.009), 30 s (β: −0.22 [−0.35–0.10], p = 0.005) and steady‐state (β: −0.20, CI:[−0.35–0.04], p = 0.023), independent of peripheral hemodynamics. Conclusions Transient cerebral oxygenation and peripheral hemodynamic responses are impaired with multimorbidity (frailty) in older patients, particularly in females. This study demonstrates the feasibility of using NIRS in this clinical context and may inform the development of clinical management strategies targeting both cerebral oxygenation and blood pressure impairments in patients with faints and falls.
Collapse
Affiliation(s)
- Laura Pérez-Denia
- School of Medicine, Trinity College Dublin, Dublin, Ireland.,Falls and Syncope Unit, Mercer's Institute for Successful Ageing, St. James's Hospital Dublin, Dublin, Ireland.,Department of Medical Physics, Mercer's Institute for Successful Ageing, St. James's Hospital Dublin, Dublin, Ireland
| | - Paul Claffey
- School of Medicine, Trinity College Dublin, Dublin, Ireland.,Falls and Syncope Unit, Mercer's Institute for Successful Ageing, St. James's Hospital Dublin, Dublin, Ireland
| | - Lisa Byrne
- Falls and Syncope Unit, Mercer's Institute for Successful Ageing, St. James's Hospital Dublin, Dublin, Ireland
| | - Ciara Rice
- Falls and Syncope Unit, Mercer's Institute for Successful Ageing, St. James's Hospital Dublin, Dublin, Ireland
| | - Rose Anne Kenny
- School of Medicine, Trinity College Dublin, Dublin, Ireland.,Falls and Syncope Unit, Mercer's Institute for Successful Ageing, St. James's Hospital Dublin, Dublin, Ireland
| | - Ciarán Finucane
- School of Medicine, Trinity College Dublin, Dublin, Ireland.,Falls and Syncope Unit, Mercer's Institute for Successful Ageing, St. James's Hospital Dublin, Dublin, Ireland.,Department of Medical Physics, Mercer's Institute for Successful Ageing, St. James's Hospital Dublin, Dublin, Ireland
| |
Collapse
|
110
|
de Tommaso M, La Rocca M, Quitadamo SG, Ricci K, Tancredi G, Clemente L, Gentile E, Ammendola E, Delussi M. Central effects of galcanezumab in migraine: a pilot study on Steady State Visual Evoked Potentials and occipital hemodynamic response in migraine patients. J Headache Pain 2022; 23:52. [PMID: 35484504 PMCID: PMC9052688 DOI: 10.1186/s10194-022-01421-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/11/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The discovery of the prominent action of Calcitonin Gene Related Peptide -CGRP- on trigeminal afferents and meningeal vessels, opened a new era in migraine treatment. However, how the block of nociceptive afferents could act on central mechanisms of migraine is still not clear. In this pilot study we aimed to test the effect of 3 months Galcanezumab (CGA) therapy on occipital visual reactivity in migraine patients, using the Steady State Visual Evoked Potentials-SSVEPs and Functional Near Infrared Spectroscopy -fNIRS. METHOD Thirteen migraine patients underwent clinical and neurophysiological examination in basal condition (T0), 1 h after GCA injection (T1) and after 3 months of GCA treatment (T2). Ten healthy volunteers were also evaluated. RESULTS At T2, there was a reduction of headache frequency and disability. At T2, the EEG power significantly diminished as compared to T0 and T1 at occipital sites, and the topographical analysis confirmed a restoration of SSVEPs within normal values. The Oxyhemoglobin levels in occipital cortex, which were basically increased during visual stimulation in migraine patients, reverted to normal values at T2. CONCLUSIONS The present pilot study indicates that Galcanezumab could act on cortical targets located beyond the pain network, restoring the abnormal occipital reactivity. This effect could indicate the possible disease modifying properties of CGRP related monoclonal antibodies.
Collapse
Affiliation(s)
- Marina de Tommaso
- Applied Neurophysiology and Pain Unit, Bari Aldo Moro UniversityPoliclinico General Hospital, Piazza Giulio Cesare 11, 70124, Bari, Italy.
| | - Marianna La Rocca
- Dipartimento Interateneo di Fisica 'M. Merlin', Università degli Studi di Bari 'A. Moro', Bari, Italy.,Laboratory of Neuro Imaging, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Silvia Giovanna Quitadamo
- Applied Neurophysiology and Pain Unit, Bari Aldo Moro UniversityPoliclinico General Hospital, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Katia Ricci
- Applied Neurophysiology and Pain Unit, Bari Aldo Moro UniversityPoliclinico General Hospital, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Giusy Tancredi
- Applied Neurophysiology and Pain Unit, Bari Aldo Moro UniversityPoliclinico General Hospital, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Livio Clemente
- Applied Neurophysiology and Pain Unit, Bari Aldo Moro UniversityPoliclinico General Hospital, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Eleonora Gentile
- Applied Neurophysiology and Pain Unit, Bari Aldo Moro UniversityPoliclinico General Hospital, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Elena Ammendola
- Applied Neurophysiology and Pain Unit, Bari Aldo Moro UniversityPoliclinico General Hospital, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Marianna Delussi
- Applied Neurophysiology and Pain Unit, Bari Aldo Moro UniversityPoliclinico General Hospital, Piazza Giulio Cesare 11, 70124, Bari, Italy
| |
Collapse
|
111
|
Jacobson N, Lithgow B, Jafari Jozani M, Moussavi Z. The Effect of Transcranial Alternating Current Stimulation With Cognitive Training on Executive Brain Function in Individuals With Dementia: Protocol for a Crossover Randomized Controlled Trial. JMIR Res Protoc 2022; 11:e37282. [PMID: 35475789 PMCID: PMC9096654 DOI: 10.2196/37282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/01/2022] [Accepted: 03/01/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Although memory and cognitive declines are associated with normal brain aging, they may also be precursors to dementia. OBJECTIVE We aim to offer a novel approach to prevent or slow the progress of neurodegenerative dementia, or plausibly, improve the cognitive functions of individuals with dementia. METHODS We will recruit and enroll 75 participants (older than 50 years old with either mild cognitive impairment or probable early or moderate dementia) for this double-blind randomized controlled study to estimate the efficacy of active transcranial alternating current stimulation with cognitive treatment (in comparison with sham transcranial alternating current stimulation). This will be a crossover study; a cycle consists of sham or active treatment for a period of 4 weeks (5 days per week, in two 30-minute sessions with a half-hour break in between), and participants are randomized into 2 groups, with stratification by age, sex, and cognitive level (measured with the Montreal Cognitive Assessment). Outcomes will be assessed before and after each treatment cycle. The primary outcomes are changes in Wechsler Memory Scale Older Adult Battery and Alzheimer Disease Assessment Scale scores. Secondary outcomes are changes in performance on tests of frontal lobe functioning (verbal fluency), neuropsychiatric symptoms (Neuropsychiatric Inventory Questionnaire), mood changes (Montgomery-Åsberg Depression Rating Scale), and short-term recall (visual 1-back task). Exploratory outcome measures will also be assessed: static and dynamic vestibular response using electrovestibulography, neuronal changes using functional near-infrared spectroscopy, and change in spatial orientation using virtual reality navigation. RESULTS As of February 10, 2022, the study is ongoing: 7 patients have been screened, and all were deemed eligible for and enrolled in the study; 4 participants have completed baseline assessments. CONCLUSIONS We anticipate that transcranial alternating current stimulation will be a well-tolerated treatment, with no serious side effects and with considerable short- and long-term cognitive improvements. TRIAL REGISTRATION Clinicaltrials.gov NCT05203523; https://clinicaltrials.gov/show/NCT05203523. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) DERR1-10.2196/37282.
Collapse
Affiliation(s)
- Natasha Jacobson
- Department of Electrical and Computer Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Brian Lithgow
- Department of Electrical and Computer Engineering, University of Manitoba, Winnipeg, MB, Canada
- Monash Alfred Psychiatry Research Centre, Monash University Central Clinical School, Melbourne, Australia
| | | | - Zahra Moussavi
- Department of Electrical and Computer Engineering, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
112
|
Sainbhi AS, Gomez A, Froese L, Slack T, Batson C, Stein KY, Cordingley DM, Alizadeh A, Zeiler FA. Non-Invasive and Minimally-Invasive Cerebral Autoregulation Assessment: A Narrative Review of Techniques and Implications for Clinical Research. Front Neurol 2022; 13:872731. [PMID: 35557627 PMCID: PMC9087842 DOI: 10.3389/fneur.2022.872731] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/30/2022] [Indexed: 12/13/2022] Open
Abstract
The process of cerebral vessels regulating constant cerebral blood flow over a wide range of systemic arterial pressures is termed cerebral autoregulation (CA). Static and dynamic autoregulation are two types of CA measurement techniques, with the main difference between these measures relating to the time scale used. Static autoregulation looks at the long-term change in blood pressures, while dynamic autoregulation looks at the immediate change. Techniques that provide regularly updating measures are referred to as continuous, whereas intermittent techniques take a single at point in time. However, a technique being continuous or intermittent is not implied by if the technique measures autoregulation statically or dynamically. This narrative review outlines technical aspects of non-invasive and minimally-invasive modalities along with providing details on the non-invasive and minimally-invasive measurement techniques used for CA assessment. These non-invasive techniques include neuroimaging methods, transcranial Doppler, and near-infrared spectroscopy while the minimally-invasive techniques include positron emission tomography along with magnetic resonance imaging and radiography methods. Further, the advantages and limitations are discussed along with how these methods are used to assess CA. At the end, the clinical considerations regarding these various techniques are highlighted.
