101
|
Kaur R, Deb PK, Diwan V, Saini B. Heparanase Inhibitors in Cancer Progression: Recent Advances. Curr Pharm Des 2021; 27:43-68. [PMID: 33185156 DOI: 10.2174/1381612826666201113105250] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 08/25/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND An endo-β-glucuronidase enzyme, Heparanase (HPSE), degrades the side chains of polymeric heparan sulfate (HS), a glycosaminoglycan formed by alternate repetitive units of D-glucosamine and D-glucuronic acid/L-iduronic acid. HS is a major component of the extracellular matrix and basement membranes and has been implicated in processes of the tissue's integrity and functional state. The degradation of HS by HPSE enzyme leads to conditions like inflammation, angiogenesis, and metastasis. An elevated HPSE expression with a poor prognosis and its multiple roles in tumor growth and metastasis has attracted significant interest for its inhibition as a potential anti-neoplastic target. METHODS We reviewed the literature from journal publication websites and electronic databases such as Bentham, Science Direct, PubMed, Scopus, USFDA, etc., about HPSE, its structure, functions, and role in cancer. RESULTS The present review is focused on Heparanase inhibitors (HPIns) that have been isolated from natural resources or chemically synthesized as new therapeutics for metastatic tumors and chronic inflammatory diseases in recent years. The recent developments made in the HPSE structure and function are also discussed, which can lead to the future design of HPIns with more potency and specificity for the target. CONCLUSION HPIns can be a better target to be explored against various cancers.
Collapse
Affiliation(s)
- Rajwinder Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Pran Kishore Deb
- Faculty of Pharmacy, Philadelphia University, Philadelphia, Jordan
| | - Vishal Diwan
- Faculty of Medicine, The University of Queensland, Queensland, Australia
| | - Balraj Saini
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
102
|
Braz-de-Melo HA, Faria SS, Pasquarelli-do-Nascimento G, Santos IDO, Kobinger GP, Magalhães KG. The Use of the Anticoagulant Heparin and Corticosteroid Dexamethasone as Prominent Treatments for COVID-19. Front Med (Lausanne) 2021; 8:615333. [PMID: 33968948 PMCID: PMC8102695 DOI: 10.3389/fmed.2021.615333] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 03/26/2021] [Indexed: 01/08/2023] Open
Abstract
COVID-19 is spreading worldwide at disturbing rates, overwhelming global healthcare. Mounting death cases due to disease complications highlight the necessity of describing efficient drug therapy strategies for severe patients. COVID-19 severity associates with hypercoagulation and exacerbated inflammation, both influenced by ACE2 downregulation and cytokine storm occurrence. In this review, we discuss the applicability of the anticoagulant heparin and the anti-inflammatory corticosteroid dexamethasone for managing severe COVID-19 patients. The upregulated inflammation and blood clotting may be mitigated by administrating heparin and its derivatives. Heparin enhances the anticoagulant property of anti-thrombin (AT) and may be useful in conjunction with fibrinolytic drugs for severe COVID-19 patients. Besides, heparin can also modulate immune responses, alleviating TNF-α-mediated inflammation, impairing IL-6 production and secretion, and binding to complement proteins and leukotriene B4 (LTB4). Moreover, heparin may present anti-SARS-CoV-2 potential once it can impact viral infectivity and alter SARS-CoV-2 Spike protein architecture. Another feasible approach is the administration of the glucocorticoid dexamethasone. Although glucocorticoid's administration for viral infection managing is controversial, there is increasing evidence demonstrating that dexamethasone treatment is capable of drastically diminishing the death rate of patients presenting with Acute Respiratory Distress Syndrome (ARDS) that required invasive mechanical ventilation. Importantly, dexamethasone may be detrimental by impairing viral clearance and inducing hyperglycemia and sodium retention, hence possibly being deleterious for diabetics and hypertensive patients, two major COVID-19 risk groups. Therefore, while heparin's multitarget capacity shows to be strongly beneficial for severe COVID-19 patients, dexamethasone should be carefully administered taking into consideration underlying medical conditions and COVID-19 disease severity. Therefore, we suggest that the multitarget impact of heparin as an anti-viral, antithrombotic and anti-inflammatory drug in the early stage of the COVID-19 could significantly reduce the need for dexamethasone treatment in the initial phase of this disease. If the standard treatment of heparins fails on protecting against severe illness, dexamethasone must be applied as a potent anti-inflammatory shutting-down the uncontrolled and exacerbated inflammation.
Collapse
Affiliation(s)
| | - Sara Socorro Faria
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasilia, Brazil
| | | | - Igor de Oliveira Santos
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasilia, Brazil
| | - Gary P Kobinger
- Département de Microbiologie-Infectiologie et d'Immunologie, Université Laval, Quebec City, QC, Canada.,Centre de Recherche en Infectiologie du CHU de Québec, Université Laval, Quebec City, QC, Canada
| | - Kelly Grace Magalhães
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasilia, Brazil
| |
Collapse
|
103
|
Zoepfl M, Dwivedi R, Taylor MC, Pomin VH, McVoy MA. Antiviral activities of four marine sulfated glycans against adenovirus and human cytomegalovirus. Antiviral Res 2021; 190:105077. [PMID: 33864843 DOI: 10.1016/j.antiviral.2021.105077] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 12/17/2022]
Abstract
Broad-spectrum antivirals are more needed than ever to provide treatment options for novel emerging viruses and for viruses that lack therapeutic options or have developed resistance. A large number of viruses rely on charge-dependent non-specific interactions with heparan sulfate (HS), a highly sulfated glycosaminoglycan (GAG), for attachment to cell surfaces to initiate cell entry. As such, inhibitors targeting virion-HS interactions have potential to have broad-spectrum antiviral activity. Previous research has explored organic and inorganic small molecules, peptides, and GAG mimetics to disrupt virion-HS interactions. Here we report antiviral activities against both enveloped (the herpesvirus human cytomegalovirus) and non-enveloped (adenovirus) DNA viruses for four defined marine sulfated glycans: a sulfated galactan from the red alga Botryocladia occidentalis; a sulfated fucan from the sea urchin Lytechinus variegatus, and a sulfated fucan and a fucosylated chondroitin sulfate from the sea cucumber Isostichopus badionotus. As evidenced by gene expression, time of addition, and treatment/removal assays, all four novel glycans inhibited viral attachment and entry, most likely through interactions with virions. The sulfated fucans, which both lack anticoagulant activity, had similar antiviral profiles, suggesting that their activities are not only due to sulfation content or negative charge density but also due to other physicochemical factors such as the potential conformational shapes of these carbohydrates in solution and upon interaction with virion proteins. The structural and chemical properties of these marine sulfated glycans provide unique opportunities to explore relationships between glycan structure and their antiviral activities.
Collapse
Affiliation(s)
- Mary Zoepfl
- Department of Chemistry, Virginia Commonwealth University, 1001 W Main St, Richmond, VA, 23284, USA
| | - Rohini Dwivedi
- Department of BioMolecular Sciences, University of Mississippi, 417A Faser Hall University, MS, 38677-1848, USA
| | - Maggie C Taylor
- Department of BioMolecular Sciences, University of Mississippi, 417A Faser Hall University, MS, 38677-1848, USA
| | - Vitor H Pomin
- Department of BioMolecular Sciences, University of Mississippi, 417A Faser Hall University, MS, 38677-1848, USA.
| | - Michael A McVoy
- Department of Pediatrics, Virginia Commonwealth University, 1101 E. Marshall Street, Richmond, VA, 23298-0163, USA.
| |
Collapse
|
104
|
Lepedda AJ, Nieddu G, Piperigkou Z, Kyriakopoulou K, Karamanos N, Formato M. Circulating Heparan Sulfate Proteoglycans as Biomarkers in Health and Disease. Semin Thromb Hemost 2021; 47:295-307. [PMID: 33794553 DOI: 10.1055/s-0041-1725063] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cell-surface heparan sulfate proteoglycans (HSPGs) play key roles in regulating cell behavior, cell signaling, and cell matrix interactions in both physiological and pathological conditions. Their soluble forms from glycocalyx shedding are not merely waste products, but, rather, bioactive molecules, detectable in serum, which may be useful as diagnostic and prognostic markers. In addition, as in the case of glypican-3 in hepatocellular carcinoma, they may be specifically expressed by pathological tissue, representing promising targets for immunotherapy. The primary goal of this comprehensive review is to critically survey the main findings of the clinical data from the last 20 years and provide readers with an overall picture of the diagnostic and prognostic value of circulating HSPGs. Moreover, issues related to the involvement of HSPGs in various pathologies, including cardiovascular disease, thrombosis, diabetes and obesity, kidney disease, cancer, trauma, sepsis, but also multiple sclerosis, preeclampsia, pathologies requiring surgery, pulmonary disease, and others will be discussed.
Collapse
Affiliation(s)
| | - Gabriele Nieddu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Zoi Piperigkou
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece.,Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| | - Konstantina Kyriakopoulou
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece.,Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| | - Nikolaos Karamanos
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece.,Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| | - Marilena Formato
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
105
|
Bu C, Jin L. NMR Characterization of the Interactions Between Glycosaminoglycans and Proteins. Front Mol Biosci 2021; 8:646808. [PMID: 33796549 PMCID: PMC8007983 DOI: 10.3389/fmolb.2021.646808] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/24/2021] [Indexed: 12/16/2022] Open
Abstract
Glycosaminoglycans (GAGs) constitute a considerable fraction of the glycoconjugates found on cellular membranes and in the extracellular matrix of virtually all mammalian tissues. The essential role of GAG-protein interactions in the regulation of physiological processes has been recognized for decades. However, the underlying molecular basis of these interactions has only emerged since 1990s. The binding specificity of GAGs is encoded in their primary structures, but ultimately depends on how their functional groups are presented to a protein in the three-dimensional space. This review focuses on the application of NMR spectroscopy on the characterization of the GAG-protein interactions. Examples of interpretation of the complex mechanism and characterization of structural motifs involved in the GAG-protein interactions are given. Selected families of GAG-binding proteins investigated using NMR are also described.
