101
|
Park KC, Kim SM, Jeon JY, Kim BW, Kim HK, Chang HJ, Lee YS, Kim SY, Choi SH, Park CS, Chang HS. Synergistic Activity of N-hydroxy-7-(2-naphthylthio) Heptanomide and Sorafenib Against Cancer Stem Cells, Anaplastic Thyroid Cancer. Neoplasia 2017; 19:145-153. [PMID: 28142087 PMCID: PMC5279904 DOI: 10.1016/j.neo.2016.12.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 12/03/2016] [Accepted: 12/06/2016] [Indexed: 01/19/2023] Open
Abstract
Anaplastic thyroid carcinoma (ATC) although rare is the most deadly form of thyroid cancer. The fatality rate for ATC is high-pitched, the survival rate at 1 year after diagnosis is <20%. Control of ATC is severely hard and widespread with unpredictability. We Previous proved that histone gene reviser and epigenetic changes role significant parts in papillary and anaplastic thyroid cancer tumorigenesis. Herein, the goal of this study was to investigate the anti-tumor activities of a HDAC inhibitor, HNHA alone and in combination with sorafenib in ATC cells in vitro and in vivo and to explore its effects on apoptotic cell death pathways. Three ATC cell lines were exposed to sorafenib in the presence or absence of HNHA, and cell viability was determined by MTT assay. Effects of combined treatment on cell cycle and intracellular signaling pathways were assessed by flow cytometry and western blot analysis. The ATC cell lines xenograft model was used to examine the anti-tumor activity in vivo. Our data showed that HNHA and sorafenib synergistically decreased cell viability in ATC cells, and also significantly increased apoptotic cell death in these cells, as proved by the cleavage of caspase-3 and DNA fragmentation. HNHA and sorafenib combination was reduced anti-apoptotic factor in ATC. Thus, combination therapy with HNHA and sorafenib significantly decreased vessel density, and most significantly reduced tumor volume and increased survival in ATC xenografts. These results propose that HNHA in combination with sorafenib has significant anti-cancer activity in preclinical models, potentially suggesting a new clinical approach for patients of advanced thyroid cancer type.
Collapse
Affiliation(s)
- Ki Cheong Park
- Thyroid Cancer Center, Gangnam Severance Hospital, Department of Surgery, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea; Gangnam Severance Hospital, Department of Surgery, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Seok-Mo Kim
- Thyroid Cancer Center, Gangnam Severance Hospital, Department of Surgery, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea; Gangnam Severance Hospital, Department of Surgery, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Jeong Yong Jeon
- Department of Nuclear Medicine, Yonsei College of Medicine, Seoul 120-752, Republic of Korea
| | - Bup-Woo Kim
- Thyroid Cancer Center, Gangnam Severance Hospital, Department of Surgery, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea; Gangnam Severance Hospital, Department of Surgery, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Hyeung Kyoo Kim
- Thyroid Cancer Center, Gangnam Severance Hospital, Department of Surgery, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea; Gangnam Severance Hospital, Department of Surgery, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Ho Jin Chang
- Thyroid Cancer Center, Gangnam Severance Hospital, Department of Surgery, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea; Gangnam Severance Hospital, Department of Surgery, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Yong Sang Lee
- Thyroid Cancer Center, Gangnam Severance Hospital, Department of Surgery, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea; Gangnam Severance Hospital, Department of Surgery, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Soo Young Kim
- Thyroid Cancer Center, Gangnam Severance Hospital, Department of Surgery, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea; Gangnam Severance Hospital, Department of Surgery, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Seung Hoon Choi
- Thyroid Cancer Center, Gangnam Severance Hospital, Department of Surgery, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea; Gangnam Severance Hospital, Department of Surgery, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Cheong Soo Park
- Thyroid Cancer Center, Gangnam Severance Hospital, Department of Surgery, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea; Gangnam Severance Hospital, Department of Surgery, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Hang-Seok Chang
- Thyroid Cancer Center, Gangnam Severance Hospital, Department of Surgery, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea; Gangnam Severance Hospital, Department of Surgery, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea.
| |
Collapse
|
102
|
Wang X, Ding J, Feng Y, Weng L, Zhao G, Xiang J, Zhang M, Xing D. Targeting of growth factors in the treatment of hepatocellular carcinoma: The potentials of polysaccharides. Oncol Lett 2017; 13:1509-1517. [PMID: 28454283 DOI: 10.3892/ol.2017.5602] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 08/19/2016] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) has become a leading cause of cancer-associated mortality worldwide and is thus of great concern. Although various chemotherapeutic drugs are currently used for the treatment of HCC, severe side effects associated with these treatments have prompted interest in novel therapies, including the use of certain biological macromolecules such as polysaccharides. Several studies have shown that polysaccharides have anticancer and antiproliferative effects on HCC. Vascular endothelial growth factor, transforming growth factor β, epidermal growth factor and fibroblast growth factor may be effective targets for polysaccharides and may modulate tumor growth and immunity through increasing the expression levels of cytokines. The present review focuses on the ways in which growth factors contribute to the development of HCC, and on the anti-growth factor activities of natural and synthetic polysaccharides, as well as their effect on proinflammatory cytokines.
Collapse
Affiliation(s)
- Xuan Wang
- Radiology Department, Shanghai Municipal Hospital of Traditional Chinese Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Jieyu Ding
- Radiology Department, Shanghai Municipal Hospital of Traditional Chinese Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Yuanyuan Feng
- Oncology Department, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200021, P.R. China
| | - Lingling Weng
- Radiology Department, Shanghai Municipal Hospital of Traditional Chinese Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Guangqiang Zhao
- Radiology Department, Shanghai Municipal Hospital of Traditional Chinese Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Jianfeng Xiang
- Radiology Department, Shanghai Municipal Hospital of Traditional Chinese Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Minguang Zhang
- Radiology Department, Shanghai Municipal Hospital of Traditional Chinese Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Dongwei Xing
- Radiology Department, Shanghai Municipal Hospital of Traditional Chinese Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| |
Collapse
|
103
|
Panera N, Crudele A, Romito I, Gnani D, Alisi A. Focal Adhesion Kinase: Insight into Molecular Roles and Functions in Hepatocellular Carcinoma. Int J Mol Sci 2017; 18:ijms18010099. [PMID: 28067792 PMCID: PMC5297733 DOI: 10.3390/ijms18010099] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/23/2016] [Accepted: 12/30/2016] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide. Due to the high incidence of post-operative recurrence after current treatments, the identification of new and more effective drugs is required. In previous years, new targetable genes/pathways involved in HCC pathogenesis have been discovered through the help of high-throughput sequencing technologies. Mutations in TP53 and β-catenin genes are the most frequent aberrations in HCC. However, approaches able to reverse the effect of these mutations might be unpredictable. In fact, if the reactivation of proteins, such as p53 in tumours, holds great promise as anticancer therapy, there are studies arguing that chronic activation of these types of molecules may be deleterious. Thus, recently the efforts on potential targets have focused on actionable mutations, such as those occurring in the gene encoding for focal adhesion kinase (FAK). This tyrosine kinase, localized to cellular focal contacts, is over-expressed in a variety of human tumours, including HCC. Moreover, several lines of evidence demonstrated that FAK depletion or inhibition impair in vitro and in vivo HCC growth and metastasis. Here, we provide an overview of FAK expression and activity in the context of tumour biology, discussing the current evidence of its connection with HCC development and progression.
Collapse
Affiliation(s)
- Nadia Panera
- Liver Research Unit, Bambino Gesù Children's Hospital, IRCCS, Via S. Paolo, 15, 00146 Rome, Italy.
| | - Annalisa Crudele
- Liver Research Unit, Bambino Gesù Children's Hospital, IRCCS, Via S. Paolo, 15, 00146 Rome, Italy.
| | - Ilaria Romito
- Liver Research Unit, Bambino Gesù Children's Hospital, IRCCS, Via S. Paolo, 15, 00146 Rome, Italy.
| | - Daniela Gnani
- Liver Research Unit, Bambino Gesù Children's Hospital, IRCCS, Via S. Paolo, 15, 00146 Rome, Italy.
| | - Anna Alisi
- Liver Research Unit, Bambino Gesù Children's Hospital, IRCCS, Via S. Paolo, 15, 00146 Rome, Italy.
| |
Collapse
|
104
|
Eritja N, Chen BJ, Rodríguez-Barrueco R, Santacana M, Gatius S, Vidal A, Martí MD, Ponce J, Bergadà L, Yeramian A, Encinas M, Ribera J, Reventós J, Boyd J, Villanueva A, Matias-Guiu X, Dolcet X, Llobet-Navàs D. Autophagy orchestrates adaptive responses to targeted therapy in endometrial cancer. Autophagy 2017; 13:608-624. [PMID: 28055301 PMCID: PMC5361596 DOI: 10.1080/15548627.2016.1271512] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Targeted therapies in endometrial cancer (EC) using kinase inhibitors rarely result in complete tumor remission and are frequently challenged by the appearance of refractory cell clones, eventually resulting in disease relapse. Dissecting adaptive mechanisms is of vital importance to circumvent clinical drug resistance and improve the efficacy of targeted agents in EC. Sorafenib is an FDA-approved multitarget tyrosine and serine/threonine kinase inhibitor currently used to treat hepatocellular carcinoma, advanced renal carcinoma and radioactive iodine-resistant thyroid carcinoma. Unfortunately, sorafenib showed very modest effects in a multi-institutional phase II trial in advanced uterine carcinoma patients. Here, by leveraging RNA-sequencing data from the Cancer Cell Line Encyclopedia and cell survival studies from compound-based high-throughput screenings we have identified the lysosomal pathway as a potential compartment involved in the resistance to sorafenib. By performing additional functional biology studies we have demonstrated that this resistance could be related to macroautophagy/autophagy. Specifically, our results indicate that sorafenib triggers a mechanistic MAPK/JNK-dependent early protective autophagic response in EC cells, providing an adaptive response to therapeutic stress. By generating in vivo subcutaneous EC cell line tumors, lung metastatic assays and primary EC orthoxenografts experiments, we demonstrate that targeting autophagy enhances sorafenib cytotoxicity and suppresses tumor growth and pulmonary metastasis progression. In conclusion, sorafenib induces the activation of a protective autophagic response in EC cells. These results provide insights into the unopposed resistance of advanced EC to sorafenib and highlight a new strategy for therapeutic intervention in recurrent EC.
Collapse
Affiliation(s)
- Núria Eritja
- a Department of Basic Sciences , Universitat de Lleida/Institut de Recerca Biomèdica de Lleida, Edifici Biomedicina I, Lab 2.4 , Lleida , Spain.,b Department of Pathology , Universitat de Lleida/Institut de Recerca Biomèdica de Lleida/Hospital Universitari Arnau de Vilanova , Lleida , Spain
| | | | | | - Maria Santacana
- a Department of Basic Sciences , Universitat de Lleida/Institut de Recerca Biomèdica de Lleida, Edifici Biomedicina I, Lab 2.4 , Lleida , Spain.,b Department of Pathology , Universitat de Lleida/Institut de Recerca Biomèdica de Lleida/Hospital Universitari Arnau de Vilanova , Lleida , Spain
| | - Sònia Gatius
- a Department of Basic Sciences , Universitat de Lleida/Institut de Recerca Biomèdica de Lleida, Edifici Biomedicina I, Lab 2.4 , Lleida , Spain.,b Department of Pathology , Universitat de Lleida/Institut de Recerca Biomèdica de Lleida/Hospital Universitari Arnau de Vilanova , Lleida , Spain
| | - August Vidal
- e Department of Pathology , University Hospital of Bellvitge, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat , Barcelona , Catalonia , Spain
| | - Maria Dolores Martí
- f Department of Gynecology , University Hospital of Bellvitge, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat , Barcelona , Catalonia , Spain
| | - Jordi Ponce
- f Department of Gynecology , University Hospital of Bellvitge, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat , Barcelona , Catalonia , Spain
| | - Laura Bergadà
- a Department of Basic Sciences , Universitat de Lleida/Institut de Recerca Biomèdica de Lleida, Edifici Biomedicina I, Lab 2.4 , Lleida , Spain.,b Department of Pathology , Universitat de Lleida/Institut de Recerca Biomèdica de Lleida/Hospital Universitari Arnau de Vilanova , Lleida , Spain
| | - Andree Yeramian
- a Department of Basic Sciences , Universitat de Lleida/Institut de Recerca Biomèdica de Lleida, Edifici Biomedicina I, Lab 2.4 , Lleida , Spain.,b Department of Pathology , Universitat de Lleida/Institut de Recerca Biomèdica de Lleida/Hospital Universitari Arnau de Vilanova , Lleida , Spain
| | - Mario Encinas
- g Department of Experimental Medicine , Universitat de Lleida/Institut de Recerca Biomèdica de Lleida, Edifici Biomedicina I, Lab 2.8 , Lleida , Spain
| | - Joan Ribera
- g Department of Experimental Medicine , Universitat de Lleida/Institut de Recerca Biomèdica de Lleida, Edifici Biomedicina I, Lab 2.8 , Lleida , Spain
| | - Jaume Reventós
- e Department of Pathology , University Hospital of Bellvitge, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat , Barcelona , Catalonia , Spain.,f Department of Gynecology , University Hospital of Bellvitge, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat , Barcelona , Catalonia , Spain
| | - Jeff Boyd
- h Department of Human and Molecular Genetics , Herbert Wertheim College of Medicine, Florida International University , Miami , FL , USA
| | - Alberto Villanueva
- i Chemoresistance and Predictive Factors Group, Program Against Cancer Therapeutic Resistance (ProCURE) , Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat , Barcelona , Catalonia , Spain
| | - Xavier Matias-Guiu
- a Department of Basic Sciences , Universitat de Lleida/Institut de Recerca Biomèdica de Lleida, Edifici Biomedicina I, Lab 2.4 , Lleida , Spain.,b Department of Pathology , Universitat de Lleida/Institut de Recerca Biomèdica de Lleida/Hospital Universitari Arnau de Vilanova , Lleida , Spain.,e Department of Pathology , University Hospital of Bellvitge, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat , Barcelona , Catalonia , Spain.,f Department of Gynecology , University Hospital of Bellvitge, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat , Barcelona , Catalonia , Spain
| | - Xavier Dolcet
- a Department of Basic Sciences , Universitat de Lleida/Institut de Recerca Biomèdica de Lleida, Edifici Biomedicina I, Lab 2.4 , Lleida , Spain.,b Department of Pathology , Universitat de Lleida/Institut de Recerca Biomèdica de Lleida/Hospital Universitari Arnau de Vilanova , Lleida , Spain
| | - David Llobet-Navàs
- d Institute of Genetic Medicine, Newcastle University , Newcastle-Upon-Tyne , UK
| |
Collapse
|
105
|
Long F, Dong C, Jiang K, Xu Y, Chi X, Sun D, Liang R, Gao Z, Shao S, Wang L. Melatonin enhances the anti-tumor effect of sorafenib via AKT/p27-mediated cell cycle arrest in hepatocarcinoma cell lines. RSC Adv 2017. [DOI: 10.1039/c7ra02113e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Proposed model elucidating the role of MT in regulating the proliferation of hepatocellular carcinoma (HCC) cells treated with sorafenib.
Collapse
|
106
|
Lima KG, Krause GC, Schuster AD, Catarina AV, Basso BS, De Mesquita FC, Pedrazza L, Marczak ES, Martha BA, Nunes FB, Chiela ECF, Jaeger N, Thomé MP, Haute GV, Dias HB, Donadio MVF, De Oliveira JR. Gallic acid reduces cell growth by induction of apoptosis and reduction of IL-8 in HepG2 cells. Biomed Pharmacother 2016; 84:1282-1290. [DOI: 10.1016/j.biopha.2016.10.048] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 10/05/2016] [Accepted: 10/17/2016] [Indexed: 11/15/2022] Open
|
107
|
Long non-coding RNA TUC338 is functionally involved in sorafenib-sensitized hepatocarcinoma cells by targeting RASAL1. Oncol Rep 2016; 37:273-280. [PMID: 27878301 DOI: 10.3892/or.2016.5248] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Accepted: 10/25/2016] [Indexed: 12/22/2022] Open
Abstract
Development of novel targeted therapy holds promise for conquering chemotherapy resistance, one of major hurdles in current liver cancer treatment. We found that long non-coding RNA TUC338 is involved in the development of hepatocellular carcinoma (HCC) and sorafenib resistance. HCC cell lines were transfected with siTUC338, then cell proliferation and invasion ability were investigated by MTT and Transwell assay. Sorafenib resistance HepG2 cells were generated to test the role of TUC338 in sorafenib sensitivity. Intratumoral delivering of siTUC338 was used to analyze the sorafenib treatment response in HepG2/Sor xenografts in vivo. Higher levels of TUC338 were found both in HCC tissues and cell lines, knockdown of TUC338 was accompanied with increased expression of RASAL1 in HCC cell line with increased proliferation and invasion ability, knockdown of TUC338 could activate the RASAL1 pathway and inhibit tumor growth genes by directly targeting RASAL1 3'-UTR. Furthermore, knockdown of TUC338 in HepG2 sorafenib sensitized its reaction to the treatment of sorafenib, which was accompanied by increased expression RASAL1; intratumoral delivering of siTUC338 could also restore sorafenib treatment response in HepG2/Sor xenografts in vivo. These findings provide direct evidence that the TUC338/RASAL1 axis might play an essential role in sorafenib-resistance of liver cancer cells, suggesting the signaling cohort could serve as a novel therapeutic target for the treatment of chemotherapy resistant liver cancer.
Collapse
|
108
|
Chen JY, Chen YJ, Yen CJ, Chen WS, Huang WC. HBx sensitizes hepatocellular carcinoma cells to lapatinib by up-regulating ErbB3. Oncotarget 2016; 7:473-89. [PMID: 26595522 PMCID: PMC4808012 DOI: 10.18632/oncotarget.6337] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 11/06/2015] [Indexed: 12/26/2022] Open
Abstract
Poor prognosis of hepatitis B virus (HBV)-associated hepatocellular carcinoma (HCC) involves HBV X protein (HBx)-induced tumor progression. HBx also contributes to chemo-resistance via inducing the expressions of anti-apoptosis and multiple drug resistance genes. However, the impact of HBx expression on the therapeutic efficacy of various receptor tyrosine kinase inhibitors remains unknown. In this study, our data showed that HBx overexpression did not alter the cellular sensitivity of HCC cell lines to sorafenib but unexpectedly enhanced the cell death induced by EGFR family inhibitors, including gefitinib, erlotinib, and lapatinib due to ErbB3 up-regulation. Mechanistically, HBx transcriptionally up-regulates ErbB3 expression in a NF-κB dependent manner. In addition, HBx also physically interacts with ErbB2 and ErbB3 proteins and enhances the formation of ErbB2/ErbB3 heterodimeric complex. The cell viability of HBx-overexpressing cells was decreased by silencing ErbB3 expression, further revealing the pivotal role of ErbB3 in HBx-mediated cell survival. Our data suggest that HBx shifts the oncogenic addiction of HCC cells to ErbB2/ErbB3 signaling pathway via inducing ErbB3 expression and thereby enhances their sensitivity to EGFR/ErbB2 inhibitors.
