151
|
Al-Hawary SIS, Saleh RO, Taher SG, Ahmed SM, Hjazi A, Yumashev A, Ghildiyal P, Qasim MT, Alawadi A, Ihsan A. Tumor-derived lncRNAs: Behind-the-scenes mediators that modulate the immune system and play a role in cancer pathogenesis. Pathol Res Pract 2024; 254:155123. [PMID: 38277740 DOI: 10.1016/j.prp.2024.155123] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/28/2024]
Abstract
Having been involved in complex cellular regulatory networks and cell-to-cell communications, non-coding RNAs (lncRNAs) have become functional carriers that transmit information between cells and tissues, modulate tumor microenvironments, encourage angiogenesis and invasion, and make tumor cells more resistant to drugs. Immune cells' exosomal lncRNAs may be introduced into tumor cells to influence the tumor's course and the treatment's effectiveness. Research has focused on determining if non-coding RNAs affect many target genes to mediate regulating recipient cells. The tumor microenvironment's immune and cancer cells are influenced by lncRNAs, which may impact a treatment's efficacy. The lncRNA-mediated interaction between cancer cells and immune cells invading the tumor microenvironment has been the subject of numerous recent studies. On the other hand, tumor-derived lncRNAs' control over the immune system has not gotten much attention and is still a relatively new area of study. Tumor-derived lncRNAs are recognized to contribute to tumor immunity, while the exact mechanism is unclear.
Collapse
Affiliation(s)
| | - Raed Obaid Saleh
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Iraq.
| | - Sada Gh Taher
- National University of Science and Technology, Dhi Qar, Iraq
| | | | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Alexey Yumashev
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Pallavi Ghildiyal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Maytham T Qasim
- College of Health and Medical Technology, Al-Ayen University, Thi-Qar 64001, Iraq
| | - Ahmed Alawadi
- College of Health and Medical Technology, Al-Ayen University, Thi-Qar 64001, Iraq; College of Technical Engineering, the Islamic University, Najaf, Iraq; College of Technical Engineering, the Islamic University of Al Diwaniyah, Iraq
| | - Ali Ihsan
- College of Technical Engineering, the Islamic University of Babylon, Iraq; Department of Pediatrics, General Medicine Practice Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia; Department of Medical Laboratory Technique, Imam Ja'afar Al-Sadiq University, Al-Muthanna 66002, Iraq
| |
Collapse
|
152
|
Muñoz-Jurado A, Escribano BM, Galván A, Valdelvira ME, Caballero-Villarraso J, Giraldo AI, Santamaría A, Luque E, Agüera E, LaTorre M, Túnez I. Neuroprotective and antioxidant effects of docosahexaenoic acid (DHA) in an experimental model of multiple sclerosis. J Nutr Biochem 2024; 124:109497. [PMID: 37875228 DOI: 10.1016/j.jnutbio.2023.109497] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 05/03/2023] [Accepted: 10/19/2023] [Indexed: 10/26/2023]
Abstract
Multiple sclerosis (MS) is a chronic demyelinating disease, whose etiology is not yet fully understood, although there are several factors that can increase the chances of suffering from it. These factors include nutrition, which may be involved in the pathogenesis of the disease. In relation to nutrition, docosahexaenoic acid (DHA), an omega-3 polyunsaturated fatty acid (n-3 PUFA), has emerged as an important player in the regulation of neuroinflammation, being considered a pleiotropic molecule. This study aimed to evaluate the effect of DHA supplementation on clinical state and oxidative stress produced by experimental autoimmune encephalomyelitis (EAE), an animal model of MS. Twenty-five Dark Agouti rats which were used divided into Control Group, Control+Vehicle Group, Control+DHA Group, EAE Group, and EAE+DHA Group. DHA was administered for 51 days by intraperitoneal (i.p.) injection at a dose of 40 mg/kg, once a day, 5 days a week. DHA supplementation produced a decrease in oxidative stress, as well as an improvement in the clinical score of the disease. DHA could exert a beneficial effect on the clinic of MS, through the activation of the antioxidant factor Nrf2.
Collapse
Affiliation(s)
- Ana Muñoz-Jurado
- Department of Cell Biology, Physiology and Immunology, Faculty of Veterinary Medicine, University of Cordoba, Cordoba, Spain
| | - Begoña M Escribano
- Department of Cell Biology, Physiology and Immunology, Faculty of Veterinary Medicine, University of Cordoba, Cordoba, Spain; Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Cordoba, Spain.
| | - Alberto Galván
- Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Cordoba, Spain; Department of Biochemistry and Molecular Biology, Faculty of Medicine and Nursing, University of Cordoba, Cordoba, Spain
| | - Manuel E Valdelvira
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and Nursing, University of Cordoba, Cordoba, Spain
| | - Javier Caballero-Villarraso
- Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Cordoba, Spain; Department of Biochemistry and Molecular Biology, Faculty of Medicine and Nursing, University of Cordoba, Cordoba, Spain; Analysis Service, Reina Sofia University Hospital, Cordoba, Spain
| | - Ana I Giraldo
- Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Cordoba, Spain; Department of Biochemistry and Molecular Biology, Faculty of Medicine and Nursing, University of Cordoba, Cordoba, Spain
| | - Abel Santamaría
- Laboratory of exciting amino acids, National Institute of Neurology and Neurosurgery, Mexico City, Mexico
| | - Evelio Luque
- Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Cordoba, Spain; Department of Morphological Sciences, Histology Section, Faculty of Medicine and Nursing, University of Cordoba, Cordoba, Spain
| | - Eduardo Agüera
- Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Cordoba, Spain; Neurology Service, Reina Sofia University Hospital, Cordoba, Spain
| | - Manuel LaTorre
- Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Cordoba, Spain
| | - Isaac Túnez
- Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Cordoba, Spain; Department of Biochemistry and Molecular Biology, Faculty of Medicine and Nursing, University of Cordoba, Cordoba, Spain; Cooperative Research Thematic Excellent Network on Brain Stimulation (REDESTIM), Madrid, Spain.
| |
Collapse
|
153
|
Ji XY, Guo YX, Wang LB, Wu WC, Wang JQ, He J, Gao R, Rasouli J, Gao MY, Wang ZH, Xiao D, Zhang WF, Ciric B, Zhang Y, Li X. Microglia-derived exosomes modulate myelin regeneration via miR-615-5p/MYRF axis. J Neuroinflammation 2024; 21:29. [PMID: 38246987 PMCID: PMC10801965 DOI: 10.1186/s12974-024-03019-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
Demyelination and failure of remyelination in the central nervous system (CNS) characterize a number of neurological disorders. Spontaneous remyelination in demyelinating diseases is limited, as oligodendrocyte precursor cells (OPCs), which are often present in demyelinated lesions in abundance, mostly fail to differentiate into oligodendrocytes, the myelinating cells in the CNS. In addition to OPCs, the lesions are assembled numbers of activated resident microglia/infiltrated macrophages; however, the mechanisms and potential role of interactions between the microglia/macrophages and OPCs are poorly understood. Here, we generated a transcriptional profile of exosomes from activated microglia, and found that miR-615-5p was elevated. miR-615-5p bound to 3'UTR of myelin regulator factor (MYRF), a crucial myelination transcription factor expressed in oligodendrocyte lineage cells. Mechanistically, exosomes from activated microglia transferred miR-615-5p to OPCs, which directly bound to MYRF and inhibited OPC maturation. Furthermore, an effect of AAV expressing miR-615-5p sponge in microglia was tested in experimental autoimmune encephalomyelitis (EAE) and cuprizone (CPZ)-induced demyelination model, the classical mouse models of multiple sclerosis. miR-615-5p sponge effectively alleviated disease progression and promoted remyelination. This study identifies miR-615-5p/MYRF as a new target for the therapy of demyelinating diseases.
Collapse
Affiliation(s)
- Xiao-Yu Ji
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Yu-Xin Guo
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Li-Bin Wang
- The Nervous System Disease Diagnosis and Treatment Engineering Technology Research Center of Ningxia, Yinchuan, 750001, China
| | - Wen-Cheng Wu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Jia-Qi Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Jin He
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Rui Gao
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Javad Rasouli
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Meng-Yuan Gao
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Zhen-Hai Wang
- The Nervous System Disease Diagnosis and Treatment Engineering Technology Research Center of Ningxia, Yinchuan, 750001, China
| | - Dan Xiao
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Wei-Feng Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Bogoljub Ciric
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| | - Yuan Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China.
| | - Xing Li
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China.
| |
Collapse
|
154
|
Youness RA, Habashy DA, Khater N, Elsayed K, Dawoud A, Hakim S, Nafea H, Bourquin C, Abdel-Kader RM, Gad MZ. Role of Hydrogen Sulfide in Oncological and Non-Oncological Disorders and Its Regulation by Non-Coding RNAs: A Comprehensive Review. Noncoding RNA 2024; 10:7. [PMID: 38250807 PMCID: PMC10801522 DOI: 10.3390/ncrna10010007] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/23/2024] Open
Abstract
Recently, myriad studies have defined the versatile abilities of gasotransmitters and their synthesizing enzymes to play a "Maestro" role in orchestrating several oncological and non-oncological circuits and, thus, nominated them as possible therapeutic targets. Although a significant amount of work has been conducted on the role of nitric oxide (NO) and carbon monoxide (CO) and their inter-relationship in the field of oncology, research about hydrogen sulfide (H2S) remains in its infancy. Recently, non-coding RNAs (ncRNAs) have been reported to play a dominating role in the regulation of the endogenous machinery system of H2S in several pathological contexts. A growing list of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are leading the way as upstream regulators for H2S biosynthesis in different mammalian cells during the development and progression of human diseases; therefore, their targeting can be of great therapeutic benefit. In the current review, the authors shed the light onto the biosynthetic pathways of H2S and their regulation by miRNAs and lncRNAs in various oncological and non-oncological disorders.
Collapse
Affiliation(s)
- Rana A. Youness
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
- Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU), New Administrative Capital, Cairo 11835, Egypt
| | - Danira Ashraf Habashy
- Pharmacology and Toxicology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
- Clinical Pharmacy Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
| | - Nour Khater
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
| | - Kareem Elsayed
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
| | - Alyaa Dawoud
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
| | - Sousanna Hakim
- Pharmacology and Toxicology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
| | - Heba Nafea
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
| | - Carole Bourquin
- School of Pharmaceutical Sciences, Institute of Pharmaceutical Sciences of Western Switzerland, Department of Anaesthesiology, Pharmacology, Intensive Care and Emergency Medicine, University of Geneva, 1211 Geneva, Switzerland;
| | - Reham M. Abdel-Kader
- Pharmacology and Toxicology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
| | - Mohamed Z. Gad
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
| |
Collapse
|
155
|
Sartorius K, Sartorius B, Winkler C, Chuturgoon A, Shen TW, Zhao Y, An P. Serum microRNA Profiles and Pathways in Hepatitis B-Associated Hepatocellular Carcinoma: A South African Study. Int J Mol Sci 2024; 25:975. [PMID: 38256049 PMCID: PMC10815595 DOI: 10.3390/ijms25020975] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/24/2024] Open
Abstract
The incidence and mortality of hepatocellular carcinoma (HCC) in Sub-Saharan Africa is projected to increase sharply by 2040 against a backdrop of limited diagnostic and therapeutic options. Two large South African-based case control studies have developed a serum-based miRNome for Hepatitis B-associated hepatocellular carcinoma (HBV-HCC), as well as identifying their gene targets and pathways. Using a combination of RNA sequencing, differential analysis and filters including a unique molecular index count (UMI) ≥ 10 and log fold change (LFC) range > 2: <-0.5 (p < 0.05), 91 dysregulated miRNAs were characterized including 30 that were upregulated and 61 were downregulated. KEGG analysis, a literature review and other bioinformatic tools identified the targeted genes and HBV-HCC pathways of the top 10 most dysregulated miRNAs. The results, which are based on differentiating miRNA expression of cases versus controls, also develop a serum-based miRNA diagnostic panel that indicates 95.9% sensitivity, 91.0% specificity and a Youden Index of 0.869. In conclusion, the results develop a comprehensive African HBV-HCC miRNome that potentially can contribute to RNA-based diagnostic and therapeutic options.
Collapse
Affiliation(s)
- Kurt Sartorius
- Faculty of Commerce, Law and Management, University of the Witwatersrand, Johannesburg 2001, South Africa
- School of Laboratory Medicine and Molecular Sciences, University of Kwazulu-Natal, Durban 4041, South Africa;
- Africa Hepatopancreatobiliary Cancer Consortium (AHPBCC), Mayo Clinic, Jacksonville, FL 32224, USA
| | - Benn Sartorius
- School of Public Health, University of Queensland, Brisbane, QLD 4102, Australia
| | - Cheryl Winkler
- Centre for Cancer Research, Basic Research Laboratory, National Cancer Institute, Frederick Natifol Laboratory for Cancer Research, National Institute of Health, Frederick, MD 21701, USA
| | - Anil Chuturgoon
- School of Laboratory Medicine and Molecular Sciences, University of Kwazulu-Natal, Durban 4041, South Africa;
| | - Tsai-Wei Shen
- CCR-SF Bioinformatics Group, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Yongmei Zhao
- CCR-SF Bioinformatics Group, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Ping An
- Centre for Cancer Research, Basic Research Laboratory, National Cancer Institute, Frederick Natifol Laboratory for Cancer Research, National Institute of Health, Frederick, MD 21701, USA
| |
Collapse
|
156
|
Musket A, Davern S, Elam BM, Musich PR, Moorman JP, Jiang Y. The application of radionuclide therapy for breast cancer. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2024; 3:1323514. [PMID: 39355029 PMCID: PMC11440853 DOI: 10.3389/fnume.2023.1323514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/27/2023] [Indexed: 10/03/2024]
Abstract
Radionuclide-mediated diagnosis and therapy have emerged as effective and low-risk approaches to treating breast cancer. Compared to traditional anatomic imaging techniques, diagnostic radionuclide-based molecular imaging systems exhibit much greater sensitivity and ability to precisely illustrate the biodistribution and metabolic processes from a functional perspective in breast cancer; this transitions diagnosis from an invasive visualization to a noninvasive visualization, potentially ensuring earlier diagnosis and on-time treatment. Radionuclide therapy is a newly developed modality for the treatment of breast cancer in which radionuclides are delivered to tumors and/or tumor-associated targets either directly or using delivery vehicles. Radionuclide therapy has been proven to be eminently effective and to exhibit low toxicity when eliminating both primary tumors and metastases and even undetected tumors. In addition, the specific interaction between the surface modules of the delivery vehicles and the targets on the surface of tumor cells enables radionuclide targeting therapy, and this represents an exceptional potential for this treatment in breast cancer. This article reviews the development of radionuclide molecular imaging techniques that are currently employed for early breast cancer diagnosis and both the progress and challenges of radionuclide therapy employed in breast cancer treatment.