Collapse
Affiliation(s)
- Amanjyot Singh Sainbhi
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
- *Correspondence: Amanjyot Singh Sainbhi
| | - Alwyn Gomez
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Logan Froese
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Trevor Slack
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Carleen Batson
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Kevin Y. Stein
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Dean M. Cordingley
- Applied Health Sciences Program, Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, MB, Canada
- Pan Am Clinic Foundation, Winnipeg, MB, Canada
| | - Arsalan Alizadeh
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Frederick A. Zeiler
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Centre on Aging, University of Manitoba, Winnipeg, MB, Canada
- Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
113
|
Durán-Gómez N, López-Jurado CF, Nadal-Delgado M, Pérez-Civantos D, Guerrero-Martín J, Cáceres MC. Chemotherapy-Related Cognitive Impairment in Patients with Breast Cancer Based on Functional Assessment and NIRS Analysis. J Clin Med 2022; 11:jcm11092363. [PMID: 35566489 PMCID: PMC9100963 DOI: 10.3390/jcm11092363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/03/2022] [Accepted: 04/21/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Chemotherapy-related cognitive impairment (CRCI), or “chemobrain,” isdefined as a phenomenon of cognitive deficits in cancer patients after chemotherapy and is characterized by deficits in areas of cognition, including memory, attention, speed of processing, and executive function, which seriously affect quality of life. The purpose of this study is to investigate the impact of CRCI in breast cancer (BC) patients in chemotherapy treatment (CT+) or not (CT−) and to analyze their relationship with detectable objective changes in cerebral activity during the execution of a phonological and semantic verbal fluency task (PVF and SVF). Methods: An observational, cross-sectional study was carried out at Badajoz University Hospital (Spain). A total of 180 women with BC were included. We used Cognitive Scale (FACT-Cog) for neuropsychological subjective assessment, obtaining scores of perceived cognitive impairment (PCI), and near-infrared spectroscopy system (NIRS) for neuropsychological objective assessment during a verbal fluency task (PVF and SVF), determining alterations in the prefrontal cortex (PFC) assessed as changes in regional saturation index (rSO2). Results: A total of 41.7% percent of the patients in the sample had PCI. CT+ was significantly associated with a worse impact in PCI (X¯ = 50.60 ± 15.64 vs. X¯ = 55.01 ± 12.10; p = 0.005). Average rSO2 decreased significantly in CT+ (X¯ = 63.30 ± 8.02 vs. X¯ = 67.98 ± 7.80; p < 0.001), and BC patients showed a significant decrease in PVF and SVF on average (X¯ = 41.99 ± 9.52 vs. X¯ = 47.03 ± 9.31, and X¯ = 33.43 ± 11.0 vs. X¯ = 36.14 ± 10.68, respectively; p < 0.001). Conclusions: Our findings suggest that cognitive impairments in the domain of executive functioning exist among patients with BC who received CT. The results corroborate the hypothesis that CT is an important factor in cognitive impairment in patients with BC, which has been demonstrated by both subjective (PCI) and objective (PVF, SVF, and rSO2) neuropsychological measures. The combination of doxorubicin, cyclophosphamide, and docetaxel induce cognitive impairment.
Collapse
Affiliation(s)
- Noelia Durán-Gómez
- Departamento de Enfermería, Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, 06006 Badajoz, Spain; (C.F.L.-J.); (J.G.-M.); (M.C.C.)
- Correspondence: ; Tel.: +34-92-428-9466
| | - Casimiro Fermín López-Jurado
- Departamento de Enfermería, Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, 06006 Badajoz, Spain; (C.F.L.-J.); (J.G.-M.); (M.C.C.)
| | | | - Demetrio Pérez-Civantos
- Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, Hospital Universitario de Badajoz, 06006 Badajoz, Spain;
| | - Jorge Guerrero-Martín
- Departamento de Enfermería, Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, 06006 Badajoz, Spain; (C.F.L.-J.); (J.G.-M.); (M.C.C.)
| | - Macarena C. Cáceres
- Departamento de Enfermería, Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, 06006 Badajoz, Spain; (C.F.L.-J.); (J.G.-M.); (M.C.C.)
| |
Collapse
|
114
|
Jiang LH, Zhao LJ, Liu Y, Zhang H, Zhang SC, Cong WQ, Qi R. Effectiveness of Tai Chi Yunshou motor imagery training for hemiplegic upper extremity motor function in poststroke patients: study protocol for a randomized clinical trial. Trials 2022; 23:329. [PMID: 35449109 PMCID: PMC9022298 DOI: 10.1186/s13063-022-06283-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 04/05/2022] [Indexed: 11/18/2022] Open
Abstract
Background Evidence concerning the effect of Tai Chi Yunshou motor imagery training (TCY-MIT) on upper extremity motor function (UE-MF) recovery in poststroke patients is lacking, and few studies have examined the neural mechanisms of MIT. The study was designed to assess the effectiveness of TCY-MIT and its possible neural mechanisms. Methods/design The study is an assessor-blinded, parallel, superiority, randomized clinical trial. A total of 78 eligible participants will be randomly assigned to 2 groups in a 1:1 ratio. Participants in the control group will receive (conventional rehabilitation therapies) CRTs for 40 min per day, 6 days per week, for 3 weeks. Participants in the intervention group will receive CRTs combined with TCY-MIT (30 min per day, 6 days per week, for 3 weeks). The primary outcome measure is the Fugl-Meyer Assessment of Upper Extremity. Secondary outcome measures are the Box and Block Test, muscle strength test, modified Barthel index, and Pearson correlation coefficients. All outcomes will be assessed at baseline, after completion of the intervention (1, 2, and 3 weeks), and at the end of follow-up (2 months). The outcome assessor will be blinded to the group allocation of the participants. Discussion We expect this assessor-blinded, parallel, superiority, randomized clinical trial to explore the effectiveness of TCY-MIT combined with CRTs compared with CRTs alone for UE-MF in poststroke patients. Trial registration Chinese Clinical Trial Registry ID: ChiCTR2100048868. Registered on 19 July 2021 Supplementary Information The online version contains supplementary material available at 10.1186/s13063-022-06283-z.
Collapse
Affiliation(s)
- Lin Hong Jiang
- Shanghai University of Traditional Chinese Medicine Yueyang Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Shanghai, 200437, China.,Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Li Juan Zhao
- Shanghai University of Traditional Chinese Medicine Yueyang Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Shanghai, 200437, China
| | - Yang Liu
- Shanghai University of Traditional Chinese Medicine Yueyang Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Shanghai, 200437, China
| | - Hong Zhang
- Shanghai University of Traditional Chinese Medicine Yueyang Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Shanghai, 200437, China
| | - Si Cong Zhang
- Shanghai University of Traditional Chinese Medicine Yueyang Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Shanghai, 200437, China
| | - Wei Qin Cong
- Shanghai University of Traditional Chinese Medicine Yueyang Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Shanghai, 200437, China
| | - Rui Qi
- Shanghai University of Traditional Chinese Medicine Yueyang Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Shanghai, 200437, China.
| |
Collapse
|
115
|
Bembich S, Saksida A, Mastromarino S, Travan L, Di Risio G, Cont G, Demarini S. Empathy at birth: Mother's cortex synchronizes with that of her newborn in pain. Eur J Neurosci 2022; 55:1519-1531. [PMID: 35266192 PMCID: PMC9314789 DOI: 10.1111/ejn.15641] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 01/07/2022] [Accepted: 03/02/2022] [Indexed: 11/26/2022]
Abstract
Early neonatal relation with the caregiver is vital for newborn survival and for the promotion of an appropriate neural development. The aim of this study was to assess if the empathic cortical response of a mother to her baby's pain is synchronized with the neonatal cortical response to the painful stimulation. We used hyperscanning, a functional neuroimaging approach that allows studying functional synchronization between two brains. Sixteen mother-newborn dyads were recruited. Maternal and neonatal cortical activities were simultaneously monitored, by near-infrared spectroscopy, during a heel prick performed on the baby and observed by the mother. Multiple paired t test was used to identify cortical activation, and wavelet transform coherence method was used to explore possible synchronization between the maternal and neonatal cortical areas. Activations were observed in mother's parietal cortex, bilaterally, and in newborn's superior motor/somatosensory cortex. The main functional synchronization analysis showed that mother's left parietal cortex activity cross-correlated with that of her newborn's superior motor/somatosensory cortex. Such synchronization dynamically changed throughout assessment, becoming positively cross-correlated only after the leading role in synchronizing cortical activities was taken up by the newborn. Thus, maternal empathic cortical response to baby pain was guided by and synchronized to the newborn's cortical response to pain. We conclude that, in case of potential danger for the infant, brain areas involved in mother-newborn relationship appear to be already co-regulated at birth.
Collapse
Affiliation(s)
- Stefano Bembich
- Division of Neonatology and Neonatal Intensive Care Unit, Institute for Maternal and Child HealthIRCCS “Burlo Garofolo”TriesteItaly
| | - Amanda Saksida
- Division of Neonatology and Neonatal Intensive Care Unit, Institute for Maternal and Child HealthIRCCS “Burlo Garofolo”TriesteItaly
| | - Simona Mastromarino
- Division of Neonatology and Neonatal Intensive Care Unit, Institute for Maternal and Child HealthIRCCS “Burlo Garofolo”TriesteItaly
| | - Laura Travan
- Division of Neonatology and Neonatal Intensive Care Unit, Institute for Maternal and Child HealthIRCCS “Burlo Garofolo”TriesteItaly
| | - Giovanna Di Risio
- Division of Neonatology and Neonatal Intensive Care Unit, Institute for Maternal and Child HealthIRCCS “Burlo Garofolo”TriesteItaly
| | - Gabriele Cont
- Division of Neonatology and Neonatal Intensive Care Unit, Institute for Maternal and Child HealthIRCCS “Burlo Garofolo”TriesteItaly
| | - Sergio Demarini
- Division of Neonatology and Neonatal Intensive Care Unit, Institute for Maternal and Child HealthIRCCS “Burlo Garofolo”TriesteItaly
| |
Collapse
|
116
|
Yuan I, Nelson O, Barr GA, Zhang B, Topjian AA, DiMaggio TJ, Lang SS, Christ LA, Izzetoglu K, Greco CC, Kurth CD, Ganesh A. Functional near-infrared spectroscopy to assess pain in neonatal circumcisions. Paediatr Anaesth 2022; 32:404-412. [PMID: 34747096 DOI: 10.1111/pan.14326] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/27/2021] [Accepted: 11/01/2021] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Pain assessment is challenging in neonates. Behavioral and physiological pain scales do not assess neocortical nociception, essential to pain encoding and central pain pathway development. Functional near-infrared spectroscopy (fNIRS) can assess neocortical activation to noxious stimuli from changes in oxy-(HbO) and total-hemoglobin concentrations (HbT). This study aims to assess fNIRS nociceptive functional activation in the prefrontal cortex of neonates undergoing circumcision through changes in HbO and HbT, and the correlation between changes in fNIRS and Neonatal Infant Pain Scale (NIPS), a behavioral pain assessment scale. METHODS In healthy term neonates, HbO, HbT, and NIPS were recorded during sequential circumcision events 1-Prep before local anesthetic injection; 2-Local anesthetic injection; 3-Prep before incision; 4-Oral sucrose; 5-Incision; 6-Gomco (hemostatic device) attached; 7-Gomco twisted on; and 8-Gomco removed. fNIRS and NIPS changes after each event were assessed with Wilcoxon signed-rank test and summarized as median and interquartile range (IQR). Changes in fNIRS vs. NIPS were correlated with Spearman coefficient. RESULTS In 31 neonates fNIRS increased (median [IQR] µmol/L) with noxious events: Local injection (HbO: 1.1 [0.5, 3.1], p < .001; HbT: 2.3 [0.2, 7.6], p < .001), Gomco attached (HbO: 0.7 [0.1, 1.7], p = .002; HbT: 0.7 [-0.2, 2.9], p = .02), and Gomco twisted on (HbO: 0.5 [-0.2, 1.7], p = .03; HbT: 0.8 [-0.1, 3.3], p = .02). fNIRS decreased with non-noxious event: Prep before incision (HbO: -0.6 [-1.2, -0.2] p < .001; HbT: -1 [-1.8, -0.4], p < .001). Local anesthetic attenuated fNIRS increases to subsequent sharp stimuli. NIPS increased with subsequent sharp stimuli despite local anesthetic. Although fNIRS and NIPS changed in the same direction, there was not a strong correlation between them. CONCLUSIONS During neonatal circumcision, changes in fNIRS differed between different types of painful stimuli, which was not the case for NIPS, suggesting that fNIRS may complement NIPS to assess the quality of pain.