Collapse
Affiliation(s)
- Changkai Bu
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| | - Lan Jin
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| |
Collapse
|
106
|
Pouyan P, Nie C, Bhatia S, Wedepohl S, Achazi K, Osterrieder N, Haag R. Inhibition of Herpes Simplex Virus Type 1 Attachment and Infection by Sulfated Polyglycerols with Different Architectures. Biomacromolecules 2021; 22:1545-1554. [PMID: 33706509 DOI: 10.1021/acs.biomac.0c01789] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inhibition of herpes simplex virus type 1 (HSV-1) binding to the host cell surface by highly sulfated architectures is among the promising strategies to prevent virus entry and infection. However, the structural flexibility of multivalent inhibitors plays a major role in effective blockage and inhibition of virus receptors. In this study, we demonstrate the inhibitory effect of a polymer scaffold on the HSV-1 infection by using highly sulfated polyglycerols with different architectures (linear, dendronized, and hyperbranched). IC50 values for all synthesized sulfated polyglycerols and the natural sulfated polymer heparin were determined using plaque reduction infection assays. Interestingly, an increase in the IC50 value from 0.03 to 374 nM from highly flexible linear polyglycerol sulfate (LPGS) to less flexible scaffolds, namely, dendronized polyglycerol sulfate and hyperbranched polyglycerol sulfate was observed. The most potent LPGS inhibits HSV-1 infection 295 times more efficiently than heparin, and we show that LPGS has a much reduced anticoagulant capacity when compared to heparin as evidenced by measuring the activated partial thromboplastin time. Furthermore, prevention of infection by LPGS and the commercially available drug acyclovir were compared. All tested sulfated polymers do not show any cytotoxicity at concentrations of up to 1 mg/mL in different cell lines. We conclude from our results that more flexible polyglycerol sulfates are superior to less flexible sulfated polymers with respect to inhibition of HSV-1 infection and may constitute an alternative to the current antiviral treatments of this ubiquitous pathogen.
Collapse
Affiliation(s)
- Paria Pouyan
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, Berlin 14195, Germany
| | - Chuanxiong Nie
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, Berlin 14195, Germany.,Institut für Virologie, Robert von Ostertag-Haus, Zentrum für Infektionsmedizin, Freie Universität Berlin, Robert-von-Ostertag-Street 7-13, Berlin 14163, Germany
| | - Sumati Bhatia
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, Berlin 14195, Germany
| | - Stefanie Wedepohl
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee. 22, Berlin 14195, Germany
| | - Katharina Achazi
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee. 22, Berlin 14195, Germany
| | - Nikolaus Osterrieder
- Institut für Virologie, Robert von Ostertag-Haus, Zentrum für Infektionsmedizin, Freie Universität Berlin, Robert-von-Ostertag-Street 7-13, Berlin 14163, Germany.,Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong TYB-1B-507, Hong Kong
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, Berlin 14195, Germany
| |
Collapse
|
107
|
Chen L, Ouyang Y, Yan N, Guo Y, Yi L, Sun Y, Liu D, Zhang Z. Comprehensive analysis of heparinase derived heparin-products using two-dimensional liquid chromatography coupled with mass spectrometry. J Chromatogr A 2021; 1643:462049. [PMID: 33743327 DOI: 10.1016/j.chroma.2021.462049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 02/28/2021] [Accepted: 03/02/2021] [Indexed: 11/17/2022]
Abstract
Heparin is a linear sulfated polysaccharide. It is composed of a repeating disaccharide unit with different sulfo patterns. The compositional analysis after heparin was decomposed to disaccharides and enzyme resistant domains is an important way to delve into its structure. Strong anion exchange (SAX) chromatography is commonly used for the compositional analysis due to its high resolution, stability and capability of quantitation. However, nonvolatile salt in mobile phase is not compatible with MS, then the structural domains cannot be identified without standards. Here, a new two-dimensional liquid chromatography system, multiple heart cut (MHC), was developed and linked to mass spectrometry (MS) directly to provide a comprehensive analysis of enzyme digested heparin. SAX was applied as the first dimensional chromatography, in which 17 peaks were observed and integrated in the digested heparin. Size-exclusion chromatography (SEC) was used as the second dimensional chromatography to desalt efficiently. Structural information of each component was then obtained with MS, including eight common disaccharides, eight enzyme resistant tetrasaccharides and a heparin-core protein linkage domain. The comparison of enzyme digested heparins obtained from different vendors using this system suggested their similar major structure and activity, but slightly different production processes.
Collapse
Affiliation(s)
- Lei Chen
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021, China
| | - Yilan Ouyang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021, China
| | - Na Yan
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021, China
| | - Yan Guo
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021, China
| | - Lin Yi
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021, China
| | - Yuanyuan Sun
- The fourth people's Hospital of Jinan City, Shandong Province, 250031, China
| | - Dehua Liu
- The fourth people's Hospital of Jinan City, Shandong Province, 250031, China
| | - Zhenqing Zhang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021, China.
| |
Collapse
|
108
|
Nishinari K, Fang Y. Molar mass effect in food and health. Food Hydrocoll 2021; 112:106110. [PMID: 32895590 PMCID: PMC7467918 DOI: 10.1016/j.foodhyd.2020.106110] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 12/26/2022]
Abstract
It is demanded to supply foods with good quality for all the humans. With the advent of aging society, palatable and healthy foods are required to improve the quality of life and reduce the burden of finance for medical expenditure. Food hydrocolloids can contribute to this demand by versatile functions such as thickening, gelling, stabilising, and emulsifying, controlling texture and flavour release in food processing. Molar mass effects on viscosity and diffusion in liquid foods, and on mechanical and other physical properties of solid and semi-solid foods and films are overviewed. In these functions, the molar mass is one of the key factors, and therefore, the effects of molar mass on various health problems related to noncommunicable diseases or symptoms such as cancer, hyperlipidemia, hyperglycemia, constipation, high blood pressure, knee pain, osteoporosis, cystic fibrosis and dysphagia are described. Understanding these problems only from the viewpoint of molar mass is limited since other structural characteristics, conformation, branching, blockiness in copolymers such as pectin and alginate, degree of substitution as well as the position of the substituents are sometimes the determining factor rather than the molar mass. Nevertheless, comparison of different behaviours and functions in different polymers from the viewpoint of molar mass is expected to be useful to find a common characteristics, which may be helpful to understand the mechanism in other problems.
Collapse
Affiliation(s)
- Katsuyoshi Nishinari
- Glyn O. Phillips Hydrocolloids Research Centre, School of Food and Biological Engineering, Hubei University of Technology, Wuhan, 430068, PR China
- Department of Food and Nutrition, Graduate School of Human Life Science, Osaka City University, Osaka, 558-6565, Japan
| | - Yapeng Fang
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| |
Collapse
|
109
|
Champanhac C, Haas H, Landfester K, Mailänder V. Heparin modulates the cellular uptake of nanomedicines. Biomater Sci 2021; 9:1227-1231. [PMID: 33570055 DOI: 10.1039/d0bm01946a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Liposomal formulations are used to improve the safety and cellular absorption of conventional drugs by limiting their interaction with phagocytes. The uptake behaviour of these nanocarriers is affected by the blood composition, and accordingly the presence of an anticoagulant in the blood could have a critical impact on the efficiency of nanomedicines. For the negatively charged liposomes, such as AmBisome®, no significant change in the uptake could be observed when co-incubated with heparin and primary phagocytes. Yet, we observed that a peak of the uptake extent of cationic liposomes was reached at a clinically relevant concentration of heparin for phagocytes and cancer cells. Hence, we recommend avoiding treatment of a heparinized patient with cationic nanomedicines because unexpectedly high uptake can occur in phagocytes.
Collapse
Affiliation(s)
- Carole Champanhac
- Max-Planck-Institute for Polymer Research, Ackermannweg 10, 55122 Mainz, Germany.
| | | | | | | |
Collapse
|
110
|
Kozlowski AM, Yates EA, Roubroeks JP, Tømmeraas K, Smith AM, Morris GA. Hydrolytic Degradation of Heparin in Acidic Environments: Nuclear Magnetic Resonance Reveals Details of Selective Desulfation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:5551-5563. [PMID: 33471995 DOI: 10.1021/acsami.0c20198] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Heparin is a complex glycosaminoglycan, derived mainly from pig mucosa, used therapeutically for its anticoagulant activity. Yet, owing largely to the chain complexity, the progressive effects of environmental conditions on heparin structure have not been fully described. A systematic study of the influence of acidic hydrolysis on heparin chain length and substitution has therefore been conducted. Changes in the sulfation pattern, monitored via 2D NMR, revealed initial de-N-sulfation of the molecule (pH 1/ 40 °C) and unexpectedly identified the secondary sulfate of iduronate as more labile than the 6-O-sulfate of glucosamine residues under these conditions (pH 1/ 60 °C). Additionally, the loss of sulfate groups, rather than depolymerization, accounted for most of the reduction in molecular weight. This provides an alternative route to producing partially 2-O-de-sulfated heparin derivatives that avoids using conventional basic conditions and may be of value in the optimization of processes associated with the production of heparin pharmaceuticals.
Collapse
Affiliation(s)
- Aleksandra M Kozlowski
- Biopolymer Research Centre, School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH, United Kingdom
| | - Edwin A Yates
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, United Kingdom
| | | | | | - Alan M Smith
- Biopolymer Research Centre, School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH, United Kingdom
| | - Gordon A Morris
- Biopolymer Research Centre, School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH, United Kingdom
| |
Collapse
|
111
|
Brestoff JR, Wilen CB, Moley JR, Li Y, Zou W, Malvin NP, Rowen MN, Saunders BT, Ma H, Mack MR, Hykes BL, Balce DR, Orvedahl A, Williams JW, Rohatgi N, Wang X, McAllaster MR, Handley SA, Kim BS, Doench JG, Zinselmeyer BH, Diamond MS, Virgin HW, Gelman AE, Teitelbaum SL. Intercellular Mitochondria Transfer to Macrophages Regulates White Adipose Tissue Homeostasis and Is Impaired in Obesity. Cell Metab 2021; 33:270-282.e8. [PMID: 33278339 PMCID: PMC7858234 DOI: 10.1016/j.cmet.2020.11.008] [Citation(s) in RCA: 195] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 09/03/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023]
Abstract
Recent studies suggest that mitochondria can be transferred between cells to support the survival of metabolically compromised cells. However, whether intercellular mitochondria transfer occurs in white adipose tissue (WAT) or regulates metabolic homeostasis in vivo remains unknown. We found that macrophages acquire mitochondria from neighboring adipocytes in vivo and that this process defines a transcriptionally distinct macrophage subpopulation. A genome-wide CRISPR-Cas9 knockout screen revealed that mitochondria uptake depends on heparan sulfates (HS). High-fat diet (HFD)-induced obese mice exhibit lower HS levels on WAT macrophages and decreased intercellular mitochondria transfer from adipocytes to macrophages. Deletion of the HS biosynthetic gene Ext1 in myeloid cells decreases mitochondria uptake by WAT macrophages, increases WAT mass, lowers energy expenditure, and exacerbates HFD-induced obesity in vivo. Collectively, this study suggests that adipocytes and macrophages employ intercellular mitochondria transfer as a mechanism of immunometabolic crosstalk that regulates metabolic homeostasis and is impaired in obesity.
