151
|
Kim S, Jung UJ, Kim SR. Role of Oxidative Stress in Blood-Brain Barrier Disruption and Neurodegenerative Diseases. Antioxidants (Basel) 2024; 13:1462. [PMID: 39765790 PMCID: PMC11673141 DOI: 10.3390/antiox13121462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/22/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025] Open
Abstract
Upregulation of reactive oxygen species (ROS) levels is a principal feature observed in the brains of neurodegenerative diseases such as Parkinson's disease (PD) and Alzheimer's disease (AD). In these diseases, oxidative stress can disrupt the blood-brain barrier (BBB). This disruption allows neurotoxic plasma components, blood cells, and pathogens to enter the brain, leading to increased ROS production, mitochondrial dysfunction, and inflammation. Collectively, these factors result in protein modification, lipid peroxidation, DNA damage, and, ultimately, neural cell damage. In this review article, we present the mechanisms by which oxidative damage leads to BBB breakdown in brain diseases. Additionally, we summarize potential therapeutic approaches aimed at reducing oxidative damage that contributes to BBB disruption in neurodegenerative diseases.
Collapse
Affiliation(s)
- Sehwan Kim
- School of Life Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea;
- BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Un Ju Jung
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea
| | - Sang Ryong Kim
- School of Life Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea;
- BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41404, Republic of Korea
| |
Collapse
|
152
|
Toader C, Tataru CP, Munteanu O, Serban M, Covache-Busuioc RA, Ciurea AV, Enyedi M. Decoding Neurodegeneration: A Review of Molecular Mechanisms and Therapeutic Advances in Alzheimer's, Parkinson's, and ALS. Int J Mol Sci 2024; 25:12613. [PMID: 39684324 PMCID: PMC11641752 DOI: 10.3390/ijms252312613] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Neurodegenerative diseases, such as Alzheimer's, Parkinson's, ALS, and Huntington's, remain formidable challenges in medicine, with their relentless progression and limited therapeutic options. These diseases arise from a web of molecular disturbances-misfolded proteins, chronic neuroinflammation, mitochondrial dysfunction, and genetic mutations-that slowly dismantle neuronal integrity. Yet, recent scientific breakthroughs are opening new paths to intervene in these once-intractable conditions. This review synthesizes the latest insights into the underlying molecular dynamics of neurodegeneration, revealing how intertwined pathways drive the course of these diseases. With an eye on the most promising advances, we explore innovative therapies emerging from cutting-edge research: nanotechnology-based drug delivery systems capable of navigating the blood-brain barrier, gene-editing tools like CRISPR designed to correct harmful genetic variants, and stem cell strategies that not only replace lost neurons but foster neuroprotective environments. Pharmacogenomics is reshaping treatment personalization, enabling tailored therapies that align with individual genetic profiles, while molecular diagnostics and biomarkers are ushering in an era of early, precise disease detection. Furthermore, novel perspectives on the gut-brain axis are sparking interest as mounting evidence suggests that microbiome modulation may play a role in reducing neuroinflammatory responses linked to neurodegenerative progression. Taken together, these advances signal a shift toward a comprehensive, personalized approach that could transform neurodegenerative care. By integrating molecular insights and innovative therapeutic techniques, this review offers a forward-looking perspective on a future where treatments aim not just to manage symptoms but to fundamentally alter disease progression, presenting renewed hope for improved patient outcomes.
Collapse
Affiliation(s)
- Corneliu Toader
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (M.S.); (R.-A.C.-B.); (A.V.C.)
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | - Calin Petru Tataru
- Ophthalmology Department, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Octavian Munteanu
- Department of Anatomy, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Matei Serban
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (M.S.); (R.-A.C.-B.); (A.V.C.)
| | - Razvan-Adrian Covache-Busuioc
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (M.S.); (R.-A.C.-B.); (A.V.C.)
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | - Alexandru Vlad Ciurea
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (M.S.); (R.-A.C.-B.); (A.V.C.)
- Neurosurgery Department, Sanador Clinical Hospital, 010991 Bucharest, Romania
- Medical Section within the Romanian Academy, 010071 Bucharest, Romania
| | - Mihaly Enyedi
- Department of Anatomy, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| |
Collapse
|
153
|
Albulescu L, Suciu A, Neagu M, Tanase C, Pop S. Differential Biological Effects of Trifolium pratense Extracts-In Vitro Studies on Breast Cancer Models. Antioxidants (Basel) 2024; 13:1435. [PMID: 39765764 PMCID: PMC11672829 DOI: 10.3390/antiox13121435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 01/11/2025] Open
Abstract
The increasing popularity of herbal supplements emphasizes the need of scientific data regarding their health benefits and possible toxicological concerns. The complexity of botanical extracts, which include thousands of distinct compounds, contributes to the challenging nature of this endeavor. In this study, we explored the hormetic effects of two Trifolium pratense extracts on breast cell lines. Using a wide range of concentrations (0.1 to 3.33 mg/mL), we analyzed how extracts modulate cellular processes such as viability, proliferation, and oxidative stress on breast adenocarcinoma highly invasive estrogen receptor negative (ER-) and noninvasive ER+ cells, as well as on non-tumorigenic ER- normal cells. The cytotoxicity and real-time cell analysis (RTCA) assays showed that both extracts exercised a biphasic dose effect on adenocarcinoma ER+ and normal ER- cell proliferation and oxidative stress. We report a monotonic dose-dependent cytotoxicity on highly invasive adenocarcinoma ER- cells; the induced apoptosis was based on the pro-oxidant activity of extracts. The reactive oxygen species (ROS) generation by high-dose ethanolic extract was observed in all cells, followed by mitochondria dysfunction. Oxidative stress parameters, such as malondialdehyde (MDA) and reduced glutathione (GSH) levels, and superoxide dismutase (SOD) activity were affected. Our study demonstrates that T. pratense extracts have chemoprevention potential in normal and tumorigenic breast cells by modulating cellular proliferation and oxidative stress.
Collapse
Affiliation(s)
- Lucian Albulescu
- Biochemistry & Proteomics Laboratory, “Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania; (L.A.); (C.T.)
| | - Alexandru Suciu
- Research Department, SC Hofigal Export-Import SA, 042124 Bucharest, Romania; (A.S.); (M.N.)
| | - Mihaela Neagu
- Research Department, SC Hofigal Export-Import SA, 042124 Bucharest, Romania; (A.S.); (M.N.)
| | - Cristiana Tanase
- Biochemistry & Proteomics Laboratory, “Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania; (L.A.); (C.T.)
- “Nicolae Cajal” Institute of Medical Scientific Research, “Titu Maiorescu” University, 040441 Bucharest, Romania
| | - Sevinci Pop
- Cell Biology Laboratory, “Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania
| |
Collapse
|
154
|
Bukić J, Rušić D, Turic A, Leskur D, Durdov T, Božić J, Kondža M, Modun D, Šešelja Perišin A. Evaluating Pharmacists' Knowledge of Food-Drug Interactions in Croatia: Identifying Gaps and Opportunities. PHARMACY 2024; 12:172. [PMID: 39585098 PMCID: PMC11587475 DOI: 10.3390/pharmacy12060172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 11/26/2024] Open
Abstract
Food-drug interactions (FDIs) are pharmacokinetic or pharmacodynamic changes in drug effects caused by the presence of specific foods. To identify and prevent FDIs, pharmacists, alongside other healthcare professionals, should possess a certain level of knowledge. This study aimed to assess knowledge of FDIs among Croatian pharmacists. A total of 206 participants were included in this cross-sectional study. The median knowledge score among Croatian pharmacists was 69.44%, with an interquartile range of 19.44. Croatian pharmacists most commonly recognized FDIs involving theophylline, warfarin, and tetracycline, while the lowest rate of correct answers was observed with digoxin interactions. Future studies should evaluate pharmacists' clinical practice concerning FDIs. Additionally, more research is needed to develop educational programs on this topic, either at the university level or for continuing education.
Collapse
Affiliation(s)
- Josipa Bukić
- Department of Pharmacy, University of Split School of Medicine, 21000 Split, Croatia; (J.B.); (D.R.); (A.T.); (D.L.); (T.D.); (A.Š.P.)
- Department of Laboratory Medicine and Pharmacy, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Doris Rušić
- Department of Pharmacy, University of Split School of Medicine, 21000 Split, Croatia; (J.B.); (D.R.); (A.T.); (D.L.); (T.D.); (A.Š.P.)
| | - Antonela Turic
- Department of Pharmacy, University of Split School of Medicine, 21000 Split, Croatia; (J.B.); (D.R.); (A.T.); (D.L.); (T.D.); (A.Š.P.)
| | - Dario Leskur
- Department of Pharmacy, University of Split School of Medicine, 21000 Split, Croatia; (J.B.); (D.R.); (A.T.); (D.L.); (T.D.); (A.Š.P.)
| | - Toni Durdov
- Department of Pharmacy, University of Split School of Medicine, 21000 Split, Croatia; (J.B.); (D.R.); (A.T.); (D.L.); (T.D.); (A.Š.P.)
| | - Joško Božić
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia;
| | - Martin Kondža
- Faculty of Pharmacy, University of Mostar, 88000 Mostar, Bosnia and Herzegovina;
- Faculty of Food and Technology, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Darko Modun
- Department of Pharmacy, University of Split School of Medicine, 21000 Split, Croatia; (J.B.); (D.R.); (A.T.); (D.L.); (T.D.); (A.Š.P.)
| | - Ana Šešelja Perišin
- Department of Pharmacy, University of Split School of Medicine, 21000 Split, Croatia; (J.B.); (D.R.); (A.T.); (D.L.); (T.D.); (A.Š.P.)
| |
Collapse
|
155
|
Kola A, Vigni G, Lamponi S, Valensin D. Protective Contribution of Rosmarinic Acid in Rosemary Extract Against Copper-Induced Oxidative Stress. Antioxidants (Basel) 2024; 13:1419. [PMID: 39594560 PMCID: PMC11590892 DOI: 10.3390/antiox13111419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Rosemary extract (Rosmarinus officinalis) is a natural source of bioactive compounds with significant antioxidant properties. Among these, rosmarinic acid is celebrated for its potent antioxidant, anti-inflammatory, antimicrobial, and neuroprotective properties, making it a valuable component in both traditional medicine and modern therapeutic research. Neurodegenerative diseases like Alzheimer's and Parkinson's are closely linked to oxidative damage, and research indicates that rosmarinic acid may help protect neurons by mitigating this harmful process. Rosmarinic acid is able to bind cupric ions (Cu2+) and interfere with the production of reactive oxygen species (ROS) produced by copper through Fenton-like reactions. This study aims to further evaluate the contribution of rosmarinic acid within rosemary extract by comparing its activity to that of isolated rosmarinic acid. By using a detailed approach that includes chemical characterization, antioxidant capacity assessment, and neuroprotective activity testing, we have determined whether the combined components in rosemary extract enhance or differ from the effects of rosmarinic acid alone. This comparison is crucial for understanding whether the full extract offers added benefits beyond those of isolated rosmarinic acid in combating oxidative stress and Aβ-induced toxicity.
Collapse
Affiliation(s)
| | | | | | - Daniela Valensin
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (A.K.); (G.V.); (S.L.)
| |
Collapse
|
156
|
Mahjoor M, Nobakht M, Ataei Kachouei F, Zalpoor H, Heidari F, Yari A, Joulai Veijouye S, Nazari H, Sajedi N. In Vitro differentiation of hair-follicle bulge stem cells into synaptophysin-expressing neurons: a potential new approach for neuro-regeneration. Hum Cell 2024; 38:19. [PMID: 39546092 DOI: 10.1007/s13577-024-01146-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 10/09/2024] [Indexed: 11/17/2024]
Abstract
Stem cells, particularly bulge hair follicle stem cells (HFSCs), have recently attracted significant interest due to their potential for tissue repair and regeneration. These cells, marked by their expression of Nestin (a neural stem cell marker), suggest the possibility of neural differentiation into neurons. This study investigated the use of retinoic acid (RA) and epidermal growth factor (EGF) to induce HFSC transformation into mature neurons, identified by synaptophysin expression. Rat whisker follicles were cultured in a medium suitable for HFSC survival and proliferation. Immunostaining techniques were used to identify HFSCs and assess their differentiation into neural cells. The addition of RA and EGF to the culture medium aimed to induce this differentiation. Findings demonstrate that HFSCs expressed Nestin, indicating their pluripotent nature. Treatment with RA and EGF resulted in synaptophysin expression, a marker of mature neurons, which was absent in the control group. However, this treatment group also displayed a decrease in the expression of other neural markers (βIII tubulin and NeuN). This study suggests that a combination of RA and EGF can accelerate HFSC differentiation into synaptophysin-positive cells in vitro. This research paves the way for further exploration of its potential application in neuro-regeneration.
Collapse
Affiliation(s)
- Mohamad Mahjoor
- Cellular and Molecular Research Centre, Qom University of Medical Sciences, Qom, Iran
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maliheh Nobakht
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Hamidreza Zalpoor
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Education & Research Network (USERN), Universal Scientific, Tehran, Iran.
| | - Fatemeh Heidari
- Department of Anatomy, Faculty of Medicine, Qum University of Medical Sciences, Qom, Iran
| | - Abazar Yari
- Department of Anatomy, School of Medicine, Alborz University of Medical Science, Karaj, Iran
| | | | - Hojjatollah Nazari
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Sydney, NSW, Australia
| | - Nayereh Sajedi
- Department of Anatomy, Faculty of Medicine, Qom Medical Sciences, Islamic Azad University, Qom, Iran.
| |
Collapse
|
157
|
Canoyra A, Martín-Cordero C, Muñoz-Mingarro D, León-González AJ, Parsons RB, Acero N. Corema album Berry Juice as a Protective Agent Against Neurodegeneration. Pharmaceuticals (Basel) 2024; 17:1535. [PMID: 39598444 PMCID: PMC11597836 DOI: 10.3390/ph17111535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: Corema album berries are edible fruits from the Iberian Atlantic coast, characterized by a rich polyphenolic composition, which endows their juice with potential protective effects against neurodegeneration. This study aimed to evaluate the potential of the relatively lesser-known C. album berries as a novel neuroprotective agent against neurodegenerative diseases. Methods: The phenolic compounds of the juice were characterized using UHPLC-HRMS (Orbitrap). The SH-SY5Y neuroblastoma line was used to determine the preventive effect of the juice against H2O2-induced oxidative stress. Furthermore, neuronal cells were differentiated into dopaminergic and cholinergic lines and exposed to 6-hydroxydopamine and okadaic acid, respectively, to simulate in vitro models of Parkinson's disease and Alzheimer's disease. The ability of the juice to enhance neuronal viability under toxic conditions was examined. Additionally, its inhibitory effects on neuroprotective-related enzymes, including MAO-A and MAO-B, were assessed in vitro. Results: Phytochemical characterization reveals that 5-O-caffeoylquinic acid constitutes 80% of the total phenolic compounds. Higher concentrations of the juice effectively protected both differentiated and undifferentiated SH-SY5Y cells from H2O2-induced oxidative damage, reducing oxidative stress by approximately 20% and suggesting a dose-dependent mechanism. Moreover, the presence of the juice significantly enhanced the viability of dopaminergic and cholinergic cells exposed to neurotoxic agents. In vitro, the juice inhibited the activity of MAO-A (IC50 = 87.21 µg/mL) and MAO-B (IC50 = 56.50 µg/mL). Conclusions: While these findings highlight C. album berries as a promising neuroprotective agent, further research is required to elucidate its neuroprotective mechanisms in cell and animal models and, ultimately, in human trials.
