101
|
Onaolapo AY, Obelawo AY, Onaolapo OJ. Brain Ageing, Cognition and Diet: A Review of the Emerging Roles of Food-Based Nootropics in Mitigating Age-related Memory Decline. Curr Aging Sci 2019; 12:2-14. [PMID: 30864515 PMCID: PMC6971896 DOI: 10.2174/1874609812666190311160754] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 02/16/2019] [Accepted: 02/27/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Age-related cognitive decline has been suggested to result from an increase in the brain neuron loss, which is attributable to continued derangement of the brain's oxidant/ antioxidant balance. Increased oxidative stress and a concomitant decrease in the brain's antioxidant defense system have been associated with functional senescence and organismal ageing. However, nature has configured certain foods to be rich sources of nootropic agents, with research showing that increased consumption of such foods or food ingredients may be protective against ageing-related memory decline. This knowledge is becoming increasingly valuable in an era when the boundary that separates food from medicine is becoming blurred. In this review, we examine extant literature dealing with the impact of ageing on brain structure and function, with an emphasis on the roles of oxidative stress. Secondly, we review the benefits of food-based antioxidants with nootropic effects and/or food-based nootropic agents in mitigating memory decline; with a view to improving our understanding of likely mechanisms. We also highlight some of the limitations to the use of food-based nootropics and suggest ways in which they can be better employed in the clinical management of age-related cognitive decline. CONCLUSION While it is known that the human brain endures diverse insults in the process of ageing, food-based nootropics are likely to go a long way in mitigating the impacts of these insults. Further research is needed before we reach a point where food-based nootropics are routinely prescribed.
Collapse
Affiliation(s)
| | | | - Olakunle James Onaolapo
- Address correspondence to this author at the Behavioural Neuroscience/Neuropharmacology Unit, Department of Pharmacology, Ladoke
Akintola University of Technology, Osogbo, Osun State, Nigeria;
Tel: 2347031986101; E-mail:
| |
Collapse
|
102
|
Abidin İ, Aydin-Abidin S, Bodur A, İnce İ, Alver A. Brain-derived neurotropic factor (BDNF) heterozygous mice are more susceptible to synaptic protein loss in cerebral cortex during high fat diet. Arch Physiol Biochem 2018; 124:442-447. [PMID: 29277119 DOI: 10.1080/13813455.2017.1420666] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In this study we aimed to investigate whether reduced BDNF levels aggravate the susceptibility of the brain to hazardous effects of high fat diet. For this purpose, we fed BDNF heterozygous mice and wild type littermates with normal and high fat diet for 16 weeks. Concentrations of two synaptic proteins (SNAP-25 and PSD-95) and oxidative stress parameters (MDA, SOD, CAT) were evaluated in the cortex after diet period. Interestingly, body weights of BDNF heterozygous groups fed with control diet were higher than their littermates and heterozygous mice fed with HFD were the heaviest in all experimental groups. MDA levels were significantly elevated in both HFD groups (wild type and BDNF(+/-)). Synaptic markers PSD-95 and SNAP-25 markedly decreased in BDNF(+/-) group fed with HFD compared to other groups. In conclusion, we suggest that endogenous BDNF has an important and possibly protective role in diet-induced changes in the cortex.
Collapse
Affiliation(s)
- İsmail Abidin
- a Department of Biophysics, Faculty of Medicine , Karadeniz Technical University , Trabzon , Turkey
| | - Selcen Aydin-Abidin
- a Department of Biophysics, Faculty of Medicine , Karadeniz Technical University , Trabzon , Turkey
| | - Akin Bodur
- b Department of Medical Biochemistry, Faculty of Medicine , Karadeniz Technical University , Trabzon , Turkey
| | - İmran İnce
- b Department of Medical Biochemistry, Faculty of Medicine , Karadeniz Technical University , Trabzon , Turkey
| | - Ahmet Alver
- b Department of Medical Biochemistry, Faculty of Medicine , Karadeniz Technical University , Trabzon , Turkey
| |
Collapse
|
103
|
Del Olmo N, Ruiz-Gayo M. Influence of High-Fat Diets Consumed During the Juvenile Period on Hippocampal Morphology and Function. Front Cell Neurosci 2018; 12:439. [PMID: 30515083 PMCID: PMC6255817 DOI: 10.3389/fncel.2018.00439] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 11/05/2018] [Indexed: 12/18/2022] Open
Abstract
The negative impact of obesity on neurocognitive functioning is an issue of increasing clinical interest. Over the last decade, a number of studies have analyzed the influence of high-fat diets (HFDs) on cognitive performance, particularly in adolescent individuals. Different approaches, including behavioral, neurochemical, electrophysiological and morphological studies, have been developed to address the effect of HFDs on neural processes interfering with learning and memory skills in rodents. Many of the studies have focused on learning and memory related to the hippocampus and the mechanisms underlying these processes. The goal of the current review article is to highlight the relationship between hippocampal learning/memory deficits and nutritional/endocrine inputs derived from HFDs consumption, with a special emphasis on research showing the effect of HFDs intake during the juvenile period. We have also reviewed recent research regarding the effect of HFDs on hippocampal neurotransmission. An overview of research suggesting the involvement of fatty acid (FA) receptor-mediated signaling pathways in memory deficits triggered by HFDs is also provided. Finally, the role of leptin and HFD-evoked hyperleptinemia is discussed.
Collapse
Affiliation(s)
- Nuria Del Olmo
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU-San Pablo, Madrid, Spain
| | - Mariano Ruiz-Gayo
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU-San Pablo, Madrid, Spain
| |
Collapse
|
104
|
Husain I, Akhtar M, Madaan T, Abdin MZ, Islamuddin M, Najmi AK. Rosuvastatin alleviates high-salt and cholesterol diet-induced cognitive impairment in rats via Nrf2-ARE pathway. Redox Rep 2018; 23:168-179. [PMID: 29961403 PMCID: PMC6748700 DOI: 10.1080/13510002.2018.1492774] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVE The objectives of our study were to investigate the possible effect of rosuvastatin in ameliorating high salt and cholesterol diet (HSCD)-induced cognitive impairment and to also investigate its possible action via the Nrf2-ARE pathway. METHODS In silico studies were performed to check the theoretical binding of rosuvastatin to the Nrf2 target. HSCD was used to induce cognitive impairment in rats and neurobehavioral studies were performed to evaluate the efficacy of rosuvastatin in enhancing cognition. Biochemical analyses were used to estimate changes in oxidative markers. Western blot and immunohistochemical analyses were done to check Nrf2 translocation. TUNEL and caspase 3 tests were performed to evaluate reversal of apoptosis by rosuvastatin. RESULTS Rosuvastatin showed good theoretical affinity to Nrf2, significantly reversed changes in oxidative biomarkers which were induced by HSCD, and also improved the performance of rats in the neurobehavioral test. A rise in nuclear translocation of Nrf2 was revealed through immunohistochemical analysis and western blot. TUNEL staining and caspase 3 activity showed attenuation of apoptosis. DISCUSSION We have investigated a novel mechanism of action for rosuvastatin (via the Nrf2-ARE pathway) and demonstrated that it has the potential to be used in the treatment of cognitive impairment.
Collapse
Affiliation(s)
- Ibraheem Husain
- a Department of Pharmacology, School of Pharmaceutical Education and Research , Jamia Hamdard (Hamdard University) , New Delhi , India
| | - Mohd Akhtar
- a Department of Pharmacology, School of Pharmaceutical Education and Research , Jamia Hamdard (Hamdard University) , New Delhi , India
| | - Tushar Madaan
- a Department of Pharmacology, School of Pharmaceutical Education and Research , Jamia Hamdard (Hamdard University) , New Delhi , India
| | - Malik Zainul Abdin
- b Department of Biotechnology, School of Chemical and Life Sciences , Jamia Hamdard (Hamdard University) , New Delhi , India
| | - Mohammad Islamuddin
- b Department of Biotechnology, School of Chemical and Life Sciences , Jamia Hamdard (Hamdard University) , New Delhi , India
| | - Abul Kalam Najmi
- a Department of Pharmacology, School of Pharmaceutical Education and Research , Jamia Hamdard (Hamdard University) , New Delhi , India
| |
Collapse
|
105
|
Stone J, Mitrofanis J, Johnstone DM, Falsini B, Bisti S, Adam P, Nuevo AB, George-Weinstein M, Mason R, Eells J. Acquired Resilience: An Evolved System of Tissue Protection in Mammals. Dose Response 2018; 16:1559325818803428. [PMID: 30627064 PMCID: PMC6311597 DOI: 10.1177/1559325818803428] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/22/2018] [Accepted: 08/29/2018] [Indexed: 12/11/2022] Open
Abstract
This review brings together observations on the stress-induced regulation of resilience mechanisms in body tissues. It is argued that the stresses that induce tissue resilience in mammals arise from everyday sources: sunlight, food, lack of food, hypoxia and physical stresses. At low levels, these stresses induce an organised protective response in probably all tissues; and, at some higher level, cause tissue destruction. This pattern of response to stress is well known to toxicologists, who have termed it hormesis. The phenotypes of resilience are diverse and reports of stress-induced resilience are to be found in journals of neuroscience, sports medicine, cancer, healthy ageing, dementia, parkinsonism, ophthalmology and more. This diversity makes the proposing of a general concept of induced resilience a significant task, which this review attempts. We suggest that a system of stress-induced tissue resilience has evolved to enhance the survival of animals. By analogy with acquired immunity, we term this system 'acquired resilience'. Evidence is reviewed that acquired resilience, like acquired immunity, fades with age. This fading is, we suggest, a major component of ageing. Understanding of acquired resilience may, we argue, open pathways for the maintenance of good health in the later decades of human life.
Collapse
Affiliation(s)
- Jonathan Stone
- Discipline of Physiology, Bosch Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - John Mitrofanis
- Discipline of Anatomy and Histology, Bosch Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Daniel M. Johnstone
- Discipline of Physiology, Bosch Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Benedetto Falsini
- Facolta’ di Medicina e Chirurgia, Fondazione Policlinico A. Gemelli, Universita’ Cattolica del S. Cuore, Rome, Italy
| | - Silvia Bisti
- Department of Biotechnical and Applied Clinical Sciences, Università degli Studi dell’Aquila, IIT Istituto Italiano di Tecnologia Genova and INBB Istituto Nazionale Biosistemi e Biostrutture, Rome, Italy
| | - Paul Adam
- School of Biological, Earth and Environmental Science, University of New South Wales, Sydney, New South Wales, Australia
| | - Arturo Bravo Nuevo
- Department of Biomedical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, USA
| | - Mindy George-Weinstein
- Department of Biomedical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, USA
| | - Rebecca Mason
- Discipline of Physiology, Bosch Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Janis Eells
- College of Health Sciences, University of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
106
|
Sona C, Kumar A, Dogra S, Kumar BA, Umrao D, Yadav PN. Docosahexaenoic acid modulates brain-derived neurotrophic factor via GPR40 in the brain and alleviates diabesity-associated learning and memory deficits in mice. Neurobiol Dis 2018; 118:94-107. [DOI: 10.1016/j.nbd.2018.07.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 06/22/2018] [Accepted: 07/04/2018] [Indexed: 12/19/2022] Open
|
107
|
Karimi I, Motamedi S, Ranjbar F. A high-fat diet induced NMRI mouse model of metabolic syndrome: focus on brain-derived neurotrophic factor (BDNF). Metab Brain Dis 2018; 33:1635-1640. [PMID: 29938316 DOI: 10.1007/s11011-018-0271-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 06/19/2018] [Indexed: 12/01/2022]
Abstract
The association of brain-derived neurotrophic factor (BDNF) as a member of neurotrophin family and metabolic syndrome (MetS) has been proposed, however basic evidence necessary to prove (or disprove) this association in non-genetic animal model is rare. Therefore, we investigated the alteration of encephalic BDNF gene expression in a mouse model of high-fat diet (HFD) induced MetS. To translate MetS, male NMRI mice (9 weeks old; N = 13) fed on a HFD including suet powder (37.50%) and granulated sugar (19.85%) while control mice were fed a diet contained suet powder (6.25%) and granulated sugar (49.09%). We monitored the development of MetS by measuring fasting blood sugar (FBS) and lipid (total cholesterol (TC) and triacylglycerol (TGs)) and lipoprotein (high-density lipoprotein cholesterol (HDL-C), very low-density lipoprotein cholesterol (VLDL-C)) profiles, atherogenic index (AI), and somatic indices after 1 and 3 months of dietary interventions. The HFD intake led to increased body weight, liver weight, FBS, TC, and decreased HDL-C as compared to chow diet in mice after first month of dietary intervention. The increased FBS, body weight, abdominal fat mass, TGs, TC, and VLDL-C and decreased HDL-C were observed in HFD-fed mice as compared to those of chow-fed mice at 3th month. The statistical comparison of two HFD groups in two time intervals of 1st and 3th month confirmed that our HFD-induced MetS model was reliable because FBS, TGs and VLDL-C, TC, and AI have been increased significantly during selected time intervals. The AI increased significantly in HFD-fed mice compared to chow-fed mice after 3 months. The AI in HFD-fed mice treated with HFD for 3 months was increased significantly as compared to mice fed HFD for 1 month. Our diet-induced model more closely mimics the changes observed in human MetS and showed that encephalic BDNF gene in mice fed HFD was under-expressed by 0.30 fold with respect to chow-fed mice after 3 months of dietary intervention.
