101
|
Lin C, Liu F, Chen G, Bai X, Ding Y, Chung SM, Lee IS, Bai H, Chen C. Apatite nanosheets inhibit initial smooth muscle cell proliferation by damaging cell membrane. BIOMATERIALS ADVANCES 2022; 137:212852. [PMID: 35929280 DOI: 10.1016/j.bioadv.2022.212852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/06/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Understanding how nanostructured coatings interact with cells is related to how they manipulate cell behaviors and is therefore critical for designing better biomaterials. The apatite nanosheets were deposited on metallic substrates via biomimetic precipitation. Cell viability of apatite nanosheets towards to smooth muscle cells (SMCs) were investigated, and the underlying mechanism was proposed. Apatite nanosheets presented inhibitory activity on SMC growth, and caused rupture of cell membranes. On the basis of measuring changes in intracellular calcium ([Ca2+]i), observing cell contraction and apatite nanosheets - SMC interaction, it was found that calcium ions released from apatite led to rises in [Ca2+]i, which induced vigorous SMC contraction on apatite nanosheets. Consequently, the cell membrane of individual SMCs was cut/penetrated by the sharp edges of apatite nanosheets, resulting in cell inactivation. This damage of cell membranes suggests a novel mechanism to manipulate cell viability, and may offer insights for the better design of calcium-based nanostructured coatings or other biomedical applications.
Collapse
Affiliation(s)
- Chenming Lin
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Fan Liu
- Department of Orthodontics, School of Stomatology, China Medical University, Shenyang 110002, PR China
| | - Guiqian Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Xue Bai
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Yahui Ding
- Department of Cardiology, Zhejiang Provincial People's Hospital, Hangzhou 310014, PR China
| | - Sung-Min Chung
- Biomaterials R&D Center, GENOSS Co., Ltd., Suwon-si 443-270, Republic of Korea
| | - In-Seop Lee
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China; Institute of Human Materials, Suwon 16514, Republic of Korea
| | - Hao Bai
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Cen Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China.
| |
Collapse
|
102
|
Peck A, Carter SD, Mai H, Chen S, Burt A, Jensen GJ. Montage electron tomography of vitrified specimens. J Struct Biol 2022; 214:107860. [PMID: 35487464 PMCID: PMC10081539 DOI: 10.1016/j.jsb.2022.107860] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/25/2022] [Accepted: 04/20/2022] [Indexed: 02/04/2023]
Abstract
Cryo-electron tomography provides detailed views of macromolecules in situ. However, imaging a large field of view to provide more cellular context requires reducing magnification during data collection, which in turn restricts the resolution. To circumvent this trade-off between field of view and resolution, we have developed a montage data collection scheme that uniformly distributes the dose throughout the specimen. In this approach, sets of slightly overlapping circular tiles are collected at high magnification and stitched to form a composite projection image at each tilt angle. These montage tilt-series are then reconstructed into massive tomograms with a small pixel size but a large field of view. For proof-of-principle, we applied this method to the thin edge of HeLa cells. Thon rings to better than 10 Å were detected in the montaged tilt-series, and diverse cellular features were observed in the resulting tomograms. These results indicate that the additional dose required by this technique is not prohibitive to performing structural analysis to intermediate resolution across a large field of view. We anticipate that montage tomography will prove particularly useful for lamellae, increase the likelihood of imaging rare cellular events, and facilitate visual proteomics.
Collapse
Affiliation(s)
- Ariana Peck
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Stephen D Carter
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Huanghao Mai
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Songye Chen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - Alister Burt
- Scientific Computing Department, Science and Technology Facilities Council, Research Complex at Harwell, Didcot OX11 0FA, United Kingdom
| | - Grant J Jensen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; College of Physical and Mathematical Sciences, Brigham Young University, Provo, UT 84602, USA.
| |
Collapse
|
103
|
Bosch C, Ackels T, Pacureanu A, Zhang Y, Peddie CJ, Berning M, Rzepka N, Zdora MC, Whiteley I, Storm M, Bonnin A, Rau C, Margrie T, Collinson L, Schaefer AT. Functional and multiscale 3D structural investigation of brain tissue through correlative in vivo physiology, synchrotron microtomography and volume electron microscopy. Nat Commun 2022; 13:2923. [PMID: 35614048 PMCID: PMC9132960 DOI: 10.1038/s41467-022-30199-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/19/2022] [Indexed: 12/16/2022] Open
Abstract
Understanding the function of biological tissues requires a coordinated study of physiology and structure, exploring volumes that contain complete functional units at a detail that resolves the relevant features. Here, we introduce an approach to address this challenge: Mouse brain tissue sections containing a region where function was recorded using in vivo 2-photon calcium imaging were stained, dehydrated, resin-embedded and imaged with synchrotron X-ray computed tomography with propagation-based phase contrast (SXRT). SXRT provided context at subcellular detail, and could be followed by targeted acquisition of multiple volumes using serial block-face electron microscopy (SBEM). In the olfactory bulb, combining SXRT and SBEM enabled disambiguation of in vivo-assigned regions of interest. In the hippocampus, we found that superficial pyramidal neurons in CA1a displayed a larger density of spine apparati than deeper ones. Altogether, this approach can enable a functional and structural investigation of subcellular features in the context of cells and tissues.
Collapse
Affiliation(s)
- Carles Bosch
- Sensory Circuits and Neurotechnology Lab., The Francis Crick Institute, London, UK.
| | - Tobias Ackels
- Sensory Circuits and Neurotechnology Lab., The Francis Crick Institute, London, UK
- Department of Neuroscience, Physiology and Pharmacology, University College, London, UK
| | - Alexandra Pacureanu
- Sensory Circuits and Neurotechnology Lab., The Francis Crick Institute, London, UK
- Department of Neuroscience, Physiology and Pharmacology, University College, London, UK
- ESRF, The European Synchrotron, Grenoble, France
| | - Yuxin Zhang
- Sensory Circuits and Neurotechnology Lab., The Francis Crick Institute, London, UK
- Department of Neuroscience, Physiology and Pharmacology, University College, London, UK
| | | | - Manuel Berning
- Department of Connectomics, Max Planck Institute for Brain Research, Frankfurt am Main, Germany
- Scalable minds GmbH, Potsdam, Germany
| | | | - Marie-Christine Zdora
- Department of Physics and Astronomy, University College London, London, UK
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
- School of Physics and Astronomy, University of Southampton, Highfield Campus, Southampton, UK
| | - Isabell Whiteley
- Sensory Circuits and Neurotechnology Lab., The Francis Crick Institute, London, UK
- Department of Neuroscience, Physiology and Pharmacology, University College, London, UK
| | - Malte Storm
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
- Institute of Materials Physics, Helmholtz-Zentrum Hereon, Geesthacht, Germany
| | - Anne Bonnin
- Paul Scherrer Institut, Villigen, Switzerland
| | - Christoph Rau
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Troy Margrie
- Sainsbury Wellcome Centre, University College London, London, UK
| | - Lucy Collinson
- Electron Microscopy STP, The Francis Crick Institute, London, UK
| | - Andreas T Schaefer
- Sensory Circuits and Neurotechnology Lab., The Francis Crick Institute, London, UK.
- Department of Neuroscience, Physiology and Pharmacology, University College, London, UK.
| |
Collapse
|
104
|
Rajagopal V, Arumugam S, Hunter PJ, Khadangi A, Chung J, Pan M. The Cell Physiome: What Do We Need in a Computational Physiology Framework for Predicting Single-Cell Biology? Annu Rev Biomed Data Sci 2022; 5:341-366. [PMID: 35576556 DOI: 10.1146/annurev-biodatasci-072018-021246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Modern biology and biomedicine are undergoing a big data explosion, needing advanced computational algorithms to extract mechanistic insights on the physiological state of living cells. We present the motivation for the Cell Physiome project: a framework and approach for creating, sharing, and using biophysics-based computational models of single-cell physiology. Using examples in calcium signaling, bioenergetics, and endosomal trafficking, we highlight the need for spatially detailed, biophysics-based computational models to uncover new mechanisms underlying cell biology. We review progress and challenges to date toward creating cell physiome models. We then introduce bond graphs as an efficient way to create cell physiome models that integrate chemical, mechanical, electromagnetic, and thermal processes while maintaining mass and energy balance. Bond graphs enhance modularization and reusability of computational models of cells at scale. We conclude with a look forward at steps that will help fully realize this exciting new field of mechanistic biomedical data science. Expected final online publication date for the Annual Review of Biomedical Data Science, Volume 5 is August 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Vijay Rajagopal
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, Australia;
| | - Senthil Arumugam
- Cellular Physiology Lab, Monash Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences; European Molecular Biological Laboratory (EMBL) Australia; and Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton/Melbourne, Victoria, Australia
| | - Peter J Hunter
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Afshin Khadangi
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, Australia;
| | - Joshua Chung
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, Australia;
| | - Michael Pan
- School of Mathematics and Statistics, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
105
|
Zechmann B, Möstl S, Zellnig G. Volumetric 3D reconstruction of plant leaf cells using SEM, ion milling, TEM, and serial sectioning. PLANTA 2022; 255:118. [PMID: 35522384 DOI: 10.1007/s00425-022-03905-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
Focused ion beam scanning electron microscopy is well suited for volumetric extractions and 3D reconstructions of plant cells and its organelles. The three-dimensional (3D) reconstruction of individual plant cells is an important tool to extract volumetric data of organelles and is necessary to fully understand ultrastructural changes and adaptations of plants to their environment. Methods such as the 3D reconstruction of cells based on light microscopical images often lack the resolution necessary to clearly reconstruct all cell compartments within a cell. The 3D reconstruction of cells through serial sectioning transmission electron microscopy (ssTEM) and focused ion beam scanning electron microscopy (FIB-SEM) are powerful alternatives but not widely used in plant sciences. Here, we present a method for the 3D reconstruction and volumetric extraction of plant cells based on FIB milling and compare the results with 3D reconstructions obtained with ssTEM. When compared to 3D reconstruction based on ssTEM, FIB-SEM delivered similar results. The data extracted in this study demonstrated that tobacco cells were larger (31410 µm3) than pumpkin cells (20697 µm3) and contained more chloroplasts (175 vs. 124), mitochondria (1317 vs. 291) and peroxisomes (745 vs. 79). While individual chloroplasts, mitochondria, peroxisomes were larger in pumpkin plants (25, 53, and 50%, respectively) they covered more total volume in tobacco plants (5390, 395, 374 µm3, respectively) due to their higher number per cell when compared to pumpkin plants (4762, 134, 59 µm3, respectively). While image acquisition with FIB-SEM was automated, software controlled, and less difficult than ssTEM, FIB milling was slower and sections could not be revised or re-imaged as they were destroyed by the ion beam. Nevertheless, the results in this study demonstrated that both, FIB-SEM and ssTEM, are powerful tools for the 3D reconstruction of and volumetric extraction from plant cells and that there were large differences in size, number, and organelle composition between pumpkin and tobacco cells.
Collapse
Affiliation(s)
- Bernd Zechmann
- Center for Microscopy and Imaging, Baylor University, One Bear Place #97046, Waco, TX, 76798, USA.
| | - Stefan Möstl
- Institute of Biology, Plant Sciences, University of Graz, NAWI Graz, Schubertstrasse 51, 8010, Graz, Austria
| | - Günther Zellnig
- Institute of Biology, Plant Sciences, University of Graz, NAWI Graz, Schubertstrasse 51, 8010, Graz, Austria
| |
Collapse
|
106
|
Goto-Yamada S, Oikawa K, Yamato KT, Kanai M, Hikino K, Nishimura M, Mano S. Image-Based Analysis Revealing the Molecular Mechanism of Peroxisome Dynamics in Plants. Front Cell Dev Biol 2022; 10:883491. [PMID: 35592252 PMCID: PMC9110829 DOI: 10.3389/fcell.2022.883491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/15/2022] [Indexed: 11/13/2022] Open
Abstract
Peroxisomes are present in eukaryotic cells and have essential roles in various biological processes. Plant peroxisomes proliferate by de novo biosynthesis or division of pre-existing peroxisomes, degrade, or replace metabolic enzymes, in response to developmental stages, environmental changes, or external stimuli. Defects of peroxisome functions and biogenesis alter a variety of biological processes and cause aberrant plant growth. Traditionally, peroxisomal function-based screening has been employed to isolate Arabidopsis thaliana mutants that are defective in peroxisomal metabolism, such as lipid degradation and photorespiration. These analyses have revealed that the number, subcellular localization, and activity of peroxisomes are closely related to their efficient function, and the molecular mechanisms underlying peroxisome dynamics including organelle biogenesis, protein transport, and organelle interactions must be understood. Various approaches have been adopted to identify factors involved in peroxisome dynamics. With the development of imaging techniques and fluorescent proteins, peroxisome research has been accelerated. Image-based analyses provide intriguing results concerning the movement, morphology, and number of peroxisomes that were hard to obtain by other approaches. This review addresses image-based analysis of peroxisome dynamics in plants, especially A. thaliana and Marchantia polymorpha.