Collapse
Affiliation(s)
- Jonathan R Brestoff
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Craig B Wilen
- Department of Laboratory Medicine and Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - John R Moley
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yongjia Li
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Wei Zou
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nicole P Malvin
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marina N Rowen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Brian T Saunders
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hongming Ma
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Madison R Mack
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO 63110, USA; Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Barry L Hykes
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Dale R Balce
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Vir Biotechnology, San Francisco, CA 94158, USA
| | - Anthony Orvedahl
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jesse W Williams
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nidhi Rohatgi
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Xiaoyan Wang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael R McAllaster
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Scott A Handley
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Brian S Kim
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - John G Doench
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Bernd H Zinselmeyer
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael S Diamond
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Herbert W Virgin
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Vir Biotechnology, San Francisco, CA 94158, USA; Department of Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Andrew E Gelman
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Steven L Teitelbaum
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
112
|
Lin L, Li B, Han X, Zhang F, Zhang X, Linhardt RJ. A rolling circle amplification based platform for ultrasensitive detection of heparin. Analyst 2021; 146:714-720. [PMID: 33226386 PMCID: PMC7855511 DOI: 10.1039/d0an02061c] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Heparin has a variety of pharmacological uses, including applications for anti-tumor metastasis, anti-inflammatory and anti-viral activities and is widely used as a clinical anticoagulant. Due to its widespread applications in the clinical procedures, monitoring heparin levels is critically important to ensure the safe use of heparin and to prevent overdose and complications, such as hemorrhage and thrombocytopenia. However, traditional heparin detection relies on the measurements of the activated clotting time or activated partial thromboplastin time, which are not sufficiently reliable or accurate measurements for certain clinical settings. In this work, we describe a dumbbell probe-aided strategy for ultrasensitive and isothermal detection of heparin based on a uniquely strong protamine-heparin interaction and rolling circle amplification driven signal amplification. The detection limit for heparin is 12.5 ng mL-1 (0.83 nM), which is much lower than the therapeutic level of heparin in cardiovascular surgery (17-67 μM) and in postoperative and long-term treatment (1.7-10 μM). Additionally, the proposed sensing platform works well for heparin monitoring in human plasma samples. This simple and ultrasensitive heparin biosensor has potential application in diagnostics, therapeutics, and in biological research.
Collapse
Affiliation(s)
- Lei Lin
- School of Environment, Nanjing Normal University, Wenyuan Road 1, Nanjing 210023, China
| | | | | | | | | | | |
Collapse
|
113
|
Groult H, Carregal-Romero S, Castejón D, Azkargorta M, Miguel-Coello AB, Pulagam KR, Gómez-Vallejo V, Cousin R, Muñoz-Caffarel M, Lawrie CH, Llop J, Piot JM, Elortza F, Maugard T, Ruiz-Cabello J, Fruitier-Arnaudin I. Heparin length in the coating of extremely small iron oxide nanoparticles regulates in vivo theranostic applications. NANOSCALE 2021; 13:842-861. [PMID: 33351869 DOI: 10.1039/d0nr06378a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The positive contrast of extremely small iron oxide nanoparticles (ESIONP) in magnetic resonance imaging (MRI) rejuvenates this class of metal nanoparticles (NP).Yet, the current synthesis often lacks the possibility of adjusting the core size (while it is a key element for ESIONP-based MRI contrast behaviour), and also involved multiple complex steps before obtaining a ready-to-use probe for medical applications. In this study, we faced these challenges by applying heparin oligosaccharides (HO) of different lengths as coatings for the preparation of HEP-ESIONP with a one-pot microwave method. We demonstrated that the HO length could control the core size during the synthesis to achieve optimal positive MRI contrast, and that HEP-ESIONP were endowed directly with anticoagulant properties and/or a specific antitumor activity, according to the HO used. Relevantly, positron emission tomography (PET)-based in vivo biodistribution study conducted with 68Ga core-doped HEP-ESIONP analogues revealed significant changes in the probe behaviours, the shortening of HO promoting a shift from hepatic to renal clearance. The different conformations of HO coatings and a thorough in vitro characterisation of the probes' protein coronas provided insight into this crucial impact of HO length on opsonization-mediated immune response and elimination. Overall, we were able to identify a precise HO length to get an ESIONP probe showing prolonged vascular lifetime and moderate accumulation in a tumor xenograft, balanced with a low uptake by non-specific organs and favourable urinary clearance. This probe met all prerequisites for advanced theranostic medical applications with a dual MRI/PET hot spot capability and potential antitumor activity.
Collapse
Affiliation(s)
- Hugo Groult
- BCBS team (Biotechnologies et Chimie des Bioressources pour la Santé), LIENSs Laboratory (Littoral environment et Sociétés), UMR CNRS 7266, University of La Rochelle, La Rochelle, France.
| | - Susana Carregal-Romero
- CIC biomaGUNE and Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, Gipuzkoa, Spain. and CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - David Castejón
- Unidad de RMN - CAI Bioimagen Complutense, Universidad Complutense de Madrid, Spain
| | - Mikel Azkargorta
- Proteomics Platform CIC bioGUNE, Bizkaia Science and Technology, Derio, Spain
| | - Ana-Beatriz Miguel-Coello
- CIC biomaGUNE and Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, Gipuzkoa, Spain.
| | - Krishna Reddy Pulagam
- CIC biomaGUNE and Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, Gipuzkoa, Spain.
| | - Vanessa Gómez-Vallejo
- CIC biomaGUNE and Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, Gipuzkoa, Spain.
| | - Rémi Cousin
- BCBS team (Biotechnologies et Chimie des Bioressources pour la Santé), LIENSs Laboratory (Littoral environment et Sociétés), UMR CNRS 7266, University of La Rochelle, La Rochelle, France.
| | - María Muñoz-Caffarel
- Molecular Oncology Group, Biodonostia Health Research Institute, San Sebastian, Spain and Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Charles H Lawrie
- Molecular Oncology Group, Biodonostia Health Research Institute, San Sebastian, Spain and Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Jordi Llop
- CIC biomaGUNE and Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, Gipuzkoa, Spain. and CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Jean-Marie Piot
- BCBS team (Biotechnologies et Chimie des Bioressources pour la Santé), LIENSs Laboratory (Littoral environment et Sociétés), UMR CNRS 7266, University of La Rochelle, La Rochelle, France.
| | - Felix Elortza
- Proteomics Platform CIC bioGUNE, Bizkaia Science and Technology, Derio, Spain
| | - Thierry Maugard
- BCBS team (Biotechnologies et Chimie des Bioressources pour la Santé), LIENSs Laboratory (Littoral environment et Sociétés), UMR CNRS 7266, University of La Rochelle, La Rochelle, France.
| | - Jesús Ruiz-Cabello
- CIC biomaGUNE and Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, Gipuzkoa, Spain. and CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain and Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain and Departamento de Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, Madrid, Spain
| | - Ingrid Fruitier-Arnaudin
- BCBS team (Biotechnologies et Chimie des Bioressources pour la Santé), LIENSs Laboratory (Littoral environment et Sociétés), UMR CNRS 7266, University of La Rochelle, La Rochelle, France.
| |
Collapse
|
114
|
Ray B, Schütz M, Mukherjee S, Jana S, Ray S, Marschall M. Exploiting the Amazing Diversity of Natural Source-Derived Polysaccharides: Modern Procedures of Isolation, Engineering, and Optimization of Antiviral Activities. Polymers (Basel) 2020; 13:E136. [PMID: 33396933 PMCID: PMC7794815 DOI: 10.3390/polym13010136] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/28/2020] [Accepted: 12/28/2020] [Indexed: 12/15/2022] Open
Abstract
Naturally occurring polysaccharide sulfates are highly diverse, owning variations in the backbone structure, linkage pattern and stereochemistry, branching diversity, sulfate content and positions of sulfate group(s). These structural characteristics bring about diverse sulfated polymers with dissimilar negative charge densities and structure-activity relationships. Herein, we start with a short discussion of techniques needed for extraction, purification, chemical sulfation, and structural characterization of polysaccharides. Processes of isolation and sulfation of plant-derived polysaccharides are challenging and usually involve two steps. In this context, we describe an integrated extraction-sulfation procedure that produces polysaccharide sulfates from natural products in one step, thereby generating additional pharmacological activities. Finally, we provide examples of the spectrum of natural source-derived polysaccharides possessing specific features of bioactivity, in particular focusing on current aspects of antiviral drug development and drug-target interaction. Thus, the review presents a detailed view on chemically engineered polysaccharides, especially sulfated derivatives, and underlines their promising biomedical perspectives.
Collapse
Affiliation(s)
- Bimalendu Ray
- Department of Chemistry, The University of Burdwan, Burdwan, West Bengal 713104, India; (B.R.); (S.M.); (S.J.)
| | - Martin Schütz
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University (FAU) of Erlangen-Nürnberg, 91054 Erlangen, Germany;
| | - Shuvam Mukherjee
- Department of Chemistry, The University of Burdwan, Burdwan, West Bengal 713104, India; (B.R.); (S.M.); (S.J.)
| | - Subrata Jana
- Department of Chemistry, The University of Burdwan, Burdwan, West Bengal 713104, India; (B.R.); (S.M.); (S.J.)
| | - Sayani Ray
- Department of Chemistry, The University of Burdwan, Burdwan, West Bengal 713104, India; (B.R.); (S.M.); (S.J.)
| | - Manfred Marschall
- Department of Chemistry, The University of Burdwan, Burdwan, West Bengal 713104, India; (B.R.); (S.M.); (S.J.)
| |
Collapse
|
115
|
Kardeby C, Damaskinaki FN, Sun Y, Watson SP. Is the endogenous ligand for PEAR1 a proteoglycan: clues from the sea. Platelets 2020; 32:779-785. [PMID: 33356751 DOI: 10.1080/09537104.2020.1863938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Platelet Endothelial Aggregation Receptor 1 (PEAR1) is an orphan receptor of unknown function which mediates powerful activation of platelets and endothelial cells in response to crosslinking by antibodies and sulfated polysaccharides belonging to the dextran and fucoidan families. PEAR1 is a single transmembrane protein composed of 15 epidermal growth factor-like repeat sequences and with a conserved binding motif, YXXM, which when phosphorylated binds to phosphoinositide 3-kinase (PI3K). The 13th of the repeats has a heparin-binding sequence that is the site of interaction with the sulfated fucoidans and the only known endogenous ligand FcεRIα. Crosslinking of PEAR1 drives Src family kinase phosphorylation of the cytosolic tail leading to binding and activation of PI3K. In this Opinion Article, we summarize the literature on PEAR1 expression, structure and signaling, and the search for further endogenous ligands. We highlight one article in which phosphorylation of a 150 kDa platelet protein by heparin-containing ligands has been reported and propose that PEAR1 is a receptor for one or more glycosaminoglycan-conjugated proteins (proteoglycans). The up-regulation of PEAR1 at sites of inflammation in the vasculature and its role in angiogenesis suggests a role in the interplay of inflammation, platelets, coagulation, and thromboinflammation. We speculate that this may explain the link between single nucleotide variants in PEAR1 and cardiovascular disease.