Collapse
Affiliation(s)
- Isaac Karimi
- Laboratory of Molecular and Cellular Biology 1214, Department of Basic Veterinary Sciences, School of Veterinary Medicine, Razi University, Kermanshah, Islamic Republic of Iran.
- Department of Biology, Faculty of Science, Razi University, Kermanshah, 67149-67346, Islamic Republic of Iran.
| | - Shima Motamedi
- Laboratory of Molecular and Cellular Biology 1214, Department of Basic Veterinary Sciences, School of Veterinary Medicine, Razi University, Kermanshah, Islamic Republic of Iran
| | - Fatemeh Ranjbar
- Laboratory of Molecular and Cellular Biology 1214, Department of Basic Veterinary Sciences, School of Veterinary Medicine, Razi University, Kermanshah, Islamic Republic of Iran
| |
Collapse
|
108
|
Brain Fatty Acid Composition and Inflammation in Mice Fed with High-Carbohydrate Diet or High-Fat Diet. Nutrients 2018; 10:nu10091277. [PMID: 30201883 PMCID: PMC6164611 DOI: 10.3390/nu10091277] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 08/30/2018] [Accepted: 09/05/2018] [Indexed: 12/13/2022] Open
Abstract
Both high fat diet (HFD) and high carbohydrate diet (HCD) modulate brain fatty acids (FA) composition. Notwithstanding, there is a lack of information on time sequence of brain FA deposition either for HFD or HCD. The changes in brain FA composition in mice fed with HFD or HCD for 7, 14, 28, or 56 days were compared with results of 0 (before starting given the diets). mRNA expressions of allograft inflammatory factor 1 (Aif1), cyclooxygenase-2 (Cox 2), F4/80, inducible nitric oxide synthase (iNOS), integrin subunit alpha m (Itgam), interleukin IL-1β (IL-1β), IL-6, IL-10, and tumor necrosis factor alpha (TNF-α) were measured. The HFD group had higher speed of deposition of saturated FA (SFA), monounsaturated FA (MUFA), and polyunsaturated FA (PUFA) at the beginning of the experimental period. However, on day 56, the total amount of SFA, MUFA, and PUFA were similar. mRNA expressions of F4/80 and Itgam, markers of microglia infiltration, were increased (p < 0.05) in the brain of the HCD group whereas inflammatory marker index (IMI) was higher (46%) in HFD group. In conclusion, the proportion of fat and carbohydrates in the diet modulates the speed deposition of FA and expression of inflammatory gene markers.
Collapse
|
109
|
Cansino S, Torres-Trejo F, Estrada-Manilla C, Martínez-Galindo JG, Hernández-Ramos E, Ayala-Hernández M, Gómez-Fernández T, Ramírez-González MD, Ruiz-Velasco S. Factors that positively or negatively mediate the effects of age on working memory across the adult life span. GeroScience 2018; 40:293-303. [PMID: 29968229 DOI: 10.1007/s11357-018-0031-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 06/24/2018] [Indexed: 10/28/2022] Open
Abstract
Working memory abilities significantly decrease with advancing age; hence, the search for factors that may increase or mitigate this decline is critical. Several factors have been identified that influence working memory; however, their effects have been mainly assessed separately and rarely together with other factors in the same sample. We examined 120 variables to search for factors that jointly act as mediators of working memory decay across the adult life span. A sample of 1652 healthy adults was assessed in spatial and verbal working memory domains. Structural equation modeling analyses were conducted to search for potential mediators that intervened between age and working memory. Only 14 and 10 variables reliably mediated spatial and verbal working memory, respectively. Factors from several domains remained in the models, such as individual characteristics, physiological traits, consumption habits, and regular activities. These factors are sufficiently powerful to influence working memory decline when they jointly interact, as in everyday living.
Collapse
Affiliation(s)
- Selene Cansino
- Laboratory of NeuroCognition, Faculty of Psychology, National Autonomous University of Mexico, 04510, Mexico City, Mexico.
| | - Frine Torres-Trejo
- Laboratory of NeuroCognition, Faculty of Psychology, National Autonomous University of Mexico, 04510, Mexico City, Mexico
| | - Cinthya Estrada-Manilla
- Laboratory of NeuroCognition, Faculty of Psychology, National Autonomous University of Mexico, 04510, Mexico City, Mexico
| | | | - Evelia Hernández-Ramos
- Laboratory of NeuroCognition, Faculty of Psychology, National Autonomous University of Mexico, 04510, Mexico City, Mexico
| | - Mariana Ayala-Hernández
- Laboratory of NeuroCognition, Faculty of Psychology, National Autonomous University of Mexico, 04510, Mexico City, Mexico
| | - Tania Gómez-Fernández
- Laboratory of NeuroCognition, Faculty of Psychology, National Autonomous University of Mexico, 04510, Mexico City, Mexico
| | | | - Silvia Ruiz-Velasco
- Department of Probability and Statistics, Applied Mathematics and Systems Research Institute, National Autonomous University of Mexico, 04510, Mexico City, Mexico
| |
Collapse
|
110
|
Loprinzi PD, Frith E. Obesity and episodic memory function. J Physiol Sci 2018; 68:321-331. [PMID: 29667132 PMCID: PMC10717800 DOI: 10.1007/s12576-018-0612-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 04/10/2018] [Indexed: 12/30/2022]
Abstract
Obesity-related lifestyle factors, such as physical activity behavior and dietary intake, have been shown to be associated with episodic memory function. From animal work, there is considerable biological plausibility linking obesity with worse memory function. There are no published systematic reviews evaluating the effects of obesity on episodic memory function among humans, and examining whether physical activity and diet influences this obesity-memory link. Thus, the purpose of this systematic review was to evaluate the totality of research examining whether obesity is associated with episodic memory function, and whether physical activity and dietary behavior confounds this relationship. A review approach was employed, using PubMed, PsychInfo, and Sports Discus databases. Fourteen studies met our criteria. Among these 14 reviewed studies, eight were cross-sectional, four were prospective, and two employed a randomized controlled experimental design. Twelve of the 14 studies did not take into consideration dietary behavior in their analysis, and similarly, nine of the 14 studies did not take into consideration participant physical activity behavior. Among the 14 studies, ten found an inverse association of weight status on memory function, but for one of these studies, this association was attenuated after controlling for physical activity. Among the 14 evaluated studies, four did not find a direct effect of weight status on memory. Among the four null studies, one, however, found an indirect effect of BMI on episodic memory and another found a moderation effect of BMI and age on memory function. It appears that obesity may be associated with worse memory function, with the underlying mechanisms discussed herein. At this point, it is uncertain whether adiposity, itself, is influencing memory changes, or rather, whether adiposity-related lifestyle behaviors (e.g., physical inactivity and diet) are driving the obesity-memory relationship.
Collapse
Affiliation(s)
- Paul D Loprinzi
- Exercise Psychology Laboratory, Physical Activity Epidemiology Laboratory, Department of Health, Exercise Science and Recreation Management, The University of Mississippi, University, MS, 38677, USA.
| | - Emily Frith
- Exercise Psychology Laboratory, Physical Activity Epidemiology Laboratory, Department of Health, Exercise Science and Recreation Management, The University of Mississippi, University, MS, 38677, USA
| |
Collapse
|
111
|
Miller HC, Struyf D, Baptist P, Dalile B, Van Oudenhove L, Van Diest I. A mind cleared by walnut oil: The effects of polyunsaturated and saturated fat on extinction learning. Appetite 2018; 126:147-155. [PMID: 29634989 DOI: 10.1016/j.appet.2018.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 04/06/2018] [Accepted: 04/06/2018] [Indexed: 12/31/2022]
Abstract
The treatment of anxiety-based psychopathology often hinges upon extinction learning. Research in nutritional neuroscience has observed that the regular consumption of perilla oil (50% alpha-linolenic acid (ALA)) facilitates extinction learning in rats (Yamamoto et al., 1988). However, acute facilitation of extinction learning by oils rich in ALA has not been reported for rats or humans, though the acute consumption of rapeseed oil (10% ALA) has been observed to improve cognitive processing speed in humans (Jones, Sünram-Lea, & Wesnes, 2012). For this reason, the present laboratory work examined the effects of adding walnut oil (12% ALA) to a chocolate milkshake on the acquisition, generalization, and extinction of a fear-based prediction in young adults. It compared performance between subjects. The other participants consumed a similar milkshake with either an equicaloric amount of cream (saturated fat), or with no added fat (control). Acquisition and generalization of the fear-based prediction were similar for all groups. However, those who consumed walnut oil extinguished most rapidly and profoundly. Implications for extinction learning are discussed.
Collapse
Affiliation(s)
| | - Dieter Struyf
- KULeuven, Health, Behavior and Psychopathology, Belgium
| | | | - Boushra Dalile
- KULeuven, Translational Research in GastroIntestinal Disorders, Belgium
| | | | - Ilse Van Diest
- KULeuven, Health, Behavior and Psychopathology, Belgium.
| |
Collapse
|
112
|
Agustí A, García-Pardo MP, López-Almela I, Campillo I, Maes M, Romaní-Pérez M, Sanz Y. Interplay Between the Gut-Brain Axis, Obesity and Cognitive Function. Front Neurosci 2018; 12:155. [PMID: 29615850 PMCID: PMC5864897 DOI: 10.3389/fnins.2018.00155] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 02/26/2018] [Indexed: 12/12/2022] Open
Abstract
Obesity continues to be one of the major public health problems due to its high prevalence and co-morbidities. Common co-morbidities not only include cardiometabolic disorders but also mood and cognitive disorders. Obese subjects often show deficits in memory, learning and executive functions compared to normal weight subjects. Epidemiological studies also indicate that obesity is associated with a higher risk of developing depression and anxiety, and vice versa. These associations between pathologies that presumably have different etiologies suggest shared pathological mechanisms. Gut microbiota is a mediating factor between the environmental pressures (e.g., diet, lifestyle) and host physiology, and its alteration could partly explain the cross-link between those pathologies. Westernized dietary patterns are known to be a major cause of the obesity epidemic, which also promotes a dysbiotic drift in the gut microbiota; this, in turn, seems to contribute to obesity-related complications. Experimental studies in animal models and, to a lesser extent, in humans suggest that the obesity-associated microbiota may contribute to the endocrine, neurochemical and inflammatory alterations underlying obesity and its comorbidities. These include dysregulation of the HPA-axis with overproduction of glucocorticoids, alterations in levels of neuroactive metabolites (e.g., neurotransmitters, short-chain fatty acids) and activation of a pro-inflammatory milieu that can cause neuro-inflammation. This review updates current knowledge about the role and mode of action of the gut microbiota in the cross-link between energy metabolism, mood and cognitive function.