Collapse
Affiliation(s)
- Shino Goto-Yamada
- Małopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Kazusato Oikawa
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Katsuyuki T. Yamato
- Faculty of Biology-Oriented Science and Technology, Kindai University, Wakayama, Japan
| | - Masatake Kanai
- Department of Cell Biology, National Institute for Basic Biology, Okazaki, Japan
| | - Kazumi Hikino
- Department of Cell Biology, National Institute for Basic Biology, Okazaki, Japan
| | - Mikio Nishimura
- Department of Biology, Faculty of Science and Engineering, Konan University, Kobe, Japan
| | - Shoji Mano
- Department of Cell Biology, National Institute for Basic Biology, Okazaki, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
- *Correspondence: Shoji Mano
| |
Collapse
|
107
|
Ishibashi M, Keung J, Morgans CW, Aicher SA, Carroll JR, Singer JH, Jia L, Li W, Fahrenfort I, Ribelayga CP, Massey SC. Analysis of rod/cone gap junctions from the reconstruction of mouse photoreceptor terminals. eLife 2022; 11:73039. [PMID: 35471186 PMCID: PMC9170248 DOI: 10.7554/elife.73039] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 04/25/2022] [Indexed: 12/14/2022] Open
Abstract
Electrical coupling, mediated by gap junctions, contributes to signal averaging, synchronization, and noise reduction in neuronal circuits. In addition, gap junctions may also provide alternative neuronal pathways. However, because they are small and especially difficult to image, gap junctions are often ignored in large-scale 3D reconstructions. Here, we reconstruct gap junctions between photoreceptors in the mouse retina using serial blockface-scanning electron microscopy, focused ion beam-scanning electron microscopy, and confocal microscopy for the gap junction protein Cx36. An exuberant spray of fine telodendria extends from each cone pedicle (including blue cones) to contact 40-50 nearby rod spherules at sites of Cx36 labeling, with approximately 50 Cx36 clusters per cone pedicle and 2-3 per rod spherule. We were unable to detect rod/rod or cone/cone coupling. Thus, rod/cone coupling accounts for nearly all gap junctions between photoreceptors. We estimate a mean of 86 Cx36 channels per rod/cone pair, which may provide a maximum conductance of ~1200 pS, if all gap junction channels were open. This is comparable to the maximum conductance previously measured between rod/cone pairs in the presence of a dopamine antagonist to activate Cx36, suggesting that the open probability of gap junction channels can approach 100% under certain conditions.
Collapse
Affiliation(s)
- Munenori Ishibashi
- Richard Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, University of Texas at Houston, Houston, United States
| | - Joyce Keung
- Richard Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, University of Texas at Houston, Houston, United States
| | - Catherine W Morgans
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, United States
| | - Sue A Aicher
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, United States
| | - James R Carroll
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, United States
| | - Joshua H Singer
- Department of Biology, University of Maryland, College Park, College Park, United States
| | - Li Jia
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, United States
| | - Wei Li
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, United States
| | - Iris Fahrenfort
- Richard Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, University of Texas at Houston, Houston, United States
| | - Christophe P Ribelayga
- Richard Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, University of Texas at Houston, Houston, United States
| | - Stephen C Massey
- Richard Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, University of Texas at Houston, Houston, United States
| |
Collapse
|
108
|
Ritter AT, Shtengel G, Xu CS, Weigel A, Hoffman DP, Freeman M, Iyer N, Alivodej N, Ackerman D, Voskoboinik I, Trapani J, Hess HF, Mellman I. ESCRT-mediated membrane repair protects tumor-derived cells against T cell attack. Science 2022; 376:377-382. [PMID: 35446649 DOI: 10.1126/science.abl3855] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cytotoxic T lymphocytes (CTLs) and natural killer cells kill virus-infected and tumor cells through the polarized release of perforin and granzymes. Perforin is a pore-forming toxin that creates a lesion in the plasma membrane of the target cell through which granzymes enter the cytosol and initiate apoptosis. Endosomal sorting complexes required for transport (ESCRT) proteins are involved in the repair of small membrane wounds. We found that ESCRT proteins were precisely recruited in target cells to sites of CTL engagement immediately after perforin release. Inhibition of ESCRT machinery in cancer-derived cells enhanced their susceptibility to CTL-mediated killing. Thus, repair of perforin pores by ESCRT machinery limits granzyme entry into the cytosol, potentially enabling target cells to resist cytolytic attack.
Collapse
Affiliation(s)
| | - Gleb Shtengel
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - C Shan Xu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Aubrey Weigel
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - David P Hoffman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Melanie Freeman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Nirmala Iyer
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Nensi Alivodej
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - David Ackerman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Ilia Voskoboinik
- Rosie Lew Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne VIC, Australia
| | - Joseph Trapani
- Rosie Lew Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne VIC, Australia
| | - Harald F Hess
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Ira Mellman
- Genentech, Inc., South San Francisco, CA 94080, USA
| |
Collapse
|
109
|
Abstract
A multitude of applications in engineering, ore processing, mineral exploration, and environmental science require grain recognition and the counting of minerals. Typically, this task is performed manually with the drawback of monopolizing both time and resources. Moreover, it requires highly trained personnel with a wealth of knowledge and equipment, such as scanning electron microscopes and optical microscopes. Advances in machine learning and deep learning make it possible to envision the automation of many complex tasks in various fields of science at an accuracy equal to human performance, thereby, avoiding placing human resources into tedious and repetitive tasks, improving time efficiency, and lowering costs. Here, we develop deep-learning algorithms to automate the recognition of minerals directly from the grains captured from optical microscopes. Building upon our previous work and applying state-of-the-art technology, we modify a superpixel segmentation method to prepare data for the deep-learning algorithms. We compare two residual network architectures (ResNet 1 and ResNet 2) for the classification and identification processes. We achieve a validation accuracy of 90.5% using the ResNet 2 architecture with 47 layers. Our approach produces an effective application of deep learning to automate mineral recognition and counting from grains while also achieving a better recognition rate than reported thus far in the literature for this process and other well-known, deep-learning-based models, including AlexNet, GoogleNet, and LeNet.
Collapse
|
110
|
Prakash K, Diederich B, Heintzmann R, Schermelleh L. Super-resolution microscopy: a brief history and new avenues. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2022; 380:20210110. [PMID: 35152764 PMCID: PMC8841785 DOI: 10.1098/rsta.2021.0110] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 05/03/2023]
Abstract
Super-resolution microscopy (SRM) is a fast-developing field that encompasses fluorescence imaging techniques with the capability to resolve objects below the classical diffraction limit of optical resolution. Acknowledged with the Nobel prize in 2014, numerous SRM methods have meanwhile evolved and are being widely applied in biomedical research, all with specific strengths and shortcomings. While some techniques are capable of nanometre-scale molecular resolution, others are geared towards volumetric three-dimensional multi-colour or fast live-cell imaging. In this editorial review, we pick on the latest trends in the field. We start with a brief historical overview of both conceptual and commercial developments. Next, we highlight important parameters for imaging successfully with a particular super-resolution modality. Finally, we discuss the importance of reproducibility and quality control and the significance of open-source tools in microscopy. This article is part of the Theo Murphy meeting issue 'Super-resolution structured illumination microscopy (part 2)'.
Collapse
Affiliation(s)
- Kirti Prakash
- Integrated Pathology Unit, Centre for Molecular Pathology, The Royal Marsden Trust and Institute of Cancer Research, Sutton SM2 5NG, UK
| | - Benedict Diederich
- Leibniz Institute for Photonic Technology, Albert-Einstein-Strasse 9, 07745 Jena, Germany
| | - Rainer Heintzmann
- Leibniz Institute for Photonic Technology, Albert-Einstein-Strasse 9, 07745 Jena, Germany
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-University, Helmholtzweg 4, 07743 Jena, Germany
| | | |
Collapse
|
111
|
Parlakgül G, Arruda AP, Pang S, Cagampan E, Min N, Güney E, Lee GY, Inouye K, Hess HF, Xu CS, Hotamışlıgil GS. Regulation of liver subcellular architecture controls metabolic homeostasis. Nature 2022; 603:736-742. [PMID: 35264794 DOI: 10.1038/s41586-022-04488-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/31/2022] [Indexed: 12/28/2022]
Abstract
Cells display complex intracellular organization by compartmentalization of metabolic processes into organelles, yet the resolution of these structures in the native tissue context and their functional consequences are not well understood. Here we resolved the three-dimensional structural organization of organelles in large (more than 2.8 × 105 µm3) volumes of intact liver tissue (15 partial or full hepatocytes per condition) at high resolution (8 nm isotropic pixel size) using enhanced focused ion beam scanning electron microscopy1,2 imaging followed by deep-learning-based automated image segmentation and 3D reconstruction. We also performed a comparative analysis of subcellular structures in liver tissue of lean and obese mice and found substantial alterations, particularly in hepatic endoplasmic reticulum (ER), which undergoes massive structural reorganization characterized by marked disorganization of stacks of ER sheets3 and predominance of ER tubules. Finally, we demonstrated the functional importance of these structural changes by monitoring the effects of experimental recovery of the subcellular organization on cellular and systemic metabolism. We conclude that the hepatic subcellular organization of the ER architecture are highly dynamic, integrated with the metabolic state and critical for adaptive homeostasis and tissue health.
Collapse
Affiliation(s)
- Güneş Parlakgül
- Sabri Ülker Center of Metabolic Research and Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Ana Paula Arruda
- Sabri Ülker Center of Metabolic Research and Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Department of Nutritional Sciences and Toxicology, UC Berkeley, Berkeley, CA, USA
| | - Song Pang
- HHMI Janelia Research Campus, Ashburn, VA, USA
| | - Erika Cagampan
- Sabri Ülker Center of Metabolic Research and Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Nina Min
- Sabri Ülker Center of Metabolic Research and Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Ekin Güney
- Sabri Ülker Center of Metabolic Research and Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Grace Yankun Lee
- Sabri Ülker Center of Metabolic Research and Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Karen Inouye
- Sabri Ülker Center of Metabolic Research and Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - C Shan Xu
- HHMI Janelia Research Campus, Ashburn, VA, USA
| | - Gökhan S Hotamışlıgil
- Sabri Ülker Center of Metabolic Research and Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA. .,Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
112
|
Behrens C, Yadav SC, Korympidou MM, Zhang Y, Haverkamp S, Irsen S, Schaedler A, Lu X, Liu Z, Lause J, St-Pierre F, Franke K, Vlasits A, Dedek K, Smith RG, Euler T, Berens P, Schubert T. Retinal horizontal cells use different synaptic sites for global feedforward and local feedback signaling. Curr Biol 2022; 32:545-558.e5. [PMID: 34910950 PMCID: PMC8886496 DOI: 10.1016/j.cub.2021.11.055] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 10/19/2021] [Accepted: 11/23/2021] [Indexed: 11/19/2022]
Abstract
In the outer plexiform layer (OPL) of the mammalian retina, cone photoreceptors (cones) provide input to more than a dozen types of cone bipolar cells (CBCs). In the mouse, this transmission is modulated by a single horizontal cell (HC) type. HCs perform global signaling within their laterally coupled network but also provide local, cone-specific feedback. However, it is unknown how HCs provide local feedback to cones at the same time as global forward signaling to CBCs and where the underlying synapses are located. To assess how HCs simultaneously perform different modes of signaling, we reconstructed the dendritic trees of five HCs as well as cone axon terminals and CBC dendrites in a serial block-face electron microscopy volume and analyzed their connectivity. In addition to the fine HC dendritic tips invaginating cone axon terminals, we also identified "bulbs," short segments of increased dendritic diameter on the primary dendrites of HCs. These bulbs are in an OPL stratum well below the cone axon terminal base and make contacts with other HCs and CBCs. Our results from immunolabeling, electron microscopy, and glutamate imaging suggest that HC bulbs represent GABAergic synapses that do not receive any direct photoreceptor input. Together, our data suggest the existence of two synaptic strata in the mouse OPL, spatially separating cone-specific feedback and feedforward signaling to CBCs. A biophysical model of a HC dendritic branch and voltage imaging support the hypothesis that this spatial arrangement of synaptic contacts allows for simultaneous local feedback and global feedforward signaling by HCs.