Collapse
Affiliation(s)
- Antonio Canoyra
- Pharmaceutical and Health Science Department, Pharmacy Faculty, San Pablo-CEU University, CEU Universities, Urbanización Montepríncipe Boadilla del Monte, 28660 Madrid, Spain;
| | - Carmen Martín-Cordero
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, C/P. García González, 2, 41012 Seville, Spain; (C.M.-C.); (A.J.L.-G.)
| | - Dolores Muñoz-Mingarro
- Chemistry and Biochemistry Department, Pharmacy Faculty, San Pablo-CEU University, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28668 Madrid, Spain;
| | - Antonio J. León-González
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, C/P. García González, 2, 41012 Seville, Spain; (C.M.-C.); (A.J.L.-G.)
| | - Richard B. Parsons
- King’s College London, Institute of Pharmaceutical Sciences, 150 Stamford Street, London SE1 9NH, UK;
| | - Nuria Acero
- Pharmaceutical and Health Science Department, Pharmacy Faculty, San Pablo-CEU University, CEU Universities, Urbanización Montepríncipe Boadilla del Monte, 28660 Madrid, Spain;
| |
Collapse
|
158
|
Motyl JA, Gromadzka G, Czapski GA, Adamczyk A. SARS-CoV-2 Infection and Alpha-Synucleinopathies: Potential Links and Underlying Mechanisms. Int J Mol Sci 2024; 25:12079. [PMID: 39596147 PMCID: PMC11593367 DOI: 10.3390/ijms252212079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/30/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Alpha-synuclein (α-syn) is a 140-amino-acid, intrinsically disordered, soluble protein that is abundantly present in the brain. It plays a crucial role in maintaining cellular structures and organelle functions, particularly in supporting synaptic plasticity and regulating neurotransmitter turnover. However, for reasons not yet fully understood, α-syn can lose its physiological role and begin to aggregate. This altered α-syn disrupts dopaminergic transmission and causes both presynaptic and postsynaptic dysfunction, ultimately leading to cell death. A group of neurodegenerative diseases known as α-synucleinopathies is characterized by the intracellular accumulation of α-syn deposits in specific neuronal and glial cells within certain brain regions. In addition to Parkinson's disease (PD), these conditions include dementia with Lewy bodies (DLBs), multiple system atrophy (MSA), pure autonomic failure (PAF), and REM sleep behavior disorder (RBD). Given that these disorders are associated with α-syn-related neuroinflammation-and considering that SARS-CoV-2 infection has been shown to affect the nervous system, with COVID-19 patients experiencing neurological symptoms-it has been proposed that COVID-19 may contribute to neurodegeneration in PD and other α-synucleinopathies by promoting α-syn misfolding and aggregation. In this review, we focus on whether SARS-CoV-2 could act as an environmental trigger that facilitates the onset or progression of α-synucleinopathies. Specifically, we present new evidence on the potential role of SARS-CoV-2 in modulating α-syn function and discuss the causal relationship between SARS-CoV-2 infection and the development of parkinsonism-like symptoms.
Collapse
Affiliation(s)
- Joanna Agata Motyl
- Department of Hybrid Microbiosystems Engineering, Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Ks. Trojdena 4 St., 02-109 Warsaw, Poland;
| | - Grażyna Gromadzka
- Department of Biomedical Sciences, Faculty of Medicine, Collegium Medicum, Cardinal Stefan Wyszynski University, Wóycickiego 1/3, 01-938 Warsaw, Poland;
| | - Grzegorz Arkadiusz Czapski
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland;
| | - Agata Adamczyk
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland;
| |
Collapse
|
159
|
Wu K, Wang JP, Natekar NA, Ciannella S, González-Fernández C, Gomez-Pastora J, Bao Y, Liu J, Liang S, Wu X, Nguyen T Tran L, Mercedes Paz González K, Choe H, Strayer J, Iyer PR, Chalmers J, Chugh VK, Rezaei B, Mostufa S, Tay ZW, Saayujya C, Huynh Q, Bryan J, Kuo R, Yu E, Chandrasekharan P, Fellows B, Conolly S, Hadimani RL, El-Gendy AA, Saha R, Broomhall TJ, Wright AL, Rotherham M, El Haj AJ, Wang Z, Liang J, Abad-Díaz-de-Cerio A, Gandarias L, Gubieda AG, García-Prieto A, Fdez-Gubieda ML. Roadmap on magnetic nanoparticles in nanomedicine. NANOTECHNOLOGY 2024; 36:042003. [PMID: 39395441 PMCID: PMC11539342 DOI: 10.1088/1361-6528/ad8626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 07/11/2024] [Accepted: 10/12/2024] [Indexed: 10/14/2024]
Abstract
Magnetic nanoparticles (MNPs) represent a class of small particles typically with diameters ranging from 1 to 100 nanometers. These nanoparticles are composed of magnetic materials such as iron, cobalt, nickel, or their alloys. The nanoscale size of MNPs gives them unique physicochemical (physical and chemical) properties not found in their bulk counterparts. Their versatile nature and unique magnetic behavior make them valuable in a wide range of scientific, medical, and technological fields. Over the past decade, there has been a significant surge in MNP-based applications spanning biomedical uses, environmental remediation, data storage, energy storage, and catalysis. Given their magnetic nature and small size, MNPs can be manipulated and guided using external magnetic fields. This characteristic is harnessed in biomedical applications, where these nanoparticles can be directed to specific targets in the body for imaging, drug delivery, or hyperthermia treatment. Herein, this roadmap offers an overview of the current status, challenges, and advancements in various facets of MNPs. It covers magnetic properties, synthesis, functionalization, characterization, and biomedical applications such as sample enrichment, bioassays, imaging, hyperthermia, neuromodulation, tissue engineering, and drug/gene delivery. However, as MNPs are increasingly explored forin vivoapplications, concerns have emerged regarding their cytotoxicity, cellular uptake, and degradation, prompting attention from both researchers and clinicians. This roadmap aims to provide a comprehensive perspective on the evolving landscape of MNP research.
Collapse
Affiliation(s)
- Kai Wu
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, United States of America
| | - Jian-Ping Wang
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, United States of America
| | | | - Stefano Ciannella
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, United States of America
| | - Cristina González-Fernández
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, United States of America
- Department of Chemical and Biomolecular Engineering, University of Cantabria, Santander, Spain
| | - Jenifer Gomez-Pastora
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, United States of America
| | - Yuping Bao
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL, United States of America
| | - Jinming Liu
- Western Digital Corporation, San Jose, CA, United States of America
| | - Shuang Liang
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, United States of America
| | - Xian Wu
- William G Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States of America
| | - Linh Nguyen T Tran
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, United States of America
| | | | - Hyeon Choe
- William G Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States of America
| | - Jacob Strayer
- William G Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States of America
| | - Poornima Ramesh Iyer
- William G Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States of America
| | - Jeffrey Chalmers
- William G Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States of America
| | - Vinit Kumar Chugh
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, United States of America
| | - Bahareh Rezaei
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, United States of America
| | - Shahriar Mostufa
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, United States of America
| | - Zhi Wei Tay
- National Institute of Advanced Industrial Science and Technology (AIST), Health and Medical Research Institute, Tsukuba, Ibaraki 305-8564, Japan
| | - Chinmoy Saayujya
- Department of Electrical Engineering and Computer Sciences, University of California Berkeley, Berkeley, CA, United States of America
| | - Quincy Huynh
- Department of Electrical Engineering and Computer Sciences, University of California Berkeley, Berkeley, CA, United States of America
| | - Jacob Bryan
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, United States of America
| | - Renesmee Kuo
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, United States of America
| | - Elaine Yu
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, United States of America
| | - Prashant Chandrasekharan
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, United States of America
| | | | - Steven Conolly
- Department of Electrical Engineering and Computer Sciences, University of California Berkeley, Berkeley, CA, United States of America
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, United States of America
| | - Ravi L Hadimani
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA, United States of America
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, United States of America
- Department of Psychiatry, Harvard Medical School, Harvard University, Boston, MA, United States of America
| | - Ahmed A El-Gendy
- Department of Physics, University of Texas at El Paso, El Paso, TX, United States of America
| | - Renata Saha
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, United States of America
| | - Thomas J Broomhall
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Abigail L Wright
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Michael Rotherham
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- National Institute for Health and Care Research (NIHR) Birmingham Biomedical Research Centre, Institute of Translational Medicine, Birmingham, United Kingdom
| | - Alicia J El Haj
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- National Institute for Health and Care Research (NIHR) Birmingham Biomedical Research Centre, Institute of Translational Medicine, Birmingham, United Kingdom
| | - Zhiyi Wang
- Spin-X Institute, School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, Guangdong Province, People’s Republic of China
| | - Jiarong Liang
- Spin-X Institute, School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, Guangdong Province, People’s Republic of China
| | - Ana Abad-Díaz-de-Cerio
- Dpto. Inmunología, Microbiología y Parasitología, Universidad del País Vasco–UPV/EHU, Leioa, Spain
| | - Lucía Gandarias
- Bioscience and Biotechnology Institute of Aix-Marseille (BIAM), Aix-Marseille Université, CNRS, CEA—UMR 7265, Saint-Paul-lez-Durance, France
- Dpto. Electricidad y Electrónica, Universidad del País Vasco—UPV/EHU, Leioa, Spain
| | - Alicia G Gubieda
- Dpto. Inmunología, Microbiología y Parasitología, Universidad del País Vasco–UPV/EHU, Leioa, Spain
| | - Ana García-Prieto
- Dpto. Física Aplicada, Universidad del País Vasco–UPV/EHU, Bilbao, Spain
| | | |
Collapse
|
160
|
Jeyabalan JB, Pathak S, Mariappan E, Mohanakumar KP, Dhanasekaran M. Validating the nutraceutical and neuroprotective pharmacodynamics of flavones. Neurochem Int 2024; 180:105829. [PMID: 39147202 DOI: 10.1016/j.neuint.2024.105829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/02/2024] [Accepted: 08/08/2024] [Indexed: 08/17/2024]
Abstract
Neurodegenerative disorders are generally characterized by progressive neuronal loss and cognitive decline, with underlying mechanisms involving oxidative stress, protein aggregation, neuroinflammation, and synaptic dysfunction. Currently, the available treatment options only improve the symptoms of the disease but do not stop disease progression; neurodegeneration. This underscores the urgent need for novel therapeutic strategies targeting multiple neurodegenerative pathways alongside the conventional therapeutic strategies available. Emerging evidence demonstrates that flavones a subgroup of flavonoids found abundantly in various dietary sources, have surfaced as promising candidates for neuroprotection due to their multifaceted pharmacological properties. Flavones possess the potency to modulate these pathophysiological processes through their antioxidant, anti-inflammatory, and neurotrophic activities. Additionally, flavones have been shown to interact with various cellular targets, including receptors and enzymes, to confer neuroprotection. Though there are ample evidence available, the nutraceutical and neuroprotective pharmacodynamics of flavones have not been very well established. Hence, the current review aims to explores the therapeutic potential of flavones as nutraceuticals with neuroprotective effects, focusing on their ability to modulate key pathways implicated in neurodegenerative diseases. The current article also aims to actuate supplementary research into flavones as potential agents for alleviating neurodegeneration and improving patient outcomes in neurodegenerative disorders globally.
Collapse
Affiliation(s)
- Jeyaram Bharathi Jeyabalan
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Nilgiris, Ooty, Tamil Nadu, 643001, India
| | - Suhrud Pathak
- Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL, USA
| | - Esakkimuthukumar Mariappan
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Nilgiris, Ooty, Tamil Nadu, 643001, India
| | - K P Mohanakumar
- Inter University Centre for Biomedical Research & Super Speciality Hospital, Mahatma Gandhi University Campus at Thalappady, Kottayam, Kerala, India
| | | |
Collapse
|
161
|
Kowalczyk T, Piekarski J, Merecz-Sadowska A, Muskała M, Sitarek P. Investigation of the molecular mechanisms underlying the anti-inflammatory and antitumour effects of isorhapontigenin: Insights from in vitro and in vivo studies. Biomed Pharmacother 2024; 180:117479. [PMID: 39326106 DOI: 10.1016/j.biopha.2024.117479] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024] Open
Abstract
Isorhapontigenin (ISO), a naturally-occurring stilbene derivative, has garnered significant attention due to its potent anticancer and anti-inflammatory properties. This review synthesizes current knowledge regarding the mechanisms of action, efficacy, and potential therapeutic applications of Isorhapontigenin acquired in vitro and in vivo. It systematically analyzes its effects on various cancer cell lines, tumor models, and inflammatory conditions, examining its impact on cell proliferation, apoptosis, metastasis, and inflammatory mediators. In vitro studies reveal that Isorhapontigenin induces cell cycle arrest, promotes apoptosis, and inhibits cancer cell migration through modulation of key signaling pathways, including EGFR-PI3K-Akt and NF-κB. It also demonstrates potent antioxidant and anti-inflammatory effects by enhancing Nrf2 signaling and suppressing pro-inflammatory cytokine production. These findings are corroborated by in vivo studies confirming its ability to inhibit tumor growth in xenograft models and attenuate inflammatory responses in various disease models. Notably, Isorhapontigenin exhibits superior pharmacokinetic profiles then resveratrol, with higher oral bioavailability. Isorhapontigenin demonstrates multi-target actions, including epigenetic modulation through microRNA regulation, which highlight its potential as a versatile therapeutic agent. This review also identifies current limitations in Isorhapontigenin research that require further investigation. Overall, Isorhapontigenin offers promise as a multi-faceted compound for the treatment of cancer, inflammatory diseases, and metabolic disorders, providing a solid foundation for future research and potential clinical applications.
