1451
|
Filarial Abundant Larval Transcript Protein ALT-2: An Immunomodulatory Therapeutic Agent for Type 1 Diabetes. Indian J Clin Biochem 2016; 32:45-52. [PMID: 28149012 DOI: 10.1007/s12291-016-0572-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 04/27/2016] [Indexed: 12/28/2022]
Abstract
Type 1 diabetes (T1D) that accounts for about 5-10 % of all diabetes cases results from the autoimmune destruction of the insulin-producing beta cells in the pancreas. It is characterized by severe inflammatory reaction mediated by pronounced T helper type-1 response. Parasitic infections having the ability to skew the host immune responses towards type-2 type as a part of their defense mechanism are able to induce protection against autoimmune diseases like T1D. Hence, the present study is undertaken to explore a recombinant abundant larval transcript protein of the human lymphatic filarial parasite Brugia malayi (rBmALT-2), a known anti-inflammatory molecule for its therapeutic effect on streptozotocin (STZ)-induced T1D in mice. The diabetic mice on treatment with rBmALT-2 showed a significant (p < 0.0005) decrease in their fasting blood glucose levels. By the end of the second week after the initiation of treatment with the rBmALT-2, 28 % of the diabetic mice became normal and none of them were diabetic by the end of 5th week. The anti-diabetic effect of rBmALT-2 significantly correlated with the concomitant redressal of the pancreatic histopathological damage caused by STZ assault (rho = 0.87; p < 0.0005). The sera of rBmALT-2 treated diabetic mice had increased levels of IgG1 antibodies associated with decreased IgG2a antibodies against the principal autoantigen insulin. The splenocyte proliferative response and the cytokine release in the treated mice showed marked bias against inflammation skewing the immune response to Th-2 type. From this study, it can be envisaged that that filarial proteins like rBmALT-2 with effective immunomodulatory activity and anti-diabetic effect are promising alternative therapeutic agents for T1D.
Collapse
|
1452
|
Sankoda A, Takahashi K, Matsuoka T. Clinical characteristics of patients aged 65 and older with newly developed type 1 diabetes: An analysis of elderly patients at our hospital. Nihon Ronen Igakkai Zasshi 2016; 53:143-51. [PMID: 27250221 DOI: 10.3143/geriatrics.53.143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
AIM We herein investigated the clinical features of elderly patients with newly developed type 1 diabetes with respect to onset age, frequency of islet-associated antibodies, and other clinical markers. METHODS One hundred and ninety-nine patients aged 65 and older with new-onset diabetes, who were admitted to our hospital between July 2000 and June 2013, were classified into 4 types of diabetes. In addition, 85 patients with newly diagnosed type 1A diabetes among all age ranges admitted during the same period were divided into two groups: a younger group (less than 65 years, n=71) and an elderly group (65 years and older, n=14). Clinical features including mode of onset, frequency of islet-associated antibodies, and serum C-peptide (CPR) levels were compared between these groups. The elderly group was further divided into two age groups (less than 75 years, n=7; 75 years and older, n=7), and the frequency of autoantibodies was compared. RESULTS The patients (n=199) were classified into type 1 (n=16, 8%), type 2 (n=155, 78%), pancreatic (n=22, 11%), and other type (n=6, 3%) diabetes. Between the younger and elderly groups with type 1 diabetes, no significant difference in the CPR levels, frequency of autoantibodies, or other clinical features were observed. Positivity for IA-2 antibody was higher in the younger group (53.5%) than in the elderly group (35.7%), however, it was also considerably high (57.1%) in the oldest age group (75 years and older). CONCLUSIONS Type 1 diabetes may develop in the elderly, and an IA-2 antibody test may be useful for diagnosing type 1 diabetes in older patients.
Collapse
Affiliation(s)
- Akiko Sankoda
- Department of Diabetic Medicine, Kurashiki Central Hospital
| | | | | |
Collapse
|
1453
|
Chou IC, Wang CH, Lin WD, Tsai FJ, Lin CC, Kao CH. Risk of epilepsy in type 1 diabetes mellitus: a population-based cohort study. Diabetologia 2016; 59:1196-203. [PMID: 27030312 DOI: 10.1007/s00125-016-3929-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 02/26/2016] [Indexed: 12/16/2022]
Abstract
AIMS/HYPOTHESIS Type 1 diabetes mellitus is a major public health problem of increasing global concern, with potential neurological complications. A possible association exists between type 1 diabetes and subsequent epilepsy. This study evaluated the relationship between type 1 diabetes and epilepsy in Taiwan. METHODS Claims data from the Taiwan National Health Insurance Research Database were used to conduct retrospective cohort analyses. The study cohort contained 2568 patients with type 1 diabetes, each of whom was frequency-matched by sex, urbanisation of residence area and index year with ten patients without type 1 diabetes. Cox proportional hazard regression analysis was conducted to estimate the effects of type 1 diabetes on epilepsy risk. RESULTS In patients with type 1 diabetes, the risk of developing epilepsy was significantly higher than that in patients without type 1 diabetes (p < 0.0001 for logrank test). After adjustment for potential confounders, the type 1 diabetes cohort was 2.84 times as likely to develop epilepsy than the control cohort was (HR 2.84 [95% CI 2.11, 3.83]). CONCLUSIONS/INTERPRETATION Patients with type 1 diabetes are at an increased risk of developing epilepsy. Metabolic abnormalities of type 1 diabetes, such as hyperglycaemia and hypoglycaemia, may have a damaging effect on the central nervous system and be associated with significant long-term neurological sequelae. The causative factors between type 1 diabetes and the increased risk of epilepsy require further investigation.
Collapse
Affiliation(s)
- I-Ching Chou
- Department of Pediatric Neurology, China Medical University Children's Hospital, Taichung, Taiwan
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Chung-Hsing Wang
- Department of Pediatric Neurology, China Medical University Children's Hospital, Taichung, Taiwan
- Department of Pediatric Genetics, China Medical University Children's Hospital, Taichung, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
| | - Wei-De Lin
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- School of Post Baccalaureate Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Fuu-Jen Tsai
- Department of Pediatric Neurology, China Medical University Children's Hospital, Taichung, Taiwan
- Department of Pediatric Genetics, China Medical University Children's Hospital, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| | - Che-Chen Lin
- School of Medicine, China Medical University, Taichung, Taiwan
- Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan
| | - Chia-Hung Kao
- Graduate Institute of Clinical Medical Science and School of Medicine, College of Medicine, China Medical University, No. 2, Yuh-Der Road, Taichung, 40447, Taiwan.
- Department of Nuclear Medicine and PET Center, China Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
1454
|
Xu P, Krischer JP. Prognostic Classification Factors Associated With Development of Multiple Autoantibodies, Dysglycemia, and Type 1 Diabetes-A Recursive Partitioning Analysis. Diabetes Care 2016; 39:1036-44. [PMID: 27208341 PMCID: PMC4878220 DOI: 10.2337/dc15-2292] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 03/06/2016] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To define prognostic classification factors associated with the progression from single to multiple autoantibodies, multiple autoantibodies to dysglycemia, and dysglycemia to type 1 diabetes onset in relatives of individuals with type 1 diabetes. RESEARCH DESIGN AND METHODS Three distinct cohorts of subjects from the Type 1 Diabetes TrialNet Pathway to Prevention Study were investigated separately. A recursive partitioning analysis (RPA) was used to determine the risk classes. Clinical characteristics, including genotype, antibody titers, and metabolic markers were analyzed. RESULTS Age and GAD65 autoantibody (GAD65Ab) titers defined three risk classes for progression from single to multiple autoantibodies. The 5-year risk was 11% for those subjects >16 years of age with low GAD65Ab titers, 29% for those ≤16 years of age with low GAD65Ab titers, and 45% for those subjects with high GAD65Ab titers regardless of age. Progression to dysglycemia was associated with islet antigen 2 Ab titers, and 2-h glucose and fasting C-peptide levels. The 5-year risk is 28%, 39%, and 51% for respective risk classes defined by the three predictors. Progression to type 1 diabetes was associated with the number of positive autoantibodies, peak C-peptide level, HbA1c level, and age. Four risk classes defined by RPA had a 5-year risk of 9%, 33%, 62%, and 80%, respectively. CONCLUSIONS The use of RPA offered a new classification approach that could predict the timing of transitions from one preclinical stage to the next in the development of type 1 diabetes. Using these RPA classes, new prevention techniques can be tailored based on the individual prognostic risk characteristics at different preclinical stages.
Collapse
Affiliation(s)
- Ping Xu
- Health Informatics Institute, College of Medicine, University of South Florida, Tampa, FL
| | - Jeffrey P Krischer
- Health Informatics Institute, College of Medicine, University of South Florida, Tampa, FL
| |
Collapse
|
1455
|
Gupta S, Kaplan MJ. The role of neutrophils and NETosis in autoimmune and renal diseases. Nat Rev Nephrol 2016; 12:402-13. [PMID: 27241241 DOI: 10.1038/nrneph.2016.71] [Citation(s) in RCA: 326] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Systemic autoimmune diseases are a group of disorders characterized by a failure in self-tolerance to a wide variety of autoantigens. In genetically predisposed individuals, these diseases occur as a multistep process in which environmental factors have key roles in the development of abnormal innate and adaptive immune responses. Experimental evidence collected in the past decade suggests that neutrophils - the most abundant type of white blood cell - might have an important role in the pathogenesis of these diseases by contributing to the initiation and perpetuation of immune dysregulation through the formation of neutrophil extracellular traps (NETs), synthesis of proinflammatory cytokines and direct tissue damage. Many of the molecules externalized through NET formation are considered to be key autoantigens and might be involved in the generation of autoimmune responses in predisposed individuals. In several systemic autoimmune diseases, the imbalance between NET formation and degradation might increase the half-life of these lattices, which could enhance the exposure of the immune system to modified autoantigens and increase the capacity for NET-induced organ damage. This Review details the role of neutrophils and NETs in the pathophysiology of systemic autoimmune diseases, including their effect on renal damage, and discusses neutrophil targets as potential novel therapies for these diseases.
Collapse
Affiliation(s)
- Sarthak Gupta
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, Systemic Autoimmunity Branch, Intramural Research Program, National Institutes of Health, Room 6D 47C, 10 Center Drive, Bethesda, MD 20892-1930, USA
| | - Mariana J Kaplan
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, Systemic Autoimmunity Branch, Intramural Research Program, National Institutes of Health, Room 6D 47C, 10 Center Drive, Bethesda, MD 20892-1930, USA
| |
Collapse
|
1456
|
Oh KY, Kim YH, Yang EM, Kim CJ. Frequency of Diabetes and Thyroid Autoantibodies in Patients with Type 1 Diabetes and Their Siblings. Chonnam Med J 2016; 52:136-40. [PMID: 27231679 PMCID: PMC4880579 DOI: 10.4068/cmj.2016.52.2.136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 04/07/2016] [Accepted: 04/09/2016] [Indexed: 01/29/2023] Open
Abstract
The aim of this study was to better understand the frequency of autoimmune thyroid and diabetes antibodies in patients with type 1 diabetes mellitus (T1DM) compared with their siblings. Glutamic acid decarboxylase antibodies (GADA), islet cell antibodies (ICA), insulin autoantibodies (IAA), and thyroid autoantibodies were studied in all subjects. The rates of positive GADA and IAA were significantly higher in probands compared to in siblings (p<0.001) or controls (p<0.001). All pancreatic autoantibodies were not significantly different between the siblings and the healthy controls. Thyroid antiperoxidase antibody (TPOAb) and antithyroglobulin antibody (TGAb) were significantly different between the probands and the control subjects (p=0.002 and p=0.018, respectively). The rates of TPOAb and TGAb positivity in siblings were higher than in those of the controls, but there was no significant difference between the two groups. However, thyroid autoimmunity (TA) was significantly different among the groups (p=0.004). Siblings of the TA-positive probands were shown to have a greater prevalence of thyroid antibodies than did the controls (p=0.022), but siblings of the TA-negative probands did not have such a prevalence compared with the control subjects. The prevalence of pancreatic and thyroid antibodies positivity in probands was statistically significant compared with the siblings and the controls. Siblings of TA-positive probands revealed a greater prevalence of thyroid antibodies than did the controls. Therefore, the screening for TA in siblings, particularly siblings of TA-positive probands, is as important as it is in probands.