Collapse
Affiliation(s)
- Christian Behrens
- Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Str. 7, 72076 Tübingen, Germany; Center for Integrative Neuroscience, University of Tübingen, Otfried-Müller-Str. 25, 72076 Tübingen, Germany; Bernstein Center for Computational Neuroscience, University of Tübingen, Otfried-Müller-Str. 25, 72076 Tübingen, Germany; Graduate Training Centre of Neuroscience, University of Tübingen, Otfried-Müller-Str. 27, 72076 Tübingen, Germany
| | - Shubhash Chandra Yadav
- Neurosensorics/Animal Navigation, Institute for Biology and Environmental Sciences, University of Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26111 Oldenburg, Germany
| | - Maria M Korympidou
- Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Str. 7, 72076 Tübingen, Germany; Center for Integrative Neuroscience, University of Tübingen, Otfried-Müller-Str. 25, 72076 Tübingen, Germany; Graduate Training Centre of Neuroscience, University of Tübingen, Otfried-Müller-Str. 27, 72076 Tübingen, Germany
| | - Yue Zhang
- Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Str. 7, 72076 Tübingen, Germany; Center for Integrative Neuroscience, University of Tübingen, Otfried-Müller-Str. 25, 72076 Tübingen, Germany; Graduate Training Centre of Neuroscience, University of Tübingen, Otfried-Müller-Str. 27, 72076 Tübingen, Germany
| | - Silke Haverkamp
- Department of Computational Neuroethology, Center of Advanced European Studies and Research (caesar), Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| | - Stephan Irsen
- Electron Microscopy and Analytics, Center of Advanced European Studies and Research (caesar), Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| | - Anna Schaedler
- Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Str. 7, 72076 Tübingen, Germany; Center for Integrative Neuroscience, University of Tübingen, Otfried-Müller-Str. 25, 72076 Tübingen, Germany; Graduate Training Centre of Neuroscience, University of Tübingen, Otfried-Müller-Str. 27, 72076 Tübingen, Germany
| | - Xiaoyu Lu
- Systems, Synthetic, and Physical Biology Program, Rice University, 6500 Main St., Houston, TX 77005, USA
| | - Zhuohe Liu
- Department of Electrical and Computer Engineering, Rice University, 6100 Main St., Houston, TX 77005, USA
| | - Jan Lause
- Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Str. 7, 72076 Tübingen, Germany; Center for Integrative Neuroscience, University of Tübingen, Otfried-Müller-Str. 25, 72076 Tübingen, Germany; Bernstein Center for Computational Neuroscience, University of Tübingen, Otfried-Müller-Str. 25, 72076 Tübingen, Germany; Graduate Training Centre of Neuroscience, University of Tübingen, Otfried-Müller-Str. 27, 72076 Tübingen, Germany
| | - François St-Pierre
- Systems, Synthetic, and Physical Biology Program, Rice University, 6500 Main St., Houston, TX 77005, USA; Department of Electrical and Computer Engineering, Rice University, 6100 Main St., Houston, TX 77005, USA; Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Katrin Franke
- Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Str. 7, 72076 Tübingen, Germany; Center for Integrative Neuroscience, University of Tübingen, Otfried-Müller-Str. 25, 72076 Tübingen, Germany; Bernstein Center for Computational Neuroscience, University of Tübingen, Otfried-Müller-Str. 25, 72076 Tübingen, Germany
| | - Anna Vlasits
- Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Str. 7, 72076 Tübingen, Germany; Center for Integrative Neuroscience, University of Tübingen, Otfried-Müller-Str. 25, 72076 Tübingen, Germany; Bernstein Center for Computational Neuroscience, University of Tübingen, Otfried-Müller-Str. 25, 72076 Tübingen, Germany
| | - Karin Dedek
- Neurosensorics/Animal Navigation, Institute for Biology and Environmental Sciences, University of Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26111 Oldenburg, Germany
| | - Robert G Smith
- Department of Neuroscience, University of Pennsylvania, 422 Curie Blvd, Philadelphia, PA 19104, USA
| | - Thomas Euler
- Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Str. 7, 72076 Tübingen, Germany; Center for Integrative Neuroscience, University of Tübingen, Otfried-Müller-Str. 25, 72076 Tübingen, Germany; Bernstein Center for Computational Neuroscience, University of Tübingen, Otfried-Müller-Str. 25, 72076 Tübingen, Germany
| | - Philipp Berens
- Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Str. 7, 72076 Tübingen, Germany; Center for Integrative Neuroscience, University of Tübingen, Otfried-Müller-Str. 25, 72076 Tübingen, Germany; Bernstein Center for Computational Neuroscience, University of Tübingen, Otfried-Müller-Str. 25, 72076 Tübingen, Germany; Tübingen AI Center, University of Tübingen, Maria-von-Linden-Straße 6, 72076 Tübingen, Germany
| | - Timm Schubert
- Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Str. 7, 72076 Tübingen, Germany; Center for Integrative Neuroscience, University of Tübingen, Otfried-Müller-Str. 25, 72076 Tübingen, Germany.
| |
Collapse
|
113
|
Weiner E, Pinskey JM, Nicastro D, Otegui MS. Electron microscopy for imaging organelles in plants and algae. PLANT PHYSIOLOGY 2022; 188:713-725. [PMID: 35235662 PMCID: PMC8825266 DOI: 10.1093/plphys/kiab449] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 08/23/2021] [Indexed: 05/31/2023]
Abstract
Recent developments in both instrumentation and image analysis algorithms have allowed three-dimensional electron microscopy (3D-EM) to increase automated image collections through large tissue volumes using serial block-face scanning EM (SEM) and to achieve near-atomic resolution of macromolecular complexes using cryo-electron tomography (cryo-ET) and sub-tomogram averaging. In this review, we discuss applications of cryo-ET to cell biology research on plant and algal systems and the special opportunities they offer for understanding the organization of eukaryotic organelles with unprecedently resolution. However, one of the most challenging aspects for cryo-ET is sample preparation, especially for multicellular organisms. We also discuss correlative light and electron microscopy (CLEM) approaches that have been developed for ET at both room and cryogenic temperatures.
Collapse
Affiliation(s)
- Ethan Weiner
- Department of Botany, University of Wisconsin, Madison 53706, Wisconsin
- Center for Quantitative Cell Imaging, University of Wisconsin, Madison 53706, Wisconsin
| | - Justine M Pinskey
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas 75390, Texas
| | - Daniela Nicastro
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas 75390, Texas
| | - Marisa S Otegui
- Department of Botany, University of Wisconsin, Madison 53706, Wisconsin
- Center for Quantitative Cell Imaging, University of Wisconsin, Madison 53706, Wisconsin
| |
Collapse
|
114
|
Aniento F, Sánchez de Medina Hernández V, Dagdas Y, Rojas-Pierce M, Russinova E. Molecular mechanisms of endomembrane trafficking in plants. THE PLANT CELL 2022; 34:146-173. [PMID: 34550393 PMCID: PMC8773984 DOI: 10.1093/plcell/koab235] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/12/2021] [Indexed: 05/10/2023]
Abstract
Endomembrane trafficking is essential for all eukaryotic cells. The best-characterized membrane trafficking organelles include the endoplasmic reticulum (ER), Golgi apparatus, early and recycling endosomes, multivesicular body, or late endosome, lysosome/vacuole, and plasma membrane. Although historically plants have given rise to cell biology, our understanding of membrane trafficking has mainly been shaped by the much more studied mammalian and yeast models. Whereas organelles and major protein families that regulate endomembrane trafficking are largely conserved across all eukaryotes, exciting variations are emerging from advances in plant cell biology research. In this review, we summarize the current state of knowledge on plant endomembrane trafficking, with a focus on four distinct trafficking pathways: ER-to-Golgi transport, endocytosis, trans-Golgi network-to-vacuole transport, and autophagy. We acknowledge the conservation and commonalities in the trafficking machinery across species, with emphasis on diversity and plant-specific features. Understanding the function of organelles and the trafficking machinery currently nonexistent in well-known model organisms will provide great opportunities to acquire new insights into the fundamental cellular process of membrane trafficking.
Collapse
Affiliation(s)
| | - Víctor Sánchez de Medina Hernández
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, 1030 Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, A-1030, Vienna, Austria
| | | | | | | |
Collapse
|
115
|
Sneve MA, Piatkevich KD. Towards a Comprehensive Optical Connectome at Single Synapse Resolution via Expansion Microscopy. Front Synaptic Neurosci 2022; 13:754814. [PMID: 35115916 PMCID: PMC8803729 DOI: 10.3389/fnsyn.2021.754814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 12/17/2021] [Indexed: 12/04/2022] Open
Abstract
Mapping and determining the molecular identity of individual synapses is a crucial step towards the comprehensive reconstruction of neuronal circuits. Throughout the history of neuroscience, microscopy has been a key technology for mapping brain circuits. However, subdiffraction size and high density of synapses in brain tissue make this process extremely challenging. Electron microscopy (EM), with its nanoscale resolution, offers one approach to this challenge yet comes with many practical limitations, and to date has only been used in very small samples such as C. elegans, tadpole larvae, fruit fly brain, or very small pieces of mammalian brain tissue. Moreover, EM datasets require tedious data tracing. Light microscopy in combination with tissue expansion via physical magnification-known as expansion microscopy (ExM)-offers an alternative approach to this problem. ExM enables nanoscale imaging of large biological samples, which in combination with multicolor neuronal and synaptic labeling offers the unprecedented capability to trace and map entire neuronal circuits in fully automated mode. Recent advances in new methods for synaptic staining as well as new types of optical molecular probes with superior stability, specificity, and brightness provide new modalities for studying brain circuits. Here we review advanced methods and molecular probes for fluorescence staining of the synapses in the brain that are compatible with currently available expansion microscopy techniques. In particular, we will describe genetically encoded probes for synaptic labeling in mice, zebrafish, Drosophila fruit flies, and C. elegans, which enable the visualization of post-synaptic scaffolds and receptors, presynaptic terminals and vesicles, and even a snapshot of the synaptic activity itself. We will address current methods for applying these probes in ExM experiments, as well as appropriate vectors for the delivery of these molecular constructs. In addition, we offer experimental considerations and limitations for using each of these tools as well as our perspective on emerging tools.
Collapse
Affiliation(s)
- Madison A. Sneve
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, United States
| | - Kiryl D. Piatkevich
- School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Westlake University, Hangzhou, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| |
Collapse
|
116
|
Wildenberg G, Sorokina A, Koranda J, Monical A, Heer C, Sheffield M, Zhuang X, McGehee D, Kasthuri B. Partial connectomes of labeled dopaminergic circuits reveal non-synaptic communication and axonal remodeling after exposure to cocaine. eLife 2021; 10:71981. [PMID: 34965204 PMCID: PMC8716107 DOI: 10.7554/elife.71981] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 11/29/2021] [Indexed: 12/15/2022] Open
Abstract
Dopaminergic (DA) neurons exert profound influences on behavior including addiction. However, how DA axons communicate with target neurons and how those communications change with drug exposure remains poorly understood. We leverage cell type-specific labeling with large volume serial electron microscopy to detail DA connections in the nucleus accumbens (NAc) of the mouse (Mus musculus) before and after exposure to cocaine. We find that individual DA axons contain different varicosity types based on their vesicle contents. Spatially ordering along individual axons further suggests that varicosity types are non-randomly organized. DA axon varicosities rarely make specific synapses (<2%, 6/410), but instead are more likely to form spinule-like structures (15%, 61/410) with neighboring neurons. Days after a brief exposure to cocaine, DA axons were extensively branched relative to controls, formed blind-ended 'bulbs' filled with mitochondria, and were surrounded by elaborated glia. Finally, mitochondrial lengths increased by ~2.2 times relative to control only in DA axons and NAc spiny dendrites after cocaine exposure. We conclude that DA axonal transmission is unlikely to be mediated via classical synapses in the NAc and that the major locus of anatomical plasticity of DA circuits after exposure to cocaine are large-scale axonal re-arrangements with correlated changes in mitochondria.
Collapse
Affiliation(s)
- Gregg Wildenberg
- Department of Neurobiology, University of Chicago, Chicago, United States.,Argonne National Laboratory, Lemont, United States
| | - Anastasia Sorokina
- Department of Neurobiology, University of Chicago, Chicago, United States.,Argonne National Laboratory, Lemont, United States
| | - Jessica Koranda
- Department of Neurobiology, University of Chicago, Chicago, United States
| | - Alexis Monical
- Department of Anesthesia & Critical Care, University of Chicago, Chicago, United States
| | - Chad Heer
- Department of Neurobiology, University of Chicago, Chicago, United States
| | - Mark Sheffield
- Department of Neurobiology, University of Chicago, Chicago, United States
| | - Xiaoxi Zhuang
- Department of Neurobiology, University of Chicago, Chicago, United States
| | - Daniel McGehee
- Department of Anesthesia & Critical Care, University of Chicago, Chicago, United States
| | - Bobby Kasthuri
- Department of Neurobiology, University of Chicago, Chicago, United States.,Argonne National Laboratory, Lemont, United States
| |
Collapse
|
117
|
Loconte V, White KL. The use of soft X-ray tomography to explore mitochondrial structure and function. Mol Metab 2021; 57:101421. [PMID: 34942399 PMCID: PMC8829759 DOI: 10.1016/j.molmet.2021.101421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/22/2021] [Accepted: 12/15/2021] [Indexed: 11/25/2022] Open
Abstract
Background Mitochondria are cellular organelles responsible for energy production, and dysregulation of the mitochondrial network is associated with many disease states. To fully characterize the mitochondrial network's structure and function, a three-dimensional whole cell mapping technique is required. Scope of review This review highlights the use of soft X-ray tomography (SXT) as a relatively high-throughput approach to quantify mitochondrial structure and function under multiple cellular conditions. Major conclusions The use of SXT opens the door for mapping cellular rearrangements during critical processes such as insulin secretion, stem cell differentiation, or disease progression. SXT provides unique information such as biochemical compositions or molecular densities of organelles and allows for unbiased, label-free imaging of intact whole cells. Mapping mitochondria in the context of the near-native cellular environment will reveal more information regarding mitochondrial network functions within the cell. Soft X-ray tomography (SXT) generates 3D organelle maps of intact cells. 3D maps reveal the positions of mitochondria and their molecular densities. SXT can be used to quantify and compare organelle contacts between conditions. SXT is unbiased imaging that identifies the contents of subcellular neighborhoods. SXT provides an exciting path for exploring metabolic dysfunction.