Collapse
Affiliation(s)
- Jhen-Yu Chen
- The Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung, Taiwan.,Graduate Institute of Cancer Biology, China Medical University, Taichung, Taiwan
| | - Yun-Ju Chen
- Department of Biological Science & Technology, I-Shou University, Kaohsiung, Taiwan.,School of Medicine for International Students, I-Shou University, Kaohsiung, Taiwan.,Department of Medical Research, E-Da Hospital, Kaohsiung, Taiwan
| | - Chia-Jui Yen
- Internal Medicine, National Cheng-Kung University, Tainan, Taiwan
| | - Wen-Shu Chen
- Center for Molecular Medicine, China Medical University and Hospital, Taichung, Taiwan
| | - Wei-Chien Huang
- The Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung, Taiwan.,Graduate Institute of Cancer Biology, China Medical University, Taichung, Taiwan.,Center for Molecular Medicine, China Medical University and Hospital, Taichung, Taiwan.,Department of Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
109
|
Azumi J, Tsubota T, Sakabe T, Shiota G. miR-181a induces sorafenib resistance of hepatocellular carcinoma cells through downregulation of RASSF1 expression. Cancer Sci 2016; 107:1256-62. [PMID: 27384977 PMCID: PMC5021022 DOI: 10.1111/cas.13006] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 06/21/2016] [Accepted: 07/01/2016] [Indexed: 12/22/2022] Open
Abstract
Sorafenib, a multi-kinase inhibitor, is the only standard clinical drug for patients with advanced hepatocellular carcinoma (HCC); however, development of sorafenib resistance in HCC often prevents its long-term efficacy. Therefore, novel targets and strategies are urgently needed to improve the antitumor effect of sorafenib. In the present study, we examined the novel mechanisms of sorafenib resistance of HCC cells by investigating the difference in sorafenib sensitivity between two HCC cell lines. Sorafenib induced more apoptosis of HepG2 cells compared to Hep3B cells. Sorafenib exposure to HepG2 cells but not Hep3B cells increased the expression of proapoptotic factor PUMA, and activated PARP and caspase-3. Notably, microRNA-181a (miR-181a) expression levels were lower in HepG2 cells than in Hep3B cells. Exogenous miR-181a expression in HepG2 cells reduced apoptosis, whereas inhibition of miR-181a in Hpe3B cells increased apoptosis. In addition, we demonstrated that miR-181a directly targets RASSF1, a MAPK signaling factor, and knockdown of RASSF1 increased sorafenib resistance. Taken together, these results suggest that miR-181a provokes sorafenib resistance through suppression of RASSF1. Our data provide important insight into the novel therapeutic strategy against sorafenib resistance of HCC cells by targeting of miR-181a pathway.
Collapse
Affiliation(s)
- Junya Azumi
- Division of Molecular and Genetic Medicine, Department of Genetic Medicine and Regenerative Therapeutics, Graduate School of Medicine, Tottori University, Yonago, Japan
| | - Toshiaki Tsubota
- Division of Molecular and Genetic Medicine, Department of Genetic Medicine and Regenerative Therapeutics, Graduate School of Medicine, Tottori University, Yonago, Japan
| | - Tomohiko Sakabe
- Division of Molecular and Genetic Medicine, Department of Genetic Medicine and Regenerative Therapeutics, Graduate School of Medicine, Tottori University, Yonago, Japan
| | - Goshi Shiota
- Division of Molecular and Genetic Medicine, Department of Genetic Medicine and Regenerative Therapeutics, Graduate School of Medicine, Tottori University, Yonago, Japan.
| |
Collapse
|
110
|
Kim LH, Shin JA, Jang B, Yang IH, Won DH, Jeong JH, Chung TH, Cho NP, Cho SD. Sorafenib potentiates ABT-737-induced apoptosis in human oral cancer cells. Arch Oral Biol 2016; 73:1-6. [PMID: 27632413 DOI: 10.1016/j.archoralbio.2016.08.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 08/14/2016] [Accepted: 08/30/2016] [Indexed: 11/15/2022]
Abstract
OBJECTIVE The mimetic BH3 ABT-737, a potent inhibitor of anti-apoptotic Bcl-2 family proteins, has potential as anti-cancer drug in many cancers. Recently, patients treated with ABT-737 have developed drug tolerance during cancer therapy. Therefore, we examined whether ABT-737 is effective in killing MC-3 and HSC-3 human oral cancer cells either alone or in combination with the oncogenic kinase inhibitor, sorafenib. DESIGN The potentiating activities of sorafenib in ABT-737-induced apoptosis were determined using trypan blue exclusion assay, DAPI staining, cell viability assay and Western blot analysis. RESULTS Combined use of ABT-737 and sorafenib synergistically suppressed cell viability and induced apoptosis compared with either compound individually. The combination of ABT-737 and sorafenib altered only Bax and Bak proteins and their activations, resulting in mitochondrial translocation of Bax from the cytosol. Additionally, combination treatment-mediated apoptosis may be correlated with ERK and STAT3 pathways. CONCLUSIONS These results suggest that sorafenib may effectively overcome ABT-737 resistance to apoptotic cell death, which can be a new potential chemotherapeutic strategy against human oral cancer.
Collapse
Affiliation(s)
- Lee-Han Kim
- Department of Oral Pathology, School of Dentistry, Institute of Biodegradable material, Institute of Oral Bioscience, Chonbuk National University, Jeonju 54986, Republic of Korea
| | - Ji-Ae Shin
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Alkek Building for Biomedical Research, Houston, TX, 77030, USA
| | - Boonsil Jang
- Department of Oral Pathology, School of Dentistry, Institute of Biodegradable material, Institute of Oral Bioscience, Chonbuk National University, Jeonju 54986, Republic of Korea
| | - In-Hyoung Yang
- Department of Oral Pathology, School of Dentistry, Institute of Biodegradable material, Institute of Oral Bioscience, Chonbuk National University, Jeonju 54986, Republic of Korea
| | - Dong-Hoon Won
- Department of Oral Pathology, School of Dentistry, Institute of Biodegradable material, Institute of Oral Bioscience, Chonbuk National University, Jeonju 54986, Republic of Korea
| | - Joseph H Jeong
- Department of Urology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Tae-Ho Chung
- Department of Animal Resources Science, Joongbu University, Chungnam, 32713, Republic of Korea
| | - Nam-Pyo Cho
- Department of Oral Pathology, School of Dentistry, Institute of Biodegradable material, Institute of Oral Bioscience, Chonbuk National University, Jeonju 54986, Republic of Korea
| | - Sung-Dae Cho
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 03080, Republic of Korea.
| |
Collapse
|
111
|
Wu CH, Wu X, Zhang HW. Inhibition of acquired-resistance hepatocellular carcinoma cell growth by combining sorafenib with phosphoinositide 3-kinase and rat sarcoma inhibitor. J Surg Res 2016; 206:371-379. [PMID: 27884331 DOI: 10.1016/j.jss.2016.08.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 07/03/2016] [Accepted: 08/03/2016] [Indexed: 12/19/2022]
Abstract
BACKGROUND To provide support for combined usage of phosphoinositide 3-kinase (PI3K) inhibitors or mitogen-activated protein kinase pathway inhibitors together with sorafenib in treatment of sorafenib-resistant hepatocellular carcinoma. MATERIALS AND METHODS The sorafenib-resistant cell lines were established to evaluate the effects of MK-2206 2HCL, a dual PI3K/mammalian target of rapamycin (mTOR) inhibitor, and PD0325901, an rat sarcoma (RAS) and/or extracellular signal-regulated kinase (ERK) inhibitor, on cell proliferation and apoptosis, as both single and combined treatments with sorafenib. In addition, multidrug resistance 1 gene expression, mutation status of key members in PI3K/mTOR, and RAS/ERK pathways and pathway activation were analyzed to identify predictors of drug response. RESULTS Molecular studies reveal that combining MK-2206 2HCL or PD0325901 with sorafenib not only has a synergistic effect, in suppressing PI3K/protein kinase B/mTOR and RAS/MEK/ERK signaling more effectively than either treatment alone, but also prevents the cross activation of the other pathway that occurs with single treatments in both sorafenib sensitive and resistant lines. PD0325901 exhibited a stronger synergic effect with sorafenib than MK-2206 2HCL. Sorafenib-resistant cell lines were characterized by activation of both of the two pathways, as indicated by multidrug resistance 1 gene expression profiles and pathway activity analysis. CONCLUSIONS Our studies have showed that both inhibitors of PI3K/mTOR and RAS/ERK signaling are potentially effective antihepatocellular carcinoma drugs especially in treating sorafenib-resistant hepatocellular carcinoma.
Collapse
Affiliation(s)
- Chang-Hao Wu
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Xiang Wu
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Hong-Wei Zhang
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
112
|
5-Benzylidene-2,4-thiazolidenedione derivatives: Design, synthesis and evaluation as inhibitors of angiogenesis targeting VEGR-2. Bioorg Chem 2016; 67:139-47. [DOI: 10.1016/j.bioorg.2016.06.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 06/27/2016] [Accepted: 06/28/2016] [Indexed: 11/23/2022]
|
113
|
Inactivation of hypoxia-induced YAP by statins overcomes hypoxic resistance tosorafenib in hepatocellular carcinoma cells. Sci Rep 2016; 6:30483. [PMID: 27476430 PMCID: PMC4967870 DOI: 10.1038/srep30483] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 07/06/2016] [Indexed: 12/11/2022] Open
Abstract
Sorafenib is a multikinase inhibitor used as a first-line treatment for advanced hepatocellular carcinoma (HCC), but it has shown modest to low response rates. The characteristic tumour hypoxia of advanced HCC maybe a major factor underlying hypoxia-mediated treatment failure. Thus, it is urgent to elucidate the mechanisms of hypoxia-mediated sorafenib resistance in HCC. In this study, we found that hypoxia induced the nuclear translocation of Yes associate-Protein (YAP) and the subsequent transactivation of target genes that promote cell survival and escape apoptosis, thereby leading to sorafenib resistance. Statins, the inhibitors of hydroxymethylglutaryl-CoA reductase, could ameliorate hypoxia-induced nuclear translocation of YAP and suppress mRNA levels of YAP target genes both in vivo and in vitro. Combined treatment of statins with sorafenib greatly rescued the loss of anti-proliferative effects of sorafenib under hypoxia and improved the inhibitory effects on HepG2 xenograft tumour growth, accompanied by enhanced apoptosis as evidenced by the increased sub-G1 population and PARP cleavage. The expression levels of YAP and its target genes were highly correlated with poor prognosis and predicted a high risk of HCC patients. These findings collectively suggest that statins utilization maybe a promising new strategy to counteract hypoxia-mediated resistance to sorafenib in HCC patients.
Collapse
|
114
|
Yan SY, Zhang Y, Sun C, Cao HX, Li GM, Wang YQ, Fan JG. The clinical effect and relevant mechanism of combined sorafenib and radiofrequency ablation in the treatment of early small hepatocellular carcinoma. Oncol Lett 2016; 12:951-955. [PMID: 27446375 PMCID: PMC4950914 DOI: 10.3892/ol.2016.4694] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 06/09/2016] [Indexed: 12/18/2022] Open
Abstract
The number of cases with hepatocellular carcinoma (HCC) are on the increase. The aim of the present study was to investigate the clinical effect and relevant mechanism of combined sorafenib and radiofrequency ablation (RFA) in the treatment of the early small HCC. A total of 120 cases of patients with small HCC that presented during the period of May 2007 to June 2010 were selected and divided into the surgery (n=60) and RF (n=60) groups according to the treatment method employed. The surgery group was treated with a laparotomy resection and the RF group was treated with combined sorafenib and RFA, and a comparative analysis was made between the two groups with regard to recurrence rates, adverse reactions, and survival rates. After treatment of 1 month, the radical effective rate of the surgery and RF groups was 100%. Contrast-enhanced ultrasound images of the patients in the RF group were taken. During the 5-year follow-up, the tumor recurrence rate in the surgery group was 18.3%, significantly lower than that in the RF group where the tumor recurrence rate was 38.3% (P<0.05). The occurrence rate of postoperative pain, fever, abdominal bleeding, infection, and other complications of patients in the surgery group was significantly higher than the complication occurrence rate (P<0.05) of the patients in the RF group. The average survival time of the patients in the surgery group was 51.2±1.5 months and the survival rates during the first, third and fifth year were 90.7, 71.5 and 56.7%, respectively. Additionally, the average survival time of the patients in the RF group was 64.6±2.4 months and the survival rates during the first, third and fifth year were 91.1, 72.8 and 57.5%, respectively. The difference between the two groups was not statistically significant. The tumor-free survival rates in the surgery group during the first, third and fifth year were 87.8, 44.3 and 33.2%, respectively, while the tumor-free survival rates in the RF group during the first, third and fifth year were 86.2, 48.3 and 34.6%, respectively, and the difference between the two groups was not statistically significant. In conclusion, the combined sorafenib and RFA method, and laparotomy resection method have their advantages in the treatment of early small HCC, and under specific medical conditions, the former can partially replace the latter and be used as a preferred treatment means in the treatment of early small HCC.
Collapse
Affiliation(s)
- Shi-Yan Yan
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| | - Yi Zhang
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| | - Chao Sun
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| | - Hai-Xia Cao
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| | - Guang-Ming Li
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| | - Yu-Qin Wang
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| | - Jian-Gao Fan
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| |
Collapse
|
115
|
Abraham JA, Golubnitschaja O. Time for paradigm change in management of hepatocellular carcinoma: is a personalized approach on the horizon? Per Med 2016; 13:455-467. [PMID: 29767598 DOI: 10.2217/pme-2016-0013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hepatocellular carcinoma (HCC) is the fifth most frequent cancer form but the second leading cause of all cancer-related deaths. There are several reasons for high mortality in the HCC cohort: lack of effective screening programs and consequently late diagnosis, multifactorial origin with cumulative risk factors, complex carcinogenesis, tumor heterogeneity, unpredictable impacts of individual microenvironment on tumor development and progression, and, as the consequence, frequently untargeted therapy and cancer resistance toward currently applied treatment approaches. The currently applied 'treat and wait' approach is inappropriate in the overall HCC management. Urgent need in paradigm change toward predictive, preventive and personalized medicine is discussed in this review article. Innovative strategies for an advanced predictive, preventive and personalized medicine approach in the overall HCC management benefiting the patient are presented.
Collapse
Affiliation(s)
- Jella-Andrea Abraham
- Department of Radiology, University of Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| | - Olga Golubnitschaja
- Department of Radiology, University of Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| |
Collapse
|
116
|
Sun XY, Wang P, Jiang HC. Precision medicine for hepatocellular carcinoma: Perspectives and obstacles. Shijie Huaren Xiaohua Zazhi 2016; 24:3098-3105. [DOI: 10.11569/wcjd.v24.i20.3098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers in China. HCC patients have a poor prognosis due to the lack of effective drugs. The marketing of sorafenib in 2007 has terminated the history that there is no effective drug for HCC. Unfortunately, sorafenib prolongs the survival of advanced HCC patients by only 2-3 mo, and remains the unique systemic drug as no alternative effective agents have been demonstrated to be superior to sorafenib in treating HCC. Precision medicine, a novel concept and medicinal model, has recently emerged and been spreading globally, with the development of gene sequencing techniques, bioinformatics, big data and so on. Detecting, analyzing, verifying and utilizing the specific tumor biomarkers with the advanced technology have made it possible to apply "personalized and precision therapy" in the treatment of advanced HCC. In the present article we summarize the recent progress of HCC therapy under the guidance of precision medicine, and analyze the major obstacles for its clinical application, with an aim to provide some new clues for clinicians and researchers engaged in the clinical and basic research of HCC.
Collapse
|
117
|
Transposon mutagenesis identifies genes and cellular processes driving epithelial-mesenchymal transition in hepatocellular carcinoma. Proc Natl Acad Sci U S A 2016; 113:E3384-93. [PMID: 27247392 DOI: 10.1073/pnas.1606876113] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is thought to contribute to metastasis and chemoresistance in patients with hepatocellular carcinoma (HCC), leading to their poor prognosis. The genes driving EMT in HCC are not yet fully understood, however. Here, we show that mobilization of Sleeping Beauty (SB) transposons in immortalized mouse hepatoblasts induces mesenchymal liver tumors on transplantation to nude mice. These tumors show significant down-regulation of epithelial markers, along with up-regulation of mesenchymal markers and EMT-related transcription factors (EMT-TFs). Sequencing of transposon insertion sites from tumors identified 233 candidate cancer genes (CCGs) that were enriched for genes and cellular processes driving EMT. Subsequent trunk driver analysis identified 23 CCGs that are predicted to function early in tumorigenesis and whose mutation or alteration in patients with HCC is correlated with poor patient survival. Validation of the top trunk drivers identified in the screen, including MET (MET proto-oncogene, receptor tyrosine kinase), GRB2-associated binding protein 1 (GAB1), HECT, UBA, and WWE domain containing 1 (HUWE1), lysine-specific demethylase 6A (KDM6A), and protein-tyrosine phosphatase, nonreceptor-type 12 (PTPN12), showed that deregulation of these genes activates an EMT program in human HCC cells that enhances tumor cell migration. Finally, deregulation of these genes in human HCC was found to confer sorafenib resistance through apoptotic tolerance and reduced proliferation, consistent with recent studies showing that EMT contributes to the chemoresistance of tumor cells. Our unique cell-based transposon mutagenesis screen appears to be an excellent resource for discovering genes involved in EMT in human HCC and potentially for identifying new drug targets.
Collapse
|
118
|
Zhang PF, Li KS, Shen YH, Gao PT, Dong ZR, Cai JB, Zhang C, Huang XY, Tian MX, Hu ZQ, Gao DM, Fan J, Ke AW, Shi GM. Galectin-1 induces hepatocellular carcinoma EMT and sorafenib resistance by activating FAK/PI3K/AKT signaling. Cell Death Dis 2016; 7:e2201. [PMID: 27100895 PMCID: PMC4855644 DOI: 10.1038/cddis.2015.324] [Citation(s) in RCA: 187] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 09/28/2015] [Accepted: 10/05/2015] [Indexed: 12/21/2022]
Abstract
Galectin-1 (Gal-1) is involved in several pathological activities associated with tumor progression and chemoresistance, however, the role and molecular mechanism of Gal-1 activity in hepatocellular carcinoma (HCC) epithelial-mesenchymal transition (EMT) and sorafenib resistance remain enigmatic. In the present study, forced Gal-1 expression promoted HCC progression and sorafenib resistance. Gal-1 elevated αvβ3-integrin expression, leading to AKT activation. Moreover, Gal-1 overexpression induced HCC cell EMT via PI3K/AKT cascade activation. Clinically, our data revealed that Gal-1 overexpression is correlated with poor HCC survival outcomes and sorafenib response. These data suggest that Gal-1 may be a potential therapeutic target for HCC and a biomarker for predicting response to sorafenib treatment.