Collapse
Affiliation(s)
- Ka Young Oh
- Department of Pediatrics, Chonnam National University Medical School & Hospital, Gwangju, Korea
| | - Yun Hee Kim
- Department of Pediatrics, Chonnam National University Medical School & Hospital, Gwangju, Korea
| | - Eun Mi Yang
- Department of Pediatrics, Chonnam National University Medical School & Hospital, Gwangju, Korea
| | - Chan Jong Kim
- Department of Pediatrics, Chonnam National University Medical School & Hospital, Gwangju, Korea
| |
Collapse
|
1457
|
Pinckney A, Rigby MR, Keyes-Elstein L, Soppe CL, Nepom GT, Ehlers MR. Correlation Among Hypoglycemia, Glycemic Variability, and C-Peptide Preservation After Alefacept Therapy in Patients with Type 1 Diabetes Mellitus: Analysis of Data from the Immune Tolerance Network T1DAL Trial. Clin Ther 2016; 38:1327-1339. [PMID: 27209482 DOI: 10.1016/j.clinthera.2016.04.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 04/14/2016] [Accepted: 04/20/2016] [Indexed: 12/16/2022]
Abstract
PURPOSE In natural history studies, maintenance of higher levels of C-peptide secretion (a measure of endogenous insulin production) correlates with a lower incidence of major hypoglycemic events in patients with type 1 diabetes mellitus (T1D), but it is unclear whether this is also true for drug-induced C-peptide preservation. METHODS We analyzed hypoglycemic events and glycemic control data from the T1DAL (Inducing Remission in New-Onset T1D with Alefacept) study, a trial of alefacept in new-onset T1D, which found significant C-peptide preservation at 1 and 2 years. We performed a post hoc analysis using mixed models of the association between the meal-stimulated 4-hour C-peptide AUC (4-hour AUC) and rates of major hypoglycemia, measures of glycemic control (glycosylated hemoglobin [HbA1c]; mean glucometer readings), and variability (glucometer SDs; highest and lowest readings), and an index of partial remission (insulin dose-adjusted HbA1c[ IDAA1c]). FINDINGS Data from 49 participants (33 in the alefacept group and 16 in the placebo group) were analyzed at baseline and 12 and 24 months. We found that the 4-hour AUC at baseline and at 1 year was a significant predictor of the number of hypoglycemic events during the ensuing 12-month interval (p = 0.030). There was a strong association between the 4-hour AUC and glucometer SDs (P < 0.001), highest readings (p < 0.001), and lowest readings (p = 0.03), all measures of glycemic variability. There was a strong inverse correlation between the 4-hour AUC and 2 measures of glycemic control: HbA1c and mean glucometer readings (both p < 0.001). There was also a strong inverse correlation between the 4-hour AUC and IDAA1c values (p < 0.001), as well as a strong correlation between IDAA1c values and glucometer SDs (p < 0.001), suggesting that reduced glycemic variability is associated with a trend toward partial remission. None of these analyses found a significant difference between the alefacept and placebo groups. IMPLICATIONS Measures of glycemic variability and control, including rates of hypoglycemia, are significantly correlated with preservation of C-peptide regardless of whether this is achieved by immune intervention with alefacept or natural variability in patients with new-onset T1D. Thus, preservation of endogenous insulin production by an immunomodulatory drug may confer clinical benefits similar to those seen in patients with higher C-peptide secretion due to slow disease progression.
Collapse
Affiliation(s)
- Ashley Pinckney
- Federal Systems Division, Rho Inc, Chapel Hill, North Carolina
| | - Mark R Rigby
- Section of Pediatric Endocrinology and Diabetology, Department of Pediatrics, Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, Indiana
| | | | - Carol L Soppe
- Clinical Trials Group, Immune Tolerance Network, San Francisco, California
| | - Gerald T Nepom
- Benaroya Research Institute at Virginia Mason, Seattle, Washington
| | - Mario R Ehlers
- Clinical Trials Group, Immune Tolerance Network, San Francisco, California.
| |
Collapse
|
1458
|
Raab J, Haupt F, Scholz M, Matzke C, Warncke K, Lange K, Assfalg R, Weininger K, Wittich S, Löbner S, Beyerlein A, Nennstiel-Ratzel U, Lang M, Laub O, Dunstheimer D, Bonifacio E, Achenbach P, Winkler C, Ziegler AG. Capillary blood islet autoantibody screening for identifying pre-type 1 diabetes in the general population: design and initial results of the Fr1da study. BMJ Open 2016; 6:e011144. [PMID: 27194320 PMCID: PMC4874167 DOI: 10.1136/bmjopen-2016-011144] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/16/2016] [Accepted: 04/14/2016] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION Type 1 diabetes can be diagnosed at an early presymptomatic stage by the detection of islet autoantibodies. The Fr1da study aims to assess whether early staging of type 1 diabetes (1) is feasible at a population-based level, (2) prevents severe metabolic decompensation observed at the clinical manifestation of type 1 diabetes and (3) reduces psychological distress through preventive teaching and care. METHODS AND ANALYSIS Children aged 2-5 years in Bavaria, Germany, will be tested for the presence of multiple islet autoantibodies. Between February 2015 and December 2016, 100 000 children will be screened by primary care paediatricians. Islet autoantibodies are measured in capillary blood samples using a multiplex three-screen ELISA. Samples with ELISA results >97.5th centile are retested using reference radiobinding assays. A venous blood sample is also obtained to confirm the autoantibody status of children with at least two autoantibodies. Children with confirmed multiple islet autoantibodies are diagnosed with pre-type 1 diabetes. These children and their parents are invited to participate in an education and counselling programme at a local diabetes centre. Depression and anxiety, and burden of early diagnosis are also assessed. RESULTS Of the 1027 Bavarian paediatricians, 39.3% are participating in the study. Overall, 26 760 children have been screened between February 2015 and November 2015. Capillary blood collection was sufficient in volume for islet autoantibody detection in 99.46% of the children. The remaining 0.54% had insufficient blood volume collected. Of the 26 760 capillary samples tested, 0.39% were positive for at least two islet autoantibodies. DISCUSSION Staging for early type 1 diabetes within a public health setting appears to be feasible. The study may set new standards for the early diagnosis of type 1 diabetes and education. ETHICS DISSEMINATION The study was approved by the ethics committee of Technische Universität München (Nr. 70/14).
Collapse
Affiliation(s)
- Jennifer Raab
- Institute of Diabetes Research, Helmholtz Zentrum München, and Forschergruppe Diabetes, Klinikum rechts der Isar, Technische Universität München, Neuherberg, Germany
| | - Florian Haupt
- Institute of Diabetes Research, Helmholtz Zentrum München, and Forschergruppe Diabetes, Klinikum rechts der Isar, Technische Universität München, Neuherberg, Germany
| | - Marlon Scholz
- Institute of Diabetes Research, Helmholtz Zentrum München, and Forschergruppe Diabetes, Klinikum rechts der Isar, Technische Universität München, Neuherberg, Germany
| | - Claudia Matzke
- Institute of Diabetes Research, Helmholtz Zentrum München, and Forschergruppe Diabetes, Klinikum rechts der Isar, Technische Universität München, Neuherberg, Germany
| | - Katharina Warncke
- Institute of Diabetes Research, Helmholtz Zentrum München, and Forschergruppe Diabetes, Klinikum rechts der Isar, Technische Universität München, Neuherberg, Germany
- Forschergruppe Diabetes e.V., Neuherberg, Germany
- Department of Pediatrics, Klinikum rechts der Isar, Technische Universität München, München, Germany
| | - Karin Lange
- Department of Medical Psychology, Hannover Medical School, Hannover, Germany
| | - Robin Assfalg
- Institute of Diabetes Research, Helmholtz Zentrum München, and Forschergruppe Diabetes, Klinikum rechts der Isar, Technische Universität München, Neuherberg, Germany
| | - Katharina Weininger
- Institute of Diabetes Research, Helmholtz Zentrum München, and Forschergruppe Diabetes, Klinikum rechts der Isar, Technische Universität München, Neuherberg, Germany
| | - Susanne Wittich
- Institute of Diabetes Research, Helmholtz Zentrum München, and Forschergruppe Diabetes, Klinikum rechts der Isar, Technische Universität München, Neuherberg, Germany
| | - Stephanie Löbner
- Institute of Diabetes Research, Helmholtz Zentrum München, and Forschergruppe Diabetes, Klinikum rechts der Isar, Technische Universität München, Neuherberg, Germany
| | - Andreas Beyerlein
- Institute of Diabetes Research, Helmholtz Zentrum München, and Forschergruppe Diabetes, Klinikum rechts der Isar, Technische Universität München, Neuherberg, Germany
| | | | - Martin Lang
- Berufsverband der Kinder- und Jugendärzte e.V., Landesverband Bayern, Augsburg, Germany
| | - Otto Laub
- PaedNetz Bayern e.V., Rosenheim, Germany
| | | | - Ezio Bonifacio
- Centre for Regenerative Therapies Dresden, Faculty of Medicine, Technische Universität, Dresden, Germany
- Paul Langerhans Institute Dresden of Helmholtz Centre Munich at University Clinic Carl Gustav Carus of Technische Universität, Dresden, Germany
| | - Peter Achenbach
- Institute of Diabetes Research, Helmholtz Zentrum München, and Forschergruppe Diabetes, Klinikum rechts der Isar, Technische Universität München, Neuherberg, Germany
- Forschergruppe Diabetes e.V., Neuherberg, Germany
| | - Christiane Winkler
- Institute of Diabetes Research, Helmholtz Zentrum München, and Forschergruppe Diabetes, Klinikum rechts der Isar, Technische Universität München, Neuherberg, Germany
- Forschergruppe Diabetes e.V., Neuherberg, Germany
| | - Anette-G Ziegler
- Institute of Diabetes Research, Helmholtz Zentrum München, and Forschergruppe Diabetes, Klinikum rechts der Isar, Technische Universität München, Neuherberg, Germany
- Forschergruppe Diabetes e.V., Neuherberg, Germany
| |
Collapse
|
1459
|
Postprandial C-Peptide to Glucose Ratio as a Marker of β Cell Function: Implication for the Management of Type 2 Diabetes. Int J Mol Sci 2016; 17:ijms17050744. [PMID: 27196896 PMCID: PMC4881566 DOI: 10.3390/ijms17050744] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/07/2016] [Accepted: 05/11/2016] [Indexed: 02/07/2023] Open
Abstract
C-peptide is secreted from pancreatic β cells at an equimolar ratio to insulin. Since, in contrast to insulin, C-peptide is not extracted by the liver and other organs, C-peptide reflects endogenous insulin secretion more accurately than insulin. C-peptide is therefore used as a marker of β cell function. C-peptide has been mainly used to assess the presence of an insulin-dependent state for the diagnosis of type 1 diabetes. However, recent studies have revealed that β cell dysfunction is also a core deficit of type 2 diabetes, and residual β cell function is a key factor in achieving optimal glycemic control in patients with type 2 diabetes. This review summarizes the role of C-peptide, especially the postprandial C-peptide to glucose ratio which likely better reflects maximum β cell secretory capacity compared with the fasting ratio in assessing β cell function, and discusses perspectives on its clinical utility for managing glycemic control in patients with type 2 diabetes.
Collapse
|
1460
|
ERBB3-rs2292239 as primary type 1 diabetes association locus among non-HLA genes in Chinese. Meta Gene 2016; 9:120-3. [PMID: 27331016 PMCID: PMC4908278 DOI: 10.1016/j.mgene.2016.05.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/18/2016] [Accepted: 05/11/2016] [Indexed: 12/13/2022] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease that has strong contribution of genetic factors to its etiology. We aimed to assess the genetic association between non-HLA genes and T1D in a Chinese case-control cohort recruited from multiple centers consisting of 364 patients with T1D and 719 unrelated healthy children. We genotyped 55 single nucleotide polymorphisms (SNP) markers located in 16 non-HLA genes (VTCN1, PTPN22, CTLA4, SUMO4, CD274, IL2RA, INS, DHCR7, ERBB3, VDR, CYP27B1, CD69, CD276, PTPN2, UBASH3A, and IL2RB) using SNaPshot multiple single-base extension methods. After multivariate analysis and correction for multiple comparisons, we identified the SNP rs2292239 in ERBB3 gene were significantly associated with T1D. The frequency of the major G allele was significantly decreased in patients with T1D (68.8% in T1D vs 77.3% in controls, OR 0.65, 95% CI 0.53–0.79, P = 0.02), and the minor allele T was associated with an increased risk of T1D (OR 1.55, 95% CI 1.26–1.90, P = 0.02). Our haplotype analysis confirmed that rs2292239 was the primary T1D association locus in our current investigation. These results indicated that the ERBB3-rs2292239 was the primary T1D association locus among the investigated 55 SNPs in 16 non-HLA genes in Chinese Han population. A large scale case-control genetic association study on type 1 diabetes in Chinese investigating on-HLA genes. rs2292239 in the ERBB3 gene conferred the primary non-HLA association in Chinese type 1 diabetes. Markers in the common candidate genes, such as PTPN22, CTLA4, IL2RA, and INS, were not significantly associated with T1D in our Chinese cohort.
