101
|
Li KL, Huang HY, Ren H, Yang XL. Role of exosomes in the pathogenesis of inflammation in Parkinson's disease. Neural Regen Res 2022; 17:1898-1906. [PMID: 35142665 PMCID: PMC8848593 DOI: 10.4103/1673-5374.335143] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Inflammatory responses, including glial cell activation and peripheral immune cell infiltration, are involved in the pathogenesis of Parkinson’s disease (PD). These inflammatory responses appear to be closely related to the release of extracellular vesicles, such as exosomes. However, the relationships among different forms of glial cell activation, synuclein dysregulation, mitochondrial dysfunction, and exosomes are complicated. This review discusses the multiple roles played by exosomes in PD-associated inflammation and concludes that exosomes can transport toxic α-synuclein oligomers to immature neurons and into the extracellular environment, inducing the oligomerization of α-synuclein in normal neurons. Misfolded α-synuclein causes microglia and astrocytes to activate and secrete exosomes. Glial cell-derived exosomes participate in communications between glial cells and neurons, triggering anti-stress and anti-inflammatory responses, in addition to axon growth. The production and release of mitochondrial vesicles and exosomes establish a new mechanism for linking mitochondrial dysfunction to systemic inflammation associated with PD. Given the relevance of exosomes as mediators of neuron-glia communication in neuroinflammation and neuropathogenesis, new targeted treatment strategies are currently being developed that use these types of extracellular vesicles as drug carriers. Exosome-mediated inflammation may be a promising target for intervention in PD patients.
Collapse
Affiliation(s)
- Ke-Lu Li
- Department of Geriatric Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Hong-Yan Huang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Hui Ren
- Department of Geriatric Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Xing-Long Yang
- Department of Geriatric Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| |
Collapse
|
102
|
Wang L, Zhao Z, Zhao L, Zhao Y, Yang G, Wang C, Gao L, Niu C, Li S. Lactobacillus plantarum DP189 Reduces α-SYN Aggravation in MPTP-Induced Parkinson's Disease Mice via Regulating Oxidative Damage, Inflammation, and Gut Microbiota Disorder. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1163-1173. [PMID: 35067061 DOI: 10.1021/acs.jafc.1c07711] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This study aimed to evaluate the attenuating effect of Lactobacillus plantarum DP189 on α-synuclein (α-SYN) aggregates in the substantia nigra (SN) of Parkinson's disease (PD) mice via 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced. Our results indicated that L. plantarum DP189 increased the levels of superoxide dismutase (SOD), glutathione peroxide (GSH-Px), and interleukin-10 (IL-10) and decreased the levels of malondialdehyde (MDA), reactive oxygen species (ROS), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β). Moreover, L. plantarum DP189 reduced the α-SYN accumulation in SN. Mechanistically, L. plantarum DP189 activated the expression of nuclear factor erythroid 2-related factor (Nrf2)/ARE and PGC-1α pathways and suppressed the NLRP3 inflammasome. Furthermore, fecal analysis showed that L. plantarum DP189 reshaped the gut microbiota in PD mice by reducing the number of pathogenic bacteria (Proteobacteria and Actinobacteria) and increased the abundance of probiotics (Lactobacillus and Prevotella). Our results suggested that L. plantarum DP189 could delay the neurodegeneration caused by the accumulation of α-SYN in the SN of PD mice via suppressing oxidative stress, repressing proinflammatory response, and modulating gut microbiota.
Collapse
Affiliation(s)
- Lei Wang
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, Changchun 130033, P. R. China
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, P. R. China
| | - Zijian Zhao
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, Changchun 130033, P. R. China
| | - Lei Zhao
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, P. R. China
| | - Yujuan Zhao
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, Changchun 130033, P. R. China
| | - Ge Yang
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, Changchun 130033, P. R. China
| | - Chao Wang
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, Changchun 130033, P. R. China
| | - Lei Gao
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, Changchun 130033, P. R. China
| | - Chunhua Niu
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, Changchun 130033, P. R. China
| | - Shengyu Li
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, Changchun 130033, P. R. China
| |
Collapse
|
103
|
Are We What We Eat? Impact of Diet on the Gut-Brain Axis in Parkinson's Disease. Nutrients 2022; 14:nu14020380. [PMID: 35057561 PMCID: PMC8780419 DOI: 10.3390/nu14020380] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/14/2022] [Accepted: 01/14/2022] [Indexed: 02/07/2023] Open
Abstract
Parkinson’s disease is characterized by motor and non-motor symptoms, such as defects in the gut function, which may occur before the motor symptoms. To date, there are therapies that can improve these symptoms, but there is no cure to avoid the development or exacerbation of this disorder. Dysbiosis of gut microbiota could have a crucial role in the gut–brain axis, which is a bidirectional communication between the central nervous system and the enteric nervous system. Diet can affect the microbiota composition, impacting gut–brain axis functionality. Gut microbiome restoration through probiotics, prebiotics, synbiotics or other dietary means could have the potential to slow PD progression. In this review, we will discuss the influence of diet on the bidirectional communication between gut and brain, thus supporting the hypothesis that this disorder could begin in the gut. We also focus on how food-based therapies might then have an influence on PD and could ameliorate non-motor as well as motor symptoms.
Collapse
|
104
|
Nyatega CO, Qiang L, Adamu MJ, Kawuwa HB. Gray matter, white matter and cerebrospinal fluid abnormalities in Parkinson's disease: A voxel-based morphometry study. Front Psychiatry 2022; 13:1027907. [PMID: 36325532 PMCID: PMC9618656 DOI: 10.3389/fpsyt.2022.1027907] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/26/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a chronic neurodegenerative disorder characterized by bradykinesia, tremor, and rigidity among other symptoms. With a 70% cumulative prevalence of dementia in PD, cognitive impairment and neuropsychiatric symptoms are frequent. MATERIALS AND METHODS In this study, we looked at anatomical brain differences between groups of patients and controls. A total of 138 people with PD were compared to 64 age-matched healthy people using voxel-based morphometry (VBM). VBM is a fully automated technique that allows for the identification of regional differences in gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) allowing for an objective comparison of brains of different groups of people. We used statistical parametric mapping for image processing and statistical analysis. RESULTS In comparison to controls, PD patients had lower GM volumes in the left middle cingulate, left lingual gyrus, right calcarine and left fusiform gyrus, also PD patients indicated lower WM volumes in the right middle cingulate, left lingual gyrus, right calcarine, and left inferior occipital gyrus. Moreover, PD patients group demonstrated higher CSF in the left caudate compared to the controls. CONCLUSION Physical fragility and cognitive impairments in PD may be detected more easily if anatomical abnormalities to the cingulate gyrus, occipital lobe and the level of CSF in the caudate are identified. Thus, our findings shed light on the role of the brain in PD and may aid in a better understanding of the events that occur in PD patients.
Collapse
Affiliation(s)
- Charles Okanda Nyatega
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China.,Department of Electronics and Telecommunication Engineering, Mbeya University of Science and Technology, Mbeya, Tanzania
| | - Li Qiang
- School of Microelectronics, Tianjin University, Tianjin, China
| | | | | |
Collapse
|
105
|
Li C, Chen Y, Wen Y, Jia Y, Cheng S, Liu L, Zhang H, Pan C, Zhang J, Zhang Z, Yang X, Meng P, Yao Y, Zhang F. A genetic association study reveals the relationship between the oral microbiome and anxiety and depression symptoms. Front Psychiatry 2022; 13:960756. [PMID: 36440396 PMCID: PMC9685528 DOI: 10.3389/fpsyt.2022.960756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/16/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Growing evidence supports that alterations in the gut microbiota play an essential role in the etiology of anxiety, depression, and other psychiatric disorders. However, the potential effect of oral microbiota on mental health has received little attention. METHODS Using the latest genome-wide association study (GWAS) summary data of the oral microbiome, polygenic risk scores (PRSs) of 285 salivary microbiomes and 309 tongue dorsum microbiomes were conducted. Logistic and linear regression models were applied to evaluate the relationship between salivary-tongue dorsum microbiome interactions with anxiety and depression. Two-sample Mendelian randomization (MR) was utilized to compute the causal effects between the oral microbiome, anxiety, and depression. RESULTS We observed significant salivary-tongue dorsum microbiome interactions related to anxiety and depression traits. Significantly, one common interaction was observed to be associated with both anxiety score and depression score, Centipeda periodontii SGB 224 × Granulicatella uSGB 3289 (P depressionscore = 1.41 × 10-8, P anxietyscore = 5.10 × 10-8). Furthermore, we detected causal effects between the oral microbiome and anxiety and depression. Importantly, we identified one salivary microbiome associated with both anxiety and depression in both the UKB database and the Finngen public database, Eggerthia (P IVW - majordepression - UKB = 2.99 × 10-6, P IVW - Self - reportedanxiety/panicattacks - UKB = 3.06 × 10-59, P IVW - depression - Finngen = 3.16 × 10 , - 16 P IVW - anxiety - Finngen = 1.14 × 10-115). CONCLUSION This study systematically explored the relationship between the oral microbiome and anxiety and depression, which could help improve our understanding of disease pathogenesis and propose new diagnostic targets and early intervention strategies.
Collapse
Affiliation(s)
- Chun'e Li
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yujing Chen
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yan Wen
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yumeng Jia
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Shiqiang Cheng
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Li Liu
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Huijie Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Chuyu Pan
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Jingxi Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Zhen Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Xuena Yang
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Peilin Meng
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yao Yao
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
106
|
Zapała B, Stefura T, Wójcik-Pędziwiatr M, Kabut R, Bałajewicz-Nowak M, Milewicz T, Dudek A, Stój A, Rudzińska-Bar M. Differences in the Composition of Gut Microbiota between Patients with Parkinson's Disease and Healthy Controls: A Cohort Study. J Clin Med 2021; 10:jcm10235698. [PMID: 34884399 PMCID: PMC8658639 DOI: 10.3390/jcm10235698] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/25/2021] [Accepted: 11/27/2021] [Indexed: 12/14/2022] Open
Abstract
Gut microbiome and colonic inflammation can be associated with the predisposition and progression of Parkinson’s disease (PD). The presented study aimed to compare gastrointestinal microbiota composition between patients diagnosed with PD and treated only with Levodopa to healthy controls. In this prospective study, patients were recruited in 1 academic hospital from July 2019 to July 2020. The detailed demographic data and medical history were collected using a set of questionnaires. Fecal samples were obtained from all participants. Next-Generation Sequencing was used to assess the microbiota composition. The endpoint was the difference in composition of the gut microbiota. In this study, we enrolled 27 hospitalized PD patients with well-controlled symptoms. The control group included 44 healthy subjects matched for age. Among PD patients, our results presented a higher abundance of Bacteroides phylum, class Corynebacteria among phylum Actinobacteria, class Deltaproteobacteria among phylum Proteobacteria, and genera such as Butyricimonas, Robinsoniella, and Flavonifractor. The species Akkermansia muciniphila, Eubacterium biforme, and Parabacteroides merdae were identified as more common in the gut microbiota of PD patients. In conclusion, the patients diagnosed with PD have significantly different gut microbiota profiles in comparison with healthy controls.
Collapse
Affiliation(s)
- Barbara Zapała
- Department of Clinical Biochemistry, Jagiellonian University Medical College, 31-066 Krakow, Poland
- Correspondence:
| | - Tomasz Stefura
- 2(nd) Department of General Surgery, Jagiellonian University Medical College, 31-008 Krakow, Poland; (T.S.); (A.D.)
| | - Magdalena Wójcik-Pędziwiatr
- Department of Neurology, Andrzej Frycz Modrzewski Krakow University, 30-705 Krakow, Poland; (M.W.-P.); (M.R.-B.)
| | - Radosław Kabut
- Institute of Psychology, Jagiellonian University, 30-060 Krakow, Poland;
| | - Marta Bałajewicz-Nowak
- Department of Gynecology and Obstetrics, Jagiellonian University Medical College, 31-501 Krakow, Poland;
| | - Tomasz Milewicz
- Department of Gynaecological Endocrinology and Gynaecology, Jagiellonian University Medical College, 31-501 Krakow, Poland;
| | - Alicja Dudek
- 2(nd) Department of General Surgery, Jagiellonian University Medical College, 31-008 Krakow, Poland; (T.S.); (A.D.)
| | - Anastazja Stój
- Department of Hematology Diagnostics and Genetics, The University Hospital, 30-688 Krakow, Poland;
| | - Monika Rudzińska-Bar
- Department of Neurology, Andrzej Frycz Modrzewski Krakow University, 30-705 Krakow, Poland; (M.W.-P.); (M.R.-B.)
| |
Collapse
|
107
|
Danilenko V, Devyatkin A, Marsova M, Shibilova M, Ilyasov R, Shmyrev V. Common Inflammatory Mechanisms in COVID-19 and Parkinson's Diseases: The Role of Microbiome, Pharmabiotics and Postbiotics in Their Prevention. J Inflamm Res 2021; 14:6349-6381. [PMID: 34876830 PMCID: PMC8643201 DOI: 10.2147/jir.s333887] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/29/2021] [Indexed: 12/14/2022] Open
Abstract
In the last decade, metagenomic studies have shown the key role of the gut microbiome in maintaining immune and neuroendocrine systems. Malfunction of the gut microbiome can induce inflammatory processes, oxidative stress, and cytokine storm. Dysfunction of the gut microbiome can be caused by short-term (virus infection and other infectious diseases) or long-term (environment, nutrition, and stress) factors. Here, we reviewed the inflammation and oxidative stress in neurodegenerative diseases and coronavirus infection (COVID-19). Here, we reviewed the renin-angiotensin-aldosterone system (RAAS) involved in the processes of formation of oxidative stress and inflammation in viral and neurodegenerative diseases. Moreover, the coronavirus uses ACE2 receptors of the RAAS to penetrate human cells. The coronavirus infection can be the trigger for neurodegenerative diseases by dysfunction of the RAAS. Pharmabiotics, postbiotics, and next-generation probiotics, are considered as a means to prevent oxidative stress, inflammatory processes, neurodegenerative and viral diseases through gut microbiome regulation.