Collapse
Affiliation(s)
- P-F Zhang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Ministry of Education, Shanghai 200032, China
| | - K-S Li
- State Key Laboratory of Oncogenes & Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China
| | - Y-h Shen
- Key Laboratory of Carcinogenesis and Cancer Invasion, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Ministry of Education, Shanghai 200032, China
| | - P-T Gao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Ministry of Education, Shanghai 200032, China
| | - Z-R Dong
- Key Laboratory of Carcinogenesis and Cancer Invasion, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Ministry of Education, Shanghai 200032, China
| | - J-B Cai
- Key Laboratory of Carcinogenesis and Cancer Invasion, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Ministry of Education, Shanghai 200032, China
| | - C Zhang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Ministry of Education, Shanghai 200032, China
| | - X-Y Huang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Ministry of Education, Shanghai 200032, China
| | - M-X Tian
- Key Laboratory of Carcinogenesis and Cancer Invasion, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Ministry of Education, Shanghai 200032, China
| | - Z-Q Hu
- Key Laboratory of Carcinogenesis and Cancer Invasion, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Ministry of Education, Shanghai 200032, China
| | - D-M Gao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Ministry of Education, Shanghai 200032, China
| | - J Fan
- Key Laboratory of Carcinogenesis and Cancer Invasion, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Ministry of Education, Shanghai 200032, China
- Cancer Center, Institutes of Biomedical Sciences, Fudan University, Shanghai 200031, China
| | - A-W Ke
- Key Laboratory of Carcinogenesis and Cancer Invasion, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Ministry of Education, Shanghai 200032, China
| | - G-M Shi
- Key Laboratory of Carcinogenesis and Cancer Invasion, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Ministry of Education, Shanghai 200032, China
| |
Collapse
|
119
|
Lau EYT, Lee TKW. What are the options for hepatocellular carcinoma patients who progress under sorafenib? Hepat Oncol 2016; 3:105-108. [PMID: 30191031 DOI: 10.2217/hep-2016-0003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 02/15/2016] [Indexed: 12/17/2022] Open
Affiliation(s)
- Eunice Y-T Lau
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong
| | - Terence K-W Lee
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong
| |
Collapse
|
120
|
Activation of c-Jun predicts a poor response to sorafenib in hepatocellular carcinoma: Preliminary Clinical Evidence. Sci Rep 2016; 6:22976. [PMID: 26964667 PMCID: PMC4786823 DOI: 10.1038/srep22976] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 02/23/2016] [Indexed: 01/05/2023] Open
Abstract
We determined the mitogen-activated protein kinase (MAPK) gene expression profile of acquired resistance in sorafenib-sensitive hepatocellular carcinoma (HCC) cells and aimed to identify c-Jun as an important molecule mediating the efficacy of sorafenib. Differences in gene expression of the MAPK signaling between untreated and sorafenib-treated HCC cell lines were investigated using real-time polymerase chain reaction array. Western blot and real-time PCR further evaluated the expression of c-Jun. Pathological specimens from 50 patients with advanced HCC were collected to measure p-c-Jun expression. Sorafenib-resistant HCC cells demonstrated greater levels of basal c-Jun mRNA and protein compared with sorafenib-sensitive HCC cells. Sorafenib activated p-c-Jun in a dose- and time-dependent manner in PLC/PRF/5 and MHCC97H cell lines. Decreased expression levels of 6 genes after sorafenib treatment suggested a robust inhibitory impact of sorafenib on MAPK signaling in HCC cells. c-Jun and p-c-Jun expression levels were inversely correlated with the efficacy of sorafenib; a high expression level of p-c-Jun was associated with resistance to sorafenib and poor overall survival in patients with clinical HCC. p-c-Jun may act as a biomarker for predicting responses of sorafenib treatment, thus advocating targeting of JNK/c-Jun signaling as an optimal therapeutic strategy in a subset of HCC.
Collapse
|
121
|
Synergistic Effect and Molecular Mechanisms of Traditional Chinese Medicine on Regulating Tumor Microenvironment and Cancer Cells. BIOMED RESEARCH INTERNATIONAL 2016; 2016:1490738. [PMID: 27042656 PMCID: PMC4793102 DOI: 10.1155/2016/1490738] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Accepted: 01/26/2016] [Indexed: 12/23/2022]
Abstract
The interaction of tumor cells with the microenvironment is like a relationship between the “seeds” and “soil,” which is a hotspot in recent cancer research. Targeting at tumor microenvironment as well as tumor cells has become a new strategy for cancer treatment. Conventional cancer treatments mostly focused on single targets or single mechanism (the seeds or part of the soil); few researches intervened in the whole tumor microenvironment and achieved ideal therapeutic effect as expected. Traditional Chinese medicine displays a broad range of biological effects, and increasing evidence has shown that it may relate with synergistic effect on regulating tumor microenvironment and cancer cells. Based on literature review and our previous studies, we summarize the synergistic effect and the molecular mechanisms of traditional Chinese medicine on regulating tumor microenvironment and cancer cells.
Collapse
|
122
|
Firtina Karagonlar Z, Koc D, Iscan E, Erdal E, Atabey N. Elevated hepatocyte growth factor expression as an autocrine c-Met activation mechanism in acquired resistance to sorafenib in hepatocellular carcinoma cells. Cancer Sci 2016; 107:407-16. [PMID: 26790028 PMCID: PMC4832867 DOI: 10.1111/cas.12891] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 12/31/2015] [Accepted: 01/14/2016] [Indexed: 01/14/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and the third leading cause of cancer‐related deaths worldwide. Limitations in HCC treatment result due to poor prognosis and resistance against traditional radiotherapy and chemotherapies. The multikinase inhibitor sorafenib is the only FDA approved drug available for advanced HCC patients, and development of second‐line treatment options for patients who cannot tolerate or develop resistance to sorafenib is an urgent medical need. In this study, we established sorafenib‐resistant cells from Huh7 and Mahlavu cell lines by long‐term sorafenib exposure. Sorafenib‐resistant HCC cells acquired spindle‐shape morphology, upregulated mesenchymal markers, and showed significant increase in both migration and invasion abilities compared to their parental counterparts. Moreover, after long‐term sorafenib treatment, HCC cells showed induction of hepatocyte growth factor (HGF) synthesis and secretion along with increased levels of c‐Met kinase and its active phosphorylated form, indicating autocrine activation of HGF/c‐Met signaling. Importantly, the combined treatment of the resistant cells with c‐Met kinase inhibitor SU11274 and HGF neutralizing antibody significantly reversed the increased invasion ability of the cells. The combined treatment also significantly augmented sorafenib‐induced apoptosis, suggesting restoration of sorafenib sensitivity. These results describe, for the first time, compensatory upregulation of HGF synthesis leading to autocrine activation of HGF/c‐Met signaling as a novel cellular strategy in the acquisition of sorafenib resistance. Therefore, we suggest that combinatorial therapeutic strategies with HGF and c‐Met inhibitors comprise promising candidates for overcoming sorafenib resistance.
Collapse
Affiliation(s)
- Zeynep Firtina Karagonlar
- Faculty of Engineering and Computer Science, Izmir University of Economics, Izmir.,Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir
| | - Dogukan Koc
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir
| | - Evin Iscan
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir
| | - Esra Erdal
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir.,Department of Medical Biology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Neşe Atabey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir.,Department of Medical Biology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| |
Collapse
|
123
|
Mazzanti R, Arena U, Tassi R. Hepatocellular carcinoma: Where are we? World J Exp Med 2016; 6:21-36. [PMID: 26929917 PMCID: PMC4759352 DOI: 10.5493/wjem.v6.i1.21] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 12/14/2015] [Accepted: 01/05/2016] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the second cause of death due to malignancy in the world, following lung cancer. The geographic distribution of this disease accompanies its principal risk factors: Chronic hepatitis B virus and hepatitis C virus infection, alcoholism, aflatoxin B1 intoxication, liver cirrhosis, and some genetic attributes. Recently, type II diabetes has been shown to be a risk factor for HCC together with obesity and metabolic syndrome. Although the risk factors are quite well known and it is possible to diagnose HCC when the tumor is less than 1 cm diameter, it remains elusive at the beginning and treatment is often unsuccessful. Liver transplantation is thus far considered the best treatment for HCC as it cures HCC and the underlying liver disease. Using the Milan criteria, overall survival after liver transplantation for HCC is about 70% after 5 years. Many attempts have been made to go beyond the Milan Criteria and according to recent works reasonably good results have been achieved by using a histochemical marker such as cytokeratine 19 and the so-called "up to seven criteria" to divide patients into categories according to their risk of relapse. In addition to liver transplantation other therapies have been proposed such as resection, tumor ablation by different means, embolization and chemotherapy. An important step in the treatment of advanced HCC has been the introduction of sorafenib, the first oral, systemic drug that has provided significant improvement in survival. Treatment of HCC patients must be multidisciplinary and by using the different approaches discussed in this review it is possible to offer prolonged survival and quite good and sometimes even excellent quality of life to many patients.
Collapse
|
124
|
Sun X, Ou Z, Chen R, Niu X, Chen D, Kang R, Tang D. Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells. Hepatology 2016; 63:173-184. [PMID: 26403645 DOI: 10.1002/hep.28251/suppinfo] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/20/2015] [Indexed: 05/26/2023]
Abstract
UNLABELLED Ferroptosis is a recently recognized form of regulated cell death caused by an iron-dependent accumulation of lipid reactive oxygen species. However, the molecular mechanisms regulating ferroptosis remain obscure. Here, we report that nuclear factor erythroid 2-related factor 2 (NRF2) plays a central role in protecting hepatocellular carcinoma (HCC) cells against ferroptosis. Upon exposure to ferroptosis-inducing compounds (e.g., erastin, sorafenib, and buthionine sulfoximine), p62 expression prevented NRF2 degradation and enhanced subsequent NRF2 nuclear accumulation through inactivation of Kelch-like ECH-associated protein 1. Additionally, nuclear NRF2 interacted with transcriptional coactivator small v-maf avian musculoaponeurotic fibrosarcoma oncogene homolog proteins such as MafG and then activated transcription of quinone oxidoreductase-1, heme oxygenase-1, and ferritin heavy chain-1. Knockdown of p62, quinone oxidoreductase-1, heme oxygenase-1, and ferritin heavy chain-1 by RNA interference in HCC cells promoted ferroptosis in response to erastin and sorafenib. Furthermore, genetic or pharmacologic inhibition of NRF2 expression/activity in HCC cells increased the anticancer activity of erastin and sorafenib in vitro and in tumor xenograft models. CONCLUSION These findings demonstrate novel molecular mechanisms and signaling pathways of ferroptosis; the status of NRF2 is a key factor that determines the therapeutic response to ferroptosis-targeted therapies in HCC cells.
Collapse
Affiliation(s)
- Xiaofang Sun
- Center for DAMP Biology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhanhui Ou
- Center for DAMP Biology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ruochan Chen
- Department of Surgery, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA
| | - Xiaohua Niu
- Center for DAMP Biology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - De Chen
- Center for DAMP Biology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Rui Kang
- Department of Surgery, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA
| | - Daolin Tang
- Center for DAMP Biology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Surgery, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
125
|
Sun X, Ou Z, Chen R, Niu X, Chen D, Kang R, Tang D. Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells. Hepatology 2016; 63:173-84. [PMID: 26403645 PMCID: PMC4688087 DOI: 10.1002/hep.28251] [Citation(s) in RCA: 1433] [Impact Index Per Article: 159.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/20/2015] [Indexed: 02/06/2023]
Abstract
UNLABELLED Ferroptosis is a recently recognized form of regulated cell death caused by an iron-dependent accumulation of lipid reactive oxygen species. However, the molecular mechanisms regulating ferroptosis remain obscure. Here, we report that nuclear factor erythroid 2-related factor 2 (NRF2) plays a central role in protecting hepatocellular carcinoma (HCC) cells against ferroptosis. Upon exposure to ferroptosis-inducing compounds (e.g., erastin, sorafenib, and buthionine sulfoximine), p62 expression prevented NRF2 degradation and enhanced subsequent NRF2 nuclear accumulation through inactivation of Kelch-like ECH-associated protein 1. Additionally, nuclear NRF2 interacted with transcriptional coactivator small v-maf avian musculoaponeurotic fibrosarcoma oncogene homolog proteins such as MafG and then activated transcription of quinone oxidoreductase-1, heme oxygenase-1, and ferritin heavy chain-1. Knockdown of p62, quinone oxidoreductase-1, heme oxygenase-1, and ferritin heavy chain-1 by RNA interference in HCC cells promoted ferroptosis in response to erastin and sorafenib. Furthermore, genetic or pharmacologic inhibition of NRF2 expression/activity in HCC cells increased the anticancer activity of erastin and sorafenib in vitro and in tumor xenograft models. CONCLUSION These findings demonstrate novel molecular mechanisms and signaling pathways of ferroptosis; the status of NRF2 is a key factor that determines the therapeutic response to ferroptosis-targeted therapies in HCC cells.
Collapse
Affiliation(s)
- Xiaofang Sun
- Center for DAMP Biology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510510, China
| | - Zhanhui Ou
- Center for DAMP Biology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510510, China
| | - Ruochan Chen
- Department of Surgery, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Xiaohua Niu
- Center for DAMP Biology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510510, China
| | - De Chen
- Center for DAMP Biology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510510, China
| | - Rui Kang
- Department of Surgery, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Daolin Tang
- Center for DAMP Biology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510510, China,Department of Surgery, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA,Correspondence to: Daolin Tang ()
| |
Collapse
|
126
|
Block KI, Gyllenhaal C, Lowe L, Amedei A, Amin ARMR, Amin A, Aquilano K, Arbiser J, Arreola A, Arzumanyan A, Ashraf SS, Azmi AS, Benencia F, Bhakta D, Bilsland A, Bishayee A, Blain SW, Block PB, Boosani CS, Carey TE, Carnero A, Carotenuto M, Casey SC, Chakrabarti M, Chaturvedi R, Chen GZ, Chen H, Chen S, Chen YC, Choi BK, Ciriolo MR, Coley HM, Collins AR, Connell M, Crawford S, Curran CS, Dabrosin C, Damia G, Dasgupta S, DeBerardinis RJ, Decker WK, Dhawan P, Diehl AME, Dong JT, Dou QP, Drew JE, Elkord E, El-Rayes B, Feitelson MA, Felsher DW, Ferguson LR, Fimognari C, Firestone GL, Frezza C, Fujii H, Fuster MM, Generali D, Georgakilas AG, Gieseler F, Gilbertson M, Green MF, Grue B, Guha G, Halicka D, Helferich WG, Heneberg P, Hentosh P, Hirschey MD, Hofseth LJ, Holcombe RF, Honoki K, Hsu HY, Huang GS, Jensen LD, Jiang WG, Jones LW, Karpowicz PA, Keith WN, Kerkar SP, Khan GN, Khatami M, Ko YH, Kucuk O, Kulathinal RJ, Kumar NB, Kwon BS, Le A, Lea MA, Lee HY, Lichtor T, Lin LT, Locasale JW, Lokeshwar BL, Longo VD, Lyssiotis CA, MacKenzie KL, Malhotra M, Marino M, Martinez-Chantar ML, Matheu A, et alBlock KI, Gyllenhaal C, Lowe L, Amedei A, Amin ARMR, Amin A, Aquilano K, Arbiser J, Arreola A, Arzumanyan A, Ashraf SS, Azmi AS, Benencia F, Bhakta D, Bilsland A, Bishayee A, Blain SW, Block PB, Boosani CS, Carey TE, Carnero A, Carotenuto M, Casey SC, Chakrabarti M, Chaturvedi R, Chen GZ, Chen H, Chen S, Chen YC, Choi BK, Ciriolo MR, Coley HM, Collins AR, Connell M, Crawford S, Curran CS, Dabrosin C, Damia G, Dasgupta S, DeBerardinis RJ, Decker WK, Dhawan P, Diehl AME, Dong JT, Dou QP, Drew JE, Elkord E, El-Rayes B, Feitelson MA, Felsher DW, Ferguson LR, Fimognari C, Firestone GL, Frezza C, Fujii H, Fuster MM, Generali D, Georgakilas AG, Gieseler F, Gilbertson M, Green MF, Grue B, Guha G, Halicka D, Helferich WG, Heneberg P, Hentosh P, Hirschey MD, Hofseth LJ, Holcombe RF, Honoki K, Hsu HY, Huang GS, Jensen LD, Jiang WG, Jones LW, Karpowicz PA, Keith WN, Kerkar SP, Khan GN, Khatami M, Ko YH, Kucuk O, Kulathinal RJ, Kumar NB, Kwon BS, Le A, Lea MA, Lee HY, Lichtor T, Lin LT, Locasale JW, Lokeshwar BL, Longo VD, Lyssiotis CA, MacKenzie KL, Malhotra M, Marino M, Martinez-Chantar ML, Matheu A, Maxwell C, McDonnell E, Meeker AK, Mehrmohamadi M, Mehta K, Michelotti GA, Mohammad RM, Mohammed SI, Morre DJ, Muralidhar V, Muqbil I, Murphy MP, Nagaraju GP, Nahta R, Niccolai E, Nowsheen S, Panis C, Pantano F, Parslow VR, Pawelec G, Pedersen PL, Poore B, Poudyal D, Prakash S, Prince M, Raffaghello L, Rathmell JC, Rathmell WK, Ray SK, Reichrath J, Rezazadeh S, Ribatti D, Ricciardiello L, Robey RB, Rodier F, Rupasinghe HPV, Russo GL, Ryan EP, Samadi AK, Sanchez-Garcia I, Sanders AJ, Santini D, Sarkar M, Sasada T, Saxena NK, Shackelford RE, Shantha Kumara HMC, Sharma D, Shin DM, Sidransky D, Siegelin MD, Signori E, Singh N, Sivanand S, Sliva D, Smythe C, Spagnuolo C, Stafforini DM, Stagg J, Subbarayan PR, Sundin T, Talib WH, Thompson SK, Tran PT, Ungefroren H, Vander Heiden MG, Venkateswaran V, Vinay DS, Vlachostergios PJ, Wang Z, Wellen KE, Whelan RL, Yang ES, Yang H, Yang X, Yaswen P, Yedjou C, Yin X, Zhu J, Zollo M. Designing a broad-spectrum integrative approach for cancer prevention and treatment. Semin Cancer Biol 2015; 35 Suppl:S276-S304. [PMID: 26590477 PMCID: PMC4819002 DOI: 10.1016/j.semcancer.2015.09.007] [Show More Authors] [Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 08/12/2015] [Accepted: 09/14/2015] [Indexed: 12/14/2022]
Abstract
Targeted therapies and the consequent adoption of "personalized" oncology have achieved notable successes in some cancers; however, significant problems remain with this approach. Many targeted therapies are highly toxic, costs are extremely high, and most patients experience relapse after a few disease-free months. Relapses arise from genetic heterogeneity in tumors, which harbor therapy-resistant immortalized cells that have adopted alternate and compensatory pathways (i.e., pathways that are not reliant upon the same mechanisms as those which have been targeted). To address these limitations, an international task force of 180 scientists was assembled to explore the concept of a low-toxicity "broad-spectrum" therapeutic approach that could simultaneously target many key pathways and mechanisms. Using cancer hallmark phenotypes and the tumor microenvironment to account for the various aspects of relevant cancer biology, interdisciplinary teams reviewed each hallmark area and nominated a wide range of high-priority targets (74 in total) that could be modified to improve patient outcomes. For these targets, corresponding low-toxicity therapeutic approaches were then suggested, many of which were phytochemicals. Proposed actions on each target and all of the approaches were further reviewed for known effects on other hallmark areas and the tumor microenvironment. Potential contrary or procarcinogenic effects were found for 3.9% of the relationships between targets and hallmarks, and mixed evidence of complementary and contrary relationships was found for 7.1%. Approximately 67% of the relationships revealed potentially complementary effects, and the remainder had no known relationship. Among the approaches, 1.1% had contrary, 2.8% had mixed and 62.1% had complementary relationships. These results suggest that a broad-spectrum approach should be feasible from a safety standpoint. This novel approach has potential to be relatively inexpensive, it should help us address stages and types of cancer that lack conventional treatment, and it may reduce relapse risks. A proposed agenda for future research is offered.