Collapse
Affiliation(s)
- Ian Yuan
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Olivia Nelson
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gordon A Barr
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Bingqing Zhang
- Department of Biomedical and Health Informatics, Data Science and Biostatistics Unit, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Alexis A Topjian
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Theresa J DiMaggio
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Shih-Shan Lang
- Division of Neurosurgery, Department of Neurosurgery, The Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Lori A Christ
- Division of Neonatology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Kurtulus Izzetoglu
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania, USA
| | - Christine C Greco
- Department of Neonatology, Temple University Hospital, Philadelphia, Pennsylvania, USA
| | - Charles D Kurth
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Arjunan Ganesh
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
117
|
Cai Z, Machado A, Chowdhury RA, Spilkin A, Vincent T, Aydin Ü, Pellegrino G, Lina JM, Grova C. Diffuse optical reconstructions of functional near infrared spectroscopy data using maximum entropy on the mean. Sci Rep 2022; 12:2316. [PMID: 35145148 PMCID: PMC8831678 DOI: 10.1038/s41598-022-06082-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 01/24/2022] [Indexed: 02/07/2023] Open
Abstract
Functional near-infrared spectroscopy (fNIRS) measures the hemoglobin concentration changes associated with neuronal activity. Diffuse optical tomography (DOT) consists of reconstructing the optical density changes measured from scalp channels to the oxy-/deoxy-hemoglobin concentration changes within the cortical regions. In the present study, we adapted a nonlinear source localization method developed and validated in the context of Electro- and Magneto-Encephalography (EEG/MEG): the Maximum Entropy on the Mean (MEM), to solve the inverse problem of DOT reconstruction. We first introduced depth weighting strategy within the MEM framework for DOT reconstruction to avoid biasing the reconstruction results of DOT towards superficial regions. We also proposed a new initialization of the MEM model improving the temporal accuracy of the original MEM framework. To evaluate MEM performance and compare with widely used depth weighted Minimum Norm Estimate (MNE) inverse solution, we applied a realistic simulation scheme which contained 4000 simulations generated by 250 different seeds at different locations and 4 spatial extents ranging from 3 to 40[Formula: see text] along the cortical surface. Our results showed that overall MEM provided more accurate DOT reconstructions than MNE. Moreover, we found that MEM was remained particularly robust in low signal-to-noise ratio (SNR) conditions. The proposed method was further illustrated by comparing to functional Magnetic Resonance Imaging (fMRI) activation maps, on real data involving finger tapping tasks with two different montages. The results showed that MEM provided more accurate HbO and HbR reconstructions in spatial agreement with the main fMRI cluster, when compared to MNE.
Collapse
Affiliation(s)
- Zhengchen Cai
- Department of Physics and PERFORM Centre, Concordia University, Montreal, Canada.
| | - Alexis Machado
- Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University, Montreal, Canada
| | - Rasheda Arman Chowdhury
- Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University, Montreal, Canada
| | - Amanda Spilkin
- Department of Physics and PERFORM Centre, Concordia University, Montreal, Canada
| | - Thomas Vincent
- Department of Physics and PERFORM Centre, Concordia University, Montreal, Canada
- Neurology and Neurosurgery Department, Montreal Neurological Institute, McGill University, Montreal, Canada
- Centre de médecine préventive et d'activité physique, Montréal Heart Institute, Montréal, Canada
| | - Ümit Aydin
- Department of Physics and PERFORM Centre, Concordia University, Montreal, Canada
- MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Giovanni Pellegrino
- Neurology and Neurosurgery Department, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Jean-Marc Lina
- École de technologie supérieure de l'Université du Québec, Montréal, Canada
- Centre de Recherches Mathématiques, Université de Montréal, Montréal, Canada
| | - Christophe Grova
- Department of Physics and PERFORM Centre, Concordia University, Montreal, Canada
- Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University, Montreal, Canada
- Neurology and Neurosurgery Department, Montreal Neurological Institute, McGill University, Montreal, Canada
- Centre de Recherches Mathématiques, Université de Montréal, Montréal, Canada
| |
Collapse
|
118
|
Shin TJ, Kim PJ, Choi B. How general anesthetics work: from the perspective of reorganized connections within the brain. Korean J Anesthesiol 2022; 75:124-138. [PMID: 35130674 PMCID: PMC8980288 DOI: 10.4097/kja.22078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 02/06/2022] [Indexed: 11/24/2022] Open
Abstract
General anesthesia is critical for various procedures and surgeries. Despite the widespread use of anesthetics, their precise mechanisms remain poorly understood. Anesthetics inevitably act on the brain, primarily through the modulation of target receptors. Even if the action is specific to an individual neuron, however, long-range effects can occur due to the tremendous interconnectedness of neuronal activity. The strength of this connectivity can be understood using mathematical models that allow for the study of neuronal connectivity dynamics. These models also allow researchers to develop hypotheses on the candidate mechanisms of action of different types of anesthesia. This review highlights the theoretical background associated with the study of the mechanisms of action of anesthetics. We propose a candidate framework that describes how anesthetics act on the brain and consciousness in general.
Collapse
|
119
|
Qiu Y, Zheng Y, Liu Y, Luo W, Du R, Liang J, Yilifate A, You Y, Jiang Y, Zhang J, Chen A, Zhang Y, Huang S, Wang B, Ou H, Lin Q. Synergistic Immediate Cortical Activation on Mirror Visual Feedback Combined With a Soft Robotic Bilateral Hand Rehabilitation System: A Functional Near Infrared Spectroscopy Study. Front Neurosci 2022; 16:807045. [PMID: 35185457 PMCID: PMC8855034 DOI: 10.3389/fnins.2022.807045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/12/2022] [Indexed: 11/23/2022] Open
Abstract
Background Mirror visual feedback (MVF) has been widely used in neurological rehabilitation. Due to the potential gain effect of the MVF combination therapy, the related mechanisms still need be further analyzed. Methods Our self-controlled study recruited 20 healthy subjects (age 22.150 ± 2.661 years) were asked to perform four different visual feedback tasks with simultaneous functional near infrared spectroscopy (fNIRS) monitoring. The right hand of the subjects was set as the active hand (performing active movement), and the left hand was set as the observation hand (static or performing passive movement under soft robotic bilateral hand rehabilitation system). The four VF tasks were designed as RVF Task (real visual feedback task), MVF task (mirror visual feedback task), BRM task (bilateral robotic movement task), and MVF + BRM task (Mirror visual feedback combined with bilateral robotic movement task). Results The beta value of the right pre-motor cortex (PMC) of MVF task was significantly higher than the RVF task (RVF task: -0.015 ± 0.029, MVF task: 0.011 ± 0.033, P = 0.033). The beta value right primary sensorimotor cortex (SM1) in MVF + BRM task was significantly higher than MVF task (MVF task: 0.006 ± 0.040, MVF + BRM task: 0.037 ± 0.036, P = 0.016). Conclusion Our study used the synchronous fNIRS to compare the immediate hemodynamics cortical activation of four visual feedback tasks in healthy subjects. The results showed the synergistic gain effect on cortical activation from MVF combined with a soft robotic bilateral hand rehabilitation system for the first time, which could be used to guide the clinical application and the future studies.
Collapse
Affiliation(s)
- Yaxian Qiu
- Department of Rehabilitation, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuxin Zheng
- Department of Rehabilitation, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yawen Liu
- Department of Rehabilitation, Guangzhou Medical University, Guangzhou, China
| | - Wenxi Luo
- Department of Rehabilitation, Guangzhou Medical University, Guangzhou, China
| | - Rongwei Du
- Department of Rehabilitation, Guangzhou Medical University, Guangzhou, China
| | - Junjie Liang
- Department of Rehabilitation, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Anniwaer Yilifate
- Department of Rehabilitation, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yaoyao You
- Department of Rehabilitation, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yongchun Jiang
- Department of Rehabilitation, Guangzhou Medical University, Guangzhou, China
| | - Jiahui Zhang
- Department of Rehabilitation, Guangzhou Medical University, Guangzhou, China
| | - Aijia Chen
- Department of Rehabilitation, Guangzhou Medical University, Guangzhou, China
| | - Yanni Zhang
- Department of Rehabilitation, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Siqi Huang
- Department of Rehabilitation, Guangzhou Medical University, Guangzhou, China
| | - Benguo Wang
- Department of Rehabilitation, Longgang District People’s Hospital of Shenzhen, Shenzhen, China
- Department of Rehabilitation, The Third Affiliated Hospital of The Chinese University of Hong Kong, Shenzhen, China
| | - Haining Ou
- Department of Rehabilitation, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Haining Ou,
| | - Qiang Lin
- Department of Rehabilitation, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- *Correspondence: Qiang Lin,
| |
Collapse
|
120
|
Wang X, Ma LC, Shahdadian S, Wu A, Truong NCD, Liu H. Metabolic Connectivity and Hemodynamic-Metabolic Coherence of Human Prefrontal Cortex at Rest and Post Photobiomodulation Assessed by Dual-Channel Broadband NIRS. Metabolites 2022; 12:42. [PMID: 35050164 PMCID: PMC8778041 DOI: 10.3390/metabo12010042] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/27/2021] [Accepted: 01/04/2022] [Indexed: 02/05/2023] Open
Abstract
Billions of neurons in the human brain form neural networks with oscillation rhythms. Infra-slow oscillation (ISO) presents three main physiological sources: endogenic, neurogenic, and myogenic vasomotions. Having an in vivo methodology for the absolute quantification of ISO from the human brain can facilitate the detection of brain abnormalities in cerebral hemodynamic and metabolic activities. In this study, we introduced a novel measurement-plus-analysis framework for the non-invasive quantification of prefrontal ISO by (1) taking dual-channel broadband near infrared spectroscopy (bbNIRS) measurements from 12 healthy humans during a 6-min rest and 4-min post transcranial photobiomodulation (tPBM) and (2) performing wavelet transform coherence (WTC) analysis on the measured time series data. The WTC indexes (IC, between 0 and 1) enabled the assessment of ipsilateral hemodynamic-metabolic coherence and bilateral functional connectivity in each ISO band of the human prefrontal cortex. At rest, bilateral hemodynamic connectivity was consistent across the three ISO bands (IC ≅ 0.66), while bilateral metabolic connectivity was relatively weaker. For post-tPBM/sham comparison, our analyses revealed three key findings: 8-min, right-forehead, 1064-nm tPBM (1) enhanced the amplitude of metabolic oscillation bilaterally, (2) promoted the bilateral metabolic connectivity of neurogenic rhythm, and (3) made the main effect on endothelial cells, causing alteration of hemodynamic-metabolic coherence on each side of the prefrontal cortex.