Collapse
Affiliation(s)
- Ana Agustí
- Microbial Ecology and Nutrition Research Unit, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Valencia, Spain
| | - Maria P García-Pardo
- Microbial Ecology and Nutrition Research Unit, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Valencia, Spain
| | - Inmaculada López-Almela
- Microbial Ecology and Nutrition Research Unit, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Valencia, Spain
| | - Isabel Campillo
- Microbial Ecology and Nutrition Research Unit, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Valencia, Spain
| | - Michael Maes
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Marina Romaní-Pérez
- Microbial Ecology and Nutrition Research Unit, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Valencia, Spain
| | - Yolanda Sanz
- Microbial Ecology and Nutrition Research Unit, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Valencia, Spain
| |
Collapse
|
113
|
Yang W, Shen Z, Wen S, Wang W, Hu M. Mechanisms of multiple neurotransmitters in the effects of Lycopene on brain injury induced by Hyperlipidemia. Lipids Health Dis 2018; 17:13. [PMID: 29409499 PMCID: PMC5801668 DOI: 10.1186/s12944-018-0660-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/10/2018] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND Lycopene is a kind of carotenoid, with a strong capacity of antioxidation and regulating the bloodlipid. There has been some evidence that lycopene has protective effects on the central nervous system, but few studies have rigorously explored the role of neurotransmitters in it. Therefore, the present study was designed to investigate the effects of several neurotransmitters as lycopene exerts anti-injury effects induced by hyperlipidemia. METHODS Eighty adult SD rats, half male and half female, were randomly divided into eight groups on the basis of serum total cholesterol (TC) levels and body weight. There was a control group containing rats fed a standard laboratory rodent chow diet (CD); a hypercholesterolemic diet (rat chow supplemented with 4% cholesterol, 1% cholic acid and 0.5% thiouracil - this is also called a CCT diet) group; a positive group (CCT + F) fed CCT, supplemented with 10 mg·kg·bw- 1·d- 1 fluvastatin sodium by gastric perfusion; and lycopene groups at five dose levels (CCT + LYCO) fed with CCT and supplied lycopene at doses of 5, 25, 45, 65, and 85 mg·kg·bw- 1·d- 1. The levels of TC, triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), high density lipoprotein cholesterol (HDL-C), interleukin-1 (IL-1), tumor necrosis factor alpha (TNF-α), oxidized low density lipoprotein (ox-LDL), low-density lipoprotein receptor (LDLR), nerve growth factor (NGF), glutamic acid (Glu), Gamma aminobutyric acid (GABA), dopamine (DA), 5-hydroxytryptamine (5-HT), N-methyl-D-aspartate (NMDA1R), GABAA, 5-HT1, D1, and apoptosis-related proteins Caspase3, bax, and bcl-2 were measured after the experiment. Nissl staining was adopted to observe the morphological changes in neurons. RESULTS At the end of the experiment, the levels of TC, TG, LDL-C, IL-1, TNF-α, and ox-LDL in the serum and brain as well as the content of Glu, DA, NMDA, and D1 in the brain of rats in the CCT group were higher than those in the control group (P<0.05); the levels of LDLR, NGF, GABA, 5-HT, GABAA, 5-HT1, and neuron quantities in the hippocampal CA1 and CA3 areas were lower than those in the control group (P<0.05). Compared to the CCT group, levels of TC, TG, LDL-C, IL-1, TNF-α, and ox-LDL in the serum and brain, as well as the content of Glu, DA and the expression of pro-apoptotic Caspase3 in the brain decreased in the rats with lycopene (25 mg to 85 mg) added to the diet (P<0.05); the levels of LDLR, NGF, GABA, 5-HT, GABAA, and 5-HT1 as well as the expression of anti-apoptotic bcl-2 and the neuron quantity in hippocampal CA1 and CA3 areas increased (P<0.05); further, the hippocampal cells were closely arranged. Lycopene dose was negatively correlated with the levels of TC, TG, and LDL-C in the serum and brain as well as levels of IL-1, TNF-α, ox-LDL, Glu/GABA, NMDA1R, and Caspase3 (P<0.05); it was positively correlated with the levels of LDLR, NGF, 5-HT, 5-HT1, GABAA, bcl-2, and the neuron quantity in hippocampal CA1 and CA3 areas (P<0.05). CONCLUSIONS Lycopene exerts anti-injury effects in the brain as-induced by hyperlipidemia. It can inhibit the elevation of serum TC, TG, and LDL-C in rats with hyperlipidemia while indirectly affecting the levels of TC, TG, and LDL-C in the brain, leading to a reduction in ox-LDL, IL-1, and TNF-α in the brain. This inhibits the release of Glu, which weakens nerve toxicity and downregulates pro-apoptotic Caspase3. Lycopene also plays an anti-injury role by promoting the release of the inhibitory neurotransmitter GABA and 5-HT, which enhances the protective effect, and by upregulating the anti-apoptotic bcl-2.
Collapse
Affiliation(s)
- Weichun Yang
- Department of Nutrition and Food Hygiene, Xiangya School of Public Health, Central South University, 110 Xiangya Road, Changsha, 410078, China
| | - Ziyi Shen
- Department of Nutrition and Food Hygiene, Xiangya School of Public Health, Central South University, 110 Xiangya Road, Changsha, 410078, China
| | - Sixian Wen
- Department of Nutrition and Food Hygiene, Xiangya School of Public Health, Central South University, 110 Xiangya Road, Changsha, 410078, China
| | - Wei Wang
- Department of Nutrition and Food Hygiene, Xiangya School of Public Health, Central South University, 110 Xiangya Road, Changsha, 410078, China
| | - Minyu Hu
- Department of Nutrition and Food Hygiene, Xiangya School of Public Health, Central South University, 110 Xiangya Road, Changsha, 410078, China.
| |
Collapse
|
114
|
Sangüesa G, Cascales M, Griñán C, Sánchez RM, Roglans N, Pallàs M, Laguna JC, Alegret M. Impairment of Novel Object Recognition Memory and Brain Insulin Signaling in Fructose- but Not Glucose-Drinking Female Rats. Mol Neurobiol 2018; 55:6984-6999. [DOI: 10.1007/s12035-017-0863-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 12/22/2017] [Indexed: 01/10/2023]
|
115
|
Ding B, Xiao R, Ma W, Zhao L, Bi Y, Zhang Y. The association between macronutrient intake and cognition in individuals aged under 65 in China: a cross-sectional study. BMJ Open 2018; 8:e018573. [PMID: 29317416 PMCID: PMC5781185 DOI: 10.1136/bmjopen-2017-018573] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE The aim of this retrospective study was to explore the correlation between daily energy intake from macronutrients and cognitive functions in a Chinese population aged less than 65 years. DESIGN This is a cross-sectional study to explore the relationships between macronutrients' intake and cognitive function. The analysis of variance (ANOVA) and χ2 test were used to compare the demographic and physical characteristics, lifestyle and laboratory parameters with the intake of macronutrients among different quartiles of % fat/energy. Multivariate logistic regression analysis was applied to identify the potential risk factors of mild cognitive impairment (MCI). PARTICIPANTS Young and middle-aged participants (age <65 years) were recruited from Beijing, China. The Montreal cognitive assessment (MoCA) and mini-mental state examination (MMSE) were used to evaluate the cognitive functions, and the dietary intake of the participants was estimated with a semi-quantitative food frequency questionnaire (FFQ). RESULTS Among the 661 participants, 80 (12.1%) had MCI, while 581 (87.9%) had normal cognitive functions. On evaluating the data based on the age group, educational background, and conditions of hyperlipidaemia and total energy intake, the results revealed that high % fat (upper quartile: adjusted OR (aOR) 3.90, 95% CI1.53 to 9.89, P=0.004), and high % protein intake (upper quartile: aOR 2.77, 95% CI 1.24 to 6.15) were greatly associated with increased frequency of MCI, while high % carbohydrate intake (upper quartile: aOR0.30, 95% CI 0.12 to 0.72) was correlated with decreased prevalence of MCI. CONCLUSION The dietary pattern with high percentage of energy intake from fat and protein, and low-energy intake from carbohydrate might have been associated with cognitive decline in a Chinese population under 65 years of age.
Collapse
Affiliation(s)
- Bingjie Ding
- Department of Clinical Nutrition, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Rong Xiao
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Weiwei Ma
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Lei Zhao
- Department of Molecular Physiology and Biophysics, Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine, Iowa, USA
| | - Yanxia Bi
- Department of Clinical Nutrition, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yong Zhang
- Department of Chronic Disease, Daxing Centre for Disease Control and Prevention, Beijing, China
| |
Collapse
|
116
|
Oral pioglitazone ameliorates fructose-induced peripheral insulin resistance and hippocampal gliosis but not restores inhibited hippocampal adult neurogenesis. Biochim Biophys Acta Mol Basis Dis 2018; 1864:274-285. [DOI: 10.1016/j.bbadis.2017.10.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 09/13/2017] [Accepted: 10/12/2017] [Indexed: 12/12/2022]
|
117
|
Kosheleff AR, Araki J, Tsan L, Chen G, Murphy NP, Maidment NT, Ostlund SB. Junk Food Exposure Disrupts Selection of Food-Seeking Actions in Rats. Front Psychiatry 2018; 9:350. [PMID: 30166974 PMCID: PMC6106797 DOI: 10.3389/fpsyt.2018.00350] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/11/2018] [Indexed: 01/10/2023] Open
Abstract
There is growing evidence that repeated consumption of highly palatable, nutritionally poor "junk food" diets can produce deficits in cognition and behavioral control. We explored whether long-term junk-food diet exposure disrupts rats' ability to make adaptive choices about which foods to pursue based on (1) expected reward value (outcome devaluation test) and (2) cue-evoked reward expectations (Pavlovian-to-instrumental test). Rats were initially food restricted and trained on two distinct response-outcome contingencies (e.g., left press chocolate pellets, and right press sweetened condensed milk) and stimulus-outcome contingencies (e.g., white noise chocolate pellets, and clicker sweetened condensed milk). They were then given 6 weeks of unrestricted access to regular chow alone (controls) or chow and either 1 or 24 h access to junk food per day. Subsequent tests of decision making revealed that rats in both junk-food diet groups were impaired in selecting actions based on either expected food value or the presence of food-paired cues. These data demonstrate that chronic junk food consumption can disrupt the processes underlying adaptive control over food-seeking behavior. We suggest that the resulting dysregulation of food seeking may contribute to overeating and obesity.
Collapse
Affiliation(s)
- Alisa R Kosheleff
- Department of Psychiatry and Biobehavioral Sciences, Hatos Center for Neuropharmacology, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jingwen Araki
- Department of Psychiatry and Biobehavioral Sciences, Hatos Center for Neuropharmacology, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
| | - Linda Tsan
- Department of Psychiatry and Biobehavioral Sciences, Hatos Center for Neuropharmacology, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
| | - Grace Chen
- Department of Psychiatry and Biobehavioral Sciences, Hatos Center for Neuropharmacology, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
| | - Niall P Murphy
- Department of Psychiatry and Biobehavioral Sciences, Hatos Center for Neuropharmacology, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
| | - Nigel T Maidment
- Department of Psychiatry and Biobehavioral Sciences, Hatos Center for Neuropharmacology, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
| | - Sean B Ostlund
- Department of Psychiatry and Biobehavioral Sciences, Hatos Center for Neuropharmacology, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Anesthesiology and Perioperative Care, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
118
|
Zanchi D, Meyer-Gerspach AC, Schmidt A, Suenderhauf C, Depoorter A, Drewe J, Beglinger C, Wölnerhanssen BK, Borgwardt S. Acute Effects of Glucose and Fructose Administration on the Neural Correlates of Cognitive Functioning in Healthy Subjects: A Pilot Study. Front Psychiatry 2018; 9:71. [PMID: 29593582 PMCID: PMC5857887 DOI: 10.3389/fpsyt.2018.00071] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 02/21/2018] [Indexed: 01/27/2023] Open
Abstract
The present randomized double-blinded cross-over study aims to extensively study the neural correlates underpinning cognitive functions in healthy subjects after acute glucose and fructose administration, using an integrative multimodal neuroimaging approach. Five minutes after glucose, fructose, or placebo administration through a nasogastric tube, 12 participants underwent 3 complementary neuroimaging techniques: 2 task-based functional magnetic resonance imaging (fMRI) sequences to assess working memory (N-back) and response inhibition (Go/No-Go) and one resting state fMRI sequence to address the cognition-related fronto-parietal network (FPN) and salience network (SN). During working memory processing, glucose intake decreased activation in the anterior cingulate cortex (ACC) relative to placebo, while fructose decreased activation in the ACC and sensory cortex relative to placebo and glucose. During response inhibition, glucose and fructose decreased activation in the ACC, insula and visual cortex relative to placebo. Resting state fMRI indicated increased global connectivity strength of the FPN and the SN during glucose and fructose intake. The results demonstrate that glucose and fructose lead to partially different partially overlapping changes in regional brain activities that underpin cognitive performance in different tasks.