Collapse
Affiliation(s)
- Keith I Block
- Block Center for Integrative Cancer Treatment, Skokie, IL, United States.
| | | | - Leroy Lowe
- Getting to Know Cancer, Truro, Nova Scotia, Canada; Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster, United Kingdom.
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - A R M Ruhul Amin
- Winship Cancer Institute of Emory University, Atlanta, GA, United States
| | - Amr Amin
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Katia Aquilano
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Jack Arbiser
- Winship Cancer Institute of Emory University, Atlanta, GA, United States; Atlanta Veterans Administration Medical Center, Atlanta, GA, United States; Department of Dermatology, Emory University School of Medicine, Emory University, Atlanta, GA, United States
| | - Alexandra Arreola
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States
| | - Alla Arzumanyan
- Department of Biology, Temple University, Philadelphia, PA, United States
| | - S Salman Ashraf
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Asfar S Azmi
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
| | - Fabian Benencia
- Department of Biomedical Sciences, Ohio University, Athens, OH, United States
| | - Dipita Bhakta
- School of Chemical and Bio Technology, SASTRA University, Thanjavur, Tamil Nadu, India
| | | | - Anupam Bishayee
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin Health Sciences Institute, Miami, FL, United States
| | - Stacy W Blain
- Department of Pediatrics, State University of New York, Downstate Medical Center, Brooklyn, NY, United States
| | - Penny B Block
- Block Center for Integrative Cancer Treatment, Skokie, IL, United States
| | - Chandra S Boosani
- Department of BioMedical Sciences, School of Medicine, Creighton University, Omaha, NE, United States
| | - Thomas E Carey
- Head and Neck Cancer Biology Laboratory, University of Michigan, Ann Arbor, MI, United States
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla, Consejo Superior de Investigaciones Cientificas, Seville, Spain
| | - Marianeve Carotenuto
- Centro di Ingegneria Genetica e Biotecnologia Avanzate, Naples, Italy; Department of Molecular Medicine and Medical Biotechnology, Federico II, Via Pansini 5, 80131 Naples, Italy
| | - Stephanie C Casey
- Stanford University, Division of Oncology, Department of Medicine and Pathology, Stanford, CA, United States
| | - Mrinmay Chakrabarti
- Department of Pathology, Microbiology, and Immunology, University of South Carolina, School of Medicine, Columbia, SC, United States
| | - Rupesh Chaturvedi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Georgia Zhuo Chen
- Winship Cancer Institute of Emory University, Atlanta, GA, United States
| | - Helen Chen
- Department of Pediatrics, University of British Columbia, Michael Cuccione Childhood Cancer Research Program, Child and Family Research Institute, Vancouver, British Columbia, Canada
| | - Sophie Chen
- Ovarian and Prostate Cancer Research Laboratory, Guildford, Surrey, United Kingdom
| | - Yi Charlie Chen
- Department of Biology, Alderson Broaddus University, Philippi, WV, United States
| | - Beom K Choi
- Cancer Immunology Branch, Division of Cancer Biology, National Cancer Center, Goyang, Gyeonggi, Republic of Korea
| | | | - Helen M Coley
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - Andrew R Collins
- Department of Nutrition, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Marisa Connell
- Department of Pediatrics, University of British Columbia, Michael Cuccione Childhood Cancer Research Program, Child and Family Research Institute, Vancouver, British Columbia, Canada
| | - Sarah Crawford
- Cancer Biology Research Laboratory, Southern Connecticut State University, New Haven, CT, United States
| | - Colleen S Curran
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Charlotta Dabrosin
- Department of Oncology and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Giovanna Damia
- Department of Oncology, Istituto Di Ricovero e Cura a Carattere Scientifico - Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Santanu Dasgupta
- Department of Cellular and Molecular Biology, the University of Texas Health Science Center at Tyler, Tyler, TX, United States
| | - Ralph J DeBerardinis
- Children's Medical Center Research Institute, University of Texas - Southwestern Medical Center, Dallas, TX, United States
| | - William K Decker
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Punita Dhawan
- Department of Surgery and Cancer Biology, Division of Surgical Oncology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Anna Mae E Diehl
- Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Jin-Tang Dong
- Winship Cancer Institute of Emory University, Atlanta, GA, United States
| | - Q Ping Dou
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
| | - Janice E Drew
- Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - Eyad Elkord
- College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Bassel El-Rayes
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, United States
| | - Mark A Feitelson
- Department of Biology, Temple University, Philadelphia, PA, United States
| | - Dean W Felsher
- Stanford University, Division of Oncology, Department of Medicine and Pathology, Stanford, CA, United States
| | - Lynnette R Ferguson
- Discipline of Nutrition and Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
| | - Carmela Fimognari
- Dipartimento di Scienze per la Qualità della Vita Alma Mater Studiorum-Università di Bologna, Rimini, Italy
| | - Gary L Firestone
- Department of Molecular & Cell Biology, University of California Berkeley, Berkeley, CA, United States
| | - Christian Frezza
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge, United Kingdom
| | - Hiromasa Fujii
- Department of Orthopedic Surgery, Nara Medical University, Kashihara, Nara, Japan
| | - Mark M Fuster
- Medicine and Research Services, Veterans Affairs San Diego Healthcare System & University of California, San Diego, CA, United States
| | - Daniele Generali
- Department of Medical, Surgery and Health Sciences, University of Trieste, Trieste, Italy; Molecular Therapy and Pharmacogenomics Unit, Azienda Ospedaliera Istituti Ospitalieri di Cremona, Cremona, Italy
| | - Alexandros G Georgakilas
- Physics Department, School of Applied Mathematics and Physical Sciences, National Technical University of Athens, Athens, Greece
| | - Frank Gieseler
- First Department of Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | | | - Michelle F Green
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, United States
| | - Brendan Grue
- Departments of Environmental Science, Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Gunjan Guha
- School of Chemical and Bio Technology, SASTRA University, Thanjavur, Tamil Nadu, India
| | - Dorota Halicka
- Department of Pathology, New York Medical College, Valhalla, NY, United States
| | | | - Petr Heneberg
- Charles University in Prague, Third Faculty of Medicine, Prague, Czech Republic
| | - Patricia Hentosh
- School of Medical Laboratory and Radiation Sciences, Old Dominion University, Norfolk, VA, United States
| | - Matthew D Hirschey
- Department of Medicine, Duke University Medical Center, Durham, NC, United States; Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, United States
| | - Lorne J Hofseth
- College of Pharmacy, University of South Carolina, Columbia, SC, United States
| | - Randall F Holcombe
- Tisch Cancer Institute, Mount Sinai School of Medicine, New York, NY, United States
| | - Kanya Honoki
- Department of Orthopedic Surgery, Nara Medical University, Kashihara, Nara, Japan
| | - Hsue-Yin Hsu
- Department of Life Sciences, Tzu-Chi University, Hualien, Taiwan
| | - Gloria S Huang
- Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, United States
| | - Lasse D Jensen
- Department of Medical and Health Sciences, Linköping University, Linköping, Sweden; Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Wen G Jiang
- Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| | - Lee W Jones
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, United States
| | | | | | - Sid P Kerkar
- Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | | | - Mahin Khatami
- Inflammation and Cancer Research, National Cancer Institute (Retired), National Institutes of Health, Bethesda, MD, United States
| | - Young H Ko
- University of Maryland BioPark, Innovation Center, KoDiscovery, Baltimore, MD, United States
| | - Omer Kucuk
- Winship Cancer Institute of Emory University, Atlanta, GA, United States
| | - Rob J Kulathinal
- Department of Biology, Temple University, Philadelphia, PA, United States
| | - Nagi B Kumar
- Moffitt Cancer Center, University of South Florida College of Medicine, Tampa, FL, United States
| | - Byoung S Kwon
- Cancer Immunology Branch, Division of Cancer Biology, National Cancer Center, Goyang, Gyeonggi, Republic of Korea; Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA, United States
| | - Anne Le
- The Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Michael A Lea
- New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Ho-Young Lee
- College of Pharmacy, Seoul National University, South Korea
| | - Terry Lichtor
- Department of Neurosurgery, Rush University Medical Center, Chicago, IL, United States
| | - Liang-Tzung Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jason W Locasale
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, United States
| | - Bal L Lokeshwar
- Department of Medicine, Georgia Regents University Cancer Center, Augusta, GA, United States
| | - Valter D Longo
- Andrus Gerontology Center, Division of Biogerontology, University of Southern California, Los Angeles, CA, United States
| | - Costas A Lyssiotis
- Department of Molecular and Integrative Physiology and Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI, United States
| | - Karen L MacKenzie
- Children's Cancer Institute Australia, Kensington, New South Wales, Australia
| | - Meenakshi Malhotra
- Department of Biomedical Engineering, McGill University, Montréal, Canada
| | - Maria Marino
- Department of Science, University Roma Tre, Rome, Italy
| | - Maria L Martinez-Chantar
- Metabolomic Unit, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Technology Park of Bizkaia, Bizkaia, Spain
| | | | - Christopher Maxwell
- Department of Pediatrics, University of British Columbia, Michael Cuccione Childhood Cancer Research Program, Child and Family Research Institute, Vancouver, British Columbia, Canada
| | - Eoin McDonnell
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, United States
| | - Alan K Meeker
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Mahya Mehrmohamadi
- Field of Genetics, Genomics, and Development, Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States
| | - Kapil Mehta
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Gregory A Michelotti
- Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Ramzi M Mohammad
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
| | - Sulma I Mohammed
- Department of Comparative Pathobiology, Purdue University Center for Cancer Research, West Lafayette, IN, United States
| | - D James Morre
- Mor-NuCo, Inc, Purdue Research Park, West Lafayette, IN, United States
| | - Vinayak Muralidhar
- Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA, United States; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Irfana Muqbil
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, Wellcome Trust-MRC Building, Hills Road, Cambridge, United Kingdom
| | | | - Rita Nahta
- Winship Cancer Institute of Emory University, Atlanta, GA, United States
| | | | - Somaira Nowsheen
- Medical Scientist Training Program, Mayo Graduate School, Mayo Medical School, Mayo Clinic, Rochester, MN, United States
| | - Carolina Panis
- Laboratory of Inflammatory Mediators, State University of West Paraná, UNIOESTE, Paraná, Brazil
| | - Francesco Pantano
- Medical Oncology Department, University Campus Bio-Medico, Rome, Italy
| | - Virginia R Parslow
- Discipline of Nutrition and Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
| | - Graham Pawelec
- Center for Medical Research, University of Tübingen, Tübingen, Germany
| | - Peter L Pedersen
- Departments of Biological Chemistry and Oncology, Member at Large, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, United States
| | - Brad Poore
- The Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Deepak Poudyal
- College of Pharmacy, University of South Carolina, Columbia, SC, United States
| | - Satya Prakash
- Department of Biomedical Engineering, McGill University, Montréal, Canada
| | - Mark Prince
- Department of Otolaryngology-Head and Neck, Medical School, University of Michigan, Ann Arbor, MI, United States
| | | | - Jeffrey C Rathmell
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, United States
| | - W Kimryn Rathmell
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States
| | - Swapan K Ray
- Department of Pathology, Microbiology, and Immunology, University of South Carolina, School of Medicine, Columbia, SC, United States
| | - Jörg Reichrath
- Center for Clinical and Experimental Photodermatology, Clinic for Dermatology, Venerology and Allergology, The Saarland University Hospital, Homburg, Germany
| | - Sarallah Rezazadeh
- Department of Biology, University of Rochester, Rochester, NY, United States
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy & National Cancer Institute Giovanni Paolo II, Bari, Italy
| | - Luigi Ricciardiello
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - R Brooks Robey
- White River Junction Veterans Affairs Medical Center, White River Junction, VT, United States; Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - Francis Rodier
- Centre de Rechercher du Centre Hospitalier de l'Université de Montréal and Institut du Cancer de Montréal, Montréal, Quebec, Canada; Université de Montréal, Département de Radiologie, Radio-Oncologie et Médicine Nucléaire, Montréal, Quebec, Canada
| | - H P Vasantha Rupasinghe
- Department of Environmental Sciences, Faculty of Agriculture and Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Gian Luigi Russo
- Institute of Food Sciences National Research Council, Avellino, Italy
| | - Elizabeth P Ryan
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States
| | | | - Isidro Sanchez-Garcia
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, Salamanca, Spain
| | - Andrew J Sanders
- Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| | - Daniele Santini
- Medical Oncology Department, University Campus Bio-Medico, Rome, Italy
| | - Malancha Sarkar
- Department of Biology, University of Miami, Miami, FL, United States
| | - Tetsuro Sasada
- Department of Immunology, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Neeraj K Saxena
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Rodney E Shackelford
- Department of Pathology, Louisiana State University, Health Shreveport, Shreveport, LA, United States
| | - H M C Shantha Kumara
- Department of Surgery, St. Luke's Roosevelt Hospital, New York, NY, United States
| | - Dipali Sharma
- Department of Oncology, Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, United States
| | - Dong M Shin
- Winship Cancer Institute of Emory University, Atlanta, GA, United States
| | - David Sidransky
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Markus David Siegelin
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, United States
| | - Emanuela Signori
- National Research Council, Institute of Translational Pharmacology, Rome, Italy
| | - Neetu Singh
- Advanced Molecular Science Research Centre (Centre for Advanced Research), King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Sharanya Sivanand
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Daniel Sliva
- DSTest Laboratories, Purdue Research Park, Indianapolis, IN, United States
| | - Carl Smythe
- Department of Biomedical Science, Sheffield Cancer Research Centre, University of Sheffield, Sheffield, United Kingdom
| | - Carmela Spagnuolo
- Institute of Food Sciences National Research Council, Avellino, Italy
| | - Diana M Stafforini
- Huntsman Cancer Institute and Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States
| | - John Stagg
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Faculté de Pharmacie et Institut du Cancer de Montréal, Montréal, Quebec, Canada
| | - Pochi R Subbarayan
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Tabetha Sundin
- Department of Molecular Diagnostics, Sentara Healthcare, Norfolk, VA, United States
| | - Wamidh H Talib
- Department of Clinical Pharmacy and Therapeutics, Applied Science University, Amman, Jordan
| | - Sarah K Thompson
- Department of Surgery, Royal Adelaide Hospital, Adelaide, Australia
| | - Phuoc T Tran
- Departments of Radiation Oncology & Molecular Radiation Sciences, Oncology and Urology, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Hendrik Ungefroren
- First Department of Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Vasundara Venkateswaran
- Department of Surgery, University of Toronto, Division of Urology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Dass S Vinay
- Section of Clinical Immunology, Allergy, and Rheumatology, Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA, United States
| | - Panagiotis J Vlachostergios
- Department of Internal Medicine, New York University Lutheran Medical Center, Brooklyn, New York, NY, United States
| | - Zongwei Wang
- Department of Urology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Kathryn E Wellen
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Richard L Whelan
- Department of Surgery, St. Luke's Roosevelt Hospital, New York, NY, United States
| | - Eddy S Yang
- Department of Radiation Oncology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, United States
| | - Huanjie Yang
- The School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Xujuan Yang
- University of Illinois at Urbana Champaign, Champaign, IL, United States
| | - Paul Yaswen
- Life Sciences Division, Lawrence Berkeley National Lab, Berkeley, CA, United States
| | - Clement Yedjou
- Department of Biology, Jackson State University, Jackson, MS, United States
| | - Xin Yin
- Medicine and Research Services, Veterans Affairs San Diego Healthcare System & University of California, San Diego, CA, United States
| | - Jiyue Zhu
- Washington State University College of Pharmacy, Spokane, WA, United States
| | - Massimo Zollo
- Centro di Ingegneria Genetica e Biotecnologia Avanzate, Naples, Italy; Department of Molecular Medicine and Medical Biotechnology, Federico II, Via Pansini 5, 80131 Naples, Italy
| |
Collapse
|
127
|
Zhai B, Hu F, Yan H, Zhao D, Jin X, Fang T, Pan S, Sun X, Xu L. Bufalin Reverses Resistance to Sorafenib by Inhibiting Akt Activation in Hepatocellular Carcinoma: The Role of Endoplasmic Reticulum Stress. PLoS One 2015; 10:e0138485. [PMID: 26381511 PMCID: PMC4575108 DOI: 10.1371/journal.pone.0138485] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 08/31/2015] [Indexed: 12/17/2022] Open
Abstract
Sorafenib is the standard first-line therapeutic treatment for patients with advanced hepatocellular carcinoma (HCC), but its use is hampered by the development of drug resistance. The activation of Akt by sorafenib is thought to be responsible for this resistance. Bufalin is the major active ingredient of the traditional Chinese medicine Chan su, which inhibits Akt activation; therefore, Chan su is currently used in the clinic to treat cancer. The present study aimed to investigate the ability of bufalin to reverse both inherent and acquired resistance to sorafenib. Bufalin synergized with sorafenib to inhibit tumor cell proliferation and induce apoptosis. This effect was at least partially due to the ability of bufalin to inhibit Akt activation by sorafenib. Moreover, the ability of bufalin to inactivate Akt depended on endoplasmic reticulum (ER) stress mediated by inositol-requiring enzyme 1 (IRE1). Silencing IRE1 with siRNA blocked the bufalin-induced Akt inactivation, but silencing eukaryotic initiation factor 2 (eIF2) or C/EBP-homologous protein (CHOP) did not have the same effect. Additionally, silencing Akt did not influence IRE1, CHOP or phosphorylated eIF2α expression. Two sorafenib-resistant HCC cell lines, which were established from human HCC HepG2 and Huh7 cells, were refractory to sorafenib-induced growth inhibition but were sensitive to bufalin. Thus, Bufalin reversed acquired resistance to sorafenib by downregulating phosphorylated Akt in an ER-stress-dependent manner via the IRE1 pathway. These findings warrant further studies to examine the utility of bufalin alone or in combination with sorafenib as a first- or second-line treatment after sorafenib failure for advanced HCC.