Collapse
Affiliation(s)
| | | | | | | | | | - Hanli Liu
- Department of Bioengineering, University of Texas at Arlington, 500 UTA Blvd, Arlington, TX 76019, USA; (X.W.); (L.-C.M.); (S.S.); (A.W.); (N.C.D.T.)
| |
Collapse
|
121
|
Li J, Yan WJ, Wu Y, Tian XX, Zhang YW. Synaptosomal-Associated Protein 25 Gene Polymorphisms Affect Treatment Efficiency of Methylphenidate in Children With Attention-Deficit Hyperactivity Disorder: An fNIRS Study. Front Behav Neurosci 2022; 15:793643. [PMID: 35069142 PMCID: PMC8766417 DOI: 10.3389/fnbeh.2021.793643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
Methylphenidate (MPH) is the first-line drug for the treatment of children with attention-deficit hyperactivity disorder (ADHD); however, individual curative effects of MPH vary. Many studies have demonstrated that synaptosomal-associated protein 25 (SNAP-25) gene MnlI polymorphisms may be related to the efficacy of MPH. However, the association between SNAP-25MnlI polymorphisms and changes in brain hemodynamic responses after MPH treatment is still unclear. This study used functional near-infrared spectroscopy (fNIRS) to preliminarily investigate the interaction of MPH treatment-related prefrontal inhibitory functional changes with the genotype status of the SNAP-25 gene in children with ADHD. In total, 38 children with ADHD aged 6.76–12.08 years were enrolled in this study and divided into the following two groups based on SNAP-25 gene MnlI polymorphisms: T/T genotype group (wild-type group, 27 children) and G allele carrier group (mutation group, 11 children). The averaged oxygenated hemoglobin concentration changes [Δavg oxy-Hb] and deoxyhemoglobin concentration changes [Δavg deoxy-Hb] in the frontal cortex before MPH treatment and after 1.5 h (post-MPH1.5h) and 4 weeks (post-MPH4w) of MPH treatments were monitored using fNIRS during the go/no-go task. SNAP-IV scores were evaluated both pre-MPH and post-MPH4w treatments. In the T/T genotype group, [Δavg oxy-Hb] in the dorsolateral prefrontal cortex was significantly higher after 4 weeks of MPH (post-MPH4W) treatment than pre-treatment; however, in the G allele group, no significant differences in [Δavg oxy-Hb] were observed between pre- and post-treatments. In the go/no-go task, the accuracy was significantly increased post-MPH4w treatment in the T/T genotype group, while no significant differences were observed in response time and accuracy of the “go” sand no-go task in the G allele group for pre-MPH, post-MPH1.5h, and post-MPH4w treatments. The T/T genotype group exhibited a significant decrease in SNAP-IV scores after MPH treatment, while the G allele group showed no significant difference. In conclusion, fNIRS data combined with SNAP-25 MnlI polymorphism analysis may be a useful biomarker for evaluating the effects of MPH in children with ADHD.
Collapse
Affiliation(s)
- Jie Li
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Pediatrics, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Wen-Jie Yan
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Wu
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xin-Xin Tian
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yi-Wen Zhang
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Yi-Wen Zhang
| |
Collapse
|
122
|
Cherian R, Kanaga EG. Theoretical and Methodological Analysis of EEG based Seizure Detection and Prediction: An Exhaustive Review. J Neurosci Methods 2022; 369:109483. [DOI: 10.1016/j.jneumeth.2022.109483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 02/07/2023]
|
123
|
Huang J, Zhang J, Zhang T, Wang P, Zheng Z. Increased Prefrontal Activation During Verbal Fluency Task After Repetitive Transcranial Magnetic Stimulation Treatment in Depression: A Functional Near-Infrared Spectroscopy Study. Front Psychiatry 2022; 13:876136. [PMID: 35444573 PMCID: PMC9013767 DOI: 10.3389/fpsyt.2022.876136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/09/2022] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Previous studies have shown the clinical effect of 2 Hz repetitive transcranial magnetic stimulation (rTMS) for depression; however, its underlying neural mechanisms are poorly understood. The aim of this study was to examine the effects of rTMS on the activity of the prefrontal cortex in patients with depression, using functional near-infrared spectroscopy (fNIRS). METHODS Forty patients with major depressive disorder (MDD) and 40 healthy controls were enrolled in this study. Patients underwent 4 weeks of 2 Hz TMS delivered to the right dorsolateral prefrontal cortex (DLPFC). fNIRS was used to measure the changes in the concentration of oxygenated hemoglobin ([oxy-Hb]) in the prefrontal cortex during a verbal fluency task (VFT) in depressed patients before and after rTMS treatment. The severity of depression was assessed using the Hamilton Rating Scale for Depression-24 item (HAMD-24). RESULTS Prior to rTMS, depressed patients exhibited significantly smaller [oxy-Hb] values in the bilateral prefrontal cortex during the VFT compared with the healthy controls. After 4 weeks of 2 Hz right DLPFC rTMS treatment, increased [oxy-Hb] values in the bilateral frontopolar prefrontal cortex (FPPFC), ventrolateral prefrontal cortex (VLPFC) and left DLPFC during the VFT were observed in depressed patients. The increased [oxy-Hb] values from baseline to post-treatment in the right VLPFC in depressed patients were positively related to the reduction of HAMD score following rTMS. CONCLUSION These findings suggest that the function of the prefrontal cortex in depressed patients was impaired and could be recovered by 2 Hz rTMS. The fNIRS-measured prefrontal activation during a cognitive task is a potential biomarker for monitoring depressed patients' treatment response to rTMS.
Collapse
Affiliation(s)
- Jiaxi Huang
- Mental Health Center, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Jiaqi Zhang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Tingyu Zhang
- Department of Rehabilitation Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Pu Wang
- Department of Rehabilitation Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.,Guangdong Engineering and Technology Research Center for Rehabilitation Medicine and Translation, Guangzhou, China
| | - Zhong Zheng
- Mental Health Center, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
124
|
Yang C, Zhang T, Huang K, Xiong M, Liu H, Wang P, Zhang Y. Increased both cortical activation and functional connectivity after transcranial direct current stimulation in patients with post-stroke: A functional near-infrared spectroscopy study. Front Psychiatry 2022; 13:1046849. [PMID: 36569623 PMCID: PMC9784914 DOI: 10.3389/fpsyt.2022.1046849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Previous studies have shown that cognitive impairment is common after stroke. Transcranial direct current stimulation (tDCS) is a promising tool for rehabilitating cognitive impairment. This study aimed to investigate the effects of tDCS on the rehabilitation of cognitive impairment in patients with stroke. METHODS Twenty-two mild-moderate post-stroke patients with cognitive impairments were treated with 14 tDCS sessions. A total of 14 healthy individuals were included in the control group. Cognitive function was assessed using the Mini-Mental State Examination (MMSE) and the Montreal Cognitive Assessment (MoCA). Cortical activation was assessed using functional near-infrared spectroscopy (fNIRS) during the verbal fluency task (VFT). RESULTS The cognitive function of patients with stroke, as assessed by the MMSE and MoCA scores, was lower than that of healthy individuals but improved after tDCS. The cortical activation of patients with stroke was lower than that of healthy individuals in the left superior temporal cortex (lSTC), right superior temporal cortex (rSTC), right dorsolateral prefrontal cortex (rDLPFC), right ventrolateral prefrontal cortex (rVLPFC), and left ventrolateral prefrontal cortex (lVLPFC) cortical regions. Cortical activation increased in the lSTC cortex after tDCS. The functional connectivity (FC) between the cerebral hemispheres of patients with stroke was lower than that of healthy individuals but increased after tDCS. CONCLUSION The cognitive and brain functions of patients with mild-to-moderate stroke were damaged but recovered to a degree after tDCS. Increased cortical activation and increased FC between the bilateral cerebral hemispheres measured by fNIRS are promising biomarkers to assess the effectiveness of tDCS in stroke.
Collapse
Affiliation(s)
- Caihong Yang
- Department of Rehabilitation Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China.,School of Psychology, Central China Normal University, Wuhan, Hubei, China
| | - Tingyu Zhang
- Department of Rehabilitation Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Kaiqi Huang
- The Seventh Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Menghui Xiong
- Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Huiyu Liu
- Department of Rehabilitation Medicine, Yue Bei People's Hospital, Shaoguan, Guangdong, China
| | - Pu Wang
- Department of Rehabilitation Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China.,Department of Rehabilitation Medicine, Tianyang District People's Hospital, Baise, Guangxi, China
| | - Yan Zhang
- School of Educational Science, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
125
|
Qu Y, Cao J, Chen L, Guo J, Tian Z, Liu T, Gong Y, Xiong J, Lin Z, Yang X, Yin T, Zeng F. Methodological issues of the central mechanism of two classic acupuncture manipulations based on fNIRS: suggestions for a pilot study. Front Hum Neurosci 2022; 16:1103872. [PMID: 36911106 PMCID: PMC9999014 DOI: 10.3389/fnhum.2022.1103872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/19/2022] [Indexed: 03/14/2023] Open
Abstract
Background: Acupuncture reinforcing-reducing manipulation (ARRM) is a necessary procedure of traditional Chinese acupuncture and an essential factor affecting the therapeutic effect of acupuncture. Shaoshanhuo reinforcing method (SSH) and Toutianliang reducing method (TTL) are the most representative ARRMs. They integrate six single ARRMs and pose distinguished therapeutic effects of acupuncture. However, due to the complexity, diversity, and variation, investigating the mechanism of these two classic manipulations is insufficient. The neuroimaging technique is an important method to explore the central mechanism of SSH and TTL. This study attempted to design a randomized crossover trial based on functional near-infrared spectroscopy (fNIRS) to explore the mechanism of SSH and TTL, meanwhile, provide valuable methodological references for future studies. Methods: A total of 30 healthy subjects were finally included and analyzed in this study. fNIRS examination was performed to record the neural responses during the two most representative ARRMs. The cortical activation and the inter-network functional connectivity (FC) were explored. Results: The results found that SSH and TTL could elicit significant cerebral responses, respectively, but there was no difference between them. Conclusion: Neuroimaging techniques with a higher spatiotemporal resolution, combinations of therapeutic effects, and strict quality control are important to neuroimaging studies on SSH and TTL.