Collapse
Key Words
- CI, confidence interval
- DNA, deoxyribonucleic acid
- EGFR, epidermal growth factor receptor
- ERBB3
- GWAS, genome-wide association study
- Genetic association
- HLA, human leukocyte antigen
- HWE, Hardy-Weinberg equilibrium
- OR, odds ratio
- SBE, single-base extension
- SNP, single nucleotide polymorphism
- Single nucleotide polymorphism
- T1D, type 1 diabetes
- Type 1 diabetes
Collapse
|
1461
|
Chandra V, Karamitri A, Richards P, Cormier F, Ramond C, Jockers R, Armanet M, Albagli-Curiel O, Scharfmann R. Extracellular acidification stimulates GPR68 mediated IL-8 production in human pancreatic β cells. Sci Rep 2016; 6:25765. [PMID: 27166427 PMCID: PMC4863151 DOI: 10.1038/srep25765] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/22/2016] [Indexed: 02/07/2023] Open
Abstract
Acute or chronic metabolic complications such as diabetic ketoacidosis are often associated with extracellular acidification and pancreatic β-cell dysfunction. However, the mechanisms by which human β-cells sense and respond to acidic pH remain elusive. In this study, using the recently developed human β-cell line EndoC-βH2, we demonstrate that β-cells respond to extracellular acidification through GPR68, which is the predominant proton sensing receptor of human β-cells. Using gain- and loss-of-function studies, we provide evidence that the β-cell enriched transcription factor RFX6 is a major regulator of GPR68. Further, we show that acidic pH stimulates the production and secretion of the chemokine IL-8 by β-cells through NF-кB activation. Blocking of GPR68 or NF-кB activity severely attenuated acidification induced IL-8 production. Thus, we provide mechanistic insights into GPR68 mediated β-cell response to acidic microenvironment, which could be a new target to protect β-cell against acidosis induced inflammation.
Collapse
Affiliation(s)
- Vikash Chandra
- INSERM, U1016, Institut Cochin, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, 75014, France
| | - Angeliki Karamitri
- INSERM, U1016, Institut Cochin, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, 75014, France
| | - Paul Richards
- INSERM, U1016, Institut Cochin, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, 75014, France
| | - Françoise Cormier
- INSERM, U1016, Institut Cochin, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, 75014, France
| | - Cyrille Ramond
- INSERM, U1016, Institut Cochin, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, 75014, France
| | - Ralf Jockers
- INSERM, U1016, Institut Cochin, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, 75014, France
| | - Mathieu Armanet
- Cell Therapy Unit, Hôpital Saint Louis, AP-HP, and University Paris-Diderot, Paris, 75010, France
| | - Olivier Albagli-Curiel
- INSERM, U1016, Institut Cochin, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, 75014, France
| | - Raphael Scharfmann
- INSERM, U1016, Institut Cochin, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, 75014, France
| |
Collapse
|
1462
|
Current Concepts of Using Pigs as a Source for Beta-Cell Replacement Therapy of Type 1 Diabetes. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/s40610-016-0039-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
1463
|
Zafar MI, Gao F. 4-Hydroxyisoleucine: A Potential New Treatment for Type 2 Diabetes Mellitus. BioDrugs 2016; 30:255-62. [DOI: 10.1007/s40259-016-0177-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
1464
|
Sex bias in paediatric autoimmune disease – Not just about sex hormones? J Autoimmun 2016; 69:12-23. [DOI: 10.1016/j.jaut.2016.02.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 02/25/2016] [Accepted: 02/29/2016] [Indexed: 02/06/2023]
|
1465
|
Rui J, Deng S, Lebastchi J, Clark PL, Usmani-Brown S, Herold KC. Methylation of insulin DNA in response to proinflammatory cytokines during the progression of autoimmune diabetes in NOD mice. Diabetologia 2016; 59:1021-9. [PMID: 26910463 PMCID: PMC4826795 DOI: 10.1007/s00125-016-3897-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 01/21/2016] [Indexed: 12/19/2022]
Abstract
AIMS/HYPOTHESIS Type 1 diabetes is caused by the immunological destruction of pancreatic beta cells. Preclinical and clinical data indicate that there are changes in beta cell function at different stages of the disease, but the fate of beta cells has not been closely studied. We studied how immune factors affect the function and epigenetics of beta cells during disease progression and identified possible triggers of these changes. METHODS We studied FACS sorted beta cells and infiltrating lymphocytes from NOD mouse and human islets. Gene expression was measured by quantitative real-time RT-PCR (qRT-PCR) and methylation of the insulin genes was investigated by high-throughput and Sanger sequencing. To understand the role of DNA methyltransferases, Dnmt3a was knocked down with small interfering RNA (siRNA). The effects of cytokines on methylation and expression of the insulin gene were studied in humans and mice. RESULTS During disease progression in NOD mice, there was an inverse relationship between the proportion of infiltrating lymphocytes and the beta cell mass. In beta cells, methylation marks in the Ins1 and Ins2 genes changed over time. Insulin gene expression appears to be most closely regulated by the methylation of Ins1 exon 2 and Ins2 exon 1. Cytokine transcription increased with age in NOD mice, and these cytokines could induce methylation marks in the insulin DNA by inducing methyltransferases. Similar changes were induced by cytokines in human beta cells in vitro. CONCLUSIONS/INTERPRETATION Epigenetic modification of DNA by methylation in response to immunological stressors may be a mechanism that affects insulin gene expression during the progression of type 1 diabetes.
Collapse
Affiliation(s)
- Jinxiu Rui
- Department of Immunobiology, Yale University, 300 George St, New Haven, CT, 06520, USA
| | - Songyan Deng
- Department of Immunobiology, Yale University, 300 George St, New Haven, CT, 06520, USA
| | - Jasmin Lebastchi
- Department of Immunobiology, Yale University, 300 George St, New Haven, CT, 06520, USA
| | - Pamela L Clark
- Department of Immunobiology, Yale University, 300 George St, New Haven, CT, 06520, USA
| | | | - Kevan C Herold
- Department of Immunobiology, Yale University, 300 George St, New Haven, CT, 06520, USA.
- Department Internal Medicine, Yale University, New Haven, CT, USA.
| |
Collapse
|
1466
|
Abstract
Type 1 diabetes mellitus (T1DM) is caused by progressive autoimmune-mediated loss of pancreatic β-cell mass via apoptosis. The onset of T1DM depends on environmental factors that interact with predisposing genes to induce an autoimmune assault against β cells. Epidemiological, clinical and pathology studies in humans support viral infection--particularly by enteroviruses (for example, coxsackievirus)--as an environmental trigger for the development of T1DM. Many candidate genes for T1DM, such as MDA5, PTPN2 and TYK2, regulate antiviral responses in both β cells and the immune system. Cellular permissiveness to viral infection is modulated by innate antiviral responses that vary among different tissues or cell types. Some data indicate that pancreatic islet α cells trigger a more efficient antiviral response to infection with diabetogenic viruses than do β cells, and so are able to eradicate viral infections without undergoing apoptosis. This difference could account for the varying ability of islet-cell subtypes to clear viral infections and explain why chronically infected pancreatic β cells, but not α cells, are targeted by an autoimmune response and killed during the development of T1DM. These issues and attempts to target viral infection as a preventive therapy for T1DM are discussed in the present Review.
Collapse
Affiliation(s)
- Anne Op de Beeck
- Center for Diabetes Research, Universite Libre de Bruxelles, 808 Route de Lennik, CP618, B-1070, Brussels, Belgium
| | - Decio L Eizirik
- Center for Diabetes Research, Universite Libre de Bruxelles, 808 Route de Lennik, CP618, B-1070, Brussels, Belgium
- Welbio, Universite Libre de Bruxelles, 808 Route de Lennik, CP618, B-1070, Brussels, Belgium
| |
Collapse
|
1467
|
Morgan N, Richardson S. Changing perspectives on the progression of type 1 diabetes. PRACTICAL DIABETES 2016. [DOI: 10.1002/pdi.2016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Noel Morgan
- Institute of Biomedical & Clinical Science; University of Exeter Medical School; Exeter UK
| | - Sarah Richardson
- Institute of Biomedical & Clinical Science; University of Exeter Medical School; Exeter UK
| |
Collapse
|
1468
|
Leete P, Willcox A, Krogvold L, Dahl-Jørgensen K, Foulis AK, Richardson SJ, Morgan NG. Differential Insulitic Profiles Determine the Extent of β-Cell Destruction and the Age at Onset of Type 1 Diabetes. Diabetes 2016; 65:1362-9. [PMID: 26858360 DOI: 10.2337/db15-1615] [Citation(s) in RCA: 238] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 01/20/2016] [Indexed: 11/13/2022]
Abstract
Type 1 diabetes (T1D) results from a T cell-mediated destruction of pancreatic β-cells following the infiltration of leukocytes (including CD8(+), CD4(+), and CD20(+) cells) into and around pancreatic islets (insulitis). Recently, we reported that two distinct patterns of insulitis occur in patients with recent-onset T1D from the U.K. and that these differ principally in the proportion of infiltrating CD20(+) B cells (designated CD20Hi and CD20Lo, respectively). We have now extended this analysis to include patients from the Network for Pancreatic Organ Donors with Diabetes (U.S.) and Diabetes Virus Detection (DiViD) study (Norway) cohorts and confirm that the two profiles of insulitis occur more widely. Moreover, we show that patients can be directly stratified according to their insulitic profile and that those receiving a diagnosis before the age of 7 years always display the CD20Hi profile. By contrast, individuals who received a diagnosis beyond the age of 13 years are uniformly defined as CD20Lo. This implies that the two forms of insulitis are differentially aggressive and that patients with a CD20Hi profile lose their β-cells at a more rapid rate. In support of this, we also find that the proportion of residual insulin-containing islets (ICIs) increases in parallel with age at the onset of T1D. Importantly, those receiving a diagnosis in, or beyond, their teenage years retain ∼40% ICIs at diagnosis, implying that a functional deficit rather than an absolute β-cell loss may be causal for disease onset in these patients. We conclude that appropriate patient stratification will be critical for correct interpretation of the outcomes of intervention therapies targeted to islet-infiltrating immune cells in T1D.
Collapse
Affiliation(s)
- Pia Leete
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, U.K
| | - Abby Willcox
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, U.K
| | - Lars Krogvold
- Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Knut Dahl-Jørgensen
- Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Alan K Foulis
- Department of Pathology, National Health Service Greater Glasgow and Clyde, Southern General Hospital, Glasgow, U.K
| | - Sarah J Richardson
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, U.K.
| | - Noel G Morgan
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, U.K.
| |
Collapse
|
1469
|
[Insulitis in type 1 diabetes]. DER PATHOLOGE 2016; 37:245-52. [PMID: 27126249 DOI: 10.1007/s00292-016-0166-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Insulitis is considered to be the key morphological lesion of type 1 diabetes mellitus (T1DM) for which the diagnostic criteria were recently defined. From the immunophenotype of the lymphocytic infiltration, its frequency and extent during the course of T1DM and the presence of autoantibodies against beta cell proteins, it has been deduced that T1DM is a chronic autoimmune disease leading to gradual destruction of the insulin-producing cells of the islets of Langerhans in the pancreas, profound insulin deficiency and chronic hyperglycemia. This review article presents the morphological findings that support this hypothesis and addresses questions that need to be answered in order to further clarify the pathogenesis and to develop specific treatment options.