Collapse
Affiliation(s)
- Davide Zanchi
- Department of Psychiatry (UPK), University of Basel, Basel, Switzerland
| | | | - André Schmidt
- Department of Psychiatry (UPK), University of Basel, Basel, Switzerland
| | | | - Antoinette Depoorter
- Division of Neuropediatrics and Developmental Medicine, University Children's Hospital, Basel, Switzerland
| | - Jürgen Drewe
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | | | - Bettina Karin Wölnerhanssen
- Department of Research, St. Clara Hospital, Basel, Switzerland.,Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Stefan Borgwardt
- Department of Psychiatry (UPK), University of Basel, Basel, Switzerland
| |
Collapse
|
119
|
Ma WW, Ding BJ, Yuan LH, Zhao L, Yu HL, Xi YD, Xiao R. Neurocalcin-delta: a potential memory-related factor in hippocampus of obese rats induced by high-fat diet. Afr Health Sci 2017; 17:1211-1221. [PMID: 29937895 PMCID: PMC5870285 DOI: 10.4314/ahs.v17i4.32] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Introduction Aberrant protein expression within the hippocampus has recently been implicated in the pathogenesis of obesity-induced memory impairment. Objectives The objective of the current study was to search for specific memory-related factors in the hippocampus in obese rats. Methods Sprague-Dawley (SD) rats were fed either a high-fat (HF) diet or normal-fat (NF) diet for 10 weeks to obtain the control (CON), diet-induced obese rats (DIO) and diet-resistant (DR) rats. D-galactose was injected subcutaneously for 10 weeks to establish model (MOD) rats with learning and memory impairment. After the hippocampus of the rats sampling, the proteome analysis was conducted using two-dimensional get electrophoresis (2-DE) combined with peptide mass fingerprinting (PMF). Results We found 15 differential proteins that expressed in the hippocampus in rats induced by HF diet from the 2-DE map. In addition, Neurocalcin-delta (NCALD) was nearly down-regulated in the DR rats compared with CON rats and MOD rats, which was further confirmed by Western blot, real-time PCR and ELISA results. Conclusion Our data demonstrates that the differential memory-related proteins were a reflection of the HF diet, but not potential factors in obesity proneness or obesity resistance. Furthermore, NCALD is proved to be a potential hippocampus-memory related factor related to obesity.
Collapse
Affiliation(s)
- Wei-Wei Ma
- School of Public Health, Beijing Key Laboratory of Enviromental Toxicology, Capital Medical University, Beijing 100069, China
| | - Bing-Jie Ding
- Department of Clinical Nutrition Beijing Friendship Hospital, Capital Medical University
| | - Lin-Hong Yuan
- School of Public Health, Beijing Key Laboratory of Enviromental Toxicology, Capital Medical University, Beijing 100069, China
| | - Lei Zhao
- Department of Molecular Physiology and Biophysics, Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Huan-Ling Yu
- School of Public Health, Beijing Key Laboratory of Enviromental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yuan-di Xi
- School of Public Health, Beijing Key Laboratory of Enviromental Toxicology, Capital Medical University, Beijing 100069, China
| | - Rong Xiao
- School of Public Health, Beijing Key Laboratory of Enviromental Toxicology, Capital Medical University, Beijing 100069, China
| |
Collapse
|
120
|
Sample CH, Davidson TL. Considering sex differences in the cognitive controls of feeding. Physiol Behav 2017; 187:97-107. [PMID: 29174819 DOI: 10.1016/j.physbeh.2017.11.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/17/2017] [Accepted: 11/20/2017] [Indexed: 01/24/2023]
Abstract
Women are disproportionately affected by obesity, and obesity increases women's risk of developing dementia more so than men. Remarkably little is known about how females make decisions about when and how much to eat. Research in animal models with males supports a framework in which previous experiences with external food cues and internal physiological energy states, and the ability to retrieve memories of the consequences of eating, determines subsequent food intake. Additional evidence indicates that consumption of a high-fat, high-sugar diet interferes with hippocampal-dependent mnemonic processes that operate to suppress eating, such as in situations of satiety. Recent findings also indicate that weakening this form of hippocampal-dependent inhibitory control may also extend to other forms of learning and memory, perpetuating a vicious cycle of increased Western diet intake, hippocampal dysfunction, and further impairments in the suppression of appetitive behavior that may ultimately disrupt other types of memorial interference resolution. How these basic learning and memory processes operate in females to guide food intake has received little attention. Ovarian hormones appear to protect females from obesity and metabolic impairments, as well as modulate learning and memory processes, but little is known about how these hormones modulate learned appetitive behavior. Even less is known about how a sex-specific environmental factor - widespread hormonal contraceptive use - affects associative learning and the regulation of food intake. Extending learned models of food intake to females will require considerably investigation at many levels (e.g., reproductive status, hormonal compound, parity). This work could yield critical insights into the etiology of obesity, and its concomitant cognitive impairment, for both sexes.
Collapse
Affiliation(s)
- Camille H Sample
- Center for Behavioral Neuroscience, Department of Psychology, American University, Washington, DC, United States.
| | - Terry L Davidson
- Center for Behavioral Neuroscience, Department of Psychology, American University, Washington, DC, United States
| |
Collapse
|
121
|
Matyi J, Tschanz JT, Rattinger GB, Sanders C, Vernon EK, Corcoran C, Kauwe JSK, Buhusi M. Sex Differences in Risk for Alzheimer's Disease Related to Neurotrophin Gene Polymorphisms: The Cache County Memory Study. J Gerontol A Biol Sci Med Sci 2017; 72:1607-1613. [PMID: 28498887 PMCID: PMC5861928 DOI: 10.1093/gerona/glx092] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Indexed: 01/10/2023] Open
Abstract
Neurotrophins, including nerve-growth factor and brain-derived neurotrophic factor, have been implicated in Alzheimer's disease (AD). Associations between AD and neurotrophin signaling genes have been inconsistent, with few studies examining sex differences in risk. We examined four single-nucleotide polymorphisms (SNPs) involved in neurotrophin signaling (rs6265, rs56164415, rs2289656, rs2072446) and risk for AD by sex in a population-based sample of older adults. Three thousand four hundred and ninety-nine individuals without dementia at baseline [mean (standard deviation) age = 74.64 (6.84), 58% female] underwent dementia screening and assessment over four triennial waves. Cox regression was used to examine time to AD or right censoring for each SNP. Female carriers of the minor T allele for rs2072446 and rs56164415 had a 60% (hazard ratio [HR] = 1.60, 95% confidence interval [CI] = 1.02-2.51) and 93% (HR = 1.93, 95% CI = 1.30-2.84) higher hazard for AD, respectively, than male noncarriers of the T allele. Furthermore, male carriers of the T allele of rs2072446 had a 61% lower hazard (HR = 0.39, 95% CI = 0.14-1.06) than male noncarriers at trend-level significance (p = .07). The association between certain neurotrophin gene polymorphisms and AD differs by sex and may explain inconsistent findings in the literature.
Collapse
Affiliation(s)
| | - JoAnn T Tschanz
- Department of Psychology, Utah State University
- Center for Epidemiologic Studies, Utah State University
| | - Gail B Rattinger
- Department of health Outcomes and Administrative Sciences, School of Pharmacy and Pharmaceutical Sciences, Binghamton University, New York
| | | | | | - Chris Corcoran
- Department of Mathematics and Statistics, Utah State University
| | - John S K Kauwe
- Department of Biology, Brigham Young University, Provo, Utah
| | - Mona Buhusi
- Department of Psychology, Utah State University
| |
Collapse
|
122
|
Solas M, Milagro FI, Ramírez MJ, Martínez JA. Inflammation and gut-brain axis link obesity to cognitive dysfunction: plausible pharmacological interventions. Curr Opin Pharmacol 2017; 37:87-92. [PMID: 29107872 DOI: 10.1016/j.coph.2017.10.005] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 09/29/2017] [Accepted: 10/11/2017] [Indexed: 12/19/2022]
Abstract
Obesity prevalence is increasing steadily throughout the world's population in most countries and in parallel the prevalence of metabolic disorders including cardiovascular diseases and type 2 diabetes is also rising, but less is reported about excessive adiposity relationship with poorer cognitive performance, cognitive decline and dementia. Some human clinical studies have evidenced that obesity is related to the risk of the development of mild cognitive impairment, in the form of short-term memory and executive function deficits, as well as dementia and Alzheimer's disease. The precise mechanisms that underlie the connections between obesity and the risk of cognitive impairment are still largely unknown but potential avenues of further research include insulin resistance, the gut-brain axis, and systemic mediators and central inflammation processes. A common feature of metabolic diseases is a chronic and low-grade activation of the inflammatory system. This inflammation may eventually spread from peripheral tissue to the brain, and recent reports suggest that neuroinflammation is an important causal mechanism in cognitive decline. This inflammatory status could be triggered by changes in the gut microbiota composition. Consumption of diets high in fat and sugar influences the microbiota composition, which may lead to an imbalanced microbial population in the gut. Thus, it has recently been hypothesized that the gut microbiota could be part of a mechanistic link between the consumption of high fat and other unbalanced diets and impaired cognition, termed 'gut-brain axis'. The present review will aim at providing an integrative analysis of the effects of obesity and unbalanced diets on cognitive performance and discusses some of the potential mechanisms involved, namely inflammation and changes in gut-brain axis. Moreover, the review aims to analyze anti-inflammatory drugs that have been tested for the treatment of cognition and obesity, recently approved anti-obesity drugs that could also have an impact on central nervous system, and bioactive food compounds that modulate gut microbiota and could have an impact through the gut-brain axis. In this era of precision nutrition medicine, it is imperative to identify the various metabolic-neurocognitive phenotypes in order to understand the processes that drive these diseases so that targeted therapeutic strategies to prevent and successfully manage these complex, multifactorial diseases could be designed and developed.
Collapse
Affiliation(s)
- Maite Solas
- Department of Pharmacology and Toxicology, University of Navarra, Pamplona, Spain; IdISNA, Navarra Institute for Health Research, Pamplona, Spain.
| | - Fermin I Milagro
- Department of Nutrition, Food Science and Physiology, Centre for Nutrition Research, University of Navarra, Pamplona, Spain; CIBERobn, CIBER Fisiopatología de Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - María J Ramírez
- Department of Pharmacology and Toxicology, University of Navarra, Pamplona, Spain; IdISNA, Navarra Institute for Health Research, Pamplona, Spain
| | - J Alfredo Martínez
- Department of Nutrition, Food Science and Physiology, Centre for Nutrition Research, University of Navarra, Pamplona, Spain; CIBERobn, CIBER Fisiopatología de Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain; IMDEA Food Institute, Madrid, Spain
| |
Collapse
|
123
|
Yan Z, Jiao F, Yan X, Ou H. Maternal Chronic Folate Supplementation Ameliorates Behavior Disorders Induced by Prenatal High‐Fat Diet Through Methylation Alteration of BDNF and Grin2b in Offspring Hippocampus. Mol Nutr Food Res 2017; 61. [DOI: 10.1002/mnfr.201700461] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 08/13/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Zhonghai Yan
- Department of MedicineColumbia University New York NY USA
| | - Fei Jiao
- Department of Biochemistry and Molecular BiologyBinzhou Medical College Yantai Shandong China
| | - Xiaoshuang Yan
- Jiangsu Provincial Key Laboratory of Molecular Biology and Translational Medicine of Malignant TumorSoochow University Suzhou China
| | - Hailong Ou
- Department of Biochemistry and Molecular BiologyGuizhou Medical University Guiyang Guizhou China
| |
Collapse
|
124
|
Thymoquinone-rich fraction nanoemulsion (TQRFNE) decreases Aβ40 and Aβ42 levels by modulating APP processing, up-regulating IDE and LRP1, and down-regulating BACE1 and RAGE in response to high fat/cholesterol diet-induced rats. Biomed Pharmacother 2017; 95:780-788. [PMID: 28892789 DOI: 10.1016/j.biopha.2017.08.074] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/02/2017] [Accepted: 08/14/2017] [Indexed: 11/22/2022] Open
Abstract
Though the causes of Alzheimer's disease (AD) are yet to be understood, much evidence has suggested that excessive amyloid-β (Aβ) accumulation due to abnormal amyloid-β precursor protein (APP) processing and Aβ metabolism are crucial processes towards AD pathogenesis. Hence, approaches aiming at APP processing and Aβ metabolism are currently being actively pursued for the management of AD. Studies suggest that high cholesterol and a high fat diet have harmful effects on cognitive function and may instigate the commencement of AD pathogenesis. Despite the neuropharmacological attributes of black cumin seed (Nigella sativa) extracts and its main active compound, thymoquinone (TQ), limited records are available in relation to AD research. Nanoemulsion (NE) is exploited as drug delivery systems due to their capacity of solubilising non-polar active compounds and is widely examined for brain targeting. Herewith, the effects of thymoquinone-rich fraction nanoemulsion (TQRFNE), thymoquinone nanoemulsion (TQNE) and their counterparts' conventional emulsion in response to high fat/cholesterol diet (HFCD)-induced rats were investigated. Particularly, the Aβ generation; APP processing, β-secretase 1 (BACE1), γ-secretases of presenilin 1 (PSEN1) and presenilin 2 (PSEN2), Aβ degradation; insulin degrading enzyme (IDE), Aβ transportation; low density lipoprotein receptor-related protein 1 (LRP1) and receptor for advanced glycation end products (RAGE) were measured in brain tissues. TQRFNE reduced the brain Aβ fragment length 1-40 and 1-42 (Aβ40 and Aβ42) levels, which would attenuate the AD pathogenesis. This reduction could be due to the modulation of β- and γ-secretase enzyme activity, and the Aβ degradation and transportation in/out of the brain. The findings show the mechanistic actions of TQRFNE in response to high fat and high cholesterol diet associated to Aβ generation, degradation and transportation in the rat's brain tissue.