Collapse
Affiliation(s)
- Valentina Loconte
- Department of Anatomy, School of Medicine, UCSF, San Francisco, California, CA 94143; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kate L White
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Chemistry, Bridge Institute, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
118
|
Barsotti E, Correia A, Cardona A. Neural architectures in the light of comparative connectomics. Curr Opin Neurobiol 2021; 71:139-149. [PMID: 34837731 PMCID: PMC8694100 DOI: 10.1016/j.conb.2021.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/20/2021] [Accepted: 10/26/2021] [Indexed: 01/06/2023]
Abstract
Since the Cambrian, animals diversified from a few body forms or bauplans, into many extinct and all extant species. A characteristic neural architecture serves each bauplan. How the connectome of each animal differs from that of closely related species or whether it converged into an optimal architecture shared with more distant ones is unknown. Recent technological innovations in molecular biology, microscopy, digital data storage and processing, and computational neuroscience have lowered the barriers for whole-brain connectomics. Comparative connectomics of suitable, relatively small, representative species across the phylogenetic tree can infer the archetypal neural architecture of each bauplan and identify any circuits that possibly converged onto a shared and potentially optimal, structure.
Collapse
Affiliation(s)
- Elizabeth Barsotti
- MRC Laboratory of Molecular Biology, Cambridge, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, UK
| | - Ana Correia
- MRC Laboratory of Molecular Biology, Cambridge, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, UK
| | - Albert Cardona
- MRC Laboratory of Molecular Biology, Cambridge, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, UK.
| |
Collapse
|
119
|
Tian B, Xu X, Xue Y, Ji W, Xu T. Cryogenic superresolution correlative light and electron microscopy on the frontier of subcellular imaging. Biophys Rev 2021; 13:1163-1171. [DOI: 10.1007/s12551-021-00851-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 10/03/2021] [Indexed: 12/22/2022] Open
|
120
|
Loconte V, Chen JH, Cortese M, Ekman A, Le Gros MA, Larabell C, Bartenschlager R, Weinhardt V. Using soft X-ray tomography for rapid whole-cell quantitative imaging of SARS-CoV-2-infected cells. CELL REPORTS METHODS 2021; 1:100117. [PMID: 34729550 PMCID: PMC8552653 DOI: 10.1016/j.crmeth.2021.100117] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/10/2021] [Accepted: 10/22/2021] [Indexed: 02/08/2023]
Abstract
High-resolution and rapid imaging of host cell ultrastructure can generate insights toward viral disease mechanism, for example for a severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. Here, we employ full-rotation soft X-ray tomography (SXT) to examine organelle remodeling induced by SARS-CoV-2 at the whole-cell level with high spatial resolution and throughput. Most of the current SXT systems suffer from a restricted field of view due to use of flat sample supports and artifacts due to missing data. In this approach using cylindrical sample holders, a full-rotation tomogram of human lung epithelial cells is performed in less than 10 min. We demonstrate the potential of SXT imaging by visualizing aggregates of SARS-CoV-2 virions and virus-induced intracellular alterations. This rapid whole-cell imaging approach allows us to visualize the spatiotemporal changes of cellular organelles upon viral infection in a quantitative manner.
Collapse
Affiliation(s)
- Valentina Loconte
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
| | - Jian-Hua Chen
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
| | - Mirko Cortese
- Department of Infectious Diseases, Molecular Virology Heidelberg University, Heidelberg, Germany
| | - Axel Ekman
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
| | - Mark A. Le Gros
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
| | - Carolyn Larabell
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology Heidelberg University, Heidelberg, Germany
- German Center for Infection Research, Heidelberg Partner Site, Heidelberg, Germany
- Division Virus-Associated Carcinogenesis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Venera Weinhardt
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
121
|
Trebichalská Z, Javůrek J, Tatíčková M, Kyjovská D, Kloudová S, Otevřel P, Hampl A, Holubcová Z. High-Resolution 3D Reconstruction of Human Oocytes Using Focused Ion Beam Scanning Electron Microscopy. Front Cell Dev Biol 2021; 9:755740. [PMID: 34796176 PMCID: PMC8593100 DOI: 10.3389/fcell.2021.755740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/12/2021] [Indexed: 11/18/2022] Open
Abstract
The egg plays a pivotal role in the reproduction of our species. Nevertheless, its fundamental biology remains elusive. Transmission electron microscopy is traditionally used to inspect the ultrastructure of female gametes. However, two-dimensional micrographs contain only fragmentary information about the spatial organization of the complex oocyte cytoplasm. Here, we employed the Focused Ion Beam Scanning Electron Microscopy (FIB-SEM) to explore human oocyte intracellular morphology in three dimensions (3D). Volume reconstruction of generated image stacks provided an unprecedented view of ooplasmic architecture. Organelle distribution patterns observed in nine donor oocytes, representing three maturational stages, documented structural changes underlying the process by which the egg acquires developmental competence. 3D image segmentation was performed to extract information about distinct organelle populations, and the following quantitative analysis revealed that the mitochondrion occupies ∼ 4.26% of the maturing oocyte cytoplasm. In summary, this proof-of-concept study demonstrates the potential of large volume electron microscopy to study rare samples of delicate female gametes and paves the way for applying the FIB-SEM technique in human oocyte research.
Collapse
Affiliation(s)
- Zuzana Trebichalská
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | | | - Martina Tatíčková
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | | | | | | | - Aleš Hampl
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Zuzana Holubcová
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czechia.,Reprofit International, Brno, Czechia
| |
Collapse
|
122
|
Laws R, Steel DH, Rajan N. Research Techniques Made Simple: Volume Scanning Electron Microscopy. J Invest Dermatol 2021; 142:265-271.e1. [PMID: 34762923 DOI: 10.1016/j.jid.2021.10.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/29/2021] [Accepted: 10/08/2021] [Indexed: 11/26/2022]
Abstract
Volume scanning electron microscopy (VSEM) involves the serial sectioning and imaging of a sample using scanning electron microscopy (SEM), followed by segmentation and three-dimensional (3D) reconstruction using computer software packages to allow visualization of 3D structures. VSEM can reveal qualitative and quantitative properties of organelles and cells within tissues at nanoscale. The ability to visualize spatial relationships of structures of interest within and across cells in 3D space in particular sets VSEM apart from conventional SEM and transmission electron microscopy. Here, we provide an overview of VSEM platforms and image processing, highlighting characteristics that will aid selection of a method to address specific research questions in dermatological research.
Collapse
Affiliation(s)
- Ross Laws
- Electron Microscopy Research Services, Newcastle University, Newcastle upon Tyne, United Kingdom; Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - David H Steel
- Bioscience Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Neil Rajan
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom; Department of Dermatology, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom.
| |
Collapse
|
123
|
Endo M, Maruoka H, Okabe S. Advanced Technologies for Local Neural Circuits in the Cerebral Cortex. Front Neuroanat 2021; 15:757499. [PMID: 34803616 PMCID: PMC8595196 DOI: 10.3389/fnana.2021.757499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/13/2021] [Indexed: 11/13/2022] Open
Abstract
The neural network in the brain can be viewed as an integrated system assembled from a large number of local neural circuits specialized for particular brain functions. Activities of neurons in local neural circuits are thought to be organized both spatially and temporally under the rules optimized for their roles in information processing. It is well perceived that different areas of the mammalian neocortex have specific cognitive functions and distinct computational properties. However, the organizational principles of the local neural circuits in different cortical regions have not yet been clarified. Therefore, new research principles and related neuro-technologies that enable efficient and precise recording of large-scale neuronal activities and synaptic connections are necessary. Innovative technologies for structural analysis, including tissue clearing and expansion microscopy, have enabled super resolution imaging of the neural circuits containing thousands of neurons at a single synapse resolution. The imaging resolution and volume achieved by new technologies are beyond the limits of conventional light or electron microscopic methods. Progress in genome editing and related technologies has made it possible to label and manipulate specific cell types and discriminate activities of multiple cell types. These technologies will provide a breakthrough for multiscale analysis of the structure and function of local neural circuits. This review summarizes the basic concepts and practical applications of the emerging technologies and new insight into local neural circuits obtained by these technologies.
Collapse
Affiliation(s)
| | | | - Shigeo Okabe
- Department of Cellular Neurobiology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
124
|
Zein-Sabatto H, Lerit DA. The Identification and Functional Analysis of mRNA Localizing to Centrosomes. Front Cell Dev Biol 2021; 9:782802. [PMID: 34805187 PMCID: PMC8595238 DOI: 10.3389/fcell.2021.782802] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 10/21/2021] [Indexed: 11/13/2022] Open
Abstract
Centrosomes are multifunctional organelles tasked with organizing the microtubule cytoskeleton required for genome stability, intracellular trafficking, and ciliogenesis. Contributing to the diversity of centrosome functions are cell cycle-dependent oscillations in protein localization and post-translational modifications. Less understood is the role of centrosome-localized messenger RNA (mRNA). Since its discovery, the concept of nucleic acids at the centrosome was controversial, and physiological roles for centrosomal mRNAs remained muddled and underexplored. Over the past decades, however, transcripts, RNA-binding proteins, and ribosomes were detected at the centrosome in various organisms and cell types, hinting at a conservation of function. Indeed, recent work defines centrosomes as sites of local protein synthesis, and defined mRNAs were recently implicated in regulating centrosome functions. In this review, we summarize the evidence for the presence of mRNA at the centrosome and the current work that aims to unravel the biological functions of mRNA localized to centrosomes.
Collapse
Affiliation(s)
| | - Dorothy A. Lerit
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
125
|
Xu CS, Pang S, Shtengel G, Müller A, Ritter AT, Hoffman HK, Takemura SY, Lu Z, Pasolli HA, Iyer N, Chung J, Bennett D, Weigel AV, Freeman M, van Engelenburg SB, Walther TC, Farese RV, Lippincott-Schwartz J, Mellman I, Solimena M, Hess HF. An open-access volume electron microscopy atlas of whole cells and tissues. Nature 2021; 599:147-151. [PMID: 34616045 PMCID: PMC9004664 DOI: 10.1038/s41586-021-03992-4] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 09/02/2021] [Indexed: 02/06/2023]
Abstract
Understanding cellular architecture is essential for understanding biology. Electron microscopy (EM) uniquely visualizes cellular structures with nanometre resolution. However, traditional methods, such as thin-section EM or EM tomography, have limitations in that they visualize only a single slice or a relatively small volume of the cell, respectively. Focused ion beam-scanning electron microscopy (FIB-SEM) has demonstrated the ability to image small volumes of cellular samples with 4-nm isotropic voxels1. Owing to advances in the precision and stability of FIB milling, together with enhanced signal detection and faster SEM scanning, we have increased the volume that can be imaged with 4-nm voxels by two orders of magnitude. Here we present a volume EM atlas at such resolution comprising ten three-dimensional datasets for whole cells and tissues, including cancer cells, immune cells, mouse pancreatic islets and Drosophila neural tissues. These open access data (via OpenOrganelle2) represent the foundation of a field of high-resolution whole-cell volume EM and subsequent analyses, and we invite researchers to explore this atlas and pose questions.
Collapse
Affiliation(s)
- C Shan Xu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
| | - Song Pang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Gleb Shtengel
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Andreas Müller
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus and Faculty of Medicine of the TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | | | - Huxley K Hoffman
- Molecular and Cellular Biophysics Program, Department of Biological Sciences, University of Denver, Denver, CO, USA
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Shin-Ya Takemura
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Zhiyuan Lu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - H Amalia Pasolli
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- Electron Microscopy Resource Center, The Rockefeller University, New York, NY, USA
| | - Nirmala Iyer
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Jeeyun Chung
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Davis Bennett
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Aubrey V Weigel
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Melanie Freeman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- Advanced Bio-imaging Center, Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Schuyler B van Engelenburg
- Molecular and Cellular Biophysics Program, Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Tobias C Walther
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Robert V Farese
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | | | | | - Michele Solimena
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus and Faculty of Medicine of the TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- Max-Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Harald F Hess
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
| |
Collapse
|
126
|
Garriga D, Chichón FJ, Calisto BM, Ferrero DS, Gastaminza P, Pereiro E, Pérez-Berna AJ. Imaging of Virus-Infected Cells with Soft X-ray Tomography. Viruses 2021; 13:2109. [PMID: 34834916 PMCID: PMC8618346 DOI: 10.3390/v13112109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 02/07/2023] Open
Abstract
Viruses are obligate parasites that depend on a host cell for replication and survival. Consequently, to fully understand the viral processes involved in infection and replication, it is fundamental to study them in the cellular context. Often, viral infections induce significant changes in the subcellular organization of the host cell due to the formation of viral factories, alteration of cell cytoskeleton and/or budding of newly formed particles. Accurate 3D mapping of organelle reorganization in infected cells can thus provide valuable information for both basic virus research and antiviral drug development. Among the available techniques for 3D cell imaging, cryo-soft X-ray tomography stands out for its large depth of view (allowing for 10 µm thick biological samples to be imaged without further thinning), its resolution (about 50 nm for tomographies, sufficient to detect viral particles), the minimal requirements for sample manipulation (can be used on frozen, unfixed and unstained whole cells) and the potential to be combined with other techniques (i.e., correlative fluorescence microscopy). In this review we describe the fundamentals of cryo-soft X-ray tomography, its sample requirements, its advantages and its limitations. To highlight the potential of this technique, examples of virus research performed at BL09-MISTRAL beamline in ALBA synchrotron are also presented.