Collapse
Affiliation(s)
- Tomasz Kowalczyk
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, Lodz 90-237, Poland
| | - Janusz Piekarski
- Department of Surgical Oncology, Medical University in Lodz, 251 Pomorska St. Lodz 93-513, Poland
| | - Anna Merecz-Sadowska
- Department of Allergology and Respiratory Rehabilitation, Medical University of Lodz, Lodz 90-725, Poland
| | - Martyna Muskała
- Students Research Group, Department of Medical Biology, Medical University of Lodz, Lodz 90-151, Poland
| | - Przemysław Sitarek
- Department of Medical Biology, Medical University of Lodz, Muszyńskiego 1, Lodz 90-151, Poland.
| |
Collapse
|
162
|
Arefnezhad R, Jahandideh A, Rezaei M, Khatouni MS, Zarei H, Jahani S, Molavi A, Hefzosseheh M, Ghasempour P, Movahedi HM, Jahandideh R, Rezaei-Tazangi F. Synergistic effects of curcumin and stem cells on spinal cord injury: a comprehensive review. Mol Biol Rep 2024; 51:1113. [PMID: 39485550 DOI: 10.1007/s11033-024-10057-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/24/2024] [Indexed: 11/03/2024]
Abstract
Spinal cord injury (SCI) is damage to the spinal cord that permanently or temporarily disrupts its function, causing considerable autonomic, sensory, and motor disorders, and involves between 10 and 83 cases per million yearly. Traumatic SCI happens following primary acute mechanical damage, leading to injury to the spinal cord tissue and worsening clinical outcomes. The present therapeutic strategies for this complex disease fundamentally rely on surgical approaches and conservative remedies. However, these modalities are not effective enough for neurological recovery. Therefore, it is necessary to discover more efficient methods to treat patients with SCI. Today, considerable attention has been drawn to bioactive compounds-based remedies and stem cell therapy for curing various ailments and disorders, such as neurological diseases. Some researchers have recommended that harnessing curcumin, a polyphenol obtained from turmeric, in combination with stem cells, like mesenchymal stem cells, neural stem cells, and ependymal stem cells, can remarkably improve neurological recovery-related parameters more effective than the treatment with these two methods separately in experimental models. Hereby, this literature review delves into the functionality of curcumin combined with stem cells in treating SCI with a focus on cellular and molecular mechanisms.
Collapse
Affiliation(s)
- Reza Arefnezhad
- Department of Anatomy, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran.
- Coenzyme R Research Institute, Tehran, Iran.
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Arian Jahandideh
- Faculty of medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahdi Rezaei
- Faculty of Medicine, Shahed University, Tehran, Iran
| | | | - Hooman Zarei
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Saleheh Jahani
- Department of pathology, University of California, San Diego, USA
| | - Ali Molavi
- Student Research Committee, Faculty of medicine, Ilam University of Medical Sciences, Ilam, Iran
| | | | - Parisa Ghasempour
- Department of Medical Science and Health Services, Islamic Azad University, Yazd, Iran
| | - Hadis Moazen Movahedi
- Department of Biotechnology Sciences, Cellular and Molecular Biology Branch, Islamic Azad University, Khuzestan, Iran
| | - Romina Jahandideh
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fatemeh Rezaei-Tazangi
- Department of Anatomy, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran.
| |
Collapse
|
163
|
Burgaz S, Navarro E, Rodríguez-Carreiro S, Navarrete C, Garrido-Rodríguez M, Lastres-Becker I, Chocarro J, Lanciego JL, Muñoz E, Fernández-Ruiz J. Investigation in the cannabigerol derivative VCE-003.2 as a disease-modifying agent in a mouse model of experimental synucleinopathy. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2024; 20:28. [PMID: 39487447 PMCID: PMC11531178 DOI: 10.1186/s12993-024-00256-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/18/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND The cannabigerol derivative VCE-003.2, which has activity at the peroxisome proliferator-activated receptor-γ has afforded neuroprotection in experimental models of Parkinson's disease (PD) based on mitochondrial dysfunction (6-hydroxydopamine-lesioned mice) and neuroinflammation (LPS-lesioned mice). Now, we aim to explore VCE-003.2 neuroprotective properties in a PD model that also involves protein dysregulation, other key event in PD pathogenesis. METHODS To this end, an adeno-associated viral vector serotype 9 coding for a mutated form of the α-synuclein gene (AAV9-SynA53T) was unilaterally delivered in the substantia nigra pars compacta (SNpc) of mice. This model leads to motor impairment and progressive loss of tyrosine hydroxylase-labelled neurons in the SNpc. RESULTS Oral administration of VCE-003.2 at 20 mg/kg for 14 days improved the performance of mice injected with AAV9-SynA53T in various motor tests, correlating with the preservation of tyrosine hydroxylase-labelled neurons in the SNpc. VCE-003.2 also reduced reactive microgliosis and astrogliosis in the SNpc. Furthermore, we conducted a transcriptomic analysis in the striatum of mice injected with AAV9-SynA53T and treated with either VCE-003.2 or vehicle, as well as control animals. This analysis aimed to identify gene families specifically altered by the pathology and/or VCE-003.2 treatment. Our data revealed pathology-induced changes in genes related to mitochondrial function, lysosomal cell pathways, immune responses, and lipid metabolism. In contrast, VCE-003.2 treatment predominantly affected the immune response through interferon signaling. CONCLUSION Our study broadens the neuroprotective potential of VCE-003.2, previously described against mitochondrial dysfunction, oxidative stress, glial reactivity and neuroinflammation in PD. We now demonstrate its efficacy against another key pathogenic event in PD as α-synuclein dysregulation. Furthermore, our investigation sheds light on the molecular mechanisms underlying VCE-003.2 revealing its role in regulating interferon signaling. These findings, together with a favorable ADMET profile, enhance the preclinical interest of VCE-003.2 towards its future clinical development in PD.
Collapse
Affiliation(s)
- Sonia Burgaz
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Elisa Navarro
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Santiago Rodríguez-Carreiro
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | | | - Martin Garrido-Rodríguez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Isabel Lastres-Becker
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBSM), UAM-CSIC, Madrid, Spain
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Instituto de Investigación del Hospital Universitario de La Paz (IdiPAZ), Madrid, Spain
- Institute Teófilo Hernando for Drug Discovery, Universidad Autónoma de Madrid, Madrid, Spain
| | - Julia Chocarro
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- CNS Gene Therapy Department, Center for Applied Medical Research (CIMA), Universidad de Navarra, Pamplona, Spain
| | - José L Lanciego
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- CNS Gene Therapy Department, Center for Applied Medical Research (CIMA), Universidad de Navarra, Pamplona, Spain
| | - Eduardo Muñoz
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain.
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Córdoba, Spain.
- Hospital Universitario Reina Sofía, Córdoba, Spain.
| | - Javier Fernández-Ruiz
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
| |
Collapse
|
164
|
Fang M, Yu Q, Ou J, Lou J, Zhu J, Lin Z. The Neuroprotective Mechanisms of PPAR-γ: Inhibition of Microglia-Mediated Neuroinflammation and Oxidative Stress in a Neonatal Mouse Model of Hypoxic-Ischemic White Matter Injury. CNS Neurosci Ther 2024; 30:e70081. [PMID: 39496476 PMCID: PMC11534457 DOI: 10.1111/cns.70081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/12/2024] [Accepted: 09/22/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND Neuroinflammation and oxidative stress, mediated by microglial activation, hinder the development of oligodendrocytes (OLs) and delay myelination in preterm infants, leading to white matter injury (WMI) and long-term neurodevelopmental sequelae. Peroxisome proliferator-activated receptor gamma (PPAR-γ) has been reported to inhibit inflammation and oxidative stress via modulating microglial polarization in various central nervous system diseases. However, the relationship between PPAR-γ and microglial polarization in neonatal WMI is not well understood. Therefore, this study aimed to elucidate the role and mechanisms of PPAR-γ in preterm infants affected by WMI. METHODS In this study, an in vivo hypoxia-ischemia (HI) induced brain WMI neonatal mouse model was established. The mice were administered intraperitoneally with either RSGI or GW9662 to activate or inhibit PPAR-γ, respectively. Additionally, an in vitro oxygen-glucose deprivation (OGD) cell model was established and pretreated with pcDNA 3.1-PPAR-γ or si-PPAR-γ to overexpress or silence PPAR-γ, respectively. The neuroprotective effects of PPAR-γ were investigated in vivo. Firstly, open field test, novel object recognization test, and beam-walking test were employed to assess the effects of PPAR-γ on neurobehavioral recovery. Furthermore, assessment of OLs loss and OL-maturation disorder, the number of myelinated axons, myelin thickness, synaptic deficit, activation of microglia and astrocyte, and blood-brain barrier (BBB) were used to evaluate the effects of PPAR-γ on pathological repair. The mechanisms of PPAR-γ were explored both in vivo and in vitro. Assessment of microglia polarization, inflammatory mediators, reactive oxygen species (ROS), MDA, and antioxidant enzymes was used to evaluate the anti-inflammatory and antioxidative effects of PPAR-γ activation. An assessment of HMGB1/NF-κB and NRF2/KEAP1 signaling pathway was conducted to clarify the mechanisms by which PPAR-γ influences HI-induced WMI in neonatal mice. RESULTS Activation of PPAR-γ using RSGI significantly mitigated BBB disruption, promoted M2 polarization of microglia, inhibited activation of microglia and astrocytes, promoted OLs development, and enhanced myelination in HI-induced WMI. Conversely, inhibition of PPAR-γ using GW9662 further exacerbated the pathologic hallmark of WMI. Neurobehavioral tests revealed that neurological deficits were ameliorated by RSGI, while further aggravated by GW91662. In addition, activation of PPAR-γ significantly alleviated neuroinflammation and oxidative stress by suppressing HMGB1/NF-κB signaling pathway and activating NRF2 signaling pathway both in vivo and in vitro. Conversely, inhibition of PPAR-γ further exacerbated HI or OGD-induced neuroinflammation, oxidative stress via modulation of the same signaling pathway. CONCLUSIONS Our findings suggest that PPAR-γ regulates microglial activation/polarization as well as subsequent neuroinflammation/oxidative stress via the HMGB1/NF-κB and NRF2/KEAP1 signaling pathway, thereby contributing to neuroprotection and amelioration of HI-induced WMI in neonatal mice.
Collapse
Affiliation(s)
- Mingchu Fang
- Department of NeonatologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- The Second School of MedicineWenzhou Medical UniversityWenzhouZhejiangChina
- Key Laboratory of Perinatal Medicine of WenzhouWenzhouZhejiangChina
- Key Laboratory of Structural Malformations in Children of Zhejiang ProvinceWenzhouZhejiangChina
| | - Qianqian Yu
- Department of NeonatologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- The Second School of MedicineWenzhou Medical UniversityWenzhouZhejiangChina
| | - Jiahao Ou
- Department of NeonatologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- The Second School of MedicineWenzhou Medical UniversityWenzhouZhejiangChina
| | - Jia Lou
- Department of NeonatologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- The Second School of MedicineWenzhou Medical UniversityWenzhouZhejiangChina
| | - Jianghu Zhu
- Department of NeonatologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- The Second School of MedicineWenzhou Medical UniversityWenzhouZhejiangChina
- Key Laboratory of Perinatal Medicine of WenzhouWenzhouZhejiangChina
- Key Laboratory of Structural Malformations in Children of Zhejiang ProvinceWenzhouZhejiangChina
| | - Zhenlang Lin
- Department of NeonatologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- The Second School of MedicineWenzhou Medical UniversityWenzhouZhejiangChina
- Key Laboratory of Perinatal Medicine of WenzhouWenzhouZhejiangChina
- Key Laboratory of Structural Malformations in Children of Zhejiang ProvinceWenzhouZhejiangChina
| |
Collapse
|
165
|
Hermosaningtyas AA, Totoń E, Lisiak N, Kruszka D, Budzianowska A, Kikowska M. Evaluation of Cytotoxic Activity of Cell Biomass from Eryngium planum and Lychnis flos-cuculi on Melanoma Cancer Cell. Molecules 2024; 29:5158. [PMID: 39519799 PMCID: PMC11547748 DOI: 10.3390/molecules29215158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/22/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Melanoma is a malignant neoplasm of melanocytes in the skin, and its occurrence is increasing annually. Plant-based products contain active compounds with low toxicity and are accessible alternatives for melanoma cancer treatment. The biotechnology approach for obtaining plant-based products provides continuity and allows the high-yield production of phytochemically uniform biomass. The callus biomass of Eryngium planum L. and Lychnis flos-cuculi L. was induced on Murashige and Skoog (MS) medium supplemented with growth regulators. A combination of 3.0 mg/L of 3,6-dichloro-2-methoxybenzoic acid (dicamba) and 0.3 mg/L of 1-phenyl-3-(1,2,3-thiadiazol-5-yl)urea-(thidiazuron) was used to obtain E. planum callus. Meanwhile, the callus of L. flos-cuculi was cultivated on MS medium with 2.0 mg/L of 2,4-dichlorophenoxyacetic acid (2,4-D). Methanolic extracts (EpME and LFcME), including 40% MeOH fractions (Ep40MF and LFc40MF) and 80% MeOH fractions (Ep80MF and LFc80MF), of E. planum and L. flos-cuculi cell biomass were prepared. Their cytotoxicity activity was assessed in human fibroblast cells (MRC-5) and human melanoma cells (MeWo) by direct cell counting and 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay. Qualitative analyses using thin-layer chromatography and UPLC-HRMS/MS chromatograms showed the presence of phenolic acids and saponins within the extracts and fractions of both cell biomasses. LFc80MF and Ep80MF showed the strongest toxicity against the MeWo cell line, with IC50 values of 47 ± 0.5 and 52 ± 4 μg/mL after 72 h of treatment. EpME and LFcME had IC50 values of 103 ± 4 and 147 ± 4 µg/mL, respectively. On the other hand, Ep40MF and LFc40MF were less toxic against the MeWo cell line compared to the extracts and 80% MeOH fractions, with IC50 values of 145 ± 10 and 172 ± 7 µg/mL. This study suggests that the obtained extracts and fractions of E. planum and L. flos-cuculi cell biomass potentially possess significant cytotoxic activity against MeWo cells, which work in a time and dose-dependent manner. Although the extracts and 80% MeOH fractions were more potent, the 40% MeOH was shown to be more selective against the MeWo than the control MRC-5 cells.