Collapse
|
1470
|
Oetjen E. Regulation of Beta-Cell Function and Mass by the Dual Leucine Zipper Kinase. Arch Pharm (Weinheim) 2016; 349:410-3. [PMID: 27100796 DOI: 10.1002/ardp.201600053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 03/14/2016] [Accepted: 03/18/2016] [Indexed: 01/09/2023]
Abstract
Diabetes mellitus is one of the most rapidly increasing diseases worldwide, whereby approximately 90-95% of patients suffer from type 2 diabetes. Considering its micro- and macrovascular complications like blindness and myocardial infarction, a reliable anti-diabetic treatment is needed. Maintaining the function and the mass of the insulin producing beta-cells despite elevated levels of beta-cell-toxic prediabetic signals represents a desirable mechanism of action of anti-diabetic drugs. The dual leucine zipper kinase (DLK) inhibits the action of two transcription factors within the beta-cell, thereby interfering with insulin secretion and production and the conservation of beta-cell mass. Furthermore, DLK action is regulated by prediabetic signals. Hence, the inhibition of this kinase might protect beta-cells against beta-cell-toxic prediabetic signals and prevent the development of diabetes. DLK might thus present a novel drug target for the treatment of diabetes mellitus type 2.
Collapse
Affiliation(s)
- Elke Oetjen
- Department of Clinical Pharmacology and Toxicology, Pharmacology for Pharmacist's Unit, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research) Partner Site Hamburg/Kiel/Lübeck, Germany.,Institute of Pharmacy, University of Hamburg, Hamburg, Germany
| |
Collapse
|
1471
|
Luo S, Lin J, Xie Z, Xiang Y, Zheng P, Huang G, Li X, Liao Y, Hagopian WA, Wang CY, Zhou Z. HLA Genetic Discrepancy Between Latent Autoimmune Diabetes in Adults and Type 1 Diabetes: LADA China Study No. 6. J Clin Endocrinol Metab 2016; 101:1693-700. [PMID: 26866570 DOI: 10.1210/jc.2015-3771] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
CONTEXT The discrepancies in terms of human leukocyte antigen (HLA)-DRB1-DQA1-DQB1 conferred risks between latent autoimmune diabetes in adults (LADA) and type 1 diabetes (T1D) patients remained almost completely unknown. The goal of the current study is to determine and compare HLA-conferred risks between LADA and T1D. DESIGN A case-control study was conducted in a representative Chinese data set containing 520 T1D patients, 562 LADA patients, and 1065 controls. The frequencies and odds ratios for HLA susceptible haplotypes and genotypes and for arginine at residue 52 in the DQ-α chain or aspartic acid at residue 57 in the DQ-β chain were analyzed. RESULTS DRB1*0405-DQA1*03-DQB1*0401 and DRB1*0901-DQA1*03-DQB1*0303 are the major LADA susceptible haplotypes, which also confer comparable risks for T1D (odds ratio 2.02 vs 2.20 and 1.61 vs 2.30, respectively). The strongly associated T1D haplotype DRB1*0301-DQA1*05-DQB1*0201 is also associated with LADA but confers only half of the T1D risk (odds ratio 2.65 vs 4.84). Interestingly, the most susceptible T1D haplotypes, DRB1*0901-DQA1*05-DQB1*0201, DRB1*0301-DQA1*03-DQB1*0201, and DRB1*0301-DQA1*03-DQB1*0303, are not associated with LADA. Genotypes for DR3/DR3, DR3/DR9, and DR9/DR9 are highly associated with T1D susceptibility, whereas only DR9/DR9 confers risk for LADA. DR3/DR3 is the high-risk genotype in Chinese T1D patients, which manifests similar risk as the DR3/DR4 genotype in Caucasians but with a lower frequency. DR9/DR9 is the high risk LADA genotype in Chinese. Alleles with DQ-α arginine at residue 52-positive, DQ-β aspartic acid at residue 57-negative, and their combination formed in cis or trans confer susceptibility to T1D but not to LADA. CONCLUSION Our results suggest that LADA risk conferred by HLA-DRB1-DQA1-DQB1 loci in Chinese differs significantly from that of T1D risk. This information would be useful for classifying Asian LADA patients, which should provides novel insight into the understanding of its pathoetiology as well.
Collapse
Affiliation(s)
- Shuoming Luo
- Department of Metabolism and Endocrinology (S.L., J.L., Z.X., Y.X., P.Z., G.H., X.L., Y.L., C.-Y.W., Z.Z.), Second Xiangya Hospital and Diabetes Center, Institute of Metabolism and Endocrinology, Central South University, and Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan 410011, China; Pacific Northwest Diabetes Research Institute and University of Washington (W.A.H.), Seattle, Washington 98122; and The Center for Biomedical Research (C.-Y.W.), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jian Lin
- Department of Metabolism and Endocrinology (S.L., J.L., Z.X., Y.X., P.Z., G.H., X.L., Y.L., C.-Y.W., Z.Z.), Second Xiangya Hospital and Diabetes Center, Institute of Metabolism and Endocrinology, Central South University, and Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan 410011, China; Pacific Northwest Diabetes Research Institute and University of Washington (W.A.H.), Seattle, Washington 98122; and The Center for Biomedical Research (C.-Y.W.), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zhiguo Xie
- Department of Metabolism and Endocrinology (S.L., J.L., Z.X., Y.X., P.Z., G.H., X.L., Y.L., C.-Y.W., Z.Z.), Second Xiangya Hospital and Diabetes Center, Institute of Metabolism and Endocrinology, Central South University, and Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan 410011, China; Pacific Northwest Diabetes Research Institute and University of Washington (W.A.H.), Seattle, Washington 98122; and The Center for Biomedical Research (C.-Y.W.), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yufei Xiang
- Department of Metabolism and Endocrinology (S.L., J.L., Z.X., Y.X., P.Z., G.H., X.L., Y.L., C.-Y.W., Z.Z.), Second Xiangya Hospital and Diabetes Center, Institute of Metabolism and Endocrinology, Central South University, and Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan 410011, China; Pacific Northwest Diabetes Research Institute and University of Washington (W.A.H.), Seattle, Washington 98122; and The Center for Biomedical Research (C.-Y.W.), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Peilin Zheng
- Department of Metabolism and Endocrinology (S.L., J.L., Z.X., Y.X., P.Z., G.H., X.L., Y.L., C.-Y.W., Z.Z.), Second Xiangya Hospital and Diabetes Center, Institute of Metabolism and Endocrinology, Central South University, and Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan 410011, China; Pacific Northwest Diabetes Research Institute and University of Washington (W.A.H.), Seattle, Washington 98122; and The Center for Biomedical Research (C.-Y.W.), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Gan Huang
- Department of Metabolism and Endocrinology (S.L., J.L., Z.X., Y.X., P.Z., G.H., X.L., Y.L., C.-Y.W., Z.Z.), Second Xiangya Hospital and Diabetes Center, Institute of Metabolism and Endocrinology, Central South University, and Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan 410011, China; Pacific Northwest Diabetes Research Institute and University of Washington (W.A.H.), Seattle, Washington 98122; and The Center for Biomedical Research (C.-Y.W.), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xia Li
- Department of Metabolism and Endocrinology (S.L., J.L., Z.X., Y.X., P.Z., G.H., X.L., Y.L., C.-Y.W., Z.Z.), Second Xiangya Hospital and Diabetes Center, Institute of Metabolism and Endocrinology, Central South University, and Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan 410011, China; Pacific Northwest Diabetes Research Institute and University of Washington (W.A.H.), Seattle, Washington 98122; and The Center for Biomedical Research (C.-Y.W.), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yu Liao
- Department of Metabolism and Endocrinology (S.L., J.L., Z.X., Y.X., P.Z., G.H., X.L., Y.L., C.-Y.W., Z.Z.), Second Xiangya Hospital and Diabetes Center, Institute of Metabolism and Endocrinology, Central South University, and Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan 410011, China; Pacific Northwest Diabetes Research Institute and University of Washington (W.A.H.), Seattle, Washington 98122; and The Center for Biomedical Research (C.-Y.W.), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - William A Hagopian
- Department of Metabolism and Endocrinology (S.L., J.L., Z.X., Y.X., P.Z., G.H., X.L., Y.L., C.-Y.W., Z.Z.), Second Xiangya Hospital and Diabetes Center, Institute of Metabolism and Endocrinology, Central South University, and Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan 410011, China; Pacific Northwest Diabetes Research Institute and University of Washington (W.A.H.), Seattle, Washington 98122; and The Center for Biomedical Research (C.-Y.W.), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Cong-Yi Wang
- Department of Metabolism and Endocrinology (S.L., J.L., Z.X., Y.X., P.Z., G.H., X.L., Y.L., C.-Y.W., Z.Z.), Second Xiangya Hospital and Diabetes Center, Institute of Metabolism and Endocrinology, Central South University, and Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan 410011, China; Pacific Northwest Diabetes Research Institute and University of Washington (W.A.H.), Seattle, Washington 98122; and The Center for Biomedical Research (C.-Y.W.), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zhiguang Zhou
- Department of Metabolism and Endocrinology (S.L., J.L., Z.X., Y.X., P.Z., G.H., X.L., Y.L., C.-Y.W., Z.Z.), Second Xiangya Hospital and Diabetes Center, Institute of Metabolism and Endocrinology, Central South University, and Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan 410011, China; Pacific Northwest Diabetes Research Institute and University of Washington (W.A.H.), Seattle, Washington 98122; and The Center for Biomedical Research (C.-Y.W.), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| |
Collapse
|
1472
|
Perricone C, Versini M, Ben-Ami D, Gertel S, Watad A, Segel MJ, Ceccarelli F, Conti F, Cantarini L, Bogdanos DP, Antonelli A, Amital H, Valesini G, Shoenfeld Y. Smoke and autoimmunity: The fire behind the disease. Autoimmun Rev 2016; 15:354-74. [DOI: 10.1016/j.autrev.2016.01.001] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 12/31/2015] [Indexed: 12/14/2022]
|
1473
|
Matsuhisa M, Koyama M, Cheng X, Takahashi Y, Riddle MC, Bolli GB, Hirose T. New insulin glargine 300 U/ml versus glargine 100 U/ml in Japanese adults with type 1 diabetes using basal and mealtime insulin: glucose control and hypoglycaemia in a randomized controlled trial (EDITION JP 1). Diabetes Obes Metab 2016; 18:375-83. [PMID: 26662964 PMCID: PMC5066635 DOI: 10.1111/dom.12619] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 09/01/2015] [Accepted: 11/30/2015] [Indexed: 12/24/2022]
Abstract
AIM To compare efficacy and safety of new insulin glargine 300 U/ml (Gla-300) with that of insulin glargine 100 U/ml (Gla-100) in Japanese adults with type 1 diabetes. METHODS The EDITION JP 1 study (NCT01689129) was a 6-month, multicentre, open-label, phase III study. Participants (n = 243) were randomized to Gla-300 or Gla-100 while continuing mealtime insulin. Basal insulin was titrated with the aim of achieving a fasting self-monitored plasma glucose target of 4.4-7.2 mmol/l. The primary endpoint was change in glycated haemoglobin (HbA1c) over 6 months. Safety measures included hypoglycaemia and change in body weight. RESULTS Gla-300 was non-inferior to Gla-100 for the primary endpoint of HbA1c change over the 6-month period {least squares [LS] mean difference 0.13 % [95 % confidence interval (CI) -0.03 to 0.29]}. The annualized rate of confirmed (≤3.9 mmol/l) or severe hypoglycaemic events was 34 % lower with Gla-300 than with Gla-100 at night [rate ratio 0.66 (95 % CI 0.48-0.92)] and 20 % lower at any time of day [24 h; rate ratio 0.80 (95 % CI 0.65-0.98)]; this difference was most pronounced during the first 8 weeks of treatment. Severe hypoglycaemia was infrequent. The basal insulin dose increased in both groups (month 6 dose: Gla-300 0.35 U/kg/day, Gla-100 0.29 U/kg/day). A between-treatment difference in body weight change over 6 months favouring Gla-300 was observed [LS mean difference -0.6 kg (95 % CI -1.1 to -0.0); p = 0.035]. Adverse event rates were comparable between the groups. CONCLUSIONS In Japanese adults with type 1 diabetes using basal plus mealtime insulin, less hypoglycaemia was observed with Gla-300 than with Gla-100, particularly during the night, while glycaemic control did not differ.