Collapse
Affiliation(s)
- Yuzhu Qu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.,Acupuncture and Brain Science Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jingya Cao
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.,Acupuncture and Brain Science Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Li Chen
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.,Acupuncture and Brain Science Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jing Guo
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.,Acupuncture and Brain Science Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zilei Tian
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.,Acupuncture and Brain Science Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Tianyu Liu
- Acupuncture and Brain Science Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.,Sport and Healthy School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yulai Gong
- Department of Neurology, Sichuan Provincial Rehabilitation Hospital, Chengdu, Sichuan, China
| | - Jing Xiong
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhenfang Lin
- Department of Neurology, Sichuan Provincial Rehabilitation Hospital, Chengdu, Sichuan, China
| | - Xin Yang
- Department of Neurology, Sichuan Provincial Rehabilitation Hospital, Chengdu, Sichuan, China.,Health and Rehabilitation School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Tao Yin
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.,Acupuncture and Brain Science Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Fang Zeng
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.,Acupuncture and Brain Science Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
126
|
Increase in Low-Frequency Oscillations in fNIRS as Cerebral Response to Auditory Stimulation with Familiar Music. Brain Sci 2021; 12:brainsci12010042. [PMID: 35053789 PMCID: PMC8773668 DOI: 10.3390/brainsci12010042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/16/2021] [Accepted: 12/24/2021] [Indexed: 11/17/2022] Open
Abstract
Recognition of typical patterns of brain response to external stimuli using near-infrared spectroscopy (fNIRS) may become a gateway to detecting covert consciousness in clinically unresponsive patients. This is the first fNIRS study on the cortical hemodynamic response to favorite music using a frequency domain approach. The aim of this study was to identify a possible marker of cognitive response in healthy subjects by investigating variations in the oscillatory signal of fNIRS in the spectral regions of low-frequency (LFO) and very-low-frequency oscillations (VLFO). The experiment consisted of two periods of exposure to preferred music, preceded and followed by a resting phase. Spectral power in the LFO region increased in all the subjects after the first exposure to music and decreased again in the subsequent resting phase. After the second music exposure, the increase in LFO spectral power was less distinct. Changes in LFO spectral power were more after first music exposure and the repetition-related habituation effect strongly suggest a cerebral origin of the fNIRS signal. Recognition of typical patterns of brain response to specific environmental stimulation is a required step for the concrete validation of a fNIRS-based diagnostic tool.
Collapse
|
127
|
Gomez A, Sainbhi AS, Froese L, Batson C, Alizadeh A, Mendelson AA, Zeiler FA. Near Infrared Spectroscopy for High-Temporal Resolution Cerebral Physiome Characterization in TBI: A Narrative Review of Techniques, Applications, and Future Directions. Front Pharmacol 2021; 12:719501. [PMID: 34803673 PMCID: PMC8602694 DOI: 10.3389/fphar.2021.719501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/22/2021] [Indexed: 12/31/2022] Open
Abstract
Multimodal monitoring has been gaining traction in the critical care of patients following traumatic brain injury (TBI). Through providing a deeper understanding of the individual patient's comprehensive physiologic state, or "physiome," following injury, these methods hold the promise of improving personalized care and advancing precision medicine. One of the modalities being explored in TBI care is near-infrared spectroscopy (NIRS), given it's non-invasive nature and ability to interrogate microvascular and tissue oxygen metabolism. In this narrative review, we begin by discussing the principles of NIRS technology, including spatially, frequency, and time-resolved variants. Subsequently, the applications of NIRS in various phases of clinical care following TBI are explored. These applications include the pre-hospital, intraoperative, neurocritical care, and outpatient/rehabilitation setting. The utility of NIRS to predict functional outcomes and evaluate dysfunctional cerebrovascular reactivity is also discussed. Finally, future applications and potential advancements in NIRS-based physiologic monitoring of TBI patients are presented, with a description of the potential integration with other omics biomarkers.
Collapse
Affiliation(s)
- Alwyn Gomez
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Amanjyot Singh Sainbhi
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Logan Froese
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Carleen Batson
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Arsalan Alizadeh
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Asher A Mendelson
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada.,Section of Critical Care, Department of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Frederick A Zeiler
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada.,Centre on Aging, University of Manitoba, Winnipeg, MB, Canada.,Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
128
|
Durán-Gómez N, Guerrero-Martín J, Pérez-Civantos D, López-Jurado CF, Montanero-Fernández J, Cáceres MC. Night Shift and Decreased Brain Activity of ICU Nurses: A Near-Infrared Spectroscopy Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182211930. [PMID: 34831683 PMCID: PMC8623720 DOI: 10.3390/ijerph182211930] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 12/02/2022]
Abstract
Background: Shift working is associated with a profound desynchronization of circadian rhythm and in particular, night-shift work disrupts normal circadian physiology. Sleep deprivation affects the functioning of certain brain areas and thus impairs cognitive performance. The purpose of this study was to investigate the effects of the night shift on cognitive performance and cerebral oxygenation/haemodynamics. Methods: A prospective, observational, comparative, randomized and cross-over study was carried out. A total of 74 intensive care unit nurses in Spain were included in the study. The following variables were measured: sociodemographic, burnout, anxiety, baseline cerebral oxygenation levels on night and day shift using a near-infrared spectroscopy system and cognitive task performance during a verbal fluency task to evaluate the alterations in the prefrontal cortex, assessed as changes in regional saturation index. Results: The average regional saturation index decreased significantly in the night shift (r = 0.560, p < 0.001). The ICU nurses showed a significant decrease in the verbal fluency test on average (8.53 ± 8.49, p < 0.001) and, in general, there was also a significant increase in anxiety score (3.17 ± 7.56, p = 0.001). Conclusions: Sleep deprivation during the night shift was considered to be related to decreased dorsolateral PFC reactivity. After the night shift, the nurses showed a decrease in prefrontal cortex activity and in cognitive performance.
Collapse
Affiliation(s)
- Noelia Durán-Gómez
- Departamento de Enfermería, Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, 06006 Badajoz, Spain; (J.G.-M.); (C.F.L.-J.); (M.C.C.)
- Correspondence: ; Tel.: +34-92-428-9466
| | - Jorge Guerrero-Martín
- Departamento de Enfermería, Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, 06006 Badajoz, Spain; (J.G.-M.); (C.F.L.-J.); (M.C.C.)
| | - Demetrio Pérez-Civantos
- Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, Hospital Universitario de Badajoz, 06006 Badajoz, Spain;
| | - Casimiro Fermín López-Jurado
- Departamento de Enfermería, Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, 06006 Badajoz, Spain; (J.G.-M.); (C.F.L.-J.); (M.C.C.)
| | - Jesús Montanero-Fernández
- Departamento de Matemáticas, Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, 06006 Badajoz, Spain;
| | - Macarena C. Cáceres
- Departamento de Enfermería, Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, 06006 Badajoz, Spain; (J.G.-M.); (C.F.L.-J.); (M.C.C.)
| |
Collapse
|
129
|
Assessment of Functional Near-infrared Spectroscopy by Comparing Prefrontal Cortex Activity. Alzheimer Dis Assoc Disord 2021; 36:266-268. [DOI: 10.1097/wad.0000000000000475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/04/2021] [Indexed: 11/26/2022]
|
130
|
Sato JR, Junior CEB, de Araújo ELM, de Souza Rodrigues J, Andrade SM. A guide for the use of fNIRS in microcephaly associated to congenital Zika virus infection. Sci Rep 2021; 11:19270. [PMID: 34588470 PMCID: PMC8481532 DOI: 10.1038/s41598-021-97450-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 08/09/2021] [Indexed: 02/08/2023] Open
Abstract
Congenital Zika Syndrome (CZS) is characterized by changes in cranial morphology associated with heterogeneous neurological manifestations and cognitive and behavioral impairments. In this syndrome, longitudinal neuroimaging could help clinicians to predict developmental trajectories of children and tailor treatment plans accordingly. However, regularly acquiring magnetic resonance imaging (MRI) has several shortcomings besides cost, particularly those associated with childrens' clinical presentation as sensitivity to environmental stimuli. The indirect monitoring of local neural activity by non-invasive functional near-infrared spectroscopy (fNIRS) technique can be a useful alternative for longitudinally accessing the brain function in children with CZS. In order to provide a common framework for advancing longitudinal neuroimaging assessment, we propose a principled guideline for fNIRS acquisition and analyses in children with neurodevelopmental disorders. Based on our experience on collecting fNIRS data in children with CZS we emphasize the methodological challenges, such as clinical characteristics of the sample, desensitization, movement artifacts and environment control, as well as suggestions for tackling such challenges. Finally, metrics based on fNIRS can be associated with established clinical metrics, thereby opening possibilities for exploring this tool as a long-term predictor when assessing the effectiveness of treatments aimed at children with severe neurodevelopmental disorders.
Collapse
Affiliation(s)
- João Ricardo Sato
- Center of Mathematics, Computing, and Cognition, Federal University of ABC, São Bernardo do Campo, SP, Brazil
| | - Claudinei Eduardo Biazoli Junior
- Center of Mathematics, Computing, and Cognition, Federal University of ABC, São Bernardo do Campo, SP, Brazil
- Department of Biological and Experimental Psychology, Queen Mary University of London, London, UK
| | - Elidianne Layanne Medeiros de Araújo
- Laboratory of Aging and Neuroscience Studies, Department of Physical Therapy, Health Sciences Center, Federal University of Paraíba, João Pessoa, PA, Brazil
| | | | - Suellen Marinho Andrade
- Laboratory of Aging and Neuroscience Studies, Department of Physical Therapy, Health Sciences Center, Federal University of Paraíba, João Pessoa, PA, Brazil.
| |
Collapse
|
131
|
An Overview on Cognitive Function Enhancement through Physical Exercises. Brain Sci 2021; 11:brainsci11101289. [PMID: 34679354 PMCID: PMC8534220 DOI: 10.3390/brainsci11101289] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/12/2021] [Accepted: 09/18/2021] [Indexed: 11/18/2022] Open
Abstract
This review is extensively focused on the enhancement of cognitive functions while performing physical exercises categorized into cardiovascular exercises, resistance training, martial arts, racquet sports, dancing and mind-body exercises. Imaging modalities, viz. functional magnetic resonance imaging (fMRI), functional near-infrared spectroscopy (fNIRS) and electroencephalography (EEG), have been included in this review. This review indicates that differences are present in cognitive functioning while changing the type of physical activity performed. This study concludes that employing fNIRS helps overcome certain limitations of fMRI. Further, the effects of physical activity on a diverse variety of the population, from active children to the old people, are discussed.
Collapse
|
132
|
Comparison of Whole-Head Functional Near-Infrared Spectroscopy With Functional Magnetic Resonance Imaging and Potential Application in Pediatric Neurology. Pediatr Neurol 2021; 122:68-75. [PMID: 34301451 DOI: 10.1016/j.pediatrneurol.2021.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/03/2021] [Accepted: 06/09/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND Changes in cerebral blood flow in response to neuronal activation can be measured by time-dependent fluctuations in hemoglobin species within the brain; this is the basis of functional magnetic resonance imaging (fMRI) and functional near-infrared spectroscopy (fNIRS). There is a clinical need for portable neural imaging systems, such as fNIRS, to accommodate patients who are unable to tolerate an MR environment. OBJECTIVE Our objective was to compare task-related full-head fNIRS and fMRI signals across cortical regions. METHODS Eighteen healthy adults completed a same-day fNIRS-fMRI study, in which they performed right- and left-hand finger tapping tasks and a semantic-decision tones-decision task. First- and second-level general linear models were applied to both datasets. RESULTS The finger tapping task showed that significant fNIRS channel activity over the contralateral primary motor cortex corresponded to surface fMRI activity. Similarly, significant fNIRS channel activity over the bilateral temporal lobe corresponded to the same primary auditory regions as surface fMRI during the semantic-decision tones-decision task. Additional channels were significant for this task that did not correspond to surface fMRI activity. CONCLUSION Although both imaging modalities showed left-lateralized activation for language processing, the current fNIRS analysis did not show concordant or expected localization at the level necessary for clinical use in individual pediatric epileptic patients. Future work is needed to show whether fNIRS and fMRI are comparable at the source level so that fNIRS can be used in a clinical setting on individual patients. If comparable, such an imaging approach could be applied to children with neurological disorders.