Collapse
Affiliation(s)
- Valery Danilenko
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Andrey Devyatkin
- Central Clinical Hospital with a Polyclinic CMP RF, Moscow, Russia
| | - Mariya Marsova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | | | - Rustem Ilyasov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | | |
Collapse
|
108
|
Gorecki AM, Anyaegbu CC, Anderton RS. TLR2 and TLR4 in Parkinson's disease pathogenesis: the environment takes a toll on the gut. Transl Neurodegener 2021; 10:47. [PMID: 34814947 PMCID: PMC8609261 DOI: 10.1186/s40035-021-00271-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/29/2021] [Indexed: 02/08/2023] Open
Abstract
Parkinson's disease (PD) is an incurable, devastating disorder that is characterized by pathological protein aggregation and neurodegeneration in the substantia nigra. In recent years, growing evidence has implicated the gut environment and the gut-brain axis in the pathogenesis and progression of PD, especially in a subset of people who exhibit prodromal gastrointestinal dysfunction. Specifically, perturbations of gut homeostasis are hypothesized to contribute to α-synuclein aggregation in enteric neurons, which may spread to the brain over decades and eventually result in the characteristic central nervous system manifestations of PD, including neurodegeneration and motor impairments. However, the mechanisms linking gut disturbances and α-synuclein aggregation are still unclear. A plethora of research indicates that toll-like receptors (TLRs), especially TLR2 and TLR4, are critical mediators of gut homeostasis. Alongside their established role in innate immunity throughout the body, studies are increasingly demonstrating that TLR2 and TLR4 signalling shapes the development and function of the gut and the enteric nervous system. Notably, TLR2 and TLR4 are dysregulated in patients with PD, and may thus be central to early gut dysfunction in PD. To better understand the putative contribution of intestinal TLR2 and TLR4 dysfunction to early α-synuclein aggregation and PD, we critically discuss the role of TLR2 and TLR4 in normal gut function as well as evidence for altered TLR2 and TLR4 signalling in PD, by reviewing clinical, animal model and in vitro research. Growing evidence on the immunological aetiology of α-synuclein aggregation is also discussed, with a focus on the interactions of α-synuclein with TLR2 and TLR4. We propose a conceptual model of PD pathogenesis in which microbial dysbiosis alters the permeability of the intestinal barrier as well as TLR2 and TLR4 signalling, ultimately leading to a positive feedback loop of chronic gut dysfunction promoting α-synuclein aggregation in enteric and vagal neurons. In turn, α-synuclein aggregates may then migrate to the brain via peripheral nerves, such as the vagal nerve, to contribute to neuroinflammation and neurodegeneration typically associated with PD.
Collapse
Affiliation(s)
- Anastazja M Gorecki
- School of Biological Science, University of Western Australia, Crawley, WA, Australia.
- Neurodegenerative Disorders Research Group, Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.
| | - Chidozie C Anyaegbu
- Curtin Health Innovation Research Institute, Ralph and Patricia Sarich Neuroscience Research Institute, Curtin University, Nedlands, WA, Australia
| | - Ryan S Anderton
- Faculty of Medicine, Nursing and Midwifery and Faculty of Health Sciences, University of Notre Dame Australia, Fremantle, WA, Australia
- School of Nursing, Midwifery, Health Sciences and Physiotherapy, University of Notre Dame Australia, Fremantle, WA, Australia
| |
Collapse
|
109
|
Zhao Z, Ning J, Bao XQ, Shang M, Ma J, Li G, Zhang D. Fecal microbiota transplantation protects rotenone-induced Parkinson's disease mice via suppressing inflammation mediated by the lipopolysaccharide-TLR4 signaling pathway through the microbiota-gut-brain axis. MICROBIOME 2021; 9:226. [PMID: 34784980 PMCID: PMC8597301 DOI: 10.1186/s40168-021-01107-9] [Citation(s) in RCA: 206] [Impact Index Per Article: 68.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/02/2021] [Indexed: 05/10/2023]
Abstract
BACKGROUND Parkinson's disease (PD) is a prevalent neurodegenerative disorder, displaying not only well-known motor deficits but also gastrointestinal dysfunctions. Consistently, it has been increasingly evident that gut microbiota affects the communication between the gut and the brain in PD pathogenesis, known as the microbiota-gut-brain axis. As an approach to re-establishing a normal microbiota community, fecal microbiota transplantation (FMT) has exerted beneficial effects on PD in recent studies. Here, in this study, we established a chronic rotenone-induced PD mouse model to evaluate the protective effects of FMT treatment on PD and to explore the underlying mechanisms, which also proves the involvement of gut microbiota dysbiosis in PD pathogenesis via the microbiota-gut-brain axis. RESULTS We demonstrated that gut microbiota dysbiosis induced by rotenone administration caused gastrointestinal function impairment and poor behavioral performances in the PD mice. Moreover, 16S RNA sequencing identified the increase of bacterial genera Akkermansia and Desulfovibrio in fecal samples of rotenone-induced mice. By contrast, FMT treatment remarkably restored the gut microbial community, thus ameliorating the gastrointestinal dysfunctions and the motor deficits of the PD mice. Further experiments revealed that FMT administration alleviated intestinal inflammation and barrier destruction, thus reducing the levels of systemic inflammation. Subsequently, FMT treatment attenuated blood-brain barrier (BBB) impairment and suppressed neuroinflammation in the substantia nigra (SN), which further decreased the damage of dopaminergic neurons. Additional mechanistic investigation discovered that FMT treatment reduced lipopolysaccharide (LPS) levels in the colon, the serum, and the SN, thereafter suppressing the TLR4/MyD88/NF-κB signaling pathway and its downstream pro-inflammatory products both in the SN and the colon. CONCLUSIONS Our current study demonstrates that FMT treatment can correct the gut microbiota dysbiosis and ameliorate the rotenone-induced PD mouse model, in which suppression of the inflammation mediated by the LPS-TLR4 signaling pathway both in the gut and the brain possibly plays a significant role. Further, we prove that rotenone-induced microbiota dysbiosis is involved in the genesis of PD via the microbiota-gut-brain axis. Video abstract.
Collapse
Affiliation(s)
- Zhe Zhao
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050 China
| | - Jingwen Ning
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050 China
| | - Xiu-qi Bao
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050 China
| | - Meiyu Shang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050 China
| | - Jingwei Ma
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050 China
| | - Gen Li
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050 China
| | - Dan Zhang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050 China
| |
Collapse
|
110
|
Glycoconjugate journal special issue on: the glycobiology of Parkinson's disease. Glycoconj J 2021; 39:55-74. [PMID: 34757539 DOI: 10.1007/s10719-021-10024-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/14/2021] [Accepted: 09/24/2021] [Indexed: 10/19/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder that affects over 10 million aging people worldwide. This condition is characterized by the degeneration of dopaminergic neurons in the pars compacta region of the substantia nigra (SNpc) and by aggregation of proteins, commonly α-synuclein (SNCA). The formation of Lewy bodies that encapsulate aggregated proteins in lipid vesicles is a hallmark of PD. Glycosylation of proteins and neuroinflammation are involved in the pathogenesis. SNCA has many posttranslational modifications and interacts with components of membranes that affect aggregation. The large membrane lipid dolichol accumulates in the brain upon age and has a significant effect on membrane structure. The replacement of dopamine and dopaminergic neurons are at the forefront of therapeutic development. This review examines the role of membrane lipids, glycolipids, glycoproteins and dopamine in the aggregation of SNCA and development of PD. We discuss the SNCA-dopamine-neuromelanin-dolichol axis and the role of membranes in neuronal stem cells that could be a regenerative therapy for PD patients.
Collapse
|
111
|
Xue W, Li JJ, Zou Y, Zou B, Wei L. Microbiota and Ocular Diseases. Front Cell Infect Microbiol 2021; 11:759333. [PMID: 34746029 PMCID: PMC8566696 DOI: 10.3389/fcimb.2021.759333] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/06/2021] [Indexed: 12/12/2022] Open
Abstract
Recent advances have identified significant associations between the composition and function of the gut microbiota and various disorders in organ systems other than the digestive tract. Utilizing next-generation sequencing and multiomics approaches, the microbial community that possibly impacts ocular disease has been identified. This review provides an overview of the literature on approaches to microbiota analysis and the roles of commensal microbes in ophthalmic diseases, including autoimmune uveitis, age-related macular degeneration, glaucoma, and other ocular disorders. In addition, this review discusses the hypothesis of the "gut-eye axis" and evaluates the therapeutic potential of targeting commensal microbiota to alleviate ocular inflammation.
Collapse
Affiliation(s)
- Wei Xue
- State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou, China
| | - Jing Jing Li
- State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou, China
| | - Yanli Zou
- State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou, China.,Department of Ophthalmology, Affiliated Foshan Hospital, Southern Medical University, Foshan, China
| | - Bin Zou
- State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou, China
| | - Lai Wei
- State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
112
|
Layunta E, Buey B, Mesonero JE, Latorre E. Crosstalk Between Intestinal Serotonergic System and Pattern Recognition Receptors on the Microbiota-Gut-Brain Axis. Front Endocrinol (Lausanne) 2021; 12:748254. [PMID: 34819919 PMCID: PMC8607755 DOI: 10.3389/fendo.2021.748254] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022] Open
Abstract
Disruption of the microbiota-gut-brain axis results in a wide range of pathologies that are affected, from the brain to the intestine. Gut hormones released by enteroendocrine cells to the gastrointestinal (GI) tract are important signaling molecules within this axis. In the search for the language that allows microbiota to communicate with the gut and the brain, serotonin seems to be the most important mediator. In recent years, serotonin has emerged as a key neurotransmitter in the gut-brain axis because it largely contributes to both GI and brain physiology. In addition, intestinal microbiota are crucial in serotonin signaling, which gives more relevance to the role of the serotonin as an important mediator in microbiota-host interactions. Despite the numerous investigations focused on the gut-brain axis and the pathologies associated, little is known regarding how serotonin can mediate in the microbiota-gut-brain axis. In this review, we will mainly discuss serotonergic system modulation by microbiota as a pathway of communication between intestinal microbes and the body on the microbiota-gut-brain axis, and we explore novel therapeutic approaches for GI diseases and mental disorders.
Collapse
Affiliation(s)
- Elena Layunta
- Institute of Biomedicine, Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain
| | - Berta Buey
- Departamento de Farmacología, Fisiología y Medicina Legal y Forense, Universidad de Zaragoza, Zaragoza, Spain
| | - Jose Emilio Mesonero
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain
- Departamento de Farmacología, Fisiología y Medicina Legal y Forense, Universidad de Zaragoza, Zaragoza, Spain
- Instituto Agroalimentario de Aragón—IA2 (Universidad de Zaragoza–CITA), Zaragoza, Spain
| | - Eva Latorre
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain
- Instituto Agroalimentario de Aragón—IA2 (Universidad de Zaragoza–CITA), Zaragoza, Spain
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain
| |
Collapse
|
113
|
Phosphorylated α-synuclein aggregated in Schwann cells exacerbates peripheral neuroinflammation and nerve dysfunction in Parkinson's disease through TLR2/NF-κB pathway. Cell Death Discov 2021; 7:289. [PMID: 34642321 PMCID: PMC8511120 DOI: 10.1038/s41420-021-00676-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 09/11/2021] [Accepted: 09/24/2021] [Indexed: 12/12/2022] Open
Abstract
To investigate the mechanism of peripheral neuropathy in Parkinson's disease (PD), we prepared a PD mice model by long-term exposure of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to mimic PD pathology in humans and the sciatic nerves were taken for further research. It turned out that phosphorylated α-synuclein (p-α-syn) was significantly deposited in Schwann cells (SCs) of sciatic nerves possibly contributing to degenerated myelin SCs and atrophied axons in MPTP group. Further analysis confirmed that toll-like receptors (TLRs) were implicated with PD peripheral neuropathy, in which TLR2 exhibits the predominant expression. Increased expression of inflammatory factors about TLR2/nuclear factor kappa-B (NF-κB) pathway was noted in MPTP group compared to saline group, with proteins on other pathways showing no changes. Moreover, MPTP-challenged mice exhibited worse motor ability and damaged nerve conduction, implicating that p-α-syn neurotoxicity might be relevant to impairments of motor and sensory nerves. After the treatment of CU-CPT22, a TLR2 antagonist, p-α-syn accumulation, motor and sensory function were ameliorated in CU-CPT22 combined with MPTP group. Thus, we demonstrated that pathological p-α-syn might combine TLR2 to affect SCs activation, inflammatory response as well as motor and sensory function through TLR2/nuclear factor kappa-B (NF-κB) signaling pathway. This study firstly demonstrates a novel mechanism of p-α-syn accumulated in SCs of peripheral nerves, which extends our understanding on SCs-mediated peripheral neuroinflammation related to TLR2/NF-κB signaling pathway and sheds light on potential new therapeutic avenues for PD.
Collapse
|
114
|
Zhang X, Svn Z, Liv M, Yang Y, Zeng R, Huang Q, Sun Q. Association Between Irritable Bowel Syndrome and Risk of Parkinson's Disease: A Systematic Review and Meta-Analysis. Front Neurol 2021; 12:720958. [PMID: 34630293 PMCID: PMC8492947 DOI: 10.3389/fneur.2021.720958] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 08/20/2021] [Indexed: 11/30/2022] Open
Abstract
Background: Parkinson's disease (PD) and irritable bowel syndrome (IBS) are respectively one of the most common neurodegenerative diseases and functional bowel diseases in the world. Recent studies suggest that patients with IBS seem to have a higher risk of PD, which conflicts with the result of previous meta-analysis. Therefore, the purpose of this systematic review is to evaluate all available evidence, in order to clarify the association between PD and IBS. Methods: Two reviewers independently searched the PubMed, Embase, Web of Science, and Cochrane library on April 25, 2021 to identify all records that explore the association between IBS and PD. All reports that clearly define PD and IBS and analyze the relationship between the two were included. The Newcastle-Ottawa scale was used to assess the risk of bias of included studies. Results: Five studies from four articles involving 2,044,110 subjects were included in this analysis. The pooled results demonstrated a significant association between PD and IBS (1.48; 95% CI: 1.35–1.62, P < 0.001), with subtle heterogeneity (I2 = 0.0%, p = 0.585). The association was observed across genders and increased with age. However, the available evidence cannot allow a reliable analysis of the causal relationship between IBS and PD. Conclusion: This study demonstrates a higher risk of PD among subjects with IBS. Future studies are required to further clarify the causation and underlying mechanism of the association.