Collapse
Affiliation(s)
- Damià Garriga
- ALBA Synchrotron Light Source, 08290 Cerdanyola del Vallès, Spain; (D.G.); (B.M.C.); (E.P.)
| | - Francisco Javier Chichón
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; (F.J.C.); (P.G.)
| | - Bárbara M. Calisto
- ALBA Synchrotron Light Source, 08290 Cerdanyola del Vallès, Spain; (D.G.); (B.M.C.); (E.P.)
| | - Diego S. Ferrero
- Institut de Biologia Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Parc Científic de Barcelona, 08028 Barcelona, Spain;
| | - Pablo Gastaminza
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; (F.J.C.); (P.G.)
| | - Eva Pereiro
- ALBA Synchrotron Light Source, 08290 Cerdanyola del Vallès, Spain; (D.G.); (B.M.C.); (E.P.)
| | | |
Collapse
|
127
|
Schifferer M, Snaidero N, Djannatian M, Kerschensteiner M, Misgeld T. Niwaki Instead of Random Forests: Targeted Serial Sectioning Scanning Electron Microscopy With Reimaging Capabilities for Exploring Central Nervous System Cell Biology and Pathology. Front Neuroanat 2021; 15:732506. [PMID: 34720890 PMCID: PMC8548362 DOI: 10.3389/fnana.2021.732506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/24/2021] [Indexed: 11/13/2022] Open
Abstract
Ultrastructural analysis of discrete neurobiological structures by volume scanning electron microscopy (SEM) often constitutes a "needle-in-the-haystack" problem and therefore relies on sophisticated search strategies. The appropriate SEM approach for a given relocation task not only depends on the desired final image quality but also on the complexity and required accuracy of the screening process. Block-face SEM techniques like Focused Ion Beam or serial block-face SEM are "one-shot" imaging runs by nature and, thus, require precise relocation prior to acquisition. In contrast, "multi-shot" approaches conserve the sectioned tissue through the collection of serial sections onto solid support and allow reimaging. These tissue libraries generated by Array Tomography or Automated Tape Collecting Ultramicrotomy can be screened at low resolution to target high resolution SEM. This is particularly useful if a structure of interest is rare or has been predetermined by correlated light microscopy, which can assign molecular, dynamic and functional information to an ultrastructure. As such approaches require bridging mm to nm scales, they rely on tissue trimming at different stages of sample processing. Relocation is facilitated by endogenous or exogenous landmarks that are visible by several imaging modalities, combined with appropriate registration strategies that allow overlaying images of various sources. Here, we discuss the opportunities of using multi-shot serial sectioning SEM approaches, as well as suitable trimming and registration techniques, to slim down the high-resolution imaging volume to the actual structure of interest and hence facilitate ambitious targeted volume SEM projects.
Collapse
Affiliation(s)
- Martina Schifferer
- Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Nicolas Snaidero
- Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany
- Hertie Institute for Clinical Brain Research, Tübingen, Germany
| | - Minou Djannatian
- Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany
| | - Martin Kerschensteiner
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
- Faculty of Medicine, Biomedical Center (BMC), Ludwig-Maximilians-University Munich, Munich, Germany
| | - Thomas Misgeld
- Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany
| |
Collapse
|
128
|
Whole-cell organelle segmentation in volume electron microscopy. Nature 2021; 599:141-146. [PMID: 34616042 DOI: 10.1038/s41586-021-03977-3] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 08/31/2021] [Indexed: 12/12/2022]
Abstract
Cells contain hundreds of organelles and macromolecular assemblies. Obtaining a complete understanding of their intricate organization requires the nanometre-level, three-dimensional reconstruction of whole cells, which is only feasible with robust and scalable automatic methods. Here, to support the development of such methods, we annotated up to 35 different cellular organelle classes-ranging from endoplasmic reticulum to microtubules to ribosomes-in diverse sample volumes from multiple cell types imaged at a near-isotropic resolution of 4 nm per voxel with focused ion beam scanning electron microscopy (FIB-SEM)1. We trained deep learning architectures to segment these structures in 4 nm and 8 nm per voxel FIB-SEM volumes, validated their performance and showed that automatic reconstructions can be used to directly quantify previously inaccessible metrics including spatial interactions between cellular components. We also show that such reconstructions can be used to automatically register light and electron microscopy images for correlative studies. We have created an open data and open-source web repository, 'OpenOrganelle', to share the data, computer code and trained models, which will enable scientists everywhere to query and further improve automatic reconstruction of these datasets.
Collapse
|
129
|
Zhang S, Ju W, Chen X, Zhao Y, Feng L, Yin Z, Chen X. Hierarchical ultrastructure: An overview of what is known about tendons and future perspective for tendon engineering. Bioact Mater 2021; 8:124-139. [PMID: 34541391 PMCID: PMC8424392 DOI: 10.1016/j.bioactmat.2021.06.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/07/2021] [Accepted: 06/07/2021] [Indexed: 12/27/2022] Open
Abstract
Abnormal tendons are rarely ever repaired to the natural structure and morphology of normal tendons. To better guide the repair and regeneration of injured tendons through a tissue engineering method, it is necessary to have insights into the internal morphology, organization, and composition of natural tendons. This review summarized recent researches on the structure and function of the extracellular matrix (ECM) components of tendons and highlight the application of multiple detection methodologies concerning the structure of ECMs. In addition, we look forward to the future of multi-dimensional biomaterial design methods and the potential of structural repair for tendon ECM components. In addition, focus is placed on the macro to micro detection methods for tendons, and current techniques for evaluating the extracellular matrix of tendons at the micro level are introduced in detail. Finally, emphasis is given to future extracellular matrix detection methods, as well as to how future efforts could concentrate on fabricating the biomimetic tendons. Summarize recent research on the structure and function of the extracellular matrix (ECM) components of tendons. Comments on current research methods concerning the structure of ECMs. Perspective on the future of multi-dimensional detection techniques and structural repair of tendon ECM components.
Collapse
Affiliation(s)
- Shichen Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310052, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Wei Ju
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoyi Chen
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Guangxi Medical University, Guangxi, 530021, China
| | - Yanyan Zhao
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310052, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Lingchong Feng
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Zi Yin
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine and Regenerative Medicine and Department of Orthopedic Surgery of Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,Department of Sports Medicine, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310058, China
| | - Xiao Chen
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310052, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,Guangxi Key Laboratory of Regenerative Medicine, Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Guangxi Medical University, Guangxi, 530021, China.,Department of Sports Medicine, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310058, China
| |
Collapse
|
130
|
Tran HT, Lucas MS, Ishikawa T, Shahmoradian SH, Padeste C. A Compartmentalized Neuronal Cell-Culture Platform Compatible With Cryo-Fixation by High-Pressure Freezing for Ultrastructural Imaging. Front Neurosci 2021; 15:726763. [PMID: 34566569 PMCID: PMC8455873 DOI: 10.3389/fnins.2021.726763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/17/2021] [Indexed: 12/29/2022] Open
Abstract
The human brain contains a wide array of billions of neurons and interconnections, which are often simplified for analysis in vitro using compartmentalized microfluidic devices for neuronal cell culturing, to better understand neuronal development and disease. However, such devices are traditionally incompatible for high-pressure freezing and high-resolution nanoscale imaging and analysis of their sub-cellular processes by methods including electron microscopy. Here we develop a novel compartmentalized neuronal co-culture platform allowing reconstruction of neuronal networks with high variable spatial control, which is uniquely compatible for high-pressure freezing. This cryo-fixation method is well-established to enable high-fidelity preservation of the reconstructed neuronal networks and their sub-cellular processes in a near-native vitreous state without requiring chemical fixatives. To direct the outgrowth of neurites originating from two distinct groups of neurons growing in the two different compartments, polymer microstructures akin to microchannels are fabricated atop of sapphire disks. Two populations of neurons expressing either enhanced green fluorescent protein (EGFP) or mCherry were grown in either compartment, facilitating the analysis of the specific interactions between the two separate groups of cells. Neuronally differentiated PC12 cells, murine hippocampal and striatal neurons were successfully used in this context. The design of this device permits direct observation of entire neuritic processes within microchannels by optical microscopy with high spatial and temporal resolution, prior to processing for high-pressure freezing and electron microscopy. Following freeze substitution, we demonstrate that it is possible to process the neuronal networks for ultrastructural imaging by electron microscopy. Several key features of the embedded neuronal networks, including mitochondria, synaptic vesicles, axonal terminals, microtubules, with well-preserved ultrastructures were observed at high resolution using focused ion beam - scanning electron microscopy (FIB-SEM) and serial sectioning - transmission electron microscopy (TEM). These results demonstrate the compatibility of the platform with optical microscopy, high-pressure freezing and electron microscopy. The platform can be extended to neuronal models of brain disease or development in future studies, enabling the investigation of subcellular processes at the nanoscale within two distinct groups of neurons in a functional neuronal pathway, as well as pharmacological testing and drug screening.
Collapse
Affiliation(s)
- Hung Tri Tran
- Laboratory of Nanoscale Biology, Paul Scherrer Institute, Villigen, Switzerland
| | - Miriam S. Lucas
- Scientific Center for Optical and Electron Microscopy ScopeM, ETH Zürich, Zurich, Switzerland
| | - Takashi Ishikawa
- Laboratory of Nanoscale Biology, Paul Scherrer Institute, Villigen, Switzerland
| | | | - Celestino Padeste
- Laboratory of Nanoscale Biology, Paul Scherrer Institute, Villigen, Switzerland
| |
Collapse
|
131
|
Ronchi P, Mizzon G, Machado P, D’Imprima E, Best BT, Cassella L, Schnorrenberg S, Montero MG, Jechlinger M, Ephrussi A, Leptin M, Mahamid J, Schwab Y. High-precision targeting workflow for volume electron microscopy. J Cell Biol 2021; 220:e202104069. [PMID: 34160561 PMCID: PMC8225610 DOI: 10.1083/jcb.202104069] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/27/2021] [Accepted: 06/06/2021] [Indexed: 02/07/2023] Open
Abstract
Cells are 3D objects. Therefore, volume EM (vEM) is often crucial for correct interpretation of ultrastructural data. Today, scanning EM (SEM) methods such as focused ion beam (FIB)-SEM are frequently used for vEM analyses. While they allow automated data acquisition, precise targeting of volumes of interest within a large sample remains challenging. Here, we provide a workflow to target FIB-SEM acquisition of fluorescently labeled cells or subcellular structures with micrometer precision. The strategy relies on fluorescence preservation during sample preparation and targeted trimming guided by confocal maps of the fluorescence signal in the resin block. Laser branding is used to create landmarks on the block surface to position the FIB-SEM acquisition. Using this method, we acquired volumes of specific single cells within large tissues such as 3D cultures of mouse mammary gland organoids, tracheal terminal cells in Drosophila melanogaster larvae, and ovarian follicular cells in adult Drosophila, discovering ultrastructural details that could not be appreciated before.