Collapse
Affiliation(s)
- Caroline Kardeby
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, West Midlands, UK
| | - Foteini-Nafsika Damaskinaki
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, West Midlands, UK.,Biodiscovery Institute, University of Nottingham, University Park, Nottingham, East Midlands, UK.,Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, The Midlands, UK
| | - Yi Sun
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, West Midlands, UK.,Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, The Midlands, UK
| | - Stephen P Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, West Midlands, UK.,Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, The Midlands, UK
| |
Collapse
|
116
|
Arnold K, Liao YE, Liu J. Potential Use of Anti-Inflammatory Synthetic Heparan Sulfate to Attenuate Liver Damage. Biomedicines 2020; 8:E503. [PMID: 33207634 PMCID: PMC7697061 DOI: 10.3390/biomedicines8110503] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/12/2020] [Accepted: 11/14/2020] [Indexed: 12/28/2022] Open
Abstract
Heparan sulfate is a highly sulfated polysaccharide abundant on the surface of hepatocytes and surrounding extracellular matrix. Emerging evidence demonstrates that heparan sulfate plays an important role in neutralizing the activities of proinflammatory damage associate molecular patterns (DAMPs) that are released from hepatocytes under pathological conditions. Unlike proteins and nucleic acids, isolation of homogenous heparan sulfate polysaccharides from biological sources is not possible, adding difficulty to study the functional role of heparan sulfate. Recent advancement in the development of a chemoenzymatic approach allows production of a large number of structurally defined oligosaccharides. These oligosaccharides are used to probe the physiological functions of heparan sulfate in liver damage under different pathological conditions. The findings provide a potential new therapeutic agent to treat liver diseases that are associated with excessive inflammation.
Collapse
Affiliation(s)
| | | | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA; (K.A.); (Y.-E.L.)
| |
Collapse
|
117
|
Conzelmann C, Müller JA, Perkhofer L, Sparrer KM, Zelikin AN, Münch J, Kleger A. Inhaled and systemic heparin as a repurposed direct antiviral drug for prevention and treatment of COVID-19. Clin Med (Lond) 2020; 20:e218-e221. [PMID: 32863274 PMCID: PMC7687307 DOI: 10.7861/clinmed.2020-0351] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Here, we advocate a highly favourable opportunity for the treatment of COVID-19 disease by repurposing a long-serving medical agent with an excellent history of clinical use, namely heparin. Heparin is best known as an anticoagulant, but it also exhibits direct antiviral activity against many enveloped viruses and has anti-inflammatory activity. The high incidence of thromboembolic events in COVID-19 patients suggests that coagulopathy plays an important role in the SARS-CoV-2 pathogenesis. This already makes heparin a unique, potentially curative agent that can be used immediately to help resolve the ongoing crisis associated with SARS-CoV-2 infection and COVID-19 disease. We demonstrate here in vitro that heparin does indeed inhibit SARS-CoV-2 infection. The three concurrent modes of activity of heparin (antiviral, anticoagulant and anti-inflammatory) against SARS-CoV-2/COVID-19 form a unique therapeutic combination. Thus, repurposing of heparin to fight SARS-CoV-2 and COVID-19 appears to be a powerful, readily available measure to address the current pandemic.
Collapse
Affiliation(s)
- Carina Conzelmann
- Institute of Molecular Virology, Ulm University Medical Centre, Ulm, Germany
- *equal contributions
| | - Janis A Müller
- Institute of Molecular Virology, Ulm University Medical Centre, Ulm, Germany
- *equal contributions
| | - Lukas Perkhofer
- Department of Internal Medicine, Ulm University Hospital, Ulm, Germany
| | | | - Alexander N Zelikin
- Department of Chemistry and iNano Interdisciplinary Nanoscience Centre, Aarhus University, Aarhus, Denmark
- #equal contribution and joint supervision
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Centre, Ulm, Germany
| | - Alexander Kleger
- Department of Internal Medicine, Ulm University Hospital, Ulm, Germany
- #equal contribution and joint supervision
| |
Collapse
|
118
|
Clauder F, Möller S, Köhling S, Bellmann‐Sickert K, Rademann J, Schnabelrauch M, Beck‐Sickinger AG. Peptide‐mediated surface coatings for the release of wound‐healing cytokines. J Tissue Eng Regen Med 2020; 14:1738-1748. [DOI: 10.1002/term.3123] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 07/20/2020] [Accepted: 08/26/2020] [Indexed: 01/07/2023]
Affiliation(s)
- Franziska Clauder
- Institute of Biochemistry, Faculty of Life Sciences Leipzig University Leipzig Germany
| | | | - Sebastian Köhling
- Institute of Pharmacy, Medicinal Chemistry Freie Universität Berlin Berlin Germany
| | | | - Jörg Rademann
- Institute of Pharmacy, Medicinal Chemistry Freie Universität Berlin Berlin Germany
| | | | | |
Collapse
|
119
|
Arnold K, Xu Y, Liao YE, Cooley BC, Pawlinski R, Liu J. Synthetic anticoagulant heparan sulfate attenuates liver ischemia reperfusion injury. Sci Rep 2020; 10:17187. [PMID: 33057098 PMCID: PMC7566620 DOI: 10.1038/s41598-020-74275-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 09/29/2020] [Indexed: 12/18/2022] Open
Abstract
Heparan sulfate (HS) is a sulfated glycosaminoglycan abundant on the cell surface and in the extracellular matrix and has several biological activities including anticoagulation and anti-inflammation. Liver ischemia reperfusion injury is associated with coagulation and inflammatory responses. Here, we synthesized HS oligosaccharides with defined sulfation patterns and show that synthetic anticoagulant HS oligosaccharides limit liver ischemia reperfusion injury in a mouse model. Using a small targeted HS library, we demonstrate that an oligosaccharide that possesses both anticoagulant activity and binding affinity to HMGB1, the inflammatory target, decreases injury greater than oligosaccharides that only bind to HMGB1 or only have anticoagulant activity. HS oligosaccharides may represent a potential new therapeutic option for decreasing liver damage resulting from ischemia reperfusion injury.
Collapse
Affiliation(s)
- Katelyn Arnold
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Yongmei Xu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Yi-En Liao
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Brian C Cooley
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Rafal Pawlinski
- Division of Hematology/Oncology, Department of Medicine, UNC Blood Research Center, University of North Carolina, Chapel Hill, NC, USA
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
120
|
Dehghani T, Panitch A. Endothelial cells, neutrophils and platelets: getting to the bottom of an inflammatory triangle. Open Biol 2020; 10:200161. [PMID: 33050789 PMCID: PMC7653352 DOI: 10.1098/rsob.200161] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023] Open
Abstract
Severe fibrotic and thrombotic events permeate the healthcare system, causing suffering for millions of patients with inflammatory disorders. As late-state consequences of chronic inflammation, fibrosis and thrombosis are the culmination of pathological interactions of activated endothelium, neutrophils and platelets after vessel injury. Coupling of these three cell types ensures a pro-coagulant, cytokine-rich environment that promotes the capture, activation and proliferation of circulating immune cells and recruitment of key pro-fibrotic cell types such as myofibroblasts. As the first responders to sterile inflammatory injury, it is important to understand how endothelial cells, neutrophils and platelets help create this environment. There has been a growing interest in this intersection over the past decade that has helped shape the development of therapeutics to target these processes. Here, we review recent insights into how neutrophils, platelets and endothelial cells guide the development of pathological vessel repair that can also result in underlying tissue fibrosis. We further discuss recent efforts that have been made to translate this knowledge into therapeutics and provide perspective as to how a compound or combination therapeutics may be most efficacious when tackling fibrosis and thrombosis that is brought upon by chronic inflammation.
Collapse
Affiliation(s)
| | - Alyssa Panitch
- Department of Biomedical Engineering, University of California, Davis, 451 Health Sciences Drive, GBSF 2303, Davis, CA, USA
| |
Collapse
|
121
|
Aslani S, Kabiri M, HosseinZadeh S, Hanaee-Ahvaz H, Taherzadeh ES, Soleimani M. The applications of heparin in vascular tissue engineering. Microvasc Res 2020; 131:104027. [DOI: 10.1016/j.mvr.2020.104027] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 02/06/2023]
|
122
|
Costanzo L, Palumbo FP, Ardita G, Antignani PL, Arosio E, Failla G. Coagulopathy, thromboembolic complications, and the use of heparin in COVID-19 pneumonia. J Vasc Surg Venous Lymphat Disord 2020; 8:711-716. [PMID: 32561465 PMCID: PMC7297687 DOI: 10.1016/j.jvsv.2020.05.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/22/2020] [Indexed: 01/08/2023]
Abstract
The SARS-CoV-2 (COVID-19) is causing a pandemic and potentially fatal disease of global public health concern. Viral infections are known to be associated with coagulation impairment; thus, thrombosis, hemorrhage, or both may occur. Understanding the pathophysiologic mechanisms underlying the development of coagulation disorders during viral infection is essential for the development of therapeutic strategies. Coagulopathy in COVID-19 infection is emerging as a precipitant factor for severe respiratory complications and death. An increase in coagulation markers, such as fibrinogen and D-dimer, has been found in severe COVID-19 cases. Heparin, clinically used as an anticoagulant, also has anti-inflammatory properties, including binding of inflammatory cytokines, inhibition of neutrophil chemotaxis, and protection of endothelial cells, and a potential antiviral effect. We hypothesized that low-molecular-weight heparin may attenuate cytokine storm in COVID-19 patients; therefore, low-molecular-weight heparin could be a valid adjunctive therapeutic drug for the treatment of COVID-19 pneumopathy. In this paper, we review potential mechanisms involved in coagulation impairment after viral infection and the possible role of heparin in the treatment of COVID-19 patients.
Collapse
Affiliation(s)
- Luca Costanzo
- Angiology Unit, San Marco Hospital, Department of Cardiovascular Disease, A.O.U. "Policlinico-Vittorio Emanuele", University of Catania, Catania, Italy.
| | - Francesco Paolo Palumbo
- Angiology Unit, San Marco Hospital, Department of Cardiovascular Disease, A.O.U. "Policlinico-Vittorio Emanuele", University of Catania, Catania, Italy
| | - Giorgio Ardita
- Angiology Unit, San Marco Hospital, Department of Cardiovascular Disease, A.O.U. "Policlinico-Vittorio Emanuele", University of Catania, Catania, Italy
| | | | - Enrico Arosio
- Department of Medicine, University of Verona, Verona, Italy
| | - Giacomo Failla
- Angiology Unit, San Marco Hospital, Department of Cardiovascular Disease, A.O.U. "Policlinico-Vittorio Emanuele", University of Catania, Catania, Italy
| |
Collapse
|
123
|
Beurskens DMH, Huckriede JP, Schrijver R, Hemker HC, Reutelingsperger CP, Nicolaes GAF. The Anticoagulant and Nonanticoagulant Properties of Heparin. Thromb Haemost 2020; 120:1371-1383. [PMID: 32820487 DOI: 10.1055/s-0040-1715460] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Heparins represent one of the most frequently used pharmacotherapeutics. Discovered around 1926, routine clinical anticoagulant use of heparin was initiated only after the publication of several seminal papers in the early 1970s by the group of Kakkar. It was shown that heparin prevents venous thromboembolism and mortality from pulmonary embolism in patients after surgery. With the subsequent development of low-molecular-weight heparins and synthetic heparin derivatives, a family of related drugs was created that continues to prove its clinical value in thromboprophylaxis and in prevention of clotting in extracorporeal devices. Fundamental and applied research has revealed a complex pharmacodynamic profile of heparins that goes beyond its anticoagulant use. Recognition of the complex multifaceted beneficial effects of heparin underscores its therapeutic potential in various clinical situations. In this review we focus on the anticoagulant and nonanticoagulant activities of heparin and, where possible, discuss the underlying molecular mechanisms that explain the diversity of heparin's biological actions.