Collapse
Affiliation(s)
- XinYue Zhang
- College of Integrated Chinese and Western Medicine, Affiliated Hospital of Traditional Chinese Medicine, Southwest Medical University, Luzhou, China
| | - Zhen Svn
- Hengyang Medical School, University of South China, Hengyang, China
| | - MengSi Liv
- Hengyang Medical School, University of South China, Hengyang, China
| | - Yan Yang
- College of Integrated Chinese and Western Medicine, Affiliated Hospital of Traditional Chinese Medicine, Southwest Medical University, Luzhou, China
| | - Rui Zeng
- College of Integrated Chinese and Western Medicine, Affiliated Hospital of Traditional Chinese Medicine, Southwest Medical University, Luzhou, China
| | - Qian Huang
- College of Integrated Chinese and Western Medicine, Affiliated Hospital of Traditional Chinese Medicine, Southwest Medical University, Luzhou, China
| | - Qin Sun
- College of Integrated Chinese and Western Medicine, Affiliated Hospital of Traditional Chinese Medicine, Southwest Medical University, Luzhou, China.,Drug Research Center of Integrated Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| |
Collapse
|
115
|
Daliry A, Pereira ENGDS. Role of Maternal Microbiota and Nutrition in Early-Life Neurodevelopmental Disorders. Nutrients 2021; 13:3533. [PMID: 34684534 PMCID: PMC8540774 DOI: 10.3390/nu13103533] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/14/2021] [Accepted: 08/24/2021] [Indexed: 02/07/2023] Open
Abstract
The rise in the prevalence of obesity and other related metabolic diseases has been paralleled by an increase in the frequency of neurodevelopmental problems, which has raised the likelihood of a link between these two phenomena. In this scenario, maternal microbiota is a possible linking mechanistic pathway. According to the "Developmental Origins of Health and Disease" paradigm, environmental exposures (in utero and early life) can permanently alter the body's structure, physiology, and metabolism, increasing illness risk and/or speeding up disease progression in offspring, adults, and even generations. Nutritional exposure during early developmental stages may induce susceptibility to the later development of human diseases via interactions in the microbiome, including alterations in brain function and behavior of offspring, as explained by the gut-brain axis theory. This review provides an overview of the implications of maternal nutrition on neurodevelopmental disorders and the establishment and maturation of gut microbiota in the offspring.
Collapse
Affiliation(s)
- Anissa Daliry
- Laboratory of Cardiovascular Investigation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil;
| | | |
Collapse
|
116
|
Sadaka Y, Freedman J, Ashkenazi S, Vinker S, Golan-Cohen A, Green I, Israel A, Eran A, Merzon E. The Effect of Antibiotic Treatment of Early Childhood Shigellosis on Long-Term Prevalence of Attention Deficit/Hyperactivity Disorder. CHILDREN-BASEL 2021; 8:children8100880. [PMID: 34682145 PMCID: PMC8535120 DOI: 10.3390/children8100880] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 09/25/2021] [Accepted: 09/28/2021] [Indexed: 11/16/2022]
Abstract
It has recently been shown that children with early shigellosis are at increased risk of attention deficit/hyperactivity disorder (ADHD). This study aimed to evaluate the association between antibiotic treatment of shigellosis with long-term ADHD rates. A retrospective cohort study was conducted that included all the Leumit Health Services (LHS) enrollees aged 5-18 years between 2000-2018 with a documented Shigella-positive gastroenteritis before the age of 3 years. Of the 5176 children who were positive for Shigella gastroenteritis before the age of 3 years, 972 (18.8%) were treated with antibiotics early (<5 days), 250 (4.8%) were treated late (≥5 days), and 3954 children (76.4%) were not prescribed antibiotics. Late antibiotic treatment was associated with significantly increased rates of ADHD (adjusted OR = 1.61; 95% CI, 1.1-2.3). Early treatment with antibiotics was not associated with increased ADHD rates (adjusted OR = 1.02; 95% CI, 0.8-1.3). In conclusion, late antibiotic treatment of early childhood shigellosis was associated with increased rates of ADHD.
Collapse
Affiliation(s)
- Yair Sadaka
- The Joyce and Irving Goldman Medical School, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8443944, Israel; (Y.S.); (J.F.)
- Neuro-Developmental Research Center, Mental Health Institute, Beer Sheva 8461144, Israel
| | - Judah Freedman
- The Joyce and Irving Goldman Medical School, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8443944, Israel; (Y.S.); (J.F.)
- Neuro-Developmental Research Center, Mental Health Institute, Beer Sheva 8461144, Israel
| | - Shai Ashkenazi
- The Adelson School of Medicine, Ariel University, Ariel 40700, Israel;
| | - Shlomo Vinker
- Leumit Health Services, Tel-Aviv 6473817, Israel; (S.V.); (A.G.-C.); (A.I.)
- Department of Family Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel;
| | - Avivit Golan-Cohen
- Leumit Health Services, Tel-Aviv 6473817, Israel; (S.V.); (A.G.-C.); (A.I.)
- Department of Family Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel;
| | - Ilan Green
- Department of Family Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel;
| | - Ariel Israel
- Leumit Health Services, Tel-Aviv 6473817, Israel; (S.V.); (A.G.-C.); (A.I.)
| | - Alal Eran
- Department of Life Sciences, Ben Gurion University, Beer Sheva 8443944, Israel;
- Computational Health Informatics Program, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Eugene Merzon
- Leumit Health Services, Tel-Aviv 6473817, Israel; (S.V.); (A.G.-C.); (A.I.)
- Correspondence: ; Tel.: +972-50-7643281
| |
Collapse
|
117
|
Saud Hussein A, Ibraheem Salih N, Hashim Saadoon I. Effect of Microbiota in the Development of Breast Cancer. ARCHIVES OF RAZI INSTITUTE 2021; 76:761-768. [PMID: 35096312 PMCID: PMC8790982 DOI: 10.22092/ari.2021.355961.1750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 09/18/2021] [Indexed: 01/28/2023]
Abstract
Breast cancer is the most frequent cancer among women and causes the greatest number of cancer-related death among women all over the world. It approximately accounts for 15% of all cancer death. The human microbiota is the term applied to the aggregate of microbes that live in different habitats of living organisms 'bodies, including the gut, skin, vagina, and mouth, as well as nose, conjunctiva, pharynx, and urethra, among others. Increasing evidence is pointing to the role of the microbiome in the occurrence and development of a variety of cancers. Intestinal microbiome imbalance is related to the occurrence of gastrointestinal tumors, such as esophageal, gastric, colorectal, and gallbladder cancer. The present study aimed to identify the role of microbiota in the development of breast cancer. The women with breast cancer (n=130) in this study were in the age range of 25-75 years. The study was conducted in Kirkuk city of Iraq from September 10, 2019, to March 15, 2020. The control group included 20 women diagnosed with benign breast lesions in the age range 25-75 years, who matched the women in the patient group. Blood samples and breast tissue samples were taken from patients with breast cancer and benign breast lesions. Blood samples were examined through immunological methods, enzyme-linked immunosorbent assay (ELISA) was adopted for the detection of interleukin-19 (IL-19). Breast tissue samples were taken from breast cancer and benign breast lesions patients to isolate and identify bacteria. Based on the obtained results, only 6 out of 30 (20%) cultured breast tissue samples from women with breast cancer showed bacterial growth. In total, 4 (67%) and 2(33%) of these 6 positive cultures were Escherichia coli was and Staphylococcus aureus, respectively, and this relation was statistically significant. However, no bacterial growth was observed on the cultured breast tissue samples taken from women with benign breast lesions. Moreover, the difference between women with a positive and negative result of bacterial culture and stages of breast cancer was statistically non-significant. It is worth mentioning that 50 % of women with breast cancer and bacterial growth were within the age range of 40-49 year. The present study revealed that the difference between women with breast cancer and those with benign breast lesions was statistically highly significant according to the place of residence. In addition, the mean level of IL-19 among women with breast cancer was lower than that in women with benign breast lesions, and this relation was statistically highly significant.
Collapse
Affiliation(s)
- A Saud Hussein
- Department of Biology, College of Science, Kirkuk University, Kirkuk, Iraq
| | - N Ibraheem Salih
- Department of Microbiology, College of Medicine, Tikrit University, Tikrit, Iraq
| | - I Hashim Saadoon
- Department of Microbiology, College of Medicine, Tikrit University, Tikrit, Iraq
| |
Collapse
|
118
|
The Role of Gut Microbiota and Gut-Brain Interplay in Selected Diseases of the Central Nervous System. Int J Mol Sci 2021; 22:ijms221810028. [PMID: 34576191 PMCID: PMC8471822 DOI: 10.3390/ijms221810028] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 02/06/2023] Open
Abstract
The gut microbiome has attracted increasing attention from researchers in recent years. The microbiota can have a specific and complex cross-talk with the host, particularly with the central nervous system (CNS), creating the so-called “gut–brain axis”. Communication between the gut, intestinal microbiota, and the brain involves the secretion of various metabolites such as short-chain fatty acids (SCFAs), structural components of bacteria, and signaling molecules. Moreover, an imbalance in the gut microbiota composition modulates the immune system and function of tissue barriers such as the blood–brain barrier (BBB). Therefore, the aim of this literature review is to describe how the gut–brain interplay may contribute to the development of various neurological disorders, combining the fields of gastroenterology and neuroscience. We present recent findings concerning the effect of the altered microbiota on neurodegeneration and neuroinflammation, including Alzheimer’s and Parkinson’s diseases, as well as multiple sclerosis. Moreover, the impact of the pathological shift in the microbiome on selected neuropsychological disorders, i.e., major depressive disorders (MDD) and autism spectrum disorder (ASD), is also discussed. Future research on the effect of balanced gut microbiota composition on the gut–brain axis would help to identify new potential opportunities for therapeutic interventions in the presented diseases.
Collapse
|
119
|
Chidambaram SB, Essa MM, Rathipriya AG, Bishir M, Ray B, Mahalakshmi AM, Tousif AH, Sakharkar MK, Kashyap RS, Friedland RP, Monaghan TM. Gut dysbiosis, defective autophagy and altered immune responses in neurodegenerative diseases: Tales of a vicious cycle. Pharmacol Ther 2021; 231:107988. [PMID: 34536490 DOI: 10.1016/j.pharmthera.2021.107988] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/16/2021] [Accepted: 08/25/2021] [Indexed: 02/08/2023]
Abstract
The human microbiota comprises trillions of symbiotic microorganisms and is involved in regulating gastrointestinal (GI), immune, nervous system and metabolic homeostasis. Recent observations suggest a bidirectional communication between the gut microbiota and the brain via immune, circulatory and neural pathways, termed the Gut-Brain Axis (GBA). Alterations in gut microbiota composition, such as seen with an increased number of pathobionts and a decreased number of symbionts, termed gut dysbiosis or microbial intestinal dysbiosis, plays a prominent role in the pathogenesis of central nervous system (CNS)-related disorders. Clinical reports confirm that GI symptoms often precede neurological symptoms several years before the development of neurodegenerative diseases (NDDs). Pathologically, gut dysbiosis disrupts the integrity of the intestinal barrier leading to ingress of pathobionts and toxic metabolites into the systemic circulation causing GBA dysregulation. Subsequently, chronic neuroinflammation via dysregulated immune activation triggers the accumulation of neurotoxic misfolded proteins in and around CNS cells resulting in neuronal death. Emerging evidence links gut dysbiosis to the aggravation and/or spread of proteinopathies from the peripheral nervous system to the CNS and defective autophagy-mediated proteinopathies. This review summarizes the current understanding of the role of gut microbiota in NDDs, and highlights a vicious cycle of gut dysbiosis, immune-mediated chronic neuroinflammation, impaired autophagy and proteinopathies, which contributes to the development of neurodegeneration in Alzheimer's disease, Parkinson's disease, Huntington's disease, multiple sclerosis, amyotrophic lateral sclerosis and frontotemporal lobar degeneration. We also discuss novel therapeutic strategies targeting the modulation of gut dysbiosis through prebiotics, probiotics, synbiotics or dietary interventions, and faecal microbial transplantation (FMT) in the management of NDDs.
Collapse
Affiliation(s)
- Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, KA, India; Centre for Experimental Pharmacology and Toxicology (CPT), JSS Academy of Higher Education & Research, Mysuru 570015, KA, India.