Collapse
Affiliation(s)
- Anna Musket
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Sandra Davern
- Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Brianna M Elam
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Philip R Musich
- Department of Biomedical Science, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Jonathan P Moorman
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Yong Jiang
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| |
Collapse
|
157
|
Elemam NM, Mekky RY, Rashid G, Braoudaki M, Youness RA. Pharmacogenomic and epigenomic approaches to untangle the enigma of IL-10 blockade in oncology. Expert Rev Mol Med 2024; 26:e1. [PMID: 38186186 PMCID: PMC10941350 DOI: 10.1017/erm.2023.26] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/29/2023] [Accepted: 11/10/2023] [Indexed: 01/09/2024]
Abstract
The host immune system status remains an unresolved mystery among several malignancies. An immune-compromised state or smart immune-surveillance tactics orchestrated by cancer cells are the primary cause of cancer invasion and metastasis. Taking a closer look at the tumour-immune microenvironment, a complex network and crosstalk between infiltrating immune cells and cancer cells mediated by cytokines, chemokines, exosomal mediators and shed ligands are present. Cytokines such as interleukins can influence all components of the tumour microenvironment (TME), consequently promoting or suppressing tumour invasion based on their secreting source. Interleukin-10 (IL-10) is an interlocked cytokine that has been associated with several types of malignancies and proved to have paradoxical effects. IL-10 has multiple functions on cellular and non-cellular components within the TME. In this review, the authors shed the light on the regulatory role of IL-10 in the TME of several malignant contexts. Moreover, detailed epigenomic and pharmacogenomic approaches for the regulation of IL-10 were presented and discussed.
Collapse
Affiliation(s)
- Noha M. Elemam
- Research Instiute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Radwa Y. Mekky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA University), Cairo 12622, Egypt
| | - Gowhar Rashid
- Amity Medical School, Amity University, Gurugram (Manesar) 122413, Haryana, India
| | - Maria Braoudaki
- Department of Clinical, Pharmaceutical and Biological Sciences, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Rana A. Youness
- Biology and Biochemistry Department, Faculty of Biotechnology, German International University, Cairo 11835, Egypt
| |
Collapse
|
158
|
Meng X, Ma F, Yu D. The diverse effects of cisplatin on tumor microenvironment: Insights and challenges for the delivery of cisplatin by nanoparticles. ENVIRONMENTAL RESEARCH 2024; 240:117362. [PMID: 37827371 DOI: 10.1016/j.envres.2023.117362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/11/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
Cisplatin is a well-known platinum-based chemotherapy medication that is widely utilized for some malignancies. Despite the direct cytotoxic consequences of cisplatin on tumor cells, studies in the recent decade have revealed that cisplatin can also affect different cells and their secretions in the tumor microenvironment (TME). Cisplatin has complex impacts on the TME, which may contribute to its anti-tumor activity or drug resistance mechanisms. These regulatory effects of cisplatin play a paramount function in tumor growth, invasion, and metastasis. This paper aims to review the diverse impacts of cisplatin and nanoparticles loaded with cisplatin on cancer cells and also non-cancerous cells in TME. The impacts of cisplatin on immune cells, tumor stroma, cancer cells, and also hypoxia will be discussed in the current review. Furthermore, we emphasize the challenges and prospects of using cisplatin in combination with other adjuvants and therapeutic modalities that target TME. We also discuss the potential synergistic effects of cisplatin with immune checkpoint inhibitors (ICIs) and other agents with anticancer potentials such as polyphenols and photosensitizers. Furthermore, the potential of nanoparticles for targeting TME and better delivery of cisplatin into tumors will be discussed.
Collapse
Affiliation(s)
- Xinxin Meng
- Zhuji Sixth People's Hospital of Zhejiang Province, Zhuji, Zhejiang, 311801, China
| | - Fengyun Ma
- Zhuji People's Hospital of Zhejiang Province, Zhuji Affiliated Hospital of Shaoxing University, Zhuji, Zhejiang, 311800, China.
| | - Dingli Yu
- Zhuji People's Hospital of Zhejiang Province, Zhuji Affiliated Hospital of Shaoxing University, Zhuji, Zhejiang, 311800, China
| |
Collapse
|
159
|
Omidifar N, Pazoki N, Shokripour M, Fattahi MR, Safarpour AR, Fallahzadeh Abarghooee E, Nikmanesh N, Shamsdin SA, Akrami H, Saghi SA, Nikmanesh Y. The Effect of Coronavirus Disease 2019 on the Quality of Associated Care in Patients with Gastric Cancer. Middle East J Dig Dis 2024; 16:12-22. [PMID: 39050096 PMCID: PMC11264831 DOI: 10.34172/mejdd.2024.363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/09/2023] [Indexed: 07/27/2024] Open
Abstract
Coronavirus is a new virus that has affected human life on a large scale; it has infected millions of people and killed hundreds of thousands of people. In contrast, among cancers, stomach neoplasia is the most common cancer of the upper gastrointestinal (UGI) tract. COVID-19 disease has disrupted the optimal management of patients with cancer. Metastasis, deterioration of the patient's nutritional status, UGI bleeding, and increased surgical complications are all consequences of delayed treatment of patients with gastric cancer. However, there is still insufficient evidence on the immunogenicity of the vaccine and the protection provided by coronavirus vaccines in patients with cancer, especially those with immunodeficiency or those who are treated for certain types of cancers. Also, as part of the prevention and control of COVID-19 disease, nutritional support for patients with gastrointestinal cancer is particularly important, and the psychological and physiological limitations caused by the disease duration are hurting the well-being of patients. Therefore, the assessment of the impact of the coronavirus on cancer should be treated as an important issue, and healthcare professionals should be prepared to deal with the long-term effects of the coronavirus disease.
Collapse
Affiliation(s)
- Navid Omidifar
- Biotechnology Research Center and Department of Pathology, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nasrin Pazoki
- Department of Genetics, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mansoureh Shokripour
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Fattahi
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Reza Safarpour
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Nika Nikmanesh
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyedeh Azra Shamsdin
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hassan Akrami
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyyed Amirreza Saghi
- Cellular and Molecular Biology Research Center, Larestan University of Medical Sciences, Larestan, Iran
- Student Research Committee, Larestan University of Medical Sciences, Larestan, Iran
| | - Yousef Nikmanesh
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
160
|
Leithy AAE, Bakr YM, Hassan NM, Dardeer KT, Assem M, Wahab AHAA. PTCSC3, XIST, GAS5, UCA1, and HIFAL: Five lncRNAs Emerging as Potential Prognostic Players in Egyptian Adult Acute Myeloid Leukemia (AML) Patients. Cancer Control 2024; 31:10732748241309044. [PMID: 39673539 DOI: 10.1177/10732748241309044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2024] Open
Abstract
BACKGROUND AND AIMS So far, long noncoding RNAs (lncRNAs) signatures in acute myeloid leukemia (AML) are poorly understood. The present study aims to explore the prognostic significance of eleven cancer-related lncRNAs in bone marrow (BM) samples from adult Egyptian AML patients. MATERIALS AND METHODS In this study, we analyzed eleven lncRNAs using the qRT-PCR assay in the bone marrow (BM) of 79 de novo AML adult patients before receiving any therapy. RESULTS Five lncRNAs out of 11 were aberrantly expressed, and two lncRNAs influenced significantly the patient's overall survival (OS). LncRNA-XIST was favorable when overexpressed (in univariate and multivariate analysis, P-value = .001). LncRNA-GAS5 adversely affected the OS (only in multivariate analysis P-value = .02). Two other lncRNAs (UCA1 and HIFAL) impacted complete remission induction (CR) significantly in univariate analysis (P-value = .046 for both). Furthermore, lncRNA-UCA1 affected CR significantly in multivariate COX regression analysis (P-value = .004). The 4 previously mentioned lncRNAs were among the 9 downregulated lncRNAs. Instead, the only 2 upregulated lncRNAs (SNHG15, MALAT1) did not significantly influence neither CR induction nor OS. LncRNA-PTCSC3, a fifth lncRNA, emerged as the only one that could predict relapse occurrence in an upfront original BM sample. CONCLUSION Two lncRNAs out of eleven (lncRNA-XIST and GAS5) impacted OS, and two other lncRNAs (UCA1 and HIFAL) affected CR in adult de novo AML patients. LncRNA-PTCSC3 predict relapse, however, further validation is still required.
Collapse
Affiliation(s)
- Asmaa A El Leithy
- College of Biotechnology, Misr University for Science and Technology (MUST), Giza, Egypt
| | - Yasser Mabrouk Bakr
- Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Naglaa M Hassan
- Clinical Pathology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | | | - Magda Assem
- Clinical Pathology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | | |
Collapse
|
161
|
Kang X, Huang Y, Wang H, Jadhav S, Yue Z, Tiwari AK, Babu RJ. Tumor-Associated Macrophage Targeting of Nanomedicines in Cancer Therapy. Pharmaceutics 2023; 16:61. [PMID: 38258072 PMCID: PMC10819517 DOI: 10.3390/pharmaceutics16010061] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/24/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
The tumor microenvironment (TME) is pivotal in tumor growth and metastasis, aligning with the "Seed and Soil" theory. Within the TME, tumor-associated macrophages (TAMs) play a central role, profoundly influencing tumor progression. Strategies targeting TAMs have surfaced as potential therapeutic avenues, encompassing interventions to block TAM recruitment, eliminate TAMs, reprogram M2 TAMs, or bolster their phagocytic capabilities via specific pathways. Nanomaterials including inorganic materials, organic materials for small molecules and large molecules stand at the forefront, presenting significant opportunities for precise targeting and modulation of TAMs to enhance therapeutic efficacy in cancer treatment. This review provides an overview of the progress in designing nanoparticles for interacting with and influencing the TAMs as a significant strategy in cancer therapy. This comprehensive review presents the role of TAMs in the TME and various targeting strategies as a promising frontier in the ever-evolving field of cancer therapy. The current trends and challenges associated with TAM-based therapy in cancer are presented.
Collapse
Affiliation(s)
- Xuejia Kang
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA;
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, AL 36849, USA
| | - Yongzhuo Huang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Guangzhou 528400, China;
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China;
| | - Huiyuan Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China;
| | - Sanika Jadhav
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA;
| | - Zongliang Yue
- Department of Health Outcome and Research Policy, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, USA;
| | - Amit K. Tiwari
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas of Medical Sciences, Little Rock, AR 72205, USA;
| | - R. Jayachandra Babu
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA;
| |
Collapse
|
162
|
Liu HT, Rau CS, Liu YW, Hsieh TM, Huang CY, Chien PC, Lin HP, Wu CJ, Chuang PC, Hsieh CH. Deciphering the Divergent Gene Expression Landscapes of m6A/m5C/m1A Methylation Regulators in Hepatocellular Carcinoma Through Single-Cell and Bulk RNA Transcriptomic Analysis. J Hepatocell Carcinoma 2023; 10:2383-2395. [PMID: 38164510 PMCID: PMC10758181 DOI: 10.2147/jhc.s448047] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction RNA modifications mediated by the m6A, m1A, and m5C regulatory genes are crucial for the progression of malignancy. This study aimed to explore the expression of regulator genes for m6A/m5C/m1A methylation at the single-cell level and to validate their expression in cancerous and adjacent para-cancerous liver tissues of adult patients with HCC who underwent tumor resection. Methods The bulk sequencing from The Cancer Genome Atlas (TCGA) database and the single-cell RNA sequencing (scRNA-seq) data obtained from the Gene Expression Omnibus (GEO) database were used to identify the dysregulated m6A/m5C/m1A genes for hepatocellular carcinoma (HCC). A real-time polymerase chain reaction (real-time PCR) was used to measure the expression of dysregulated m6A/m5C/m1A genes in collected human HCC tissues and compared with adjacent para-cancerous liver tissues. Immune cell infiltration with these significantly expressed methylation-related genes was evaluated using Timer2.0. Results A discrepancy in m6A/m5C/m1A gene expression was observed between bulk sequencing and scRNA-seq. The clustered heatmap of the scRNA-seq-identified dysregulated m6A/m5C/m1A genes in TCGA cohort revealed heterogeneous expression of these methylation regulators within the cancer, whereas their expression in the adjacent liver tissues was more homogeneous. The real-time PCR validated the significant overexpression of DNMT1, NSUN5, TRMT6, IGF2BP1, and IGFBP3, which were identified using scRNA-seq, and IGFBP2, which was identified using bulk sequencing. These dysregulated methylation genes are mainly correlated with the infiltration of natural killer cells. Discussion This study suggests that cellular diversity inside tumors contributes to the discrepancy in the expression of methylation regulator genes between traditional bulk sequencing and scRNA-seq. This study identified five regulatory genes that will be the focus of further studies regarding the function of m6A/m5C/m1A in HCC.
Collapse
Affiliation(s)
- Hang-Tsung Liu
- Department of Trauma Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Cheng-Shyuan Rau
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Yueh-Wei Liu
- Department of General Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Ting-Min Hsieh
- Department of Trauma Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Chun-Ying Huang
- Department of Trauma Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Peng-Chen Chien
- Department of Plastic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Hui-Ping Lin
- Department of Plastic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Chia-Jung Wu
- Department of Plastic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Pei-Chin Chuang
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan
| | - Ching-Hua Hsieh
- Department of Plastic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| |
Collapse
|
163
|
Luo W, Li T, Song Q, Zhang L, Cao M. Prognostic value of lncRNA LINC01018 in prostate cancer by regulating miR-182-5p (The role of LINC01018 in prostate cancer). NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2023; 43:1077-1089. [PMID: 38147366 DOI: 10.1080/15257770.2023.2298408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/01/2023] [Accepted: 12/18/2023] [Indexed: 12/27/2023]
Abstract
LncRNAs are abnormally expressed in a variety of cancers and play unique roles in therapy. Based on this, the prognostic value of lncRNA LINC01018 in prostate cancer was discussed in this study. LINC01018 was underexpressed in prostate cancer tissues and cells, while miR-182-5p was elevated (***p < 0.001). Overexpression of LINC01018 may inhibit the progression of prostate cancer by targeting miR-182-5p. This study revealed that upregulated LINC01018 may prolong the overall survival of patients with prostate cancer (log-rank p = 0.042), and LINC01018 may become a prognostic biomarker for patients with prostate cancer, which brings a new direction for the treatment of patients.
Collapse
Affiliation(s)
- Wentao Luo
- Department of Urology Andrology, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Tingting Li
- Department of Urology Andrology, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Qiong Song
- Department of Urology Andrology, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Lixiao Zhang
- Department of Urology Andrology, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Min Cao
- Department of Urology Andrology, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| |
Collapse
|
164
|
Shi Q, Chu Q, Zeng Y, Yuan X, Wang J, Zhang Y, Xue C, Li L. Non-coding RNA methylation modifications in hepatocellular carcinoma: interactions and potential implications. Cell Commun Signal 2023; 21:359. [PMID: 38111040 PMCID: PMC10726651 DOI: 10.1186/s12964-023-01357-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/14/2023] [Indexed: 12/20/2023] Open
Abstract
RNA methylation modification plays a crucial role as an epigenetic regulator in the oncogenesis of hepatocellular carcinoma (HCC). Numerous studies have investigated the molecular mechanisms underlying the methylation of protein-coding RNAs in the progression of HCC. Beyond their impact on mRNA, methylation modifications also influence the biological functions of non-coding RNAs (ncRNAs). Here, we present an advanced and comprehensive overview of the interplay between methylation modifications and ncRNAs in HCC, with a specific focus on their potential implications for the tumor immune microenvironment. Moreover, we summarize promising therapeutic targets for HCC based on methylation-related proteins. In the future, a more profound investigation is warranted to elucidate the effects of ncRNA methylation modifications on HCC pathogenesis and devise valuable intervention strategies. Video Abstract.