Collapse
Affiliation(s)
- Anastasia Aliesa Hermosaningtyas
- Laboratory of Pharmaceutical Biology and Biotechnology, Department and Division of Practical Cosmetology and Skin Diseases Prophylaxis, Poznan University of Medical Sciences, Collegium Pharmaceuticum, 3 Rokietnicka St., 60-806 Poznan, Poland;
- Doctoral School, Poznan University of Medical Sciences, 70 Bukowska St., 60-812 Poznan, Poland
| | - Ewa Totoń
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Collegium Pharmaceuticum, 3 Rokietnicka St., 60-806 Poznan, Poland; (E.T.); (N.L.)
| | - Natalia Lisiak
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Collegium Pharmaceuticum, 3 Rokietnicka St., 60-806 Poznan, Poland; (E.T.); (N.L.)
| | - Dariusz Kruszka
- Institute of Plant Genetics, Polish Academy of Sciences, 34 Strzeszyńska St., 60-479 Poznan, Poland;
| | - Anna Budzianowska
- Laboratory of Pharmaceutical Biology and Biotechnology, Department and Division of Practical Cosmetology and Skin Diseases Prophylaxis, Poznan University of Medical Sciences, Collegium Pharmaceuticum, 3 Rokietnicka St., 60-806 Poznan, Poland;
| | - Małgorzata Kikowska
- Laboratory of Pharmaceutical Biology and Biotechnology, Department and Division of Practical Cosmetology and Skin Diseases Prophylaxis, Poznan University of Medical Sciences, Collegium Pharmaceuticum, 3 Rokietnicka St., 60-806 Poznan, Poland;
| |
Collapse
|
166
|
Aboelhassan DM, Abozaid H. Opportunities for CRISPR-Cas9 application in farm animal genetic improvement. Mol Biol Rep 2024; 51:1108. [PMID: 39476174 DOI: 10.1007/s11033-024-10052-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 10/22/2024] [Indexed: 02/06/2025]
Abstract
CRISPR-Cas9 has emerged as a powerful tool in livestock breeding, enabling precise genetic modifications to address genetic diseases, enhance productivity, and develop disease-resistant animal breeds. A thorough analysis of previous research highlights the potential of CRISPR-Cas9 in overcoming genetic disorders by targeting specific mutations in genes. Furthermore, its integration with reproductive biotechnologies and genomic selection facilitates the production of gene-edited animals with high genomic value, contributing to genetic enhancement and improved productivity. Additionally, CRISPR-Cas9 opens new avenues for developing disease-resistant livestock and creating innovative breeding models for high-quality production. A key trend in the field is the development of multi-sgRNA vectors to correct mutations in various genes linked to productivity traits or certain diseases within individual genomes, thereby increasing resistance in animals. However, despite the potential advantages of CRISPR-Cas9, public acceptance of genetically modified agricultural products remains uncertain. Would consumers be willing to purchase such products? It is essential to advocate for bold and innovative research into genetically edited animals, with a focus on safety, careful promotion, and strict regulatory oversight to align with long-term goals and public acceptance. Continued advancements in this technology and its underlying mechanisms promise to improve poultry products and genetically modified livestock. Overall, CRISPR-Cas9 technology offers a promising pathway for advancing livestock breeding practices, with opportunities for genetic improvement, enhanced disease resistance, and greater productivity.
Collapse
Affiliation(s)
- Dalia M Aboelhassan
- Department of Cell Biology, Biotechnology Research Institute, National Research Centre, 33 El-Bohouth Street, P.O:12622, Dokki, Giza, Egypt.
| | - Hesham Abozaid
- Department of Animal Production, Agricultural and Biology Research Institute, National Research Centre, 33 El- Bohouth Street, P.O:12622, Dokki, Giza, Egypt
| |
Collapse
|
167
|
Ajay A, Gaur SS, Shams R, Dash KK, Mukarram SA, Kovács B. Chickpeas and gut microbiome: Functional food implications for health. Heliyon 2024; 10:e39314. [PMID: 39498070 PMCID: PMC11532829 DOI: 10.1016/j.heliyon.2024.e39314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 10/03/2024] [Accepted: 10/11/2024] [Indexed: 11/07/2024] Open
Abstract
Chickpea is considered a rich source of nutrients, especially protein and dietary fibre. Besides, chickpea has potential benefits for the maintenance of gut health by improving intestinal integrity and serving as a source of energy for the gut microbiota. Moreover, chickpea consumption has been found to possess anti-cancer, anti-inflammatory, and antioxidant activity. On undergoing certain treatments like soaking, dehulling, roasting, and germination, the anti-nutritional profile of chickpeas can be reduced. Observing these benefits, this review explores the impact of chickpea and its components on maintaining gut health, emphasizing various benefits. Besides, the paper comprehensively covers the nutritional composition of chickpeas and factors influencing the bioavailability of its components concerning gut health. Additionally, it outlines the mechanisms through which chickpeas influence gastrointestinal health, providing valuable insights into complex processes and potential therapeutic applications. Furthermore, the review identifies contributions that can guide future research, encouraging further exploration of chickpeas' role in gut health and the development of interventions. As a result of the presented review, chickpeas can be used as an affordable source of food, which is nutritionally stable and prevents gastrointestinal diseases.
Collapse
Affiliation(s)
- Aswani Ajay
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab, India
| | - Supriya Singh Gaur
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab, India
| | - Rafeeya Shams
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab, India
| | - Kshirod Kumar Dash
- Department of Food Processing Technology, Ghani Khan Choudhury Institute of Engineering and Technology, Malda, West Bengal, India
| | - Shaikh Ayaz Mukarram
- Faculty of Agriculture, Food Science and Environmental Management Institute of Food Science, University of Debrecen, Debrecen, 4032, Hungary
| | - Béla Kovács
- Faculty of Agriculture, Food Science and Environmental Management Institute of Food Science, University of Debrecen, Debrecen, 4032, Hungary
| |
Collapse
|
168
|
Ma J, Yang L, Wu J, Huang Z, Zhang J, Liu M, Li M, Luo J, Wang H. Unraveling the Molecular Mechanisms of SIRT7 in Angiogenesis: Insights from Substrate Clues. Int J Mol Sci 2024; 25:11578. [PMID: 39519130 PMCID: PMC11546391 DOI: 10.3390/ijms252111578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/20/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Angiogenesis, a vital physiological or pathological process regulated by complex molecular networks, is widely implicated in organismal development and the pathogenesis of various diseases. SIRT7, a member of the Sirtuin family of nicotinamide adenine dinucleotide + (NAD+) dependent deacetylases, plays crucial roles in cellular processes such as transcriptional regulation, cell metabolism, cell proliferation, and genome stability maintenance. Characterized by its enzymatic activities, SIRT7 targets an array of substrates, several of which exert regulatory effects on angiogenesis. Experimental evidence from in vitro and in vivo studies consistently demonstrates the effects of SIRT7 in modulating angiogenesis, mediated through various molecular mechanisms. Consequently, understanding the regulatory role of SIRT7 in angiogenesis holds significant promise, offering novel avenues for therapeutic interventions targeting either SIRT7 or angiogenesis. This review delineates the putative molecular mechanisms by which SIRT7 regulates angiogenesis, taking its substrates as a clue, endeavoring to elucidate experimental observations by integrating knowledge of SIRT7 substrates and established angiogenenic mechanisms.
Collapse
Affiliation(s)
- Junjie Ma
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; (J.M.); (L.Y.); (J.W.); (Z.H.); (J.Z.); (J.L.)
| | - Liqian Yang
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; (J.M.); (L.Y.); (J.W.); (Z.H.); (J.Z.); (J.L.)
| | - Jiaxing Wu
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; (J.M.); (L.Y.); (J.W.); (Z.H.); (J.Z.); (J.L.)
| | - Zhihong Huang
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; (J.M.); (L.Y.); (J.W.); (Z.H.); (J.Z.); (J.L.)
| | - Jiaqi Zhang
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; (J.M.); (L.Y.); (J.W.); (Z.H.); (J.Z.); (J.L.)
| | - Minghui Liu
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing 100191, China; (M.L.); (M.L.)
| | - Meiting Li
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing 100191, China; (M.L.); (M.L.)
| | - Jianyuan Luo
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; (J.M.); (L.Y.); (J.W.); (Z.H.); (J.Z.); (J.L.)
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing 100191, China; (M.L.); (M.L.)
| | - Haiying Wang
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; (J.M.); (L.Y.); (J.W.); (Z.H.); (J.Z.); (J.L.)
| |
Collapse
|
169
|
Kulczyńska-Przybik A, Czupryna P, Adamczuk J, Kruszewska E, Mroczko B, Moniuszko-Malinowska A. Clinical usefulness of the serum levels of neuroinflammatory and lung fibrosis biomarkers in the assessment of cognitive dysfunction in post-COVID19 patients. Sci Rep 2024; 14:25798. [PMID: 39468309 PMCID: PMC11519350 DOI: 10.1038/s41598-024-76630-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 10/15/2024] [Indexed: 10/30/2024] Open
Abstract
A growing body of evidence indicates there is an increasing incidence of cognitive dysfunction in patients after coronavirus disease 2019 (COVID-19) infection. However, still lack diagnostic tools, which allow us to predict prognosis in such cases and improve the stratification of the disease. This study aims to evaluate the usefulness of the biomarkers that could allow to predict the severity and progression of COVID-19 in patients with post-COVID syndrome and cognitive problems. Data regarding clinical history, pre-existing conditions, chest CT scan, and therapy (remdesivir, steroids) were acquired. A total of 44 patients with hospitalized COVID-19, and healthy controls were enrolled in the investigation, and serum blood was obtained. After 6 months of observations, patients with COVID-19 were divided into two groups: first - without post-COVID syndrome and memory complaints, and second - with post-COVID and cognitive problems. Measurements of YKL-40 and MR-pro-ADM were taken in the serum with enzyme immunoassay kits at the time of admission (visit 1) and 6 months after discharge from the hospital (visit 2). Significantly higher concentrations of YKL-40 were found in patients with COVID-19 as compared to healthy individuals (p = 0.016). Moreover, YKL-40 ratio allowed to differentiate patients with and without post-COVID syndrome (median: 0.94 vs. 1.55, p = 0.004). Additionally, COVID-19 patients with dyspnea presented significantly elevated levels of MR-pro-ADM as compared to the group of COVID-19 survivors without dyspnea (p = 0.015). In the group of patients without post-COVID syndrome, the concentrations of YKL-40 and MR-pro-ADM decreased after treatment as compared to levels before therapy (77 vs. 36 ng/ml and 607 vs. 456 pmol/L). However, in patients with post-COVID syndrome and cognitive problems, the levels of both markers did not alter 6 months after hospital discharge in comparison to basal levels. Furthermore, after dexamethasone treatment the YKL-40 concentrations declined significantly (p = 0.003) in patients with COVID-19. This study demonstrated the predictive usefulness of YKL-40 as an indicator of successful treatment in patients with COVID-19 infection allowing risk stratification of hospitalized patients. It seems that indicators of neuroinflammation might have the potential to track development of cognitive complaints, however, it requires further investigations.
Collapse
Affiliation(s)
| | - Piotr Czupryna
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, 15-540, Białystok, Poland
| | - Justyna Adamczuk
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, 15-540, Białystok, Poland
| | - Ewelina Kruszewska
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, 15-540, Białystok, Poland
| | - Barbara Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, 15-269, Białystok, Poland
- Department of Biochemical Diagnostics, Medical University of Białystok, 15-269, Białystok, Poland
| | - Anna Moniuszko-Malinowska
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, 15-540, Białystok, Poland
| |
Collapse
|
170
|
Alami M, Boumezough K, Zerif E, Zoubdane N, Khalil A, Bunt T, Laurent B, Witkowski JM, Ramassamy C, Boulbaroud S, Fulop T, Berrougui H. In Vitro Assessment of the Neuroprotective Effects of Pomegranate ( Punica granatum L.) Polyphenols Against Tau Phosphorylation, Neuroinflammation, and Oxidative Stress. Nutrients 2024; 16:3667. [PMID: 39519499 PMCID: PMC11547808 DOI: 10.3390/nu16213667] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Oxidative stress and chronic inflammation, at both the systemic and the central level, are critical early events in atherosclerosis and Alzheimer's disease (AD). PURPOSE To investigate the oxidative stress-, inflammation-, and Tau-phosphorylation-lowering effects of pomegranate polyphenols (PPs) (punicalagin, ellagic acid, peel, and aril extracts). METHODS We used flow cytometry to quantify the protein expression of proinflammatory cytokines (IL-1β) and anti-inflammatory mediators (IL-10) in THP-1 macrophages, as well as M1/M2 cell-specific marker (CD86 and CD163) expression in human microglia HMC3 cells. The IL-10 protein expression was also quantified in U373-MG human astrocytes. The effect of PPs on human amyloid beta 1-42 (Aβ1-42)-induced oxidative stress was assessed in the microglia by measuring ROS generation and lipid peroxidation, using 2',7'-dichlorofluorescein diacetate (DCFH-DA) and thiobarbituric acid reactive substance (TBARS) tests, respectively. Neuronal viability and cell apoptotic response to Aβ1-42 toxicity were assayed using the MTT (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide) assay and the annexin-V-FITC apoptosis detection kit, respectively. Finally, flow cytometry analysis was also performed to evaluate the ability of PPs to modulate Aβ1-42-induced Tau-181 phosphorylation (pTau-181). RESULTS Our data indicate that PPs are significantly (p < 0.05) effective in countering Aβ1-42-induced inflammation through increasing the anti-inflammatory cytokines (IL-10) in U373-MG astrocytes and THP1 macrophages and decreasing proinflammatory marker (IL-1β) expression in THP1 macrophages. The PPs were also significantly (p < 0.05) effective in inducing the phenotypic transition of THP-1 macrophages and microglial cells from M1 to M2 by decreasing CD86 and increasing CD163 surface receptor expression. Moreover, our treatments have a significant (p < 0.05) beneficial impact on oxidative stress, illustrated in the reduction in TBARS and ROS generation. Our treatments have significant (p < 0.05) cell viability improvement capacities and anti-apoptotic effects on human H4 neurons. Furthermore, our results suggest that Aβ1-42 significantly (p < 0.05) increases pTau-181. This effect is significantly (p < 0.05) attenuated by arils, peels, and punicalagin and drastically reduced by the ellagic acid treatment. CONCLUSION Overall, our results attribute to PPs anti-inflammatory, antioxidant, anti-apoptotic, and anti-Tau-pathology potential. Future studies should aim to extend our knowledge of the potential role of PPs in Aβ1-42-induced neurodegeneration, particularly concerning its association with the tauopathy involved in AD.