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat 123, Oman; Ageing and Dementia Research Group, Sultan Qaboos University, Muscat 123, Oman; Biomedical Sciences Department, University of Pacific, Sacramento, CA, USA.
| | - A G Rathipriya
- Food and Brain Research Foundation, Chennai 600 094, Tamil Nadu, India
| | - Muhammed Bishir
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, KA, India
| | - Bipul Ray
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, KA, India; Centre for Experimental Pharmacology and Toxicology (CPT), JSS Academy of Higher Education & Research, Mysuru 570015, KA, India
| | - Arehally M Mahalakshmi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, KA, India
| | - A H Tousif
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, KA, India; Centre for Experimental Pharmacology and Toxicology (CPT), JSS Academy of Higher Education & Research, Mysuru 570015, KA, India
| | - Meena K Sakharkar
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada
| | - Rajpal Singh Kashyap
- Research Centre, Dr G. M. Taori Central India Institute of Medical Sciences (CIIMS), Nagpur, Maharashtra, India
| | - Robert P Friedland
- Department of Neurology, University of Louisville, Louisville, KY 40292, USA
| | - Tanya M Monaghan
- NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham NG7 2UH, UK; Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK.
| |
Collapse
|
120
|
Zhao Z, Li F, Ning J, Peng R, Shang J, Liu H, Shang M, Bao XQ, Zhang D. Novel compound FLZ alleviates rotenone-induced PD mouse model by suppressing TLR4/MyD88/NF- κB pathway through microbiota-gut-brain axis. Acta Pharm Sin B 2021; 11:2859-2879. [PMID: 34589401 PMCID: PMC8463266 DOI: 10.1016/j.apsb.2021.03.020] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/07/2021] [Accepted: 02/12/2021] [Indexed: 01/09/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease, but none of the current treatments for PD can halt the progress of the disease due to the limited understanding of the pathogenesis. In PD development, the communication between the brain and the gastrointestinal system influenced by gut microbiota is known as microbiota-gut-brain axis. However, the explicit mechanisms of microbiota dysbiosis in PD development have not been well elucidated yet. FLZ, a novel squamosamide derivative, has been proved to be effective in many PD models and is undergoing the phase I clinical trial to treat PD in China. Moreover, our previous pharmacokinetic study revealed that gut microbiota could regulate the absorption of FLZ in vivo. The aims of our study were to assess the protective effects of FLZ treatment on PD and to further explore the underlying microbiota-related mechanisms of PD by using FLZ as a tool. In the current study, chronic oral administration of rotenone was utilized to induce a mouse model to mimic the pathological process of PD. Here we revealed that FLZ treatment alleviated gastrointestinal dysfunctions, motor symptoms, and dopaminergic neuron death in rotenone-challenged mice. 16S rRNA sequencing found that PD-related microbiota alterations induced by rotenone were reversed by FLZ treatment. Remarkably, FLZ administration attenuated intestinal inflammation and gut barrier destruction, which subsequently inhibited systemic inflammation. Eventually, FLZ treatment restored blood-brain barrier structure and suppressed neuroinflammation by inhibiting the activation of astrocytes and microglia in the substantia nigra (SN). Further mechanistic research demonstrated that FLZ treatment suppressed the TLR4/MyD88/NF-κB pathway both in the SN and colon. Collectively, FLZ treatment ameliorates microbiota dysbiosis to protect the PD model via inhibiting TLR4 pathway, which contributes to one of the underlying mechanisms beneath its neuroprotective effects. Our research also supports the importance of microbiota-gut-brain axis in PD pathogenesis, suggesting its potential role as a novel therapeutic target for PD treatment.
Collapse
Key Words
- ANOSIM, adonis and analysis of similarity
- BBB, blood–brain barrier
- CFU, colony-forming units
- CMC-Na, sodium carboxymethyl cellulose
- CNS, central nerve system
- ELISA, enzyme-linked immunosorbent assay
- FD4, FITC-dextran (MW: 4 kDa)
- FITC, fluorescein isothiocyanate
- FLZ
- GFAP, glial fibrillary acidic protein
- GI, gastrointestinal
- Gastrointestinal dysfunction
- Hp, Helicobacter pylori
- IL-1β, interleukin-1β
- IL-6, interleukin-6
- Iba-1, ionized calcium-binding adapter molecule 1
- KEGG, Kyoto Encyclopedia of Genes and Genomes
- LBP, lipopolysaccharide binding protein
- LDA, linear discriminant analysis
- LPS, lipopolysaccharide
- MLNs, mesenteric lymph nodes
- Microbiota–gut–brain axis
- Neuroinflammation
- OTU, operational taxonomic unit
- PBS, phosphate-buffered saline
- PCoA, principal coordinate analysis
- PD, Parkinson's disease
- Parkinson's disease
- Rotenone mouse model
- SD, standard deviation
- SN, substantia nigra
- Systemic inflammation
- TEM, transmission electron microscopy
- TH, tyrosine hydroxylase
- TLR4, toll-like receptor 4
- TLR4/MyD88/NF-κB pathway
- TNF-α, tumor necrosis factor-α
- qPCR, quantitative polymerase chain reaction assay
- α-Syn, α-synuclein
Collapse
Affiliation(s)
- Zhe Zhao
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Fangyuan Li
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jingwen Ning
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ran Peng
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Junmei Shang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hui Liu
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Meiyu Shang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiu-Qi Bao
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Dan Zhang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
121
|
Murciano-Brea J, Garcia-Montes M, Geuna S, Herrera-Rincon C. Gut Microbiota and Neuroplasticity. Cells 2021; 10:2084. [PMID: 34440854 PMCID: PMC8392499 DOI: 10.3390/cells10082084] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 02/07/2023] Open
Abstract
The accumulating evidence linking bacteria in the gut and neurons in the brain (the microbiota-gut-brain axis) has led to a paradigm shift in the neurosciences. Understanding the neurobiological mechanisms supporting the relevance of actions mediated by the gut microbiota for brain physiology and neuronal functioning is a key research area. In this review, we discuss the literature showing how the microbiota is emerging as a key regulator of the brain's function and behavior, as increasing amounts of evidence on the importance of the bidirectional communication between the intestinal bacteria and the brain have accumulated. Based on recent discoveries, we suggest that the interaction between diet and the gut microbiota, which might ultimately affect the brain, represents an unprecedented stimulus for conducting new research that links food and mood. We also review the limited work in the clinical arena to date, and we propose novel approaches for deciphering the gut microbiota-brain axis and, eventually, for manipulating this relationship to boost mental wellness.
Collapse
Affiliation(s)
- Julia Murciano-Brea
- Department of Biodiversity, Ecology & Evolution, Biomathematics Unit, Complutense University of Madrid, 28040 Madrid, Spain; (J.M.-B.); (M.G.-M.)
- Modeling, Data Analysis and Computational Tools for Biology Research Group, Complutense University of Madrid, 28040 Madrid, Spain
| | - Martin Garcia-Montes
- Department of Biodiversity, Ecology & Evolution, Biomathematics Unit, Complutense University of Madrid, 28040 Madrid, Spain; (J.M.-B.); (M.G.-M.)
- Modeling, Data Analysis and Computational Tools for Biology Research Group, Complutense University of Madrid, 28040 Madrid, Spain
| | - Stefano Geuna
- Department of Clinical and Biological Sciences, School of Medicine, University of Torino, 10124 Torino, Italy;
| | - Celia Herrera-Rincon
- Department of Biodiversity, Ecology & Evolution, Biomathematics Unit, Complutense University of Madrid, 28040 Madrid, Spain; (J.M.-B.); (M.G.-M.)
- Modeling, Data Analysis and Computational Tools for Biology Research Group, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
122
|
Jauhari A, Singh T, Mishra S, Shankar J, Yadav S. Coordinated Action of miR-146a and Parkin Gene Regulate Rotenone-induced Neurodegeneration. Toxicol Sci 2021; 176:433-445. [PMID: 32392329 DOI: 10.1093/toxsci/kfaa066] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mitochondrial dysfunction is a common cause in pathophysiology of different neurodegenerative diseases. Elimination of dysfunctional and damaged mitochondria is a key requirement for maintaining homeostasis and bioenergetics of degenerating neurons. Using global microRNA (miRNA) profiling in a systemic rotenone model of Parkinson's disease, we have identified miR-146a as upmost-regulated miRNA, which is known as inflammation regulatory miRNA. Here, we report the role of activated nuclear factor kappa beta (NF-kβ) in miR-146a-mediated downregulation of Parkin protein, which inhibits clearance of damaged mitochondria and induces neurodegeneration. Our studies have shown that 4-week rotenone exposure (2.5 mg/kg b.wt) induced oxidative imbalance-mediated NF-kβ activation in 1-year-old rat's brain. Activated NF-kβ binds in promoter region of miR-146a gene and induces its transcription, which downregulates levels of Parkin protein. Decreased amount of Parkin protein results in accumulation of damaged and dysfunctional mitochondria, which further promotes the generation of reactive oxygen species in degenerating neurons. In conclusion, our studies have identified direct role of NF-kβ-mediated upregulation of miR-146a in regulating mitophagy through inhibition of the Parkin gene.
Collapse
Affiliation(s)
- Abhishek Jauhari
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow 226001, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Campus, New Delhi, India.,Department of Neurological Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Tanisha Singh
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow 226001, Uttar Pradesh, India.,Department of Neurological Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Saumya Mishra
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow 226001, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Campus, New Delhi, India
| | - Jai Shankar
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow 226001, Uttar Pradesh, India
| | - Sanjay Yadav
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow 226001, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Campus, New Delhi, India.,Department of Biochemistry, All India Institute of Medical Sciences, Raebareli-229405, Uttar Pradesh, India
| |
Collapse
|
123
|
Nielsen SD, Pearson NM, Seidler K. The link between the gut microbiota and Parkinson's Disease: A systematic mechanism review with focus on α-synuclein transport. Brain Res 2021; 1769:147609. [PMID: 34371014 DOI: 10.1016/j.brainres.2021.147609] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 07/29/2021] [Accepted: 08/01/2021] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Research has suggested a link between the gut microbiota and Parkinson's Disease (PD), and an early involvement of gastrointestinal dysfunction has been reported in patients. A mechanism review was performed to investigate whether the neurodegenerative cascade begins in the gut; mediated by gut dysbiosis and retrograde transport of α-synuclein. This review provides a summary of microbiome composition associated with PD, and evaluates pathophysiological mechanisms from animal and in vitro models of PD. METHOD A systematic literature search was performed in PubMed; 82 of 299 papers met the inclusion criteria. RESULTS All twenty-two human case-control studies demonstrated an altered gut microbiota in PD compared to healthy controls, with results suggesting a proinflammatory phenotype present in PD. A germ-free animal study has demonstrated that gut microbiota are required for microglia activation, α-synuclein pathology and motor deficits. Accumulation of phosphorylated α-synuclein has been observed in the enteric nervous system prior to the onset of motor symptoms in animal models of PD, and there is data to support retrograde transport of α-synuclein from the gut to the brain. Different animal models of PD have demonstrated neuroinflammation, microglial activation and loss of dopaminergic neurons in the brain. CONCLUSION Evidence from this review supports the hypothesis that pathology spreads from the gut to the brain. Future animal studies using oral LPS or microbiota transplants from human PD cases could provide further insight into the entire mechanism. Prospective longitudinal microbiome studies and novel modelling approaches could help to identify functional dysbiosis and early biomarkers for PD.
Collapse
Affiliation(s)
- Sophie D Nielsen
- Centre for Nutrition Education and Lifestyle Management (CNELM), Chapel Garden, 14 Rectory Road, Wokingham, Berkshire RG40 1DH, UK.
| | - Nicola M Pearson
- Centre for Nutrition Education and Lifestyle Management (CNELM), Chapel Garden, 14 Rectory Road, Wokingham, Berkshire RG40 1DH, UK
| | - Karin Seidler
- Centre for Nutrition Education and Lifestyle Management (CNELM), Chapel Garden, 14 Rectory Road, Wokingham, Berkshire RG40 1DH, UK
| |
Collapse
|
124
|
Ma X, Wang Q, Yuan W, Wang Y, Zhou F, Kang K, Tong X, Liu Z. Electroacupuncture Alleviates Neuroinflammation and Motor Dysfunction by Regulating Intestinal Barrier Function in a Mouse Model of Parkinson Disease. J Neuropathol Exp Neurol 2021; 80:844-855. [PMID: 34343334 DOI: 10.1093/jnen/nlab046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Gastrointestinal dysfunction is the main nonmotor characteristic of Parkinson disease (PD), manipulation of gastrointestinal function by altering gut-brain axis is a potentially novel entry point for the treatment of PD. Acupuncture has been reported to confer beneficial effects in the gastrointestinal diseases. Therefore, this study aimed to explore the effects and mechanism of acupuncture on the pathophysiology and gastrointestinal function of PD. A PD mouse model was established by rotenone, and electroacupuncture was used to regulate the gastrointestinal function. Rotenone was found to induce the types of brain pathologies and gastrointestinal dysfunction that are similar to those observed with PD. Electroacupuncture significantly increased the spontaneous activity of mice with PD and increased the expression of tyrosine hydroxylase, while reducing the expression of Iba-1 in substantia nigra (SN), suggesting that motor dysfunction and neurological damage was alleviated. In addition, electroacupuncture significantly reduced the deposition of α-synuclein in both colon and SN, reduced intestinal inflammation, and exerted protective effects on enteric nervous system and intestinal barrier. In conclusion, electroacupuncture confers beneficial effects on the gastrointestinal system of mice with PD and can alleviate neuroinflammation and neuropathic injury by inhibiting intestinal inflammation, promoting intestinal barrier repair and reducing α-synuclein deposition in the colon.