Collapse
|
133
|
Craig A, Pozzato I, Arora M, Middleton J, Rodrigues D, McBain C, Tran Y, Davis GM, Gopinath B, Kifley A, Krassioukov A, Braithwaite J, Mitchell R, Gustin SM, Schoffl J, Cameron ID. A neuro-cardiac self-regulation therapy to improve autonomic and neural function after SCI: a randomized controlled trial protocol. BMC Neurol 2021; 21:329. [PMID: 34445983 PMCID: PMC8387669 DOI: 10.1186/s12883-021-02355-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 08/13/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Spinal cord injury (SCI) is associated with autonomic imbalance and significant secondary conditions, including cardiac and brain dysfunction that adversely impact health and wellbeing. This study will investigate the effectiveness (intention-to-treat) of a neuro-cardiac self-regulation therapy to improve autonomic and neural/brain activity in adults with SCI living in the community. METHODS A two-arm parallel, randomised controlled trial in which adults with SCI living in the community post-rehabilitation will be randomly assigned to a treatment or control group. The treatment group (N = 60) aged 18-70 years with a chronic traumatic or non-traumatic SCI, will receive intervention sessions once per week for 10 weeks, designed to regulate autonomic activity using computer-based feedback of heart rate variability and controlled breathing (called HRV-F). Comprehensive neurophysiological and psychological assessment will occur at baseline, immediate post-treatment, and 6 and 12-months post-treatment. Primary outcome measures include electrocardiography/heart rate variability (to assess autonomic nervous system function) and transcranial doppler sonography (to assess cerebral blood circulation in basal cerebral arteries). Secondary outcomes measures include continuous blood pressure, electroencephalography, functional near-infrared spectroscopy, respiration/breath rate, electrooculography, cognitive capacity, psychological status, pain, fatigue, sleep and quality of life. Controls (N = 60) will receive usual community care, reading material and a brief telephone call once per week for 10 weeks and be similarly assessed over the same time period as the HRV-F group. Linear mixed model analysis with repeated measures will determine effectiveness of HRV-F and latent class mixture modelling used to determine trajectories for primary and selected secondary outcomes of interest. DISCUSSION Treatments for improving autonomic function after SCI are limited. It is therefore important to establish whether a neuro-cardiac self-regulation therapy can result in improved autonomic functioning post-SCI, as well as whether HRV-F is associated with better outcomes for secondary conditions such as cardiovascular health, cognitive capacity and mental health. TRIAL REGISTRATION The study has been prospectively registered with the Australian and New Zealand Clinical Trial Registry ( ACTRN12621000870853 .aspx). Date of Registration: 6th July 2021. Trial Sponsor: The University of Sydney, NSW 2006. Protocol version: 22/07/2021.
Collapse
Affiliation(s)
- Ashley Craig
- John Walsh Centre Rehabilitation Research, Northern Sydney Local Health District, The Kolling Institute, Northern Clinical School, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, 2065, Australia.
| | - Ilaria Pozzato
- John Walsh Centre Rehabilitation Research, Northern Sydney Local Health District, The Kolling Institute, Northern Clinical School, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, 2065, Australia
| | - Mohit Arora
- John Walsh Centre Rehabilitation Research, Northern Sydney Local Health District, The Kolling Institute, Northern Clinical School, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, 2065, Australia
| | - James Middleton
- John Walsh Centre Rehabilitation Research, Northern Sydney Local Health District, The Kolling Institute, Northern Clinical School, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, 2065, Australia
| | - Dianah Rodrigues
- John Walsh Centre Rehabilitation Research, Northern Sydney Local Health District, The Kolling Institute, Northern Clinical School, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, 2065, Australia
| | - Candice McBain
- John Walsh Centre Rehabilitation Research, Northern Sydney Local Health District, The Kolling Institute, Northern Clinical School, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, 2065, Australia
| | - Yvonne Tran
- Macquarie University Hearing (MU Hearing), Macquarie University, North Ryde, NSW, 2113, Australia
| | - Glen M Davis
- Exercise and Sports Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Bamini Gopinath
- Macquarie University Hearing (MU Hearing), Macquarie University, North Ryde, NSW, 2113, Australia
| | - Annette Kifley
- John Walsh Centre Rehabilitation Research, Northern Sydney Local Health District, The Kolling Institute, Northern Clinical School, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, 2065, Australia
| | - Andrei Krassioukov
- ICORD, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, V5Z 1M9, Canada
| | - Jeffrey Braithwaite
- Centre for Healthcare Resilience and Implementation Science, Australian Institute of Health Innovation, Health Systems Research, Macquarie University, North Ryde, NSW, 2113, Australia
| | - Rebecca Mitchell
- Centre for Healthcare Resilience and Implementation Science, Australian Institute of Health Innovation, Health Systems Research, Macquarie University, North Ryde, NSW, 2113, Australia
| | - Sylvia M Gustin
- School of Psychology, Faculty of Science, University of New South Wales, Kensington, NSW, Australia
| | - Jacob Schoffl
- John Walsh Centre Rehabilitation Research, Northern Sydney Local Health District, The Kolling Institute, Northern Clinical School, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, 2065, Australia
| | - Ian D Cameron
- John Walsh Centre Rehabilitation Research, Northern Sydney Local Health District, The Kolling Institute, Northern Clinical School, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, 2065, Australia
| |
Collapse
|
134
|
Perinatal stroke: mapping and modulating developmental plasticity. Nat Rev Neurol 2021; 17:415-432. [PMID: 34127850 DOI: 10.1038/s41582-021-00503-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2021] [Indexed: 02/04/2023]
Abstract
Most cases of hemiparetic cerebral palsy are caused by perinatal stroke, resulting in lifelong disability for millions of people. However, our understanding of how the motor system develops following such early unilateral brain injury is increasing. Tools such as neuroimaging and brain stimulation are generating informed maps of the unique motor networks that emerge following perinatal stroke. As a focal injury of defined timing in an otherwise healthy brain, perinatal stroke represents an ideal human model of developmental plasticity. Here, we provide an introduction to perinatal stroke epidemiology and outcomes, before reviewing models of developmental plasticity after perinatal stroke. We then examine existing therapeutic approaches, including constraint, bimanual and other occupational therapies, and their potential synergy with non-invasive neurostimulation. We end by discussing the promise of exciting new therapies, including novel neurostimulation, brain-computer interfaces and robotics, all focused on improving outcomes after perinatal stroke.
Collapse
|
135
|
Koyanagi M, Yamada M, Higashi T, Mitsunaga W, Moriuchi T, Tsujihata M. The Usefulness of Functional Near-Infrared Spectroscopy for the Assessment of Post-Stroke Depression. Front Hum Neurosci 2021; 15:680847. [PMID: 34239431 PMCID: PMC8258375 DOI: 10.3389/fnhum.2021.680847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/14/2021] [Indexed: 01/10/2023] Open
Abstract
Background: Post-stroke depression (PSD) is the most common mood disorder following stroke and is also the main factor that limits the recovery and rehabilitation of patients with stroke. The prevalence of PSD is ~30%. Since there is no gold standard for the diagnosis and evaluation of PSD, it is important to raise awareness of PSD and to establish methods for its evaluation, early diagnosis, and treatment. In the field of psychiatry, functional near-infrared spectroscopy (fNIRS) has been used as a diagnostic tool for the measurement of oxygenated hemoglobin (oxy-Hb). This study aimed to assess whether fNIRS could be applied in the diagnosis and evaluation of PSD. Methods: We recruited 45 patients with stroke, who were admitted to Nagasaki Kita Hospital between May 2015 and April 2019. The 17-item Hamilton Rating Scale for Depression (HAMD17), which is considered to be a useful screening and evaluation tool for PSD, was used for the assessment of patients after stroke; moreover, oxy-Hb was measured in the pre-frontal cortex. The subjects were divided into two groups: the depressed group (n = 13) and the non-depressed group (n = 32). We evaluated the correlation between the oxy-Hb integral values and HAMD17 scores. Results: We investigated the relationship between the oxy-Hb integral values and HAMD17 total scores, and found a negative correlation between them (ρ = −0.331, P < 0.005). There was a significant difference in the oxy-Hb integral values during the activation task period between the depressed and non-depressed groups (3.16 ± 2.7 and 1.71 ± 2.4, respectively; P = 0.040). The results indicated that the patients of the depressed group showed lower oxy-Hb integral values and lower activation in the frontal lobe in comparison with the patients of the non-depressed group. Conclusion: The present study highlights that the measurement of oxy-Hb by using fNIRS is a useful methodology for the diagnosis of PSD in patients after stroke.
Collapse
Affiliation(s)
- Masahiko Koyanagi
- Department of Health Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Department of Rehabilitation, Nagasaki Kita Hospital, Nagasaki, Japan
| | - Mai Yamada
- Department of Health Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Department of Rehabilitation, Nagasaki Kita Hospital, Nagasaki, Japan
| | - Toshio Higashi
- Department of Health Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Wataru Mitsunaga
- Department of Health Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Takefumi Moriuchi
- Department of Health Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | | |
Collapse
|
136
|
Zhang F, Cheong D, Khan AF, Chen Y, Ding L, Yuan H. Correcting physiological noise in whole-head functional near-infrared spectroscopy. J Neurosci Methods 2021; 360:109262. [PMID: 34146592 DOI: 10.1016/j.jneumeth.2021.109262] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/20/2021] [Accepted: 06/14/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Functional near-infrared spectroscopy (fNIRS) has been increasingly employed to monitor cerebral hemodynamics in normal and diseased conditions. However, fNIRS suffers from its susceptibility to superficial activity and systemic physiological noise. The objective of the study was to establish a noise reduction method for fNIRS in a whole-head montage. NEW METHOD We have developed an automated denoising method for whole-head fNIRS. A high-density montage consisting of 109 long-separation channels and 8 short-separation channels was used for recording. Auxiliary sensors were also used to measure motion, respiration and pulse simultaneously. The method incorporates principal component analysis and general linear model to identify and remove a globally uniform superficial component. Our denoising method was evaluated in experimental data acquired from a group of healthy human subjects during a visually cued motor task and further compared with a minimal preprocessing method and three established denoising methods in the literature. Quantitative metrics including contrast-to-noise ratio, within-subject standard deviation and adjusted coefficient of determination were evaluated. RESULTS After denoising, whole-head topography of fNIRS revealed focal activations concurrently in the primary motor and visual areas. COMPARISON WITH EXISTING METHODS Analysis showed that our method improves upon the four established preprocessing methods in the literature. CONCLUSIONS An automatic, effective and robust preprocessing pipeline was established for removing physiological noise in whole-head fNIRS recordings. Our method can enable fNIRS as a reliable tool in monitoring large-scale, network-level brain activities for clinical uses.