Collapse
Affiliation(s)
- Mehdi Alami
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, Beni Mellal 23020, Morocco; (M.A.); (K.B.); (S.B.)
- Research Center on Aging, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 4N4, Canada; (E.Z.); (N.Z.); (A.K.); (B.L.); (T.F.)
| | - Kaoutar Boumezough
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, Beni Mellal 23020, Morocco; (M.A.); (K.B.); (S.B.)
| | - Echarki Zerif
- Research Center on Aging, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 4N4, Canada; (E.Z.); (N.Z.); (A.K.); (B.L.); (T.F.)
| | - Nada Zoubdane
- Research Center on Aging, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 4N4, Canada; (E.Z.); (N.Z.); (A.K.); (B.L.); (T.F.)
| | - Abdelouahed Khalil
- Research Center on Aging, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 4N4, Canada; (E.Z.); (N.Z.); (A.K.); (B.L.); (T.F.)
| | - Ton Bunt
- Izumi Biosciences, Inc., Lexington, MA 02420, USA;
| | - Benoit Laurent
- Research Center on Aging, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 4N4, Canada; (E.Z.); (N.Z.); (A.K.); (B.L.); (T.F.)
| | - Jacek M. Witkowski
- Department of Embryology, Medical University of Gdansk, 80-210 Gdańsk, Poland;
| | - Charles Ramassamy
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada;
| | - Samira Boulbaroud
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, Beni Mellal 23020, Morocco; (M.A.); (K.B.); (S.B.)
| | - Tamas Fulop
- Research Center on Aging, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 4N4, Canada; (E.Z.); (N.Z.); (A.K.); (B.L.); (T.F.)
| | - Hicham Berrougui
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, Beni Mellal 23020, Morocco; (M.A.); (K.B.); (S.B.)
- Research Center on Aging, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 4N4, Canada; (E.Z.); (N.Z.); (A.K.); (B.L.); (T.F.)
| |
Collapse
|
171
|
dos Santos TW, Pereira QC, Fortunato IM, Oliveira FDS, Alvarez MC, Ribeiro ML. Body Composition and Senescence: Impact of Polyphenols on Aging-Associated Events. Nutrients 2024; 16:3621. [PMID: 39519454 PMCID: PMC11547493 DOI: 10.3390/nu16213621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
Aging is a dynamic and progressive process characterized by the gradual accumulation of cellular damage. The continuous functional decline in the intrinsic capacity of living organisms to precisely regulate homeostasis leads to an increased susceptibility and vulnerability to diseases. Among the factors contributing to these changes, body composition-comprised of fat mass and lean mass deposits-plays a crucial role in the trajectory of a disability. Particularly, visceral and intermuscular fat deposits increase with aging and are associated with adverse health outcomes, having been linked to the pathogenesis of sarcopenia. Adipose tissue is involved in the secretion of bioactive factors that can ultimately mediate inter-organ pathology, including skeletal muscle pathology, through the induction of a pro-inflammatory profile such as a SASP, cellular senescence, and immunosenescence, among other events. Extensive research has shown that natural compounds have the ability to modulate the mechanisms associated with cellular senescence, in addition to exhibiting anti-inflammatory, antioxidant, and immunomodulatory potential, making them interesting strategies for promoting healthy aging. In this review, we will discuss how factors such as cellular senescence and the presence of a pro-inflammatory phenotype can negatively impact body composition and lead to the development of age-related diseases, as well as how the use of polyphenols can be a functional measure for restoring balance, maintaining tissue quality and composition, and promoting health.
Collapse
Affiliation(s)
- Tanila Wood dos Santos
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (T.W.d.S.); (Q.C.P.); (I.M.F.); (F.d.S.O.); (M.C.A.)
| | - Quélita Cristina Pereira
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (T.W.d.S.); (Q.C.P.); (I.M.F.); (F.d.S.O.); (M.C.A.)
| | - Isabela Monique Fortunato
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (T.W.d.S.); (Q.C.P.); (I.M.F.); (F.d.S.O.); (M.C.A.)
| | - Fabrício de Sousa Oliveira
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (T.W.d.S.); (Q.C.P.); (I.M.F.); (F.d.S.O.); (M.C.A.)
| | - Marisa Claudia Alvarez
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (T.W.d.S.); (Q.C.P.); (I.M.F.); (F.d.S.O.); (M.C.A.)
- Hematology and Transfusion Medicine Center, University of Campinas/Hemocentro, UNICAMP, Rua Carlos Chagas 480, Campinas 13083-878, SP, Brazil
| | - Marcelo Lima Ribeiro
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (T.W.d.S.); (Q.C.P.); (I.M.F.); (F.d.S.O.); (M.C.A.)
| |
Collapse
|
172
|
Calabrese EJ, Pressman P, Hayes AW, Dhawan G, Kapoor R, Agathokleous E, Baldwin LA, Calabrese V. The chemoprotective hormetic effects of rosmarinic acid. Open Med (Wars) 2024; 19:20241065. [PMID: 39444791 PMCID: PMC11497216 DOI: 10.1515/med-2024-1065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/25/2024] Open
Abstract
Rosmarinic acid is a polyphenol found in numerous fruits and vegetables, consumed in supplement form, and tested in numerous clinical trials for therapeutic applications due to its putative chemopreventive properties. Rosmarinic acid has been extensively studied at the cellular, whole animal, and molecular mechanism levels, presenting a complex array of multi-system biological effects. Rosmarinic acid-induced hormetic dose responses are widespread, occurring in numerous biological models and cell types for a broad range of endpoints. Consequently, this article provides the first assessment of rosmarinic acid-induced hormetic concentration/dose responses, their quantitative features, mechanistic foundations, extrapolative strengths/limitations, and their biomedical, clinical, and public health implications.
Collapse
Affiliation(s)
- Edward J. Calabrese
- School of Public Health and Health Sciences, Department of Environmental Health Sciences, Morrill I-N344, University of Massachusetts, Amherst, MA, 01003, United States of America
| | - Peter Pressman
- University of Maine, Orono, ME, 04469, United States of America
| | - A. Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management, College of Public Health, University of South Florida, Tampa, FL, United States of America
| | - Gaurav Dhawan
- Sri Guru Ram Das (SGRD), University of Health Sciences, Amritsar, India
| | - Rachna Kapoor
- Saint Francis Hospital and Medical Center, Hartford, CT, United States of America
| | - Evgenios Agathokleous
- School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Linda A. Baldwin
- 5 Sapphire Lane, Greenfield, MA, 01301, United States of America
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine University of Catania, Catania, 95123, Italy
| |
Collapse
|
173
|
Rivera RLA, Colon-Ruiz YL, De La Torre-Rosa A, Garcia-Ramos AI, Garcia-Sanchez AM, Gierbolini-Ortiz L, Lopez-Torres M, Ortiz-Rodriguez N, Rivera-Rivera VA, Santiago-Soler SC, Siberon-Albertorio JA, Silva-Burgos JN, Torres-Morales C, Santana JA. Selenium Adsorption on the (111), (100), (110) and (211) surfaces of Face-Centered-Cubic Metals: Density Functional Calculations of the Potential Energy Surfaces. ChemistrySelect 2024; 9:e202304290. [PMID: 40309340 PMCID: PMC12040395 DOI: 10.1002/slct.202304290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 08/21/2024] [Indexed: 05/02/2025]
Abstract
In this study, we expand the computational investigation of selenium, which has previously been limited to metals such as Cu, Fe, Pd, Au, and Pt. Utilizing density functional theory calculations, we explore the adsorption and diffusion of selenium at a low-coverage regime of 0.25 ML on a broader range of metal surfaces, including Ni, Cu, Rh, Pd, Ag, Ir, Pt, and Au. Our results reveal that selenium exhibits a distinct preference for three-fold or four-fold high-coordination sites on most studied surfaces. We further analyze the minimum energy diffusion pathways, demonstrating that the energy barrier for selenium's surface diffusion varies significantly based on the orientation and nature of the metal surfaces. Specifically, on (100) surfaces, selenium exhibits the highest diffusion energy, ranging from 0.60 eV in Au(100) to 1.12 eV in Pd(100). The diffusion behavior on (110) and (211) surfaces is also elaborated, emphasizing the unique trends observed compared to previously studied elements like sulfur. Importantly, this study is a new reference for future computational analyses, filling existing gaps by providing comprehensive data on selenium adsorption on various face-centered cubic metal surfaces not previously reported.
Collapse
Affiliation(s)
| | - Yomari L. Colon-Ruiz
- Department of Chemistry, The University of Puerto Rico at Cayey, P. O. Box 372230, Cayey, PR 00737-2230, USA
| | - Adriana De La Torre-Rosa
- Department of Chemistry, The University of Puerto Rico at Cayey, P. O. Box 372230, Cayey, PR 00737-2230, USA
| | - Andrea I. Garcia-Ramos
- Department of Chemistry, The University of Puerto Rico at Cayey, P. O. Box 372230, Cayey, PR 00737-2230, USA
| | - Alondra M. Garcia-Sanchez
- Department of Chemistry, The University of Puerto Rico at Cayey, P. O. Box 372230, Cayey, PR 00737-2230, USA
| | - Lianellys Gierbolini-Ortiz
- Department of Chemistry, The University of Puerto Rico at Cayey, P. O. Box 372230, Cayey, PR 00737-2230, USA
| | - Marialejandra Lopez-Torres
- Department of Chemistry, The University of Puerto Rico at Cayey, P. O. Box 372230, Cayey, PR 00737-2230, USA
| | - Nasya Ortiz-Rodriguez
- Department of Chemistry, The University of Puerto Rico at Cayey, P. O. Box 372230, Cayey, PR 00737-2230, USA
| | - Vanessa A. Rivera-Rivera
- Department of Chemistry, The University of Puerto Rico at Cayey, P. O. Box 372230, Cayey, PR 00737-2230, USA
| | - Sofia C. Santiago-Soler
- Department of Chemistry, The University of Puerto Rico at Cayey, P. O. Box 372230, Cayey, PR 00737-2230, USA
| | | | - Juliannie N. Silva-Burgos
- Department of Chemistry, The University of Puerto Rico at Cayey, P. O. Box 372230, Cayey, PR 00737-2230, USA
| | - Coralys Torres-Morales
- Department of Chemistry, The University of Puerto Rico at Cayey, P. O. Box 372230, Cayey, PR 00737-2230, USA
| | - Juan A. Santana
- Department of Chemistry, The University of Puerto Rico at Cayey, P. O. Box 372230, Cayey, PR 00737-2230, USA
| |
Collapse
|
174
|
Ashique S, Mohanto S, Kumar N, Nag S, Mishra A, Biswas A, Rihan M, Srivastava S, Bhowmick M, Taghizadeh-Hesary F. Unlocking the possibilities of therapeutic potential of silymarin and silibinin against neurodegenerative Diseases-A mechanistic overview. Eur J Pharmacol 2024; 981:176906. [PMID: 39154829 DOI: 10.1016/j.ejphar.2024.176906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/28/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Silymarin, a bioflavonoid derived from the Silybum marianum plant, was discovered in 1960. It contains C25 and has been extensively used as a therapeutic agent against liver-related diseases caused by alcohol addiction, acute viral hepatitis, and toxins-inducing liver failure. Its efficacy stems from its role as a potent anti-oxidant and scavenger of free radicals, employed through various mechanisms. Additionally, silymarin or silybin possesses immunomodulatory characteristics, impacting immune-enhancing and immune-suppressive functions. Recently, silymarin has been recognized as a potential neuroprotective therapy for various neurological conditions, including Parkinson's and Alzheimer's diseases, along with conditions related to cerebral ischemia. Its hepatoprotective qualities, primarily due to its anti-oxidant and tissue-regenerating properties, are well-established. Silymarin also enhances health by modifying processes such as inflammation, β-amyloid accumulation, cellular estrogenic receptor mediation, and apoptotic machinery. While believed to reduce oxidative stress and support neuroprotective mechanisms, these effects represent just one aspect of the compound's multifaceted protective action. This review article further delves into the possibilities of potential therapeutic advancement of silymarin and silibinin for the management of neurodegenerative disorders via mechanics modules.
Collapse
Affiliation(s)
- Sumel Ashique
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India; Department of Pharmaceutics, Bengal College of Pharmaceutical Sciences & Research, Durgapur, 713212, West Bengal, India.
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to Be University), Mangalore, Karnataka, 575018, India.
| | - Nitish Kumar
- SRM Modinagar College of Pharmacy, SRM Institute of Science and Technology (Deemed to Be University), Delhi-NCR Campus, Modinagar, Ghaziabad, Uttar Pradesh, 201204, India
| | - Sagnik Nag
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.
| | - Anuradha Mishra
- Amity Institute of Pharmacy, Amity University Lucknow Campus, Uttar Pradesh, 226010, India
| | - Aritra Biswas
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary College, Rahara Akhil Mukherjee Road, Khardaha, West Bengal, 700118, India; UNESCO Regional Centre for Biotechnology, Department of Biotechnology, Government of India, NCR Biotech Science Cluster, Faridabad, 121001, Haryana, India.
| | - Mohd Rihan
- Department of Pharmacology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, 160062, India
| | - Shriyansh Srivastava
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, 203201, India; Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), Sector 3 Pushp Vihar, New Delhi, 110017, India
| | - Mithun Bhowmick
- Department of Pharmaceutics, Bengal College of Pharmaceutical Sciences & Research, Durgapur, 713212, West Bengal, India
| | - Farzad Taghizadeh-Hesary
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
175
|
Kusior A, Waś O, Liczberska Z, Łacic J, Jeleń P. Snowflake Iron Oxide Architectures: Synthesis and Electrochemical Applications. Molecules 2024; 29:4859. [PMID: 39459227 PMCID: PMC11510573 DOI: 10.3390/molecules29204859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
The synthesis and characterization of iron oxide nanostructures, specifically snowflake architecture, are investigated for their potential applications in electrochemical sensing systems. A Raman spectroscopy analysis reveals phase diversity in the synthesized powders. The pH of the synthesis affects the formation of the hematite (α-Fe2O3) and goethite (α-FeOOH). Scanning electron microscopy (SEM) images confirm the distinct morphologies of the particles, which are selectively obtained through recrystallization during the elongated reaction time. An electrochemical analysis demonstrates the differing behaviors of the particles, with synthesis pH affecting the electrochemical activity and surface area differently for each shape. Cyclic voltammetry measurements reveal reversible dopamine detection processes, with snowflake iron oxide showing lower detection limits than a mixture of snowflakes and cube-like particles. This research contributes to understanding the relationship between iron oxide nanomaterials' structural, morphological, and electrochemical properties. It offers practical insights into their potential applications in sensor technology, particularly dopamine detection, with implications for biomedical and environmental monitoring.