Collapse
Affiliation(s)
- Paolo Ronchi
- Electron Microscopy Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Giulia Mizzon
- Electron Microscopy Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Pedro Machado
- Electron Microscopy Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Edoardo D’Imprima
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Benedikt T. Best
- Directors’ Research, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Lucia Cassella
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Sebastian Schnorrenberg
- Advanced Light Microscopy Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Marta G. Montero
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Martin Jechlinger
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Anne Ephrussi
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Maria Leptin
- Directors’ Research, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Julia Mahamid
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Yannick Schwab
- Electron Microscopy Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
132
|
Heinen-Weiler J, Hasenberg M, Heisler M, Settelmeier S, Beerlage AL, Doepper H, Walkenfort B, Odersky A, Luedike P, Winterhager E, Rassaf T, Hendgen-Cotta UB. Superiority of focused ion beam-scanning electron microscope tomography of cardiomyocytes over standard 2D analyses highlighted by unmasking mitochondrial heterogeneity. J Cachexia Sarcopenia Muscle 2021; 12:933-954. [PMID: 34120411 PMCID: PMC8350221 DOI: 10.1002/jcsm.12742] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 04/16/2021] [Accepted: 05/21/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Cardioprotection by preventing or repairing mitochondrial damage is an unmet therapeutic need. To understand the role of cardiomyocyte mitochondria in physiopathology, the reliable characterization of the mitochondrial morphology and compartment is pivotal. Previous studies mostly relied on two-dimensional (2D) routine transmission electron microscopy (TEM), thereby neglecting the real three-dimensional (3D) mitochondrial organization. This study aimed to determine whether classical 2D TEM analysis of the cardiomyocyte ultrastructure is sufficient to comprehensively describe the mitochondrial compartment and to reflect mitochondrial number, size, dispersion, distribution, and morphology. METHODS Spatial distribution of the complex mitochondrial network and morphology, number, and size heterogeneity of cardiac mitochondria in isolated adult mouse cardiomyocytes and adult wild-type left ventricular tissues (C57BL/6) were assessed using a comparative 3D imaging system based on focused ion beam-scanning electron microscopy (FIB-SEM) nanotomography. For comparison of 2D vs. 3D data sets, analytical strategies and mathematical comparative approaches were performed. To confirm the value of 3D data for mitochondrial changes, we compared the obtained values for number, coverage area, size heterogeneity, and complexity of wild-type cardiomyocyte mitochondria with data sets from mice lacking the cytosolic and mitochondrial protein BNIP3 (BCL-2/adenovirus E1B 19-kDa interacting protein 3; Bnip3-/- ) using FIB-SEM. Mitochondrial respiration was assessed on isolated mitochondria using the Seahorse XF analyser. A cardiac biopsy was obtained from a male patient (48 years) suffering from myocarditis. RESULTS The FIB-SEM nanotomographic analysis revealed that no linear relationship exists for mitochondrial number (r = 0.02; P = 0.9511), dispersion (r = -0.03; P = 0.9188), and shape (roundness: r = 0.15, P = 0.6397; elongation: r = -0.09, P = 0.7804) between 3D and 2D results. Cumulative frequency distribution analysis showed a diverse abundance of mitochondria with different sizes in 3D and 2D. Qualitatively, 2D data could not reflect mitochondrial distribution and dynamics existing in 3D tissue. 3D analyses enabled the discovery that BNIP3 deletion resulted in more smaller, less complex cardiomyocyte mitochondria (number: P < 0.01; heterogeneity: C.V. wild-type 89% vs. Bnip3-/- 68%; complexity: P < 0.001) forming large myofibril-distorting clusters, as seen in human myocarditis with disturbed mitochondrial dynamics. Bnip3-/- mice also show a higher respiration rate (P < 0.01). CONCLUSIONS Here, we demonstrate the need of 3D analyses for the characterization of mitochondrial features in cardiac tissue samples. Hence, we observed that BNIP3 deletion physiologically acts as a molecular brake on mitochondrial number, suggesting a role in mitochondrial fusion/fission processes and thereby regulating the homeostasis of cardiac bioenergetics.
Collapse
Affiliation(s)
- Jacqueline Heinen-Weiler
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, Medical Faculty, University of Duisburg-Essen, Essen, Germany.,Imaging Center Essen (IMCES), Electron Microscopy Unit (EMU), Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Mike Hasenberg
- Imaging Center Essen (IMCES), Electron Microscopy Unit (EMU), Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Martin Heisler
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Stephan Settelmeier
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Anna-Lena Beerlage
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Hannah Doepper
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Bernd Walkenfort
- Imaging Center Essen (IMCES), Electron Microscopy Unit (EMU), Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Andrea Odersky
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Peter Luedike
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Elke Winterhager
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, Medical Faculty, University of Duisburg-Essen, Essen, Germany.,Imaging Center Essen (IMCES), Electron Microscopy Unit (EMU), Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Tienush Rassaf
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Ulrike B Hendgen-Cotta
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
133
|
Xie L, Liu Z. Single-cell imaging of genome organization and dynamics. Mol Syst Biol 2021; 17:e9653. [PMID: 34232558 PMCID: PMC8262488 DOI: 10.15252/msb.20209653] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/13/2021] [Accepted: 04/23/2021] [Indexed: 12/28/2022] Open
Abstract
Probing the architecture, mechanism, and dynamics of genome folding is fundamental to our understanding of genome function in homeostasis and disease. Most chromosome conformation capture studies dissect the genome architecture with population- and time-averaged snapshots and thus have limited capabilities to reveal 3D nuclear organization and dynamics at the single-cell level. Here, we discuss emerging imaging techniques ranging from light microscopy to electron microscopy that enable investigation of genome folding and dynamics at high spatial and temporal resolution. Results from these studies complement genomic data, unveiling principles underlying the spatial arrangement of the genome and its potential functional links to diverse biological activities in the nucleus.
Collapse
Affiliation(s)
- Liangqi Xie
- Janelia Research CampusHoward Hughes Medical InstituteAshburnVAUSA
| | - Zhe Liu
- Janelia Research CampusHoward Hughes Medical InstituteAshburnVAUSA
| |
Collapse
|
134
|
Rusakov DA, Stewart MG. Synaptic environment and extrasynaptic glutamate signals: The quest continues. Neuropharmacology 2021; 195:108688. [PMID: 34174263 DOI: 10.1016/j.neuropharm.2021.108688] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 12/11/2022]
Abstract
Behaviour of a mammal relies on the brain's excitatory circuits equipped with glutamatergic synapses. In most cases, glutamate escaping from the synaptic cleft is rapidly buffered and taken up by high-affinity transporters expressed by nearby perisynaptic astroglial processes (PAPs). The spatial relationship between glutamatergic synapses and PAPs thus plays a crucial role in understanding glutamate signalling actions, yet its intricate features can only be fully appreciated using methods that operate beyond the diffraction limit of light. Here, we examine principal aspects pertaining to the receptor actions of glutamate, inside and outside the synaptic cleft in the brain, where the organisation of synaptic micro-physiology and micro-environment play a critical part. In what conditions and how far glutamate can escape the synaptic cleft activating its target receptors outside the immediate synapse has long been the subject of debate. Evidence is also emerging that neuronal activity- and astroglia-dependent glutamate spillover actions could be important across the spectrum of cognitive functions This article is part of the special issue on 'Glutamate Receptors - The Glutamatergic Synapse'.
Collapse
Affiliation(s)
- Dmitri A Rusakov
- UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK.
| | - Michael G Stewart
- Dept of Life Sciences, The Open University, Milton Keynes, MK7 6AA, UK.
| |
Collapse
|
135
|
Yu X, Moye SL, Khakh BS. Local and CNS-Wide Astrocyte Intracellular Calcium Signaling Attenuation In Vivo with CalEx flox Mice. J Neurosci 2021; 41:4556-4574. [PMID: 33903221 PMCID: PMC8260243 DOI: 10.1523/jneurosci.0085-21.2021] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/21/2021] [Accepted: 03/30/2021] [Indexed: 01/12/2023] Open
Abstract
Astrocytes exist throughout the CNS and affect neural circuits and behavior through intracellular Ca2+ signaling. Studying the function(s) of astrocyte Ca2+ signaling has proven difficult because of the paucity of tools to achieve selective attenuation. Based on recent studies, we generated and used male and female knock-in mice for Cre-dependent expression of mCherry-tagged hPMCA2w/b to attenuate astrocyte Ca2+ signaling in genetically defined cells in vivo (CalExflox mice for Calcium Extrusion). We characterized CalExflox mice following local AAV-Cre microinjections into the striatum and found reduced astrocyte Ca2+ signaling (∼90%) accompanied with repetitive self-grooming behavior. We also crossed CalExflox mice to astrocyte-specific Aldh1l1-Cre/ERT2 mice to achieve inducible global CNS-wide Ca2+ signaling attenuation. Within 6 d of induction in the bigenic mice, we observed significantly altered ambulation in the open field, disrupted motor coordination and gait, and premature lethality. Furthermore, with histologic, imaging, and transcriptomic analyses, we identified cellular and molecular alterations in the cerebellum following mCherry-tagged hPMCA2w/b expression. Our data show that expression of mCherry-tagged hPMCA2w/b with CalExflox mice throughout the CNS resulted in substantial attenuation of astrocyte Ca2+ signaling and significant behavioral alterations in adult mice. We interpreted these findings candidly in relation to the ability of CalEx to attenuate astrocyte Ca2+ signaling, with regards to additional mechanistic interpretations of the data, and their relation to past studies that reduced astrocyte Ca2+ signaling throughout the CNS. The data and resources provide complementary ways to interrogate the function(s) of astrocytes in multiple experimental scenarios.SIGNIFICANCE STATEMENT Astrocytes represent a significant fraction of all brain cells and tile the entire central nervous system. Unlike neurons, astrocytes lack propagated electrical signals. Instead, astrocytes are proposed to use diverse and dynamic intracellular Ca2+ signals to communicate with other cells. An open question concerns if and how astrocyte Ca2+ signaling regulates behavior in adult mice. We approached this problem by generating a new transgenic mouse line to achieve inducible astrocyte Ca2+ signaling attenuation in vivo We report our data with this mouse line and we interpret the findings candidly in relation to past studies and within the framework of different mechanistic interpretations.
Collapse
Affiliation(s)
- Xinzhu Yu
- Department of Physiology
- Department of Molecular and Integrative Physiology, Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801-3704
| | | | - Baljit S Khakh
- Department of Physiology
- Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095-1751
| |
Collapse
|
136
|
Schlegel P, Bates AS, Stürner T, Jagannathan SR, Drummond N, Hsu J, Serratosa Capdevila L, Javier A, Marin EC, Barth-Maron A, Tamimi IFM, Li F, Rubin GM, Plaza SM, Costa M, Jefferis GSXE. Information flow, cell types and stereotypy in a full olfactory connectome. eLife 2021; 10:e66018. [PMID: 34032214 PMCID: PMC8298098 DOI: 10.7554/elife.66018] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 05/24/2021] [Indexed: 12/19/2022] Open
Abstract
The hemibrain connectome provides large-scale connectivity and morphology information for the majority of the central brain of Drosophila melanogaster. Using this data set, we provide a complete description of the Drosophila olfactory system, covering all first, second and lateral horn-associated third-order neurons. We develop a generally applicable strategy to extract information flow and layered organisation from connectome graphs, mapping olfactory input to descending interneurons. This identifies a range of motifs including highly lateralised circuits in the antennal lobe and patterns of convergence downstream of the mushroom body and lateral horn. Leveraging a second data set we provide a first quantitative assessment of inter- versus intra-individual stereotypy. Comparing neurons across two brains (three hemispheres) reveals striking similarity in neuronal morphology across brains. Connectivity correlates with morphology and neurons of the same morphological type show similar connection variability within the same brain as across two brains.
Collapse
Affiliation(s)
- Philipp Schlegel
- Neurobiology Division, MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| | | | - Tomke Stürner
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| | | | - Nikolas Drummond
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| | - Joseph Hsu
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | | | - Alexandre Javier
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| | - Elizabeth C Marin
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| | - Asa Barth-Maron
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Imaan FM Tamimi
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| | - Feng Li
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Gerald M Rubin
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Stephen M Plaza
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Marta Costa
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| | - Gregory S X E Jefferis
- Neurobiology Division, MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
137
|
Sousa de Almeida M, Susnik E, Drasler B, Taladriz-Blanco P, Petri-Fink A, Rothen-Rutishauser B. Understanding nanoparticle endocytosis to improve targeting strategies in nanomedicine. Chem Soc Rev 2021; 50:5397-5434. [PMID: 33666625 PMCID: PMC8111542 DOI: 10.1039/d0cs01127d] [Citation(s) in RCA: 417] [Impact Index Per Article: 104.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Indexed: 12/19/2022]
Abstract
Nanoparticles (NPs) have attracted considerable attention in various fields, such as cosmetics, the food industry, material design, and nanomedicine. In particular, the fast-moving field of nanomedicine takes advantage of features of NPs for the detection and treatment of different types of cancer, fibrosis, inflammation, arthritis as well as neurodegenerative and gastrointestinal diseases. To this end, a detailed understanding of the NP uptake mechanisms by cells and intracellular localization is essential for safe and efficient therapeutic applications. In the first part of this review, we describe the several endocytic pathways involved in the internalization of NPs and we discuss the impact of the physicochemical properties of NPs on this process. In addition, the potential challenges of using various inhibitors, endocytic markers and genetic approaches to study endocytosis are addressed along with the principal (semi) quantification methods of NP uptake. The second part focuses on synthetic and bio-inspired substances, which can stimulate or decrease the cellular uptake of NPs. This approach could be interesting in nanomedicine where a high accumulation of drugs in the target cells is desirable and clearance by immune cells is to be avoided. This review contributes to an improved understanding of NP endocytic pathways and reveals potential substances, which can be used in nanomedicine to improve NP delivery.
Collapse
Affiliation(s)
- Mauro Sousa de Almeida
- Adolphe Merkle Institute, University of FribourgChemin des Verdiers 41700 FribourgSwitzerland
| | - Eva Susnik
- Adolphe Merkle Institute, University of FribourgChemin des Verdiers 41700 FribourgSwitzerland
| | - Barbara Drasler
- Adolphe Merkle Institute, University of FribourgChemin des Verdiers 41700 FribourgSwitzerland
| | | | - Alke Petri-Fink
- Adolphe Merkle Institute, University of FribourgChemin des Verdiers 41700 FribourgSwitzerland
- Department of Chemistry, University of FribourgChemin du Musée 91700 FribourgSwitzerland
| | | |
Collapse
|
138
|
Lu Y, Wang F, Wang H, Bastians P, Hua Y. Large-scale 3D imaging of mouse cochlea using serial block-face scanning electron microscopy. STAR Protoc 2021; 2:100515. [PMID: 34027478 PMCID: PMC8121772 DOI: 10.1016/j.xpro.2021.100515] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
This protocol describes how to prepare intact mouse cochleae for serial block-face scanning electron microscopy (SBEM). The detailed workflow includes cochlea fixation, en bloc staining, resin embedding, X-ray microscopy-guided trimming and SBEM data acquisition. This protocol allows large-scale, nanometer-resolution three-dimensional imaging of subcellular structures in a targeted tonotopic range of the cochlea and enables fast volumetric scan at submicron resolution using a compact X-ray microscope. For complete details on the use and execution of this protocol, please refer to Hua et al. (2021).