Collapse
|
125
|
Cognitive impairment and gene expression alterations in a rodent model of binge eating disorder. Physiol Behav 2017; 180:78-90. [PMID: 28821448 DOI: 10.1016/j.physbeh.2017.08.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 08/10/2017] [Accepted: 08/11/2017] [Indexed: 12/21/2022]
Abstract
Binge eating disorder (BED) is defined as recurrent, distressing over-consumption of palatable food (PF) in a short time period. Clinical studies suggest that individuals with BED may have impairments in cognitive processes, executive functioning, impulse control, and decision-making, which may play a role in sustaining binge eating behavior. These clinical reports, however, are limited and often conflicting. In this study, we used a limited access rat model of binge-like behavior in order to further explore the effects of binge eating on cognition. In binge eating prone (BEP) rats, we found novel object recognition (NOR) as well as Barnes maze reversal learning (BM-RL) deficits. Aberrant gene expression of brain derived neurotrophic factor (Bdnf) and tropomyosin receptor kinase B (TrkB) in the hippocampus (HPC)-prefrontal cortex (PFC) network was observed in BEP rats. Additionally, the NOR deficits were correlated with reductions in the expression of TrkB and insulin receptor (Ir) in the CA3 region of the hippocampus. Furthermore, up-regulation of serotonin-2C (5-HT2C) receptors in the orbitoprefrontal cortex (OFC) was associated with BM-RL deficit. Finally, in the nucleus accumbens (NAc), we found decreased dopamine receptor 2 (Drd2) expression among BEP rats. Taken together, these data suggest that binge eating vegetable shortening may induce contextual and reversal learning deficits which may be mediated, at least in part, by the altered expression of genes in the CA3-OFC-NAc neural network.
Collapse
|
126
|
Eneva KT, Arlt JM, Yiu A, Murray SM, Chen EY. Assessment of executive functioning in binge-eating disorder independent of weight status. Int J Eat Disord 2017; 50. [PMID: 28644541 PMCID: PMC5672821 DOI: 10.1002/eat.22738] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
OBJECTIVE Executive functioning (EF) problems may serve as vulnerability or maintenance factors for Binge-Eating Disorder (BED). However, it is unclear if EF problems observed in BED are related to overweight status or BED status. The current study extends this literature by examining EF in overweight and normal-weight BED compared to weight-matched controls. METHOD Participants were normal-weight women with BED (n = 23), overweight BED (n = 32), overweight healthy controls (n = 48), and normal-weight healthy controls (n = 29). The EF battery utilized tests from the National Institutes of Health (NIH) Toolbox and Delis-Kaplan Executive Function System (D-KEFS). RESULTS After controlling for years of education and minority status, overweight individuals performed more poorly than normal-weight individuals on a task of cognitive flexibility requiring generativity (p < .01), and speed on psychomotor performance tasks (p = .01). Normal-weight and overweight BED performed worse on working memory tasks compared to controls (p = .04). Unexpectedly, normal-weight BED individuals out-performed all other groups on an inhibitory control task (p < .01). No significant differences were found between the four groups on tasks of planning. DISCUSSION Regardless of weight status, BED is associated with working memory problems. Replication of the finding that normal-weight BED is associated with enhanced inhibitory control is needed.
Collapse
Affiliation(s)
- Kalina T. Eneva
- Temple Eating Disorders program, Department of Psychology, Temple University, 1701 North 13 Street, Philadelphia, PA 19122
| | - Jean M. Arlt
- Temple Eating Disorders program, Department of Psychology, Temple University, 1701 North 13 Street, Philadelphia, PA 19122
| | - Angelina Yiu
- Temple Eating Disorders program, Department of Psychology, Temple University, 1701 North 13 Street, Philadelphia, PA 19122
| | - Susan M. Murray
- Temple Eating Disorders program, Department of Psychology, Temple University, 1701 North 13 Street, Philadelphia, PA 19122
| | - Eunice Y. Chen
- Temple Eating Disorders program, Department of Psychology, Temple University, 1701 North 13 Street, Philadelphia, PA 19122
| |
Collapse
|
127
|
D'Cunha NM, McKune AJ, Panagiotakos DB, Georgousopoulou EN, Thomas J, Mellor DD, Naumovski N. Evaluation of dietary and lifestyle changes as modifiers of S100β levels in Alzheimer's disease. Nutr Neurosci 2017; 22:1-18. [PMID: 28696163 DOI: 10.1080/1028415x.2017.1349032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
There is a significant body of research undertaken in order to elucidate the mechanisms underlying the pathology of Alzheimer's disease (AD), as well as to discover early detection biomarkers and potential therapeutic strategies. One such proposed biomarker is the calcium binding protein S100β, which, depending on its local concentration, is known to exhibit both neurotrophic and neuroinflammatory properties in the central nervous system. At present, relatively little is known regarding the effect of chronic S100β disruption in AD. Dietary intake has been identified as a modifiable risk factor for AD. Preliminary in vitro and animal studies have demonstrated an association between S100β expression and dietary intake which links to AD pathophysiology. This review describes the association of S100β to fatty acids, ketone bodies, insulin, and botanicals as well as the potential impact of physical activity as a lifestyle factor. We also discuss the prospective implications of these findings, including support of the use of a Mediterranean dietary pattern and/or the ketogenic diet as an approach to modify AD risk.
Collapse
Affiliation(s)
- Nathan M D'Cunha
- a University of Canberra Health Research Institute (UCHRI) , University of Canberra , Locked Bag 1, Bruce , Canberra ACT 2601 , Australia.,b Collaborative Research in Bioactives and Biomarkers Group (CRIBB) , University of Canberra , Bruce , Canberra ACT 2601 , Australia
| | - Andrew J McKune
- b Collaborative Research in Bioactives and Biomarkers Group (CRIBB) , University of Canberra , Bruce , Canberra ACT 2601 , Australia.,c University of Canberra, Research Institute for Sport and Exercise , University of Canberra , Bruce , Canberra ACT 2601 , Australia.,d Discipline of Biokinetics, Exercise and Leisure Sciences, School of Health Sciences , University of KwaZulu-Natal , Durban 4041 , South Africa
| | - Demosthenes B Panagiotakos
- e Department of Nutrition-Dietetics, School of Health and Education , Harokopio University , Athens 176 71 , Greece
| | - Ekavi N Georgousopoulou
- b Collaborative Research in Bioactives and Biomarkers Group (CRIBB) , University of Canberra , Bruce , Canberra ACT 2601 , Australia.,e Department of Nutrition-Dietetics, School of Health and Education , Harokopio University , Athens 176 71 , Greece
| | - Jackson Thomas
- a University of Canberra Health Research Institute (UCHRI) , University of Canberra , Locked Bag 1, Bruce , Canberra ACT 2601 , Australia.,b Collaborative Research in Bioactives and Biomarkers Group (CRIBB) , University of Canberra , Bruce , Canberra ACT 2601 , Australia
| | - Duane D Mellor
- a University of Canberra Health Research Institute (UCHRI) , University of Canberra , Locked Bag 1, Bruce , Canberra ACT 2601 , Australia.,b Collaborative Research in Bioactives and Biomarkers Group (CRIBB) , University of Canberra , Bruce , Canberra ACT 2601 , Australia
| | - Nenad Naumovski
- a University of Canberra Health Research Institute (UCHRI) , University of Canberra , Locked Bag 1, Bruce , Canberra ACT 2601 , Australia.,b Collaborative Research in Bioactives and Biomarkers Group (CRIBB) , University of Canberra , Bruce , Canberra ACT 2601 , Australia
| |
Collapse
|
128
|
Gzielo K, Kielbinski M, Ploszaj J, Janeczko K, Gazdzinski SP, Setkowicz Z. Long-Term Consumption of High-Fat Diet in Rats: Effects on Microglial and Astrocytic Morphology and Neuronal Nitric Oxide Synthase Expression. Cell Mol Neurobiol 2017; 37:783-789. [PMID: 27541371 PMCID: PMC5435787 DOI: 10.1007/s10571-016-0417-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 08/10/2016] [Indexed: 12/30/2022]
Abstract
Obesity in humans is associated with cognitive decline and elevated risk of neurodegenerative diseases of old age. Variations of high-fat diet are often used to model these effects in animal studies. However, we previously reported improvements in markers of memory and learning, as well as larger hippocampi and higher metabolite concentrations in Wistar rats fed high-fat, high-carbohydrate diet (HFCD, 60 % energy from fat, 28 % from carbohydrates) for 1 year; this diet leads to mild ketonemia (Setkowicz et al. in PLoS One 10:e0139987, 2015). In the present study, we follow up on this cohort to assess glial morphology and expression of markers related to gliosis. Twenty-five male Wistar rats were kept on HFCD and twenty-five on normal chow. At 12 months of age, the animals were sacrificed and processed for immunohistochemical staining for astrocytic (glial fibrillary acidic protein), microglial (Iba1), and neuronal (neuronal nitric oxide synthetase, nNOS) markers in the hippocampus. We have found changes in immunopositive area fraction and cellular complexity, as studied by a simplified Sholl procedure. To our knowledge, this study is the first to apply this methodology to the study of glial cells in HFCD animals. GFAP and Iba1 immunoreactive area fraction in the hippocampi of HFCD-fed rats were decreased, while the mean number of intersections (an indirect measure of cell complexity) was decreased in GFAP-positive astrocytes, but not in Iba1-expressing microglia. At the same time, nNOS expression was lowered after HFCD in both the cortex and the hippocampus.
Collapse
Affiliation(s)
- Kinga Gzielo
- Department of Neuroanatomy, Jagiellonian University, Gronostajowa 9, 30-387, Kraków, Poland.
| | - Michal Kielbinski
- Department of Neuroanatomy, Jagiellonian University, Gronostajowa 9, 30-387, Kraków, Poland
| | - Jakub Ploszaj
- Department of Neuroanatomy, Jagiellonian University, Gronostajowa 9, 30-387, Kraków, Poland
| | - Krzysztof Janeczko
- Department of Neuroanatomy, Jagiellonian University, Gronostajowa 9, 30-387, Kraków, Poland
| | - Stefan P Gazdzinski
- Military Institute of Aviation Medicine, Krasinskiego 54, 01-755, Warsaw, Poland
| | - Zuzanna Setkowicz
- Department of Neuroanatomy, Jagiellonian University, Gronostajowa 9, 30-387, Kraków, Poland
| |
Collapse
|
129
|
Diet quality and attention capacity in European adolescents: the Healthy Lifestyle in Europe by Nutrition in Adolescence (HELENA) study. Br J Nutr 2017; 117:1587-1595. [PMID: 28662732 DOI: 10.1017/s0007114517001441] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Adolescence represents an important period for the development of executive functions, which are a set of important cognitive processes including attentional control. However, very little is known regarding the associations of nutrition with components of executive functions in adolescence. Thus, the aim of this study was to investigate associations of dietary patterns and macronutrient composition with attention capacity in European adolescents. This cross-sectional study included 384 (165 boys and 219 girls) adolescents, aged 12·5-17·5 years, from five European countries in the Healthy Lifestyle in Europe by Nutrition in Adolescence study. Attention capacity was examined using the d2 Test of Attention. Dietary intake was assessed through two non-consecutive 24 h recalls using a computer-based self-administered tool. Three dietary patterns (diet quality index, ideal diet score and Mediterranean diet score) and macronutrient/fibre intakes were calculated. Linear regression analysis was conducted adjusting for age, sex, BMI, maternal education, family affluence scale, study centre and energy intake (only for Mediterranean diet score). In these adjusted regression analyses, higher diet quality index for adolescents and ideal diet score were associated with a higher attention capacity (standardised β=0·16, P=0·002 and β=0·15, P=0·005, respectively). Conversely, Mediterranean diet score or macronutrient/fibre intake were not associated with attention capacity (P>0·05). Our results suggest that healthier dietary patterns, as indicated by higher diet quality index and ideal diet score, were associated with attention capacity in adolescence. Intervention studies investigating a causal relationship between diet quality and attention are warranted.