Collapse
Affiliation(s)
- Xue Ma
- From the Third College of Clinical Medicine, Zhejiang Chinese Medicine University, Zhejiang, China (XM); College of Acu-Moxibustion and Massage, Shaanxi University of Chinese Medicine, Shaanxi, China (QW, WY, YW, ZL); The Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China (FZ); Second College of Clinical Medicine, Shaanxi University of Chinese Medicine, Shaanxi, China (KK); and Xizang Minzu University, Shaanxi, China (XT)
| | - Qiang Wang
- From the Third College of Clinical Medicine, Zhejiang Chinese Medicine University, Zhejiang, China (XM); College of Acu-Moxibustion and Massage, Shaanxi University of Chinese Medicine, Shaanxi, China (QW, WY, YW, ZL); The Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China (FZ); Second College of Clinical Medicine, Shaanxi University of Chinese Medicine, Shaanxi, China (KK); and Xizang Minzu University, Shaanxi, China (XT)
| | - Wei Yuan
- From the Third College of Clinical Medicine, Zhejiang Chinese Medicine University, Zhejiang, China (XM); College of Acu-Moxibustion and Massage, Shaanxi University of Chinese Medicine, Shaanxi, China (QW, WY, YW, ZL); The Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China (FZ); Second College of Clinical Medicine, Shaanxi University of Chinese Medicine, Shaanxi, China (KK); and Xizang Minzu University, Shaanxi, China (XT)
| | - Yuan Wang
- From the Third College of Clinical Medicine, Zhejiang Chinese Medicine University, Zhejiang, China (XM); College of Acu-Moxibustion and Massage, Shaanxi University of Chinese Medicine, Shaanxi, China (QW, WY, YW, ZL); The Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China (FZ); Second College of Clinical Medicine, Shaanxi University of Chinese Medicine, Shaanxi, China (KK); and Xizang Minzu University, Shaanxi, China (XT)
| | - Feng Zhou
- From the Third College of Clinical Medicine, Zhejiang Chinese Medicine University, Zhejiang, China (XM); College of Acu-Moxibustion and Massage, Shaanxi University of Chinese Medicine, Shaanxi, China (QW, WY, YW, ZL); The Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China (FZ); Second College of Clinical Medicine, Shaanxi University of Chinese Medicine, Shaanxi, China (KK); and Xizang Minzu University, Shaanxi, China (XT)
| | - Kaiwen Kang
- From the Third College of Clinical Medicine, Zhejiang Chinese Medicine University, Zhejiang, China (XM); College of Acu-Moxibustion and Massage, Shaanxi University of Chinese Medicine, Shaanxi, China (QW, WY, YW, ZL); The Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China (FZ); Second College of Clinical Medicine, Shaanxi University of Chinese Medicine, Shaanxi, China (KK); and Xizang Minzu University, Shaanxi, China (XT)
| | - Xiaopeng Tong
- From the Third College of Clinical Medicine, Zhejiang Chinese Medicine University, Zhejiang, China (XM); College of Acu-Moxibustion and Massage, Shaanxi University of Chinese Medicine, Shaanxi, China (QW, WY, YW, ZL); The Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China (FZ); Second College of Clinical Medicine, Shaanxi University of Chinese Medicine, Shaanxi, China (KK); and Xizang Minzu University, Shaanxi, China (XT)
| | - Zhibin Liu
- From the Third College of Clinical Medicine, Zhejiang Chinese Medicine University, Zhejiang, China (XM); College of Acu-Moxibustion and Massage, Shaanxi University of Chinese Medicine, Shaanxi, China (QW, WY, YW, ZL); The Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China (FZ); Second College of Clinical Medicine, Shaanxi University of Chinese Medicine, Shaanxi, China (KK); and Xizang Minzu University, Shaanxi, China (XT)
| |
Collapse
|
125
|
Protocol for a systematic review on the role of the gut microbiome in paediatric neurological disorders. Acta Neuropsychiatr 2021; 33:211-216. [PMID: 33818352 DOI: 10.1017/neu.2021.8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
INTRODUCTION The gut-brain axis refers to the bidirectional communication that occurs between the intestinal tract and central nervous system (CNS). Through a series of neural, immune, endocrine, and metabolic signalling pathways, commensal microbiota are able to influence CNS development and neurological function. Alterations in gut microbiota have been implicated in various neuropathologies. The purpose of this review is to evaluate and summarise existing literature assessing the role of specific bacterial taxa on the development of neurodevelopmental, neuropsychiatric, and neurodegenerative pathologies of childhood. We will also discuss microbiota-based therapies dietary interventions and their efficacy. METHODS AND ANALYSIS We will search PubMed, Cochrane Library, and OVID electronic databases for articles published between January 1980 and February 2021. A search method involving two rounds of reviewing the literature using a three-step method in each round will be performed. Two researchers will be selected, and screen titles and abstracts independently. The full text of selected articles will be assessed against inclusion criteria. Data will be extracted and evaluated using the appropriate Critical Appraisal Skills Programme (CASP) checklist. ETHICS AND DISSEMINATION Findings from this study will be shared across relevant paediatric neurology and gastroenterology societies and submitted for peer review. This study did not require institutional ethics approval.
Collapse
|
126
|
The Baseline Structure of the Enteric Nervous System and Its Role in Parkinson's Disease. Life (Basel) 2021; 11:life11080732. [PMID: 34440476 PMCID: PMC8400095 DOI: 10.3390/life11080732] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/14/2021] [Accepted: 07/20/2021] [Indexed: 12/17/2022] Open
Abstract
The gastrointestinal (GI) tract is provided with a peculiar nervous network, known as the enteric nervous system (ENS), which is dedicated to the fine control of digestive functions. This forms a complex network, which includes several types of neurons, as well as glial cells. Despite extensive studies, a comprehensive classification of these neurons is still lacking. The complexity of ENS is magnified by a multiple control of the central nervous system, and bidirectional communication between various central nervous areas and the gut occurs. This lends substance to the complexity of the microbiota–gut–brain axis, which represents the network governing homeostasis through nervous, endocrine, immune, and metabolic pathways. The present manuscript is dedicated to identifying various neuronal cytotypes belonging to ENS in baseline conditions. The second part of the study provides evidence on how these very same neurons are altered during Parkinson’s disease. In fact, although being defined as a movement disorder, Parkinson’s disease features a number of degenerative alterations, which often anticipate motor symptoms. Among these, the GI tract is often involved, and for this reason, it is important to assess its normal and pathological structure. A deeper knowledge of the ENS is expected to improve the understanding of diagnosis and treatment of Parkinson’s disease.
Collapse
|
127
|
Drobny A, Ngo PA, Neurath MF, Zunke F, López-Posadas R. Molecular Communication Between Neuronal Networks and Intestinal Epithelial Cells in Gut Inflammation and Parkinson's Disease. Front Med (Lausanne) 2021; 8:655123. [PMID: 34368179 PMCID: PMC8339315 DOI: 10.3389/fmed.2021.655123] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/14/2021] [Indexed: 12/18/2022] Open
Abstract
Intestinal symptoms, such as nausea, vomiting, and constipation, are common in Parkinson's disease patients. These clinical signs normally appear years before the diagnosis of the neurodegenerative disease, preceding the occurrence of motor manifestations. Moreover, it is postulated that Parkinson's disease might originate in the gut, due to a response against the intestinal microbiota leading to alterations in alpha-synuclein in the intestinal autonomic nervous system. Transmission of this protein to the central nervous system is mediated potentially via the vagus nerve. Thus, deposition of aggregated alpha-synuclein in the gastrointestinal tract has been suggested as a potential prodromal diagnostic marker for Parkinson's disease. Interestingly, hallmarks of chronic intestinal inflammation in inflammatory bowel disease, such as dysbiosis and increased intestinal permeability, are also observed in Parkinson's disease patients. Additionally, alpha-synuclein accumulations were detected in the gut of Crohn's disease patients. Despite a solid association between neurodegenerative diseases and gut inflammation, it is not clear whether intestinal alterations represent cause or consequence of neuroinflammation in the central nervous system. In this review, we summarize the bidirectional communication between the brain and the gut in the context of Parkinson's disease and intestinal dysfunction/inflammation as present in inflammatory bowel disease. Further, we focus on the contribution of intestinal epithelium, the communication between intestinal epithelial cells, microbiota, immune and neuronal cells, as well as mechanisms causing alterations of epithelial integrity.
Collapse
Affiliation(s)
- Alice Drobny
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Phuong A Ngo
- Medicine 1, University Hospital Erlangen, Erlangen, Germany
| | - Markus F Neurath
- Medicine 1, University Hospital Erlangen, Erlangen, Germany.,Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Friederike Zunke
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | | |
Collapse
|
128
|
Interactions between the microbiota and enteric nervous system during gut-brain disorders. Neuropharmacology 2021; 197:108721. [PMID: 34274348 DOI: 10.1016/j.neuropharm.2021.108721] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 02/08/2023]
Abstract
For the last 20 years, researchers have focused their intention on the impact of gut microbiota in healthy and pathological conditions. This year (2021), more than 25,000 articles can be retrieved from PubMed with the keywords "gut microbiota and physiology", showing the constant progress and impact of gut microbes in scientific life. As a result, numerous therapeutic perspectives have been proposed to modulate the gut microbiota composition and/or bioactive factors released from microbes to restore our body functions. Currently, the gut is considered a primary site for the development of pathologies that modify brain functions such as neurodegenerative (Parkinson's, Alzheimer's, etc.) and metabolic (type 2 diabetes, obesity, etc.) disorders. Deciphering the mode of interaction between microbiota and the brain is a real original option to prevent (and maybe treat in the future) the establishment of gut-brain pathologies. The objective of this review is to describe recent scientific elements that explore the communication between gut microbiota and the brain by focusing our interest on the enteric nervous system (ENS) as an intermediate partner. The ENS, which is known as the "second brain", could be under the direct or indirect influence of the gut microbiota and its released factors (short-chain fatty acids, neurotransmitters, gaseous factors, etc.). Thus, in addition to their actions on tissue (adipose tissue, liver, brain, etc.), microbes can have an impact on local ENS activity. This potential modification of ENS function has global repercussions in the whole body via the gut-brain axis and represents a new therapeutic strategy.
Collapse
|
129
|
Zhu X, Li B, Lou P, Dai T, Chen Y, Zhuge A, Yuan Y, Li L. The Relationship Between the Gut Microbiome and Neurodegenerative Diseases. Neurosci Bull 2021; 37:1510-1522. [PMID: 34216356 PMCID: PMC8490573 DOI: 10.1007/s12264-021-00730-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/25/2021] [Indexed: 02/07/2023] Open
Abstract
Many recent studies have shown that the gut microbiome plays important roles in human physiology and pathology. Also, microbiome-based therapies have been used to improve health status and treat diseases. In addition, aging and neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease, have become topics of intense interest in biomedical research. Several researchers have explored the links between these topics to study the potential pathogenic or therapeutic effects of intestinal microbiota in disease. But the exact relationship between neurodegenerative diseases and gut microbiota remains unclear. As technology advances, new techniques for studying the microbiome will be developed and refined, and the relationship between diseases and gut microbiota will be revealed. This article summarizes the known interactions between the gut microbiome and neurodegenerative diseases, highlighting assay techniques for the gut microbiome, and we also discuss the potential therapeutic role of microbiome-based therapies in diseases.
Collapse
Affiliation(s)
- Xueling Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.,Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Bo Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.,Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Pengcheng Lou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.,Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Tingting Dai
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.,Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yang Chen
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Aoxiang Zhuge
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.,Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yin Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.,Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China. .,Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
130
|
Li H, Ni J, Qing H. Gut Microbiota: Critical Controller and Intervention Target in Brain Aging and Cognitive Impairment. Front Aging Neurosci 2021; 13:671142. [PMID: 34248602 PMCID: PMC8267942 DOI: 10.3389/fnagi.2021.671142] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/07/2021] [Indexed: 12/12/2022] Open
Abstract
The current trend for the rapid growth of the global aging population poses substantial challenges for society. The human aging process has been demonstrated to be closely associated with changes in gut microbiota composition, diversity, and functional features. During the first 2 years of life, the gut microbiota undergoes dramatic changes in composition and metabolic functions as it colonizes and develops in the body. Although the gut microbiota is nearly established by the age of three, it continues to mature until adulthood, when it comprises more stable and diverse microbial species. Meanwhile, as the physiological functions of the human body deteriorated with age, which may be a result of immunosenescence and "inflammaging," the guts of elderly people are generally characterized by an enrichment of pro-inflammatory microbes and a reduced abundance of beneficial species. The gut microbiota affects the development of the brain through a bidirectional communication system, called the brain-gut-microbiota (BGM) axis, and dysregulation of this communication is pivotal in aging-related cognitive impairment. Microbiota-targeted dietary interventions and the intake of probiotics/prebiotics can increase the abundance of beneficial species, boost host immunity, and prevent gut-related diseases. This review summarizes the age-related changes in the human gut microbiota based on recent research developments. Understanding these changes will likely facilitate the design of novel therapeutic strategies to achieve healthy aging.
Collapse
Affiliation(s)
| | - Junjun Ni
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
131
|
Sadovnikova IS, Gureev AP, Ignatyeva DA, Gryaznova MV, Chernyshova EV, Krutskikh EP, Novikova AG, Popov VN. Nrf2/ARE Activators Improve Memory in Aged Mice via Maintaining of Mitochondrial Quality Control of Brain and the Modulation of Gut Microbiome. Pharmaceuticals (Basel) 2021; 14:607. [PMID: 34201885 PMCID: PMC8308546 DOI: 10.3390/ph14070607] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 01/01/2023] Open
Abstract
Aging is one of the most serious factors for central nervous dysfunctions, which lead to cognitive impairment. New highly effective drugs are required to slow the development of cognitive dysfunction. This research studied the effect of dimethyl fumarate (DMF), methylene blue (MB), and resveratrol (RSV) on the cognitive functions of 15-month-old mice and their relationship to the maintenance of mitochondrial quality control in the brain and the bacterial composition of the gut microbiome. We have shown that studied compounds enhance mitochondrial biogenesis, mitophagy, and antioxidant defense in the hippocampus of 15-month-old mice via Nrf2/ARE pathway activation, which reduces the degree of oxidative damage to mtDNA. It is manifested in the improvement of short-term and long-term memory. We have also shown that memory improvement correlates with levels of Roseburia, Oscillibacter, ChristensenellaceaeR-7, Negativibacillus, and Faecalibaculum genera of bacteria. At the same time, long-term treatment by MB induced a decrease in gut microbiome diversity, but the other markers of dysbiosis were not observed. Thus, Nrf2/ARE activators have an impact on mitochondrial quality control and are associated with a positive change in the composition of the gut microbiome, which together lead to an improvement in memory in aged mice.
Collapse
Affiliation(s)
- Irina S. Sadovnikova
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia; (I.S.S.); (D.A.I.); (M.V.G.); (E.V.C.); (E.P.K.); (A.G.N.); (V.N.P.)
| | - Artem P. Gureev
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia; (I.S.S.); (D.A.I.); (M.V.G.); (E.V.C.); (E.P.K.); (A.G.N.); (V.N.P.)