Collapse
Affiliation(s)
- Fan Zhang
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, USA
| | - Daniel Cheong
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, USA
| | - Ali F Khan
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, USA
| | - Yuxuan Chen
- School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK, USA
| | - Lei Ding
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, USA; Institute for Biomedical Engineering, Science and Technology, University of Oklahoma, Norman, OK, USA
| | - Han Yuan
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, USA; Institute for Biomedical Engineering, Science and Technology, University of Oklahoma, Norman, OK, USA.
| |
Collapse
|
137
|
Saikia MJ, Besio WG, Mankodiya K. The Validation of a Portable Functional NIRS System for Assessing Mental Workload. SENSORS 2021; 21:s21113810. [PMID: 34072895 PMCID: PMC8199260 DOI: 10.3390/s21113810] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 11/16/2022]
Abstract
Portable functional near-infrared spectroscopy (fNIRS) systems have the potential to image the brain in naturalistic settings. Experimental studies are essential to validate such fNIRS systems. Working memory (WM) is a short-term active memory that is associated with the temporary storage and manipulation of information. The prefrontal cortex (PFC) brain area is involved in the processing of WM. We assessed the PFC brain during n-back WM tasks in a group of 25 college students using our laboratory-developed portable fNIRS system, WearLight. We designed an experimental protocol with 32 n-back WM task blocks with four different pseudo-randomized task difficulty levels. The hemodynamic response of the brain was computed from the experimental data and the evaluated brain responses due to these tasks. We observed the incremental mean hemodynamic activation induced by the increasing WM load. The left-PFC area was more activated in the WM task compared to the right-PFC. The task performance was seen to be related to the hemodynamic responses. The experimental results proved the functioning of the WearLight system in cognitive load imaging. Since the portable fNIRS system was wearable and operated wirelessly, it was possible to measure the cognitive load in the naturalistic environment, which could also lead to the development of a user-friendly brain–computer interface system.
Collapse
Affiliation(s)
- Manob Jyoti Saikia
- Department of Electrical, Computer and Biomedical Engineering, University of Rhode Island, Kingston, RI 02881, USA
| | - Walter G Besio
- Department of Electrical, Computer and Biomedical Engineering, University of Rhode Island, Kingston, RI 02881, USA
| | - Kunal Mankodiya
- Department of Electrical, Computer and Biomedical Engineering, University of Rhode Island, Kingston, RI 02881, USA
| |
Collapse
|
138
|
Devezas MÂM. Shedding light on neuroscience: Two decades of functional near-infrared spectroscopy applications and advances from a bibliometric perspective. J Neuroimaging 2021; 31:641-655. [PMID: 34002425 DOI: 10.1111/jon.12877] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/23/2021] [Accepted: 04/30/2021] [Indexed: 12/14/2022] Open
Abstract
Functional near-infrared spectroscopy (fNIRS) is a noninvasive optical brain-imaging technique that detects changes in hemoglobin concentration in the cerebral cortex. fNIRS devices are safe, silent, portable, robust against motion artifacts, and have good temporal resolution. fNIRS is reliable and trustworthy, as well as an alternative and a complement to other brain-imaging modalities, such as electroencephalography or functional magnetic resonance imaging. Given these advantages, fNIRS has become a well-established tool for neuroscience research, used not only for healthy cortical activity but also as a biomarker during clinical assessment in individuals with schizophrenia, major depressive disorder, bipolar disease, epilepsy, Alzheimer's disease, vascular dementia, and cancer screening. Owing to its wide applicability, studies on fNIRS have increased exponentially over the last two decades. In this study, scientific publications indexed in the Web of Science databases were collected and a bibliometric-type methodology was developed. For this purpose, a comprehensive science mapping analysis, including top-ranked authors, journals, institutions, countries, and co-occurring keywords network, was conducted. From a total of 2310 eligible documents, 6028 authors and 531 journals published fNIRS-related papers, Fallgatter published the highest number of articles and was the most cited author. University of Tübingen in Germany has produced the most trending papers since 2000. USA was the most prolific country with the most active institutions, followed by China, Japan, Germany, and South Korea. The results also revealed global trends in emerging areas of research, such as neurodevelopment, aging, and cognitive and emotional assessment.
Collapse
|
139
|
Beyond the Wada: An updated approach to pre-surgical language and memory testing: An updated review of available evaluation techniques and recommended workflow to limit Wada test use to essential clinical cases. Epilepsy Res 2021; 174:106673. [PMID: 34082393 DOI: 10.1016/j.eplepsyres.2021.106673] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/27/2021] [Accepted: 05/13/2021] [Indexed: 11/21/2022]
Abstract
The Intracarotid amobarbital test (IAT), also called Wada test, is considered the "gold standard" for lateralizing language dominance in the pre-surgical evaluation of patients with epilepsy. In addition, it has been further modified to assess the postoperative risk of amnesia in patients undergoing temporal lobectomy. Since then it has been utilized to lateralize language and assess pre-surgical memory function. Over the years, its popularity has declined due to several limitations and availability of alternative procedures like fMRI and MEG. A survey of its use in the pre-surgical evaluation for epilepsy surgery has not been performed since the 2008 international survey by Baxendale et al. and it was heavily skewed due to data from European and North American countries. Only approximately 12% of the epilepsy centers indicated that they used the Wada test in every patient to assess preoperative memory function and language lateralization before temporal lobectomy. Nowadays, we have many functional mapping tools at our disposal. It has become somewhat unsuitable to have epilepsy patients undergo an invasive test such as the Wada test for the risks associated with it outweigh the benefits. Our objective is to review the Wada Test and alternative methods of assessing language and memory dominance, as it is past its prime and should only be used in specific circumstances.
Collapse
|
140
|
Milej D, Abdalmalak A, Rajaram A, Jhajj A, Owen AM, St. Lawrence K. Incorporating early and late-arriving photons to improve the reconstruction of cerebral hemodynamic responses acquired by time-resolved near-infrared spectroscopy. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:056003. [PMCID: PMC8130006 DOI: 10.1117/1.jbo.26.5.056003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/28/2021] [Indexed: 06/14/2023]
Abstract
Significance: Despite its advantages in terms of safety, low cost, and portability, functional near-infrared spectroscopy applications can be challenging due to substantial signal contamination from hemodynamics in the extracerebral layer (ECL). Time-resolved near-infrared spectroscopy (tr NIRS) can improve sensitivity to brain activity but contamination from the ECL remains an issue. This study demonstrates how brain signal isolation can be further improved by applying regression analysis to tr data acquired at a single source–detector distance. Aim: To investigate if regression analysis can be applied to single-channel trNIRS data to further isolate the brain and reduce signal contamination from the ECL. Approach: Appropriate regressors for trNIRS were selected based on simulations, and performance was evaluated by applying the regression technique to oxygenation responses recording during hypercapnia and functional activation. Results: Compared to current methods of enhancing depth sensitivity for trNIRS (i.e., higher statistical moments and late gates), incorporating regression analysis using a signal sensitive to the ECL significantly improved the extraction of cerebral oxygenation signals. In addition, this study demonstrated that regression could be applied to trNIRS data from a single detector using the early arriving photons to capture hemodynamic changes in the ECL. Conclusion: Applying regression analysis to trNIRS metrics with different depth sensitivities improves the characterization of cerebral oxygenation signals.
Collapse
Affiliation(s)
- Daniel Milej
- Lawson Health Research Institute, Imaging Program, London, Ontario, Canada
- Western University, Department of Medical Biophysics, London, Ontario, Canada
| | - Androu Abdalmalak
- Lawson Health Research Institute, Imaging Program, London, Ontario, Canada
- Western University, Department of Medical Biophysics, London, Ontario, Canada
| | - Ajay Rajaram
- Lawson Health Research Institute, Imaging Program, London, Ontario, Canada
- Western University, Department of Medical Biophysics, London, Ontario, Canada
| | - Amandeep Jhajj
- Western University, Department of Medical Biophysics, London, Ontario, Canada
| | - Adrian M. Owen
- Western University, Brain and Mind Institute, London, Ontario, Canada
| | - Keith St. Lawrence
- Lawson Health Research Institute, Imaging Program, London, Ontario, Canada
- Western University, Department of Medical Biophysics, London, Ontario, Canada
| |
Collapse
|
141
|
The slope of cerebral oxyhemoglobin oscillation is associated with vascular reserve capacity in large artery steno-occlusion. Sci Rep 2021; 11:8568. [PMID: 33883666 PMCID: PMC8060335 DOI: 10.1038/s41598-021-88198-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 04/05/2021] [Indexed: 11/08/2022] Open
Abstract
Inadequate cerebral perfusion is a risk factor for cerebral ischemia in patients with large artery steno-occlusion. We investigated whether prefrontal oxyhemoglobin oscillation (ΔHbO2, 0.6-2 Hz) was associated with decreased vascular reserve in patients with steno-occlusion in the large anterior circulation arteries. Thirty-six patients with steno-occlusion in the anterior circulation arteries (anterior cerebral artery, middle cerebral artery, and internal carotid artery) were included and compared to thirty-six control subjects. Patients were categorized into two groups (deteriorated vascular reserve vs. preserved vascular reserve) based on the results of Diamox single- photon emission computed tomography imaging. HbO2 data were collected using functional near-infrared spectroscopy. The slope of ΔHbO2 and the ipsilateral/contralateral slope ratio of ΔHbO2 were analyzed. Among the included patients (n = 36), 25 (69.4%) had deteriorated vascular reserve. Patients with deteriorated vascular reserve had a significantly higher average slope of ΔHbO2 on the ipsilateral side (5.01 ± 2.14) and a higher ipsilateral/contralateral ratio (1.44 ± 0.62) compared to those with preserved vascular reserve (3.17 ± 1.36, P = 0.014; 0.93 ± 0.33, P = 0.016, respectively) or the controls (3.82 ± 1.69, P = 0.019; 0.94 ± 0.29, P = 0.001). The ipsilateral/contralateral ΔHbO2 ratio could be used as a surrogate for vascular reserve in patients with severe steno-occlusion in the anterior circulation arteries.
Collapse
|
142
|
Mohi SM, Saadon HL, Khalaf AA. Laser tweezers as a biophotonic tool to investigate the efficacy of living sickle red blood cells in response to optical deformation. Biophys Rev 2021; 13:173-184. [PMID: 33936317 PMCID: PMC8046874 DOI: 10.1007/s12551-021-00790-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 02/25/2021] [Indexed: 12/25/2022] Open
Abstract
A laser tweezer technique based on single and/or dual-laser beams is proposed as a biophotonic tool to trap single cells and investigate their biophysical and biomechanical characteristics. Optical deformability and changes in size and cellular morphology of living and nonliving cells can be measured using the proposed technique. Representative results of red blood cell (RBC) optical deformability of 20 homozygous patients with sickle cell disease, including follow-up patients after treating with hydroxyurea (HU) for at least 3 months and 20 healthy control groups, are presented and compared. Shape recovery of deformed RBCs and relaxation time are recorded for each RBC. Results showed that healthy blood and patients treated with HU demonstrate significantly higher optical deformability and degree of optical elongation with morphological change of RBCs than untreated patients. Moreover, the healthy control group and patients treated with HU exhibited faster relaxation time for RBCs than untreated patients. A trapping power that reaches 180 mW caused no observable photo-damage at a wavelength 1064 nm. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12551-021-00790-0.