Collapse
Affiliation(s)
- Qingmiao Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Qingfei Chu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yifan Zeng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xin Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jinzhi Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yaqi Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250000, China.
| |
Collapse
|
165
|
Yang Q, Fu Y, Wang J, Yang H, Zhang X. Roles of lncRNA in the diagnosis and prognosis of triple-negative breast cancer. J Zhejiang Univ Sci B 2023; 24:1123-1140. [PMID: 38057269 PMCID: PMC10710915 DOI: 10.1631/jzus.b2300067] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 06/24/2023] [Indexed: 12/08/2023]
Abstract
Breast cancer is a malignant tumor that seriously endangers women's lives. The prognosis of breast cancer patients differs among molecular types. Compared with other subtypes, triple-negative breast cancer (TNBC) has been a research hotspot in recent years because of its high degree of malignancy, strong invasiveness, rapid progression, easy of recurrence, distant metastasis, poor prognosis, and high mortality. Many studies have found that long non-coding RNA (lncRNA) plays an important role in the occurrence, proliferation, migration, recurrence, chemotherapy resistance, and other characteristics of TNBC. Some lncRNAs are expected to become biomarkers in the diagnosis and prognosis of TNBC, and even new targets for its treatment. Based on a PubMed literature search, this review summarizes the progress in research on lncRNAs in TNBC and discusses their roles in TNBC diagnosis, prognosis, and chemotherapy with the hope of providing help for future research.
Collapse
Affiliation(s)
- Qiuhui Yang
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou 310022, China
| | - Yeqin Fu
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou 310022, China
| | - Jiaxuan Wang
- Shanxi Medical University, Jinzhong 030600, China
| | - Hongjian Yang
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Xiping Zhang
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China.
| |
Collapse
|
166
|
Hao L, Li S, Deng J, Li N, Yu F, Jiang Z, Zhang J, Shi X, Hu X. The current status and future of PD-L1 in liver cancer. Front Immunol 2023; 14:1323581. [PMID: 38155974 PMCID: PMC10754529 DOI: 10.3389/fimmu.2023.1323581] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/27/2023] [Indexed: 12/30/2023] Open
Abstract
The application of immunotherapy in tumor, especially immune checkpoint inhibitors (ICIs), has played an important role in the treatment of advanced unresectable liver cancer. However, the efficacy of ICIs varies greatly among different patients, which has aroused people's attention to the regulatory mechanism of programmed death ligand-1 (PD-L1) in the immune escape of liver cancer. PD-L1 is regulated by multiple levels and signaling pathways in hepatocellular carcinoma (HCC), including gene variation, epigenetic inheritance, transcriptional regulation, post-transcriptional regulation, and post-translational modification. More studies have also found that the high expression of PD-L1 may be the main factor affecting the immunotherapy of liver cancer. However, what is the difference of PD-L1 expressed by different types of cells in the microenvironment of HCC, and which type of cells expressed PD-L1 determines the effect of tumor immunotherapy remains unclear. Therefore, clarifying the regulatory mechanism of PD-L1 in liver cancer can provide more basis for liver cancer immunotherapy and combined immune treatment strategy. In addition to its well-known role in immune regulation, PD-L1 also plays a role in regulating cancer cell proliferation and promoting drug resistance of tumor cells, which will be reviewed in this paper. In addition, we also summarized the natural products and drugs that regulated the expression of PD-L1 in HCC.
Collapse
Affiliation(s)
- Liyuan Hao
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Shenghao Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Clinical Research Center, Shijiazhuang Fifth Hospital, Shijiazhuang, Hebei, China
| | - Jiali Deng
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Na Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Fei Yu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhi Jiang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Junli Zhang
- Department of Infectious Diseases, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xinli Shi
- Center of Experimental Management, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Xiaoyu Hu
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
167
|
Arab I, Park J, Shin JJ, Shin HS, Suk K, Lee WH. Macrophage lncRNAs in cancer development: Long-awaited therapeutic targets. Biochem Pharmacol 2023; 218:115890. [PMID: 37884197 DOI: 10.1016/j.bcp.2023.115890] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
In the tumor microenvironment, the interplay among macrophages, cancer cells, and endothelial cells is multifaceted. Tumor-associated macrophages (TAMs), which often exhibit an M2 phenotype, contribute to tumor growth and angiogenesis, while cancer cells and endothelial cells reciprocally influence macrophage behavior. This complex interrelationship highlights the importance of targeting these interactions for the development of novel cancer therapies aimed at disrupting tumor progression and angiogenesis. Accumulating evidence underscores the indispensable involvement of lncRNAs in shaping macrophage functionality and contributing to the development of cancer. Animal studies have further validated the therapeutic potential of manipulating macrophage lncRNA activity to ameliorate disease severity and reduce morbidity rates. This review provides a survey of our current understanding of macrophage-associated lncRNAs, with a specific emphasis on their molecular targets and their regulatory impact on cancer progression. These lncRNAs predominantly govern macrophage polarization, favoring the dominance of M2 macrophages or TAMs. Exosomes or extracellular vesicles mediate lncRNA transfer between macrophages and cancer cells, affecting cellular functions of each other. Moreover, this review presents therapeutic strategies targeting cancer-associated lncRNAs. The insights and findings presented in this review pertaining to macrophage lncRNAs can offer valuable information for the development of treatments against cancer.
Collapse
Affiliation(s)
- Imene Arab
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jeongkwang Park
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jae-Joon Shin
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hyeung-Seob Shin
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science & Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Won-Ha Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
168
|
Zhang Z, Xu L, Zhang L, Lu J, Peng Z, Guo X, Gao J. Transcriptomics profiling reveal the heterogeneity of white and brown adipocyte. J Bioenerg Biomembr 2023; 55:423-433. [PMID: 37906396 DOI: 10.1007/s10863-023-09990-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/14/2023] [Indexed: 11/02/2023]
Abstract
The marker genes associated with white adipocytes and brown adipocytes have been previously identified; however, these markers have not been updated in several years, and the differentiation process of preadipocytes remains relatively fixed. Consequently, there has been a lack of exploration into alternative differentiation schemes. In this particular study, we present a transcriptional signature specific to brown adipocytes and white adipocytes. Notably, our findings reveal that ZNF497, ZIC1, ZFY, UTY, USP9Y, TXLNGY, TTTY14, TNNT3, TNNT2, TNNT1, TNNI1, TNNC1, TDRD15, SOX11, SLN, SFRP2, PRKY, PAX3KLHL40, PAX3, INKA2-AS1, SOX11, and TDRD15 exhibit high expression levels in brown adipocytes. XIST, HOXA10, PCAT19, HOXA7, PLSCR3, and AVPR1A exhibited high expression levels in white adipocytes, suggesting their potential as novel marker genes for the transition from white to brown adipocytes. Furthermore, our analysis revealed the coordinated activation of several pathways, including the PPAR signaling pathway, focal adhesion, retrograde endocannabinoid signaling, oxidative phosphorylation, PI3K-Akt signaling pathway, and thermogenesis pathways, in brown adipocytes. Moreover, in contrast to prevailing culture techniques, we conducted a comparative analysis of the differentiation protocols for white preadipocytes and brown preadipocytes, revealing that the differentiation outcome remained unaffected by the diverse culture schemes employed. However, the expression levels of certain marker genes in both adipocyte types were found to be altered. This investigation not only identified potential novel marker genes for adipocytes but also examined the impact of different differentiation methods on preadipocyte maturation. Consequently, these findings offer significant insights for further research on the differentiation processes of diverse adipocyte subtypes.
Collapse
Affiliation(s)
- Zhongxiao Zhang
- Department of Pediatrics, Tongren Hospital, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, No.1111, XianXia Road, Shanghai, 200336, China
| | - Liling Xu
- Department of Pediatrics, Tongren Hospital, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, No.1111, XianXia Road, Shanghai, 200336, China
| | - Ling Zhang
- Department of Pediatrics, Tongren Hospital, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, No.1111, XianXia Road, Shanghai, 200336, China
| | | | - Zhou Peng
- Department of Pediatrics, Tongren Hospital, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, No.1111, XianXia Road, Shanghai, 200336, China
| | - Xirong Guo
- Department of Pediatrics, Tongren Hospital, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, No.1111, XianXia Road, Shanghai, 200336, China.
| | - Jianfang Gao
- Department of Pediatrics, Tongren Hospital, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, No.1111, XianXia Road, Shanghai, 200336, China.
| |
Collapse
|
169
|
Cai A, Xia P, Zhou X, He Y, Lv J. MiR-1275 Targeting SPARC Promotes Gambogic Acid-Induced Inhibition of Gastric Cancer. Biochem Genet 2023; 61:2481-2495. [PMID: 37118619 DOI: 10.1007/s10528-023-10381-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 04/11/2023] [Indexed: 04/30/2023]
Abstract
Gambogic acid (GA) has been observed to effectively impede the progression of numerous types of cancers. In this study, we investigated the effects of miR-1275 and Secreted Protein Acidic and Cysteine Rich (SPARC) on GA in gastric cancer (GC). miR-1275 and SPARC expression were determined in GC cell lines and tissues using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The correlation between miR-1275 and SPARC expression was ascertained using Pearson's correlation coefficient. Cell proliferation was assessed using the cell counting kit-8 (CCK-8) assay. The Transwell assay was conducted to examine cell migration. A dual-luciferase reporter assay was used to verify the regulatory relationship between miR-1275 and SPARC. The levels of SPARC, Bcl-2, and Bax proteins were estimated using western blotting. To verify the effects of GA on the growth of GC cells in vivo, a tumorigenesis experiment was performed in nude mice. GA suppressed GC cell viability and migration, facilitated apoptosis, and inhibited tumor growth in vivo and in vitro. Low levels of miR-1275 been observed in GC cell lines and tissues. GA-treated GC cells manifested high miR-1275 levels. In functional experiments, miR-1275 enhanced the influence of GA on cell apoptosis, migration, and proliferation. Furthermore, GA treatment suppressed SPARC upregulation in GC cell lines and tissues. Pearson's correlation coefficient revealed that miR-1275 expression negatively correlated with SPARC expression. Mechanistically, miR-1275 promoted growth inhibition in GA-treated GC cells by targeting SPARC. Our study indicates that miR-1275 enhances the suppressive effect of GA on GC progression by inhibiting SPARC expression. Through this study, we contribute to the knowledge of a new mechanism by which GA suppresses GC progression.
Collapse
Affiliation(s)
- Ang Cai
- Department of Oncology, Wuhan Hospital of Traditional Chinese Medicine, No. 49, Lihuangpi Road, Jiang'an District, Wuhan, 430014, Hubei, People's Republic of China
| | - Pengfei Xia
- Department of Gastric Diseases and Liver-Gallbladder (Department of Gastroenterology), Wuhan Hospital of Traditional Chinese Medicine, Wuhan, 430014, Hubei, People's Republic of China
| | - Xiaokang Zhou
- Department of Oncology, Wuhan Hospital of Traditional Chinese Medicine, No. 49, Lihuangpi Road, Jiang'an District, Wuhan, 430014, Hubei, People's Republic of China
| | - Yao He
- Department of Oncology, Wuhan Hospital of Traditional Chinese Medicine, No. 49, Lihuangpi Road, Jiang'an District, Wuhan, 430014, Hubei, People's Republic of China
| | - Jun Lv
- Department of Oncology, Wuhan Hospital of Traditional Chinese Medicine, No. 49, Lihuangpi Road, Jiang'an District, Wuhan, 430014, Hubei, People's Republic of China.
| |
Collapse
|
170
|
Ye WY, Lu HP, Li JD, Chen G, He RQ, Wu HY, Zhou XG, Rong MH, Yang LH, He WY, Pang QY, Pan SL, Pang YY, Dang YW. Clinical Implication of E2F Transcription Factor 1 in Hepatocellular Carcinoma Tissues. Cancer Biother Radiopharm 2023; 38:684-707. [PMID: 34619053 DOI: 10.1089/cbr.2020.4342] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background: To date, the clinical management of advanced hepatocellular carcinoma (HCC) patients remains challenging and the mechanisms of E2F transcription factor 1 (E2F1) underlying HCC are obscure. Materials and Methods: Our study integrated datasets mined from several public databases to comprehensively understand the deregulated expression status of E2F1. Tissue microarrays and immunohistochemistry staining was used to validate E2F1 expression level. The prognostic value of E2F1 was assessed. In-depth subgroup analyses were implemented to compare the differentially expressed levels of E2F1 in HCC patients with various tumor stages. Functional enrichments were used to address the predominant targets of E2F1 and shedding light on their potential roles in HCC. Results: We confirmed the elevated expression of E2F1 in HCC. Subgroup analyses indicated that elevated E2F1 level was independent of various stages in HCC. E2F1 possessed moderate discriminatory capability in differentiating HCC patients from non-HCC controls. Elevated E2F1 correlated with Asian race, tumor classification, neoplasm histologic grade, eastern cancer oncology group, and plasma AFP levels. Furthermore, high E2F1 correlated with poor survival condition and pooled HR signified E2F1 as a risk factor for HCC. Enrichment analysis of differentially expressed genes, coexpressed genes, and putative targets of E2F1 emphasized the importance of cell cycle pathway, where CCNE1 and CCNA2 served as hub genes. Conclusions: We confirmed the upregulation of E2F1 and explored the prognostic value of E2F1 in HCC patients. Two putative targeted genes (CCNE1 and CCNA2) of E2F1 were identified for their potential roles in regulating cell cycle and promote antiapoptotic activity in HCC patients.