Collapse
Affiliation(s)
- Yan Lu
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fangfang Wang
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haoyu Wang
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | - Yunfeng Hua
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
139
|
Dahlberg PD, Moerner WE. Cryogenic Super-Resolution Fluorescence and Electron Microscopy Correlated at the Nanoscale. Annu Rev Phys Chem 2021; 72:253-278. [PMID: 33441030 PMCID: PMC8877847 DOI: 10.1146/annurev-physchem-090319-051546] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
We review the emerging method of super-resolved cryogenic correlative light and electron microscopy (srCryoCLEM). Super-resolution (SR) fluorescence microscopy and cryogenic electron tomography (CET) are both powerful techniques for observing subcellular organization, but each approach has unique limitations. The combination of the two brings the single-molecule sensitivity and specificity of SR to the detailed cellular context and molecular scale resolution of CET. The resulting correlative data is more informative than the sum of its parts. The correlative images can be used to pinpoint the positions of fluorescently labeled proteins in the high-resolution context of CET with nanometer-scale precision and/or to identify proteins in electron-dense structures. The execution of srCryoCLEM is challenging and the approach is best described as a method that is still in its infancy with numerous technical challenges. In this review, we describe state-of-the-art srCryoCLEM experiments, discuss the most pressing challenges, and give a brief outlook on future applications.
Collapse
Affiliation(s)
- Peter D Dahlberg
- Department of Chemistry, Stanford University, Stanford, California 94305, USA;
| | - W E Moerner
- Department of Chemistry, Stanford University, Stanford, California 94305, USA;
| |
Collapse
|
140
|
Talapka P, Kocsis Z, Marsi LD, Szarvas VE, Kisvárday ZF. Application of the Mirror Technique for Three-Dimensional Electron Microscopy of Neurochemically Identified GABA-ergic Dendrites. Front Neuroanat 2021; 15:652422. [PMID: 33958990 PMCID: PMC8093522 DOI: 10.3389/fnana.2021.652422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/25/2021] [Indexed: 11/15/2022] Open
Abstract
In the nervous system synaptic input arrives chiefly on dendrites and their type and distribution have been assumed pivotal in signal integration. We have developed an immunohistochemistry (IH)-correlated electron microscopy (EM) method – the “mirror” technique – by which synaptic input to entire dendrites of neurochemically identified interneurons (INs) can be mapped due preserving high-fidelity tissue ultrastructure. Hence, this approach allows quantitative assessment of morphometric parameters of synaptic inputs along the whole length of dendrites originating from the parent soma. The method exploits the fact that adjoining sections have truncated or cut cell bodies which appear on the common surfaces in a mirror fashion. In one of the sections the histochemical marker of the GABAergic subtype, calbindin was revealed in cell bodies whereas in the other section the remaining part of the very same cell bodies were subjected to serial section EM to trace and reconstruct the synaptology of entire dendrites. Here, we provide exemplary data on the synaptic coverage of two dendrites belonging to the same calbindin-D28K immunopositive IN and determine the spatial distribution of asymmetric and symmetric synapses, surface area and volume of the presynaptic boutons, morphometric parameters of synaptic vesicles, and area extent of the active zones.
Collapse
Affiliation(s)
- Petra Talapka
- MTA-DE Neuroscience Research Group, University of Debrecen, Debrecen, Hungary.,Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zsolt Kocsis
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Lívia Diána Marsi
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Vera Etelka Szarvas
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltán F Kisvárday
- MTA-DE Neuroscience Research Group, University of Debrecen, Debrecen, Hungary.,Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
141
|
Weigel AV, Chang CL, Shtengel G, Xu CS, Hoffman DP, Freeman M, Iyer N, Aaron J, Khuon S, Bogovic J, Qiu W, Hess HF, Lippincott-Schwartz J. ER-to-Golgi protein delivery through an interwoven, tubular network extending from ER. Cell 2021; 184:2412-2429.e16. [PMID: 33852913 DOI: 10.1016/j.cell.2021.03.035] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 12/23/2020] [Accepted: 03/16/2021] [Indexed: 12/15/2022]
Abstract
Cellular versatility depends on accurate trafficking of diverse proteins to their organellar destinations. For the secretory pathway (followed by approximately 30% of all proteins), the physical nature of the vessel conducting the first portage (endoplasmic reticulum [ER] to Golgi apparatus) is unclear. We provide a dynamic 3D view of early secretory compartments in mammalian cells with isotropic resolution and precise protein localization using whole-cell, focused ion beam scanning electron microscopy with cryo-structured illumination microscopy and live-cell synchronized cargo release approaches. Rather than vesicles alone, the ER spawns an elaborate, interwoven tubular network of contiguous lipid bilayers (ER exit site) for protein export. This receptacle is capable of extending microns along microtubules while still connected to the ER by a thin neck. COPII localizes to this neck region and dynamically regulates cargo entry from the ER, while COPI acts more distally, escorting the detached, accelerating tubular entity on its way to joining the Golgi apparatus through microtubule-directed movement.
Collapse
Affiliation(s)
- Aubrey V Weigel
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Chi-Lun Chang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Gleb Shtengel
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - C Shan Xu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | | | - Melanie Freeman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA; Advanced Bioimaging Center, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Nirmala Iyer
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Jesse Aaron
- Advanced Imaging Center, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Satya Khuon
- Advanced Imaging Center, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - John Bogovic
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Wei Qiu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Harald F Hess
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | | |
Collapse
|
142
|
Baena V, Conrad R, Friday P, Fitzgerald E, Kim T, Bernbaum J, Berensmann H, Harned A, Nagashima K, Narayan K. FIB-SEM as a Volume Electron Microscopy Approach to Study Cellular Architectures in SARS-CoV-2 and Other Viral Infections: A Practical Primer for a Virologist. Viruses 2021; 13:v13040611. [PMID: 33918371 PMCID: PMC8066521 DOI: 10.3390/v13040611] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 01/06/2023] Open
Abstract
The visualization of cellular ultrastructure over a wide range of volumes is becoming possible by increasingly powerful techniques grouped under the rubric “volume electron microscopy” or volume EM (vEM). Focused ion beam scanning electron microscopy (FIB-SEM) occupies a “Goldilocks zone” in vEM: iterative and automated cycles of milling and imaging allow the interrogation of microns-thick specimens in 3-D at resolutions of tens of nanometers or less. This bestows on FIB-SEM the unique ability to aid the accurate and precise study of architectures of virus-cell interactions. Here we give the virologist or cell biologist a primer on FIB-SEM imaging in the context of vEM and discuss practical aspects of a room temperature FIB-SEM experiment. In an in vitro study of SARS-CoV-2 infection, we show that accurate quantitation of viral densities and surface curvatures enabled by FIB-SEM imaging reveals SARS-CoV-2 viruses preferentially located at areas of plasma membrane that have positive mean curvatures.
Collapse
Affiliation(s)
- Valentina Baena
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (V.B.); (R.C.); (P.F.); (E.F.); (T.K.); (H.B.); (A.H.); (K.N.)
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Ryan Conrad
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (V.B.); (R.C.); (P.F.); (E.F.); (T.K.); (H.B.); (A.H.); (K.N.)
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Patrick Friday
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (V.B.); (R.C.); (P.F.); (E.F.); (T.K.); (H.B.); (A.H.); (K.N.)
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Ella Fitzgerald
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (V.B.); (R.C.); (P.F.); (E.F.); (T.K.); (H.B.); (A.H.); (K.N.)
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Taeeun Kim
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (V.B.); (R.C.); (P.F.); (E.F.); (T.K.); (H.B.); (A.H.); (K.N.)
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - John Bernbaum
- National Institute of Allergy and Infectious Diseases, Division of Clinical Research, Integrated Research Facility at Fort Detrick (IRF-Frederick), Frederick, MD 21702, USA;
| | - Heather Berensmann
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (V.B.); (R.C.); (P.F.); (E.F.); (T.K.); (H.B.); (A.H.); (K.N.)
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Adam Harned
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (V.B.); (R.C.); (P.F.); (E.F.); (T.K.); (H.B.); (A.H.); (K.N.)
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Kunio Nagashima
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (V.B.); (R.C.); (P.F.); (E.F.); (T.K.); (H.B.); (A.H.); (K.N.)
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Kedar Narayan
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (V.B.); (R.C.); (P.F.); (E.F.); (T.K.); (H.B.); (A.H.); (K.N.)
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
- Correspondence:
| |
Collapse
|
143
|
Du M, Di Z(W, Gürsoy D, Xian RP, Kozorovitskiy Y, Jacobsen C. Upscaling X-ray nanoimaging to macroscopic specimens. J Appl Crystallogr 2021; 54:386-401. [PMID: 33953650 PMCID: PMC8056767 DOI: 10.1107/s1600576721000194] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 01/06/2021] [Indexed: 11/10/2022] Open
Abstract
Upscaling X-ray nanoimaging to macroscopic specimens has the potential for providing insights across multiple length scales, but its feasibility has long been an open question. By combining the imaging requirements and existing proof-of-principle examples in large-specimen preparation, data acquisition and reconstruction algorithms, the authors provide imaging time estimates for howX-ray nanoimaging can be scaled to macroscopic specimens. To arrive at this estimate, a phase contrast imaging model that includes plural scattering effects is used to calculate the required exposure and corresponding radiation dose. The coherent X-ray flux anticipated from upcoming diffraction-limited light sources is then considered. This imaging time estimation is in particular applied to the case of the connectomes of whole mouse brains. To image the connectome of the whole mouse brain, electron microscopy connectomics might require years, whereas optimized X-ray microscopy connectomics could reduce this to one week. Furthermore, this analysis points to challenges that need to be overcome (such as increased X-ray detector frame rate) and opportunities that advances in artificial-intelligence-based 'smart' scanning might provide. While the technical advances required are daunting, it is shown that X-ray microscopy is indeed potentially applicable to nanoimaging of millimetre- or even centimetre-size specimens.
Collapse
Affiliation(s)
- Ming Du
- Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Zichao (Wendy) Di
- Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
- Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Doǧa Gürsoy
- Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
- Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, IL 60208, USA
| | - R. Patrick Xian
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Yevgenia Kozorovitskiy
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
| | - Chris Jacobsen
- Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
- Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
144
|
Fang L, Monroe F, Novak SW, Kirk L, Schiavon CR, Yu SB, Zhang T, Wu M, Kastner K, Latif AA, Lin Z, Shaw A, Kubota Y, Mendenhall J, Zhang Z, Pekkurnaz G, Harris K, Howard J, Manor U. Deep learning-based point-scanning super-resolution imaging. Nat Methods 2021; 18:406-416. [PMID: 33686300 PMCID: PMC8035334 DOI: 10.1038/s41592-021-01080-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/28/2021] [Indexed: 01/28/2023]
Abstract
Point-scanning imaging systems are among the most widely used tools for high-resolution cellular and tissue imaging, benefiting from arbitrarily defined pixel sizes. The resolution, speed, sample preservation and signal-to-noise ratio (SNR) of point-scanning systems are difficult to optimize simultaneously. We show these limitations can be mitigated via the use of deep learning-based supersampling of undersampled images acquired on a point-scanning system, which we term point-scanning super-resolution (PSSR) imaging. We designed a 'crappifier' that computationally degrades high SNR, high-pixel resolution ground truth images to simulate low SNR, low-resolution counterparts for training PSSR models that can restore real-world undersampled images. For high spatiotemporal resolution fluorescence time-lapse data, we developed a 'multi-frame' PSSR approach that uses information in adjacent frames to improve model predictions. PSSR facilitates point-scanning image acquisition with otherwise unattainable resolution, speed and sensitivity. All the training data, models and code for PSSR are publicly available at 3DEM.org.