Collapse
Affiliation(s)
- Shaimaa M. Mohi
- Department of Physics, Laser Applications Research Group (LARG), College of Science, University of Basrah, Basrah, Iraq
| | - H. L. Saadon
- Department of Physics, Laser Applications Research Group (LARG), College of Science, University of Basrah, Basrah, Iraq
| | - Asaad A. Khalaf
- Basrah Centre for Hereditary Blood Diseases, Basrah Health Directorate, Basrah, Iraq
| |
Collapse
|
143
|
Zohdi H, Scholkmann F, Wolf U. Individual Differences in Hemodynamic Responses Measured on the Head Due to a Long-Term Stimulation Involving Colored Light Exposure and a Cognitive Task: A SPA-fNIRS Study. Brain Sci 2021; 11:54. [PMID: 33466405 PMCID: PMC7824905 DOI: 10.3390/brainsci11010054] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/20/2020] [Accepted: 12/30/2020] [Indexed: 12/11/2022] Open
Abstract
When brain activity is measured by neuroimaging, the canonical hemodynamic response (increase in oxygenated hemoglobin ([O2Hb]) and decrease in deoxygenated hemoglobin ([HHb]) is not always seen in every subject. The reason for this intersubject-variability of the responses is still not completely understood. This study is performed with 32 healthy subjects, using the systemic physiology augmented functional near-infrared spectroscopy (SPA-fNIRS) approach. We investigate the intersubject variability of hemodynamic and systemic physiological responses, due to a verbal fluency task (VFT) under colored light exposure (CLE; blue and red). Five and seven different hemodynamic response patterns were detected in the subgroup analysis of the blue and red light exposure, respectively. We also found that arterial oxygen saturation and mean arterial pressure were positively correlated with [O2Hb] at the prefrontal cortex during the CLE-VFT independent of the color of light and classification of the subjects. Our study finds that there is substantial intersubject-variability of cerebral hemodynamic responses, which is partially explained by subject-specific systemic physiological changes induced by the CLE-VFT. This means that both subgroup analyses and the additional assessment of systemic physiology are of crucial importance to achieve a comprehensive understanding of the effects of a CLE-VFT on human subjects.
Collapse
Affiliation(s)
- Hamoon Zohdi
- Institute of Complementary and Integrative Medicine, University of Bern, 3012 Bern, Switzerland; (H.Z.); (F.S.)
| | - Felix Scholkmann
- Institute of Complementary and Integrative Medicine, University of Bern, 3012 Bern, Switzerland; (H.Z.); (F.S.)
- Biomedical Optics Research Laboratory, Neonatology Research, Department of Neonatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Ursula Wolf
- Institute of Complementary and Integrative Medicine, University of Bern, 3012 Bern, Switzerland; (H.Z.); (F.S.)
| |
Collapse
|
144
|
Lee YQ, Tay GWN, Ho CSH. Clinical Utility of Functional Near-Infrared Spectroscopy for Assessment and Prediction of Suicidality: A Systematic Review. Front Psychiatry 2021; 12:716276. [PMID: 34658955 PMCID: PMC8517226 DOI: 10.3389/fpsyt.2021.716276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/07/2021] [Indexed: 12/25/2022] Open
Abstract
Introduction: Suicide is a pressing psychiatric concern worldwide with no established biomarker. While there is some evidence of the clinical utility of functional near-infrared spectroscopy (fNIRS) in assessing and predicting suicidality, no systematic review of such evidence has been conducted to date. Therefore, this review aimed to systematically review and gather evidence from existing studies that used fNIRS signals to assess suicidality and its associated changes in the brain, and those that examined how such signals correlated with suicide symptomatology. Methods: PubMed, EMBASE, and Cochrane Library databases were used in a systematic literature search for English-language articles published between 2000 and December 19, 2020 that focused on the utility of fNIRS for (i) assessing suicidality and its associated changes in the brain, and (ii) correlating with suicide symptomatology. Studies were included if they utilised fNIRS to evaluate variations in fNIRS-measured cerebral hemodynamic responses in patients with different mental disorders (e.g., major depressive disorder, schizophrenia), as well as in healthy controls, of any age group. Quality of evidence was assessed using the Newcastle-Ottawa quality assessment scale. Results: A total of 7 cross-sectional studies were included in this review, all of which had acceptable quality. Across all studies, fNIRS demonstrated reduced cerebral hemodynamic changes in suicidal individuals when compared to non-suicidal individuals. One study also demonstrated the potential of fNIRS signals in correlating with the severity of suicidality. Conclusions: This review provides a comprehensive, updated review of evidence supporting the clinical utility of fNIRS in the assessment and prediction of suicidality. Further studies involving larger sample sizes, standardised methodology, and longitudinal follow-ups are needed.
Collapse
Affiliation(s)
- Y Q Lee
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Gabrielle W N Tay
- Department of Psychological Medicine, National University Health System, Singapore, Singapore
| | - Cyrus S H Ho
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Psychological Medicine, National University Health System, Singapore, Singapore
| |
Collapse
|
145
|
Wen D, Lang X, Zhang H, Li Q, Yin Q, Chen Y, Xu Y. Task and Non-task Brain Activation Differences for Assessment of Depression and Anxiety by fNIRS. Front Psychiatry 2021; 12:758092. [PMID: 34803768 PMCID: PMC8602554 DOI: 10.3389/fpsyt.2021.758092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/27/2021] [Indexed: 11/25/2022] Open
Abstract
Diagnosis and treatment of the patients with major depression (MD) or the combined anxiety and depression (A&D) depend on the questionnaire, sometimes accompanied by tasks such as verbal fluency task (VFT). Functional near infrared spectroscopy (fNIRS) is emerging as an auxiliary diagnostic tool to evaluate brain function, providing an objective criterion to judge psychoses. At present, the conclusions derived from VFT or rest (non-task) studies are controversial. The purpose of this study is to evaluate if task performs better than non-task in separating healthy people from psychiatric patients. In this study, healthy controls (HCs) as well as the patients with MD or A&D were recruited (n = 10 for each group) to participate in the non-task and VFT tasks, respectively, and the brain oxygenation was longitudinally evaluated by using fNIRS. An approach of spectral analysis is used to analyze cerebral hemoglobin parameters (i.e., Oxy and Deoxy), characterizing the physiological fluctuations in the non-task and task states with magnitude spectrum and average power. Moreover, the standard deviation of oxygenation responses during the non-task was compared with the peak amplitude during the task, with the aim to explore the sensitivity of the VFT task to brain activation. The results show that there is no significant difference (p > 0.05) among the three groups in average power during non-task. The VFT task greatly enhanced the magnitude spectrum, leading to significant difference (p < 0.05) in average power between any of two groups (HC, MD, and A&D). Moreover, 40% patients with A&D have an intermediate peak (around 0.05 Hz) in the magnitude spectrum when performing the VFT task, indicating its advantage in characterizing A&D. We defined a rate of the non-task standard variation to the task peak amplitude (namely, SD-to-peak rate) and found that this rate is larger than 20% in 90% of the MD subjects. By contrast, only 40% HC subjects have an SD-to-peak rate larger than 20%. These results indicate that the non-task may not be sufficient to separate MD or A&D from HC. The VFT task could enhance the characteristics of the magnitude spectrum, but its intensity needs to be elevated so as to properly explore brain functions related to psychoses.
Collapse
Affiliation(s)
- Dan Wen
- First Hospital of Shanxi Medical University, Taiyuan, China.,Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Xuenan Lang
- First Hospital of Shanxi Medical University, Taiyuan, China
| | - Hang Zhang
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Qiqi Li
- First Hospital of Shanxi Medical University, Taiyuan, China
| | - Qin Yin
- First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yulu Chen
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Yong Xu
- First Hospital of Shanxi Medical University, Taiyuan, China.,Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China.,Department of Mental Health, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
146
|
Chen Y, Tang J, Chen Y, Farrand J, Craft MA, Carlson BW, Yuan H. Amplitude of fNIRS Resting-State Global Signal Is Related to EEG Vigilance Measures: A Simultaneous fNIRS and EEG Study. Front Neurosci 2020; 14:560878. [PMID: 33343275 PMCID: PMC7744746 DOI: 10.3389/fnins.2020.560878] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 11/11/2020] [Indexed: 12/21/2022] Open
Abstract
Recently, functional near-infrared spectroscopy (fNIRS) has been utilized to image the hemodynamic activities and connectivity in the human brain. With the advantage of economic efficiency, portability, and fewer physical constraints, fNIRS enables studying of the human brain at versatile environment and various body positions, including at bed side and during exercise, which complements the use of functional magnetic resonance imaging (fMRI). However, like fMRI, fNIRS imaging can be influenced by the presence of a strong global component. Yet, the nature of the global signal in fNIRS has not been established. In this study, we investigated the relationship between fNIRS global signal and electroencephalogram (EEG) vigilance using simultaneous recordings in resting healthy subjects in high-density and whole-head montage. In Experiment 1, data were acquired at supine, sitting, and standing positions. Results found that the factor of body positions significantly affected the amplitude of the resting-state fNIRS global signal, prominently in the frequency range of 0.05-0.1 Hz but not in the very low frequency range of less than 0.05 Hz. As a control, the task-induced fNIRS or EEG responses to auditory stimuli did not differ across body positions. However, EEG vigilance plays a modulatory role in the fNIRS signals in the frequency range of less than 0.05 Hz: resting-state sessions of low EEG vigilance measures are associated with high amplitudes of fNIRS global signals. Moreover, in Experiment 2, we further examined the epoch-to-epoch fluctuations in concurrent fNIRS and EEG data acquired from a separate group of subjects and found a negative temporal correlation between EEG vigilance measures and fNIRS global signal amplitudes. Our study for the first time revealed that vigilance as a neurophysiological factor modulates the resting-state dynamics of fNIRS, which have important implications for understanding and processing the noises in fNIRS signals.
Collapse
Affiliation(s)
- Yuxuan Chen
- School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK, United States
| | - Julia Tang
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, United States
| | - Yafen Chen
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, United States
| | - Jesse Farrand
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, United States
| | - Melissa A. Craft
- Fran and Earl Ziegler College of Nursing, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Barbara W. Carlson
- Fran and Earl Ziegler College of Nursing, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Han Yuan
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, United States
- Institute for Biomedical Engineering, Science, and Technology, University of Oklahoma, Norman, OK, United States
| |
Collapse
|