Collapse
Affiliation(s)
- Wang-Yang Ye
- Department of Pathology and The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Hui-Ping Lu
- Department of Pathology and The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Jian-Di Li
- Department of Pathology and The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Gang Chen
- Department of Pathology and The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Rong-Quan He
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Hua-Yu Wu
- Department of Cell Biology and Genetics, School of Preclinical Medicine, Guangxi Medical University, Nanning, People's Republic of China
| | - Xian-Guo Zhou
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, People's Republic of China
| | - Min-Hua Rong
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, People's Republic of China
| | - Li-Hua Yang
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Wei-Ying He
- Department of Pathology and The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Qiu-Yu Pang
- Department of Pathology and The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Shang-Ling Pan
- Department of Pathophysiology, School of Pre-clinical Medicine, Guangxi Medical University, Nanning, People's Republic of China
| | - Yu-Yan Pang
- Department of Pathology and The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Yi-Wu Dang
- Department of Pathology and The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| |
Collapse
|
171
|
Soliman AH, Youness RA, Sebak AA, Handoussa H. Phytochemical-derived tumor-associated macrophage remodeling strategy using Phoenix dactylifera L. boosted photodynamic therapy in melanoma via H19/iNOS/PD-L1 axis. Photodiagnosis Photodyn Ther 2023; 44:103792. [PMID: 37689125 DOI: 10.1016/j.pdpdt.2023.103792] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
BACKGROUND The tumor microenvironment (TME) represents a barrier to PDT efficacy among melanoma patients. The aim of this study is to employ a novel muti-tactic TME-remodeling strategy via repolarization of tumor-associated macrophages (TAMs), the main TME immune cells in melanoma, from the pro-tumor M2 into the antitumor M1 phenotype using Phoenix dactylifera L. (date palm) in combination with PDT. METHODS Screening of different date cultivars was employed to choose extracts of selective toxicity to melanoma and TAMs, not normal macrophages. Potential extracts were then fractionated and characterized by gas chromatography-mass spectrometry (GC-MS). Finally, the efficacy and the potential molecular mechanism of the co-treatment were portrayed via quantitative real-time polymerase chain reaction (qRT-PCR) analysis. RESULTS Initial screening resulted in the selection of the two Phoenix dactylifera L. cultivars Safawi and Sukkari methanolic extracts. Sukkari showed superior capacity to revert TAM phenotype into M1 as well as more prominent upregulation of M1 markers and repression of melanoma immunosuppressive markers relative to positive control (resiquimod). Molecularly, it was shown that PDT of melanoma cells in the presence of the secretome of repolarized TAMs surpassed the monotherapy via the modulation of the H19/iNOS/PD-L1immune-regulatory axis. CONCLUSION This study highlights the potential utilization of nutraceuticals in combination with PDT in the treatment of melanoma to provide a dual activity through alleviating the immune suppressive TME and potentiating the anti-tumor responses.
Collapse
Affiliation(s)
- Aya H Soliman
- Department of Pharmaceutical Biology, Faculty of Pharmacy & Biotechnology, The German University in Cairo, Main Entrance El Tagamoa El Khames, New Cairo 11511, Egypt.
| | - Rana A Youness
- Department of Pharmaceutical Biology, Faculty of Pharmacy & Biotechnology, The German University in Cairo, Main Entrance El Tagamoa El Khames, New Cairo 11511, Egypt; Department of Biology and Biochemistry, Faculty of Biotechnology, German International University, New Administrative Capital, New Cairo 11835, Egypt
| | - Aya A Sebak
- Department of Pharmaceutical Technology, Faculty of Pharmacy & Biotechnology, The German University in Cairo, New Cairo 11511, Egypt.
| | - Heba Handoussa
- Department of Pharmaceutical Biology, Faculty of Pharmacy & Biotechnology, The German University in Cairo, Main Entrance El Tagamoa El Khames, New Cairo 11511, Egypt
| |
Collapse
|
172
|
Ma L, Jiang J, Si Q, Chen C, Duan Z. IGF2BP3 Enhances the Growth of Hepatocellular Carcinoma Tumors by Regulating the Properties of Macrophages and CD8 + T Cells in the Tumor Microenvironment. J Clin Transl Hepatol 2023; 11:1308-1320. [PMID: 37719968 PMCID: PMC10500288 DOI: 10.14218/jcth.2023.00184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/26/2023] [Accepted: 06/21/2023] [Indexed: 09/19/2023] Open
Abstract
Background and Aims Overexpression of IGF2BP3 is associated with the prognosis of hepatocellular carcinoma (HCC). However, its role in regulating tumor immune microenvironment (TME) is not well characterized. Here, we investigated the effects of IGF2BP3 on macrophages and CD8+ T cells within the TME of HCC. Methods The relationship between IGF2BP3 and immune cell infiltration was analyzed using online bioinformatics tools. Knockout of IGF2BP3 in mouse hepatoma cell line Hepa1-6 was established using CRISPR/Cas9 technology. In vitro cell coculture and subcutaneously implanted hepatoma mice model were used to explore the effects of IGF2BP3 on immune cells. Expression of CCL5 or transforming growth factor beta 1 (TGF-β1) was detected with quantitative real-time polymerase chain reaction, western blotting, and enzyme-linked immunosorbent assay. The binding of IGF2BP3 and its target RNA was verified by trimolecular fluorescence complementation system and RNA immunoprecipitation followed by quantitative or semiquantitative polymerase chain reaction. Results IGF2BP3 expression was elevated in HCC and was positively correlated with macrophage infiltration. Patients with higher IGF2BP3 expression and lower macrophage infiltration had a better survival rate. We found that IGF2BP3 could bind to the mRNA of CCL5 or TGF-β1, increasing their expression, and inducing macrophage infiltration and M2 polarization while inhibiting the activation of CD8+ T cells. Furthermore, inhibition of IGF2BP3 combined with anti-CD47 antibody treatment significantly suppressed the growth of hepatoma in Hepa1-6 xenograft tumor mice. Conclusions IGF2BP3 promoted the infiltration and M2-polarization of macrophages and suppressed CD8+ T activation by enhancing CCL5 and TGF-β1 expression, which facilitated the progression of Hepa1-6 xenograft tumor.
Collapse
Affiliation(s)
- Lingyu Ma
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Jiayu Jiang
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Qin Si
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Chong Chen
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Zhaojun Duan
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| |
Collapse
|
173
|
Youness RA, Mohamed AH, Efthimiadou EK, Mekky RY, Braoudaki M, Fahmy SA. A Snapshot of Photoresponsive Liposomes in Cancer Chemotherapy and Immunotherapy: Opportunities and Challenges. ACS OMEGA 2023; 8:44424-44436. [PMID: 38046305 PMCID: PMC10688172 DOI: 10.1021/acsomega.3c04134] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 08/18/2023] [Indexed: 12/05/2023]
Abstract
To provide precise medical regimens, photonics technologies have been involved in the field of nanomedicine. Phototriggered liposomes have been cast as promising nanosystems that achieve controlled release of payloads in several pathological conditions such as cancer, autoimmune, and infectious diseases. In contrast to the conventional liposomes, this photoresponsive element greatly improves therapeutic efficacy and reduces the adverse effects of gene/drug therapy during treatment. Recently, cancer immunotherpay has been one of the hot topics in the field of oncology due to the great success and therapeutic benefits that were well-recognized by the patients. However, several side effects have been encountered due to the unmonitored augmentation of the immune system. This Review highlights the most recent advancements in the development of photoresponsive liposome nanosystems in the field of oncology, with a specific emphasis on challenges and opportunities in the field of cancer immunotherapy.
Collapse
Affiliation(s)
- Rana A. Youness
- Biology
and Biochemistry Department, Faculty of Biotechnology, German International University (GIU), New Administrative Capital, Cairo 4824201, Egrypt
- Biology
and Biochemistry Department, Molecular Genetics Research Team (MGRT),
School of Life and Medical Sciences, University
of Hertfordshire Hosted by Global Academic Foundation, Cairo 11835, Egypt
| | - Adham H. Mohamed
- Department
of Chemistry, Faculty of Science, Cairo
University, Giza 12613, Egypt
| | - Eleni K. Efthimiadou
- Inorganic
Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou 157 71, Greece
| | - Radwa Y. Mekky
- Department
of Pharmacology and Toxicology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA University), Cairo 12622, Egypt
| | - Maria Braoudaki
- Clinical,
Pharmaceutical, and Biological Science Department, School of Life
and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, U.K.
| | - Sherif Ashraf Fahmy
- Chemistry
Department, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo 11835, Egypt
| |
Collapse
|
174
|
Tang PMK, Zhang D. Advance in Targeted Cancer Therapy and Mechanisms of Resistance. Int J Mol Sci 2023; 24:16584. [PMID: 38068907 PMCID: PMC10705981 DOI: 10.3390/ijms242316584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/10/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
Drug resistance remains one of the important clinical challenges, making cancer one of the leading causes of death worldwide [...].
Collapse
Affiliation(s)
- Patrick Ming-Kuen Tang
- State Key Laboratory of Translational Oncology, Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong
| | - Dongmei Zhang
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| |
Collapse
|
175
|
Abaza T, El-Aziz MKA, Daniel KA, Karousi P, Papatsirou M, Fahmy SA, Hamdy NM, Kontos CK, Youness RA. Emerging Role of Circular RNAs in Hepatocellular Carcinoma Immunotherapy. Int J Mol Sci 2023; 24:16484. [PMID: 38003674 PMCID: PMC10671287 DOI: 10.3390/ijms242216484] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly fatal malignancy with limited therapeutic options and high recurrence rates. Recently, immunotherapeutic agents such as immune checkpoint inhibitors (ICIs) have emerged as a new paradigm shift in oncology. ICIs, such as programmed cell death protein 1 (PD-1) inhibitors, have provided a new source of hope for patients with advanced HCC. Yet, the eligibility criteria of HCC patients for ICIs are still a missing piece in the puzzle. Circular RNAs (circRNAs) have recently emerged as a new class of non-coding RNAs that play a fundamental role in cancer pathogenesis. Structurally, circRNAs are resistant to exonucleolytic degradation and have a longer half-life than their linear counterparts. Functionally, circRNAs possess the capability to influence various facets of the tumor microenvironment, especially at the HCC tumor-immune synapse. Notably, circRNAs have been observed to control the expression of immune checkpoint molecules within tumor cells, potentially impeding the therapeutic effectiveness of ICIs. Therefore, this renders them potential cancer-immune biomarkers for diagnosis, prognosis, and therapeutic regimen determinants. In this review, the authors shed light on the structure and functional roles of circRNAs and, most importantly, highlight the promising roles of circRNAs in HCC immunomodulation and their potential as promising biomarkers and immunotherapeutic regimen determinants.
Collapse
Affiliation(s)
- Tasneem Abaza
- Biology and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), Cairo 11835, Egypt; (T.A.); (M.K.A.E.-A.); (K.A.D.)
- Biotechnology and Biomolecular Chemistry Program, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Mostafa K. Abd El-Aziz
- Biology and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), Cairo 11835, Egypt; (T.A.); (M.K.A.E.-A.); (K.A.D.)
- Biochemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71631, Egypt
| | - Kerolos Ashraf Daniel
- Biology and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), Cairo 11835, Egypt; (T.A.); (M.K.A.E.-A.); (K.A.D.)
- Biology and Biochemistry Department, Molecular Genetics Research Team (MGRT), School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo 11835, Egypt
| | - Paraskevi Karousi
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece; (P.K.); (M.P.)
| | - Maria Papatsirou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece; (P.K.); (M.P.)
| | - Sherif Ashraf Fahmy
- Department of Chemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, R5 New Garden City, New Capital, Cairo 11835, Egypt;
| | - Nadia M. Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt;
| | - Christos K. Kontos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece; (P.K.); (M.P.)
| | - Rana A. Youness
- Biology and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), Cairo 11835, Egypt; (T.A.); (M.K.A.E.-A.); (K.A.D.)
| |
Collapse
|
176
|
Ou Z, Lu Y, Xu D, Luo Z. Hypoxia mediates immune escape of pancreatic cancer cells by affecting miR-1275/AXIN2 in natural killer cells. Front Immunol 2023; 14:1271603. [PMID: 38035113 PMCID: PMC10684956 DOI: 10.3389/fimmu.2023.1271603] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/26/2023] [Indexed: 12/02/2023] Open
Abstract
Given the increasing incidence of pancreatic cancer and the low survival rate, the exploration of the complex tumor microenvironment and the development of novel treatment options is urgent. NK cells, known for their cytotoxic abilities and modulation of other immune cells, are vital in recognizing and killing cancer cells. However, hypoxic conditions in the tumor microenvironment have been found to impair NK cell functionality and contribute to tumor immune escape. Therefore, we aimed to uncover the mechanism through which hypoxia mediates the immune escape of pancreatic cancer cells, focusing on the influence of miR-1275/AXIN2 on NK cells. Using a combination of GEO dataset screening, Tumor Immune Estimation Resource 2.0 immunoscore screening, and the Cancer Genome Atlas data, we identified a correlation between miR-1275 and NK cells. The down-regulation of miR-1275 was associated with decreased NK cell activity and survival in patients with pancreatic cancer. Pathway analysis further linked miR-1275 expression with the hypoxic HIF1A pathway. In vitro experiments were conducted using the NK-92 cell, revealing that hypoxia significantly reduced miR-1275 expression and correspondingly decreased the cell-killing ability of NK cells. Upregulation of miR-1275 increased perforin, IFN-γ and TNF-α expression levels and enhanced NK cell cytotoxicity. Additionally, miR-1275 was found to bind to and inhibit AXIN2 expression, which when overexpressed, partially alleviated the promotive effect of upregulated miR-1275 on NK-92 cell killing ability. In conclusion, this research underscores the critical role of the miR-1275/AXIN2 axis in hypoxia-mediated immune escape in pancreatic cancer, thus opening new potential avenues for treatment strategies.
Collapse
Affiliation(s)
- Zhenglin Ou
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, Hunan, China
| | - Yebin Lu
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, Hunan, China
| | - Dayong Xu
- Department of General Surgery, The First Hospital of Changsha, Changsha, Hunan, China
| | - Zhen Luo
- Department of General Surgery, The First Hospital of Changsha, Changsha, Hunan, China
| |
Collapse
|
177
|
Samson JS, Parvathi VD. Prospects of microRNAs as therapeutic biomarkers in non-small cell lung cancer. Med Oncol 2023; 40:345. [PMID: 37922117 DOI: 10.1007/s12032-023-02212-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/06/2023] [Indexed: 11/05/2023]
Abstract
Lung Cancer, the second most common cancer worldwide, remains the leading cause of cancer-related deaths, contemporarily. More than 85% of identified lung cancer cases are comprised of non-small-cell lung carcinoma (NSCLC). Despite the best advancements in the realm of NSCLC therapy, the five-year survival period of NSCLC patients remains unchanged. Underlying complex molecular heterogeneity, delay in early detection resulting in progression of the disease to its advanced stage and acquired resistance of NSCLC cells during therapy have posed additional challenges for circumventing the discrepancies in treatment strategy. microRNAs (miRNAs) are a class of non-coding RNAs, identified as molecules playing an indispensable role in tumorigenesis & progression and metastasis of several cancers, including NSCLC, either by possessing tumor suppressor or by oncogenic functions. As observed across several studies, miRNA dysregulation has been recognised as a causative mechanism behind NSCLC tumorigenesis. In this review, we discuss the role of miRNAs in NSCLC tumor progression caused by their dysregulation, thereby stating their potential therapeutic application in NSCLC as therapeutic biomarkers. We have also highlighted the recent findings of some of the most widely studied tumor suppressor (miR-486, miR-7 miR-34), and oncogene miRNAs (miR-21, miR-224, miR-135b) that can be further explored for its therapeutic potentialities in the management of NSCLC.