Collapse
|
130
|
Thompson JL, Drysdale M, Baimel C, Kaur M, MacGowan T, Pitman KA, Borgland SL. Obesity-Induced Structural and Neuronal Plasticity in the Lateral Orbitofrontal Cortex. Neuropsychopharmacology 2017; 42:1480-1490. [PMID: 28042870 PMCID: PMC5398895 DOI: 10.1038/npp.2016.284] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/22/2016] [Accepted: 12/18/2016] [Indexed: 12/19/2022]
Abstract
The orbitofrontal cortex (OFC) integrates sensory information with the current value of foods and updates actions based on this information. Obese humans and rats fed a cafeteria diet have impaired devaluation of food rewards, implicating a potential obesity-induced dysfunction of the OFC. We hypothesized that obesity alters OFC pyramidal neuronal structure and function and reduces conditioned suppression of feeding. Rats were given restricted (1 h/day), extended (23 h/day) or no (chow only) access to a cafeteria diet and tested for a conditioned suppression of feeding. Golgi-cox impregnation and whole-cell patch clamp experiments were performed in lateral OFC pyramidal neurons of rats from the 3 feeding groups. Rats with 40 days of extended, but not restricted, access to a cafeteria diet became obese and continued to feed during foot shock-predicting cues. Access to a cafeteria diet induced morphological changes in basilar dendrites of lateral OFC pyramidal neurons. While there were no alterations in excitatory synaptic transmission underlying altered spine density, we observed a more depolarized resting membrane potential. This was accompanied by decreased inhibitory synaptic transmission onto lateral OFC pyramidal neurons due to decreased release probability at GABAergic inputs. These changes could underlie the inability of the OFC to encode changes in the motivation value of food that is observed in obese rodents and humans.
Collapse
Affiliation(s)
- Jennifer L Thompson
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Michael Drysdale
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Corey Baimel
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Manpreet Kaur
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Taigan MacGowan
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Kimberley A Pitman
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Stephanie L Borgland
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada,Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Dr NW Calgary, Alberta T2N 4N1, Canada, Tel: +1 403 220 6967, Fax: +4032832700, E-mail:
| |
Collapse
|
131
|
Xie C, Wang X, Zhou C, Xu C, Chang YK. Exercise and dietary program-induced weight reduction is associated with cognitive function among obese adolescents: a longitudinal study. PeerJ 2017; 5:e3286. [PMID: 28533954 PMCID: PMC5436556 DOI: 10.7717/peerj.3286] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 04/08/2017] [Indexed: 12/18/2022] Open
Abstract
Objective The present study was to determine the effect of a combined exercise and dietary program on cognitive function as well as the relationship between the program-induced weight change and cognitive function alterations. Design The study applies a quasi-experimental design. Methods Fifty-eight adolescents with obese status (body mass index, BMI >28 kg/m2) were assigned to either an experiment (n = 30) or control group (n = 28). Participants in the experiment group received a scheduled program with a specific exercise protocol (two sessions per day, six days per week) and diet plan for four consecutive weeks; the control group was instructed to maintain their normal school activities. The primary outcome measures were anthropometric data and flanker task performance. Results The combined program led to reduced BMI with maintenance of the incongruent accuracy in the experiment group, but the incongruent accuracy decreased in the control group after the four-week period. Additionally, the change in weight status between post- and pre-test measurements was inversely correlated with the change in incongruent accuracy. Conclusion The combined exercise and dietary program resulted in decreased weight and enhanced executive function in the obese adolescents, and the weight alteration may be considered the mediator between the intervention and executive function.
Collapse
Affiliation(s)
- Chun Xie
- School of Kinesiology, Shanghai University of Sport, Shanghai, Shanghai, China
| | - Xiaochun Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai, Shanghai, China
| | - Chenglin Zhou
- School of Kinesiology, Shanghai University of Sport, Shanghai, Shanghai, China
| | - Chang Xu
- School of Kinesiology, Shanghai University of Sport, Shanghai, Shanghai, China
| | - Yu-Kai Chang
- Graduate Institute of Athletics and Coaching Science, National Taiwan Sport University, Guishan Township, Taoyuan County, Taiwan
| |
Collapse
|
132
|
Correa-Burrows P, Rodríguez Y, Blanco E, Gahagan S, Burrows R. Snacking Quality Is Associated with Secondary School Academic Achievement and the Intention to Enroll in Higher Education: A Cross-Sectional Study in Adolescents from Santiago, Chile. Nutrients 2017; 9:nu9050433. [PMID: 28448455 PMCID: PMC5452163 DOI: 10.3390/nu9050433] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 04/20/2017] [Accepted: 04/24/2017] [Indexed: 10/27/2022] Open
Abstract
Although numerous studies have approached the effects of exposure to a Western diet (WD) on academic outcomes, very few have focused on foods consumed during snack times. We explored whether there is a link between nutritious snacking habits and academic achievement in high school (HS) students from Santiago, Chile. We conducted a cross-sectional study with 678 adolescents. The nutritional quality of snacks consumed by 16-year-old was assessed using a validated food frequency questionnaire. The academic outcomes measured were HS grade point average (GPA), the likelihood of HS completion, and the likelihood of taking college entrance exams. A multivariate analysis was performed to determine the independent associations of nutritious snacking with having completed HS and having taken college entrance exams. An analysis of covariance (ANCOVA) estimated the differences in GPA by the quality of snacks. Compared to students with healthy in-home snacking behaviors, adolescents having unhealthy in-home snacks had significantly lower GPAs (M difference: -40.1 points, 95% confidence interval (CI): -59.2, -16.9, d = 0.41), significantly lower odds of HS completion (adjusted odds ratio (aOR): 0.47; 95% CI: 0.25-0.88), and significantly lower odds of taking college entrance exams (aOR: 0.53; 95% CI: 0.31-0.88). Unhealthy at-school snacking showed similar associations with the outcome variables. Poor nutritional quality snacking at school and at home was associated with poor secondary school academic achievement and the intention to enroll in higher education.
Collapse
Affiliation(s)
- Paulina Correa-Burrows
- Institute of Nutrition and Food Technology, University of Chile, Santiago 7830490, Chile.
| | - Yanina Rodríguez
- Institute of Nutrition and Food Technology, University of Chile, Santiago 7830490, Chile.
| | - Estela Blanco
- Division of Child Development and Community Health, University of California, San Diego, CA 92093, USA.
| | - Sheila Gahagan
- Division of Child Development and Community Health, University of California, San Diego, CA 92093, USA.
| | - Raquel Burrows
- Institute of Nutrition and Food Technology, University of Chile, Santiago 7830490, Chile.
| |
Collapse
|
133
|
Robb JL, Messa I, Lui E, Yeung D, Thacker J, Satvat E, Mielke JG. A maternal diet high in saturated fat impairs offspring hippocampal function in a sex-specific manner. Behav Brain Res 2017; 326:187-199. [PMID: 28259676 DOI: 10.1016/j.bbr.2017.02.049] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/23/2017] [Accepted: 02/28/2017] [Indexed: 01/07/2023]
Abstract
While a maternal diet high in saturated fat is likely to affect foetal brain development, whether the effects are the same for male and female offspring is unclear. As a result, we randomly assigned female, Sprague-Dawley rats to either a control, or high-fat diet (HFD; 45% of calories from saturated fat) for 10 weeks. A range of biometrics were collected, and hippocampal function was assessed at both the tissue level (by measuring synaptic plasticity) and at the behavioural level (using the Morris water maze; MWM). Subsequently, a subset of animals was bred and remained on their respective diets throughout gestation and lactation. On post-natal day 21, offspring were weaned and placed onto the control diet; biometrics and spatial learning and memory were then assessed at both adolescence and young adulthood. Although the HFD led to changes in the maternal generation consistent with an obese phenotype, no impairments were noted at the level of hippocampal synaptic plasticity, or MWM performance. Unexpectedly, among the offspring, a sexually dimorphic effect upon MWM performance became apparent. In particular, adolescent male offspring displayed a greater latency to reach the platform during training trials and spent less time in the target quadrant during the probe test; notably, when re-examined during young adulthood, the performance deficit was no longer present. Overall, our work suggests the existence of sexual dimorphism with regard to how a maternal HFD affects hippocampal-dependent function in the offspring brain.
Collapse
Affiliation(s)
- Jamie-Lee Robb
- Neuroplasticity Research Group, School of Public Health and Health Systems, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| | - Isabelle Messa
- Neuroplasticity Research Group, School of Public Health and Health Systems, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| | - Erika Lui
- Neuroplasticity Research Group, School of Public Health and Health Systems, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| | - Derrick Yeung
- Neuroplasticity Research Group, School of Public Health and Health Systems, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| | - Jonathan Thacker
- Neuroplasticity Research Group, School of Public Health and Health Systems, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| | - Elham Satvat
- Neuroplasticity Research Group, School of Public Health and Health Systems, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| | - John G Mielke
- Neuroplasticity Research Group, School of Public Health and Health Systems, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada.
| |
Collapse
|
134
|
Abstract
A significant body of evidence suggests that poor dietary intake is associated with reduced cognitive function. However, few studies have examined this relation in poor urban settings. Our brief review suggests that (a) higher overall diet quality may play a particularly important role in cognitive function among the poorest; and (b) greater vitamin E intake is related to better cognitive performance, at least in part, via fewer depressive symptoms. The broader recent literature strongly suggests the beneficial role of diet for learning and memory, and potentially synergistic influences on other cognitive domains. However, adherence to healthful diet among urban poor may be limited by factors such as cost and access. Here, we propose several potential moderators and mediators of diet-cognition relations among urban poor. Future studies should focus on the complex interplay among factors that influence the role of diet in cognitive function among poor, urban-dwelling persons.
Collapse
|
135
|
Kim JY, Kang SW. Relationships between Dietary Intake and Cognitive Function in Healthy Korean Children and Adolescents. J Lifestyle Med 2017; 7:10-17. [PMID: 28261556 PMCID: PMC5332116 DOI: 10.15280/jlm.2017.7.1.10] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 10/07/2016] [Indexed: 11/22/2022] Open
Abstract
Background It has long been theorized that a relatively robust dietary intake impacts cognitive function. The aim of the study was to explore dietary intake and cognitive function in healthy Korean children and adolescents. Methods Three hundred and seventeen healthy children with no previous diagnosis of neurologic or psychiatric disorders were evaluated (167 girls and 150 boys with a mean age of 11.8 ± 3.3 years). Analysis indicators including food frequency questionnaires (FFQs) consisting of 76 items and neurocognitive tests including symbol digit modalities (SDMT), verbal memory, visual memory, shift attention, reasoning, and digit span (forward and backward) tests were observed and recorded. Results The standard deviation in reaction time was significantly shorter in girls than in boys (p < 0.05). Verbal memory and SDMT percentile results were significantly higher in girls than in boys (p < 0.05). Vitamin C and potassium intake showed positive correlation with SDMT results (p < 0.05). Vitamin B1 intake showed positive correlation with the results of digit span forward tasks and SDMT (p < 0.01). Vitamin B6 intake showed positive correlation with the results of digit span forward tasks (p < 0.01). The consumption of noodles showed negative correlation with verbal memory, SDMT, shift attention, and reasoning test results (p < 0.05). The consumption of fast food showed negative correlation with SDMT and reasoning test results (p < 0.05). The consumption of Coca-Cola showed negative correlation with the results of verbal memory tests (p < 0.05). The consumption of mushrooms showed positive correlation with visual memory and reasoning test results (p < 0.05). The consumption of nuts showed positive correlation with SDMT results (p < 0.01). Omission errors were negatively correlated with the intake of protein, vitamin B1, vitamin B2, niacin, and vitamin B6 (p < 0.05), as well as with vitamin D and zinc intake (p < 0.01). Reaction time showed positive correlation with caffeine intake (p < 0.05). Omission errors were positively correlated with the consumption of rice and ramyeon (p < 0.01). Reaction time showed positive correlation with the consumption of snacks (p < 0.05). Standard deviations in reaction times showed positive correlation with the consumption of rice (p < 0.01), snacks, and chocolate (p < 0.05). Omission errors were negatively correlated with the consumption of rice with mixed grains (p < 0.01) and eggs (p < 0.05). Conclusion The relationship between dietary intake and cognitive function is generally better observed in girls than in boys. The consumption of healthy foods is correlated with good cognitive function. These results suggest that diet is closely related to cognitive function, even in healthy children and adolescents.