Collapse
Affiliation(s)
- Danielle M H Beurskens
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Joram P Huckriede
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Roy Schrijver
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - H Coenraad Hemker
- Synapse BV, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Chris P Reutelingsperger
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Gerry A F Nicolaes
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
124
|
The Antitumor Effect of Heparin is not Mediated by Direct NK Cell Activation. J Clin Med 2020; 9:jcm9082666. [PMID: 32824699 PMCID: PMC7463539 DOI: 10.3390/jcm9082666] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/07/2020] [Accepted: 08/11/2020] [Indexed: 01/04/2023] Open
Abstract
Natural killer (NK) cells are innate lymphocytes responsible for the elimination of infected or transformed cells. The activation or inhibition of NK cells is determined by the balance of target cell ligand recognition by stimulatory and inhibitory receptors on their surface. Previous reports have suggested that the glycosaminoglycan heparin is a ligand for the natural cytotoxicity receptors NKp30, NKp44 (human), and NKp46 (both human and mouse). However, the effects of heparin on NK cell homeostasis and function remain unclear. Here, we show that heparin does not enhance NK cell proliferation or killing through NK cell activation. Alternatively, in mice models, heparin promoted NK cell survival in vitro and controlled B16-F10 melanoma metastasis development in vivo. In human NK cells, heparin promisingly increased interferon (IFN)-γ production in synergy with IL-12, although the mechanism remains elusive. Our data showed that heparin is not able to increase NK cell cytotoxicity.
Collapse
|
125
|
Derbalah A, Duffull S, Newall F, Moynihan K, Al-Sallami H. Revisiting the Pharmacology of Unfractionated Heparin. Clin Pharmacokinet 2020; 58:1015-1028. [PMID: 30850987 DOI: 10.1007/s40262-019-00751-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Unfractionated heparin (UFH) is a commonly used anticoagulant therapy for the acute treatment and prevention of thrombosis. Its short duration of action, reversibility of effect by protamine sulfate, and extensive clinical experience are some of the advantages that support its use. However, the choice of dose and dosing regimen of UFH remains challenging for several reasons. First, UFH has a narrow therapeutic window and wide variability in the dose-response relationship. Second, its pharmacodynamic (PD) properties are difficult to characterise owing to the complex multidimensional mechanisms of interaction with the haemostatic system. Third, the complex heterogeneous chemical composition of UFH precludes precise characterisation of its pharmacokinetic (PK) properties. This review provides a comprehensive mechanistic approach to the interaction of UFH with the haemostatic system. The effect of chemical structure on its PK and PD properties is quantitatively described, and a framework for characterisation of the dose-response relationship of UFH for the purpose of dose optimisation is proposed.
Collapse
Affiliation(s)
| | - Stephen Duffull
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - Fiona Newall
- Department of Nursing, The University of Melbourne, Parkville, VIC, Australia.,Department of Paediatrics, The Royal Children's Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Katie Moynihan
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA.,Department of Paediatrics, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
126
|
Optimization of the Composition and Production Technology of Fucoidan Tablets and their Biopharmaceutical Evaluation. Pharm Chem J 2020. [DOI: 10.1007/s11094-020-02237-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
127
|
Khalil AS, Xie AW, Johnson HJ, Murphy WL. Sustained release and protein stabilization reduce the growth factor dosage required for human pluripotent stem cell expansion. Biomaterials 2020; 248:120007. [PMID: 32302801 PMCID: PMC8445021 DOI: 10.1016/j.biomaterials.2020.120007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 02/24/2020] [Accepted: 03/24/2020] [Indexed: 12/17/2022]
Abstract
Translation of human pluripotent stem cell (hPSC)-derived therapies to the clinic demands scalable, cost-effective methods for cell expansion. Culture media currently used for hPSC expansion rely on high concentrations and frequent supplementation of recombinant growth factors due to their short half-life at physiological temperatures. Here, we developed a biomaterial strategy using mineral-coated microparticles (MCMs) to sustain delivery of basic fibroblast growth factor (bFGF), a thermolabile protein critical for hPSC pluripotency and proliferation. We show that the MCMs stabilize bFGF against thermally induced activity loss and provide more efficient sustained release of active growth factor compared to polymeric carriers commonly used for growth factor delivery. Using a statistically driven optimization approach called Design of Experiments, we generated a bFGF-loaded MCM formulation that supported hPSC expansion over 25 passages without the need for additional bFGF supplementation to the media, resulting in greater than 80% reduction in bFGF usage compared to standard approaches. This materials-based strategy to stabilize and sustain delivery of a thermolabile growth factor has broad potential to reduce costs associated with recombinant protein supplements in scalable biomanufacturing of emerging cell therapies.
Collapse
Affiliation(s)
- Andrew S Khalil
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Angela W Xie
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Hunter J Johnson
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - William L Murphy
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53705, USA; Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, 53705, USA; Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| |
Collapse
|
128
|
Niu C, Zhao Y, Bobst CE, Savinov SN, Kaltashov IA. Identification of Protein Recognition Elements within Heparin Chains Using Enzymatic Foot-Printing in Solution and Online SEC/MS. Anal Chem 2020; 92:7565-7573. [PMID: 32347711 DOI: 10.1021/acs.analchem.0c00115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Understanding molecular mechanisms governing interactions of glycosaminoglycans (such as heparin) with proteins remains challenging due to their enormous structural heterogeneity. Commonly accepted approaches seek to reduce the structural complexity by searching for "binding epitopes" within the limited subsets of short heparin oligomers produced either enzymatically or synthetically. A top-down approach presented in this work seeks to preserve the chemical diversity displayed by heparin by allowing the longer and structurally diverse chains to interact with the client protein. Enzymatic lysis of the protein-bound heparin chains followed by the product analysis using size exclusion chromatography with online mass spectrometry detection (SEC/MS) reveals the oligomers that are protected from lysis due to their tight association with the protein, and enables their characterization (both the oligomer length, and the number of incorporated sulfate and acetyl groups). When applied to a paradigmatic heparin/antithrombin system, the new method generates a series of oligomers with surprisingly distinct sulfation levels. The extent of sulfation of the minimal-length binder (hexamer) is relatively modest yet persistent, consistent with the notion of six sulfate groups being both essential and sufficient for antithrombin binding. However, the masses of longer surviving chains indicate complete sulfation of disaccharides beyond the hexasaccharide core. Molecular dynamics simulations confirm the existence of favorable electrostatic interactions between the high charge-density saccharide residues flanking the "canonical" antithrombin-binding hexasaccharide and the positive patch on the surface of the overall negatively charged protein. Furthermore, electrostatics may rescue the heparin/protein interaction in the absence of the canonical binding element.
Collapse
Affiliation(s)
- Chendi Niu
- Chemistry Department, University of Massachusetts-Amherst, 240 Thatcher Way, Amherst, Massachusetts 01003, United States
| | - Yunlong Zhao
- Chemistry Department, University of Massachusetts-Amherst, 240 Thatcher Way, Amherst, Massachusetts 01003, United States
| | - Cedric E Bobst
- Chemistry Department, University of Massachusetts-Amherst, 240 Thatcher Way, Amherst, Massachusetts 01003, United States
| | - Sergey N Savinov
- Biochemistry and Molecular Biology Department, University of Massachusetts-Amherst, 240 Thatcher Way, Amherst, Massachusetts 01003, United States
| | - Igor A Kaltashov
- Chemistry Department, University of Massachusetts-Amherst, 240 Thatcher Way, Amherst, Massachusetts 01003, United States
| |
Collapse
|
129
|
Prakash AV, Park JW, Seong JW, Kang TJ. Repositioned Drugs for Inflammatory Diseases such as Sepsis, Asthma, and Atopic Dermatitis. Biomol Ther (Seoul) 2020; 28:222-229. [PMID: 32133828 PMCID: PMC7216745 DOI: 10.4062/biomolther.2020.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/11/2020] [Accepted: 02/17/2020] [Indexed: 12/14/2022] Open
Abstract
The process of drug discovery and drug development consumes billions of dollars to bring a new drug to the market. Drug development is time consuming and sometimes, the failure rates are high. Thus, the pharmaceutical industry is looking for a better option for new drug discovery. Drug repositioning is a good alternative technology that has demonstrated many advantages over de novo drug development, the most important one being shorter drug development timelines. In the last two decades, drug repositioning has made tremendous impact on drug development technologies. In this review, we focus on the recent advances in drug repositioning technologies and discuss the repositioned drugs used for inflammatory diseases such as sepsis, asthma, and atopic dermatitis.
Collapse
Affiliation(s)
- Annamneedi Venkata Prakash
- Convergence Research Center, Department of Pharmacy and Institute of Chronic Disease, Sahmyook University, Seoul 01795, Republic of Korea
| | - Jun Woo Park
- Convergence Research Center, Department of Pharmacy and Institute of Chronic Disease, Sahmyook University, Seoul 01795, Republic of Korea
| | - Ju-Won Seong
- Convergence Research Center, Department of Pharmacy and Institute of Chronic Disease, Sahmyook University, Seoul 01795, Republic of Korea
| | - Tae Jin Kang
- Convergence Research Center, Department of Pharmacy and Institute of Chronic Disease, Sahmyook University, Seoul 01795, Republic of Korea
| |
Collapse
|
130
|
Weiss RJ, Spahn PN, Toledo AG, Chiang AWT, Kellman BP, Li J, Benner C, Glass CK, Gordts PLSM, Lewis NE, Esko JD. ZNF263 is a transcriptional regulator of heparin and heparan sulfate biosynthesis. Proc Natl Acad Sci U S A 2020; 117:9311-9317. [PMID: 32277030 PMCID: PMC7196839 DOI: 10.1073/pnas.1920880117] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Heparin is the most widely prescribed biopharmaceutical in production globally. Its potent anticoagulant activity and safety makes it the drug of choice for preventing deep vein thrombosis and pulmonary embolism. In 2008, adulterated material was introduced into the heparin supply chain, resulting in several hundred deaths and demonstrating the need for alternate sources of heparin. Heparin is a fractionated form of heparan sulfate derived from animal sources, predominantly from connective tissue mast cells in pig mucosa. While the enzymes involved in heparin biosynthesis are identical to those for heparan sulfate, the factors regulating these enzymes are not understood. Examination of the promoter regions of all genes involved in heparin/heparan sulfate assembly uncovered a transcription factor-binding motif for ZNF263, a C2H2 zinc finger protein. CRISPR-mediated targeting and siRNA knockdown of ZNF263 in mammalian cell lines and human primary cells led to dramatically increased expression levels of HS3ST1, a key enzyme involved in imparting anticoagulant activity to heparin, and HS3ST3A1, another glucosaminyl 3-O-sulfotransferase expressed in cells. Enhanced 3-O-sulfation increased binding to antithrombin, which enhanced Factor Xa inhibition, and binding of neuropilin-1. Analysis of transcriptomics data showed distinctively low expression of ZNF263 in mast cells compared with other (non-heparin-producing) immune cells. These findings demonstrate a novel regulatory factor in heparan sulfate modification that could further advance the possibility of bioengineering anticoagulant heparin in cultured cells.