Collapse
Affiliation(s)
- Linjing Fang
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Fred Monroe
- Wicklow AI Medical Research Initiative, San Francisco, CA, USA
| | - Sammy Weiser Novak
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Lyndsey Kirk
- Department of Neuroscience, Center for Learning and Memory, Institute for Neuroscience, University of Texas at Austin, Austin, TX, USA
| | - Cara R Schiavon
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Seungyoon B Yu
- Neurobiology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Tong Zhang
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Melissa Wu
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Kyle Kastner
- Montreal Institute for Learning Algorithms, Université de Montréal, Montréal, Canada
| | - Alaa Abdel Latif
- Fast.AI, University of San Francisco Data Institute, San Francisco, CA, USA
| | - Zijun Lin
- Fast.AI, University of San Francisco Data Institute, San Francisco, CA, USA
| | - Andrew Shaw
- Fast.AI, University of San Francisco Data Institute, San Francisco, CA, USA
| | - Yoshiyuki Kubota
- Division of Cerebral Circuitry, National Institute for Physiological Sciences, Okazaki, Japan
| | - John Mendenhall
- Department of Neuroscience, Center for Learning and Memory, Institute for Neuroscience, University of Texas at Austin, Austin, TX, USA
| | - Zhao Zhang
- Texas Advanced Computing Center, University of Texas at Austin, Austin, TX, USA
| | - Gulcin Pekkurnaz
- Neurobiology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Kristen Harris
- Department of Neuroscience, Center for Learning and Memory, Institute for Neuroscience, University of Texas at Austin, Austin, TX, USA
| | - Jeremy Howard
- Fast.AI, University of San Francisco Data Institute, San Francisco, CA, USA
| | - Uri Manor
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
145
|
Yuan H, de Moortèle BV, Epicier T. Accurate post-mortem alignment for Focused Ion Beam and Scanning Electron Microscopy (FIB-SEM) tomography. Ultramicroscopy 2021; 228:113265. [PMID: 34265659 DOI: 10.1016/j.ultramic.2021.113265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 10/21/2022]
Abstract
Drifts in the three directions (X, Y, Z) during the FIB-SEM slice-and-view tomography is an important issue in 3D-FIB experiments which may induce significant inaccuracies in the subsequent volume reconstruction and further quantification of morphological volume parameters of the sample microstructure. Cross-correlation is frequently applied directly to the cross-section image series for aligning FIB sliced images. This solution is hazardous and can be flawed as it has been easily demonstrated by a dedicated test experiment. As a result, a novel aligning procedure based on the quantification of the topography of the sample surface has been developed. This new approach will be compared to the common cross-correlation methods, as well as another approach consisting in using an artificial reference marker fabricated during the FIB procedure. All these methods will then be discussed in terms of accuracy and liability.
Collapse
Affiliation(s)
- H Yuan
- Université de Lyon, INSA-Lyon, Université Claude Bernard Lyon1, MATEIS, umr CNRS 5510, 69621 Villeurbanne Cedex, France; Université de Lyon, ENS-Lyon, LGLTPE, umr CNRS 5276, 69364 Lyon 07, France.
| | - B Van de Moortèle
- Université de Lyon, ENS-Lyon, LGLTPE, umr CNRS 5276, 69364 Lyon 07, France
| | - T Epicier
- Université de Lyon, INSA-Lyon, Université Claude Bernard Lyon1, MATEIS, umr CNRS 5510, 69621 Villeurbanne Cedex, France; Université de Lyon, Université Claude Bernard Lyon1, IRCELYON, umr CNRS 5256, 69626 Villeurbanne Cedex, France.
| |
Collapse
|
146
|
Lane R, Vos Y, Wolters AHG, Kessel LV, Chen SE, Liv N, Klumperman J, Giepmans BNG, Hoogenboom JP. Optimization of negative stage bias potential for faster imaging in large-scale electron microscopy. JOURNAL OF STRUCTURAL BIOLOGY-X 2021; 5:100046. [PMID: 33763642 PMCID: PMC7973379 DOI: 10.1016/j.yjsbx.2021.100046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/17/2020] [Accepted: 01/27/2021] [Indexed: 11/24/2022]
Abstract
The use of a negative bias potential was empirically optimized for tissue imaging with SEM. Optimized bias potential leads to a factor 20 increase in imaging speeds as well as an order of magnitude improvement to SNR. SNR increase results from a combination of BSE acceleration and detector response. Similar increases to SNR can be obtained when a magnetic immersion field is combined with a negative bias potential. Stage bias can be applied within an integrated fluorescence and electron microscope allowing for fast correlative imaging of tissue sections.
Large-scale electron microscopy (EM) allows analysis of both tissues and macromolecules in a semi-automated manner, but acquisition rate forms a bottleneck. We reasoned that a negative bias potential may be used to enhance signal collection, allowing shorter dwell times and thus increasing imaging speed. Negative bias potential has previously been used to tune penetration depth in block-face imaging. However, optimization of negative bias potential for application in thin section imaging will be needed prior to routine use and application in large-scale EM. Here, we present negative bias potential optimized through a combination of simulations and empirical measurements. We find that the use of a negative bias potential generally results in improvement of image quality and signal-to-noise ratio (SNR). The extent of these improvements depends on the presence and strength of a magnetic immersion field. Maintaining other imaging conditions and aiming for the same image quality and SNR, the use of a negative stage bias can allow for a 20-fold decrease in dwell time, thus reducing the time for a week long acquisition to less than 8 h. We further show that negative bias potential can be applied in an integrated correlative light electron microscopy (CLEM) application, allowing fast acquisition of a high precision overlaid LM-EM dataset. Application of negative stage bias potential will thus help to solve the current bottleneck of image acquisition of large fields of view at high resolution in large-scale microscopy.
Collapse
Affiliation(s)
- Ryan Lane
- Imaging Physics, Delft University of Technology, The Netherlands
| | - Yoram Vos
- Imaging Physics, Delft University of Technology, The Netherlands
| | - Anouk H G Wolters
- Department of Biomedical Sciences of Cells and Systems, University Groningen, University Medical Center Groningen, The Netherlands
| | - Luc van Kessel
- Imaging Physics, Delft University of Technology, The Netherlands
| | - S Elisa Chen
- Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, The Netherlands
| | - Nalan Liv
- Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, The Netherlands
| | - Judith Klumperman
- Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, The Netherlands
| | - Ben N G Giepmans
- Department of Biomedical Sciences of Cells and Systems, University Groningen, University Medical Center Groningen, The Netherlands
| | | |
Collapse
|
147
|
Cortese M, Laketa V. Advanced microscopy technologies enable rapid response to SARS-CoV-2 pandemic. Cell Microbiol 2021; 23:e13319. [PMID: 33595881 PMCID: PMC7995000 DOI: 10.1111/cmi.13319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/26/2021] [Accepted: 01/30/2021] [Indexed: 01/18/2023]
Abstract
The ongoing SARS‐CoV‐2 pandemic with over 80 million infections and more than a million deaths worldwide represents the worst global health crisis of the 21th century. Beyond the health crisis, the disruptions caused by the COVID‐19 pandemic have serious global socio‐economic consequences. It has also placed a significant pressure on the scientific community to understand the virus and its pathophysiology and rapidly provide anti‐viral treatments and procedures in order to help the society and stop the virus spread. Here, we outline how advanced microscopy technologies such as high‐throughput microscopy and electron microscopy played a major role in rapid response against SARS‐CoV‐2. General applicability of developed microscopy technologies makes them uniquely positioned to act as the first line of defence against any emerging infection in the future.
Collapse
Affiliation(s)
- Mirko Cortese
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Vibor Laketa
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany.,German Center for Infection Research, Heidelberg, Germany
| |
Collapse
|
148
|
Polilov AA, Makarova AA, Pang S, Shan Xu C, Hess H. Protocol for preparation of heterogeneous biological samples for 3D electron microscopy: a case study for insects. Sci Rep 2021; 11:4717. [PMID: 33633143 PMCID: PMC7907262 DOI: 10.1038/s41598-021-83936-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 02/08/2021] [Indexed: 11/25/2022] Open
Abstract
Modern morphological and structural studies are coming to a new level by incorporating the latest methods of three-dimensional electron microscopy (3D-EM). One of the key problems for the wide usage of these methods is posed by difficulties with sample preparation, since the methods work poorly with heterogeneous (consisting of tissues different in structure and in chemical composition) samples and require expensive equipment and usually much time. We have developed a simple protocol allows preparing heterogeneous biological samples suitable for 3D-EM in a laboratory that has a standard supply of equipment and reagents for electron microscopy. This protocol, combined with focused ion-beam scanning electron microscopy, makes it possible to study 3D ultrastructure of complex biological samples, e.g., whole insect heads, over their entire volume at the cellular and subcellular levels. The protocol provides new opportunities for many areas of study, including connectomics.
Collapse
Affiliation(s)
- Alexey A Polilov
- Department of Entomology, Faculty of Biology, Moscow State University, Moscow, Russia.
| | - Anastasia A Makarova
- Department of Entomology, Faculty of Biology, Moscow State University, Moscow, Russia
| | - Song Pang
- Janelia Research Campus of the Howard Hughes Medical Institute, Ashburn, USA
| | - C Shan Xu
- Janelia Research Campus of the Howard Hughes Medical Institute, Ashburn, USA
| | - Harald Hess
- Janelia Research Campus of the Howard Hughes Medical Institute, Ashburn, USA
| |
Collapse
|
149
|
Wang XQ, Guo JS, Li DT, Yu Y, Hagoort J, Moussian B, Zhang CX. Three-dimensional reconstruction of a whole insect reveals its phloem sap-sucking mechanism at nano-resolution. eLife 2021; 10:62875. [PMID: 33620311 PMCID: PMC8016479 DOI: 10.7554/elife.62875] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 02/22/2021] [Indexed: 01/04/2023] Open
Abstract
Using serial block-face scanning electron microscopy, we report on the internal 3D structures of the brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae) at nanometer resolution for the first time. Within the reconstructed organs and tissues, we found many novel and fascinating internal structures in the planthopper such as naturally occurring three four-way rings connecting adjacent spiracles to facilitate efficient gas exchange, and fungal endosymbionts in a single huge insect cell occupying 22% of the abdomen volume to enable the insect to live on plant sap. To understand the muscle and stylet movement during phloem sap-sucking, the cephalic skeleton and muscles were reconstructed in feeding nymphs. The results revealed an unexpected contraction of the protractors of the stylets and suggested a novel feeding model for the phloem sap-sucking. Since the 19th century, scientists have been investigating how the organs of insects are shaped and arranged. However, classic microscopy methods have struggled to image these small, delicate structures. Understanding how the organs of insects are configured could help to identify new methods for controlling pests, such as chemicals that target the mouthparts that some insects use to feed on plants. Most insects that feed on the sap of plants suck out the nutrient via their stylet bundle – a thin, straw-like structure surrounded by a sheath called the labium. As well as drying out the plant and damaging its tissues, the stylet bundle also allows the insect to transmit viruses that cause further harm. To investigate these mouthparts in more detail, Wang, Guo et al. used a method called SBF-SEM to determine the three-dimensional structure of one of the most destructive pests of rice crops, the brown planthopper. In this technique, a picture of the planthopper was taken every time a thin slice of its body was removed. This continuous slicing and re-imaging generated thousands of images that were compiled into a three-dimensional model of the brown planthopper’s whole body and internal organs. Previously unknown features emerged from the reconstruction, including a huge cell in the planthopper’s abdomen which is full of fungi that provide the nutrients absent in plants. Next, Wang, Guo et al. used this technique to see how the muscles in the labium and surrounding the stylet move by imaging planthoppers that were frozen at different stages of the feeding process. This revealed that when brown planthoppers bow their heads to eat, the labium compresses and pushes out the stylet, allowing it to pierce deeper into the plant. This is the first time that the body of such a small insect has been reconstructed three-dimensionally using SBF-SEM. Furthermore, these findings help explain how brown planthoppers and other sap-feeding insects insert their stylet and damage plants, potentially providing a stepping stone towards identifying new strategies to stop these pests from destroying millions of crops.
Collapse
Affiliation(s)
- Xin-Qiu Wang
- Institute of Insect Science, Zhejiang University, Hangzhou, China
| | - Jian-Sheng Guo
- Department of Pathology of Sir Run Run Shaw Hospital, and Center of Cryo-Electron Microscopy, School of Medicine, Zhejiang University, Hangzhou, China
| | - Dan-Ting Li
- Institute of Insect Science, Zhejiang University, Hangzhou, China.,State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Yang Yu
- Carl Zeiss (Shanghai) Co., Ltd.60 Meiyue Road, China (Shanghai) Pilot Free Trade Zone, Shanghai, China
| | - Jaco Hagoort
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Bernard Moussian
- Université Côte d'Azur, CNRS, Université Côte d'Azur, Institute of Biology Valrose, Parc Valrose, Inserm, France
| | - Chuan-Xi Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| |
Collapse
|
150
|
Morphological bases of phytoplankton energy management and physiological responses unveiled by 3D subcellular imaging. Nat Commun 2021; 12:1049. [PMID: 33594064 PMCID: PMC7886885 DOI: 10.1038/s41467-021-21314-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 01/12/2021] [Indexed: 01/31/2023] Open
Abstract
Eukaryotic phytoplankton have a small global biomass but play major roles in primary production and climate. Despite improved understanding of phytoplankton diversity and evolution, we largely ignore the cellular bases of their environmental plasticity. By comparative 3D morphometric analysis across seven distant phytoplankton taxa, we observe constant volume occupancy by the main organelles and preserved volumetric ratios between plastids and mitochondria. We hypothesise that phytoplankton subcellular topology is modulated by energy-management constraints. Consistent with this, shifting the diatom Phaeodactylum from low to high light enhances photosynthesis and respiration, increases cell-volume occupancy by mitochondria and the plastid CO2-fixing pyrenoid, and boosts plastid-mitochondria contacts. Changes in organelle architectures and interactions also accompany Nannochloropsis acclimation to different trophic lifestyles, along with respiratory and photosynthetic responses. By revealing evolutionarily-conserved topologies of energy-managing organelles, and their role in phytoplankton acclimation, this work deciphers phytoplankton responses at subcellular scales.
Collapse
|