Collapse
Affiliation(s)
- Anna Kusior
- Faculty of Materials Science and Ceramics, AGH University of Krakow, al. Mickiewicza 30, 30-059 Kraków, Poland; (Z.L.)
| | - Olga Waś
- Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, AGH University of Krakow, al. Mickiewicza 30, 30-059 Kraków, Poland;
| | - Zuzanna Liczberska
- Faculty of Materials Science and Ceramics, AGH University of Krakow, al. Mickiewicza 30, 30-059 Kraków, Poland; (Z.L.)
| | - Julia Łacic
- Faculty of Energy and Fuels, AGH University of Krakow, al. Mickiewicza 30, 30-059 Kraków, Poland;
| | - Piotr Jeleń
- Faculty of Materials Science and Ceramics, AGH University of Krakow, al. Mickiewicza 30, 30-059 Kraków, Poland; (Z.L.)
| |
Collapse
|
176
|
Wang R, Ren L, Wang Y, Hu N, Tie F, Dong Q, Wang H. Multi-Protective Effects of Petunidin-3-O-( trans-p-coumaroylrutinoside)-5-O-glucoside on D-Gal-Induced Aging Mice. Int J Mol Sci 2024; 25:11014. [PMID: 39456797 PMCID: PMC11506951 DOI: 10.3390/ijms252011014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024] Open
Abstract
Petunidin-3-O-(trans-p-coumaroylrutinoside)-5-O-glucoside (PtCG), the primary anthocyanin ingredient in Lycium ruthenicum Murr., possesses a range of biological activities, including antioxidative properties and melanin inhibition. This study aimed to investigate the protective effect of PtCG on D-galactose (D-gal)-induced aging in female mice and elucidate the underlying molecular pathways. Behavioral experiments, including the MWW and Y-maze tests, revealed that PtCG significantly ameliorated cognitive decline and enhanced learning and memory abilities in aging mice. Regarding biochemical indicators, PtCG considerably improved superoxide dismutase (SOD) and glutathione (GSH) activity while reducing malondialdehyde (MDA) and acetylcholinesterase (AChE) levels in the hippocampus and serum. Furthermore, PtCG ingestion alleviated liver injury by decreasing alanine transaminase (ALT), aspartate transaminase (AST), and alkaline phosphatase (AKP) levels, and attenuated renal damage by reducing blood urea nitrogen (BUN) and uric acid (UA) levels. Transmission electron microscopy (TEM) results demonstrated that PtCG restored the function and quantity of synapses in the hippocampus. Hematoxylin and eosin (H&E), Masson's trichrome, and Nissl staining revealed that PtCG significantly improved the relevant pathological characteristics of liver and hippocampal tissues in aging mice. The molecular mechanism investigation showed that PtCG downregulated the protein expression of microglial marker ionized calcium-binding adapter molecule 1 (Iba1), astrocytic marker glial fibrillary acidic protein (GFAP), β-secretase 1 (BACE-1), and amyloid-beta1-42 (Aβ1-42) in the hippocampus of aging mice. The protein expression of inflammatory pathway components, including nuclear factor-kappa B (NF-κB), cyclooxygenase-2 (COX2), inducible nitric oxide synthase (iNOS), and interleukin-1 beta (IL-1β), was also suppressed. These findings suggest that PtCG may possess anti-aging properties, with its mechanism of action potentially linked to the attenuation of neuroinflammation, oxidative stress, and liver and kidney damage. PtCG may have future applications as a functional food for the treatment of aging-related disorders.
Collapse
Affiliation(s)
- Ruinan Wang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810008, China; (R.W.); (L.R.); (Y.W.); (N.H.); (F.T.); (Q.D.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lichengcheng Ren
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810008, China; (R.W.); (L.R.); (Y.W.); (N.H.); (F.T.); (Q.D.)
| | - Yue Wang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810008, China; (R.W.); (L.R.); (Y.W.); (N.H.); (F.T.); (Q.D.)
| | - Na Hu
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810008, China; (R.W.); (L.R.); (Y.W.); (N.H.); (F.T.); (Q.D.)
| | - Fangfang Tie
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810008, China; (R.W.); (L.R.); (Y.W.); (N.H.); (F.T.); (Q.D.)
| | - Qi Dong
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810008, China; (R.W.); (L.R.); (Y.W.); (N.H.); (F.T.); (Q.D.)
| | - Honglun Wang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810008, China; (R.W.); (L.R.); (Y.W.); (N.H.); (F.T.); (Q.D.)
| |
Collapse
|
177
|
Calabrese EJ, Pressman P, Hayes AW, Baldwin L, Agathokleous E, Dhawan G, Kapoor R, Calabrese V. Caffeic Acid: Numerous Chemoprotective Effects are Mediated via Hormesis. J Diet Suppl 2024; 21:842-867. [PMID: 39363555 DOI: 10.1080/19390211.2024.2410776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Caffeic acid is a common phenolic acid found in coffee and numerous fruits and vegetables. Known for its antioxidant properties, it is widely used as a dietary supplement as part of a polyphenol mixture or as an extract in the form of a capsule or powder. It is also available in liquid form as a homeopathic supplement. Caffeic acid phenethyl ester (CAPE) is an active component of propolis produced by honey bees. Propolis extract is used as a supplement and is available in various forms. The present paper is a comprehensive review of the biomedical literature, showing that caffeic acid effects are hormetic and occur in numerous biological models and cell types for a broad range of endpoints including many aging-related processes. Hormesis is a biphasic dose/concentration response displaying a low concentration/dose stimulation and a high concentration/dose inhibition. Complex alternative search strategies for caffeic acid were used since publications rarely used the terms hormesis or hormetic. Evaluation of the data provides the first assessment of caffeic acid-induced hormetic concentration/dose responses and their quantitative features. Their mechanistic foundations, extrapolative strengths/limitations, and their biomedical, clinical, and public health implications are discussed. Suggestions for future research are presented.
Collapse
Affiliation(s)
- Edward J Calabrese
- School of Public Health and Health Sciences; Department of Environmental Sciences, University of Massachusetts, Amherst, MA, USA
| | | | - A Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management; College of Public Health, University of South Florida, Tampa, FL, USA
| | | | - Evgenios Agathokleous
- School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, China
| | - Gaurav Dhawan
- Sri Guru Ram Das (SGRD), University of Health Sciences, Amritsar, India
| | - Rachna Kapoor
- Saint Francis Hospital and Medical Center, Hartford, CT, USA
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine University of Catania, Catania, Italy
| |
Collapse
|
178
|
Zhou J, Fu C, Shen M, Tao J, Liu H. Sulforaphane Promotes Proliferation of Porcine Granulosa Cells via the H3K27ac-Mediated GDF8-ALK5-ERK Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21635-21649. [PMID: 39294897 DOI: 10.1021/acs.jafc.4c06178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Follicle development, a crucial process in reproductive biology, hinges upon the dynamic proliferation of granulosa cells (GCs). Growth differentiation factor-8 (GDF8) is well-known as myostatin for inhibiting skeletal muscle growth, and it also exists in ovarian GCs and follicle fluid. However, the relationship between GCs proliferation and GDF8 remains elusive. Sulforaphane (SFN) is a potent bioactive compound, which in our study has been demonstrated to induce the expression of GDF8 in GCs. Meanwhile, we discover a novel role of SFN in promoting the proliferation of porcine GCs. Specifically, SFN enhances GCs proliferation by accelerating the progression of the cell cycle through the G1 phase to the S phase. By performing gene expression profiling, we showed that the promoting proliferative effects of SFN are highly correlated with the TGF-β signaling pathways and cell cycle. Among the ligand factors of TGF-β signaling, we identify GDF8 as a critical downstream effector of SFN, which acts through ALK5 to mediate SFN-induced proliferation and G1/S transition. In addition, we identify a noncanonical downstream pathway by which GDF8 induces the activation of MAPK/ERK to facilitate the cell cycle progression in GCs. Moreover, we reveal that the expression of GDF8 is regulated by SFN through epigenetic modifications of H3K27 acetylation. These findings not only provide mechanistic insights into the regulation of GCs proliferation but also establish a previously unrecognized role of GDF8 in follicle development, which have significant implications for developing strategies to improve female fertility.
Collapse
Affiliation(s)
- Jiaqi Zhou
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chen Fu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ming Shen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jingli Tao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Honglin Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
179
|
Kataoka H, Sugie K. Early-morning OFF in Parkinson's disease: A systematic literature review and current therapeutics. Clin Neurol Neurosurg 2024; 245:108493. [PMID: 39178635 DOI: 10.1016/j.clineuro.2024.108493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/25/2024] [Accepted: 08/01/2024] [Indexed: 08/26/2024]
Abstract
OBJECTIVE Early morning OFF (EMO) is one of the first motor complications to manifest and frequently signals the onset of additional motor complications in Parkinson's Disease (PD). Although EOM are frequently observed in patients with PD and many caregivers must help with their motor inability, the treatment is still unsatisfactory. The majority of research that has been conducted on the wearing-off state of patients with PD has focused on daytime symptoms; evening and early morning symptoms have received much less attention.This study aimed to review the clinical perspectives of current therapies for EMO. MATERIALS AND METHODS We reviewed the searching relevant publications from the key words such as morning off. A total of 456 publications were identified and we reviewed 21 clinical trials as well as other relevant clinical studies and reviews. RESULTS EMO are frequently disregarded or undervalued, which could have resulted in unintentional risks, inadequate management, and an increased burden of care. Oral medication is still the primary medical intervention for EMO. However, new developments in non-oral medications and advanced formulations aim to reduce the delay in experiencing the benefits of oral levodopa due to gastrointestinal problems. CONCLUSIONS The current therapies for EMO could be helpful in selecting a limited practical treatment. Advancements in non-oral medications and oral formulations hold promise for improving efficacy in EMO.
Collapse
Affiliation(s)
- Hiroshi Kataoka
- Department of Neurology, Nara Medical University, Nara, Japan.
| | - Kazuma Sugie
- Department of Neurology, Nara Medical University, Nara, Japan
| |
Collapse
|
180
|
Neufeld PM, Nettersheim RA, Matschke V, Vorgerd M, Stahlke S, Theiss C. Unraveling the gut-brain axis: the impact of steroid hormones and nutrition on Parkinson's disease. Neural Regen Res 2024; 19:2219-2228. [PMID: 38488556 PMCID: PMC11034592 DOI: 10.4103/1673-5374.391304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/07/2023] [Accepted: 11/24/2023] [Indexed: 04/24/2024] Open
Abstract
This comprehensive review explores the intricate relationship between nutrition, the gut microbiome, steroid hormones, and Parkinson's disease within the context of the gut-brain axis. The gut-brain axis plays a pivotal role in neurodegenerative diseases like Parkinson's disease, encompassing diverse components such as the gut microbiota, immune system, metabolism, and neural pathways. The gut microbiome, profoundly influenced by dietary factors, emerges as a key player. Nutrition during the first 1000 days of life shapes the gut microbiota composition, influencing immune responses and impacting both child development and adult health. High-fat, high-sugar diets can disrupt this delicate balance, contributing to inflammation and immune dysfunction. Exploring nutritional strategies, the Mediterranean diet's anti-inflammatory and antioxidant properties show promise in reducing Parkinson's disease risk. Microbiome-targeted dietary approaches and the ketogenic diet hold the potential in improving brain disorders. Beyond nutrition, emerging research uncovers potential interactions between steroid hormones, nutrition, and Parkinson's disease. Progesterone, with its anti-inflammatory properties and presence in the nervous system, offers a novel option for Parkinson's disease therapy. Its ability to enhance neuroprotection within the enteric nervous system presents exciting prospects. The review addresses the hypothesis that α-synuclein aggregates originate from the gut and may enter the brain via the vagus nerve. Gastrointestinal symptoms preceding motor symptoms support this hypothesis. Dysfunctional gut-brain signaling during gut dysbiosis contributes to inflammation and neurotransmitter imbalances, emphasizing the potential of microbiota-based interventions. In summary, this review uncovers the complex web of interactions between nutrition, the gut microbiome, steroid hormones, and Parkinson's disease within the gut-brain axis framework. Understanding these connections not only offers novel therapeutic insights but also illuminates the origins of neurodegenerative diseases such as Parkinson's disease.
Collapse
Affiliation(s)
- Paula Maria Neufeld
- Department of Cytology, Institute of Anatomy, Medical Faculty, Ruhr-University Bochum, Bochum, Germany
| | - Ralf A. Nettersheim
- Department of Visceral Surgery, University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Veronika Matschke
- Department of Cytology, Institute of Anatomy, Medical Faculty, Ruhr-University Bochum, Bochum, Germany
| | - Matthias Vorgerd
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Sarah Stahlke
- Department of Cytology, Institute of Anatomy, Medical Faculty, Ruhr-University Bochum, Bochum, Germany
| | - Carsten Theiss
- Department of Cytology, Institute of Anatomy, Medical Faculty, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
181
|
Ashique S, Mohanto S, Kumar N, Nag S, Mishra A, Biswas A, Rihan M, Srivastava S, Bhowmick M, Taghizadeh-Hesary F. Unlocking the possibilities of therapeutic potential of silymarin and silibinin against neurodegenerative Diseases-A mechanistic overview. Eur J Pharmacol 2024; 981:176906. [DOI: https:/doi.org/10.1016/j.ejphar.2024.176906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
|
182
|
Han J, Zhang J, Yao X, Meng M, Wan Y, Cheng Y. Mechanism of HDAC1 Regulating Iron Overload-Induced Neuronal Oxidative Damage After Cerebral Hemorrhage. Mol Neurobiol 2024; 61:7549-7566. [PMID: 38403721 DOI: 10.1007/s12035-024-04000-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/29/2024] [Indexed: 02/27/2024]
Abstract
Iron overload is associated with brain edema in the context of intracerebral hemorrhage (ICH). Here, we investigated the role of histone deacetylase 1 (HDAC1) in mediating oxidative damage induced by iron overload after ICH. Utilizing ICH mouse models and FeCl2-induced HT-22 cell models, we assessed HDAC1 expression and its impact on iron overload and oxidative damage. We examined the levels of Kruppel like factor 4 (KLF4), RAN binding protein 9 (RANBP9), as well as the acetylation levels of HDAC1 and histones H3 and H4 in the KLF4 promoter, and the KLF4 level in the RANBP9 promoter. Additionally, we investigated the binding relationships between KLF4 and the RANBP9 promoter, HDAC1 and miR-129-5p. Our results demonstrated elevated HDAC1 expression in ICH mice and FeCl2-induced HT-22 cells. HDAC1 silencing improved neurological function in mice, reduced brain edema, and alleviated iron overload and oxidative damage in vitro. HDAC1 downregulated KLF4 expression by reducing acetylation levels in the KLF4 promoter, leading to decreased KLF4 enrichment in the RANBP9 promoter and increased RANBP9 expression. Furthermore, upstream miR-129-5p inhibited HDAC1, and the downregulation of miR-129-5p mitigated the protective effect of HDAC1 silencing. Collectively, our findings highlight the significant role of HDAC1 in exacerbating iron overload-induced oxidative damage following ICH and its regulation by miR-129-5p.