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technology, 394036 Voronezh, Russia
| | - Daria A. Ignatyeva
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia; (I.S.S.); (D.A.I.); (M.V.G.); (E.V.C.); (E.P.K.); (A.G.N.); (V.N.P.)
| | - Maria V. Gryaznova
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia; (I.S.S.); (D.A.I.); (M.V.G.); (E.V.C.); (E.P.K.); (A.G.N.); (V.N.P.)
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technology, 394036 Voronezh, Russia
| | - Ekaterina V. Chernyshova
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia; (I.S.S.); (D.A.I.); (M.V.G.); (E.V.C.); (E.P.K.); (A.G.N.); (V.N.P.)
| | - Ekaterina P. Krutskikh
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia; (I.S.S.); (D.A.I.); (M.V.G.); (E.V.C.); (E.P.K.); (A.G.N.); (V.N.P.)
| | - Anastasia G. Novikova
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia; (I.S.S.); (D.A.I.); (M.V.G.); (E.V.C.); (E.P.K.); (A.G.N.); (V.N.P.)
| | - Vasily N. Popov
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia; (I.S.S.); (D.A.I.); (M.V.G.); (E.V.C.); (E.P.K.); (A.G.N.); (V.N.P.)
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technology, 394036 Voronezh, Russia
| |
Collapse
|
132
|
Chen Y, Wan M, Zhong Y, Gao T, Zhang Y, Yan F, Huang D, Wu Y, Weng Z. Partially Hydrolyzed Guar Gum Modulates Gut Microbiota, Regulates the Levels of Neurotransmitters, and Prevents CUMS-Induced Depressive-Like Behavior in Mice. Mol Nutr Food Res 2021; 65:e2100146. [PMID: 34125489 DOI: 10.1002/mnfr.202100146] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/29/2021] [Indexed: 12/20/2022]
Abstract
SCOPE Depression is the leading cause of disability around the world; however, most antidepressants have drug tolerance and serious side effects. In this study, it is explored whether partially hydrolyzed guar gum (PHGG) is a safe food that exhibits protection in a mouse model of depression. METHODS AND RESULTS PHGG is orally administered to mice with depression induced by chronic unpredictable mild stress (CUMS) in two animal experiments (prevention trial and intervention trial) to characterize the potentially protective effect of PHGG. The results in the prevention trial show that PHGG significantly inhibits the loss of body weight, and prevents CUMS-induced depressive-like behavior in mice. The beneficial effects may be associated with PHGG modulating the gut microbiota structure and then increasing the levels of short-chain fatty acids in mice feces and the levels of 5-hydroxytryptamine and dopamine in serum, striatum, and hippocampus. Besides, PHGG in the intervention trial is less effective than that in the prevention trial, but it may have a synergistic effect on improving depression with fluoxetine. CONCLUSIONS This study suggests that moderate daily intake of PHGG can contribute to relieving depressive-like behavior.
Collapse
Affiliation(s)
- Yanqiu Chen
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Mei Wan
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China.,Department of Dermatology, The First Affiliated Hospital of the Army Medical University, Chongqing, 400038, China
| | - Yi Zhong
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Tingfang Gao
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Yuehan Zhang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Fen Yan
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Da Huang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Yuanzi Wu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Zuquan Weng
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| |
Collapse
|
133
|
Moughnyeh MM, Brawner KM, Kennedy BA, Yeramilli VA, Udayakumar N, Graham JA, Martin CA. Stress and the Gut-Brain Axis: Implications for Cancer, Inflammation and Sepsis. J Surg Res 2021; 266:336-344. [PMID: 34062291 DOI: 10.1016/j.jss.2021.02.055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 01/28/2021] [Accepted: 02/27/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND The gut-brain axis has been discussed, directly or indirectly, for centuries, with the ideas of the gut affecting anything from moods to overall physiology being discussed across the centuries. With a recent explosion in research that looks to the microbiota as a mechanistic link between the gut and the brain, one sees that the gut-brain axis has various means of communication, such as through the vagus nerve and the enteric nervous system and can use the metabolites in the gut to communicate to the brain. METHODS The purpose of this review is to view the gut-brain axis through the lens of stress and how stress, from the prenatal period all the way through adulthood can impact the physiology of a human being. Studies have shown multiple mechanisms of measurable change with disruption in the microbiota that lead to behavioral changes. There are also effects of gut inflammation on the brain and the corresponding systemic response observed. CONCLUSION The overall literature is encouraging that the more understanding of the gut-brain axis, the greater ability to wield that understanding for therapeutic benefits.
Collapse
Affiliation(s)
- Mohamad M Moughnyeh
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - Kyle M Brawner
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - Bethany A Kennedy
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - Venkata A Yeramilli
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - Neha Udayakumar
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - Jessica A Graham
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - Colin A Martin
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL.
| |
Collapse
|
134
|
Shi F, He Y, Chen Y, Yin X, Sha X, Wang Y. Comparative Analysis of Multiple Neurodegenerative Diseases Based on Advanced Epigenetic Aging Brain. Front Genet 2021; 12:657636. [PMID: 34093653 PMCID: PMC8173158 DOI: 10.3389/fgene.2021.657636] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 04/16/2021] [Indexed: 11/25/2022] Open
Abstract
Background: Neurodegenerative Diseases (NDs) are age-dependent and include Alzheimer’s disease (AD), Parkinson’s disease (PD), progressive supranuclear palsy (PSP), frontotemporal dementia (FTD), and so on. There have been numerous studies showing that accelerated aging is closely related (even the driver of) ND, thus promoting imbalances in cellular homeostasis. However, the mechanisms of how different ND types are related/triggered by advanced aging are still unclear. Therefore, there is an urgent need to explore the potential markers/mechanisms of different ND types based on aging acceleration at a system level. Methods: AD, PD, PSP, FTD, and aging markers were identified by supervised machine learning methods. The aging acceleration differential networks were constructed based on the aging score. Both the enrichment analysis and sensitivity analysis were carried out to investigate both common and specific mechanisms among different ND types in the context of aging acceleration. Results: The extracellular fluid, cellular metabolisms, and inflammatory response were identified as the common driving factors of cellular homeostasis imbalances during the accelerated aging process. In addition, Ca ion imbalance, abnormal protein depositions, DNA damage, and cytoplasmic DNA in macrophages were also revealed to be special mechanisms that further promote AD, PD, PSP, and FTD, respectively. Conclusion: The accelerated epigenetic aging mechanisms of different ND types were integrated and compared through our computational pipeline.
Collapse
Affiliation(s)
- Feitong Shi
- Department of Biomedical Engineering, School of Fundamental Sciences, China Medical University, Shenyang, China
| | - Yudan He
- Department of Biomedical Engineering, School of Fundamental Sciences, China Medical University, Shenyang, China
| | - Yao Chen
- Department of Biomedical Engineering, School of Fundamental Sciences, China Medical University, Shenyang, China
| | - Xinman Yin
- Department of Biomedical Engineering, School of Fundamental Sciences, China Medical University, Shenyang, China
| | - Xianzheng Sha
- Department of Biomedical Engineering, School of Fundamental Sciences, China Medical University, Shenyang, China
| | - Yin Wang
- Department of Biomedical Engineering, School of Fundamental Sciences, China Medical University, Shenyang, China.,Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
135
|
The gut microbiome is associated with brain structure and function in schizophrenia. Sci Rep 2021; 11:9743. [PMID: 33963227 PMCID: PMC8105323 DOI: 10.1038/s41598-021-89166-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/20/2021] [Indexed: 12/11/2022] Open
Abstract
The effect of the gut microbiome on the central nervous system and its possible role in mental disorders have received increasing attention. However, knowledge about the relationship between the gut microbiome and brain structure and function is still very limited. Here, we used 16S rRNA sequencing with structural magnetic resonance imaging (sMRI) and resting-state functional (rs-fMRI) to investigate differences in fecal microbiota between 38 patients with schizophrenia (SZ) and 38 demographically matched normal controls (NCs) and explored whether such differences were associated with brain structure and function. At the genus level, we found that the relative abundance of Ruminococcus and Roseburia was significantly lower, whereas the abundance of Veillonella was significantly higher in SZ patients than in NCs. Additionally, the analysis of MRI data revealed that several brain regions showed significantly lower gray matter volume (GMV) and regional homogeneity (ReHo) but significantly higher amplitude of low-frequency fluctuation in SZ patients than in NCs. Moreover, the alpha diversity of the gut microbiota showed a strong linear relationship with the values of both GMV and ReHo. In SZ patients, the ReHo indexes in the right STC (r = − 0.35, p = 0.031, FDR corrected p = 0.039), the left cuneus (r = − 0.33, p = 0.044, FDR corrected p = 0.053) and the right MTC (r = − 0.34, p = 0.03, FDR corrected p = 0.052) were negatively correlated with the abundance of the genus Roseburia. Our results suggest that the potential role of the gut microbiome in SZ is related to alterations in brain structure and function. This study provides insights into the underlying neuropathology of SZ.
Collapse
|
136
|
Habes QL, Konstanti P, Kiers HD, Koch RM, Stolk RF, Belzer C, Kox M, Pickkers P. No interplay between gut microbiota composition and the lipopolysaccharide-induced innate immune response in humans in vivo. Clin Transl Immunology 2021; 10:e1278. [PMID: 33968408 PMCID: PMC8082703 DOI: 10.1002/cti2.1278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 03/04/2021] [Accepted: 03/26/2021] [Indexed: 12/21/2022] Open
Abstract
Objective Animal studies have demonstrated the extensive interplay between the gut microbiota and immunity. Moreover, in critically ill patients, who almost invariably suffer from a pronounced immune response, a shift in gut microbiota composition is associated with infectious complications and mortality. We examined the relationship between interindividual differences in gut microbiota composition and variation in the in vivo cytokine response induced by bacterial lipopolysaccharide (LPS). Furthermore, we evaluated whether an LPS challenge alters the composition of the gut microbiota. Methods Healthy male volunteers received an intravenous bolus of 2 ng kg−1 LPS (n = 70) or placebo (n = 8). Serial plasma concentrations of tumor necrosis factor‐α, interleukin (IL)‐6, IL‐8 and IL‐10 were measured, and subjects were divided into high and low cytokine responders. Gut microbiota composition was determined using 16s RNA gene sequencing of faecal samples obtained 1 day before (baseline) and 1 day and 7 days following the LPS challenge. Results Baseline microbiota composition, analysed by principal coordinate analysis and random forest analysis, did not differ between high and low responders for any of the four measured cytokines. Furthermore, baseline microbiota diversity (Shannon and Chao indices) was similar in high and low responders. No changes in microbiota composition or diversity were observed at 1 and 7 days following the LPS challenge. Conclusion Our results indicate that existing variation in gut microbiota composition does not explain the observed variability in the LPS‐induced innate immune response. These findings strongly argue against the interplay between the gut microbiota composition and the innate immune response in humans.
Collapse
Affiliation(s)
- Quirine Lm Habes
- Department of Intensive Care Medicine Radboud University Medical Center Nijmegen The Netherlands.,Radboud Center for Infectious Diseases Radboud University Medical Center Nijmegen The Netherlands.,Department of Anesthesiology, Pain and Palliative Medicine Radboud University Medical Center Nijmegen The Netherlands
| | - Prokopis Konstanti
- Laboratory of Microbiology Wageningen University Wageningen The Netherlands
| | - Harmke D Kiers
- Department of Intensive Care Medicine Radboud University Medical Center Nijmegen The Netherlands.,Radboud Center for Infectious Diseases Radboud University Medical Center Nijmegen The Netherlands
| | - Rebecca M Koch
- Department of Intensive Care Medicine Radboud University Medical Center Nijmegen The Netherlands.,Radboud Center for Infectious Diseases Radboud University Medical Center Nijmegen The Netherlands.,Department of Anesthesiology, Pain and Palliative Medicine Radboud University Medical Center Nijmegen The Netherlands
| | - Roeland F Stolk
- Department of Intensive Care Medicine Radboud University Medical Center Nijmegen The Netherlands.,Radboud Center for Infectious Diseases Radboud University Medical Center Nijmegen The Netherlands
| | - Clara Belzer
- Laboratory of Microbiology Wageningen University Wageningen The Netherlands
| | - Matthijs Kox
- Department of Intensive Care Medicine Radboud University Medical Center Nijmegen The Netherlands.,Radboud Center for Infectious Diseases Radboud University Medical Center Nijmegen The Netherlands
| | - Peter Pickkers
- Department of Intensive Care Medicine Radboud University Medical Center Nijmegen The Netherlands.,Radboud Center for Infectious Diseases Radboud University Medical Center Nijmegen The Netherlands
| |
Collapse
|
137
|
Cerantola S, Caputi V, Contarini G, Mereu M, Bertazzo A, Bosi A, Banfi D, Mantini D, Giaroni C, Giron MC. Dopamine Transporter Genetic Reduction Induces Morpho-Functional Changes in the Enteric Nervous System. Biomedicines 2021; 9:biomedicines9050465. [PMID: 33923250 PMCID: PMC8146213 DOI: 10.3390/biomedicines9050465] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 12/23/2022] Open
Abstract
Antidopaminergic gastrointestinal prokinetics are indeed commonly used to treat gastrointestinal motility disorders, although the precise role of dopaminergic transmission in the gut is still unclear. Since dopamine transporter (DAT) is involved in several brain disorders by modulating extracellular dopamine in the central nervous system, this study evaluated the impact of DAT genetic reduction on the morpho-functional integrity of mouse small intestine enteric nervous system (ENS). In DAT heterozygous (DAT+/-) and wild-type (DAT+/+) mice (14 ± 2 weeks) alterations in small intestinal contractility were evaluated by isometrical assessment of neuromuscular responses to receptor and non-receptor-mediated stimuli. Changes in ENS integrity were studied by real-time PCR and confocal immunofluorescence microscopy in longitudinal muscle-myenteric plexus whole-mount preparations (). DAT genetic reduction resulted in a significant increase in dopamine-mediated effects, primarily via D1 receptor activation, as well as in reduced cholinergic response, sustained by tachykininergic and glutamatergic neurotransmission via NMDA receptors. These functional anomalies were associated to architectural changes in the neurochemical coding and S100β immunoreactivity in small intestine myenteric plexus. Our study provides evidence that genetic-driven DAT defective activity determines anomalies in ENS architecture and neurochemical coding together with ileal dysmotility, highlighting the involvement of dopaminergic system in gut disorders, often associated to neurological conditions.