Collapse
Affiliation(s)
| | | | | | | | - M C Riddle
- Oregon Health & Science University, Portland, OR, USA
| | - G B Bolli
- Perugia University Medical School, Perugia, Italy
| | - T Hirose
- Toho University School of Medicine, Tokyo, Japan
| |
Collapse
|
1474
|
Campbell-Thompson ML, Schatz DA, Kaddis JS, Atkinson MA. Pancreatic duct hyperplasia/dysplasia in type 1 diabetes and pancreatic weight in individuals with and without diabetes. Reply to Kobayashi T, Aida K, Fukui T et al [letter] and Saisho Y [letter]. Diabetologia 2016; 59:870-2. [PMID: 26861059 PMCID: PMC5047275 DOI: 10.1007/s00125-016-3889-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 01/12/2016] [Indexed: 01/13/2023]
Affiliation(s)
- Martha L Campbell-Thompson
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, POB 100275, 1395 Center Drive, Gainesville, FL, 32610, USA
| | - Desmond A Schatz
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - John S Kaddis
- Department of Information Sciences, City of Hope, Duarte, CA, USA
| | - Mark A Atkinson
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, POB 100275, 1395 Center Drive, Gainesville, FL, 32610, USA.
| |
Collapse
|
1475
|
Jacobsen R, Frederiksen P, Heitmann BL. Exposure to sunshine early in life prevented development of type 1 diabetes in Danish boys. J Pediatr Endocrinol Metab 2016; 29:417-24. [PMID: 26673019 DOI: 10.1515/jpem-2015-0393] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 11/02/2015] [Indexed: 12/31/2022]
Abstract
BACKGROUND We aimed to assess the association between exposure to sunshine during gestation and the risk of type 1 diabetes (T1D) in Danish children. METHODS The study population included 331,623 individuals born in Denmark from 1983 to 1988; 886 (0.26%) developed T1D by the age of 15 years. The values of sunshine hours were obtained from the Danish Meteorological Institute. Gestational exposure to sunshine was calculated by summing recorded monthly sunshine hours during the full 9 months prior to the month of birth. The linear variable then was split into two categories separated by the median value. RESULTS AND CONCLUSIONS Cox regression models showed that more sunshine during the third gestational trimester was associated with lower hazards (HR) of T1D at age 5-9 years in males: HR (95% CI): 0.60 (0.43-0.84), p=0.003. Our results should be considered in the context of evidence-based recommendations to the public about skin protection from the sun.
Collapse
|
1476
|
Affiliation(s)
- Anne Phillips
- Senior Lecturer in Diabetes Care, University of York
| |
Collapse
|
1477
|
Sun C, Sanjeevi S, Luo F, Zhi D, Sanjeevi CB. Interactions between maternal killer cell immunoglobulin receptor genes and foetal HLA ligand genes contribute to type 1 diabetes susceptibility in Han Chinese. Int J Immunogenet 2016; 43:125-30. [PMID: 26991115 DOI: 10.1111/iji.12257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 02/14/2016] [Indexed: 11/30/2022]
Abstract
In this study, we aimed to test the hypothesis that KIR haplotypes (that interact with HLA class I molecules) are associated with susceptibility in patients with T1DM in utero through maternal-foetal interaction of KIR and their HLA class I ligands in Han Chinese population. We determined the KIR genes and KIR/ligand gene combination frequencies in 59 Han Chinese children with T1D and their mothers and compared it with 159 healthy control children and their mothers. The absence of KIR-2DS1 in the mother and the presence of HLA-C2 ligand in the child were negatively associated with type 1 diabetes in the child. Our results indicate that maternal KIR genes and their interaction with foetal HLA-C2 may contribute to the risk of type 1 diabetes among Han Chinese children.
Collapse
Affiliation(s)
- C Sun
- Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden.,Department of Pediatric Endocrinology and Inborn Metabolic diseases, Children's Hospital of Fudan University, Shanghai, China
| | - S Sanjeevi
- Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | - F Luo
- Department of Pediatric Endocrinology and Inborn Metabolic diseases, Children's Hospital of Fudan University, Shanghai, China
| | - D Zhi
- Department of Pediatric Endocrinology and Inborn Metabolic diseases, Children's Hospital of Fudan University, Shanghai, China
| | - C B Sanjeevi
- Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
1478
|
El Khatib MM, Ohmine S, Jacobus EJ, Tonne JM, Morsy SG, Holditch SJ, Schreiber CA, Uetsuka K, Fusaki N, Wigle DA, Terzic A, Kudva YC, Ikeda Y. Tumor-Free Transplantation of Patient-Derived Induced Pluripotent Stem Cell Progeny for Customized Islet Regeneration. Stem Cells Transl Med 2016; 5:694-702. [PMID: 26987352 PMCID: PMC4835241 DOI: 10.5966/sctm.2015-0017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 09/23/2015] [Indexed: 01/27/2023] Open
Abstract
UNLABELLED Human induced pluripotent stem cells (iPSCs) and derived progeny provide invaluable regenerative platforms, yet their clinical translation has been compromised by their biosafety concern. Here, we assessed the safety of transplanting patient-derived iPSC-generated pancreatic endoderm/progenitor cells. Transplantation of progenitors from iPSCs reprogrammed by lentiviral vectors (LV-iPSCs) led to the formation of invasive teratocarcinoma-like tumors in more than 90% of immunodeficient mice. Moreover, removal of primary tumors from LV-iPSC progeny-transplanted hosts generated secondary and metastatic tumors. Combined transgene-free (TGF) reprogramming and elimination of residual pluripotent cells by enzymatic dissociation ensured tumor-free transplantation, ultimately enabling regeneration of type 1 diabetes-specific human islet structures in vivo. The incidence of tumor formation in TGF-iPSCs was titratable, depending on the oncogenic load, with reintegration of the cMYC expressing vector abolishing tumor-free transplantation. Thus, transgene-free cMYC-independent reprogramming and elimination of residual pluripotent cells are mandatory steps in achieving transplantation of iPSC progeny for customized and safe islet regeneration in vivo. SIGNIFICANCE Pluripotent stem cell therapy for diabetes relies on the safety as well as the quality of derived insulin-producing cells. Data from this study highlight prominent tumorigenic risks of induced pluripotent stem cell (iPSC) products, especially when reprogrammed with integrating vectors. Two major underlying mechanisms in iPSC tumorigenicity are residual pluripotent cells and cMYC overload by vector integration. This study also demonstrated that combined transgene-free reprogramming and enzymatic dissociation allows teratoma-free transplantation of iPSC progeny in the mouse model in testing the tumorigenicity of iPSC products. Further safety assessment and improvement in iPSC specification into a mature β cell phenotype would lead to safe islet replacement therapy for diabetes.
Collapse
Affiliation(s)
| | - Seiga Ohmine
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Egon J Jacobus
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Jason M Tonne
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Salma G Morsy
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Sara J Holditch
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Claire A Schreiber
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Koji Uetsuka
- Laboratory of Animal Health and Hygiene, Department of Biological Production Science, College of Agriculture, Ibaraki University, Ibaraki, Japan
| | - Noemi Fusaki
- PRESTO, Japan Science and Technology Agency, Saitama, Japan Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Dennis A Wigle
- Center for Regenerative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Andre Terzic
- Center for Regenerative Medicine, Mayo Clinic, Rochester, Minnesota, USA Division of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, USA Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, USA Department of Medical Genetics, Mayo Clinic, Rochester, Minnesota, USA
| | - Yogish C Kudva
- Division of Endocrinology, Mayo Clinic, Rochester, Minnesota, USA
| | - Yasuhiro Ikeda
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA Center for Regenerative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
1479
|
Tard C, Rouxel O, Lehuen A. Regulatory role of natural killer T cells in diabetes. Biomed J 2016; 38:484-95. [PMID: 27013448 PMCID: PMC6138260 DOI: 10.1016/j.bj.2015.04.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 04/24/2015] [Indexed: 01/02/2023] Open
Abstract
Type 1 and type 2 diabetes are growing public health problems. Despite having different pathophysiologies, both diseases are associated with defects in immune regulation. Invariant natural killer T (iNKT) cells are innate-like T cells that recognize glycolipids presented by CD1d. These cells not only play a key role in the defense against pathogens, but also exert potent immunoregulatory functions. The regulatory role of iNKT cells in the prevention of type 1 diabetes has been demonstrated in murine models and analyzed in diabetic patients. The decreased frequency of iNKT cells in non-obese diabetic mice initially suggested the regulatory role of this cell subset. Increasing the frequency or the activation of iNKT cells with agonists protects non-obese diabetic mice from the development of diabetes. Several mechanisms mediate iNKT regulatory functions. They can rapidly produce immunoregulatory cytokines, interleukin (IL)-4 and IL-10. They induce tolerogenic dendritic cells, thereby inducing the anergy of autoreactive anti-islet T cells and increasing the frequency of T regulatory cells (Treg cells). Synthetic agonists are able to activate iNKT cells and represent potential therapeutic treatment in order to prevent type 1 diabetes. Growing evidence points to a role of immune system in glucose intolerance and type 2 diabetes. iNKT cells are resident cells of adipose tissue and their local and systemic frequencies are reduced in obese patients, suggesting their involvement in local and systemic inflammation during obesity. With the discovery of potential continuity between type 1 and type 2 diabetes in some patients, the role of iNKT cells in these diseases deserves further investigation.
Collapse
Affiliation(s)
- Celine Tard
- Laboratory "Immunology of Diabetes", U1016 INSERM-Institut Cochin, Paris, France; CNRS UMR8104, Paris, France; Laboratoire d'Excellence INFLAMEX, Université Paris Descartes, Sorbonne Paris Cité, Paris, France; DHU Authors, Hôpital Cochin, 75014, Paris, France
| | - Ophelie Rouxel
- Laboratory "Immunology of Diabetes", U1016 INSERM-Institut Cochin, Paris, France; CNRS UMR8104, Paris, France; Laboratoire d'Excellence INFLAMEX, Université Paris Descartes, Sorbonne Paris Cité, Paris, France; DHU Authors, Hôpital Cochin, 75014, Paris, France
| | - Agnes Lehuen
- Laboratory "Immunology of Diabetes", U1016 INSERM-Institut Cochin, Paris, France; CNRS UMR8104, Paris, France; Laboratoire d'Excellence INFLAMEX, Université Paris Descartes, Sorbonne Paris Cité, Paris, France; DHU Authors, Hôpital Cochin, 75014, Paris, France.
| |
Collapse
|
1480
|
Malek Abrahimians E, Vander Elst L, Carlier VA, Saint-Remy JM. Thioreductase-Containing Epitopes Inhibit the Development of Type 1 Diabetes in the NOD Mouse Model. Front Immunol 2016; 7:67. [PMID: 26973647 PMCID: PMC4773585 DOI: 10.3389/fimmu.2016.00067] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 02/12/2016] [Indexed: 01/01/2023] Open
Abstract
Autoreactive CD4+ T cells recognizing islet-derived antigens play a primary role in type 1 diabetes. Specific suppression of such cells therefore represents a strategic target for the cure of the disease. We have developed a methodology by which CD4+ T cells acquire apoptosis-inducing properties on antigen-presenting cells after cognate recognition of natural sequence epitopes. We describe here that inclusion of a thiol-disulfide oxidoreductase (thioreductase) motif within the flanking residues of a single MHC class II-restricted GAD65 epitope induces GAD65-specific cytolytic CD4+ T cells (cCD4+ T). The latter, obtained either in vitro or by active immunization, acquire an effector memory phenotype and lyse APCs by a Fas–FasL interaction. Furthermore, cCD4+ T cells eliminate by apoptosis activated bystander CD4+ T cells recognizing alternative epitopes processed by the same APC. Active immunization with a GAD65 class II-restricted thioreductase-containing T cell epitope protects mice from diabetes and abrogates insulitis. Passive transfer of in vitro-elicited cCD4+ T cells establishes that such cells are efficient in suppressing autoimmunity. These findings provide strong evidence for a new vaccination strategy to prevent type 1 diabetes.