Collapse
Affiliation(s)
- Jennifer Sally Samson
- Department of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research, 1, Mount Poonamallee Road, Sri Ramachandra Nagar, Chennai, Tamil Nadu, 600116, India
| | - Venkatachalam Deepa Parvathi
- Department of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research, 1, Mount Poonamallee Road, Sri Ramachandra Nagar, Chennai, Tamil Nadu, 600116, India.
| |
Collapse
|
178
|
Cairoli V, Valle-Millares D, Terrón-Orellano MC, Luque D, Ryan P, Dominguez L, Martín-Carbonero L, De Los Santos I, De Matteo E, Ameigeiras B, Briz V, Casciato P, Preciado MV, Valva P, Fernández-Rodríguez A. MicroRNA signature from extracellular vesicles of HCV/HIV co-infected individuals differs from HCV mono-infected. J Mol Med (Berl) 2023; 101:1409-1420. [PMID: 37704856 PMCID: PMC10663177 DOI: 10.1007/s00109-023-02367-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/15/2023]
Abstract
Hepatitis C virus (HCV) coinfection with human immunodeficiency virus (HIV) has a detrimental impact on disease progression. Increasing evidence points to extracellular vesicles (EVs) as important players of the host-viral cross-talk. The microRNAs (miRNAs), as essential components of EVs cargo, are key regulators of normal cellular processes and also promote viral replication, viral pathogenesis, and disease progression. We aimed to characterize the plasma-derived EVs miRNA signature of chronic HCV infected and HIV coinfected patients to unravel the molecular mechanisms of coinfection. EVs were purified and characterized from 50 plasma samples (21 HCV mono- and 29 HCV/HIV co-infected). EV-derived small RNAs were isolated and analyzed by massive sequencing. Known and de novo miRNAs were identified with miRDeep2. Significant differentially expressed (SDE) miRNA identification was performed with generalized linear models and their putative dysregulated biological pathways were evaluated. Study groups were similar for most clinical and epidemiological characteristics. No differences were observed in EVs size or concentration between groups. Therefore, HCV/HIV co-infection condition did not affect the concentration or size of EVs but produced a disturbance in plasma-derived EVs miRNA cargo. Thus, a total of 149 miRNAs were identified (143 known and 6 de novo) leading to 37 SDE miRNAs of which 15 were upregulated and 22 downregulated in HCV/HIV co-infected patients. SDE miRNAs regulate genes involved in inflammation, fibrosis, and cancer, modulating different biological pathways related to HCV and HIV pathogenesis. These findings may help to develop new generation biomarkers and treatment strategies, in addition to elucidate the mechanisms underlying virus-host interaction. KEY MESSAGES: HCV and HCV/HIV displayed similar plasma-EV size and concentration. EVs- derived miRNA profile was characterized by NGS. 37 SDE miRNAs between HCV and HCV/HIV were observed. SDE miRNAs regulate genes involved in inflammation, fibrosis and cancer.
Collapse
Affiliation(s)
- Victoria Cairoli
- Multidisciplinary Institute for Investigation in Pediatric Pathologies (IMIPP), CONICET-GCBA, Laboratory of Molecular Biology, Pathology Division, Ricardo Gutiérrez Children's Hospital, C1425EFD CABA, Buenos Aires, Argentina
| | - Daniel Valle-Millares
- Unit of Viral Infection and Immunity, Centro Nacional de Mirobiología, Instituto de Salud Carlos III (ISCIII), 28222, Majadahonda, Madrid, Spain
| | - María C Terrón-Orellano
- Unit of Electron Microscopy Scientific and Technical Central Units (UCCT), Health Institute Carlos III (ISCIII), 28222, Majadahonda, Madrid, Spain
| | - Daniel Luque
- Unit of Electron Microscopy Scientific and Technical Central Units (UCCT), Health Institute Carlos III (ISCIII), 28222, Majadahonda, Madrid, Spain
| | - Pablo Ryan
- Infectious Diseases Department, Internal Medicine Department HIV/Hepatitis, Infanta Leonor University Hospital, 28031, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28222, Madrid, Spain
| | - Lourdes Dominguez
- HIV Unit, Internal Medicine Department, Research Institute of the Hospital, 12 de Octubre (imas12), 28041, Madrid, Spain
| | - Luz Martín-Carbonero
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28222, Madrid, Spain
- Infectious Diseases Unit, Internal Medicine Department, La Paz University Hospital, IdiPAZ, 28046, Madrid, Spain
| | - Ignacio De Los Santos
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28222, Madrid, Spain
- Infectious Diseases Unit, Internal Medicine Department, La Princesa University Hospital, 28006, Madrid, Spain
| | - Elena De Matteo
- Multidisciplinary Institute for Investigation in Pediatric Pathologies (IMIPP), CONICET-GCBA, Laboratory of Molecular Biology, Pathology Division, Ricardo Gutiérrez Children's Hospital, C1425EFD CABA, Buenos Aires, Argentina
| | - Beatriz Ameigeiras
- Liver Unit, Ramos Mejía Hospital, C1221ADC CABA, Buenos Aires, Argentina
| | - Verónica Briz
- Viral Hepatitis Reference and Research Laboratory, Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28222, Majadahonda, Madrid, Spain
| | - Paola Casciato
- Liver Unit, Italian's Hospital of Buenos Aires, C1199 CABA, Buenos Aires, Argentina
| | - María Victoria Preciado
- Multidisciplinary Institute for Investigation in Pediatric Pathologies (IMIPP), CONICET-GCBA, Laboratory of Molecular Biology, Pathology Division, Ricardo Gutiérrez Children's Hospital, C1425EFD CABA, Buenos Aires, Argentina
| | - Pamela Valva
- Multidisciplinary Institute for Investigation in Pediatric Pathologies (IMIPP), CONICET-GCBA, Laboratory of Molecular Biology, Pathology Division, Ricardo Gutiérrez Children's Hospital, C1425EFD CABA, Buenos Aires, Argentina
| | - Amanda Fernández-Rodríguez
- Unit of Viral Infection and Immunity, Centro Nacional de Mirobiología, Instituto de Salud Carlos III (ISCIII), 28222, Majadahonda, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28222, Madrid, Spain.
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Carretera Majadahonda, Pozuelo, Km 2.2, 28220 Majadahonda, Madrid, Spain.
| |
Collapse
|
179
|
Abd-Elmawla MA, Elsabagh YA, Aborehab NM. Association of XIST/miRNA155/Gab2/TAK1 cascade with the pathogenesis of anti-phospholipid syndrome and its effect on cell adhesion molecules and inflammatory mediators. Sci Rep 2023; 13:18790. [PMID: 37914735 PMCID: PMC10620142 DOI: 10.1038/s41598-023-45214-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 10/17/2023] [Indexed: 11/03/2023] Open
Abstract
Anti-phospholipid syndrome (APS) is an autoimmune disease characterized by thrombosis and miscarriage events. Still, the molecular mechanisms underlying APS, which predisposes to a wide spectrum of complications, are being explored. Seventy patients with primary and secondary APS were recruited, in addition to 35 healthy subjects. Among APS groups, the gene expression levels of XIST, Gab2, and TAK1 were higher along with declined miRNA155 level compared with controls. Moreover, the sera levels of ICAM-1, VCAM-1, IL-1ꞵ, and TNF-α were highly elevated among APS groups either primary or secondary compared with controls. The lncRNA XIST was directly correlated with Gab2, TAK1, VCAM-1, ICAM-1, IL-1ꞵ, and TNF-α. The miRNA155 was inversely correlated with XIST, Gab2, and TAK1. Moreover, ROC curve analyses subscribed the predictive power of the lncRNA XIST and miRNA155, to differentiate between primary and secondary APS from control subjects. The lncRNA XIST and miRNA155 are the upstream regulators of the Gab2/TAK1 axis among APS patients via influencing the levels of VCAM-1, ICAM-1, IL1ꞵ, and TNF-α which propagates further inflammatory and immunological streams. Interestingly, the study addressed that XIST and miRNA155 may be responsible for the thrombotic and miscarriage events associated with APS and provides new noninvasive molecular biomarkers for diagnosing the disease and tracking its progression.
Collapse
Affiliation(s)
- Mai A Abd-Elmawla
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Yumn A Elsabagh
- Internal Medicine Department (Rheumatology and Clinical Immunology Unit), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Nora M Aborehab
- Biochemistry Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, 12451, Egypt.
| |
Collapse
|
180
|
Zhong G, Yang Q, Wang Y, Liang Y, Wang X, Zhao D. Long noncoding RNA X-inactive specific transcript (lncRNA XIST) inhibits hepatic insulin resistance by competitively binding microRNA-182-5p. Immun Inflamm Dis 2023; 11:e969. [PMID: 38018594 PMCID: PMC10629262 DOI: 10.1002/iid3.969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND What is highlighted in this study refers to the role and molecular mechanism of long noncoding RNA (lncRNA) X-inactive specific transcript (XIST) in cells with insulin resistance (IR). METHODS In this study, LX-2 cells were applied to establish IR model in vitro. The expressions of lncRNA XIST, phosphoenolpyruvate carboxykinase (PEPCK,) and glucose-6-phosphatase (G6Pase) were quantified by quantitative reverse transcription polymerase chain reaction. The 2-deoxy-d-glucose-6-phosphate (2-DG6P) level was detected utilizing 2-deoxy-d-glucose (2-DG) uptake measurement kit. Western blot was adopted to measure the protein expressions of insulin-like growth factor-1 receptor (IGF-1R), G6Pase, PEPCK, and phosphatidylinositol 3-kinase (PI3K)/Akt pathway-related genes. StarBase was used to predict the targeting relationship between lncRNA XIST or IGF-1R with miR-182-5p, the results of which were verified by dual-luciferase reporter, RNA pull-down, and RNA immunoprecipitation assays. Rescue experiments were conducted to investigate the effect of miR-182-5p on IR cells. Next, low-expressed lncRNA XIST and high-expressed miR-182-5p were observed in IR cells. RESULTS Upregulation of lncRNA XIST increased IGF-1R and 2-DG6P levels, decreased G6Pase and PEPCK expressions, and promoted PI3K/Akt pathway activation in IR cells. LncRNA XIST sponged miR-182-5p which targeted IGF-1R. MiR-182-5p mimic reversed the above effects of lncRNA XIST overexpression on IR cells. CONCLUSIONS In conclusion, lncRNA XIST/miR-182-5p axis alleviates hepatic IR in vitro via IGF-1R/PI3K/Akt signaling pathway, which could be the promising therapeutic target.
Collapse
Affiliation(s)
- Guoqing Zhong
- Hepatology DepartmentFirst People's HospitalNanyangChina
| | - Qingping Yang
- Endocrinology DepartmentFirst People's HospitalNanyangChina
| | - Yihua Wang
- Endocrinology DepartmentFirst People's HospitalNanyangChina
| | - Yuan Liang
- Endocrinology DepartmentFirst People's HospitalNanyangChina
| | - Xiaojing Wang
- Endocrinology DepartmentFirst People's HospitalNanyangChina
| | - Dongli Zhao
- Endocrinology DepartmentFirst People's HospitalNanyangChina
| |
Collapse
|
181
|
Falker-Gieske C. Transcriptome driven discovery of novel candidate genes for human neurological disorders in the telomer-to-telomer genome assembly era. Hum Genomics 2023; 17:94. [PMID: 37872607 PMCID: PMC10594789 DOI: 10.1186/s40246-023-00543-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/17/2023] [Indexed: 10/25/2023] Open
Abstract
BACKGROUND With the first complete draft of a human genome, the Telomere-to-Telomere Consortium unlocked previously concealed genomic regions for genetic analyses. These regions harbour nearly 2000 potential novel genes with unknown function. In order to uncover candidate genes associated with human neurological pathologies, a comparative transcriptome study using the T2T-CHM13 and the GRCh38 genome assemblies was conducted on previously published datasets for eight distinct human neurological disorders. RESULTS The analysis of differential expression in RNA sequencing data led to the identification of 336 novel candidate genes linked to human neurological disorders. Additionally, it was revealed that, on average, 3.6% of the differentially expressed genes detected with the GRCh38 assembly may represent potential false positives. Among the noteworthy findings, two novel genes were discovered, one encoding a pore-structured protein and the other a highly ordered β-strand-rich protein. These genes exhibited upregulation in multiple epilepsy datasets and hold promise as candidate genes potentially modulating the progression of the disease. Furthermore, an analysis of RNA derived from white matter lesions in multiple sclerosis patients indicated significant upregulation of 26 rRNA encoding genes. Additionally, putative pathology related genes were identified for Alzheimer's disease, amyotrophic lateral sclerosis, glioblastoma, glioma, and conditions resulting from the m.3242 A > G mtDNA mutation. CONCLUSION The results presented here underline the potential of the T2T-CHM13 assembly in facilitating the discovery of candidate genes from transcriptome data in the context of human disorders. Moreover, the results demonstrate the value of remapping sequencing data to a superior genome assembly. Numerous potential pathology related genes, either as causative factors or related elements, have been unveiled, warranting further experimental validation.
Collapse
Affiliation(s)
- Clemens Falker-Gieske
- Division of Functional Breeding, Department of Animal Sciences, Georg-August-Universität Göttingen, Burckhardtweg 2, 37077, Göttingen, Germany.
| |
Collapse
|
182
|
Swami S, Mughees M, Mangangcha IR, Kauser S, Wajid S. Secretome analysis of breast cancer cells to identify potential target proteins of Ipomoea turpethum extract-loaded nanoparticles in the tumor microenvironment. Front Cell Dev Biol 2023; 11:1247632. [PMID: 37900279 PMCID: PMC10602817 DOI: 10.3389/fcell.2023.1247632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/18/2023] [Indexed: 10/31/2023] Open
Abstract
Background: Breast cancer is the leading cause of frequent malignancy and morbidity among women across the globe, with an increment of 0.5% incidences every year. The deleterious effects of traditional treatment on off-target surrounding cells make it difficult to win the battle against breast cancer. Hence, an advancement in the therapeutic approach is crucial. Nanotechnology is one of the emerging methods for precise, targeted, and efficient drug delivery in cells. The previous study has demonstrated the cytotoxic effect of Ipomoea turpethum extract on breast cancer cells delivered via NIPAAM-VP-AA nanoparticles (NVA-IT). Manipulating the tumor microenvironment (TME) to inhibit cancer progression, invasion, and metastasis seems to be very insightful for researchers these days. With the help of secretome analysis of breast cancer cells after treatment with NVA-IT, we have tried to find out the possible TME manipulation achieved to favor a better prognosis of the disease. Method: MCF-7 and MDA MB-231 cells were treated with the IC50 value of NVA-IT, and the medium was separated from the cells after 24 h of the treatment. Nano LCMS/MS analysis was performed to identify the secretory proteins in the media. Further bioinformatics tools like GENT2, GSCA, GeneCodis 4, and STRING were used to identify the key proteins and their interactions. Result: From the nano LCMS/MS analysis, 70 differentially expressed secretory proteins in MCF-7 and 191 in MDA MB-231 were identified in the cell's media. Fifteen key target proteins were filtered using bioinformatics analysis, and the interaction of proteins involved in vesicular trafficking, cell cycle checkpoints, and oxidative stress-related proteins was prominent. Conclusion: This study concluded that I. turpethum extract-loaded NIPAAM-VP-AA nanoparticles alter the secretory proteins constituting the TME to cease cancer cell growth and metastasis.