Collapse
Affiliation(s)
- Silvia Cerantola
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (S.C.); (V.C.); (M.M.); (A.B.)
| | - Valentina Caputi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (S.C.); (V.C.); (M.M.); (A.B.)
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72704, USA
| | - Gabriella Contarini
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95131 Catania, Italy;
| | - Maddalena Mereu
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (S.C.); (V.C.); (M.M.); (A.B.)
| | - Antonella Bertazzo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (S.C.); (V.C.); (M.M.); (A.B.)
| | - Annalisa Bosi
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (A.B.); (D.B.); (C.G.)
| | - Davide Banfi
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (A.B.); (D.B.); (C.G.)
| | - Dante Mantini
- IRCCS San Camillo Hospital, 30126 Venice, Italy; or
- Motor Control and Neuroplasticity Research Group, KU Leuven, 3000 Leuven, Belgium
| | - Cristina Giaroni
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (A.B.); (D.B.); (C.G.)
| | - Maria Cecilia Giron
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (S.C.); (V.C.); (M.M.); (A.B.)
- IRCCS San Camillo Hospital, 30126 Venice, Italy; or
- Correspondence: ; Tel.: +39-049-827-5091; Fax: +39-049-827-5093
| |
Collapse
|
138
|
Hou Y, Li X, Liu C, Zhang M, Zhang X, Ge S, Zhao L. Neuroprotective effects of short-chain fatty acids in MPTP induced mice model of Parkinson's disease. Exp Gerontol 2021; 150:111376. [PMID: 33905875 DOI: 10.1016/j.exger.2021.111376] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 02/09/2023]
Abstract
Gut microbial metabolites, SCFAs, were related with the occurrence and development of Parkinson's disease (PD). But the effects of different short-chain fatty acids (SCFAs) on PD and involving mechanisms are still undefined. In this study we evaluate the effects of three dominant SCFAs (acetate, propionate and butyrate) on motor damage, dopaminergic neuronal degeneration and underlying neuroinflammation related mechanisms in 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced PD mice. High (2.0 g/kg) or low doses (0.2 g/kg) of sodium acetate (NaA), sodium propionate (NaP) or sodium butyrate (NaB) were gavaged into PD mice for 6 weeks. High doses of NaA reduced the turning time of PD mice. NaB significantly reduced the turning and total time in pole test, and increased the average velocity in open field test when compared with PD mice, indicating the most effective alleviation of PD-induced motor disorder. Low and high doses of NaB significantly increased the content of tyrosine hydroxylase (TH) by 12.3% and 20.2%, while reduced α-synuclein activation by 159.4% and 132.7% in the substantia nigra pars compacta (SNpc), compared with PD groups. Butyrate reached into the midbrain SNpc and suppressed microglia over-activation. It inhibited the levels of pro-inflammatory factors (IL-6, IL-1β and TNF-α) (P < 0.01) and iNOS. Besides, butyrate inhibited the activation of NF-κB and MAPK signaling pathways in the SNpc region. Consequently, sodium butyrate could inhibit neuroinflammation and alleviate neurological damage of PD.
Collapse
Affiliation(s)
- Yichao Hou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; Key Laboratory of Precision Nutrition and Food Quality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xingqi Li
- Key Laboratory of Precision Nutrition and Food Quality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Chang Liu
- Key Laboratory of Precision Nutrition and Food Quality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Ming Zhang
- School of Food and Health, Beijing Technology and Business University, Beijing, 100048, China
| | - Xiaoying Zhang
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot 010080, China
| | - Shaoyang Ge
- Hebei Engineering Research Center of Animal Product, Sanhe 065200, China
| | - Liang Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; Key Laboratory of Precision Nutrition and Food Quality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
139
|
Hung YF, Hsueh YP. TLR7 and IL-6 differentially regulate the effects of rotarod exercise on the transcriptomic profile and neurogenesis to influence anxiety and memory. iScience 2021; 24:102384. [PMID: 33981972 PMCID: PMC8082089 DOI: 10.1016/j.isci.2021.102384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 02/20/2021] [Accepted: 03/30/2021] [Indexed: 11/06/2022] Open
Abstract
Voluntary exercise is well known to benefit brain performance. In contrast, forced exercise induces inflammation-related stress responses and may cause psychiatric disorders. Here, we unexpectedly found that rotarod testing, a frequently applied assay for evaluating rodent motor coordination, induces anxiety and alters spatial learning/memory performance of mice. Rotarod testing upregulated genes involved in the unfolded protein response and stress responses and downregulated genes associated with neurogenesis and neuronal differentiation. It impacts two downstream pathways. The first is the IL-6-dependent pathway, which mediates rotarod-induced anxiety. The second is the Toll-like receptor 7 (TLR7)-dependent pathway, which is involved in the effect of rotarod exercise on gene expression and its impact on contextual learning and memory of mice. Thus, although rotarod exercise does not induce systemic inflammation, it influences innate immunity-related responses in the brain, controls gene expression and, consequently, regulates anxiety and contextual learning and memory. Rotarod training at 5 or 10 weeks of age induces anxious behavior in an open field Rotarod training upregulates IL-6 expression in the brain and results in anxiety Rotarod training alters performances of test mice in spatial learning and memory TLR7 controls the rotarod-impacted transcriptomic profiles and contextual memory
Collapse
Affiliation(s)
- Yun-Fen Hung
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan, ROC
| | - Yi-Ping Hsueh
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan, ROC
| |
Collapse
|
140
|
Huang Y, Liao J, Liu X, Zhong Y, Cai X, Long L. Review: The Role of Intestinal Dysbiosis in Parkinson's Disease. Front Cell Infect Microbiol 2021; 11:615075. [PMID: 33968794 PMCID: PMC8100321 DOI: 10.3389/fcimb.2021.615075] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 04/06/2021] [Indexed: 12/18/2022] Open
Abstract
Several studies have highlighted the roles played by the gut microbiome in central nervous system diseases. Clinical symptoms and neuropathology have suggested that Parkinson’s disease may originate in the gut, which is home to approximately 100 trillion microbes. Alterations in the gastrointestinal microbiota populations may promote the development and progression of Parkinson’s disease. Here, we reviewed existing studies that have explored the role of intestinal dysbiosis in Parkinson’s disease, focusing on the roles of microbiota, their metabolites, and components in inflammation, barrier failure, microglial activation, and α-synuclein pathology. We conclude that there are intestinal dysbiosis in Parkinson’s disease. Intestinal dysbiosis is likely involved in the pathogenesis of Parkinson’s disease through mechanisms that include barrier destruction, inflammation and oxidative stress, decreased dopamine production, and molecular mimicry. Additional studies remain necessary to explore and verify the mechanisms through which dysbiosis may cause or promote Parkinson’s disease. Preclinical studies have shown that gastrointestinal microbial therapy may represent an effective and novel treatment for Parkinson’s disease; however, more studies, especially clinical studies, are necessary to explore the curative effects of microbial therapy in Parkinson’s disease.
Collapse
Affiliation(s)
- Yiying Huang
- Department of Neurology, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jinchi Liao
- Department of Neurology, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xu Liu
- Department of Neurology, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yunxiao Zhong
- Department of Neurology, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiaodong Cai
- Department of Neurology, Sixth Affiliated Hospital, Sun Yat-Sen University (Guangdong Gastrointestinal and Anal Hospital), Guangzhou, China
| | - Ling Long
- Department of Neurology, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
141
|
Molina B, Mastroianni J, Suarez E, Soni B, Forsberg E, Finley K. Treatment with Bacterial Biologics Promotes Healthy Aging and Traumatic Brain Injury Responses in Adult Drosophila, Modeling the Gut-Brain Axis and Inflammation Responses. Cells 2021; 10:900. [PMID: 33919883 PMCID: PMC8070821 DOI: 10.3390/cells10040900] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/23/2021] [Accepted: 04/08/2021] [Indexed: 12/29/2022] Open
Abstract
Drosophila are widely used to study neural development, immunity, and inflammatory pathways and processes associated with the gut-brain axis. Here, we examine the response of adult Drosophila given an inactive bacteriologic (IAB; proprietary lysate preparation of Lactobacillus bulgaricus, ReseT®) and a probiotic (Lactobacillus rhamnosus, LGG). In vitro, the IAB activates a subset of conserved Toll-like receptor (TLR) and nucleotide-binding, oligomerization domain-containing protein (NOD) receptors in human cells, and oral administration slowed the age-related decline of adult Drosophila locomotor behaviors. On average, IAB-treated flies lived significantly longer (+23%) and had lower neural aggregate profiles. Different IAB dosages also improved locomotor function and longevity profiles after traumatic brain injury (TBI) exposure. Mechanistically, short-term IAB and LGG treatment altered baseline nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κβ) signaling profiles in neural and abdominal tissues. Overall, at select dosages, IAB and LGG exposure has a positive impact on Drosophila longevity, neural aging, and mild traumatic brain injury (TBI)-related responses, with IAB showing greater benefit. This includes severe TBI (sTBI) responses, where IAB treatment was protective and LGG increased acute mortality profiles. This work shows that Drosophila are an effective model for testing bacterial-based biologics, that IAB and probiotic treatments promote neuronal health and influence inflammatory pathways in neural and immune tissues. Therefore, targeted IAB treatments are a novel strategy to promote the appropriate function of the gut-brain axis.
Collapse
Affiliation(s)
- Brandon Molina
- Department of Biology, Shiley BioScience Center, San Diego State University, San Diego, CA 92182, USA; (B.M.); (J.M.); (E.S.)
| | - Jessica Mastroianni
- Department of Biology, Shiley BioScience Center, San Diego State University, San Diego, CA 92182, USA; (B.M.); (J.M.); (E.S.)
| | - Ema Suarez
- Department of Biology, Shiley BioScience Center, San Diego State University, San Diego, CA 92182, USA; (B.M.); (J.M.); (E.S.)
| | - Brijinder Soni
- Department Chemistry and Biohemistry, San Diego State University, San Diego, CA 92182, USA; (B.S.); (E.F.)
| | - Erica Forsberg
- Department Chemistry and Biohemistry, San Diego State University, San Diego, CA 92182, USA; (B.S.); (E.F.)
| | - Kim Finley
- Department of Biology, Shiley BioScience Center, San Diego State University, San Diego, CA 92182, USA; (B.M.); (J.M.); (E.S.)
| |
Collapse
|
142
|
Barber TM, Valsamakis G, Mastorakos G, Hanson P, Kyrou I, Randeva HS, Weickert MO. Dietary Influences on the Microbiota-Gut-Brain Axis. Int J Mol Sci 2021; 22:ijms22073502. [PMID: 33800707 PMCID: PMC8038019 DOI: 10.3390/ijms22073502] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 02/07/2023] Open
Abstract
Over unimaginable expanses of evolutionary time, our gut microbiota have co-evolved with us, creating a symbiotic relationship in which each is utterly dependent upon the other. Far from confined to the recesses of the alimentary tract, our gut microbiota engage in complex and bi-directional communication with their host, which have far-reaching implications for overall health, wellbeing and normal physiological functioning. Amongst such communication streams, the microbiota–gut–brain axis predominates. Numerous complex mechanisms involve direct effects of the microbiota, or indirect effects through the release and absorption of the metabolic by-products of the gut microbiota. Proposed mechanisms implicate mitochondrial function, the hypothalamus–pituitary–adrenal axis, and autonomic, neuro-humeral, entero-endocrine and immunomodulatory pathways. Furthermore, dietary composition influences the relative abundance of gut microbiota species. Recent human-based data reveal that dietary effects on the gut microbiota can occur rapidly, and that our gut microbiota reflect our diet at any given time, although much inter-individual variation pertains. Although most studies on the effects of dietary macronutrients on the gut microbiota report on associations with relative changes in the abundance of particular species of bacteria, in broad terms, our modern-day animal-based Westernized diets are relatively high in fats and proteins and impoverished in fibres. This creates a perfect storm within the gut in which dysbiosis promotes localized inflammation, enhanced gut wall permeability, increased production of lipopolysaccharides, chronic endotoxemia and a resultant low-grade systemic inflammatory milieu, a harbinger of metabolic dysfunction and many modern-day chronic illnesses. Research should further focus on the colony effects of the gut microbiota on health and wellbeing, and dysbiotic effects on pathogenic pathways. Finally, we should revise our view of the gut microbiota from that of a seething mass of microbes to one of organ-status, on which our health and wellbeing utterly depends. Future guidelines on lifestyle strategies for wellbeing should integrate advice on the optimal establishment and maintenance of a healthy gut microbiota through dietary and other means. Although we are what we eat, perhaps more importantly, we are what our gut microbiota thrive on and they thrive on what we eat.
Collapse
Affiliation(s)
- Thomas M. Barber
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire NHS Trust, Clifford Bridge Road, Coventry CV2 2DX, UK; (T.M.B.); (G.V.); (P.H.); (I.K.); (H.S.R.)
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV2 2DX, UK
| | - Georgios Valsamakis
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire NHS Trust, Clifford Bridge Road, Coventry CV2 2DX, UK; (T.M.B.); (G.V.); (P.H.); (I.K.); (H.S.R.)
- Endocrine Unit, 2nd Department of Obstetrics and Gynaecology and Pathology Department, Aretaieion University Hospital, Athens Medical School, 11528 Athens, Greece;
| | - George Mastorakos
- Endocrine Unit, 2nd Department of Obstetrics and Gynaecology and Pathology Department, Aretaieion University Hospital, Athens Medical School, 11528 Athens, Greece;
| | - Petra Hanson
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire NHS Trust, Clifford Bridge Road, Coventry CV2 2DX, UK; (T.M.B.); (G.V.); (P.H.); (I.K.); (H.S.R.)