Collapse
Affiliation(s)
- Bo Zhai
- Department of General Surgery, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Fengli Hu
- Department of Gastroenterology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Haijiang Yan
- Department of General Surgery, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Dali Zhao
- Department of General Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xin Jin
- Department of General Surgery, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Taishi Fang
- Department of General Surgery, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Shangha Pan
- Department of General Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xueying Sun
- Department of General Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Lishan Xu
- Department of General Surgery, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
128
|
Gou XC, Kong D, Tang X. Contradictory Relationships between Cancer and Normal Cells and Implications for Anti-cancer Therapy. Asian Pac J Cancer Prev 2015. [PMID: 26225643 DOI: 10.7314/apjcp.2015.16.13.5143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Cancer treatment remains a serious problem worldwide. Analysis of the relationship between cancer cells and normal cells reveals that these two share characteristics in contradiction, thus could be analyzed by using contradictory principles. Under the theory of contradictory principles, induction of a dormant state or reversal of cancer cells is an important treatment strategy beyond traditional cytotoxic therapy. Normal cells are also the targets and under the influence of anti-cancer treatments and should be considered during therapy. Findings based on crosstalk between these two cell types may offer opportunities for the development of new biomarkers and therapies.
Collapse
Affiliation(s)
- Xing-Chun Gou
- Institute of Basic Medical Science and Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Xi'an Medical University, Xi'an, China E-mail :
| | | | | |
Collapse
|
129
|
Rodríguez-Hernández A, Navarro-Villarán E, González R, Pereira S, Soriano-De Castro LB, Sarrias-Giménez A, Barrera-Pulido L, Álamo-Martínez JM, Serrablo-Requejo A, Blanco-Fernández G, Nogales-Muñoz A, Gila-Bohórquez A, Pacheco D, Torres-Nieto MA, Serrano-Díaz-Canedo J, Suárez-Artacho G, Bernal-Bellido C, Marín-Gómez LM, Barcena JA, Gómez-Bravo MA, Padilla CA, Padillo FJ, Muntané J. Regulation of cell death receptor S-nitrosylation and apoptotic signaling by Sorafenib in hepatoblastoma cells. Redox Biol 2015; 6:174-182. [PMID: 26233703 PMCID: PMC4534573 DOI: 10.1016/j.redox.2015.07.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 07/17/2015] [Accepted: 07/20/2015] [Indexed: 12/15/2022] Open
Abstract
Nitric oxide (NO) plays a relevant role during cell death regulation in tumor cells. The overexpression of nitric oxide synthase type III (NOS-3) induces oxidative and nitrosative stress, p53 and cell death receptor expression and apoptosis in hepatoblastoma cells. S-nitrosylation of cell death receptor modulates apoptosis. Sorafenib is the unique recommended molecular-targeted drug for the treatment of patients with advanced hepatocellular carcinoma. The present study was addressed to elucidate the potential role of NO during Sorafenib-induced cell death in HepG2 cells. We determined the intra- and extracellular NO concentration, cell death receptor expression and their S-nitrosylation modifications, and apoptotic signaling in Sorafenib-treated HepG2 cells. The effect of NO donors on above parameters has also been determined. Sorafenib induced apoptosis in HepG2 cells. However, low concentration of the drug (10nM) increased cell death receptor expression, as well as caspase-8 and -9 activation, but without activation of downstream apoptotic markers. In contrast, Sorafenib (10 µM) reduced upstream apoptotic parameters but increased caspase-3 activation and DNA fragmentation in HepG2 cells. The shift of cell death signaling pathway was associated with a reduction of S-nitrosylation of cell death receptors in Sorafenib-treated cells. The administration of NO donors increased S-nitrosylation of cell death receptors and overall induction of cell death markers in control and Sorafenib-treated cells. In conclusion, Sorafenib induced alteration of cell death receptor S-nitrosylation status which may have a relevant repercussion on cell death signaling in hepatoblastoma cells.
Collapse
Affiliation(s)
- A Rodríguez-Hernández
- Institute of Biomedicine of Seville (IBiS), Hospital Universitario "Virgen del Rocío"/CSIC/Universidad de Sevilla, Av. Manuel Siurot s/n, 41013 Sevilla, Spain
| | - E Navarro-Villarán
- Institute of Biomedicine of Seville (IBiS), Hospital Universitario "Virgen del Rocío"/CSIC/Universidad de Sevilla, Av. Manuel Siurot s/n, 41013 Sevilla, Spain
| | - R González
- Departament of Biochemistry and Molecular Biology, University of Cordoba, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14071 Córdoba, Spain
| | - S Pereira
- Institute of Biomedicine of Seville (IBiS), Hospital Universitario "Virgen del Rocío"/CSIC/Universidad de Sevilla, Av. Manuel Siurot s/n, 41013 Sevilla, Spain
| | - L B Soriano-De Castro
- Institute of Biomedicine of Seville (IBiS), Hospital Universitario "Virgen del Rocío"/CSIC/Universidad de Sevilla, Av. Manuel Siurot s/n, 41013 Sevilla, Spain
| | - A Sarrias-Giménez
- Institute of Biomedicine of Seville (IBiS), Hospital Universitario "Virgen del Rocío"/CSIC/Universidad de Sevilla, Av. Manuel Siurot s/n, 41013 Sevilla, Spain
| | - L Barrera-Pulido
- Department of General Surgery, Hospital Universitario "Virgen del Rocío" - "Virgen Macarena"/Instituto de Biomedicina de Sevilla (IBiS)/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - J M Álamo-Martínez
- Department of General Surgery, Hospital Universitario "Virgen del Rocío" - "Virgen Macarena"/Instituto de Biomedicina de Sevilla (IBiS)/CSIC/Universidad de Sevilla, Sevilla, Spain; CENTRO DE INVESTIGACIÓN BIOMÉDICA EN RED de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain
| | - A Serrablo-Requejo
- Hepato-Biliary Surgery Unit, Hospital Universitario "Miguel Servet", Zaragoza, Spain
| | - G Blanco-Fernández
- Hepato-Biliary-Pancreatic and Liver Transplant Service, Hospital Universitario "Infanta Cristina", Badajoz, Spain
| | - A Nogales-Muñoz
- Department of General Surgery, Hospital Universitario "Virgen del Rocío" - "Virgen Macarena"/Instituto de Biomedicina de Sevilla (IBiS)/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - A Gila-Bohórquez
- Department of General Surgery, Hospital Universitario "Virgen del Rocío" - "Virgen Macarena"/Instituto de Biomedicina de Sevilla (IBiS)/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - D Pacheco
- Department of General Surgery and Department of Pathology, Hospital Universitario "Rio Hortega", Valladolid, Spain
| | - M A Torres-Nieto
- Department of Pathology, Hospital Universitario "Rio Hortega", Valladolid, Spain
| | - J Serrano-Díaz-Canedo
- Department of General Surgery, Hospital Universitario "Virgen del Rocío" - "Virgen Macarena"/Instituto de Biomedicina de Sevilla (IBiS)/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - G Suárez-Artacho
- Department of General Surgery, Hospital Universitario "Virgen del Rocío" - "Virgen Macarena"/Instituto de Biomedicina de Sevilla (IBiS)/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - C Bernal-Bellido
- Department of General Surgery, Hospital Universitario "Virgen del Rocío" - "Virgen Macarena"/Instituto de Biomedicina de Sevilla (IBiS)/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - L M Marín-Gómez
- Department of General Surgery, Hospital Universitario "Virgen del Rocío" - "Virgen Macarena"/Instituto de Biomedicina de Sevilla (IBiS)/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - J A Barcena
- Departament of Biochemistry and Molecular Biology, University of Cordoba, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14071 Córdoba, Spain
| | - M A Gómez-Bravo
- Department of General Surgery, Hospital Universitario "Virgen del Rocío" - "Virgen Macarena"/Instituto de Biomedicina de Sevilla (IBiS)/CSIC/Universidad de Sevilla, Sevilla, Spain; CENTRO DE INVESTIGACIÓN BIOMÉDICA EN RED de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain
| | - C A Padilla
- Departament of Biochemistry and Molecular Biology, University of Cordoba, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14071 Córdoba, Spain
| | - F J Padillo
- Department of General Surgery, Hospital Universitario "Virgen del Rocío" - "Virgen Macarena"/Instituto de Biomedicina de Sevilla (IBiS)/CSIC/Universidad de Sevilla, Sevilla, Spain; CENTRO DE INVESTIGACIÓN BIOMÉDICA EN RED de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain
| | - J Muntané
- Department of General Surgery, Hospital Universitario "Virgen del Rocío" - "Virgen Macarena"/Instituto de Biomedicina de Sevilla (IBiS)/CSIC/Universidad de Sevilla, Sevilla, Spain; CENTRO DE INVESTIGACIÓN BIOMÉDICA EN RED de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain.
| |
Collapse
|
130
|
Schinzari V, Barnaba V, Piconese S. Chronic hepatitis B virus and hepatitis C virus infections and cancer: synergy between viral and host factors. Clin Microbiol Infect 2015; 21:969-74. [PMID: 26163104 DOI: 10.1016/j.cmi.2015.06.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 06/12/2015] [Accepted: 06/16/2015] [Indexed: 02/07/2023]
Abstract
Hepatitis B virus (HBV) or hepatitis C virus (HCV) infections represent major causes of chronic liver disease and hepatocellular carcinoma. Despite inducing shared pathological events leading to oncogenic transformation, these two viruses present profound differences in their molecular features, life cycle and interplay with host factors, which significantly differentiate the prognostic and therapeutic approach to the related diseases. In the present review, we report the main mechanisms involved in the multistep process leading from HCV/HBV infection and cancer development, discussing side-by-side the analogies and differences between the two viruses. Such events can be broadly categorized into (a) direct oncogenic effects, involving integration in the host genome (in the case of HBV) and chromosomal instability, interference with oncosuppressor pathways, induction of oxidative stress, promotion of angiogenesis, epithelial-mesenchymal transition, alterations in the epigenetic asset and interaction with non-coding RNAs; and (b) indirect activities mostly mediated by host events, including chronic inflammation sustained by peculiar cytokine networks (such as interleukin-6 and lymphotoxins), metabolic dysfunctions promoted by steatohepatitis, interplay with gut microbiota and fibrotic events (mainly in HCV infection). This scenario suggests that the integrated study of viral and host factors may lead to the successful development of novel biomarkers and targets for therapy.
Collapse
Affiliation(s)
- V Schinzari
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy
| | - V Barnaba
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy; Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy.
| | - S Piconese
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy; Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy
| |
Collapse
|
131
|
Jebar AH, Vile RG, Melcher AA, Griffin S, Selby PJ, Errington-Mais F. Progress in clinical oncolytic virus-based therapy for hepatocellular carcinoma. J Gen Virol 2015; 96:1533-50. [DOI: 10.1099/vir.0.000098] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
132
|
Chen KW, Ou TM, Hsu CW, Horng CT, Lee CC, Tsai YY, Tsai CC, Liou YS, Yang CC, Hsueh CW, Kuo WH. Current systemic treatment of hepatocellular carcinoma: A review of the literature. World J Hepatol 2015; 7:1412-20. [PMID: 26052386 PMCID: PMC4450204 DOI: 10.4254/wjh.v7.i10.1412] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 11/29/2014] [Accepted: 03/30/2015] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common form of human cancer worldwide and the third most common cause of cancer-related deaths. The strategies of various treatments for HCC depend on the stage of tumor, the status of patient's performance and the reserved hepatic function. The Barcelona Clinic Liver Cancer (BCLC) staging system is currently used most for patients with HCC. For example, for patients with BCLC stage 0 (very early stage) and stage A (early stage) HCC, the curable treatment modalities, including resection, transplantation and radiofrequency ablation, are taken into consideration. If the patients are in BCLC stage B (intermediate stage) and stage C (advanced stage) HCC, they may need the palliative transarterial chemoembolization and even the target medication of sorafenib. In addition, symptomatic treatment is always recommended for patients with BCLC stage D (end stage) HCC. In this review, we will attempt to summarize the historical perspective and the current developments of systemic therapies in BCLC stage B and C in HCC.
Collapse
Affiliation(s)
- Kai-Wen Chen
- Kai-Wen Chen, Department of Internal Medicine, Hualien Armed Forces General Hospital, Hualien 97144, Taiwan
| | - Tzu-Ming Ou
- Kai-Wen Chen, Department of Internal Medicine, Hualien Armed Forces General Hospital, Hualien 97144, Taiwan
| | - Chin-Wen Hsu
- Kai-Wen Chen, Department of Internal Medicine, Hualien Armed Forces General Hospital, Hualien 97144, Taiwan
| | - Chi-Ting Horng
- Kai-Wen Chen, Department of Internal Medicine, Hualien Armed Forces General Hospital, Hualien 97144, Taiwan
| | - Ching-Chang Lee
- Kai-Wen Chen, Department of Internal Medicine, Hualien Armed Forces General Hospital, Hualien 97144, Taiwan
| | - Yuh-Yuan Tsai
- Kai-Wen Chen, Department of Internal Medicine, Hualien Armed Forces General Hospital, Hualien 97144, Taiwan
| | - Chi-Chang Tsai
- Kai-Wen Chen, Department of Internal Medicine, Hualien Armed Forces General Hospital, Hualien 97144, Taiwan
| | - Yi-Sheng Liou
- Kai-Wen Chen, Department of Internal Medicine, Hualien Armed Forces General Hospital, Hualien 97144, Taiwan
| | - Chen-Chieh Yang
- Kai-Wen Chen, Department of Internal Medicine, Hualien Armed Forces General Hospital, Hualien 97144, Taiwan
| | - Chao-Wen Hsueh
- Kai-Wen Chen, Department of Internal Medicine, Hualien Armed Forces General Hospital, Hualien 97144, Taiwan
| | - Wu-Hsien Kuo
- Kai-Wen Chen, Department of Internal Medicine, Hualien Armed Forces General Hospital, Hualien 97144, Taiwan
| |
Collapse
|
133
|
Liu F, Dong X, Lv H, Xiu P, Li T, Wang F, Xu Z, Li J. Targeting hypoxia-inducible factor-2α enhances sorafenib antitumor activity via β-catenin/C-Myc-dependent pathways in hepatocellular carcinoma. Oncol Lett 2015; 10:778-784. [PMID: 26622569 DOI: 10.3892/ol.2015.3315] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 05/07/2015] [Indexed: 12/12/2022] Open
Abstract
Sorafenib is a type of multikinase inhibitor that exhibits antiangiogenic and antiproliferative effects; in addition, sorafenib is a unique first-line drug recommended for the treatment of advanced hepatocellular carcinoma (HCC). However, the effectiveness of HCC treatment remains poor due to acquired drug resistance. It has been suggested that hypoxia, induced as a results of the antiangiogenic effects of sustained sorafenib treatment, may be an important factor in sorafenib resistance. The transcription factor hypoxia-inducible factor (HIF)-2α has been reported to be associated with cell proliferation under hypoxic conditions; therefore, it was hypothesized that hypoxia may enhance tumor cell proliferation via this mechanism. The present study aimed to evaluate whether the knock-down of HIF-2α was able to enhance the therapeutic efficacy of sorafenib in order to effectively treat HCC. The results demonstrated that hypoxia protected HCC cells against sorafenib; however, short hairpin RNA-HIF-2α transfection in combination with sorafenib treatment exhibited a significantly synergistic effect against HCC cell proliferation. In addition, HCC cells acquired increased β-catenin/C-Myc expression, which enhanced proliferation under hypoxic conditions; however, targeted knock-down of HIF-2α or C-Myc markedly decreased cell proliferation in HCC cells. In conclusion, the results of the present study indicated that the targeted knock-down of HIF-2α in combination with sorafenib may be a promising strategy for the treatment of HCC.
Collapse
Affiliation(s)
- Feng Liu
- Department of General Surgery, Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Xiaofeng Dong
- Department of Hepatobiliary Surgery, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, P.R. China
| | - Hong Lv
- Department of Hematology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Peng Xiu
- Department of General Surgery, Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Tao Li
- Department of General Surgery, Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Fuhai Wang
- Department of General Surgery, Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Zongzhen Xu
- Department of General Surgery, Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Jie Li
- Department of General Surgery, Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| |
Collapse
|
134
|
Hao PP, Li H, Lee MJ, Wang YP, Kim JH, Yu GR, Lee SY, Leem SH, Jang KY, Kim DG. Disruption of a regulatory loop between DUSP1 and p53 contributes to hepatocellular carcinoma development and progression. J Hepatol 2015; 62:1278-86. [PMID: 25617504 DOI: 10.1016/j.jhep.2014.12.033] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 12/04/2014] [Accepted: 12/23/2014] [Indexed: 12/31/2022]
Abstract
BACKGROUND & AIMS Altered expression of dual specificity phosphatase 1 (DUSP1) is common in tumors including hepatocellular carcinoma (HCC), and is predictive of tumor progression and poor prognosis. However, the tumor suppressive role of DUSP1 has yet to be clearly elucidated. METHODS The molecular mechanisms of tumor suppression that were investigated were induction of apoptosis, cell cycle inhibition, and regulation of p53. Additionally, the antitumor effect of DUSP1 was assessed using a mouse model. Associated signaling pathways in HCC cells and tissues were examined. RESULTS Downregulation of DUSP1 expression was significantly correlated with poor differentiation (p<0.001) and advanced HCC stage (p=0.023). DUSP1 expression resulted in HCC suppression and longer survival (p=0.0002) in a xenoplant mice model. DUSP1 inhibited p38 MAPK phosphorylation and subsequently suppressed HSP27 activation, resulting in enhanced p53 phosphorylation at sites S15, S20, and S46 in HCC cells. Enhanced p53 activation induced the expression of target genes p21 and p27, which are linked to cell cycle arrest and apoptosis. Thus, DUSP1 was potentially linked to p53 activation via the p38 MAPK/HSP27 pathway. Wild-type but not mutant p53 transcriptionally upregulated DUSP1 via its DNA-binding domain. DUSP1 and p53 might collaborate to suppress tumors in hepatocarcinogenesis via a positive regulatory loop. CONCLUSIONS Our results revealed that disruption of a positive regulatory loop between DUSP1 and p53 promoted HCC development and progression, providing a rationale for a therapeutic agent that restores DUSP1 in HCC.