Collapse
Affiliation(s)
- Elin Malek Abrahimians
- Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium; ImCyse SA, Leuven, Belgium
| | - Luc Vander Elst
- Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium; ImCyse SA, Leuven, Belgium
| | - Vincent A Carlier
- Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium; ImCyse SA, Leuven, Belgium
| | - Jean-Marie Saint-Remy
- Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium; ImCyse SA, Leuven, Belgium
| |
Collapse
|
1481
|
Ferretti C, La Cava A. Adaptive immune regulation in autoimmune diabetes. Autoimmun Rev 2016; 15:236-41. [DOI: 10.1016/j.autrev.2015.11.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 11/19/2015] [Indexed: 12/16/2022]
|
1482
|
Campbell-Thompson M, Fu A, Kaddis JS, Wasserfall C, Schatz DA, Pugliese A, Atkinson MA. Insulitis and β-Cell Mass in the Natural History of Type 1 Diabetes. Diabetes 2016; 65:719-31. [PMID: 26581594 PMCID: PMC4764143 DOI: 10.2337/db15-0779] [Citation(s) in RCA: 276] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 11/11/2015] [Indexed: 12/14/2022]
Abstract
Descriptions of insulitis in human islets throughout the natural history of type 1 diabetes are limited. We determined insulitis frequency (the percent of islets displaying insulitis to total islets), infiltrating leukocyte subtypes, and β-cell and α-cell mass in pancreata recovered from organ donors with type 1 diabetes (n = 80), as well as from donors without diabetes, both with islet autoantibodies (AAb(+), n = 18) and without islet autoantibodies (AAb(-), n = 61). Insulitis was observed in four of four donors (100%) with type 1 diabetes duration of ≤1 year and two AAb(+) donors (2 of 18 donors, 11%). Insulitis frequency showed a significant but limited inverse correlation with diabetes duration (r = -0.58, P = 0.01) but not with age at disease onset. Residual β-cells were observed in all type 1 diabetes donors with insulitis, while β-cell area and mass were significantly higher in type 1 diabetes donors with insulitis compared with those without insulitis. Insulitis affected 33% of insulin(+) islets compared with 2% of insulin(-) islets in donors with type 1 diabetes. A significant correlation was observed between insulitis frequency and CD45(+), CD3(+), CD4(+), CD8(+), and CD20(+) cell numbers within the insulitis (r = 0.53-0.73, P = 0.004-0.04), but not CD68(+) or CD11c(+) cells. The presence of β-cells as well as insulitis several years after diagnosis in children and young adults suggests that the chronicity of islet autoimmunity extends well into the postdiagnosis period. This information should aid considerations of therapeutic strategies seeking type 1 diabetes prevention and reversal.
Collapse
Affiliation(s)
- Martha Campbell-Thompson
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL
| | - Ann Fu
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL
| | | | - Clive Wasserfall
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL
| | - Desmond A Schatz
- Department of Pediatrics, University of Florida, Gainesville, FL
| | - Alberto Pugliese
- Diabetes Research Institute and Departments of Medicine and Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL
| | - Mark A Atkinson
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL Department of Pediatrics, University of Florida, Gainesville, FL
| |
Collapse
|
1483
|
Koskinen MK, Helminen O, Matomäki J, Aspholm S, Mykkänen J, Mäkinen M, Simell V, Vähä-Mäkilä M, Simell T, Ilonen J, Knip M, Veijola R, Toppari J, Simell O. Reduced β-cell function in early preclinical type 1 diabetes. Eur J Endocrinol 2016; 174:251-9. [PMID: 26620391 PMCID: PMC4712442 DOI: 10.1530/eje-15-0674] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 11/30/2015] [Indexed: 12/28/2022]
Abstract
OBJECTIVE We aimed to characterize insulin responses to i.v. glucose during the preclinical period of type 1 diabetes starting from the emergence of islet autoimmunity. DESIGN AND METHODS A large population-based cohort of children with HLA-conferred susceptibility to type 1 diabetes was observed from birth. During regular follow-up visits islet autoantibodies were analysed. We compared markers of glucose metabolism in sequential intravenous glucose tolerance tests between 210 children who were positive for multiple (≥2) islet autoantibodies and progressed to type 1 diabetes (progressors) and 192 children testing positive for classical islet-cell antibodies only and remained healthy (non-progressors). RESULTS In the progressors, the first phase insulin response (FPIR) was decreased as early as 4-6 years before the diagnosis when compared to the non-progressors (P=0.001). The difference in FPIR between the progressors and non-progressors was significant (P<0.001) in all age groups, increasing with age (at 2 years: difference 50% (95% CI 28-75%) and at 10 years: difference 172% (95% CI 128-224%)). The area under the 10-min insulin curve showed a similar difference between the groups (P<0.001; at 2 years: difference 36% (95% CI 17-58%) and at 10 years: difference 186% (95% CI 143-237%)). Insulin sensitivity did not differ between the groups. CONCLUSIONS FPIR is decreased several years before the diagnosis of type 1 diabetes, implying an intrinsic defect in β-cell mass and/or function.
Collapse
Affiliation(s)
- Maarit K Koskinen
- Department of Paediatrics, University of Turku and Turku University Hospital, Turku, Finland
- MediCity Laboratories, Department of Clinical Medicine, University of Turku, Lemminkäisenkatu 320520, Turku, Finland
- Correspondence should be addressed to M K Koskinen ()
| | - Olli Helminen
- PEDEGO Research Unit, Department of Paediatrics, Medical Research Centre Oulu, University of Oulu, Oulu, Finland
- Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Jaakko Matomäki
- Clinical Research Centre, Turku University Hospital, Turku, Finland
| | - Susanna Aspholm
- Department of Paediatrics, Tampere University Hospital, Tampere, Finland
- Novo Nordisk Farma Oy, CMR Department, Espoo, Finland
- Diabetes Outpatient Clinic, Tampere, Finland
| | - Juha Mykkänen
- Department of Paediatrics, University of Turku and Turku University Hospital, Turku, Finland
| | - Marjaana Mäkinen
- Department of Paediatrics, University of Turku and Turku University Hospital, Turku, Finland
- MediCity Laboratories, Department of Clinical Medicine, University of Turku, Lemminkäisenkatu 320520, Turku, Finland
| | - Ville Simell
- MediCity Laboratories, Department of Clinical Medicine, University of Turku, Lemminkäisenkatu 320520, Turku, Finland
| | - Mari Vähä-Mäkilä
- Department of Paediatrics, University of Turku and Turku University Hospital, Turku, Finland
| | - Tuula Simell
- Department of Paediatrics, Turku University Hospital, Turku, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
| | - Jorma Ilonen
- Immunogenetics Laboratory, University of Turku, Turku, Finland
- Department of Clinical Microbiology, University of Eastern Finland, Kuopio, Finland
| | - Mikael Knip
- Department of Paediatrics, Tampere University Hospital, Tampere, Finland
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Centre, University of Helsinki, Helsinki, Finland
| | - Riitta Veijola
- PEDEGO Research Unit, Department of Paediatrics, Medical Research Centre Oulu, University of Oulu, Oulu, Finland
- Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Jorma Toppari
- Department of Paediatrics, University of Turku and Turku University Hospital, Turku, Finland
- Department of Physiology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Olli Simell
- Department of Paediatrics, University of Turku and Turku University Hospital, Turku, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
| |
Collapse
|
1484
|
Bingley PJ, Boulware DC, Krischer JP. The implications of autoantibodies to a single islet antigen in relatives with normal glucose tolerance: development of other autoantibodies and progression to type 1 diabetes. Diabetologia 2016; 59:542-9. [PMID: 26676824 PMCID: PMC4742489 DOI: 10.1007/s00125-015-3830-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 11/03/2015] [Indexed: 12/22/2022]
Abstract
AIMS/HYPOTHESIS Autoantibodies directed at single islet autoantigens are associated with lower overall risk of type 1 diabetes than multiple autoantibodies, but individuals with one autoantibody may progress to higher risk categories. We examined the characteristics of this progression in relatives followed prospectively in the TrialNet Pathway to Prevention. METHODS The study population comprised 983 relatives who were single autoantibody positive with normal baseline glucose tolerance (median age 16.2 years). Samples were screened for antibodies to GAD, insulinoma-associated antigen 2 (IA-2) and insulin, and all positive samples tested for antibodies to zinc transporter 8 and islet cell antibodies. RESULTS Antibodies to at least one additional islet autoantigen appeared in 118 of 983 relatives (overall 5 year risk 22%, 95% CI [17.9, 26.1]). At baseline, antibodies to GAD alone (68%) were more frequent than antibodies to insulin (26%) or IA-2 (6%), but all were associated with a similar risk of developing additional autoantibodies. Risk was associated with younger age (p = 0.002) and HLA class II genotype, but was similar in high and intermediate genetic risk groups (p = 0.65). Relatives who became multiple autoantibody positive during the follow-up had increased risk of developing diabetes comparable with the risk in relatives with multiple autoantibodies at study entry. CONCLUSIONS/INTERPRETATION Progression of islet autoimmunity in single autoantibody positive relatives in late childhood/adult life is associated with a predominance of autoantibodies to GAD and a distinct HLA risk profile. This heterogeneity in type 1 diabetes autoimmunity has potentially important implications for disease prevention.
Collapse
Affiliation(s)
- Polly J Bingley
- School of Clinical Sciences, University of Bristol, Learning and Research, Southmead Hospital, Bristol, BS10 5NB, UK.
| | - David C Boulware
- Department of Pediatrics, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Jeffrey P Krischer
- Department of Pediatrics, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
1485
|
Abstract
Type 1 diabetes mellitus (T1DM) is a chronic immune-mediated disease with a subclinical prodromal period, characterized by selective loss of insulin-producing-β cells in the pancreatic islets of genetically susceptible individuals. The incidence of T1DM has increased several fold in most developed countries since World War II, in conjunction with other immune-mediated diseases. Rapid environmental changes and modern lifestyles are probably the driving factors that underlie this increase. These effects might be mediated by changes in the human microbiota, particularly the intestinal microbiota. Research on the gut microbiome of individuals at risk of developing T1DM and in patients with established disease is still in its infancy, but initial findings indicate that the intestinal microbiome of individuals with prediabetes or diabetes mellitus is different to that of healthy individuals. The gut microbiota in individuals with preclinical T1DM is characterized by Bacteroidetes dominating at the phylum level, a dearth of butyrate-producing bacteria, reduced bacterial and functional diversity and low community stability. However, these changes seem to emerge after the appearance of autoantibodies that are predictive of T1DM, which suggests that the intestinal microbiota might be involved in the progression from β-cell autoimmunity to clinical disease rather than in the initiation of the disease process.
Collapse
Affiliation(s)
- Mikael Knip
- Children's Hospital, University of Helsinki and Helsinki University Hospital, PO Box 22, FI-00014 Helsinki, Finland
| | - Heli Siljander
- Children's Hospital, University of Helsinki and Helsinki University Hospital, PO Box 22, FI-00014 Helsinki, Finland
| |
Collapse
|
1486
|
Patterson E, Ryan PM, Cryan JF, Dinan TG, Ross RP, Fitzgerald GF, Stanton C. Gut microbiota, obesity and diabetes. Postgrad Med J 2016; 92:286-300. [PMID: 26912499 DOI: 10.1136/postgradmedj-2015-133285] [Citation(s) in RCA: 361] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 01/28/2016] [Indexed: 02/06/2023]
Abstract
The central role of the intestinal microbiota in the progression and, equally, prevention of metabolic dysfunction is becoming abundantly apparent. The symbiotic relationship between intestinal microbiota and host ensures appropriate development of the metabolic system in humans. However, disturbances in composition and, in turn, functionality of the intestinal microbiota can disrupt gut barrier function, a trip switch for metabolic endotoxemia. This low-grade chronic inflammation, brought about by the influx of inflammatory bacterial fragments into circulation through a malfunctioning gut barrier, has considerable knock-on effects for host adiposity and insulin resistance. Conversely, recent evidence suggests that there are certain bacterial species that may interact with host metabolism through metabolite-mediated stimulation of enteric hormones and other systems outside of the gastrointestinal tract, such as the endocannabinoid system. When the abundance of these keystone species begins to decline, we see a collapse of the symbiosis, reflected in a deterioration of host metabolic health. This review will investigate the intricate axis between the microbiota and host metabolism, while also addressing the promising and novel field of probiotics as metabolic therapies.