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV2 2DX, UK
| | - Ioannis Kyrou
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire NHS Trust, Clifford Bridge Road, Coventry CV2 2DX, UK; (T.M.B.); (G.V.); (P.H.); (I.K.); (H.S.R.)
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV2 2DX, UK
- Aston Medical Research Institute, Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK
| | - Harpal S. Randeva
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire NHS Trust, Clifford Bridge Road, Coventry CV2 2DX, UK; (T.M.B.); (G.V.); (P.H.); (I.K.); (H.S.R.)
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV2 2DX, UK
- Aston Medical Research Institute, Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK
| | - Martin O. Weickert
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire NHS Trust, Clifford Bridge Road, Coventry CV2 2DX, UK; (T.M.B.); (G.V.); (P.H.); (I.K.); (H.S.R.)
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV2 2DX, UK
- Centre for Sport, Exercise and Life Sciences, Faculty of Health & Life Sciences, Coventry University, Coventry CV1 5FB, UK
- Correspondence:
| |
Collapse
|
143
|
Formation of Autoimmune Lesions Is Independent of Antibiotic Treatment in NOD Mice. Int J Mol Sci 2021; 22:ijms22063239. [PMID: 33810172 PMCID: PMC8005129 DOI: 10.3390/ijms22063239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/19/2021] [Accepted: 03/19/2021] [Indexed: 12/12/2022] Open
Abstract
The relationship between autoimmunity and changes in intestinal microbiota is not yet fully understood. In this study, the role of intestinal microbiota in the onset and progression of autoimmune lesions in non-obese diabetic (NOD) mice was evaluated by administering antibiotics to alter their intestinal microenvironment. Flow cytometric analysis of spleen cells showed that antibiotic administration did not change the proportion or number of T and B cells in NOD mice, and pathological analysis demonstrated that autoimmune lesions in the salivary glands and in the pancreas were also not affected by antibiotic administration. These results suggest that the onset and progression of autoimmunity may be independent of enteral microbiota changes. Our findings may be useful for determining the appropriate use of antibiotics in patients with autoimmune diseases who are prescribed drugs to maintain systemic immune function.
Collapse
|
144
|
Immunoregulatory Effects of Tolerogenic Probiotics in Multiple Sclerosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1286:87-105. [PMID: 33725347 DOI: 10.1007/978-3-030-55035-6_6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gut microbiota has essential roles in the prevention and progression of multiple sclerosis (MS). The association between the gut microbiota and the central nervous system (CNS) or immune system response of MS patients has been documented in many studies. The composition of the gut microbiota could lead to sensitization or resistance against promotion and development of MS disease. Probiotics are the major part of gut microflorapopulation and could be substituted with tolerogenic probiotics that protect the CNS against autoimmune responses. Tolerogenic probiotics with anti-inflammatory and immuno-modulatory properties have effects on intestinal flora and can reestablish regulatory mucosal and systemic immune responses. Probiotics are able to prevent and restore excessive activation of inflammatory responses, especially autoreactive T cells and inflammatory cytokines. Tolerogenic probiotics, through induction of regulatory T cells and increase of anti-inflammatory cytokines, play a crucial role in controlling inflammation and maintaining tolerance and hemostasis. Therefore, probiotics can be considered as a preventive or therapeutic tool in MS. In the present review, we focus on the immunoregulatory effects of tolerogenic probiotics on the severity of disease, as well as Th1, Th2, and Treg populations in different experimental and human studies of MS.
Collapse
|
145
|
Chen ZJ, Liang CY, Yang LQ, Ren SM, Xia YM, Cui L, Li XF, Gao BL. Association of Parkinson's Disease With Microbes and Microbiological Therapy. Front Cell Infect Microbiol 2021; 11:619354. [PMID: 33763383 PMCID: PMC7982661 DOI: 10.3389/fcimb.2021.619354] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/28/2021] [Indexed: 12/11/2022] Open
Abstract
Parkinson's disease (PD) is the most common movement disorder in the world, affecting 1-2 per 1,000 of the population. The main pathological changes of PD are damage of dopaminergic neurons in substantia nigra of the central nervous system and formation of Lewy bodies. These pathological changes also occur in the intestinal tract and are strongly associated with changes in intestinal flora. By reviewing the research progress in PD and its association with intestinal flora in recent years, this review expounded the mechanism of action between intestinal flora and PD as well as the transmission mode of α - synuclein in neurons. In clinical studies, β diversity of intestinal flora in PD patients was found to change significantly, with Lactobacillusaceae and Verrucomicrobiaceae being significantly increased and Lachnospiraceae and Prevotellaceae being significantly decreased. In addition, a longer PD course was associated with fewer bacteria and probiotics producing short chain fatty acids, but more pathogenic bacteria. Moreover, the motor symptoms of PD patients may be related to Enterobacteriaceae and bacteria. Most importantly, catechol-O-methyltransferase inhibitors and anticholinergic drugs could change the intestinal flora of PD patients and increase the harmful flora, whereas other anti-PD drugs such as levodopa, dopamine agonist, monoamine oxidase inhibitors, and amantadine did not have these effects. Probiotics, prebiotics, and synbiotics treatment had some potential values in improving the constipation of PD patients, promoting the growth of probiotics, and improving the level of intestinal inflammation. At present, there were only a few case studies and small sample studies which have found certain clinical efficacy of fecal microbiome transplants. Further studies are necessary to elaborate the relationship of PD with microbes.
Collapse
Affiliation(s)
- Zhao-Ji Chen
- Department of Neurology, Affiliated Hospital of Hebei University, Baoding, China
| | - Cheng-Yu Liang
- Department of Neurology, Affiliated Hospital of Hebei University, Baoding, China
| | - Li-Qing Yang
- Department of Neurology, Affiliated Hospital of Hebei University, Baoding, China
| | - Si-Min Ren
- Department of Neurology, Affiliated Hospital of Hebei University, Baoding, China
| | - Yan-Min Xia
- Department of Neurology, Affiliated Hospital of Hebei University, Baoding, China
| | - Lei Cui
- Department of Neurology, Affiliated Hospital of Hebei University, Baoding, China
| | - Xiao-Fang Li
- Department of Neurology, Affiliated Hospital of Hebei University, Baoding, China
| | - Bu-Lang Gao
- Department of Neurology, Affiliated Hospital of Hebei University, Baoding, China
| |
Collapse
|
146
|
The Gut-Brain Axis: Two Ways Signaling in Parkinson's Disease. Cell Mol Neurobiol 2021; 42:315-332. [PMID: 33649989 DOI: 10.1007/s10571-021-01066-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/15/2021] [Indexed: 02/07/2023]
Abstract
Parkinson's disease (PD) is a chronic, progressive and second most prevalent neurological disorder affecting the motor system. Cardinal motor impairment and α-synucleinopathy are the characteristic features of PD. Recently, it has been identified that the gut-brain axis is substantially regulated by the gut microbiome (GM) through an immunological, neuroendocrine, and neural mechanism. However, disturbance in the gut-microbiome-brain axis in PD might proceed to gastrointestinal manifestations intermittently leading to the motor system and the PD pathogenesis itself. The gut microbial toxins may induce the production of α-synuclein (α-syn) aggregates in the enteric nervous system (ENS), which may proliferate and propagate in a prion-like-manner through the vagus nerve to the central nervous system (CNS); supporting the hypothesis that, GM might play a pivotal role in PD pathogenesis. Overstimulated innate immune system due to intestinal bacterial overgrowth or gut dysbiosis and the enhanced intestinal permeability may persuade systemic inflammation, while the activation of enteric glial cells and enteric neurons may contribute to α-synucleinopathy. Gut microbiota can bear a significant impact on neurological outcomes such as learning, memory and cognition. In this review paper, we summarize how the alterations in gut microbiota and ENS inflammation are associated with PD pathogenesis. The evidence supporting the causative role played by gut-associated dysbiosis and microbial byproducts, in the onset of PD is also discussed. We have highlighted the landmark discoveries in the field of PD particularly focusing on the gut-brain axis. A better comprehension of the interaction between the gut-brain axis, gut microbiota, and PD can usher in novel therapeutic and diagnostic approaches.
Collapse
|
147
|
Tran SMS, Mohajeri MH. The Role of Gut Bacterial Metabolites in Brain Development, Aging and Disease. Nutrients 2021; 13:732. [PMID: 33669008 PMCID: PMC7996516 DOI: 10.3390/nu13030732] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/15/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023] Open
Abstract
In the last decade, emerging evidence has reported correlations between the gut microbiome and human health and disease, including those affecting the brain. We performed a systematic assessment of the available literature focusing on gut bacterial metabolites and their associations with diseases of the central nervous system (CNS). The bacterial metabolites short-chain fatty acids (SCFAs) as well as non-SCFAs like amino acid metabolites (AAMs) and bacterial amyloids are described in particular. We found significantly altered SCFA levels in patients with autism spectrum disorder (ASD), affective disorders, multiple sclerosis (MS) and Parkinson's disease (PD). Non-SCFAs yielded less significantly distinct changes in faecal levels of patients and healthy controls, with the majority of findings were derived from urinary and blood samples. Preclinical studies have implicated different bacterial metabolites with potentially beneficial as well as detrimental mechanisms in brain diseases. Examples include immunomodulation and changes in catecholamine production by histone deacetylase inhibition, anti-inflammatory effects through activity on the aryl hydrocarbon receptor and involvement in protein misfolding. Overall, our findings highlight the existence of altered bacterial metabolites in patients across various brain diseases, as well as potential neuroactive effects by which gut-derived SCFAs, p-cresol, indole derivatives and bacterial amyloids could impact disease development and progression. The findings summarized in this review could lead to further insights into the gut-brain-axis and thus into potential diagnostic, therapeutic or preventive strategies in brain diseases.
Collapse
Affiliation(s)
| | - M. Hasan Mohajeri
- Department of Medicine, Institute of Anatomy, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland;
| |
Collapse
|
148
|
Salami M. Interplay of Good Bacteria and Central Nervous System: Cognitive Aspects and Mechanistic Considerations. Front Neurosci 2021; 15:613120. [PMID: 33642976 PMCID: PMC7904897 DOI: 10.3389/fnins.2021.613120] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/06/2021] [Indexed: 12/12/2022] Open
Abstract
The human gastrointestinal tract hosts trillions of microorganisms that is called “gut microbiota.” The gut microbiota is involved in a wide variety of physiological features and functions of the body. Thus, it is not surprising that any damage to the gut microbiota is associated with disorders in different body systems. Probiotics, defined as living microorganisms with health benefits for the host, can support or restore the composition of the gut microbiota. Numerous investigations have proved a relationship between the gut microbiota with normal brain function as well as many brain diseases, in which cognitive dysfunction is a common clinical problem. On the other hand, increasing evidence suggests that the existence of a healthy gut microbiota is crucial for normal cognitive processing. In this regard, interplay of the gut microbiota and cognition has been under focus of recent researches. In the present paper, I review findings of the studies considering beneficial effects of either gut microbiota or probiotic bacteria on the brain cognitive function in the healthy and disease statuses.
Collapse
Affiliation(s)
- Mahmoud Salami
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.,Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
149
|
Abstract
Parkinson's disease is predominantly classified as a movement disorder. Beyond the textbook definition of rigidity, tremors, and bradykinesia, Parkinson's disease encompasses an entire entity of non-motor symptom complexes that can precede the motor features by many years. Despite their significant clinical importance, the awareness of non-motor symptoms is quite negligible. Sleep disorders, gastrointestinal dysfunction, olfactory disturbances, anxiety, and depressive episodes are some of the most common non-motor presentations. The wide-spread occurrence of olfactory symptoms and the low cost of the assessment, is favoring olfactory dysfunction as a potential biomarker in Parkinson's. Sleep disorders may manifest before the motor and autonomic symptoms and might be linked to concomitant sleeping disorders like insomnia, REM sleep disorders, restless leg syndrome, narcolepsy, or obstructive sleep apnea. Non-motor symptoms can deteriorate the quality of life in Parkinson's patients. Early detection of non-motor symptoms can help in the diagnosis of Parkinson's disease and can fairly improve the survival and prognosis of these patients.
Collapse
Affiliation(s)
- Maithrayie Kumaresan
- Neurology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Safeera Khan
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
150
|
The Association between Early-Life Gut Microbiota and Long-Term Health and Diseases. J Clin Med 2021; 10:jcm10030459. [PMID: 33504109 PMCID: PMC7865818 DOI: 10.3390/jcm10030459] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/12/2021] [Accepted: 01/21/2021] [Indexed: 12/14/2022] Open
Abstract
Early life gut microbiota have been increasingly recognized as major contributors to short and/or long-term human health and diseases. Numerous studies have demonstrated that human gut microbial colonization begins at birth, but continues to develop a succession of taxonomic abundances for two to three years until the gut microbiota reaches adult-like diversity and proportions. Several factors, including gestational age (GA), delivery mode, birth weight, feeding types, antibiotic exposure, maternal microbiome, and diet, influence the diversity, abundance, and function of early life gut microbiota. Gut microbial life is essential for assisting with the digestion of food substances to release nutrients, exerting control over pathogens, stimulating or modulating the immune system, and influencing many systems such as the liver, brain, and endocrine system. Microbial metabolites play multiple roles in these interactions. Furthermore, studies provide evidence supporting that imbalances of the gut microbiota in early life, referred to as dysbiosis, are associated with specific childhood or adult disease outcomes, such as asthma, atopic dermatitis, diabetes, allergic diseases, obesity, cardiovascular diseases (CVD), and neurological disorders. These findings support that the human gut microbiota may play a fundamental role in the risk of acquiring diseases that may be programmed during early life. In fact, it is critical to explore the role of the human gut microbiota in early life.
Collapse
|