Collapse
Affiliation(s)
- Pei-Pei Hao
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Research Institute of Clinical Medicine, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, Republic of Korea
| | - Hua Li
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Research Institute of Clinical Medicine, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, Republic of Korea
| | - Mi-Jin Lee
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Research Institute of Clinical Medicine, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, Republic of Korea
| | - Yun-Peng Wang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Research Institute of Clinical Medicine, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, Republic of Korea
| | - Jong-Hyun Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Research Institute of Clinical Medicine, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, Republic of Korea
| | - Goung-Ran Yu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Research Institute of Clinical Medicine, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, Republic of Korea
| | - Sang-Yeop Lee
- Division of Life Science Research, Korea Basic Science Institute, Daejeon, 305-806 Daejeon, Republic of Korea
| | - Sun-Hee Leem
- Department of Biological Science, Dong-A University, Busan, Republic of Korea
| | - Kyu-Yun Jang
- Department of Pathology, Chonbuk National University Medical School, Jeonju, Jeonbuk, Republic of Korea
| | - Dae-Ghon Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Research Institute of Clinical Medicine, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, Republic of Korea.
| |
Collapse
|
135
|
Effects of sorafenib on lung metastasis in rats with hepatocellular carcinoma: the role of microRNAs. Tumour Biol 2015; 36:8455-63. [DOI: 10.1007/s13277-015-3565-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 05/13/2015] [Indexed: 01/08/2023] Open
|
136
|
Zhai B, Jiang X, He C, Zhao D, Ma L, Xu L, Jiang H, Sun X. Arsenic trioxide potentiates the anti-cancer activities of sorafenib against hepatocellular carcinoma by inhibiting Akt activation. Tumour Biol 2015; 36:2323-2334. [PMID: 25416439 DOI: 10.1007/s13277-014-2839-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 11/11/2014] [Indexed: 01/05/2023] Open
Abstract
Sorafenib is the standard first-line systemic drug for advanced hepatocellular carcinoma (HCC), but it also induces the activation of Akt, which contributes to the mechanisms for the resistance to sorafenib. Arsenic trioxide (ATO) is a currently clinically used anticancer drug and displays its anticancer activities by inhibiting Akt activation. Therefore, we hypothesized that ATO may potentiate the anti-cancer activities of sorafenib against HCC. The results have demonstrated that ATO synergized with sorafenib to inhibit the proliferation and promote the apoptosis of HCC cells by diminishing the increased activation of Akt by sorafenib. ATO was shown to inhibit the expression or activation of Akt downstream factors, including glycogen synthase kinase (GSK)-3β, mammalian target of rapamycin (mTOR), ribosomal protein S6 kinase (S6K), and eukaryotic translation initiation factor 4E-binding protein 1 (4EBP1), which regulate cell apoptosis and were upregulated or activated by sorafenib. Both sorafenib and ATO downregulated the expression of cyclin D1, resulting in HCC cells arrested at G0/G1 phase. ATO downregulated the expression of Bcl-2 and Bcl-xL and upregulated the expression of Bax, indicating that ATO could induce the apoptosis of HCC cells through the intrinsic pathways; but sorafenib showed little effects on these proteins of Bcl-2 family. ATO synergized with sorafenib to suppress the growth of HCC tumors established in mice by inhibiting the proliferation and inducing the apoptosis of HCC cells in situ. These results indicate that ATO may be a potential agent that given in combination with sorafenib acts synergistically for treating HCC.
Collapse
Affiliation(s)
- Bo Zhai
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | | | | | | | | | | | | | | |
Collapse
|
137
|
Ress AL, Wagle R, Pichler M. Multi-omics in prognosis of hepatocellular carcinoma. ANNALS OF TRANSLATIONAL MEDICINE 2015; 3:2. [PMID: 25705634 DOI: 10.3978/j.issn.2305-5839.2014.12.07] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 11/20/2014] [Indexed: 12/19/2022]
Affiliation(s)
- Anna Lena Ress
- 1 Division of Oncology, Department of Internal Medicine, Medical University of Graz, Austria ; 2 Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Rishi Wagle
- 1 Division of Oncology, Department of Internal Medicine, Medical University of Graz, Austria ; 2 Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Martin Pichler
- 1 Division of Oncology, Department of Internal Medicine, Medical University of Graz, Austria ; 2 Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, USA
| |
Collapse
|
138
|
Wang F, Dong X, Xiu P, Zhong J, Wei H, Xu Z, Li T, Liu F, Sun X, Li J. T7 peptide inhibits angiogenesis via downregulation of angiopoietin-2 and autophagy. Oncol Rep 2015; 33:675-684. [PMID: 25483829 DOI: 10.3892/or.2014.3653] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 10/29/2014] [Indexed: 11/05/2022] Open
Abstract
Angiogenesis is required for the invasion, metastasis and chemoresistance of tumor cells. In addition to vascular endothelial cell growth factor (VEGF), angiopoietin-2 (Ang2) is considered to be a promising target for anti-angiogenic therapy. The T7 peptide, an active fragment of full-length tumstatin [the noncollagenous 1 domain of the type IV collagen α3 chain, α3(IV)NC1], has equivalent anti-angiogenic activity to that of full-length tumstatin. This study aimed to explore the mechanisms of the T7 peptide in the regulation of Ang2 expression in endothelial cells (ECs) as well as inhibition of angiogenesis and invasion of hepatocellular carcinoma cells. We also examined the role of autophagy in angiogenesis. Human umbilical vein endothelial cells (HUVECs) were incubated with endothelial cell medium (ECM)-2 in a hypoxia chamber to mimic hypoxic conditions. The recombinant T7 peptide inhibited the cell viability, tube formation and induced apoptosis of the HUVECs. The T7 peptide downregulated the protein expression of Ang2 by inhibiting phosphorylation of AKT under hypoxic conditions. The migration of HUVECs and invasion of HepG2 cells were inhibited by the T7 peptide via inhibition of Ang2 expression. EC autophagy was induced by the T7 peptide. Inhibition of autophagy enhanced the anti‑angiogenic activity of the T7 peptide by increasing EC apoptosis. In vivo, immunohistochemistry of VE-cadherin and CD31 showed that angiogenesis was decreased significantly by the T7 peptide in a nude mouse xenogeneic tumor model. In conclusion, the T7 peptide inhibited angiogenesis and exerted its antitumor effects by inhibition of Ang2, phosphorylation of AKT and matrix metalloproteinase-2 (MMP-2) regulated by Ang2. Furthermore, inhibition of autophagy may significantly enhance the anti-angiogenic activity of the T7 peptide.
Collapse
Affiliation(s)
- Fuhai Wang
- Department of General Surgery, Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Xiaofeng Dong
- Department of General Surgery, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, P.R. China
| | - Peng Xiu
- Department of General Surgery, Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Jingtao Zhong
- Department of General Surgery, Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Honglong Wei
- Department of General Surgery, Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Zongzhen Xu
- Department of General Surgery, Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Tao Li
- Department of General Surgery, Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Feng Liu
- Department of General Surgery, Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Xueying Sun
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Jie Li
- Department of General Surgery, Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| |
Collapse
|
139
|
Wu JR, Hu CT, You RI, Ma PL, Pan SM, Lee MC, Wu WS. Preclinical trials for prevention of tumor progression of hepatocellular carcinoma by LZ-8 targeting c-Met dependent and independent pathways. PLoS One 2015; 10:e0114495. [PMID: 25607934 PMCID: PMC4301873 DOI: 10.1371/journal.pone.0114495] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 11/07/2014] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is among the most lethal cancers. Mounting studies highlighted the essential role of the HGF/c-MET axis in driving HCC tumor progression. Therefore, c-Met is a potential therapeutic target for HCC. However, several concerns remain unresolved in c-Met targeting. First, the status of active c-Met in HCC must be screened to determine patients suitable for therapy. Second, resistance and side effects have been observed frequently when using conventional c-Met inhibitors. Thus, a preclinical system for screening the status of c-Met signaling and identifying efficient and safe anti-HCC agents is urgently required. In this study, immunohistochemical staining of phosphorylated c-Met (Tyr1234) on tissue sections indicated that HCCs with positive c-Met signaling accounted for approximately 46% in 26 cases. Second, many patient-derived HCC cell lines were established and characterized according to motility and c-Met signaling status. Moreover, LZ8, a medicinal peptide purified from the herb Lingzhi, featuring immunomodulatory and anticancer properties, was capable of suppressing cell migration and slightly reducing the survival rate of both c-Met positive and negative HCCs, HCC372, and HCC329, respectively. LZ8 also suppressed the intrahepatic metastasis of HCC329 in SCID mice. On the molecular level, LZ8 suppressed the expression of c-Met and phosphorylation of c-Met, ERK and AKT in HCC372, and suppressed the phosphorylation of JNK, ERK, and AKT in HCC329. According to receptor array screening, the major receptor tyrosine kinase activated in HCC329 was found to be the epidermal growth factor receptor (EGFR). Moreover, tyrosine-phosphorylated EGFR (the active EGFR) was greatly suppressed in HCC329 by LZ8 treatment. In addition, LZ8 blocked HGF-induced cell migration and c-Met-dependent signaling in HepG2. In summary, we designed a preclinical trial using LZ8 to prevent the tumor progression of patient-derived HCCs with c-Met-positive or -negative signaling.
Collapse
Affiliation(s)
- Jia-Ru Wu
- Institute of Medical Sciences, Tzu Chi University, Hualein, Taiwan
| | - Chi-Tan Hu
- Research Centre for Hepatology, Buddhist Tzu Chi General Hospital and Department of Internal Medicine Tzu Chi University, Hualien, Taiwan
| | - Ren-In You
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualein, Taiwan
| | - Pei-Ling Ma
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualein, Taiwan
| | - Siou-Mei Pan
- Research Centre for Hepatology, Buddhist Tzu Chi General Hospital and Department of Internal Medicine Tzu Chi University, Hualien, Taiwan
| | - Ming-Che Lee
- Department of Surgery, Buddhist Tzu Chi General Hospital, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Wen-Sheng Wu
- Institute of Medical Sciences, Tzu Chi University, Hualein, Taiwan
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualein, Taiwan
- * E-mail:
| |
Collapse
|
140
|
Moscato S, Ronca F, Campani D, Danti S. Poly(vinyl alcohol)/gelatin Hydrogels Cultured with HepG2 Cells as a 3D Model of Hepatocellular Carcinoma: A Morphological Study. J Funct Biomater 2015; 6:16-32. [PMID: 25590431 PMCID: PMC4384098 DOI: 10.3390/jfb6010016] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 01/05/2015] [Indexed: 12/17/2022] Open
Abstract
It has been demonstrated that three-dimensional (3D) cell culture models represent fundamental tools for the comprehension of cellular phenomena both for normal and cancerous tissues. Indeed, the microenvironment affects the cellular behavior as well as the response to drugs. In this study, we performed a morphological analysis on a hepatocarcinoma cell line, HepG2, grown for 24 days inside a bioartificial hydrogel composed of poly(vinyl alcohol) (PVA) and gelatin (G) to model a hepatocellular carcinoma (HCC) in 3D. Morphological features of PVA/G hydrogels were investigated, resulting to mimic the trabecular structure of liver parenchyma. A histologic analysis comparing the 3D models with HepG2 cell monolayers and tumor specimens was performed. In the 3D setting, HepG2 cells were viable and formed large cellular aggregates showing different morphotypes with zonal distribution. Furthermore, β-actin and α5β1 integrin revealed a morphotype-related expression; in particular, the frontline cells were characterized by a strong immunopositivity on a side border of their membrane, thus suggesting the formation of lamellipodia-like structures apt for migration. Based on these results, we propose PVA/G hydrogels as valuable substrates to develop a long term 3D HCC model that can be used to investigate important aspects of tumor biology related to migration phenomena.
Collapse
Affiliation(s)
- Stefania Moscato
- Department of Clinical and Experimental Medicine, University of Pisa, via Savi 10, 56126 Pisa, Italy.
| | - Francesca Ronca
- Department of Surgical, Medical, Molecular Pathology and Emergency Medicine, University of Pisa, via Savi 10, 56126 Pisa, Italy.
| | - Daniela Campani
- Department of Surgical, Medical, Molecular Pathology and Emergency Medicine, University of Pisa, via Savi 10, 56126 Pisa, Italy.
| | - Serena Danti
- Department of Surgical, Medical, Molecular Pathology and Emergency Medicine, University of Pisa, via Savi 10, 56126 Pisa, Italy.
| |
Collapse
|
141
|
Sun H, Zhu MS, Wu WR, Shi XD, Xu LB. Role of anti-angiogenesis therapy in the management of hepatocellular carcinoma: The jury is still out. World J Hepatol 2014; 6:830-835. [PMID: 25544869 PMCID: PMC4269901 DOI: 10.4254/wjh.v6.i12.830] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Revised: 09/29/2014] [Accepted: 10/29/2014] [Indexed: 02/06/2023] Open
Abstract
As the leading cause of disease-related deaths, cancer is a major public health threat worldwide. Surgical resection is still the first-line therapy for patients with early-stage cancers. However, postoperative relapse and metastasis remain the cause of 90% of deaths of patients with solid organ malignancies, including hepatocellular carcinoma (HCC). With the rapid development of molecular biology techniques in recent years, molecularly targeted therapies using monoclonal antibodies, small molecules, and vaccines have become a milestone in cancer therapeutic by significantly improving the survival of cancer patients, and have opened a window of hope for patients with advanced cancer. Hypervascularization is a major characteristic of HCC. It has been reported that anti-angiogenic treatments, which inhibit blood vessel formation, are highly effective for treating HCC. However, the efficacy and safety of anti-angiogenesis therapies remain controversial. Sorafenib is an oral multikinase inhibitor with anti-proliferative and anti-angiogenic effects and is the first molecular target drug approved for the treatment of advanced HCC. While sorafenib has shown promising therapeutic effects, substantial evidence of primary and acquired resistance to sorafenib has been reported. Numerous clinical trials have been conducted to evaluate a large number of molecularly targeted drugs for treating HCC, but most drugs exhibited less efficacy and/or higher toxicity compared to sorafenib. Therefore, understanding the mechanism(s) underlying sorafenib resistance of cancer cells is highlighted for efficiently treating HCC. This concise review aims to provide an overview of anti-angiogenesis therapy in the management of HCC and to discuss the common mechanisms of resistance to anti-angiogenesis therapies.
Collapse
|
142
|
TOMIZAWA MINORU, SHINOZAKI FUMINOBU, MOTOYOSHI YASUFUMI, SUGIYAMA TAKAO, YAMAMOTO SHIGENORI, SUEISHI MAKOTO. Picropodophyllin and sorafenib synergistically suppress the proliferation and motility of hepatocellular carcinoma cells. Oncol Lett 2014; 8:2023-2026. [PMID: 25289088 PMCID: PMC4186500 DOI: 10.3892/ol.2014.2484] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 08/15/2014] [Indexed: 12/12/2022] Open
Abstract
Resistance is one limitation of sorafenib in the treatment of hepatocellular carcinoma (HCC). Insulin-like growth factor-1 receptor (IGF-1R) is involved in cancer cell proliferation. To assess the potential synergistic antitumor effects of picropodophyllin (PPP), an IGF-1R inhibitor, HLF and PLC/PRL/5, HCC cells were treated with PPP alone or PPP in combination with sorafenib, a multikinase inhibitor. Normal human umbilical vein endothelial cells (HUVECs) were also used to analyze the antiangiogenic effects of the drugs. HCC cells and HUVECs were cultured on 96-well plates, and then treated with PPP, with and without the addition of sorafenib. A 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium inner salt assay and hematoxylin and eosin staining were then performed 48 h later. The HCC cells were also analyzed using scratch assays and hematoxylin and eosin staining after 48 h. The proliferation of HLF, PLC/PRF/5 and HUVEC cells was suppressed by the combination of 0.2 μM PPP and 3 μM sorafenib more effectively than by 10 μM sorafenib alone. The motility of HLF and PLC/PRF/5 cells was also suppressed to a greater extent with the combination of PPP at 0.2 μM and sorafenib at 3 μM than with sorafenib at 10 μM alone. The cells that had been treated with 0.2 μM PPP and 3 μM sorafenib also exhibited pyknotic nuclei, which is characteristic of apoptosis. In conclusion, PPP enhanced sorafenib-mediated suppression of proliferation and motility in HCC cells. Therefore, the combination of PPP and sorafenib may exert antitumor and antiangiogenic effects.
Collapse
Affiliation(s)
- MINORU TOMIZAWA
- Department of Gastroenterology, National Hospital Organization, Shimoshizu Hospital, Yotsukaido, Chiba 284-0003, Japan
| | - FUMINOBU SHINOZAKI
- Department of Radiology, National Hospital Organization, Shimoshizu Hospital, Yotsukaido, Chiba 284-0003, Japan
| | - YASUFUMI MOTOYOSHI
- Department of Neurology, National Hospital Organization, Shimoshizu Hospital, Yotsukaido, Chiba 284-0003, Japan
| | - TAKAO SUGIYAMA
- Department of Rheumatology, National Hospital Organization, Shimoshizu Hospital, Yotsukaido, Chiba 284-0003, Japan
| | - SHIGENORI YAMAMOTO
- Department of Pediatrics, National Hospital Organization, Shimoshizu Hospital, Yotsukaido, Chiba 284-0003, Japan
| | - MAKOTO SUEISHI
- Department of Rheumatology, National Hospital Organization, Shimoshizu Hospital, Yotsukaido, Chiba 284-0003, Japan
| |
Collapse
|
143
|
Qin S, Cheng Y, Liang J, Shen L, Bai Y, Li J, Fan J, Liang L, Zhang Y, Wu G, Rau KM, Yang TS, Jian Z, Liang H, Sun Y. Efficacy and safety of the FOLFOX4 regimen versus doxorubicin in Chinese patients with advanced hepatocellular carcinoma: a subgroup analysis of the EACH study. Oncologist 2014; 19:1169-78. [PMID: 25223462 DOI: 10.1634/theoncologist.2014-0190] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The EACH study assessed the efficacy of oxaliplatin, 5-fluorouracil, and leucovorin (the FOLFOX4 regimen) compared with doxorubicin alone in terms of overall survival (OS), progression-free survival (PFS), and safety in patients with advanced hepatocellular carcinoma (HCC). We present the results of this study in Chinese patients. METHODS In a multicenter, open-label, randomized, phase III study (NCT00471965), 371 patients (279 patients from the People's Republic of China) were randomized 1:1 to receive either FOLFOX4 or doxorubicin until disease progression, intolerable toxicity, death, or surgical resection. RESULTS Baseline characteristics of the Chinese patients enrolled in the study were similar for the 2 treatment groups and in comparison with the whole EACH cohort. Median OS at the prespecified time point of treatment was 5.7 months with FOLFOX4 and 4.3 months with doxorubicin (hazard ratio [HR]: 0.74; 95% confidence interval [CI]: 0.55-0.98; p = .03). At the end of the follow-up period, median OS was 5.9 months with FOLFOX4 and 4.3 months with doxorubicin (HR: 0.75; 95% CI: 0.58-0.98; p = .03). Median PFS was 2.4 months and 1.7 months in the FOLFOX4 and doxorubicin groups, respectively (HR: 0.55; 95% CI: 0.45-0.78; p = .0002). The response rate (RR) and disease control rate (DCR) were significantly higher in the FOLFOX4 group than in the doxorubicin group (RR: 8.6% vs. 1.4%, p = .006; DCR: 47.1% vs. 26.6%, p = .0004). Hematological toxicity was more frequently reported in the FOLFOX4 group. CONCLUSION For Chinese HCC patients enrolled in the EACH study, FOLFOX4 significantly improved the RR and DCR and prolonged survival compared with doxorubicin. Systemic chemotherapy with oxaliplatin-based regimens may play an important role in the treatment of Chinese patients with advanced HCC.