Collapse
Affiliation(s)
- Sanskriti Swami
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Mohd Mughees
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | | | - Sana Kauser
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Saima Wajid
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| |
Collapse
|
183
|
Zheng X, Zhao D, Jin Y, Liu Y, Liu D. Role of the NLRP3 inflammasome in gynecological disease. Biomed Pharmacother 2023; 166:115393. [PMID: 37660654 DOI: 10.1016/j.biopha.2023.115393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/20/2023] [Accepted: 08/26/2023] [Indexed: 09/05/2023] Open
Abstract
The NLR family pyrin domain containing 3 (NLRP3) inflammasome is involved in the innate immune system and is a three-part macromolecular complex comprising the NLRP3 protein, apoptosis-associated speck-like protein containing a CARD (ASC) and the cysteine protease pro-caspase-1. When the NLRP3 inflammasome is activated, it can produce interleukin (IL)- 1β and IL-18 and eventually lead to inflammatory cell pyroptosis. Related studies have demonstrated that the NLRP3 inflammasome can induce an immune response and is related to the occurrence and development of gynecological diseases, such as endometriosis, polycystic ovary syndrome and breast cancer. NLRP3 inflammasome inhibitors are beneficial for maintaining cellular homeostasis and tissue health and have been found effective in targeting some gynecological diseases. However, excessive inhibitor concentrations have been found to cause adverse effects. Therefore, proper control of NLRP3 inflammasome activity is critical. This paper summarizes the structure and function of the NLRP3 inflammasome and highlights the therapeutic potential of targeting it in gynecological diseases, such as endometriosis, polycystic ovary syndrome and breast cancer The application of NLRP3 inflammasome inhibitors is also discussed.
Collapse
Affiliation(s)
- Xu Zheng
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun 130117, Jilin, China
| | - Dan Zhao
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun 130117, Jilin, China
| | - Ye Jin
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, Jilin, China.
| | - Yang Liu
- Acupuncture department,Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130117, Jilin, China.
| | - Da Liu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, Jilin, China.
| |
Collapse
|
184
|
Kaba M, Pirinççi N, Demir M, Kaba S, Oztuzcu S, Verep S. The relationship between microRNAs and bladder cancer: are microRNAs useful to predict bladder cancer in suspicious patients? Int Urol Nephrol 2023; 55:2483-2491. [PMID: 37338656 DOI: 10.1007/s11255-023-03666-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 06/05/2023] [Indexed: 06/21/2023]
Abstract
PURPOSE Recent studies indicate that circulating micro RNAs (miRNAs) are novel class of non-invasive biomarkers with diagnostic and prognostic information. We evaluated the miRNA expressions in bladder cancer (BC) and their associations with disease diagnosis. METHODS We profiled the expressions of 379 miRNAs in the plasma samples from patients with non-muscle invasive bladder cancer (NMIBC) (n = 34) and non-malignant urological diseases as a control group (n = 32). Patients were evaluated regarding with age, miRNA expressions, by using descriptive statistics. miRNA expression in extracted RNA was quantified using the NanoString nCounter Digital Analyzer. RESULTS The analysis of plasma miRNA levels in the marker identification cohort indicated that plasma (miR-1260a, let-7a-3p miR-196b-5p, miR-196a-5p, miR-99a-5p, miR-615-5p, miR-4301, miR-28-3p, miR-4538, miR-1233-3p, miR-4732-5p, miR-1913, miR-1280) levels were increased in NMIBC patients compared to control subjects. There were no significant differences other parameters studied between groups. CONCLUSIONS The analysis of serum plasma miRNA (miR-1260a, let-7a-3p miR-196b-5p, miR-196a-5p, miR-99a-5p, miR-615-5p, miR-4301, miR-28-3p, miR-4538, miR-1233-3p, miR-4732-5p, miR-1913, miR-1280) levels could be useful plasma biomarkers for BC.
Collapse
Affiliation(s)
- Mehmet Kaba
- Department of Urology, Private Yuzyil Gebze Hospital, Sultan Orhan Mahallesi, Ilyasbey Cd. No:38, 41400, Gebze, Kocaeli, Turkey
| | - Necip Pirinççi
- Department of Urology, Fırat University Medical Faculty, Elazıg, Turkey
| | - Murat Demir
- Department of Urology, Van Yuzuncuyil University Dursun Odabası Medical Center, Van, Turkey
| | - Sultan Kaba
- Department of Pediatry, Okan University Hospital, Section of Pediatric Endocrinology, Istanbul, Turkey
| | - Serdar Oztuzcu
- Department of Medical Biology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Samed Verep
- Department of Urology, Private Yuzyil Gebze Hospital, Sultan Orhan Mahallesi, Ilyasbey Cd. No:38, 41400, Gebze, Kocaeli, Turkey.
| |
Collapse
|
185
|
Pang Y, Shi R, Chan L, Lu Y, Zhu D, Liu T, Yan M, Wang Y, Wang W. The combination of the HDAC1 inhibitor SAHA and doxorubicin has synergic efficacy in triple negative breast cancer in vivo. Pharmacol Res 2023; 196:106926. [PMID: 37716547 DOI: 10.1016/j.phrs.2023.106926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/13/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023]
Abstract
Vorinostat (SAHA) is a histone deacetylase inhibitor that exerts its effects through epigenetic regulation. Specifically, SAHA can inhibit the proliferation of triple-negative breast cancer (TNBC) cells alone or in combination with other chemotherapeutic agents. Doxorubicin (DOX), a traditional chemotherapeutic drug, exhibits a potent cytotoxic effect on cancer cells while also inducing strong toxic effects. In this study, we investigated the synergistic potential of these two drugs in combination against TNBC. Our results suggested that the combination of these two drugs could enhance the inhibitory effect on cancer cell proliferation, resulting in alterations in cell mitotic phase, and suppression of cancer cell stemness. Moreover, our in vivo study unveiled that when SAHA was combined with DOX, it not only exhibited an inhibitory effect on tumor metastasis but also played a role in regulating the immune microenvironment within tumors. Overall, the combination of DOX and SAHA presents a promising avenue for innovative combination chemotherapy in the context of TNBC.
Collapse
Affiliation(s)
- Yuheng Pang
- Department of Breast Surgery, Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China; NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Runze Shi
- Department of Breast Surgery, Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Liujia Chan
- College of Pharmaceutical Sciences, Capital Medical University, Beijing, PR China
| | - Yu Lu
- College of Pharmaceutical Sciences, Capital Medical University, Beijing, PR China
| | - Di Zhu
- College of Pharmaceutical Sciences, Capital Medical University, Beijing, PR China
| | - Tong Liu
- Department of Breast Surgery, Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China; NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Meisi Yan
- Pathology Teaching and Research Section, Basic Medical College of Harbin Medical University, Harbin, Heilongjiang, PR China; NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China.
| | - Yuji Wang
- College of Pharmaceutical Sciences, Capital Medical University, Beijing, PR China.
| | - Wenjing Wang
- Beijing Institute of Hepatology, Beijing YouAn Hospital, Capital Medical University, Beijing, PR China.
| |
Collapse
|
186
|
Nafea H, Youness RA, Dawoud A, Khater N, Manie T, Abdel-Kader R, Bourquin C, Szabo C, Gad MZ. Dual targeting of H 2S synthesizing enzymes; cystathionine β-synthase and cystathionine γ-lyase by miR-939-5p effectively curbs triple negative breast cancer. Heliyon 2023; 9:e21063. [PMID: 37916110 PMCID: PMC10616356 DOI: 10.1016/j.heliyon.2023.e21063] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 10/08/2023] [Accepted: 10/13/2023] [Indexed: 11/03/2023] Open
Abstract
Introduction Hydrogen sulfide (H2S) has been recently scrutinized for its critical role in aggravating breast cancer (BC) tumorigenicity. Several cancers aberrantly express H2S synthesizing enzymes; Cystathionine-β-synthase (CBS) and cystathionine-γ-lyase (CSE). However, their levels and interdependence in BC require further studies. Objectives Firstly, this study aimed to demonstrate a comparative expression profile of H2S synthesizing enzymes in BC vs normal tissue. Moreover, to investigate the reciprocal relationship between CBS and CSE and highlight the importance of dual targeting. Finally, to search for a valid dual repressor of the H2S synthesizing enzymes that could cease H2S production and reduce TNBC pathogenicity. Methods Pairwise analysis of tumor vs. normal tissues of 40 BC patients was carried out. The TNBC cell line MDA-MB-231 was transfected with oligonucleotides to study the H2S mediated molecular mechanisms. In silico screening was performed to identify dual regulator(s) for CBS and CSE. Gene expression analysis was performed using qRT-PCR and was confirmed on protein level using Western blot. TNBC hallmarks were evaluated using MTT, migration, and clonogenicity assays. H2S levels were detected using a AzMc fluorescent probe. Results BC tissues exhibited elevated levels of both CBS and CSE. Interestingly, upon CBS knockdown, CSE levels increased compensating for H2S production in TNBC cells, underlining the importance of dually targeting both enzymes in TNBC. In silico screening suggested miR-939-5p as a regulator of both CBS and CSE with high binding scores. Low expression levels of miR-939-5p were found in BC tissues, especially the aggressive subtypes. Ectopic expression of miR-939-5p significantly repressed CBS and CSE transcript and protein levels, diminished H2S production and attenuated TNBC hallmarks. Moreover, it improved the immune surveillance potency of TNBC cells through up regulating the NKG2D ligands, MICB and ULBP2 and reducing the immune suppressive cytokine IL-10. Conclusion This study sheds light on the reciprocal relationship between CBS and CSE and on the importance of their dual targeting, particularly in TNBC. It also postulates miR-939-5p as a potent dual repressor for CBS and CSE overcoming their redundancy in H2S production, a mechanism that can potentially attenuate TNBC oncogenicity and improves the immunogenic response.
Collapse
Affiliation(s)
- Heba Nafea
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Rana A. Youness
- Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
- Biology and Biochemistry Department, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, New Administrative Capital, Cairo, Egypt
| | - Alyaa Dawoud
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Nour Khater
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Tamer Manie
- Breast Surgery Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Reham Abdel-Kader
- Pharmacology and Toxicology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Carole Bourquin
- School of Pharmaceutical Sciences and Institute of Pharmaceutical Sciences of Western Switzerland and Department of Anesthesiology, Pharmacology, Intensive Care and Emergency Medicine, University of Geneva, Geneva 1211, Switzerland
| | - Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Mohamed Z. Gad
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| |
Collapse
|
187
|
Ramon-Gil E, Geh D, Leslie J. Harnessing neutrophil plasticity for HCC immunotherapy. Essays Biochem 2023; 67:941-955. [PMID: 37534829 PMCID: PMC10539947 DOI: 10.1042/ebc20220245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 08/04/2023]
Abstract
Neutrophils, until recently, have typically been considered a homogeneous population of terminally differentiated cells with highly conserved functions in homeostasis and disease. In hepatocellular carcinoma (HCC), tumour-associated neutrophils (TANs) are predominantly thought to play a pro-tumour role, promoting all aspects of HCC development and progression. Recent developments in single-cell technologies are now providing a greater insight and appreciation for the level of cellular heterogeneity displayed by TANs in the HCC tumour microenvironment, which we have been able to correlate with other TAN signatures in datasets for gastric cancer, pancreatic ductal adenocarcinoma (PDAC) and non-small cell lung cancer (NSCLC). TANs with classical pro-tumour signatures have been identified as well as neutrophils primed for anti-tumour functions that, if activated and expanded, could become a potential therapeutic approach. In recent years, therapeutic targeting of neutrophils in HCC has been typically focused on impairing the recruitment of pro-tumour neutrophils. This has now been coupled with immune checkpoint blockade with the aim to stimulate lymphocyte-mediated anti-tumour immunity whilst impairing neutrophil-mediated immunosuppression. As a result, neutrophil-directed therapies are now entering clinical trials for HCC. Pharmacological targeting along with ex vivo reprogramming of neutrophils in HCC patients is, however, in its infancy and a greater understanding of neutrophil heterogeneity, with a view to exploit it, may pave the way for improved immunotherapy outcomes. This review will cover the recent developments in our understanding of neutrophil heterogeneity in HCC and how neutrophils can be harnessed to improve HCC immunotherapy.
Collapse
Affiliation(s)
- Erik Ramon-Gil
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, U.K
- The Newcastle University Centre for Cancer, Newcastle University, Newcastle Upon Tyne, U.K
| | - Daniel Geh
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, U.K
- The Newcastle University Centre for Cancer, Newcastle University, Newcastle Upon Tyne, U.K
| | - Jack Leslie
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, U.K
- The Newcastle University Centre for Cancer, Newcastle University, Newcastle Upon Tyne, U.K
| |
Collapse
|
188
|
Mathias C, Kozak VN, Magno JM, Baal SCS, dos Santos VHA, Ribeiro EMDSF, Gradia DF, Castro MAA, Carvalho de Oliveira J. PD-1/PD-L1 Inhibitors Response in Triple-Negative Breast Cancer: Can Long Noncoding RNAs Be Associated? Cancers (Basel) 2023; 15:4682. [PMID: 37835376 PMCID: PMC10572024 DOI: 10.3390/cancers15194682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 10/15/2023] Open
Abstract
As immune checkpoint inhibitors (ICI) emerge as a paradigm-shifting treatment option for patients with advanced or metastatic cancer, there is a growing demand for biomarkers that can distinguish which patients are likely to benefit. In the case of triple-negative breast cancer (TNBC), characterized by a lack of therapeutic targets, pembrolizumab approval for high-risk early-stage disease occurred regardless of PD-L1 status, which keeps the condition in a biomarker limbus. In this review, we highlight the participation of long non-coding RNAs (lncRNAs) in the regulation of the PD-1/PD-L1 pathway, as well as in the definition of prognostic immune-related signatures in many types of tumors, aiming to shed light on molecules that deserve further investigation for a potential role as biomarkers. We also conducted a bioinformatic analysis to investigate lncRNAs already investigated in PD-1/PDL-1 pathways in other cancer types, considering the TNBC molecular context. In this sense, from the generated data, we evidence here two lncRNAs, UCA1 and HCP5, which have not yet been identified in the context of the tumoral immune response in breast cancer. These candidates can be further explored to verify their use as biomarkers for ICI response. In this article, we present an updated review regarding the use of lncRNA as biomarkers of response to ICI, highlighting the versatility of using these molecules.