Collapse
Affiliation(s)
- Ryan J Weiss
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093-0687
| | - Philipp N Spahn
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093-0760
| | - Alejandro Gómez Toledo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093-0687
| | - Austin W T Chiang
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093-0760
| | - Benjamin P Kellman
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093-0760
| | - Jing Li
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093-0687
| | - Christopher Benner
- Department of Medicine, University of California San Diego, La Jolla, CA 92093-0687
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093-0687
- Department of Medicine, University of California San Diego, La Jolla, CA 92093-0687
| | - Philip L S M Gordts
- Department of Medicine, University of California San Diego, La Jolla, CA 92093-0687
- Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA 92093-0687
| | - Nathan E Lewis
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093-0760
- Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA 92093-0687
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093-0687
| | - Jeffrey D Esko
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093-0687;
- Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA 92093-0687
| |
Collapse
|
131
|
Belen-Apak FB, Sarialioglu F. The old but new: Can unfractioned heparin and low molecular weight heparins inhibit proteolytic activation and cellular internalization of SARS-CoV2 by inhibition of host cell proteases? Med Hypotheses 2020; 142:109743. [PMID: 32335456 PMCID: PMC7169882 DOI: 10.1016/j.mehy.2020.109743] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 04/15/2020] [Indexed: 12/27/2022]
Abstract
Currently, our world is facing the 2019 Novel Coronavirus (COVID-19) outbreak and tremendous efforts are made for developing drugs to treat and vaccines to prevent the disease. At present, there is no specific antiviral drug or vaccine for COVID-19. The pathogenic infectivity of the virus requires the S1 subunit of the spike (S) protein to bind the host cell receptor, angiontensin converting enzyme (ACE2). While the binding to host cell receptor is the first step of infection, the entrance of the virus into the cell needs the cleavage of S1–S2 subunits to expose S2 for fusion to cell membrane via host proteases including cathepsins, cell surface transmembrane protease/serine (TMPRSS) proteases, furin, trypsin and factor Xa. Previous in vitro studies have shown that factor Xa inhibition can decrease viral infectivity. We suppose that host cell proteases including furin (as expressed highly in lungs), factor Xa and cathepsin are possible targets to decrease viral burden, therefore unfractioned heparin and low molecular weight heparin-LMWH (specifically dalteparin and tinzaparin for their anti inflammatory action) can be potential inhibitors of multiple endoproteases involved in virus infectivity. Our hypothesis needs to be tested in in vitro and clinical studies, however as we are in an urgent situation as the burden of SARS-CoV2 is increasing all around the world, we recommend the usage of unfractioned heparin or LMWH in intensive care unit (ICU) and non-ICU hospitalized patients with the risk–benefit judgement of the clinician. Whether our hypothesis is clinically applicable and successful in decreasing viral infection will be evaluated for further studies.
Collapse
Affiliation(s)
- F B Belen-Apak
- Baskent University Medical Faculty, Department of Pediatric Hematology and Oncology, Ankara, Turkey.
| | - F Sarialioglu
- Baskent University Medical Faculty, Department of Pediatric Hematology and Oncology, Ankara, Turkey
| |
Collapse
|
132
|
Sankaranarayanan NV, Bi Y, Kuberan B, Desai UR. Combinatorial virtual library screening analysis of antithrombin binding oligosaccharide motif generation by heparan sulfate 3- O-Sulfotransferase 1. Comput Struct Biotechnol J 2020; 18:933-941. [PMID: 32346466 PMCID: PMC7183009 DOI: 10.1016/j.csbj.2020.03.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/07/2020] [Accepted: 03/08/2020] [Indexed: 12/31/2022] Open
Abstract
Pharmaceutical heparin's activity arises from a key high affinity and high selectivity antithrombin binding motif, which forms the basis for its use as an anticoagulant. The current problems with the supply of pig heparin raises the emphasis of understanding heparin biosynthesis so as to control and advance recombinantly expressed agent that could bypass the need for animals. Unfortunately, much remains to be understood about the generation of the antithrombin-binding motif by the key enzyme involved in its biosynthesis, 3-O-sulfotransferase-1 (3OST-1). In this work, we present a novel computational approach to understand recognition of oligosaccharide sequences by 3OST-1. Application of combinatorial virtual library screening (CVLS) algorithm on hundreds of tetrasaccharide and hexasaccharide sequences shows that 3OST-1 belongs to the growing number of proteins that recognize glycosaminoglycans with very high selectivity. It prefers very well defined pentasaccharide sequences carrying distinct groups in each of the five residues to generate the antithrombin binding motif. CVLS also identifies key residues including His271, Arg72, Arg197 and Lys173, which interact with 6-sulfate, 5-COO¯, 2-/6-sulfates and 2-sulfate at the -2, -1, +2, and +1 positions of the precursor pentasaccharide, respectively. Additionally, uncharged residues, especially Gln163 and Asn167, were also identified as playing important roles in recognition. Overall, the success of CVLS in predicting 3OST-1 recognition characteristics that help engineer selectivity lead to the expectation that recombinant enzymes could be designed to help resolve the current problems in the supply of anticoagulant heparin.
Collapse
Affiliation(s)
- Nehru Viji Sankaranarayanan
- Department of Medicinal Chemistry and Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA, United States
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA, United States
| | - Yiling Bi
- Departments of Biology, Bioengineering & Medicinal Chemistry and Interdepartmental Program in Neurosciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Balagurunathan Kuberan
- Departments of Biology, Bioengineering & Medicinal Chemistry and Interdepartmental Program in Neurosciences, University of Utah, Salt Lake City, UT 84112, USA
- Interdepartmental Program in Neurosciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Umesh R. Desai
- Department of Medicinal Chemistry and Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA, United States
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
133
|
Lin YP, Yu Y, Marcinkiewicz AL, Lederman P, Hart TM, Zhang F, Linhardt RJ. Non-anticoagulant Heparin as a Pre-exposure Prophylaxis Prevents Lyme Disease Infection. ACS Infect Dis 2020; 6:503-514. [PMID: 31961652 DOI: 10.1021/acsinfecdis.9b00425] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Lyme disease (LD) is caused by the spirochete Borrelia burgdorferi sensu lato (Bbsl). After transmission to humans by ticks, Bbsl spreads to multiple organs, leading to arthritis, carditis, and neuroborreliosis. No effective prophylaxis against human LD prior to tick exposure is currently available. Thus, a pre-exposure prophylaxis (PrEP) against LD is needed. The establishment of LD bacteria at diverse sites is dictated partly by the binding of Bbsl to proteoglycans (PGs) and glycosaminoglycans (GAGs) in tissues. The drug heparin is structurally similar to these GAGs and inhibits Bbsl attachment to PGs, GAGs, cells, and tissues, suggesting its potential to prevent LD. However, the anticoagulant activity of heparin often results in hemorrhage, hampering the development of this compound as LD PrEP. We have previously synthesized a non-anticoagulant version of heparin (NACH), which was verified for safety in mice and humans. Here, we showed that NACH blocks Bbsl attachment to PGs, GAGs, and mammalian cells. We also found that treating mice with NACH prior to the exposure of ticks carrying Bbsl followed by continuous administration of this compound prevents tissue colonization by Bbsl. Furthermore, NACH-treated mice develop greater levels of IgG and IgM against Bbsl at early stages of infection, suggesting that the upregulation of antibody immune responses may be one of the mechanisms for NACH-mediated LD prevention. This is one of the first studies examining the ability of a heparin-based compound to prevent LD prior to tick exposure. The information presented might also be extended to prevent other infectious diseases agents.
Collapse
Affiliation(s)
- Yi-Pin Lin
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, 120 New Scotland Avenue, Albany, New York 12208, United States
- Department of Biomedical Sciences, State University of New York at Albany, 1400 Washington Avenue, Albany, New York 12222, United States
| | - Yanlei Yu
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, United States
| | - Ashley L. Marcinkiewicz
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, 120 New Scotland Avenue, Albany, New York 12208, United States
| | - Patricia Lederman
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, 120 New Scotland Avenue, Albany, New York 12208, United States
| | - Thomas M. Hart
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, 120 New Scotland Avenue, Albany, New York 12208, United States
- Department of Biological Science, State University of New York at Albany, 1400 Washington Avenue, Albany, New York 12222, United States
| | - Fuming Zhang
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, United States
| | - Robert J. Linhardt
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, United States
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, United States
- Departments of Biology and Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, United States
| |
Collapse
|
134
|
Wang Y, Ma B, Yin A, Zhang B, Luo R, Pan J, Wang Y. Polycaprolactone vascular graft with epigallocatechin gallate embedded sandwiched layer-by-layer functionalization for enhanced antithrombogenicity and anti-inflammation. J Control Release 2020; 320:226-238. [PMID: 31982435 DOI: 10.1016/j.jconrel.2020.01.043] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 01/18/2020] [Accepted: 01/21/2020] [Indexed: 11/15/2022]
Abstract
Small-diameter artificial vascular grafts modified with layer-by-layer (LBL) coating show promise in reducing the failure caused by thrombosis and inflammation, but undesirable stability and bioactivity issues of the coating and payload usually limits their long-term efficacy. Herein, inspired by catechol/gallol surface chemistry, a sandwiched layer-by-layer coating constructed by polyethyleneimine (PEI) and heparin with the embedding of epigallocatechin gallate (EGCG)-dexamethasone combination was used to modify the electrospun polycaprolactone (PCL) vascular grafts. Polyphenol embedding endowed the coating with abundant intermolecular interactions between each coating components, mainly contributed by the π-π stacking, weak intermolecular cross-linking and enriched hydrogen bonding, which further enhanced the coating stability and also supported the sustained release of the payloads, like polyelectrolytes and drugs. Compared with the conventional LBL coating, the loading amounts of heparin and dexamethasone in the EGCG embedded LBL coatings doubled and the drug release could be significantly prolonged without serious initial burst. The in vitro and ex vivo assays indicated that the modified PCL vascular grafts would address impressive prolonged anti-platelet adhesion/activation and anti-fibrinogen denaturation ability. Meanwhile, the dexamethasone loading entrusted the sandwiched LBL coating with mild tissue response, in terms of inhibiting the macrophage activation. These results strongly demonstrated that the sandwiched LBL coating with EGCG embedding was an effective method to improve the patency rates of PCL small artificial vascular grafts, which could also be extended to other blood-contacting materials.