Collapse
Affiliation(s)
- Elaine Patterson
- APC Microbiome Institute, University College Cork, Co. Cork, Ireland Food Biosciences Department, Teagasc Food Research Centre, Fermoy, Co. Cork, Ireland
| | - Paul M Ryan
- Food Biosciences Department, Teagasc Food Research Centre, Fermoy, Co. Cork, Ireland School of Microbiology, University College Cork, Co. Cork, Ireland
| | - John F Cryan
- APC Microbiome Institute, University College Cork, Co. Cork, Ireland Department of Anatomy and Neuroscience, University College Cork, Co. Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Institute, University College Cork, Co. Cork, Ireland Department of Psychiatry and Neurobehavioural Science, University College Cork, Co. Cork, Ireland
| | - R Paul Ross
- APC Microbiome Institute, University College Cork, Co. Cork, Ireland College of Science, Engineering and Food Science, University College Cork, Co. Cork, Ireland
| | - Gerald F Fitzgerald
- APC Microbiome Institute, University College Cork, Co. Cork, Ireland School of Microbiology, University College Cork, Co. Cork, Ireland
| | - Catherine Stanton
- APC Microbiome Institute, University College Cork, Co. Cork, Ireland Food Biosciences Department, Teagasc Food Research Centre, Fermoy, Co. Cork, Ireland
| |
Collapse
|
1487
|
Kahaly GJ, Hansen MP. Type 1 diabetes associated autoimmunity. Autoimmun Rev 2016; 15:644-8. [PMID: 26903475 DOI: 10.1016/j.autrev.2016.02.017] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 02/15/2016] [Indexed: 01/06/2023]
Abstract
Diabetes mellitus is increasing in prevalence worldwide. The economic costs are considerable given the cardiovascular complications and co-morbidities that it may entail. Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by the loss of insulin-producing pancreatic β-cells. The pathogenesis of T1D is complex and multifactorial and involves a genetic susceptibility that predisposes to abnormal immune responses in the presence of ill-defined environmental insults to the pancreatic islets. Genetic background may affect the risk for autoimmune disease and patients with T1D exhibit an increased risk of other autoimmune disorders such as autoimmune thyroid disease, Addison's disease, autoimmune gastritis, coeliac disease and vitiligo. Approximately 20%-25% of patients with T1D have thyroid antibodies, and up to 50% of such patients progress to clinical autoimmune thyroid disease. Approximately 0.5% of diabetic patients have concomitant Addison's disease and 4% have coeliac disease. The prevalence of autoimmune gastritis and pernicious anemia is 5% to 10% and 2.6% to 4%, respectively. Early detection of antibodies and latent organ-specific dysfunction is advocated to alert physicians to take appropriate action in order to prevent full-blown disease. Patients and family members should be educated to be able to recognize signs and symptoms of underlying disease.
Collapse
Affiliation(s)
- George J Kahaly
- Department of Medicine I, Johannes Gutenberg University Medical Center, Mainz, Germany.
| | - Martin P Hansen
- Department of Medicine I, Johannes Gutenberg University Medical Center, Mainz, Germany
| |
Collapse
|
1488
|
Faucher P, Poitou C, Carette C, Tezenas du Montcel S, Barsamian C, Touati E, Bouillot JL, Torcivia A, Czernichow S, Oppert JM, Ciangura C. Bariatric Surgery in Obese Patients with Type 1 Diabetes: Effects on Weight Loss and Metabolic Control. Obes Surg 2016; 26:2370-8. [DOI: 10.1007/s11695-016-2106-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
1489
|
Abstract
Regulatory T cell (Treg) therapy has shown promises in experimental models of type 1 diabetes (T1D) and other autoimmune diseases. Now, Bluestone et al. (2015) report in a phase 1, dose-escalation study that ex vivo-expanded autologous polyclonal Treg therapy is safe and well tolerated in adult patients with recent-onset T1D.
Collapse
Affiliation(s)
- Jagadeesh Bayry
- Institut National de la Santé et de la Recherche Médicale Unité 1138, Paris 75006, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S 1138, Paris 75006, France; Université Paris Descartes, Sorbonne Paris Cité, UMR S 1138, Paris 75006, France; Centre de Recherche des Cordeliers, Equipe - Immunopathologie et immuno-intervention thérapeutique, Paris 75006, France.
| | - Jean-François Gautier
- Institut National de la Santé et de la Recherche Médicale Unité 1138, Paris 75006, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S 1138, Paris 75006, France; Université Paris Descartes, Sorbonne Paris Cité, UMR S 1138, Paris 75006, France; Centre de Recherche des Cordeliers, Equipe - Pathogenèse cellulaire et clinique du diabète, Paris 75006, France; Service de Diabétologie, Endocrinologie, Nutrition, Centre Universitaire du Diabète et de ses Complications, Hôpital Lariboisière, University Paris-Diderot Paris-7, Paris 75010, France
| |
Collapse
|
1490
|
Tiwari JN, Vij V, Kemp KC, Kim KS. Engineered Carbon-Nanomaterial-Based Electrochemical Sensors for Biomolecules. ACS NANO 2016; 10:46-80. [PMID: 26579616 DOI: 10.1021/acsnano.5b05690] [Citation(s) in RCA: 282] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The study of electrochemical behavior of bioactive molecules has become one of the most rapidly developing scientific fields. Biotechnology and biomedical engineering fields have a vested interest in constructing more precise and accurate voltammetric/amperometric biosensors. One rapidly growing area of biosensor design involves incorporation of carbon-based nanomaterials in working electrodes, such as one-dimensional carbon nanotubes, two-dimensional graphene, and graphene oxide. In this review article, we give a brief overview describing the voltammetric techniques and how these techniques are applied in biosensing, as well as the details surrounding important biosensing concepts of sensitivity and limits of detection. Building on these important concepts, we show how the sensitivity and limit of detection can be tuned by including carbon-based nanomaterials in the fabrication of biosensors. The sensing of biomolecules including glucose, dopamine, proteins, enzymes, uric acid, DNA, RNA, and H2O2 traditionally employs enzymes in detection; however, these enzymes denature easily, and as such, enzymeless methods are highly desired. Here we draw an important distinction between enzymeless and enzyme-containing carbon-nanomaterial-based biosensors. The review ends with an outlook of future concepts that can be employed in biosensor fabrication, as well as limitations of already proposed materials and how such sensing can be enhanced. As such, this review can act as a roadmap to guide researchers toward concepts that can be employed in the design of next generation biosensors, while also highlighting the current advancements in the field.
Collapse
Affiliation(s)
- Jitendra N Tiwari
- Center for Superfunctional Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) , Ulsan 689-798, Korea
| | - Varun Vij
- Center for Superfunctional Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) , Ulsan 689-798, Korea
| | - K Christian Kemp
- Center for Superfunctional Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) , Ulsan 689-798, Korea
| | - Kwang S Kim
- Center for Superfunctional Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) , Ulsan 689-798, Korea
| |
Collapse
|
1491
|
Zhao Z, Miao D, Michels A, Steck A, Dong F, Rewers M, Yu L. A multiplex assay combining insulin, GAD, IA-2 and transglutaminase autoantibodies to facilitate screening for pre-type 1 diabetes and celiac disease. J Immunol Methods 2016; 430:28-32. [PMID: 26809048 DOI: 10.1016/j.jim.2016.01.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 01/20/2016] [Accepted: 01/21/2016] [Indexed: 01/02/2023]
Abstract
At the current time, multiple candidate interventions are being proposed to abrogate or slow progression to type 1 diabetes (T1D) among islet autoantibody (iAb) positive subjects, but mass screening for eligible subjects and the general population remains a laborious and inefficient process. We have recently developed and extensively validated nonradioactive iAb assays using electrochemiluminescense (ECL) detection with an excellent sensitivity and specificity compared to the gold-standard radioassays. Using ECL detection on a platform from MesoScale Discovery (MSD) allows the measurement of four antibodies in a single well using a small blood volume (6 μl). In the present study using a MSD QuickPlex 4-Spot plate, we successfully combined three iAb to insulin (IAA), GAD65 (GADA), and IA-2 (IA-2A) with tissue transglutaminase autoantibodies (TGA) in a single well of a 96 well plate. We tested 40 new onset T1D patients, all positive for at least one iAb and a half of them positive for TGA by radioassay, as well as 50 healthy controls. The multiplex assay retained 100% sensitivity and 100% specificity for all four autoantibodies in terms of positivity identified in patients versus normal controls compared to the corresponding standard radioassays and our single ECL assays. The multiplex ECL assay was able to identify more positivity than current radioassays for IAA and TGA. The development of this multiplex assay will facilitate high-throughput screening for T1D and celiac disease risk in the general population.
Collapse
Affiliation(s)
- Zhiyuan Zhao
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, CO, United States
| | - Dongmei Miao
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, CO, United States
| | - Aaron Michels
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, CO, United States
| | - Andrea Steck
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, CO, United States
| | - Fran Dong
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, CO, United States
| | - Marian Rewers
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, CO, United States
| | - Liping Yu
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, CO, United States.
| |
Collapse
|
1492
|
Peters SAE, Huxley RR, Woodward M. Sex differences in body anthropometry and composition in individuals with and without diabetes in the UK Biobank. BMJ Open 2016; 6:e010007. [PMID: 26739739 PMCID: PMC4716161 DOI: 10.1136/bmjopen-2015-010007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE Type I and II diabetes are associated with a greater relative risk of cardiovascular diseases (CVD) in women than in men. Sex differences in adiposity storage may explain these findings. METHODS A cross-sectional study of 480,813 participants from the UK Biobank without history of CVD was conducted to assess whether the difference in body size in people with and without diabetes was greater in women than in men. Age-adjusted linear regression analyses were used to obtain the mean difference in women minus men in the difference in body size measures, separately for type I and II diabetes. RESULTS Body size was higher in individuals with diabetes than in individuals without diabetes, particularly in type II diabetes. Differences in body size between individuals with and without type II diabetes were more extreme in women than in men; compared to those without type II diabetes, body mass index and waist circumference were 1.94 (95% CI 1.82 to 2.07) and 4.84 (4.53 to 5.16) higher in women than in men, respectively. In type I diabetes, body size differed to a similar extent between those with and without diabetes in women as in men. This pattern was observed across all prespecified subgroups. CONCLUSIONS Differences in body size associated with diabetes were significantly greater in women than in men in type II diabetes but not in type I diabetes. Prospective studies can determine whether sex differences in body size associated with diabetes underpin some of the excess risk for CVD in women with type II diabetes.
Collapse
Affiliation(s)
- Sanne A E Peters
- The George Institute for Global Health, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Rachel R Huxley
- School of Public Health, Curtin University, Perth, Western Australia, Australia
- The George Institute for Global Health, University of Sydney, Sydney, New South Wales, Australia
| | - Mark Woodward
- The George Institute for Global Health, Nuffield Department of Population Health, University of Oxford, Oxford, UK
- The George Institute for Global Health, University of Sydney, Sydney, New South Wales, Australia
- Department of Epidemiology, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
1493
|
Kenny GP, Sigal RJ, McGinn R. Body temperature regulation in diabetes. Temperature (Austin) 2016; 3:119-45. [PMID: 27227101 PMCID: PMC4861190 DOI: 10.1080/23328940.2015.1131506] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/09/2015] [Accepted: 12/09/2015] [Indexed: 01/06/2023] Open
Abstract
The effects of type 1 and type 2 diabetes on the body's physiological response to thermal stress is a relatively new topic in research. Diabetes tends to place individuals at greater risk for heat-related illness during heat waves and physical activity due to an impaired capacity to dissipate heat. Specifically, individuals with diabetes have been reported to have lower skin blood flow and sweating responses during heat exposure and this can have important consequences on cardiovascular regulation and glycemic control. Those who are particularly vulnerable include individuals with poor glycemic control and who are affected by diabetes-related complications. On the other hand, good glycemic control and maintenance of aerobic fitness can often delay the diabetes-related complications and possibly the impairments in heat loss. Despite this, it is alarming to note the lack of information regarding diabetes and heat stress given the vulnerability of this population. In contrast, few studies have examined the effects of cold exposure on individuals with diabetes with the exception of its therapeutic potential, particularly for type 2 diabetes. This review summarizes the current state of knowledge regarding the impact of diabetes on heat and cold exposure with respect to the core temperature regulation, cardiovascular adjustments and glycemic control while also considering the beneficial effects of maintaining aerobic fitness.