Collapse
Affiliation(s)
- Shukui Qin
- People's Liberation Army Cancer Center, Bayi Hospital, Nanjing, People's Republic of China; Department of Medical Oncology, Jilin Province Cancer Hospital, Changchun, People's Republic of China; Department of Medical Oncology, The Affiliated Hospital of Medical College Qingdao University, Qingdao, People's Republic of China; Department of Gastrointestinal Medical Oncology, Peking University Cancer Hospital, Beijing, People's Republic of China; Department of Medical Oncology, Heilongjiang Province Cancer Hospital, Harbin, People's Republic of China; Medical Affairs, Sanofi China, Shanghai, People's Republic of China; Department of Hepatobiliary Surgery, Zhong Shan Hospital, Shanghai, People's Republic of China; Department of Hepatobiliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China; Department of Interventional Radiology, Sun Yat-sen University Cancer Hospital, Guangzhou, People's Republic of China; Department of Medical Oncology, Wuhan Union Hospital, Hubei, People's Republic of China; Department of Medical Oncology, Kaohsiung Chang-Gung Memorial Hospital, Kaohsiung, Taiwan, Republic of China; LinKou Medical Center, Chang-Gung Memorial Hospital, Taoyuan, Taiwan, Republic of China; Department of Hepatobiliary Surgery, Guangdong General Hospital, Guangzhou, People's Republic of China; Department of Medical Oncology, Southwest Hospital, Chongqing, People's Republic of China; Cancer Institute and Hospital, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Ying Cheng
- People's Liberation Army Cancer Center, Bayi Hospital, Nanjing, People's Republic of China; Department of Medical Oncology, Jilin Province Cancer Hospital, Changchun, People's Republic of China; Department of Medical Oncology, The Affiliated Hospital of Medical College Qingdao University, Qingdao, People's Republic of China; Department of Gastrointestinal Medical Oncology, Peking University Cancer Hospital, Beijing, People's Republic of China; Department of Medical Oncology, Heilongjiang Province Cancer Hospital, Harbin, People's Republic of China; Medical Affairs, Sanofi China, Shanghai, People's Republic of China; Department of Hepatobiliary Surgery, Zhong Shan Hospital, Shanghai, People's Republic of China; Department of Hepatobiliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China; Department of Interventional Radiology, Sun Yat-sen University Cancer Hospital, Guangzhou, People's Republic of China; Department of Medical Oncology, Wuhan Union Hospital, Hubei, People's Republic of China; Department of Medical Oncology, Kaohsiung Chang-Gung Memorial Hospital, Kaohsiung, Taiwan, Republic of China; LinKou Medical Center, Chang-Gung Memorial Hospital, Taoyuan, Taiwan, Republic of China; Department of Hepatobiliary Surgery, Guangdong General Hospital, Guangzhou, People's Republic of China; Department of Medical Oncology, Southwest Hospital, Chongqing, People's Republic of China; Cancer Institute and Hospital, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Jun Liang
- People's Liberation Army Cancer Center, Bayi Hospital, Nanjing, People's Republic of China; Department of Medical Oncology, Jilin Province Cancer Hospital, Changchun, People's Republic of China; Department of Medical Oncology, The Affiliated Hospital of Medical College Qingdao University, Qingdao, People's Republic of China; Department of Gastrointestinal Medical Oncology, Peking University Cancer Hospital, Beijing, People's Republic of China; Department of Medical Oncology, Heilongjiang Province Cancer Hospital, Harbin, People's Republic of China; Medical Affairs, Sanofi China, Shanghai, People's Republic of China; Department of Hepatobiliary Surgery, Zhong Shan Hospital, Shanghai, People's Republic of China; Department of Hepatobiliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China; Department of Interventional Radiology, Sun Yat-sen University Cancer Hospital, Guangzhou, People's Republic of China; Department of Medical Oncology, Wuhan Union Hospital, Hubei, People's Republic of China; Department of Medical Oncology, Kaohsiung Chang-Gung Memorial Hospital, Kaohsiung, Taiwan, Republic of China; LinKou Medical Center, Chang-Gung Memorial Hospital, Taoyuan, Taiwan, Republic of China; Department of Hepatobiliary Surgery, Guangdong General Hospital, Guangzhou, People's Republic of China; Department of Medical Oncology, Southwest Hospital, Chongqing, People's Republic of China; Cancer Institute and Hospital, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Lin Shen
- People's Liberation Army Cancer Center, Bayi Hospital, Nanjing, People's Republic of China; Department of Medical Oncology, Jilin Province Cancer Hospital, Changchun, People's Republic of China; Department of Medical Oncology, The Affiliated Hospital of Medical College Qingdao University, Qingdao, People's Republic of China; Department of Gastrointestinal Medical Oncology, Peking University Cancer Hospital, Beijing, People's Republic of China; Department of Medical Oncology, Heilongjiang Province Cancer Hospital, Harbin, People's Republic of China; Medical Affairs, Sanofi China, Shanghai, People's Republic of China; Department of Hepatobiliary Surgery, Zhong Shan Hospital, Shanghai, People's Republic of China; Department of Hepatobiliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China; Department of Interventional Radiology, Sun Yat-sen University Cancer Hospital, Guangzhou, People's Republic of China; Department of Medical Oncology, Wuhan Union Hospital, Hubei, People's Republic of China; Department of Medical Oncology, Kaohsiung Chang-Gung Memorial Hospital, Kaohsiung, Taiwan, Republic of China; LinKou Medical Center, Chang-Gung Memorial Hospital, Taoyuan, Taiwan, Republic of China; Department of Hepatobiliary Surgery, Guangdong General Hospital, Guangzhou, People's Republic of China; Department of Medical Oncology, Southwest Hospital, Chongqing, People's Republic of China; Cancer Institute and Hospital, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Yuxian Bai
- People's Liberation Army Cancer Center, Bayi Hospital, Nanjing, People's Republic of China; Department of Medical Oncology, Jilin Province Cancer Hospital, Changchun, People's Republic of China; Department of Medical Oncology, The Affiliated Hospital of Medical College Qingdao University, Qingdao, People's Republic of China; Department of Gastrointestinal Medical Oncology, Peking University Cancer Hospital, Beijing, People's Republic of China; Department of Medical Oncology, Heilongjiang Province Cancer Hospital, Harbin, People's Republic of China; Medical Affairs, Sanofi China, Shanghai, People's Republic of China; Department of Hepatobiliary Surgery, Zhong Shan Hospital, Shanghai, People's Republic of China; Department of Hepatobiliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China; Department of Interventional Radiology, Sun Yat-sen University Cancer Hospital, Guangzhou, People's Republic of China; Department of Medical Oncology, Wuhan Union Hospital, Hubei, People's Republic of China; Department of Medical Oncology, Kaohsiung Chang-Gung Memorial Hospital, Kaohsiung, Taiwan, Republic of China; LinKou Medical Center, Chang-Gung Memorial Hospital, Taoyuan, Taiwan, Republic of China; Department of Hepatobiliary Surgery, Guangdong General Hospital, Guangzhou, People's Republic of China; Department of Medical Oncology, Southwest Hospital, Chongqing, People's Republic of China; Cancer Institute and Hospital, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Jianfeng Li
- People's Liberation Army Cancer Center, Bayi Hospital, Nanjing, People's Republic of China; Department of Medical Oncology, Jilin Province Cancer Hospital, Changchun, People's Republic of China; Department of Medical Oncology, The Affiliated Hospital of Medical College Qingdao University, Qingdao, People's Republic of China; Department of Gastrointestinal Medical Oncology, Peking University Cancer Hospital, Beijing, People's Republic of China; Department of Medical Oncology, Heilongjiang Province Cancer Hospital, Harbin, People's Republic of China; Medical Affairs, Sanofi China, Shanghai, People's Republic of China; Department of Hepatobiliary Surgery, Zhong Shan Hospital, Shanghai, People's Republic of China; Department of Hepatobiliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China; Department of Interventional Radiology, Sun Yat-sen University Cancer Hospital, Guangzhou, People's Republic of China; Department of Medical Oncology, Wuhan Union Hospital, Hubei, People's Republic of China; Department of Medical Oncology, Kaohsiung Chang-Gung Memorial Hospital, Kaohsiung, Taiwan, Republic of China; LinKou Medical Center, Chang-Gung Memorial Hospital, Taoyuan, Taiwan, Republic of China; Department of Hepatobiliary Surgery, Guangdong General Hospital, Guangzhou, People's Republic of China; Department of Medical Oncology, Southwest Hospital, Chongqing, People's Republic of China; Cancer Institute and Hospital, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Jia Fan
- People's Liberation Army Cancer Center, Bayi Hospital, Nanjing, People's Republic of China; Department of Medical Oncology, Jilin Province Cancer Hospital, Changchun, People's Republic of China; Department of Medical Oncology, The Affiliated Hospital of Medical College Qingdao University, Qingdao, People's Republic of China; Department of Gastrointestinal Medical Oncology, Peking University Cancer Hospital, Beijing, People's Republic of China; Department of Medical Oncology, Heilongjiang Province Cancer Hospital, Harbin, People's Republic of China; Medical Affairs, Sanofi China, Shanghai, People's Republic of China; Department of Hepatobiliary Surgery, Zhong Shan Hospital, Shanghai, People's Republic of China; Department of Hepatobiliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China; Department of Interventional Radiology, Sun Yat-sen University Cancer Hospital, Guangzhou, People's Republic of China; Department of Medical Oncology, Wuhan Union Hospital, Hubei, People's Republic of China; Department of Medical Oncology, Kaohsiung Chang-Gung Memorial Hospital, Kaohsiung, Taiwan, Republic of China; LinKou Medical Center, Chang-Gung Memorial Hospital, Taoyuan, Taiwan, Republic of China; Department of Hepatobiliary Surgery, Guangdong General Hospital, Guangzhou, People's Republic of China; Department of Medical Oncology, Southwest Hospital, Chongqing, People's Republic of China; Cancer Institute and Hospital, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Lijian Liang
- People's Liberation Army Cancer Center, Bayi Hospital, Nanjing, People's Republic of China; Department of Medical Oncology, Jilin Province Cancer Hospital, Changchun, People's Republic of China; Department of Medical Oncology, The Affiliated Hospital of Medical College Qingdao University, Qingdao, People's Republic of China; Department of Gastrointestinal Medical Oncology, Peking University Cancer Hospital, Beijing, People's Republic of China; Department of Medical Oncology, Heilongjiang Province Cancer Hospital, Harbin, People's Republic of China; Medical Affairs, Sanofi China, Shanghai, People's Republic of China; Department of Hepatobiliary Surgery, Zhong Shan Hospital, Shanghai, People's Republic of China; Department of Hepatobiliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China; Department of Interventional Radiology, Sun Yat-sen University Cancer Hospital, Guangzhou, People's Republic of China; Department of Medical Oncology, Wuhan Union Hospital, Hubei, People's Republic of China; Department of Medical Oncology, Kaohsiung Chang-Gung Memorial Hospital, Kaohsiung, Taiwan, Republic of China; LinKou Medical Center, Chang-Gung Memorial Hospital, Taoyuan, Taiwan, Republic of China; Department of Hepatobiliary Surgery, Guangdong General Hospital, Guangzhou, People's Republic of China; Department of Medical Oncology, Southwest Hospital, Chongqing, People's Republic of China; Cancer Institute and Hospital, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Yaqi Zhang
- People's Liberation Army Cancer Center, Bayi Hospital, Nanjing, People's Republic of China; Department of Medical Oncology, Jilin Province Cancer Hospital, Changchun, People's Republic of China; Department of Medical Oncology, The Affiliated Hospital of Medical College Qingdao University, Qingdao, People's Republic of China; Department of Gastrointestinal Medical Oncology, Peking University Cancer Hospital, Beijing, People's Republic of China; Department of Medical Oncology, Heilongjiang Province Cancer Hospital, Harbin, People's Republic of China; Medical Affairs, Sanofi China, Shanghai, People's Republic of China; Department of Hepatobiliary Surgery, Zhong Shan Hospital, Shanghai, People's Republic of China; Department of Hepatobiliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China; Department of Interventional Radiology, Sun Yat-sen University Cancer Hospital, Guangzhou, People's Republic of China; Department of Medical Oncology, Wuhan Union Hospital, Hubei, People's Republic of China; Department of Medical Oncology, Kaohsiung Chang-Gung Memorial Hospital, Kaohsiung, Taiwan, Republic of China; LinKou Medical Center, Chang-Gung Memorial Hospital, Taoyuan, Taiwan, Republic of China; Department of Hepatobiliary Surgery, Guangdong General Hospital, Guangzhou, People's Republic of China; Department of Medical Oncology, Southwest Hospital, Chongqing, People's Republic of China; Cancer Institute and Hospital, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Gang Wu
- People's Liberation Army Cancer Center, Bayi Hospital, Nanjing, People's Republic of China; Department of Medical Oncology, Jilin Province Cancer Hospital, Changchun, People's Republic of China; Department of Medical Oncology, The Affiliated Hospital of Medical College Qingdao University, Qingdao, People's Republic of China; Department of Gastrointestinal Medical Oncology, Peking University Cancer Hospital, Beijing, People's Republic of China; Department of Medical Oncology, Heilongjiang Province Cancer Hospital, Harbin, People's Republic of China; Medical Affairs, Sanofi China, Shanghai, People's Republic of China; Department of Hepatobiliary Surgery, Zhong Shan Hospital, Shanghai, People's Republic of China; Department of Hepatobiliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China; Department of Interventional Radiology, Sun Yat-sen University Cancer Hospital, Guangzhou, People's Republic of China; Department of Medical Oncology, Wuhan Union Hospital, Hubei, People's Republic of China; Department of Medical Oncology, Kaohsiung Chang-Gung Memorial Hospital, Kaohsiung, Taiwan, Republic of China; LinKou Medical Center, Chang-Gung Memorial Hospital, Taoyuan, Taiwan, Republic of China; Department of Hepatobiliary Surgery, Guangdong General Hospital, Guangzhou, People's Republic of China; Department of Medical Oncology, Southwest Hospital, Chongqing, People's Republic of China; Cancer Institute and Hospital, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Kun-Ming Rau
- People's Liberation Army Cancer Center, Bayi Hospital, Nanjing, People's Republic of China; Department of Medical Oncology, Jilin Province Cancer Hospital, Changchun, People's Republic of China; Department of Medical Oncology, The Affiliated Hospital of Medical College Qingdao University, Qingdao, People's Republic of China; Department of Gastrointestinal Medical Oncology, Peking University Cancer Hospital, Beijing, People's Republic of China; Department of Medical Oncology, Heilongjiang Province Cancer Hospital, Harbin, People's Republic of China; Medical Affairs, Sanofi China, Shanghai, People's Republic of China; Department of Hepatobiliary Surgery, Zhong Shan Hospital, Shanghai, People's Republic of China; Department of Hepatobiliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China; Department of Interventional Radiology, Sun Yat-sen University Cancer Hospital, Guangzhou, People's Republic of China; Department of Medical Oncology, Wuhan Union Hospital, Hubei, People's Republic of China; Department of Medical Oncology, Kaohsiung Chang-Gung Memorial Hospital, Kaohsiung, Taiwan, Republic of China; LinKou Medical Center, Chang-Gung Memorial Hospital, Taoyuan, Taiwan, Republic of China; Department of Hepatobiliary Surgery, Guangdong General Hospital, Guangzhou, People's Republic of China; Department of Medical Oncology, Southwest Hospital, Chongqing, People's Republic of China; Cancer Institute and Hospital, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Tsai-Shen Yang
- People's Liberation Army Cancer Center, Bayi Hospital, Nanjing, People's Republic of China; Department of Medical Oncology, Jilin Province Cancer Hospital, Changchun, People's Republic of China; Department of Medical Oncology, The Affiliated Hospital of Medical College Qingdao University, Qingdao, People's Republic of China; Department of Gastrointestinal Medical Oncology, Peking University Cancer Hospital, Beijing, People's Republic of China; Department of Medical Oncology, Heilongjiang Province Cancer Hospital, Harbin, People's Republic of China; Medical Affairs, Sanofi China, Shanghai, People's Republic of China; Department of Hepatobiliary Surgery, Zhong Shan Hospital, Shanghai, People's Republic of China; Department of Hepatobiliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China; Department of Interventional Radiology, Sun Yat-sen University Cancer Hospital, Guangzhou, People's Republic of China; Department of Medical Oncology, Wuhan Union Hospital, Hubei, People's Republic of China; Department of Medical Oncology, Kaohsiung Chang-Gung Memorial Hospital, Kaohsiung, Taiwan, Republic of China; LinKou Medical Center, Chang-Gung Memorial Hospital, Taoyuan, Taiwan, Republic of China; Department of Hepatobiliary Surgery, Guangdong General Hospital, Guangzhou, People's Republic of China; Department of Medical Oncology, Southwest Hospital, Chongqing, People's Republic of China; Cancer Institute and Hospital, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Zhixiang Jian
- People's Liberation Army Cancer Center, Bayi Hospital, Nanjing, People's Republic of China; Department of Medical Oncology, Jilin Province Cancer Hospital, Changchun, People's Republic of China; Department of Medical Oncology, The Affiliated Hospital of Medical College Qingdao University, Qingdao, People's Republic of China; Department of Gastrointestinal Medical Oncology, Peking University Cancer Hospital, Beijing, People's Republic of China; Department of Medical Oncology, Heilongjiang Province Cancer Hospital, Harbin, People's Republic of China; Medical Affairs, Sanofi China, Shanghai, People's Republic of China; Department of Hepatobiliary Surgery, Zhong Shan Hospital, Shanghai, People's Republic of China; Department of Hepatobiliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China; Department of Interventional Radiology, Sun Yat-sen University Cancer Hospital, Guangzhou, People's Republic of China; Department of Medical Oncology, Wuhan Union Hospital, Hubei, People's Republic of China; Department of Medical Oncology, Kaohsiung Chang-Gung Memorial Hospital, Kaohsiung, Taiwan, Republic of China; LinKou Medical Center, Chang-Gung Memorial Hospital, Taoyuan, Taiwan, Republic of China; Department of Hepatobiliary Surgery, Guangdong General Hospital, Guangzhou, People's Republic of China; Department of Medical Oncology, Southwest Hospital, Chongqing, People's Republic of China; Cancer Institute and Hospital, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Houjie Liang
- People's Liberation Army Cancer Center, Bayi Hospital, Nanjing, People's Republic of China; Department of Medical Oncology, Jilin Province Cancer Hospital, Changchun, People's Republic of China; Department of Medical Oncology, The Affiliated Hospital of Medical College Qingdao University, Qingdao, People's Republic of China; Department of Gastrointestinal Medical Oncology, Peking University Cancer Hospital, Beijing, People's Republic of China; Department of Medical Oncology, Heilongjiang Province Cancer Hospital, Harbin, People's Republic of China; Medical Affairs, Sanofi China, Shanghai, People's Republic of China; Department of Hepatobiliary Surgery, Zhong Shan Hospital, Shanghai, People's Republic of China; Department of Hepatobiliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China; Department of Interventional Radiology, Sun Yat-sen University Cancer Hospital, Guangzhou, People's Republic of China; Department of Medical Oncology, Wuhan Union Hospital, Hubei, People's Republic of China; Department of Medical Oncology, Kaohsiung Chang-Gung Memorial Hospital, Kaohsiung, Taiwan, Republic of China; LinKou Medical Center, Chang-Gung Memorial Hospital, Taoyuan, Taiwan, Republic of China; Department of Hepatobiliary Surgery, Guangdong General Hospital, Guangzhou, People's Republic of China; Department of Medical Oncology, Southwest Hospital, Chongqing, People's Republic of China; Cancer Institute and Hospital, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Yan Sun
- People's Liberation Army Cancer Center, Bayi Hospital, Nanjing, People's Republic of China; Department of Medical Oncology, Jilin Province Cancer Hospital, Changchun, People's Republic of China; Department of Medical Oncology, The Affiliated Hospital of Medical College Qingdao University, Qingdao, People's Republic of China; Department of Gastrointestinal Medical Oncology, Peking University Cancer Hospital, Beijing, People's Republic of China; Department of Medical Oncology, Heilongjiang Province Cancer Hospital, Harbin, People's Republic of China; Medical Affairs, Sanofi China, Shanghai, People's Republic of China; Department of Hepatobiliary Surgery, Zhong Shan Hospital, Shanghai, People's Republic of China; Department of Hepatobiliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China; Department of Interventional Radiology, Sun Yat-sen University Cancer Hospital, Guangzhou, People's Republic of China; Department of Medical Oncology, Wuhan Union Hospital, Hubei, People's Republic of China; Department of Medical Oncology, Kaohsiung Chang-Gung Memorial Hospital, Kaohsiung, Taiwan, Republic of China; LinKou Medical Center, Chang-Gung Memorial Hospital, Taoyuan, Taiwan, Republic of China; Department of Hepatobiliary Surgery, Guangdong General Hospital, Guangzhou, People's Republic of China; Department of Medical Oncology, Southwest Hospital, Chongqing, People's Republic of China; Cancer Institute and Hospital, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| |
Collapse
|
144
|
Su JC, Tseng PH, Wu SH, Hsu CY, Tai WT, Li YS, Chen IT, Liu CY, Chen KF, Shiau CW. SC-2001 overcomes STAT3-mediated sorafenib resistance through RFX-1/SHP-1 activation in hepatocellular carcinoma. Neoplasia 2014; 16:595-605. [PMID: 25047655 PMCID: PMC4198826 DOI: 10.1016/j.neo.2014.06.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 06/28/2014] [Accepted: 06/30/2014] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma is the fifth most common solid cancer worldwide. Sorafenib, a small multikinase inhibitor, is the only approved therapy for advanced HCC. The clinical benefit of sorafenib is offset by the acquisition of sorafenib resistance. Understanding of the molecular mechanism of STAT3 overexpression in sorafenib resistance is critical if the clinical benefits of this drug are to be improved. In this study, we explored our hypothesis that loss of RFX-1/SHP-1 and further increase of p-STAT3 as a result of sorafenib treatment induces sorafenib resistance as a cytoprotective response effect, thereby, limiting sorafenib sensitivity and efficiency. We found that knockdown of RFX-1 protected HCC cells against sorafenib-induced cell apoptosis and SHP-1 activity was required for the process. SC-2001, a molecule with similar structure to obatoclax, synergistically suppressed tumor growth when used in combination with sorafenib in vitro and overcame sorafenib resistance through up-regulating RFX-1 and SHP-1 resulting in tumor suppression and mediation of dephosphorylation of STAT3. In addition, sustained sorafenib treatment in HCC led to increased p-STAT3 which was a key mediator of sorafenib sensitivity. The combination of SC-2001 and sorafenib strongly inhibited tumor growth in both wild-type and sorafenib-resistant HCC cell bearing xenograft models. These results demonstrate that inactivation of RFX/SHP-1 induced by sustained sorafenib treatment confers sorafenib resistance to HCC through p-STAT3 up-regulation. These effects can be overcome by SC-2001 through RFX-1/SHP-1 dependent p-STAT3 suppression. In conclusion, the use of SC-2001 in combination with sorafenib may constitute a new strategy for HCC therapy.