Collapse
Affiliation(s)
- Carolina Mathias
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba 81530-980, Brazil; (C.M.)
| | - Vanessa Nascimento Kozak
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba 81530-980, Brazil; (C.M.)
| | - Jessica Maria Magno
- Post-Graduation Program in Bioinformatics, Bioinformatics and Systems Biology Laboratory, Federal University of Paraná, Curitiba 81520-260, Brazil (V.H.A.d.S.)
| | - Suelen Cristina Soares Baal
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba 81530-980, Brazil; (C.M.)
| | - Victor Henrique Apolonio dos Santos
- Post-Graduation Program in Bioinformatics, Bioinformatics and Systems Biology Laboratory, Federal University of Paraná, Curitiba 81520-260, Brazil (V.H.A.d.S.)
| | | | - Daniela Fiori Gradia
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba 81530-980, Brazil; (C.M.)
| | - Mauro Antonio Alves Castro
- Post-Graduation Program in Bioinformatics, Bioinformatics and Systems Biology Laboratory, Federal University of Paraná, Curitiba 81520-260, Brazil (V.H.A.d.S.)
| | - Jaqueline Carvalho de Oliveira
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba 81530-980, Brazil; (C.M.)
| |
Collapse
|
189
|
Faraclas E. Interventions to Improve Quality of Life in Multiple Sclerosis: New Opportunities and Key Talking Points. Degener Neurol Neuromuscul Dis 2023; 13:55-68. [PMID: 37744305 PMCID: PMC10517677 DOI: 10.2147/dnnd.s395733] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 09/05/2023] [Indexed: 09/26/2023] Open
Abstract
Background Today, living well with multiple sclerosis (MS) is often measured by a person's overall quality of life rather than being limited to the more traditional metrics of reduced frequency of relapses or progression of disability. This change in focus, to a more holistic view of health, such as overall quality of life, has shifted the views of what both providers and people with multiple sclerosis view as essential for living well with MS. Purpose This narrative review aims to examine the relevant literature on existing and emerging non-pharmacological interventions shown to improve the quality of life for people with multiple sclerosis across all health domains. Methods A literature search was conducted on MEDLINE, CINAHL, and Scopus electronic databases using the following search terms: quality of life, health-related quality of life, life quality, life satisfaction, non-pharmacological intervention, non-drug, and intervention. After screening the abstracts, 24 were selected for this review. Results Common non-pharmacological interventions were used for fatigue and sleep, mental and emotional health, cognition, physical health, and chronic pain. Several non-pharmacological interventions included in this review positively improved the overall quality of life for people with multiple sclerosis. These interventions included exercise, cognitive behavior therapy, and cognitive rehabilitation. Conclusion Non-pharmacological interventions such as exercise and cognitive behavioral therapy improve the quality of life for people with MS. These interventions should be prescribed more during routine medical care. Translating this research into standard clinical practice should be one area of focus. In addition, higher quality studies, such as randomized control trials, need to be conducted on emerging nonpharmacological interventions to assess effectiveness.
Collapse
Affiliation(s)
- Erin Faraclas
- Physical Therapy Department, Johnson & Wales University, Providence, RI, USA
| |
Collapse
|
190
|
Elgohary S, Eissa RA, El Tayebi HM. Thymoquinone, a Novel Multi-Strike Inhibitor of Pro-Tumorigenic Breast Cancer (BC) Markers: CALR, NLRP3 Pathway and sPD-L1 in PBMCs of HR+ and TNBC Patients. Int J Mol Sci 2023; 24:14254. [PMID: 37762557 PMCID: PMC10531892 DOI: 10.3390/ijms241814254] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/19/2023] [Accepted: 06/25/2023] [Indexed: 09/29/2023] Open
Abstract
Breast cancer (BC) is not only a mass of malignant cells but also a systemic inflammatory disease. BC pro-tumorigenic inflammation has been shown to promote immune evasion and provoke BC progression. The NOD-like receptor (NLR) family pyrin domain-containing protein 3 (NLRP3) inflammasome is activated when pattern recognition receptors (PRRs) sense danger signals such as calreticulin (CALR) from damaged/dying cells, leading to the secretion of interleukin-1β (IL-1β). CALR is a novel BC biological marker, and its high levels are associated with advanced tumors. NLRP3 expression is strongly correlated with an elevated proliferative index Ki67, BC progression, metastasis, and recurrence in patients with hormone receptor-positive (HR+) and triple-negative BC (TNBC). Tumor-associated macrophages (TAMs) secrete high levels of IL-1β promoting endocrine resistance in HR+ BC. Recently, an immunosuppressive soluble form of programmed death ligand 1 (sPD-L1) has been identified as a novel prognostic biomarker in triple-negative breast cancer (TNBC) patients. Interestingly, IL-1β induces sPD-L1 release. BC Patients with elevated IL-1β and sPD-L1 levels show significantly short progression-free survival. For the first time, this study aims to investigate the inhibitory impact of thymoquinone (TQ) on CALR, the NLRP3 pathway and sPD-L1 in HR+ and TNBC. Blood samples were collected from 45 patients with BC. The effect of differing TQ concentrations for different durations on the expression of CALR, NLRP3 complex components and IL-1β as well as the protein levels of sPD-L1 and IL-1β were investigated in the peripheral blood mononuclear cells (PBMCs) and TAMs of TNBC and HR+ BC patients, respectively. The findings showed that TQ significantly downregulated the expression of CALR, NLRP3 components and IL-1β together with the protein levels of secreted IL-1β and sPD-L1. The current findings demonstrated novel immunomodulatory effects of TQ, highlighting its potential role not only as an excellent adjuvant but also as a possible immunotherapeutic agent in HR+ and TNBC patients.
Collapse
Affiliation(s)
- Sawsan Elgohary
- Clinical Pharmacology and Pharmacogenomics Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt;
| | - Reda A. Eissa
- Department of Surgery, Faculty of Medicine, Ain Shams University, Cairo 11591, Egypt;
| | - Hend M. El Tayebi
- Clinical Pharmacology and Pharmacogenomics Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt;
| |
Collapse
|
191
|
Kamal M, Badary HA, Omran D, Shousha HI, Abdelaziz AO, El Tayebi HM, Mandour YM. Virtual Screening and Biological Evaluation of Potential PD-1/PD-L1 Immune Checkpoint Inhibitors as Anti-Hepatocellular Carcinoma Agents. ACS OMEGA 2023; 8:33242-33254. [PMID: 37744828 PMCID: PMC10515376 DOI: 10.1021/acsomega.3c00279] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/15/2023] [Indexed: 09/26/2023]
Abstract
Blockade of the programmed cell death-1/programmed cell death ligand-1 (PD-1/PD-L1) immune checkpoint pathway is an efficient immunotherapeutic modality that provided significant advances in cancer treatment especially in solid tumors highly resistant to traditional therapy. Monoclonal antibodies (mAbs) and small-molecule inhibitors are the two main strategies used to block this axis with mAbs suffering from many limitations. Accordingly, the current alternative is the development of small-molecule PD-1/PD-L1 inhibitors. Here, we present a sequential virtual screening (VS) protocol involving pharmacophore screening followed by molecular docking for the discovery of novel PD-L1 inhibitors. The VS protocol resulted in the discovery of eight novel compounds. A 100 ns MD simulation showed two compounds, H4 and H6, exhibiting a stable binding mode at the PD-L1 dimer interface. Upon evaluation of their immunological activities, the two compounds induced higher cytokines levels (IL-2, IL-6, and INF-γ) relative to BMS-202, 72 h post treatment of PBMCs of HCC patients. Thus, the discovered hits represent potential leads for the development of novel classes targeting the PD-L1 receptor as anti-hepatocellular carcinoma agents.
Collapse
Affiliation(s)
- Monica
A. Kamal
- Molecular
Pharmacology Research Group, Department of Pharmacology and Toxicology,
Faculty of Pharmacy and Biotechnology, German
University in Cairo, 11835 Cairo, Egypt
| | - Hedy A. Badary
- Endemic
Medicine and Hepato-gastroenterology Department, Faculty of Medicine, Cairo University, 11562 Cairo, Egypt
| | - Dalia Omran
- Endemic
Medicine and Hepato-gastroenterology Department, Faculty of Medicine, Cairo University, 11562 Cairo, Egypt
| | - Hend I. Shousha
- Endemic
Medicine and Hepato-gastroenterology Department, Faculty of Medicine, Cairo University, 11562 Cairo, Egypt
| | - Ashraf O. Abdelaziz
- Endemic
Medicine and Hepato-gastroenterology Department, Faculty of Medicine, Cairo University, 11562 Cairo, Egypt
| | - Hend M. El Tayebi
- Molecular
Pharmacology Research Group, Department of Pharmacology and Toxicology,
Faculty of Pharmacy and Biotechnology, German
University in Cairo, 11835 Cairo, Egypt
| | - Yasmine M. Mandour
- School
of Life and Medical Sciences, University
of Hertfordshire Hosted by Global Academic Foundation, New Administrative Capital, 11578 Cairo, Egypt
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835 Cairo, Egypt
| |
Collapse
|
192
|
Kol I, Rishiq A, Cohen M, Kahlon S, Pick O, Dassa L, Stein N, Bar-On Y, Wolf DG, Seidel E, Mandelboim O. CLPTM1L is a GPI-anchoring pathway component targeted by HCMV. J Cell Biol 2023; 222:e202207104. [PMID: 37389656 PMCID: PMC10316631 DOI: 10.1083/jcb.202207104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 04/03/2023] [Accepted: 05/19/2023] [Indexed: 07/01/2023] Open
Abstract
The GPI-anchoring pathway plays important roles in normal development and immune modulation. MHC Class I Polypeptide-related Sequence A (MICA) is a stress-induced ligand, downregulated by human cytomegalovirus (HCMV) to escape immune recognition. Its most prevalent allele, MICA*008, is GPI-anchored via an uncharacterized pathway. Here, we identify cleft lip and palate transmembrane protein 1-like protein (CLPTM1L) as a GPI-anchoring pathway component and show that during infection, the HCMV protein US9 downregulates MICA*008 via CLPTM1L. We show that the expression of some GPI-anchored proteins (CD109, CD59, and MELTF)-but not others (ULBP2, ULBP3)-is CLPTM1L-dependent, and further show that like MICA*008, MELTF is downregulated by US9 via CLPTM1L during infection. Mechanistically, we suggest that CLPTM1L's function depends on its interaction with a free form of PIG-T, normally a part of the GPI transamidase complex. We suggest that US9 inhibits this interaction and thereby downregulates the expression of CLPTM1L-dependent proteins. Altogether, we report on a new GPI-anchoring pathway component that is targeted by HCMV.
Collapse
Affiliation(s)
- Inbal Kol
- The Concern Foundation Laboratories at the Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel Canada, Hadassah—Hebrew University Medical Center, Jerusalem, Israel
| | - Ahmed Rishiq
- The Concern Foundation Laboratories at the Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel Canada, Hadassah—Hebrew University Medical Center, Jerusalem, Israel
| | - Mevaseret Cohen
- The Concern Foundation Laboratories at the Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel Canada, Hadassah—Hebrew University Medical Center, Jerusalem, Israel
| | - Shira Kahlon
- The Concern Foundation Laboratories at the Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel Canada, Hadassah—Hebrew University Medical Center, Jerusalem, Israel
| | - Ophir Pick
- The Concern Foundation Laboratories at the Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel Canada, Hadassah—Hebrew University Medical Center, Jerusalem, Israel
| | - Liat Dassa
- The Concern Foundation Laboratories at the Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel Canada, Hadassah—Hebrew University Medical Center, Jerusalem, Israel
| | - Natan Stein
- The Concern Foundation Laboratories at the Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel Canada, Hadassah—Hebrew University Medical Center, Jerusalem, Israel
| | - Yotam Bar-On
- Department of Immunology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Dana G. Wolf
- The Concern Foundation Laboratories at the Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel Canada, Hadassah—Hebrew University Medical Center, Jerusalem, Israel
- Clinical Virology Unit, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Einat Seidel
- The Concern Foundation Laboratories at the Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel Canada, Hadassah—Hebrew University Medical Center, Jerusalem, Israel
| | - Ofer Mandelboim
- The Concern Foundation Laboratories at the Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel Canada, Hadassah—Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
193
|
Liu Y, Hu Y, Xue J, Li J, Yi J, Bu J, Zhang Z, Qiu P, Gu X. Advances in immunotherapy for triple-negative breast cancer. Mol Cancer 2023; 22:145. [PMID: 37660039 PMCID: PMC10474743 DOI: 10.1186/s12943-023-01850-7] [Citation(s) in RCA: 107] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 08/26/2023] [Indexed: 09/04/2023] Open
Abstract
BACKGROUND Immunotherapy has recently emerged as a treatment strategy which stimulates the human immune system to kill tumor cells. Tumor immunotherapy is based on immune editing, which enhances the antigenicity of tumor cells and increases the tumoricidal effect of immune cells. It also suppresses immunosuppressive molecules, activates or restores immune system function, enhances anti-tumor immune responses, and inhibits the growth f tumor cell. This offers the possibility of reducing mortality in triple-negative breast cancer (TNBC). MAIN BODY Immunotherapy approaches for TNBC have been diversified in recent years, with breakthroughs in the treatment of this entity. Research on immune checkpoint inhibitors (ICIs) has made it possible to identify different molecular subtypes and formulate individualized immunotherapy schedules. This review highlights the unique tumor microenvironment of TNBC and integrates and analyzes the advances in ICI therapy. It also discusses strategies for the combination of ICIs with chemotherapy, radiation therapy, targeted therapy, and emerging treatment methods such as nanotechnology, ribonucleic acid vaccines, and gene therapy. Currently, numerous ongoing or completed clinical trials are exploring the utilization of immunotherapy in conjunction with existing treatment modalities for TNBC. The objective of these investigations is to assess the effectiveness of various combined immunotherapy approaches and determine the most effective treatment regimens for patients with TNBC. CONCLUSION This review provides insights into the approaches used to overcome drug resistance in immunotherapy, and explores the directions of immunotherapy development in the treatment of TNBC.
Collapse
Affiliation(s)
- Yang Liu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Yueting Hu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Jinqi Xue
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Jingying Li
- Department of Health Management, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Jiang Yi
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Jiawen Bu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Zhenyong Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China.
| | - Peng Qiu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China.
| | - Xi Gu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China.
| |
Collapse
|
194
|
El-Aziz MKA, Dawoud A, Kiriacos CJ, Fahmy SA, Hamdy NM, Youness RA. Decoding hepatocarcinogenesis from a noncoding RNAs perspective. J Cell Physiol 2023; 238:1982-2009. [PMID: 37450612 DOI: 10.1002/jcp.31076] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/11/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023]
Abstract
Being a leading lethal malignancy worldwide, the pathophysiology of hepatocellular carcinoma (HCC) has gained a lot of interest. Yet, underlying mechanistic basis of the liver tumorigenesis is poorly understood. The role of some coding genes and their respective translated proteins, then later on, some noncoding RNAs (ncRNAs) such as microRNAs have been extensively studied in context of HCC pathophysiology; however, the implication of long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) in HCC is indeed less investigated. As a subclass of the ncRNAs which has been elusive for long time ago, lncRNAs was found to be involved in plentiful cellular functions such as DNA, RNA, and proteins regulation. Hence, it is undisputed that lncRNAs dysregulation profoundly contributes to HCC via diverse etiologies. Accordingly, lncRNAs represent a hot research topic that requires prime focus in HCC. In this review, the authors discuss breakthrough discoveries involving lncRNAs and circRNAs dysregulation that have contributed to the contemporary concepts of HCC pathophysiology and how these concepts could be leveraged as potential novel diagnostic and prognostic HCC biomarkers. Further, this review article sheds light on future trends, thereby discussing the pathological roles of lncRNAs and circRNAs in HCC proliferation, migration, and epithelial-to-mesenchymal transition. Along this line of reasoning, future recommendations of how these targets could be exploited to achieve effective HCC-related drug development is highlighted.