Collapse
Affiliation(s)
- Glen P Kenny
- Human and Environmental Physiology Research Unit, Faculty of Health Sciences, Ottawa, ON, Canada; Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Ronald J Sigal
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada; Departments of Medicine, Cardiac Sciences, and Community Health Sciences, Cumming School of Medicine, Faculties of Medicine and Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Ryan McGinn
- Human and Environmental Physiology Research Unit, Faculty of Health Sciences, Ottawa, ON, Canada; Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
1494
|
Gomez-Tourino I, Arif S, Eichmann M, Peakman M. T cells in type 1 diabetes: Instructors, regulators and effectors: A comprehensive review. J Autoimmun 2016; 66:7-16. [DOI: 10.1016/j.jaut.2015.08.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 08/20/2015] [Indexed: 12/16/2022]
|
1495
|
Marchand L, Jalabert A, Meugnier E, Van den Hende K, Fabien N, Nicolino M, Madec AM, Thivolet C, Rome S. miRNA-375 a Sensor of Glucotoxicity Is Altered in the Serum of Children with Newly Diagnosed Type 1 Diabetes. J Diabetes Res 2016; 2016:1869082. [PMID: 27314045 PMCID: PMC4895032 DOI: 10.1155/2016/1869082] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/11/2016] [Accepted: 04/19/2016] [Indexed: 12/18/2022] Open
Abstract
Background. The use of miRNAs as biomarkers for Type 1 Diabetes (T1D) risk is attractive as T1D is usually diagnosed in front of acute symptoms. As miR-375 is highly expressed in the endocrine pancreas, we postulated that its circulating level might reflect beta cell alterations and might be altered in the blood of T1D patients recently diagnosed. Methods. Sera were obtained from 22 T1D children at onset of the disease, before subcutaneous insulin treatment, and from 10 nondiabetic pediatric controls. MiR-375 seric level was quantified by stem-loop RT-PCR-based assay. MiRNAs regulations in isolated human islets in response to high glucose concentrations were determined by TaqMan Low-Density Array. Results. The abundance of miR-375, among the 410 miRNAs detected in human islets, mirrored its well-established role in rodent islet biology. Upregulated miRNAs targeted genes involved in islet homeostasis and regulation of beta cell mass. Downregulated miRNAs, including miR-375, were involved in pancreas secretion and protein turnover. Seric level of miR-375 was lower in T1D children versus age-matched controls, without any correlations with HbA1c, glycaemia, and number of autoantibodies. Conclusion. Altered circulating level of miR-375 at onset of T1D might be a general biomarker of metabolic alterations and inflammation associated with the disease.
Collapse
Affiliation(s)
- Lucien Marchand
- CarMeN Laboratory (INSERM 1060, INRA 1362, INSA), Lyon-Sud Faculty of Medicine, University of Lyon, Chemin du Grand Revoyet, 69600 Oullins, France
- Hospices Civils de Lyon, Lyon-Sud Hospital, Department of Diabetology and Endocrinology, 69495 Pierre-Bénite, France
| | - Audrey Jalabert
- CarMeN Laboratory (INSERM 1060, INRA 1362, INSA), Lyon-Sud Faculty of Medicine, University of Lyon, Chemin du Grand Revoyet, 69600 Oullins, France
| | - Emmanuelle Meugnier
- CarMeN Laboratory (INSERM 1060, INRA 1362, INSA), Lyon-Sud Faculty of Medicine, University of Lyon, Chemin du Grand Revoyet, 69600 Oullins, France
| | - Kathleen Van den Hende
- Hospices Civils de Lyon, Department of Pediatric Endocrinology, Femme-Mère-Enfant Hospital, 69500 Bron, France
| | - Nicole Fabien
- Hospices Civils de Lyon, INSERM U851, Lyon-Sud Hospital, Department of Immunology, 69495 Pierre-Bénite, France
| | - Marc Nicolino
- CarMeN Laboratory (INSERM 1060, INRA 1362, INSA), Lyon-Sud Faculty of Medicine, University of Lyon, Chemin du Grand Revoyet, 69600 Oullins, France
- Hospices Civils de Lyon, Department of Pediatric Endocrinology, Femme-Mère-Enfant Hospital, 69500 Bron, France
| | - Anne-Marie Madec
- CarMeN Laboratory (INSERM 1060, INRA 1362, INSA), Lyon-Sud Faculty of Medicine, University of Lyon, Chemin du Grand Revoyet, 69600 Oullins, France
| | - Charles Thivolet
- CarMeN Laboratory (INSERM 1060, INRA 1362, INSA), Lyon-Sud Faculty of Medicine, University of Lyon, Chemin du Grand Revoyet, 69600 Oullins, France
- Hospices Civils de Lyon, Lyon-Sud Hospital, Department of Diabetology and Endocrinology, 69495 Pierre-Bénite, France
| | - Sophie Rome
- CarMeN Laboratory (INSERM 1060, INRA 1362, INSA), Lyon-Sud Faculty of Medicine, University of Lyon, Chemin du Grand Revoyet, 69600 Oullins, France
- *Sophie Rome:
| |
Collapse
|
1496
|
Cucak H, Hansen G, Vrang N, Skarsfeldt T, Steiness E, Jelsing J. The IL-1β Receptor Antagonist SER140 Postpones the Onset of Diabetes in Female Nonobese Diabetic Mice. J Diabetes Res 2016; 2016:7484601. [PMID: 26953152 PMCID: PMC4756207 DOI: 10.1155/2016/7484601] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 01/07/2016] [Accepted: 01/10/2016] [Indexed: 12/21/2022] Open
Abstract
The cytokine interleukin-1β (IL-1β) is known to stimulate proinflammatory immune responses and impair β-cell function and viability, all critical events in the pathogenesis of type 1 diabetes (T1D). Here we evaluate the effect of SER140, a small peptide IL-1β receptor antagonist, on diabetes progression and cellular pancreatic changes in female nonobese diabetic (NOD) mice. Eight weeks of treatment with SER140 reduced the incidence of diabetes by more than 50% compared with vehicle, decreased blood glucose, and increased plasma insulin. Additionally, SER140 changed the endocrine and immune cells dynamics in the NOD mouse pancreas. Together, the data suggest that SER140 treatment postpones the onset of diabetes in female NOD mice by interfering with IL-1β activated pathways.
Collapse
Affiliation(s)
| | | | - Niels Vrang
- Gubra ApS, Agern Alle 1, 2970 Hørsholm, Denmark
| | | | - Eva Steiness
- Serodus ASA, Gaustadalléen 21, 0349 Oslo, Norway
| | - Jacob Jelsing
- Gubra ApS, Agern Alle 1, 2970 Hørsholm, Denmark
- *Jacob Jelsing:
| |
Collapse
|
1497
|
Abstract
Type 1 diabetes (T1D) results from an autoimmune-mediated destruction of pancreatic β cells. The incidence of T1D is on the rise globally around 3% to 5% per year and rapidly increasing incidence in younger children is of the greatest concern. currently, there is no way to cure or prevent T1D; hence, a deeper understanding of the underlying molecular mechanisms of this disease is essential to the development of new effective therapies. The endoplasmic reticulum (ER) is an organelle with multiple functions that are essential for cellular homeostasis. Excessive demand on the ER, chronic inflammation, and environmental factors lead to ER stress and to re-establish cellular homeostasis, the adaptive unfolded protein response (UPR) is triggered. However, chronic ER stress leads to a switch from a prosurvival to a proapoptotic UPR, resulting in cell death. Accumulating data have implicated ER stress and defective UPR in the pathogenesis of inflammatory and autoimmune diseases, and ER stress has been implicated in β-cell failure in type 2 diabetes. However, the role of ER stress and the UPR in β-cell pathophysiology and in the initiation and propagation of the autoimmune responses in T1D remains undefined. This review will highlight the current understanding and recent in vivo data on the role of ER stress and adaptive responses in T1D pathogenesis and the potential therapeutic aspect of enhancing β-cell ER function and restoring UPR defects as novel clinical strategies against this disease.
Collapse
|
1498
|
Leslie RD, Palmer J, Schloot NC, Lernmark A. Diabetes at the crossroads: relevance of disease classification to pathophysiology and treatment. Diabetologia 2016; 59:13-20. [PMID: 26498592 DOI: 10.1007/s00125-015-3789-z] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/21/2015] [Indexed: 12/16/2022]
Abstract
Diabetes is not a single homogeneous disease but composed of many diseases with hyperglycaemia as a common feature. Four factors have, historically, been used to identify this diversity: the age at onset; the severity of the disease, i.e. degree of loss of beta cell function; the degree of insulin resistance and the presence of diabetes-associated autoantibodies. Our broad understanding of the distinction between the two major types, type 1 diabetes mellitus and type 2 diabetes mellitus, are based on these factors, but it has become apparent that they do not precisely capture the different disease forms. Indeed, both major types of diabetes have common features, encapsulated by adult-onset autoimmune diabetes and maturity-onset diabetes of the young. As a result, there has been a repositioning of our understanding of diabetes. In this review, drawing on recent literature, we discuss the evidence that autoimmune type 1 diabetes has a broad clinical phenotype with diverse therapeutic options, while the term non-autoimmune type 2 diabetes obscures the optimal management strategy because it encompasses substantial heterogeneity. Underlying these developments is a general progression towards precision medicine with the need for precise patient characterisation, currently based on clinical phenotypes but in future augmented by laboratory-based tests.
Collapse
Affiliation(s)
- R David Leslie
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK.
| | - Jerry Palmer
- University of Washington, VA Puget Sound Health Care System, Seattle, USA
| | - Nanette C Schloot
- Institute for Clinical Diabetology at the German Diabetes Center, Heinrich-Heine University, Düsseldorf, Germany
- Lilly Deutschland GmbH, Bad Homburg, Germany
| | - Ake Lernmark
- Department of Clinical Sciences, Lund University/CRC, Malmö, Sweden
| |
Collapse
|
1499
|
Rees J, Gaida JE, Silbernagel KG, Zwerver J, Anthony JS, Scott A. Rehabilitation of Tendon Problems in Patients with Diabetes Mellitus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 920:199-208. [PMID: 27535262 DOI: 10.1007/978-3-319-33943-6_19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Exercise is crucial in the management of diabetes mellitus and its associated complications. However, individuals with diabetes have a heightened risk of musculoskeletal problems, including tendon pathologies. Diabetes has a significant impact on the function of tendons due to the accumulation of advanced glycation end-products in the load-bearing collagen. In addition, tendon vascularity and healing may be reduced due to diabetes-induced changes in the peripheral vascular system, and impaired synthesis of collagen and glycosaminoglycan. The current chapter presents an evidence-based discussion of considerations for the rehabilitation of tendon problems in people with diabetes. The following conditions are discussed in detail - calcific tendinopathy, tenosynovitis, tendon rupture, and non-calcifying tendinopathy. Common diabetes-related findings are presented, along with their potential impact on tendinopathy management and suggested modifications to standard tendinopathy treatment protocols. A holistic approach should be used to optimize musculotendinous function, including a comprehensive exercise prescription addressing strength, flexibility, and aerobic fitness.
Collapse
Affiliation(s)
- Jonathan Rees
- Department of Rheumatology, Cambridge University Hospitals, Addenbrooke's Hospital, Cambridge, UK
- Academic Department of Sport and Exercise Medicine, Queen Mary College, London, UK
- Department of Sport and Exercise Medicine, Fortius Clinic, London, UK
| | - Jamie E Gaida
- University of Canberra Research Institute for Sport and Exercise (UCRISE), Discipline of Physiotherapy, University of Canberra, Canberra, ACT, Australia
| | | | - Johannes Zwerver
- Center for Sports Medicine, UMC Groningen, 30.001, 9700, RB Groningen, The Netherlands
| | - Joseph S Anthony
- Department of Physical Therapy, University of British Columbia, Vancouver, BC, Canada
| | - Alex Scott
- Department of Physical Therapy, Centre for Hip Health and Mobility, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
1500
|
Sima C, Van Dyke TE. Therapeutic Targets for Management of Periodontitis and Diabetes. Curr Pharm Des 2016; 22:2216-37. [PMID: 26881443 PMCID: PMC4854768 DOI: 10.2174/1381612822666160216150338] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/15/2016] [Indexed: 11/22/2022]
Abstract
The increasing incidence of diabetes mellitus (DM) and chronic periodontitis (CP) worldwide imposes a rethinking of individualized therapy for patients with both conditions. Central to bidirectional links between DM and CP is deregulated systemic inflammation and dysfunctional immune responses to altered-self and non-self. Control of blood glucose levels and metabolic imbalances associated with hyperglycemia in DM, and disruption of pathogenic subgingival biofilms in CP are currently the main therapeutic approaches for these conditions. Mounting evidence suggests the need to integrate immune modulatory therapeutics in treatment regimens that address the unresolved inflammation associated with DM and CP. The current review discusses the pathogenesis of DM and CP with emphasis on deregulated inflammation, current therapeutic approaches and the novel pro-resolution lipid mediators derived from Ω-3 polyunsaturated fatty acids.
Collapse
Affiliation(s)
- Corneliu Sima
- Corneliu Sima, 245 First Street, Room 5145, Cambridge, MA, 02142, USA.
| | | |
Collapse
|