Collapse
Affiliation(s)
- Yanan Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China
| | - Boxuan Ma
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China
| | - Anlin Yin
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China
| | - Bo Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China
| | - Rifang Luo
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Junqiang Pan
- Department of Cardiovascular Medicine, Xi'an Central Hospital, Xi'an 710003, China.
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China.
| |
Collapse
|
135
|
Clauder F, Zitzmann FD, Friebe S, Mayr SG, Robitzki AA, Beck-Sickinger AG. Multifunctional coatings combining bioactive peptides and affinity-based cytokine delivery for enhanced integration of degradable vascular grafts. Biomater Sci 2020; 8:1734-1747. [DOI: 10.1039/c9bm01801h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mussel-derived surface coatings present integrin- and heparin-binding peptides for cell adhesion and modulator protein delivery to improve the endothelialization of biodegradable cardiovascular implants.
Collapse
Affiliation(s)
- Franziska Clauder
- Institute of Biochemistry
- Faculty of Life Sciences
- Leipzig University
- 04103 Leipzig
- Germany
| | - Franziska D. Zitzmann
- Centre for Biotechnology and Biomedicine (BBZ)/Institute of Biochemistry
- Faculty of Life Sciences
- Leipzig University
- 04103 Leipzig
- Germany
| | - Sabrina Friebe
- Leibniz-Institute of Surface Engineering (IOM)
- 04318 Leipzig
- Germany
| | - Stefan G. Mayr
- Leibniz-Institute of Surface Engineering (IOM)
- 04318 Leipzig
- Germany
| | - Andrea A. Robitzki
- Centre for Biotechnology and Biomedicine (BBZ)/Institute of Biochemistry
- Faculty of Life Sciences
- Leipzig University
- 04103 Leipzig
- Germany
| | | |
Collapse
|
136
|
Afosah DK, Al-Horani RA. Sulfated Non-Saccharide Glycosaminoglycan Mimetics as Novel Drug Discovery Platform for Various Pathologies. Curr Med Chem 2020; 27:3412-3447. [PMID: 30457046 PMCID: PMC6551317 DOI: 10.2174/0929867325666181120101147] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 11/06/2018] [Accepted: 11/13/2018] [Indexed: 01/14/2023]
Abstract
Glycosaminoglycans (GAGs) are very complex, natural anionic polysaccharides. They are polymers of repeating disaccharide units of uronic acid and hexosamine residues. Owing to their template-free, spatiotemporally-controlled, and enzyme-mediated biosyntheses, GAGs possess enormous polydispersity, heterogeneity, and structural diversity which often translate into multiple biological roles. It is well documented that GAGs contribute to physiological and pathological processes by binding to proteins including serine proteases, serpins, chemokines, growth factors, and microbial proteins. Despite advances in the GAG field, the GAG-protein interface remains largely unexploited by drug discovery programs. Thus, Non-Saccharide Glycosaminoglycan Mimetics (NSGMs) have been rationally developed as a novel class of sulfated molecules that modulate GAG-protein interface to promote various biological outcomes of substantial benefit to human health. In this review, we describe the chemical, biochemical, and pharmacological aspects of recently reported NSGMs and highlight their therapeutic potentials as structurally and mechanistically novel anti-coagulants, anti-cancer agents, anti-emphysema agents, and anti-viral agents. We also describe the challenges that complicate their advancement and describe ongoing efforts to overcome these challenges with the aim of advancing the novel platform of NSGMs to clinical use.
Collapse
Affiliation(s)
- Daniel K. Afosah
- Department of Medicinal Chemistry and Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219
| | - Rami A. Al-Horani
- Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, Louisiana 70125
| |
Collapse
|
137
|
Cho AE, Jerguson K, Peterson J, Patel DV, Saberi AA. Cost-effectiveness of Argatroban Versus Heparin Anticoagulation in Adult Extracorporeal Membrane Oxygenation Patients. Hosp Pharm 2019; 56:276-281. [PMID: 34381261 DOI: 10.1177/0018578719890091] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Purpose: The purpose of this study was to evaluate the cost effectiveness of argatroban compared to heparin during extracorporeal membrane oxygenation (ECMO) therapy. Methods: This was a retrospective study of patients who received argatroban or heparin infusions with ECMO therapy at a community hospital between January 1, 2017 and June 30, 2018. Adult patients who received heparin or argatroban for at least 48 hours while on venovenous (VV) or venoarterial (VA) ECMO were included. Patients with temporary mechanical circulatory assist devices were excluded. Each continuous course of anticoagulant exposure that met the inclusion criteria was evaluated. The primary endpoint was the total cost of anticoagulant therapy for heparin versus argatroban, including all administered study drugs, blood or factor products, and associated laboratory tests. Secondary endpoints included safety and efficacy of anticoagulation with each agent during ECMO. Documentation of bleeding events, circuit clotting, and ischemic events were noted. Partial thromboplastin time (PTT) values were evaluated for time to therapeutic range and percentage of therapeutic PTTs. Results: A total of 11 courses of argatroban and 24 courses of heparin anticoagulation were included in the study. The average cost per course of argatroban was less than the average cost per course of heparin ($7,091.98 vs $15,323.49, respectively; P value = 0.15). Furthermore, argatroban was not associated with an increased incidence of bleeding, thrombotic, or ischemic events. Conclusion: Argatroban may be more cost-effective during ECMO therapy in patients with low antithrombin III levels without increased risk of adverse events.
Collapse
|
138
|
Dias JD, Lopez-Espina CG, Panigada M, Dalton HJ, Hartmann J, Achneck HE. Cartridge-Based Thromboelastography Can Be Used to Monitor and Quantify the Activity of Unfractionated and Low-Molecular-Weight Heparins. TH OPEN 2019; 3:e295-e305. [PMID: 31523746 PMCID: PMC6742498 DOI: 10.1055/s-0039-1696658] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 07/25/2019] [Indexed: 01/22/2023] Open
Abstract
Thromboelastography is increasingly utilized in the management of bleeding and thrombotic complications where heparin management remains a cornerstone. This study assessed the feasibility of the cartridge-based TEG
®
6s system (Haemonetics Corp., Braintree, Massachusetts, United States) to monitor and quantify the effect of unfractionated and low-molecular-weight heparin (UFH and LMWH). Blood samples from healthy donors were spiked with UFH (
n
= 23; 0–1.0 IU/mL) or LMWH (enoxaparin;
n
= 22; 0–1.5 IU/mL). Functional fibrinogen maximum amplitude (CFF.MA), RapidTEG activated clotting time (CRT.ACT), and kaolin and kaolin with heparinase reaction time (CK.R and CKH.R) were evaluated for their correlation with heparin concentrations, as well as the combination parameters ΔCK.R − CKH.R, ratio CK.R/CKH.R, and ratio CKH.R/CK.R. Nonlinear mixed-effect modelling was used to study the relationship between concentrations and parameters, and Bayesian classification modelling for the prediction of therapeutic ranges. CK.R and CRT.ACT strongly correlated with the activity of LMWH and UFH (
p
< 0.001). Using combination parameters, heparin activity could be accurately quantified in the range of 0.05 to 0.8 IU/mL for UFH and 0.1 to 1.5 IU/mL for LMWH. CRT.ACT was able to quantify heparin activity at higher concentrations but was only different from the reference range (
p
< 0.05) at >0.5 IU/mL for UFH and >1.5 IU/mL for LMWH. Combination parameters classified blood samples into subtherapeutic, therapeutic, and supratherapeutic heparin ranges, with an accuracy of >90% for UFH, and >78% for LMWH. This study suggests that TEG 6s can effectively monitor and quantify heparin activity for LMWH and UFH. Additionally, combination parameters can be used to classify blood samples into therapeutic ranges based on heparin activity.
Collapse
Affiliation(s)
| | | | - Mauro Panigada
- Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy
| | - Heidi J Dalton
- Department of Pediatrics, Inova Health and Vascular Institute, Falls Church, Virginia, United States
| | - Jan Hartmann
- Haemonetics Corporation, Braintree, Massachusetts, United States
| | | |
Collapse
|
139
|
Marson D, Laurini E, Aulic S, Fermeglia M, Pricl S. Unchain My Blood: Lessons Learned from Self-Assembled Dendrimers as Nanoscale Heparin Binders. Biomolecules 2019; 9:E385. [PMID: 31434309 PMCID: PMC6723693 DOI: 10.3390/biom9080385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/16/2019] [Accepted: 08/19/2019] [Indexed: 12/21/2022] Open
Abstract
This review work reports a collection of coupled experimental/computational results taken from our own experience in the field of self-assembled dendrimers for heparin binding. These studies present and discuss both the potentiality played by this hybrid methodology to the design, synthesis, and development of possible protamine replacers for heparin anticoagulant activity reversal in biomedical applications, and the obstacles this field has still to overcome before these molecules can be translated into nanomedicines available in clinical settings.
Collapse
Affiliation(s)
- Domenico Marson
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy
| | - Erik Laurini
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy.
| | - Suzana Aulic
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy
| | - Maurizio Fermeglia
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy
| | - Sabrina Pricl
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy
| |
Collapse
|
140
|
Crude Heparin Preparations Unveil the Presence of Structurally Diverse Oversulfated Contaminants. Molecules 2019; 24:molecules24162988. [PMID: 31426507 PMCID: PMC6721129 DOI: 10.3390/molecules24162988] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/01/2019] [Accepted: 08/10/2019] [Indexed: 11/16/2022] Open
Abstract
Nowadays, pharmaceutical heparin is purified from porcine and bovine intestinal mucosa. In the past decade there has been an ongoing concern about the safety of heparin, since in 2008, adverse effects associated with the presence of an oversulfated chondroitin sulfate (OSCS) were observed in preparations of pharmaceutical porcine heparin, which led to the death of patients, causing a global public health crisis. However, it has not been clarified whether OSCS has been added to the purified heparin preparation, or whether it has already been introduced during the production of the raw heparin. Using a combination of different analytical methods, we investigate both crude and final heparin products and we are able to demonstrate that the sulfated contaminants are intentionally introduced in the initial steps of heparin preparation. Furthermore, the results show that the oversulfated compounds are not structurally homogeneous. In addition, we show that these contaminants are able to bind to cells in using well known heparin binding sites. Together, the data highlights the importance of heparin quality control even at the initial stages of its production.