Collapse
Affiliation(s)
- Mostafa K Abd El-Aziz
- Biochemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, Egypt
- Molecular Genetics Research Team (MGRT), Biology and Biochemistry Department, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo, Egypt
| | - Alyaa Dawoud
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Caroline J Kiriacos
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Sherif Ashraf Fahmy
- Chemistry Department, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo, Egypt
| | - Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Rana A Youness
- Molecular Genetics Research Team (MGRT), Biology and Biochemistry Department, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo, Egypt
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| |
Collapse
|
195
|
Afra F, Mahboobipour AA, Salehi Farid A, Ala M. Recent progress in the immunotherapy of hepatocellular carcinoma: Non-coding RNA-based immunotherapy may improve the outcome. Biomed Pharmacother 2023; 165:115104. [PMID: 37393866 DOI: 10.1016/j.biopha.2023.115104] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/04/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the second most lethal cancer and a leading cause of cancer-related mortality worldwide. Immune checkpoint inhibitors (ICIs) significantly improved the prognosis of HCC; however, the therapeutic response remains unsatisfactory in a substantial proportion of patients or needs to be further improved in responders. Herein, other methods of immunotherapy, including vaccine-based immunotherapy, adoptive cell therapy, cytokine delivery, kynurenine pathway inhibition, and gene delivery, have been adopted in clinical trials. Although the results were not encouraging enough to expedite their marketing. A major proportion of human genome is transcribed into non-coding RNAs (ncRNAs). Preclinical studies have extensively investigated the roles of ncRNAs in different aspects of HCC biology. HCC cells reprogram the expression pattern of numerous ncRNAs to decrease the immunogenicity of HCC, exhaust the cytotoxic and anti-cancer function of CD8 + T cells, natural killer (NK) cells, dendritic cells (DCs), and M1 macrophages, and promote the immunosuppressive function of T Reg cells, M2 macrophages, and myeloid-derived suppressor cells (MDSCs). Mechanistically, cancer cells recruit ncRNAs to interact with immune cells, thereby regulating the expression of immune checkpoints, functional receptors of immune cells, cytotoxic enzymes, and inflammatory and anti-inflammatory cytokines. Interestingly, prediction models based on the tissue expression or even serum levels of ncRNAs could predict response to immunotherapy in HCC. Moreover, ncRNAs markedly potentiated the efficacy of ICIs in murine models of HCC. This review article first discusses recent advances in the immunotherapy of HCC, then dissects the involvement and potential application of ncRNAs in the immunotherapy of HCC.
Collapse
Affiliation(s)
- Fatemeh Afra
- Clinical Pharmacy Department, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Ali Mahboobipour
- Tracheal Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Salehi Farid
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Moein Ala
- Experimental Medicine Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
196
|
Zhang T, Deng W, Deng Y, Liu Y, Xiao S, Luo Y, Xiang W, He Q. Mechanisms of ferroptosis regulating oxidative stress and energy metabolism in myocardial ischemia-reperfusion injury and a novel perspective of natural plant active ingredients for its treatment. Biomed Pharmacother 2023; 165:114706. [PMID: 37400352 DOI: 10.1016/j.biopha.2023.114706] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 07/05/2023] Open
Abstract
Acute myocardial infarction remains the leading cause of death in humans. Timely restoration of blood perfusion to ischemic myocardium remains the most effective strategy in the treatment of acute myocardial infarction, which can significantly reduce morbidity and mortality. However, after restoration of blood flow and reperfusion, myocardial injury will aggravate and induce apoptosis of cardiomyocytes, a process called myocardial ischemia-reperfusion injury. Studies have shown that the loss and death of cardiomyocytes caused by oxidative stress, iron load, increased lipid peroxidation, inflammation and mitochondrial dysfunction, etc., are involved in myocardial ischemia-reperfusion injury. In recent years, with the in-depth research on the pathology of myocardial ischemia-reperfusion injury, people have gradually realized that there is a new form of cell death in the pathological process of myocardial ischemia-reperfusion injury, namely ferroptosis. A number of studies have found that in the myocardial tissue of patients with acute myocardial infarction, there are pathological changes closely related to ferroptosis, such as iron metabolism disorder, lipid peroxidation, and increased reactive oxygen species free radicals. Natural plant products such as resveratrol, baicalin, cyanidin-3-O-glucoside, naringenin, and astragaloside IV can also exert therapeutic effects by correcting the imbalance of these ferroptosis-related factors and expression levels. Combining with our previous studies, this review summarizes the regulatory mechanism of natural plant products intervening ferroptosis in myocardial ischemia-reperfusion injury in recent years, in order to provide reference information for the development of targeted ferroptosis inhibitor drugs for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Tianqing Zhang
- Department of Cardiology, The First People's Hospital of Changde City, Changde 415003, Hunan, China
| | - Wenxu Deng
- The Central Hospital of Hengyang, Hengyang, Hunan 421001, China
| | - Ying Deng
- People's Hospital of Ningxiang City, Ningxiang, Hunan, China
| | - Yao Liu
- The Second Affiliated Hospital, Department of Cardiovascular Medicine, Hengyang Medcial School, University of South China, Hunan 421001, China.
| | - Sijie Xiao
- Department of Ultrasound, The First People's Hospital of Changde City, Changde 415003, China
| | - Yanfang Luo
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Wang Xiang
- Department of Immunology and Rheumatology, The First People's Hospital of Changde City, Changde 415003, China
| | - Qi He
- People's Hospital of Ningxiang City, Ningxiang, Hunan, China
| |
Collapse
|
197
|
Park CR, Bae HR, Lee GY, Son CG, Cho JH, Cho CK, Lee NH. Feasibility of combination of Gun-Chil-Jung and cytokine-induced killer cells-based immunotherapy for terminal hepatocellular carcinoma patient: a case report. Front Pharmacol 2023; 14:1203379. [PMID: 37719842 PMCID: PMC10502300 DOI: 10.3389/fphar.2023.1203379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/21/2023] [Indexed: 09/19/2023] Open
Abstract
Introduction: Terminal-stage hepatocellular carcinoma (HCC) is inoperable and currently has no form of adjuvant therapy. This study examined the anticancer herbal extract Gun-Chil-Jung (GCJ) combined with cytokine-induced killer (CIK)-cell-based immunotherapy as a palliative therapy for terminal HCC. We report the case of an HCC patient with extended overall survival and improved symptoms and tumor marker levels following combination therapy with GCJ and CIK cell-based immunotherapy. Baseline Characteristics: From March to July 2020, a 57-year-old man who had been diagnosed with HCC underwent combination treatment with GCJ and CIK cell-based immunotherapy. By August 2021, he was prescribed GCJ. After treatment, the patient's condition was evaluated with respect to overall survival, tumor markers, symptoms, abdominal computed tomography findings, chest x-ray results, and Eastern Cooperative Oncology Group (ECOG) grade. Results: The patient's overall survival, tumor marker levels, ECOG grade, and symptoms, including ascites, lower limb edema, jaundice, pleural effusion, and fatigue, were largely alleviated. Conclusion: We expect that this combination therapy may be an option for palliative therapy of terminal HCC.
Collapse
Affiliation(s)
- Chan-Ran Park
- Department of Hepatology and Hematology, Graduated School of Korean Medicine, Daejeon University, Daejeon, Republic of Korea
| | - Hye-Ri Bae
- Department of Hepatology and Hematology, Graduated School of Korean Medicine, Daejeon University, Daejeon, Republic of Korea
- East-West Cancer Center, Cheonan Korean Medical Hospital, Daejeon University, Daejeon, Republic of Korea
| | - Ga-Young Lee
- Department of Hepatology and Hematology, Graduated School of Korean Medicine, Daejeon University, Daejeon, Republic of Korea
| | - Chang-Gue Son
- Department of Hepatology and Hematology, Graduated School of Korean Medicine, Daejeon University, Daejeon, Republic of Korea
- Department of Internal Medicine, Daejeon Korean Medicine Hospital of Daejeon University, Daejeon, Republic of Korea
| | - Jung-Hyo Cho
- Department of Hepatology and Hematology, Graduated School of Korean Medicine, Daejeon University, Daejeon, Republic of Korea
- Department of Internal Medicine, Daejeon Korean Medicine Hospital of Daejeon University, Daejeon, Republic of Korea
| | - Chong-Kwan Cho
- Department of Hepatology and Hematology, Graduated School of Korean Medicine, Daejeon University, Daejeon, Republic of Korea
- Department of Internal Medicine, Daejeon Korean Medicine Hospital of Daejeon University, Daejeon, Republic of Korea
| | - Nam-Hun Lee
- Department of Hepatology and Hematology, Graduated School of Korean Medicine, Daejeon University, Daejeon, Republic of Korea
- East-West Cancer Center, Cheonan Korean Medical Hospital, Daejeon University, Daejeon, Republic of Korea
| |
Collapse
|
198
|
Sosnowska M, Kutwin M, Koczoń P, Chwalibog A, Sawosz E. Polyhydroxylated Fullerene C 60(OH) 40 Nanofilms Promote the Mesenchymal-Epithelial Transition of Human Liver Cancer Cells via the TGF-β1/Smad Pathway. J Inflamm Res 2023; 16:3739-3761. [PMID: 37663761 PMCID: PMC10474868 DOI: 10.2147/jir.s415378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 07/27/2023] [Indexed: 09/05/2023] Open
Abstract
Background The various growth factors change the phenotype of neoplastic cells from sedentary (epithelial) to invasive (mesenchymal), which weaken intercellular connections and promote chemotaxis. It can be assumed that the use of anti-inflammatory polyhydroxyfull nanofilms will restore the sedentary phenotype of neoplastic cells in the primary site of the tumor and, consequently, increase the effectiveness of the therapy. Methods The studies were carried out on liver cancer cells HepG2, C3A and SNU-449, and non-cancer hepatic cell line THLE-3. Transforming growth factor (TGF), epidermal growth factor and tumor necrosis factor were used to induce the epithelial-mesenchymal transition. C60(OH)40 nanofilm was used to induce the mesenchymal-epithelial transition. Obtaining an invasive phenotype was confirmed on the basis of changes in the morphology using inverted light microscopy. RT-PCR was used to confirm mesenchymal or epithelial phenotype based on e-cadherin, snail, vimentin expression or others. Water colloids at a concentration of 100 mg/L were used to create nanofilms of fullerene, fullerenol, diamond and graphene oxide. The ELISA test for the determination of TGF expression and growth factor antibody array were used to select the most anti-inflammatory carbon nanofilm. Mitochondrial activity and proliferation of cells were measured by XTT and BrdU tests. Results Cells lost their natural morphology of cells growing in clusters and resembled fibroblast cells after adding a cocktail of factors. Among the four allotropic forms of carbon tested, only the C60(OH)40 nanofilm inhibited the secretion of TGF in all the cell lines used and inhibited the secretion of other factors, including insulin-like growth factor system. Nanofilm C60(OH)40 was non-toxic to liver cells and inhibited the TGF-β1/Smad pathway of invasive cells treated with the growth factor cocktail. Conclusion The introduction of an anti-inflammatory, nontoxic component that can induce the mesenchymal-epithelial transition of cancer cells may represent a future adjuvant therapy after tumor resection.
Collapse
Affiliation(s)
- Malwina Sosnowska
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Marta Kutwin
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Piotr Koczoń
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, Warsaw, Poland
| | - André Chwalibog
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Ewa Sawosz
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| |
Collapse
|
199
|
Mulik S, Berber E, Sehrawat S, Rouse BT. Controlling viral inflammatory lesions by rebalancing immune response patterns. Front Immunol 2023; 14:1257192. [PMID: 37671156 PMCID: PMC10475736 DOI: 10.3389/fimmu.2023.1257192] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/07/2023] [Indexed: 09/07/2023] Open
Abstract
In this review, we discuss a variety of immune modulating approaches that could be used to counteract tissue-damaging viral immunoinflammatory lesions which typify many chronic viral infections. We make the point that in several viral infections the lesions can be largely the result of one or more aspects of the host response mediating the cell and tissue damage rather than the virus itself being directly responsible. However, within the reactive inflammatory lesions along with the pro-inflammatory participants there are also other aspects of the host response that may be acting to constrain the activity of the damaging components and are contributing to resolution. This scenario should provide the prospect of rebalancing the contributions of different host responses and hence diminish or even fully control the virus-induced lesions. We identify several aspects of the host reactions that influence the pattern of immune responsiveness and describe approaches that have been used successfully, mainly in model systems, to modulate the activity of damaging participants and which has led to lesion control. We emphasize examples where such therapies are, or could be, translated for practical use in the clinic to control inflammatory lesions caused by viral infections.
Collapse
Affiliation(s)
- Sachin Mulik
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
| | - Engin Berber
- Infection Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Sharvan Sehrawat
- Indian Institute of Science Education and Research, Department of Biological Sciences, Mohali, Punjab, India
| | - Barry Tyrrell Rouse
- College of Veterinary Medicine, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
200
|
Palcau AC, Brandi R, Mehterov NH, Botti C, Blandino G, Pulito C. Exploiting Long Non-Coding RNAs and Circular RNAs as Pharmacological Targets in Triple-Negative Breast Cancer Treatment. Cancers (Basel) 2023; 15:4181. [PMID: 37627209 PMCID: PMC10453179 DOI: 10.3390/cancers15164181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/13/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Breast cancer is one of the most frequent causes of cancer death among women worldwide. In particular, triple-negative breast cancer (TNBC) represents the most aggressive breast cancer subtype because it is characterized by the absence of molecular targets, thus making it an orphan type of malignancy. The discovery of new molecular druggable targets is mandatory to improve treatment success. In that context, non-coding RNAs represent an opportunity for modulation of cancer. They are RNA molecules with apparently no protein coding potential, which have been already demonstrated to play pivotal roles within cells, being involved in different processes, such as proliferation, cell cycle regulation, apoptosis, migration, and diseases, including cancer. Accordingly, they could be used as targets for future TNBC personalized therapy. Moreover, the peculiar characteristics of non-coding RNAs make them reliable biomarkers to monitor cancer treatment, thus, to monitor recurrence or chemoresistance, which are the most challenging aspects in TNBC. In the present review, we focused on the oncogenic or oncosuppressor role of long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) mostly involved in TNBC, highlighting their mode of action and depicting their potential role as a biomarker and/or as targets of new non-coding RNA-based therapeutics.
Collapse
Affiliation(s)
- Alina Catalina Palcau
- Translational Oncology Research Unit, Department of Research, Advanced Diagnostic and Technological Innovation, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (A.C.P.); (R.B.); (G.B.)
| | - Renata Brandi
- Translational Oncology Research Unit, Department of Research, Advanced Diagnostic and Technological Innovation, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (A.C.P.); (R.B.); (G.B.)
| | - Nikolay Hristov Mehterov
- Department of Medical Biology, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria;
- Research Institute, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria
| | - Claudio Botti
- Breast Surgery Unit, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy;
| | - Giovanni Blandino
- Translational Oncology Research Unit, Department of Research, Advanced Diagnostic and Technological Innovation, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (A.C.P.); (R.B.); (G.B.)
| | - Claudio Pulito
- Translational Oncology Research Unit, Department of Research, Advanced Diagnostic and Technological Innovation, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (A.C.P.); (R.B.); (G.B.)
| |
Collapse
|