Collapse
Affiliation(s)
- Jing Han
- Department of Neurology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Jinnan Zhang
- Department of Neurology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Xiaojuan Yao
- Department of Neurology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Meng Meng
- Department of Neurology, Tianjin Medical University General Hospital Airport Hospital, Tianjin, 300000, China
| | - Yahui Wan
- Department of Neurology, Tianjin Medical University General Hospital Airport Hospital, Tianjin, 300000, China
| | - Yan Cheng
- Department of Neurology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.
| |
Collapse
|
183
|
Binsfeld M, Devey A, Gothot A. Transfusion support and pre-transfusion testing in autoimmune haemolytic anaemia. Vox Sang 2024; 119:1029-1038. [PMID: 38922929 DOI: 10.1111/vox.13699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/29/2024] [Accepted: 04/19/2024] [Indexed: 06/28/2024]
Abstract
Autoimmune haemolytic anaemia (AIHA) is characterized by an increased destruction of red blood cells due to immune dysfunction and auto-antibody production. Clinical manifestations are mainly related to anaemia, which can become life-threatening in case of acute haemolysis. Aiming at counterbalancing severe anaemia, supportive treatments for these patients frequently include transfusions. Unfortunately, free serum auto-antibodies greatly interfere in pre-transfusion testing, and the identification of compatible red blood cell units for AIHA patients can be challenging or even impossible. Problems faced in pre-transfusion testing often lead to delay or abandonment of transfusions for AIHA patients. In this review, we discuss publications concerning global transfusion management in AIHA, with a focus on pre-transfusion testing, and practical clues to manage the selection of transfusion units for these patients. Depending on the degree of transfusion emergency, we propose an algorithm for the selection and laboratory testing of units to be transfused to AIHA patients.
Collapse
Affiliation(s)
- Marilène Binsfeld
- Immuno-Hematology Laboratory and Blood Blank, Department of Clinical Biology, University Hospital of Liège (B35), Liège, Belgium
| | - Anaïs Devey
- Immuno-Hematology Laboratory and Blood Blank, Department of Clinical Biology, University Hospital of Liège (B35), Liège, Belgium
| | - André Gothot
- Immuno-Hematology Laboratory and Blood Blank, Department of Clinical Biology, University Hospital of Liège (B35), Liège, Belgium
| |
Collapse
|
184
|
Golmohammadi M, Ivraghi MS, Hasan EK, Huldani H, Zamanian MY, Rouzbahani S, Mustafa YF, Al-Hasnawi SS, Alazbjee AAA, Khalajimoqim F, Khalaj F. Protective effects of pioglitazone in renal ischemia-reperfusion injury (RIRI): focus on oxidative stress and inflammation. Clin Exp Nephrol 2024; 28:955-968. [PMID: 38935212 DOI: 10.1007/s10157-024-02525-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/01/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Renal ischemia-reperfusion injury (RIRI) is a critical phenomenon that compromises renal function and is the most serious health concern related to acute kidney injury (AKI). Pioglitazone (Pio) is a known agonist of peroxisome proliferator-activated receptor-gamma (PPAR-γ). PPAR-γ is a nuclear receptor that regulates genes involved in inflammation, metabolism, and cellular differentiation. Activation of PPAR-γ is associated with antiinflammatory and antioxidant effects, which are relevant to the pathophysiology of RIRI. This study aimed to investigate the protective effects of Pio in RIRI, focusing on oxidative stress and inflammation. METHODS We conducted a comprehensive literature search using electronic databases, including PubMed, ScienceDirect, Web of Science, Scopus, and Google Scholar. RESULTS The results of this study demonstrated that Pio has antioxidant, anti-inflammatory, and anti-apoptotic activities that counteract the consequences of RIRI. The study also discussed the underlying mechanisms, including the modulation of various pathways such as TNF-α, NF-κB signaling systems, STAT3 pathway, KIM-1 and NGAL pathways, AMPK phosphorylation, and autophagy flux. Additionally, the study presented a summary of various animal studies that support the potential protective effects of Pio in RIRI. CONCLUSION Our findings suggest that Pio could protect the kidneys from RIRI by improving antioxidant capacity and decreasing inflammation. Therefore, these findings support the potential of Pio as a therapeutic strategy for preventing RIRI in different clinical conditions.
Collapse
Affiliation(s)
- Maryam Golmohammadi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1988873554, Iran
| | | | | | - Huldani Huldani
- Department of Physiology, Faculty of Medicine Lambung, Mangkurat University, South Kalimantan, Banjarmasin, Indonesia
| | - Mohammad Yasin Zamanian
- Urology and Nephrology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
- Department of Physiology, Hamadan University of Medical Sciences, Hamadan, 6718773654, Iran.
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, 6718773654, Iran.
| | - Shiva Rouzbahani
- Miller School of Medicine, Bascom Palmer Eye Institute, University of Miami, Miami, FL, USA
- Department of Community Medicine and Family Physician, School of Medicine, Isfahan University of Medical Sciences, Hezar Jarib Blvd, Isfahan, Iran
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | | | | | - Faranak Khalajimoqim
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, 6718773654, Iran
| | - Fattaneh Khalaj
- Digestive Diseases Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
185
|
Younes AH, Mustafa YF. Sweet Bell Pepper: A Focus on Its Nutritional Qualities and Illness-Alleviated Properties. Indian J Clin Biochem 2024; 39:459-469. [PMID: 39346723 PMCID: PMC11436515 DOI: 10.1007/s12291-023-01165-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 11/13/2023] [Indexed: 10/01/2024]
Abstract
Sweet bell pepper (SBP, Capsicum annuum L.) can be employed as a spice in many dishes and may also be eaten as a delicious fruit. These two nutritional attributes are owing to the strong, deep taste of many SBP phytochemicals. This fruit has many additional beneficial properties because it contains high concentrations of minerals and vitamins that distinguish it from other kinds of fruits. Almost every part of the SBP is thought to be an excellent source of bioactive substances that are health supporters, such as flavonoids, polyphenols, and various aromatic substances. The ability of SBP-phytochemicals to work as antioxidants, reducing the harmful effects of oxidative stress and consequently preventing many chronic illnesses, is one of their main biomedical characteristics. These phytochemicals have good antibacterial properties, mostly against gram-positive pathogenic microbes, in addition to their anti-carcinogenic and cardio-preventive effects. So, this review aims to highlight the nutritional qualities of SBP-derived phytochemicals and their illness-alleviated characteristics. Antioxidant, anti-inflammatory, antitumor, antidiabetic, and analgesic properties are some of the ones discussed.
Collapse
Affiliation(s)
- Areej Hazem Younes
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| |
Collapse
|
186
|
Aziz N, Wal P, Patel A, Prajapati H. A comprehensive review on the pharmacological role of gut microbiome in neurodegenerative disorders: potential therapeutic targets. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:7307-7336. [PMID: 38734839 DOI: 10.1007/s00210-024-03109-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 04/17/2024] [Indexed: 05/13/2024]
Abstract
Neurological disorders, including Alzheimer and Parkinson's, pose significant challenges to public health due to their complex etiologies and limited treatment options. Recent advances in research have highlighted the intricate bidirectional communication between the gut microbiome and the central nervous system (CNS), revealing a potential therapeutic avenue for neurological disorders. Thus, this review aims to summarize the current understanding of the pharmacological role of gut microbiome in neurological disorders. Mounting evidence suggests that the gut microbiome plays a crucial role in modulating CNS function through various mechanisms, including the production of neurotransmitters, neuroactive metabolites, and immune system modulation. Dysbiosis, characterized by alterations in gut microbial composition and function, has been observed in many neurological disorders, indicating a potential causative or contributory role. Pharmacological interventions targeting the gut microbiome have emerged as promising therapeutic strategies for neurological disorders. Probiotics, prebiotics, antibiotics, and microbial metabolite-based interventions have shown beneficial effects in animal models and some human studies. These interventions aim to restore microbial homeostasis, enhance microbial diversity, and promote the production of beneficial metabolites. However, several challenges remain, including the need for standardized protocols, identification of specific microbial signatures associated with different neurological disorders, and understanding the precise mechanisms underlying gut-brain communication. Further research is necessary to unravel the intricate interactions between the gut microbiome and the CNS and to develop targeted pharmacological interventions for neurological disorders.
Collapse
Affiliation(s)
- Namra Aziz
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), NH-19, Kanpur, UP, 209305, India
| | - Pranay Wal
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), NH-19, Kanpur, UP, 209305, India.
| | - Aman Patel
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), NH-19, Kanpur, UP, 209305, India
| | - Harshit Prajapati
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), NH-19, Kanpur, UP, 209305, India
| |
Collapse
|
187
|
Witucki Ł, Jakubowski H. Homocysteine metabolites impair the PHF8/H4K20me1/mTOR/autophagy pathway by upregulating the expression of histone demethylase PHF8-targeting microRNAs in human vascular endothelial cells and mice. FASEB J 2024; 38:e70072. [PMID: 39323294 DOI: 10.1096/fj.202302116r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 05/21/2024] [Accepted: 09/11/2024] [Indexed: 09/27/2024]
Abstract
The inability to efficiently metabolize homocysteine (Hcy) due to nutritional and genetic deficiencies, leads to hyperhomocysteinemia (HHcy) and endothelial dysfunction, a hallmark of atherosclerosis which underpins cardiovascular disease (CVD). PHF8 is a histone demethylase that demethylates H4K20me1, which affects the mammalian target of rapamycin (mTOR) signaling and autophagy, processes that play important roles in CVD. PHF8 is regulated by microRNA (miR) such as miR-22-3p and miR-1229-3p. Biochemically, HHcy is characterized by elevated levels of Hcy, Hcy-thiolactone and N-Hcy-protein. Here, we examined the effects of these metabolites on miR-22-3p, miR-1229-3p, and their target PHF8, as well as on the downstream consequences of these effects on H4K20me1, mTOR-, and autophagy-related proteins and mRNAs expression in human umbilical vein endothelial cells (HUVEC). We found that treatments with N-Hcy-protein, Hcy-thiolactone, or Hcy upregulated miR-22-3p and miR-1229-3p, attenuated PHF8 expression, upregulated H4K20me1, mTOR, and phospho-mTOR. Autophagy-related proteins (BECN1, ATG5, ATG7, lipidated LC3-II, and LC3-II/LC3-I ratio) were significantly downregulated by at least one of these metabolites. We also found similar changes in the expression of miR-22-3p, Phf8, mTOR- and autophagy-related proteins/mRNAs in vivo in hearts of Cbs-/- mice, which show severe HHcy and endothelial dysfunction. Treatments with inhibitors of miR-22-3p or miR-1229-3p abrogated the effects of Hcy-thiolactone, N-Hcy-protein, and Hcy on miR expression and on PHF8, H4K20me1, mTOR-, and autophagy-related proteins/mRNAs in HUVEC. Taken together, these findings show that Hcy metabolites upregulate miR-22-3p and miR-1229-3p expression, which then dysregulate the PHF8/H4K20me1/mTOR/autophagy pathway, important for vascular homeostasis.
Collapse
Affiliation(s)
- Łukasz Witucki
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Poznań, Poland
| | - Hieronim Jakubowski
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Poznań, Poland
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, International Center for Public Health, Rutgers University, Newark, New Jersey, USA
| |
Collapse
|
188
|
Kowalczewski PŁ, Wróbel MM, Smarzyński K, Zembrzuska J, Ślachciński M, Jeżowski P, Tomczak A, Kulczyński B, Zielińska-Dawidziak M, Sałek K, Kmiecik D. Potato Protein-Based Vegan Burgers Enriched with Different Sources of Iron and Fiber: Nutrition, Sensory Characteristics, and Antioxidants before and after In Vitro Digestion. Foods 2024; 13:3060. [PMID: 39410095 PMCID: PMC11475115 DOI: 10.3390/foods13193060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
The aim of this research was to develop a technology for the production of plant-based burgers (PBBs) based on potato protein, also containing high content of iron and appropriately selected fats. The produced PBBs were characterized in terms of their nutritional and bioactive properties both before and after the in vitro digestion process. It was found that the produced burger was characterized by high protein content, ranging from 20.80 to 22.16 g/100 g. It was also shown to have a high dietary fiber content, ranging from 8.35 to 9.20 g/100 g. The main fraction of dietary fiber in the tested samples was insoluble fiber, which accounted for approximately 89% of the total fiber content. In addition, noteworthy is the high digestibility of the protein, reaching approximately 95% for the potato fiber used in the formulation, and about 85% for the oat fiber. Produced PBBs also provide significant amounts of iron, with the use of an organic iron source greatly increasing its quantity in the final product. The analyzed antioxidant properties before and after the digestion process showed a tenfold increase in biological activity after digestion, indicating that the examined PBBs may counteract oxidative stress. Analyzing the chemical and biological properties, it is impossible not to assess consumer attractiveness. It has been shown that PBB1, which contains potato fiber and powdered sprouts enriched with ferritin, received the highest attractiveness ratings among respondents.
Collapse
Affiliation(s)
- Przemysław Łukasz Kowalczewski
- Department of Food Technology of Plant Origin, Poznań University of Life Sciences, 60-624 Poznań, Poland;
- InnPlantFood Research Group, Poznań University of Life Sciences, 60-624 Poznań, Poland (P.J.); (B.K.)
| | - Martyna Maria Wróbel
- InnPlantFood Research Group, Poznań University of Life Sciences, 60-624 Poznań, Poland (P.J.); (B.K.)