Collapse
Affiliation(s)
- Jung-Chen Su
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Ping-Hui Tseng
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | - Szu-Hsien Wu
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Cheng-Yi Hsu
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Wei-Tien Tai
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan; National Center of Excellence for Clinical Trial and Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Yong-Shi Li
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan; National Center of Excellence for Clinical Trial and Research, National Taiwan University Hospital, Taipei, Taiwan
| | - I-Ting Chen
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | - Chun-Yu Liu
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan; Division of Hematology and Oncology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Kuen-Feng Chen
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan; National Center of Excellence for Clinical Trial and Research, National Taiwan University Hospital, Taipei, Taiwan.
| | - Chung-Wai Shiau
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
145
|
|
146
|
Peng HS, Liao MB, Zhang MY, Xie Y, Xu L, Zhang YJ, Zheng XFS, Wang HY, Chen YF. Synergistic inhibitory effect of hyperbaric oxygen combined with sorafenib on hepatoma cells. PLoS One 2014; 9:e100814. [PMID: 24956259 PMCID: PMC4067386 DOI: 10.1371/journal.pone.0100814] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 05/29/2014] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES Hypoxia is a common phenomenon in solid tumors, associated with chemotherapy and radiotherapy resistance, recurrence and metastasis. Hyperbaric oxygen (HBO) therapy can increase tissue oxygen pressure and content to prevent the resistance, recurrence and metastasis of cancer. Presently, Sorafenib is a first-line drug, targeted for hepatocellular carcinoma (HCC) but effective in only a small portion of patients and can induce hypoxia. The purpose of this study is to investigate the effect of HBO in combination with sorafenib on hepatoma cells. METHODS Hepatoma cell lines (BEL-7402 and SK-Hep1) were treated with HBO at 2 atmosphere absolute pressure for 80 min per day or combined with sorafenib or cisplatin. At different time points, cells were tested for cell growth, colony formation, apoptosis, cell cycle and migration. Finally, miRNA from the hepatoma cells was detected by microRNA array and validated by qRT-PCR. RESULTS Although HBO, sorafenib or cisplatin alone could inhibit growth of hepatoma cells, HBO combined with sorafenib or cisplatin resulted in much greater synergistic growth inhibition (cell proliferation and colony formation) in hepatoma cells. Similarly, the synergistic effect of HBO and sorafenib on induction of apoptosis was also observed in hepatoma cells. HBO induced G1 arrest in SK-Hep1 not in BEL-7402 cells, but enhanced cell cycle arrest induced by sorafenib in BEL-7402 treated cells. However, HBO had no obvious effect on the migration of hepatoma cells, and microRNA array analysis showed that hepatoma cells with HBO treatment had significantly different microRNA expression profiles from those with blank control. CONCLUSIONS We show for the first time that HBO combined with sorafenib results in synergistic growth inhibition and apoptosis in hepatoma cells, suggesting a potential application of HBO combined with sorafenib in HCC patients. Additionally, we also show that HBO significantly altered microRNA expression in hepatoma cells.
Collapse
Affiliation(s)
- Hai-Shan Peng
- State Key Laboratory of Oncology in South China, Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Ming-Bin Liao
- Hyperbaric Oxygen Therapy Center, Affiliated Guangzhou First People's Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mei-Yin Zhang
- State Key Laboratory of Oncology in South China, Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yin Xie
- State Key Laboratory of Oncology in South China, Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Li Xu
- Department of Hepatobiliary Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yao-Jun Zhang
- Department of Hepatobiliary Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - X. F. Steven Zheng
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Hui-Yun Wang
- State Key Laboratory of Oncology in South China, Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
- * E-mail: (YFC); (HYW)
| | - Yi-Fei Chen
- Hyperbaric Oxygen Therapy Center, Affiliated Guangzhou First People's Hospital of Guangzhou Medical University, Guangzhou, China
- * E-mail: (YFC); (HYW)
| |
Collapse
|
147
|
Expression and function analysis of mitotic checkpoint genes identifies TTK as a potential therapeutic target for human hepatocellular carcinoma. PLoS One 2014; 9:e97739. [PMID: 24905462 PMCID: PMC4048189 DOI: 10.1371/journal.pone.0097739] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 04/24/2014] [Indexed: 12/22/2022] Open
Abstract
The mitotic spindle checkpoint (SAC) genes have been considered targets of anticancer therapies. Here, we sought to identify the attractive mitotic spindle checkpoint genes appropriate for human hepatocellular carcinoma (HCC) therapies. Through expression profile analysis of 137 selected mitotic spindle checkpoint genes in the publicly available microarray datasets, we showed that 13 genes were dramatically up-regulated in HCC tissues compared to normal livers and adjacent non-tumor tissues. A role of the 13 genes in proliferation was evaluated by knocking them down via small interfering RNA (siRNA) in HCC cells. As a result, several mitotic spindle checkpoint genes were required for maintaining the proliferation of HCC cells, demonstrated by cell viability assay and soft agar colony formation assay. Then we established sorafenib-resistant sublines of HCC cell lines Huh7 and HepG2. Intriguingly, increased TTK expression was significantly associated with acquired sorafenib-resistance in Huh7, HepG2 cells. More importantly, TTK was observably up-regulated in 46 (86.8%) of 53 HCC specimens. A series of in vitro and in vivo functional experiment assays showed that TTK overexpression promoted cell proliferation, anchor-dependent colony formation and resistance to sorafenib of HCC cells; TTK knockdown restrained cell growth, soft agar colony formation and resistance to sorafenib of HCC cells. Collectively, TTK plays an important role in proliferation and sorafenib resistance and could act as a potential therapeutic target for human hepatocellular carcinoma.
Collapse
|
148
|
Transferrin targeted core-shell nanomedicine for combinatorial delivery of doxorubicin and sorafenib against hepatocellular carcinoma. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2014; 10:1649-59. [PMID: 24905399 DOI: 10.1016/j.nano.2014.05.011] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 05/12/2014] [Accepted: 05/16/2014] [Indexed: 12/19/2022]
Abstract
UNLABELLED Combinatorial drug delivery is an attractive, but challenging requirement of next generation cancer nanomedicines. Here, we report a transferrin-targeted core-shell nanomedicine formed by encapsulating two clinically used single-agent drugs, doxorubicin and sorafenib against liver cancer. Doxorubicin was loaded in poly(vinyl alcohol) nano-core and sorafenib in albumin nano-shell, both formed by a sequential freeze-thaw/coacervation method. While sorafenib from the nano-shell inhibited aberrant oncogenic signaling involved in cell proliferation, doxorubicin from the nano-core evoked DNA intercalation thereby killing >75% of cancer cells. Upon targeting using transferrin ligands, the nanoparticles showed enhanced cellular uptake and synergistic cytotoxicity in ~92% of cells, particularly in iron-deficient microenvironment. Studies using 3D spheroids of liver tumor indicated efficient penetration of targeted core-shell nanoparticles throughout the tissue causing uniform cell killing. Thus, we show that rationally designed core-shell nanoparticles can effectively combine clinically relevant single-agent drugs for exerting synergistic activity against liver cancer. FROM THE CLINICAL EDITOR Transferrin-targeted core-shell nanomedicine encapsulating doxorubicin and sorafenib was studied as a drug delivery system against hepatocellular carcinoma, resulting in enhanced and synergistic therapeutic effects, paving the way towards potential future clinical applications of similar techniques.
Collapse
|
149
|
Zhai B, Hu F, Jiang X, Xu J, Zhao D, Liu B, Pan S, Dong X, Tan G, Wei Z, Qiao H, Jiang H, Sun X. Inhibition of Akt reverses the acquired resistance to sorafenib by switching protective autophagy to autophagic cell death in hepatocellular carcinoma. Mol Cancer Ther 2014; 13:1589-1598. [PMID: 24705351 DOI: 10.1158/1535-7163.mct-13-1043] [Citation(s) in RCA: 224] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sorafenib is the standard first-line systemic drug for advanced hepatocellular carcinoma (HCC), but the acquired resistance to sorafenib results in limited benefits. Activation of Akt is thought to be responsible for mediating the acquired resistance to sorafenib. The present study aims to examine the underlying mechanism and seek potential strategies to reverse this resistance. Two sorafenib-resistant HCC cell lines, which had been established from human HCC HepG2 and Huh7 cells, were refractory to sorafenib-induced growth inhibition and apoptosis in vitro and in vivo. Sustained exposure to sorafenib activated Akt via the feedback loop of mTOR but independent of protein phosphatase 2A in HCC cells. Autophagy participated in the resistance to sorafenib as inhibition of autophagy reduced the sensitivity of sorafenib-resistant HCC cells to sorafenib, whereas activation of autophagy by rapamycin had the opposite effect. However, rapamycin did not show a synergistic effect with sorafenib to inhibit cell proliferation, while it also activated Akt via a feedback mechanism in sorafenib-resistant HCC cells. Inhibition of Akt reversed the acquired resistance to sorafenib by switching autophagy from a cytoprotective role to a death-promoting mechanism in the sorafenib-resistant HCC cells. Akt inhibition by GDC0068 synergized with sorafenib to suppress the growth of sorafenib-resistant HCC tumors that possessed the sorafenib-resistant feature in vivo. The results have provided evidence for clinical investigation of GDC0068, a novel ATP-competitive pan-Akt inhibitor, as the second-line treatment after the failure of sorafenib-medicated molecular targeted therapy for advanced HCC.
Collapse
Affiliation(s)
- Bo Zhai
- Authors' Affiliations: The Hepatosplenic Surgery Center, Department of General Surgery, the First Affiliated Hospital of Harbin Medical University; and Departments of Gastroenterology and General Surgery, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Fengli Hu
- Authors' Affiliations: The Hepatosplenic Surgery Center, Department of General Surgery, the First Affiliated Hospital of Harbin Medical University; and Departments of Gastroenterology and General Surgery, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xian Jiang
- Authors' Affiliations: The Hepatosplenic Surgery Center, Department of General Surgery, the First Affiliated Hospital of Harbin Medical University; and Departments of Gastroenterology and General Surgery, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jun Xu
- Authors' Affiliations: The Hepatosplenic Surgery Center, Department of General Surgery, the First Affiliated Hospital of Harbin Medical University; and Departments of Gastroenterology and General Surgery, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dali Zhao
- Authors' Affiliations: The Hepatosplenic Surgery Center, Department of General Surgery, the First Affiliated Hospital of Harbin Medical University; and Departments of Gastroenterology and General Surgery, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bing Liu
- Authors' Affiliations: The Hepatosplenic Surgery Center, Department of General Surgery, the First Affiliated Hospital of Harbin Medical University; and Departments of Gastroenterology and General Surgery, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shangha Pan
- Authors' Affiliations: The Hepatosplenic Surgery Center, Department of General Surgery, the First Affiliated Hospital of Harbin Medical University; and Departments of Gastroenterology and General Surgery, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xuesong Dong
- Authors' Affiliations: The Hepatosplenic Surgery Center, Department of General Surgery, the First Affiliated Hospital of Harbin Medical University; and Departments of Gastroenterology and General Surgery, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Gang Tan
- Authors' Affiliations: The Hepatosplenic Surgery Center, Department of General Surgery, the First Affiliated Hospital of Harbin Medical University; and Departments of Gastroenterology and General Surgery, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zheng Wei
- Authors' Affiliations: The Hepatosplenic Surgery Center, Department of General Surgery, the First Affiliated Hospital of Harbin Medical University; and Departments of Gastroenterology and General Surgery, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Haiquan Qiao
- Authors' Affiliations: The Hepatosplenic Surgery Center, Department of General Surgery, the First Affiliated Hospital of Harbin Medical University; and Departments of Gastroenterology and General Surgery, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongchi Jiang
- Authors' Affiliations: The Hepatosplenic Surgery Center, Department of General Surgery, the First Affiliated Hospital of Harbin Medical University; and Departments of Gastroenterology and General Surgery, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xueying Sun
- Authors' Affiliations: The Hepatosplenic Surgery Center, Department of General Surgery, the First Affiliated Hospital of Harbin Medical University; and Departments of Gastroenterology and General Surgery, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
150
|
Zhong L, Fu XY, Zou C, Yang LL, Zhou S, Yang J, Tang Y, Cheng C, Li LL, Xiang R, Chen LJ, Chen YZ, Wei YQ, Yang SY. A preclinical evaluation of a novel multikinase inhibitor, SKLB-329, as a therapeutic agent against hepatocellular carcinoma. Int J Cancer 2014; 135:2972-83. [PMID: 24789676 DOI: 10.1002/ijc.28944] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 04/16/2014] [Accepted: 04/24/2014] [Indexed: 02/05/2023]
Abstract
Hepatocellular carcinoma (HCC) is a serious life-threatening malignant disease of liver. Molecular targeted therapies are considered a promising strategy for the treatment of HCC. Sorafenib is the first, and so far the only targeted drug approved by the US Food and Drug Administration (FDA) for clinical therapy of HCC. Despite being effective in some HCC patients, some demerits of sorafenib in the treatment of HCC, such as modest survival benefits, and drug resistance, have also been reported, which highlights the unmet medical need among patients with HCC. Here, we report a novel multikinase inhibitor discovered by us, SKLB-329, which potently inhibits angiogenesis-related kinases including VEGFR1/2/3, and FGFR2, and the Src kinase. SKLB-329 significantly inhibited endothelial cell growth, migration, invasion and tube formation. It showed potent anti-angiogenic activity in a transgenic zebrafish model. Moreover, SKLB-329 could efficiently restrain the proliferation of HCC cells through down-regulation of Src-mediated FAK and Stat3 activity. In vivo, oral administration of SKLB-329 considerably suppressed the tumor growth in HCC xenograft models (HepG2 and SMMC7721) in a dose-dependent manner. In all of the in vitro and in vivo assays of this investigation, sorafenib was used as a positive control, and in most assays SKLB-329 exhibited a higher potency compared with the positive control. In addition, SKLB-329 also bears favorable pharmacokinetic properties. Collectively, the results of preclinical studies presented here demonstrate that SKLB-329 is a promising drug candidate for HCC treatment.
Collapse
Affiliation(s)
- Lei Zhong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Sichuan, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|