Collapse
Affiliation(s)
- Jin Young Kim
- The Research Institute of Nursing Science, Seoul, Korea; National Standard Reference Data Center for Korean EEG, Seoul, Korea
| | - Seung Wan Kang
- The Research Institute of Nursing Science, Seoul, Korea; Collge of Nursing, Seoul National University, Seoul, Korea; National Standard Reference Data Center for Korean EEG, Seoul, Korea
| |
Collapse
|
136
|
Noble EE, Hsu TM, Kanoski SE. Gut to Brain Dysbiosis: Mechanisms Linking Western Diet Consumption, the Microbiome, and Cognitive Impairment. Front Behav Neurosci 2017; 11:9. [PMID: 28194099 PMCID: PMC5277010 DOI: 10.3389/fnbeh.2017.00009] [Citation(s) in RCA: 186] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/11/2017] [Indexed: 12/25/2022] Open
Abstract
Consumption of a Western Diet (WD) that is high in saturated fat and added sugars negatively impacts cognitive function, particularly mnemonic processes that rely on the integrity of the hippocampus. Emerging evidence suggests that the gut microbiome influences cognitive function via the gut-brain axis, and that WD factors significantly alter the proportions of commensal bacteria in the gastrointestinal tract. Here we review mechanisms through which consuming a WD negatively impacts neurocognitive function, with a particular focus on recent evidence linking the gut microbiome with dietary- and metabolic-associated hippocampal impairment. We highlight evidence linking gut bacteria to altered intestinal permeability and blood brain barrier integrity, thus making the brain more vulnerable to the influx of deleterious substances from the circulation. WD consumption also increases production of endotoxin by commensal bacteria, which may promote neuroinflammation and cognitive dysfunction. Recent findings also show that diet-induced alterations in gut microbiota impair peripheral insulin sensitivity, which is associated with hippocampal neuronal derrangements and associated mnemonic deficits. In some cases treatment with specific probiotics or prebiotics can prevent or reverse some of the deleterious impact of WD consumption on neuropsychological outcomes, indicating that targeting the microbiome may be a successful strategy for combating dietary- and metabolic-associated cognitive impairment.
Collapse
Affiliation(s)
- Emily E Noble
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California Los Angeles, CA, USA
| | - Ted M Hsu
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern CaliforniaLos Angeles, CA, USA; Neuroscience Program, University of Southern CaliforniaLos Angeles, CA, USA
| | - Scott E Kanoski
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern CaliforniaLos Angeles, CA, USA; Neuroscience Program, University of Southern CaliforniaLos Angeles, CA, USA
| |
Collapse
|
137
|
Carey AN, Galli RL. Mitigating the effects of high fat diet on the brain and behavior with berry supplementation. Food Funct 2017; 8:3869-3878. [DOI: 10.1039/c7fo00888k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Berries are rich in bioactive compounds like anthocyanins and show promise for mitigating the effects of high fat diet on the brain and behavior.
Collapse
|
138
|
Abstract
PURPOSE OF REVIEW Physical and cognitive frailty are interrelated and synergistic syndromes more frequently seen in old age, which represent intermediate stages between aging successfully and disability. Poor nutrition is a fundamental determinant for both conditions, while various dietary components are proposed to prevent and/or improve them. This updated review discusses the possible influence of nutritional factors on cognitive frailty and its potential mediators. RECENT FINDINGS Oxidative stress, low-grade systemic inflammation, neuroinflammation, and altered autophagy, all associated with obesity, metabolic syndrome and insulin resistance, are proposed mechanisms to explain the influence of nutrition on cognitive health. Even if no single food or supplement has definitively demonstrated to affect physical frailty and cognitive impairment, combining various dietary and lifestyle components in the Mediterranean dietary pattern has shown benefit. SUMMARY Cognitive frailty is a potential useful construct for the early detection of cognitive impairment and physical frailty, in order to implement timely interventions. Validation of this construct is eagerly needed. Nutritional status is a fundamental part of physical frailty, and potentially important in the prevention of cognitive decline. Identifying and treating protein/calorie and individual nutrients insufficiency is mandatory in all older adults. Conversely, overeating in middle age has been associated with cognitive decline in older age. A lifelong balance diet, such as the Mediterranean diet, combined with regular physical and mental exercise, is perhaps the best preventive strategy against cognitive decline in old age.
Collapse
Affiliation(s)
- Ligia J Dominguez
- Geriatric Unit, Department of Internal Medicine and Geriatrics, University of Palermo, Palermo, Italy
| | | |
Collapse
|
139
|
Yang CR, Bai YY, Ruan CS, Zhou FH, Li F, Li CQ, Zhou XF. Injection of Anti-proBDNF in Anterior Cingulate Cortex (ACC) Reverses Chronic Stress-Induced Adverse Mood Behaviors in Mice. Neurotox Res 2016; 31:298-308. [DOI: 10.1007/s12640-016-9687-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 10/30/2016] [Accepted: 12/01/2016] [Indexed: 12/13/2022]
|
140
|
Wahl D, Cogger VC, Solon-Biet SM, Waern RVR, Gokarn R, Pulpitel T, Cabo RD, Mattson MP, Raubenheimer D, Simpson SJ, Le Couteur DG. Nutritional strategies to optimise cognitive function in the aging brain. Ageing Res Rev 2016; 31:80-92. [PMID: 27355990 PMCID: PMC5035589 DOI: 10.1016/j.arr.2016.06.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/17/2016] [Accepted: 06/23/2016] [Indexed: 12/15/2022]
Abstract
Old age is the greatest risk factor for most neurodegenerative diseases. During recent decades there have been major advances in understanding the biology of aging, and the development of nutritional interventions that delay aging including calorie restriction (CR) and intermittent fasting (IF), and chemicals that influence pathways linking nutrition and aging processes. CR influences brain aging in many animal models and recent findings suggest that dietary interventions can influence brain health and dementia in older humans. The role of individual macronutrients in brain aging also has been studied, with conflicting results about the effects of dietary protein and carbohydrates. A new approach known as the Geometric Framework (GF) has been used to unravel the complex interactions between macronutrients (protein, fat, and carbohydrate) and total energy on outcomes such as aging. These studies have shown that low-protein, high-carbohydrate (LPHC) diets are optimal for lifespan in ad libitum fed animals, while total calories have minimal effect once macronutrients are taken into account. One of the primary purposes of this review is to explore the notion that macronutrients may have a more translational potential than CR and IF in humans, and therefore there is a pressing need to use GF to study the impact of diet on brain aging. Furthermore, given the growing recognition of the role of aging biology in dementia, such studies might provide a new approach for dietary interventions for optimizing brain health and preventing dementia in older people.
Collapse
Affiliation(s)
- Devin Wahl
- Charles Perkins Centre, University of Sydney, Sydney 2006 Australia; Aging and Alzheimers Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord, 2139 Australia
| | - Victoria C Cogger
- Charles Perkins Centre, University of Sydney, Sydney 2006 Australia; Aging and Alzheimers Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord, 2139 Australia
| | - Samantha M Solon-Biet
- Charles Perkins Centre, University of Sydney, Sydney 2006 Australia; Aging and Alzheimers Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord, 2139 Australia
| | - Rosilene V R Waern
- Charles Perkins Centre, University of Sydney, Sydney 2006 Australia; School of Life and Environmental Sciences, University of Sydney, Sydney 2006, Australia
| | - Rahul Gokarn
- Charles Perkins Centre, University of Sydney, Sydney 2006 Australia; Aging and Alzheimers Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord, 2139 Australia
| | - Tamara Pulpitel
- Charles Perkins Centre, University of Sydney, Sydney 2006 Australia
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - David Raubenheimer
- Charles Perkins Centre, University of Sydney, Sydney 2006 Australia; Faculty of Veterinary Science, University of Sydney, Sydney 2006, Australia; School of Life and Environmental Sciences, University of Sydney, Sydney 2006, Australia
| | - Stephen J Simpson
- Charles Perkins Centre, University of Sydney, Sydney 2006 Australia; School of Life and Environmental Sciences, University of Sydney, Sydney 2006, Australia
| | - David G Le Couteur
- Charles Perkins Centre, University of Sydney, Sydney 2006 Australia; Aging and Alzheimers Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord, 2139 Australia.
| |
Collapse
|
141
|
Beilharz JE, Kaakoush NO, Maniam J, Morris MJ. The effect of short-term exposure to energy-matched diets enriched in fat or sugar on memory, gut microbiota and markers of brain inflammation and plasticity. Brain Behav Immun 2016; 57:304-313. [PMID: 27448745 DOI: 10.1016/j.bbi.2016.07.151] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 06/30/2016] [Accepted: 07/19/2016] [Indexed: 01/06/2023] Open
Abstract
Short-term exposure to high-energy diets impairs memory but there is little data on the relative contributions of fat and sugar to these deficits or the mechanisms responsible. Here, we investigated how these different macronutrients affect memory, neuroinflammation and neuroplasticity markers and the gut microbiota. Rats were fed matched purified diets for 2weeks; Control, Sugar, Saturated Fatty Acid (SFA) or Polyunsaturated Fatty Acid (PUFA), which varied only in the percentage of energy available from sugar and the amount and type of fat. Rats consuming SFA and Sugar were impaired on hippocampal-dependent place recognition memory compared to Controls and PUFA rats, despite all rats consuming similar amounts of energy. All rats performed comparably on the object recognition task. Hippocampal and hypothalamic inflammatory markers were not substantially affected by the diets and there was no change in the neuroplasticity marker, brain-derived neurotrophic factor. Each of the diets significantly altered the microbial composition in distinct ways. Specifically, the relative abundance of 89 taxa differed significantly between groups with the majority of these changes accounted for by the Clostridiales order and within that, Lachnospiraceae and Ruminococcaceae. These taxa showed a range of macronutrient specific correlations with place memory. In addition, Distance based Linear Models found relationships between memory, inflammation-related hippocampal genes and the gut microbiota. In conclusion, our study shows that the macronutrient profile of the diet is crucial for diet-induced memory deficits and suggests a possible link between diet, the gut microbiota and hippocampal inflammatory genes.
Collapse
Affiliation(s)
- Jessica E Beilharz
- Department of Pharmacology, School of Medical Sciences, UNSW Australia, NSW 2052, Australia
| | | | - Jayanthi Maniam
- Department of Pharmacology, School of Medical Sciences, UNSW Australia, NSW 2052, Australia
| | - Margaret J Morris
- Department of Pharmacology, School of Medical Sciences, UNSW Australia, NSW 2052, Australia.
| |
Collapse
|
142
|
Wilson LB, Martindale RG. What’s in Your Pillbox? Appropriate Supplements for Healthy Adults Across the Life Cycle. Curr Nutr Rep 2016. [DOI: 10.1007/s13668-016-0174-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
143
|
Sa-Nguanmoo P, Tanajak P, Kerdphoo S, Satjaritanun P, Wang X, Liang G, Li X, Jiang C, Pratchayasakul W, Chattipakorn N, Chattipakorn SC. FGF21 improves cognition by restored synaptic plasticity, dendritic spine density, brain mitochondrial function and cell apoptosis in obese-insulin resistant male rats. Horm Behav 2016; 85:86-95. [PMID: 27566237 DOI: 10.1016/j.yhbeh.2016.08.006] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 08/13/2016] [Accepted: 08/19/2016] [Indexed: 12/20/2022]
Abstract
Fibroblast growth factor 21 (FGF21) is an endocrine hormone which exerts beneficial effects on metabolic regulation in obese and diabetic models. However, the effect of FGF21 on cognition in obese-insulin resistant rats has not been investigated. We hypothesized that FGF21 prevented cognitive decline in obese-insulin resistant rats by improving hippocampal synaptic plasticity, dendritic spine density, brain mitochondrial function and brain FGF21 signaling as well as decreasing brain cell apoptosis. Eighteen male Wistar rats were divided into two groups, and received either a normal diet (ND) (n=6) or a high fat diet (HFD) (n=12) for 12weeks. At week 13, the HFD-fed rats were subdivided into two subgroups (n=6/subgroup) to receive either vehicle or recombinant human FGF21 (0.1mg/kg/day) for four weeks. ND-fed rats were given vehicle for four weeks. At the end of the treatment, cognitive function, metabolic parameters, pro-inflammatory markers, brain mitochondrial function, cell apoptosis, hippocampal synaptic plasticity, dendritic spine density and brain FGF21 signaling were determined. The results showed that vehicle-treated HFD-fed rats developed obese-insulin resistance and cognitive decline with impaired hippocampal synaptic plasticity, decreased dendritic spine density, brain mitochondrial dysfunction and increased brain cell apoptosis. Impaired brain FGF 21 signaling was found in these obese-insulin resistant rats. FGF21-treated obese-insulin resistant rats had improved peripheral insulin sensitivity, increased hippocampal synaptic plasticity, increased dendritic spine density, restored brain mitochondrial function, attenuated brain cells apoptosis and increased brain FGF21 signaling, leading to a prevention of cognitive decline. These findings suggest that FGF21 treatment exerts neuroprotection in obese-insulin resistant rats.