Collapse
|
141
|
Ghiselli G. Heparin Binding Proteins as Therapeutic Target: An Historical Account and Current Trends. MEDICINES (BASEL, SWITZERLAND) 2019; 6:E80. [PMID: 31362364 PMCID: PMC6789896 DOI: 10.3390/medicines6030080] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 12/16/2022]
Abstract
The polyanionic nature and the ability to interact with proteins with different affinities are properties of sulfated glycosaminoglycans (GAGs) that determine their biological function. In designing drugs affecting the interaction of proteins with GAGs the challenge has been to generate agents with high binding specificity. The example to emulated has been a heparin-derived pentasaccharide that binds to antithrombin-III with high affinity. However, the portability of this model to other biological situations is questioned on several accounts. Because of their structural flexibility, oligosaccharides with different sulfation and uronic acid conformation can display the same binding proficiency to different proteins and produce comparable biological effects. This circumstance represents a formidable obstacle to the design of drugs based on the heparin scaffold. The conceptual framework discussed in this article is that through a direct intervention on the heparin-binding functionality of proteins is possible to achieve a high degree of action specificity. This objective is currently pursued through two strategies. The first makes use of small molecules for which in the text we provide examples from past and present literature concerning angiogenic factors and enzymes. The second approach entails the mutagenesis of the GAG-binding site of proteins as a means to generate a new class of biologics of therapeutic interest.
Collapse
Affiliation(s)
- Giancarlo Ghiselli
- Independent Researcher, 1326 Spruce Street Suite 706, Philadephia, PA 19107, USA.
| |
Collapse
|
142
|
Engineered biomaterials to mitigate growth factor cost in cell biomanufacturing. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2019. [DOI: 10.1016/j.cobme.2018.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
143
|
Mohan CD, Hari S, Preetham HD, Rangappa S, Barash U, Ilan N, Nayak SC, Gupta VK, Basappa, Vlodavsky I, Rangappa KS. Targeting Heparanase in Cancer: Inhibition by Synthetic, Chemically Modified, and Natural Compounds. iScience 2019; 15:360-390. [PMID: 31103854 PMCID: PMC6548846 DOI: 10.1016/j.isci.2019.04.034] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/11/2019] [Accepted: 04/26/2019] [Indexed: 01/23/2023] Open
Abstract
Heparanase is an endoglycosidase involved in remodeling the extracellular matrix and thereby in regulating multiple cellular processes and biological activities. It cleaves heparan sulfate (HS) side chains of HS proteoglycans into smaller fragments and hence regulates tissue morphogenesis, differentiation, and homeostasis. Heparanase is overexpressed in various carcinomas, sarcomas, and hematological malignancies, and its upregulation correlates with increased tumor size, tumor angiogenesis, enhanced metastasis, and poor prognosis. In contrast, knockdown or inhibition of heparanase markedly attenuates tumor progression, further underscoring the potential of anti-heparanase therapy. Heparanase inhibitors were employed to interfere with tumor progression in preclinical studies, and selected heparin mimetics are being examined in clinical trials. However, despite tremendous efforts, the discovery of heparanase inhibitors with high clinical benefit and minimal adverse effects remains a therapeutic challenge. This review discusses the key roles of heparanase in cancer progression focusing on the status of natural, chemically modified, and synthetic heparanase inhibitors in various types of malignancies.
Collapse
Affiliation(s)
| | - Swetha Hari
- Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570006, India
| | - Habbanakuppe D Preetham
- Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570006, India
| | - Shobith Rangappa
- Adichunchanagiri Institute for Molecular Medicine, AIMS Campus, B. G. Nagar, Nagamangala Taluk, Mandya District 571448, India
| | - Uri Barash
- Technion Integrated Cancer Center (TICC), The Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - Neta Ilan
- Technion Integrated Cancer Center (TICC), The Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - S Chandra Nayak
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysore 570006, India
| | - Vijai K Gupta
- Department of Chemistry and Biotechnology, ERA Chair of Green Chemistry, School of Science, Tallinn University of Technology, Tallinn, Estonia
| | - Basappa
- Department of Studies in Organic Chemistry, University of Mysore, Manasagangotri, Mysore 570006, India
| | - Israel Vlodavsky
- Technion Integrated Cancer Center (TICC), The Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel.
| | | |
Collapse
|
144
|
Antithrombotics from the Sea: Polysaccharides and Beyond. Mar Drugs 2019; 17:md17030170. [PMID: 30884850 PMCID: PMC6471875 DOI: 10.3390/md17030170] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/01/2019] [Accepted: 03/13/2019] [Indexed: 12/21/2022] Open
Abstract
Marine organisms exhibit some advantages as a renewable source of potential drugs, far beyond chemotherapics. Particularly, the number of marine natural products with antithrombotic activity has increased in the last few years, and reports show a wide diversity in scaffolds, beyond the polysaccharide framework. While there are several reviews highlighting the anticoagulant and antithrombotic activities of marine-derived sulfated polysaccharides, reports including other molecules are sparse. Therefore, the present paper provides an update of the recent progress in marine-derived sulfated polysaccharides and quotes other scaffolds that are being considered for investigation due to their antithrombotic effect.
Collapse
|
145
|
Zhang X, Dickinson DM, Lin L, Suflita M, Baytas S, Linhardt RJ. Chemoenzymatic synthesis of heparan sulfate tetrasaccharide from a N-acetyl-α-d-glucosamine-O-methylglycoside acceptor. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.02.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
146
|
Has the Time Come to Abandon Routine Use of Unfractionated Heparin in the Hospital Setting? Can J Hosp Pharm 2019; 72:160-162. [PMID: 31036979 PMCID: PMC6476585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
|
147
|
Kowaliuk M, Schröder I, Kuess P, Dörr W. Heparin treatment mitigates radiation-induced oral mucositis in mice by interplaying with repopulation processes. Strahlenther Onkol 2019; 195:534-543. [PMID: 30689028 PMCID: PMC6531413 DOI: 10.1007/s00066-018-01423-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 12/22/2018] [Indexed: 02/08/2023]
Abstract
PURPOSE To investigate the mechanistic background of the muco-protective effect of systemic heparin treatment on the development of radiation-induced oral mucositis in mice. MATERIALS AND METHODS Fractionated irradiation was given to the snouts of male C3H/Neu mice over 2 weeks (10 × 3 Gy), either alone or in combination with daily subcutaneous application of unfractionated or low molecular weight heparin (40 or 200 I.U./mouse, respectively). Over this course of 14 days, groups of mice (n = 3) were sacrificed every second day, their tongues excised and processed for histological analysis. The epithelial radiation response with and without heparin treatment was evaluated in terms of tissue morphology, proliferation and expression of cell contact molecules. RESULTS Systemic treatment with heparins significantly reduced the cellular effects of irradiation to the oral epithelium. Heparin treated animals showed significantly higher total epithelial cell numbers and thickness throughout the study course. Bromodeoxyuridine (BrdU) incorporation analyses revealed that markedly more epithelial cells retained their proliferative capacity in the beginning of the first treatment week, but the proliferation of the mucosa was not stimulated during the rest of the study course. The expression of the adherens junction protein β‑catenin was slightly elevated in heparin treated animals, on day 2 the increase was statistically significant. The expression of e‑cadherin and occludin was mostly unaffected by the concomitant heparin treatment. CONCLUSION The findings of this study indicate an interplay of additional heparin treatment with the repopulation processes, leading to an earlier onset of this adaptive radiation response in oral mucosa. Importantly, we could demonstrate that the protective potential of heparin did not rely on stimulation of normal tissue proliferation. Since both heparin preparations are already approved for clinical use, they are considered as promising candidates for future clinical studies.
Collapse
Affiliation(s)
- M Kowaliuk
- Department of Radiation Oncology-ATRAB-Applied and Translational Radiobiology, Department of Radiation Oncology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
- Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, Vienna, Austria.
| | - I Schröder
- Department of Radiation Oncology-ATRAB-Applied and Translational Radiobiology, Department of Radiation Oncology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
- IMC FH Krems, University of Applied Sciences, Krems, Austria
| | - P Kuess
- Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - W Dörr
- Department of Radiation Oncology-ATRAB-Applied and Translational Radiobiology, Department of Radiation Oncology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| |
Collapse
|
148
|
Ernst AU, Bowers DT, Wang LH, Shariati K, Plesser MD, Brown NK, Mehrabyan T, Ma M. Nanotechnology in cell replacement therapies for type 1 diabetes. Adv Drug Deliv Rev 2019; 139:116-138. [PMID: 30716349 PMCID: PMC6677642 DOI: 10.1016/j.addr.2019.01.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/17/2019] [Accepted: 01/28/2019] [Indexed: 12/12/2022]
Abstract
Islet transplantation is a promising long-term, compliance-free, complication-preventing treatment for type 1 diabetes. However, islet transplantation is currently limited to a narrow set of patients due to the shortage of donor islets and side effects from immunosuppression. Encapsulating cells in an immunoisolating membrane can allow for their transplantation without the need for immunosuppression. Alternatively, "open" systems may improve islet health and function by allowing vascular ingrowth at clinically attractive sites. Many processes that enable graft success in both approaches occur at the nanoscale level-in this review we thus consider nanotechnology in cell replacement therapies for type 1 diabetes. A variety of biomaterial-based strategies at the nanometer range have emerged to promote immune-isolation or modulation, proangiogenic, or insulinotropic effects. Additionally, coating islets with nano-thin polymer films has burgeoned as an islet protection modality. Materials approaches that utilize nanoscale features manipulate biology at the molecular scale, offering unique solutions to the enduring challenges of islet transplantation.
Collapse
Affiliation(s)
- Alexander U Ernst
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Daniel T Bowers
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Long-Hai Wang
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Kaavian Shariati
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Mitchell D Plesser
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Natalie K Brown
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Tigran Mehrabyan
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Minglin Ma
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
149
|
Heparin Contamination and Issues Related to Raw Materials and Controls. THE SCIENCE AND REGULATIONS OF NATURALLY DERIVED COMPLEX DRUGS 2019. [DOI: 10.1007/978-3-030-11751-1_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
150
|
Caputo HE, Straub JE, Grinstaff MW. Design, synthesis, and biomedical applications of synthetic sulphated polysaccharides. Chem Soc Rev 2019; 48:2338-2365. [DOI: 10.1039/c7cs00593h] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review summarizes the synthetic methods to sulphated polysaccharides, describes their compositional and structural diversity in regards to activity, and showcases their biomedical applications.
Collapse
Affiliation(s)
| | | | - Mark W. Grinstaff
- Department of Chemistry
- Boston University
- Boston
- USA
- Department of Biomedical Engineering
| |
Collapse
|