Collapse
Affiliation(s)
- Piangkwan Sa-Nguanmoo
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Pongpan Tanajak
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Sasiwan Kerdphoo
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Pattarapong Satjaritanun
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Xiaojie Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, University-Town, Wenzhou, Zhejiang, China
| | - Guang Liang
- School of Pharmaceutical Sciences, Wenzhou Medical University, University-Town, Wenzhou, Zhejiang, China
| | - Xiaokun Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, University-Town, Wenzhou, Zhejiang, China
| | - Chao Jiang
- School of Pharmaceutical Sciences, Wenzhou Medical University, University-Town, Wenzhou, Zhejiang, China
| | - Wasana Pratchayasakul
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Department of Oral Biology and Diagnostic Science, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
144
|
Glucocorticoids Mediate Short-Term High-Fat Diet Induction of Neuroinflammatory Priming, the NLRP3 Inflammasome, and the Danger Signal HMGB1. eNeuro 2016; 3:eN-NWR-0113-16. [PMID: 27595136 PMCID: PMC5004086 DOI: 10.1523/eneuro.0113-16.2016] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 08/11/2016] [Accepted: 08/17/2016] [Indexed: 02/04/2023] Open
Abstract
The impact of the foods we eat on metabolism and cardiac physiology has been studied for decades, yet less is known about the effects of foods on the CNS, or the behavioral manifestations that may result from these effects. Previous studies have shown that long-term consumption of high-fat foods leading to diet-induced obesity sensitizes the inflammatory response of the brain to subsequent challenging stimuli, causing deficits in the formation of long-term memories. The new findings reported here demonstrate that short-term consumption of a high-fat diet (HFD) produces the same outcomes, thus allowing the examination of mechanisms involved in this process long before obesity and associated comorbidities occur. Rats fed an HFD for 3 d exhibited increases in corticosterone, the inflammasome-associated protein NLRP3 (nod-like receptor protein 3), and the endogenous danger signal HMGB1 (high-mobility group box 1) in the hippocampus. A low-dose (10 μg/kg) lipopolysaccharide (LPS) immune challenge potentiated the neuroinflammatory response in the hippocampus of rats fed the HFD, and caused a deficit in the formation of long-term memory, effects not observed in rats fed regular chow. The blockade of corticosterone action with the glucocorticoid receptor antagonist mifepristone prevented the NLRP3 and HMGB1 increases in unchallenged animals, normalized the proinflammatory response to LPS, and prevented the memory impairment. These data suggest that short-term HFD consumption increases vulnerability to memory disruptions caused by an immune challenge by upregulating important neuroinflammatory priming and danger signals in the hippocampus, and that these effects are mediated by increases in hippocampal corticosterone.
Collapse
|
145
|
Lim SY, Kim EJ, Kim A, Lee HJ, Choi HJ, Yang SJ. Nutritional Factors Affecting Mental Health. Clin Nutr Res 2016; 5:143-52. [PMID: 27482518 PMCID: PMC4967717 DOI: 10.7762/cnr.2016.5.3.143] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 07/18/2016] [Accepted: 07/20/2016] [Indexed: 12/12/2022] Open
Abstract
Dietary intake and nutritional status of individuals are important factors affecting mental health and the development of psychiatric disorders. Majority of scientific evidence relating to mental health focuses on depression, cognitive function, and dementia, and limited evidence is available about other psychiatric disorders including schizophrenia. As life span of human being is increasing, the more the prevalence of mental disorders is, the more attention rises. Lists of suggested nutritional components that may be beneficial for mental health are omega-3 fatty acids, phospholipids, cholesterol, niacin, folate, vitamin B6, and vitamin B12. Saturated fat and simple sugar are considered detrimental to cognitive function. Evidence on the effect of cholesterol is conflicting; however, in general, blood cholesterol levels are negatively associated with the risk of depression. Collectively, the aims of this review are to introduce known nutritional factors for mental health, and to discuss recent issues of the nutritional impact on cognitive function and healthy brain aging.
Collapse
Affiliation(s)
- So Young Lim
- Department of Food and Nutrition, Chonnam National University, Gwangju 61186, Korea
| | - Eun Jin Kim
- Department of Food and Nutrition, Chonnam National University, Gwangju 61186, Korea
| | - Arang Kim
- Department of Food and Nutrition, Chonnam National University, Gwangju 61186, Korea
| | - Hee Jae Lee
- Department of Food and Nutrition, Seoul Women's University, Seoul 01797, Korea
| | - Hyun Jin Choi
- Department of Food and Nutrition, Seoul Women's University, Seoul 01797, Korea
| | - Soo Jin Yang
- Department of Food and Nutrition, Seoul Women's University, Seoul 01797, Korea
| |
Collapse
|
146
|
Morris MJ, Le V, Maniam J. The impact of poor diet and early life stress on memory status. Curr Opin Behav Sci 2016. [DOI: 10.1016/j.cobeha.2016.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
147
|
Dietary composition affects the development of cognitive deficits in WT and Tg AD model mice. Exp Gerontol 2016; 86:39-49. [PMID: 27167583 DOI: 10.1016/j.exger.2016.05.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 04/22/2016] [Accepted: 05/06/2016] [Indexed: 01/17/2023]
Abstract
Clinical and epidemiological evidence suggests that lifestyle factors, including nutrition, may influence the chances of developing of Alzheimer's disease (AD), and also likely affect the aging process. Whereas it is clear that high-fat diets are increasing both body weight and the risk of developing Alzheimer's disease, to date, there have been very few studies comparing diets high with different sources of calories (i.e., high fat versus high protein versus high carbohydrates) to determine whether dietary composition has importance beyond the known effect of high caloric intake to increase body weight, AD pathology and cognitive deficits. In the current study we examined the effects that different diets high in carbohydrate, protein or fat content, but similar in caloric value, have on the development of cognitive impairment and brain pathology in wild-type and Tg AD model mice. The results demonstrate that long term feeding with balanced diets similar in caloric content but with significant changes in the source of calories, all negatively influence cognition compared to the control diet, and that this effect is more pronounced in Tg animals with AD pathology.
Collapse
|
148
|
Valero J, Paris I, Sierra A. Lifestyle Shapes the Dialogue between Environment, Microglia, and Adult Neurogenesis. ACS Chem Neurosci 2016; 7:442-53. [PMID: 26971802 DOI: 10.1021/acschemneuro.6b00009] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Lifestyle modulates brain function. Diet, stress levels, and physical exercise among other factors influence the "brain cognitive reserve", that is, the capacity of the brain to maintain a normal function when confronting neurodegenerative diseases, injury, and/or aging. This cognitive reserve relays on several cellular and molecular elements that contribute to brain plasticity allowing adaptive responses to cognitive demands, and one of its key components is the hippocampal neurogenic reserve. Hippocampal neural stem cells give rise to new neurons that integrate into the local circuitry and contribute to hippocampal functions such as memory and learning. Importantly, adult hippocampal neurogenesis is well-known to be modulated by the demands of the environment and lifestyle factors. Diet, stress, and physical exercise directly act on neural stem cells and/or their progeny, but, in addition, they may also indirectly affect neurogenesis by acting on microglia. Microglia, the guardians of the brain, rapidly sense changes in the brain milieu, and it has been recently shown that their function is affected by lifestyle factors. However, few studies have analyzed the modulatory effect of microglia on adult neurogenesis in these conditions. Here, we review the current knowledge about the dialogue maintained between microglia and the hippocampal neurogenic cascade. Understanding how the communication between microglia and hippocampal neurogenesis is affected by lifestyle choices is crucial to maintain the brain cognitive reserve and prevent the maladaptive responses that emerge during disease or injury through adulthood and aging.
Collapse
Affiliation(s)
- Jorge Valero
- Achucarro Basque Center for Neuroscience, E-48170 Zamudio, Bizkaia Spain
- Ikerbasque Foundation, E-48013 Bilbao, Bizkaia Spain
| | - Iñaki Paris
- Achucarro Basque Center for Neuroscience, E-48170 Zamudio, Bizkaia Spain
| | - Amanda Sierra
- Achucarro Basque Center for Neuroscience, E-48170 Zamudio, Bizkaia Spain
- Ikerbasque Foundation, E-48013 Bilbao, Bizkaia Spain
- University of the Basque Country EHU/UPV, E-48940 Leioa, Bizkaia Spain
| |
Collapse
|
149
|
Beilharz JE, Maniam J, Morris MJ. Short-term exposure to a diet high in fat and sugar, or liquid sugar, selectively impairs hippocampal-dependent memory, with differential impacts on inflammation. Behav Brain Res 2016; 306:1-7. [PMID: 26970578 DOI: 10.1016/j.bbr.2016.03.018] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 02/10/2016] [Accepted: 03/06/2016] [Indexed: 01/09/2023]
Abstract
Chronic high-energy diets are known to induce obesity and impair memory; these changes have been associated with inflammation in brain areas crucial for memory. In this study, we investigated whether inflammation could also be related to diet-induced memory deficits, prior to obesity. We exposed rats to chow, chow supplemented with a 10% sucrose solution (Sugar) or a diet high in fat and sugar (Caf+Sugar) and assessed hippocampal-dependent and perirhinal-dependent memory at 1 week. Both high-energy diet groups displayed similar, selective hippocampal-dependent memory deficits despite the Caf+Sugar rats consuming 4-5 times more energy, and weighing significantly more than the other groups. Extreme weight gain and excessive energy intake are therefore not necessary for deficits in memory. Weight gain across the diet period however, was correlated with the memory deficits, even in the Chow rats. The Sugar rats had elevated expression of a number of inflammatory genes in the hippocampus and WAT compared to Chow and Caf+Sugar rats but not in the perirhinal cortex or hypothalamus. Blood glucose concentrations were also elevated in the Sugar rats, and were correlated with the hippocampal inflammatory markers. Together, these results indicate that liquid sugar can rapidly elevate markers of central and peripheral inflammation, in association with hyperglycemia, and this may be related to the memory deficits in the Sugar rats.
Collapse
Affiliation(s)
- J E Beilharz
- Department of Pharmacology, School of Medical Sciences, UNSW Australia, UNSW Sydney, NSW 2052, Australia
| | - J Maniam
- Department of Pharmacology, School of Medical Sciences, UNSW Australia, UNSW Sydney, NSW 2052, Australia
| | - M J Morris
- Department of Pharmacology, School of Medical Sciences, UNSW Australia, UNSW Sydney, NSW 2052, Australia.
| |
Collapse
|
150
|
Maniam J, Antoniadis CP, Youngson NA, Sinha JK, Morris MJ. Sugar Consumption Produces Effects Similar to Early Life Stress Exposure on Hippocampal Markers of Neurogenesis and Stress Response. Front Mol Neurosci 2016; 8:86. [PMID: 26834554 PMCID: PMC4717325 DOI: 10.3389/fnmol.2015.00086] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 12/18/2015] [Indexed: 12/11/2022] Open
Abstract
Adverse early life experience is a known risk factor for psychiatric disorders. It is also known that stress influences food preference. We were interested in exploring whether the choice of diet following early life stress exerts long-lasting molecular changes in the brain, particularly the hippocampus, a region critically involved in stress regulation and behavioral outcomes. Here, we examined the impact of early life stress induced by limited nesting material (LN) and chronic sucrose availability post-weaning on an array of hippocampal genes related to plasticity, neurogenesis, stress and inflammatory responses and mitochondrial biogenesis. To examine mechanisms underlying the impact of LN and sugar intake on hippocampal gene expression, we investigated the role of DNA methylation. As females are more likely to experience adverse life events, we studied female Sprague-Dawley rats. After mating LN was imposed from days 2 to 9 postpartum. From 3 to 15 weeks of age, female Control and LN siblings had unlimited to access to either chow and water, or chow, water and 25% sucrose solution. LN markedly reduced glucocorticoid receptor (GR) and neurogenic differentiation 1 (Neurod1) mRNA, markers involved in stress and hippocampal plasticity respectively, by more than 40%, with a similar effect of sugar intake in control rats. However, no further impact was observed in LN rats consuming sugar. Hippocampal Akt3 mRNA expression was similarly affected by LN and sucrose consumption. Interestingly, DNA methylation across 4 CpG sites of the GR and Neurod1 promoters was similar in LN and control rats. In summary, early life stress and post-weaning sugar intake produced long-term effects on hippocampal GR and Neurod1 expression. Moreover we found no evidence of altered promoter DNA methylation. We demonstrate for the first time that chronic sucrose consumption alone produces similar detrimental effects on the expression of hippocampal genes as LN exposure.
Collapse
Affiliation(s)
- Jayanthi Maniam
- Department of Pharmacology, School of Medical Sciences, University of New South Wales Australia Sydney, NSW, Australia
| | - Christopher P Antoniadis
- Department of Pharmacology, School of Medical Sciences, University of New South Wales Australia Sydney, NSW, Australia
| | - Neil A Youngson
- Department of Pharmacology, School of Medical Sciences, University of New South Wales Australia Sydney, NSW, Australia
| | - Jitendra K Sinha
- Endocrinology and Metabolism Division, National Institute of Nutrition, Indian Council of Medical Research Hyderabad, India
| | - Margaret J Morris
- Department of Pharmacology, School of Medical Sciences, University of New South Wales Australia Sydney, NSW, Australia
| |
Collapse
|