- Department of Quality Management, Gdynia Maritime University, 81-225 Gdynia, Poland
| | - Krzysztof Smarzyński
- InnPlantFood Research Group, Poznań University of Life Sciences, 60-624 Poznań, Poland (P.J.); (B.K.)
- Department of Quality Management, Gdynia Maritime University, 81-225 Gdynia, Poland
| | - Joanna Zembrzuska
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, 60-965 Poznań, Poland; (J.Z.); (M.Ś.)
| | - Mariusz Ślachciński
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, 60-965 Poznań, Poland; (J.Z.); (M.Ś.)
| | - Paweł Jeżowski
- InnPlantFood Research Group, Poznań University of Life Sciences, 60-624 Poznań, Poland (P.J.); (B.K.)
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, 60-965 Poznań, Poland; (J.Z.); (M.Ś.)
| | - Aneta Tomczak
- Department of Biochemistry and Food Analysis, Poznań University of Life Sciences, 60-623 Poznań, Poland; (A.T.); (M.Z.-D.)
| | - Bartosz Kulczyński
- InnPlantFood Research Group, Poznań University of Life Sciences, 60-624 Poznań, Poland (P.J.); (B.K.)
- Department of Gastronomy Science and Functional Foods, Poznań University of Life Sciences, 60-624 Poznań, Poland
| | - Magdalena Zielińska-Dawidziak
- Department of Biochemistry and Food Analysis, Poznań University of Life Sciences, 60-623 Poznań, Poland; (A.T.); (M.Z.-D.)
| | - Karina Sałek
- Institute of Biological Chemistry, Biophysics & Bioengineering, School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK;
| | - Dominik Kmiecik
- Department of Food Technology of Plant Origin, Poznań University of Life Sciences, 60-624 Poznań, Poland;
| |
Collapse
|
189
|
Corciovă A, Mircea C, Fifere A, Turin-Moleavin IA, Roşca I, Macovei I, Ivănescu B, Vlase AM, Hăncianu M, Burlec AF. Biogenic Synthesis of Silver Nanoparticles Mediated by Aronia melanocarpa and Their Biological Evaluation. Life (Basel) 2024; 14:1211. [PMID: 39337993 PMCID: PMC11433241 DOI: 10.3390/life14091211] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/07/2024] [Accepted: 09/22/2024] [Indexed: 09/30/2024] Open
Abstract
In the present study, two A. melanocarpa berry extracts were used for the synthesis of silver nanoparticles (AgNPs). After the optimization of synthesis, the AgNPs were characterized using UV-Vis, FTIR, EDX, DLS, and STEM analyses. The stability in different media, phytotoxicity, as well as antimicrobial and antioxidant activities were also evaluated. The ideal synthesis conditions were represented by a 3 mM AgNO3 concentration, 1:9 extract:AgNO3 volume ratio, alkaline medium, and stirring at 40 °C for 120 min. The synthesis was confirmed by the surface plasmon resonance (SPR) peak at 403 nm, and the strong signal at 3 keV from the EDX spectra. FTIR analysis indicated that polyphenols, polysaccharides, and amino acids could be the compounds responsible for synthesis. Stability tests and the negative zeta potential values showed that phytocompounds also play a role in the stabilization and capping of AgNPs. The preliminary phytotoxicity studies on T. aestivum showed that both the extracts and their corresponding AgNPs had an impact on the growth of roots and shoots as well as on the microscopic structure of leaves. The synthesized AgNPs presented antimicrobial activity against S. aureus, E. coli, and C. albicans. Moreover, considering the results obtained in the lipoxygenase inhibition, the DPPH and hydroxyl scavenging activities, and the ferrous ion chelating assay, AgNPs exhibit promising antioxidant activity.
Collapse
Affiliation(s)
- Andreia Corciovă
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (A.C.); (C.M.); (M.H.); (A.F.B.)
| | - Cornelia Mircea
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (A.C.); (C.M.); (M.H.); (A.F.B.)
| | - Adrian Fifere
- Centre of Advanced Research in Bionanoconjugates and Biopolymers Department, “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (A.F.); (I.-A.T.-M.); (I.R.)
| | - Ioana-Andreea Turin-Moleavin
- Centre of Advanced Research in Bionanoconjugates and Biopolymers Department, “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (A.F.); (I.-A.T.-M.); (I.R.)
| | - Irina Roşca
- Centre of Advanced Research in Bionanoconjugates and Biopolymers Department, “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (A.F.); (I.-A.T.-M.); (I.R.)
| | - Irina Macovei
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (A.C.); (C.M.); (M.H.); (A.F.B.)
| | - Bianca Ivănescu
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (A.C.); (C.M.); (M.H.); (A.F.B.)
| | - Ana-Maria Vlase
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania;
| | - Monica Hăncianu
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (A.C.); (C.M.); (M.H.); (A.F.B.)
| | - Ana Flavia Burlec
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (A.C.); (C.M.); (M.H.); (A.F.B.)
| |
Collapse
|
190
|
Luesma MJ, López-Marco L, Monzón M, Santander S. Enteric Nervous System and Its Relationship with Neurological Diseases. J Clin Med 2024; 13:5579. [PMID: 39337066 PMCID: PMC11433641 DOI: 10.3390/jcm13185579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
The enteric nervous system (ENS) is a fundamental component of the gastrointestinal system, composed of a vast network of neurons and glial cells. It operates autonomously but is interconnected with the central nervous system (CNS) through the vagus nerve. This communication, known as the gut-brain axis, influences the bidirectional communication between the brain and the gut. Background/Objectives: This study aimed to review neurological pathologies related to the ENS. Methods: To this end, a comprehensive literature search was conducted in the "PubMed" database. Articles available in "free format" were selected, applying the filters "Humans" and limiting the search to publications from the last ten years. Results: The ENS has been linked to various neurological diseases, from autism spectrum disorder to Parkinson's disease including neurological infection with the varicella zoster virus (VZV), even sharing pathologies with the CNS. This finding suggests that the ENS could serve as an early diagnostic marker or therapeutic target for neurological diseases. Gastrointestinal symptoms often precede CNS symptoms, and the ENS's accessibility aids in diagnosis and treatment. Parkinson's patients may show intestinal lesions up to twenty years before CNS symptoms, underscoring the potential for early diagnosis. However, challenges include developing standardized diagnostic protocols and the uneven distribution of dopaminergic neurons in the ENS. Continued research is needed to explore the ENS's potential in improving disease prognosis. Conclusions: The ENS is a promising area for early diagnosis and therapeutic development. Nevertheless, it is essential to continue research in this area, especially to gain a deeper understanding of its organization, function, and regenerative capacity.
Collapse
Affiliation(s)
- María José Luesma
- Department of Human Anatomy and Histology, University of Zaragoza, 50009 Zaragoza, Spain
| | - Liberto López-Marco
- Department of Human Anatomy and Histology, University of Zaragoza, 50009 Zaragoza, Spain
| | - Marta Monzón
- Department of Human Anatomy and Histology, University of Zaragoza, 50009 Zaragoza, Spain
| | - Sonia Santander
- Department of Pharmacology, Physiology, Legal and Forensic Medicine, University of Zaragoza, 50009 Zaragoza, Spain
| |
Collapse
|
191
|
Piva A, Benvegnù G, Negri S, Commisso M, Ceccato S, Avesani L, Guzzo F, Chiamulera C. Whole Plant Extracts for Neurocognitive Disorders: A Narrative Review of Neuropsychological and Preclinical Studies. Nutrients 2024; 16:3156. [PMID: 39339756 PMCID: PMC11434991 DOI: 10.3390/nu16183156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
The incidence of neurodegenerative disorders like Alzheimer's or Parkinson's Disease, characterized by a progressive cognitive decline, is rising worldwide. Despite the considerable efforts to unveil the neuropsychological bases of these diseases, there is still an unmet medical need for effective therapies against cognitive deficits. In recent years, increasing laboratory evidence indicates the potential of phytotherapy as an integrative aid to improve cognitive functions. In this review, we describe the data of plant whole extracts or single compounds' efficacy on validated preclinical models and neuropsychological tests, aiming to correlate brain mechanisms underlying rodent behavioral responses to human findings. After a search of the literature, the overview was limited to the following plants: Dioscorea batatas, Ginkgo biloba, Melissa officinalis, Nigella sativa, Olea europaea, Panax ginseng, Punica granatum, and Vitis vinifera. Results showed significant improvements in different cognitive functions, such as learning and memory or visuospatial abilities, in both humans and rodents. However, despite promising laboratory evidence, clinical translation has been dampened by a limited pharmacological characterization of the single bioactive components of the herbal products. Depicting the contribution of the single phytochemicals to the phytocomplex's pharmacological efficacy could enable the comprehension of their potential synergistic activity, leading to phytotherapy inclusion in the existing therapeutic package against cognitive decline.
Collapse
Affiliation(s)
- Alessandro Piva
- Department of Diagnostics and Public Health, University of Verona, 37134 Verona, Italy; (A.P.); (G.B.); (C.C.)
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy; (S.N.); (M.C.); (L.A.); (F.G.)
| | - Giulia Benvegnù
- Department of Diagnostics and Public Health, University of Verona, 37134 Verona, Italy; (A.P.); (G.B.); (C.C.)
| | - Stefano Negri
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy; (S.N.); (M.C.); (L.A.); (F.G.)
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Mauro Commisso
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy; (S.N.); (M.C.); (L.A.); (F.G.)
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Sofia Ceccato
- Department of Diagnostics and Public Health, University of Verona, 37134 Verona, Italy; (A.P.); (G.B.); (C.C.)
| | - Linda Avesani
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy; (S.N.); (M.C.); (L.A.); (F.G.)
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Flavia Guzzo
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy; (S.N.); (M.C.); (L.A.); (F.G.)
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Cristiano Chiamulera
- Department of Diagnostics and Public Health, University of Verona, 37134 Verona, Italy; (A.P.); (G.B.); (C.C.)
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy; (S.N.); (M.C.); (L.A.); (F.G.)
| |
Collapse
|
192
|
Tayarani-Najaran Z, Dehghanpour Farashah M, Emami SA, Ramazani E, Shahraki N, Hadipour E. Protective effects of betanin, a novel acetylcholinesterase inhibitor, against H 2O 2-induced apoptosis in PC12 cells. Mol Biol Rep 2024; 51:986. [PMID: 39283367 DOI: 10.1007/s11033-024-09923-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 09/06/2024] [Indexed: 02/06/2025]
Abstract
BACKGROUND Dysfunction of the cholinergic system and increased oxidative stress have a crucial role in cognitive disorders including Alzheimer's disease (AD). Here, we have investigated the protective effects of betanin, a novel acetylcholinesterase (AChE) inhibitor, on hydrogen peroxide (H2O2)-induced cell death in PC12 cells. METHODS AND RESULTS The protective effects were assessed by measuring cell viability, the amount of reactive oxygen species (ROS) production, AChE activity, cell damage, and apoptosis using resazurin, 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA), Ellman method, lactate dehydrogenase (LDH) release, propidium iodide (PI) staining and flow cytometry, and Western blot analysis. H2O2 (150 µM) resulted in cell viability reduction and apoptosis induction while, pretreatment with the betanin (10, 20, and 50 μM) and N-Acetyl-L-cysteine (NAC) (2.5 and 5 mM) significantly increased the viability (P < 0.05, P < 0.01 and P < 0.001) and at 5-50 μM betanin decreased ROS amount (P < 0.05, P < 0.01 and P < 0.001). Whereas, pretreatment with the betanin (10, 20, and 50 μM) decreased AChE activity (P < 0.001), also at 20 and 50 μM betanin reduced the release of LDH (P < 0.001), and at 10-50 μM decreased the percentage of apoptotic cells (P < 0.001). Apoptosis biomarkers such as cleaved poly (ADP-ribose) polymerase (PARP) (P < 0.01 and P < 0.001) and cytochrome c (P < 0.05 and P < 0.001) were attenuated after pretreatment of PC12 cells with betanin at 10-20 μM and 10-50 μM respectively. Indeed, survivin (P < 0.001) increased after pretreatment of cells with betanin at 10-20 μM. CONCLUSIONS Overall, betanin may use the potential to delay or prevent cell death caused by AD through decreasing the activity of AChE as well as attenuating the expression of proteins involved in the apoptosis pathway.
Collapse
Affiliation(s)
- Zahra Tayarani-Najaran
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Seyed Ahmad Emami
- Department of Traditional Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Naghmeh Shahraki
- Medical Toxicology Research Centre, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elham Hadipour
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran.
- Halal Research Center of IRI, Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
193
|
Di Carlo E, Sorrentino C. Oxidative Stress and Age-Related Tumors. Antioxidants (Basel) 2024; 13:1109. [PMID: 39334768 PMCID: PMC11428699 DOI: 10.3390/antiox13091109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Oxidative stress is the result of the imbalance between reactive oxygen and nitrogen species (RONS), which are produced by several endogenous and exogenous processes, and antioxidant defenses consisting of exogenous and endogenous molecules that protect biological systems from free radical toxicity. Oxidative stress is a major factor in the aging process, contributing to the accumulation of cellular damage over time. Oxidative damage to cellular biomolecules, leads to DNA alterations, lipid peroxidation, protein oxidation, and mitochondrial dysfunction resulting in cellular senescence, immune system and tissue dysfunctions, and increased susceptibility to age-related pathologies, such as inflammatory disorders, cardiovascular and neurodegenerative diseases, diabetes, and cancer. Oxidative stress-driven DNA damage and mutations, or methylation and histone modification, which alter gene expression, are key determinants of tumor initiation, angiogenesis, metastasis, and therapy resistance. Accumulation of genetic and epigenetic damage, to which oxidative stress contributes, eventually leads to unrestrained cell proliferation, the inhibition of cell differentiation, and the evasion of cell death, providing favorable conditions for tumorigenesis. Colorectal, breast, lung, prostate, and skin cancers are the most frequent aging-associated malignancies, and oxidative stress is implicated in their pathogenesis and biological behavior. Our aim is to shed light on the molecular and cellular mechanisms that link oxidative stress, aging, and cancers, highlighting the impact of both RONS and antioxidants, provided by diet and exercise, on cellular senescence, immunity, and development of an antitumor response. The dual role of ROS as physiological regulators of cell signaling responsible for cell damage and diseases, as well as its use for anti-tumor therapeutic purposes, will also be discussed. Managing oxidative stress is crucial for promoting healthy aging and reducing the risk of age-related tumors.
Collapse
Affiliation(s)
- Emma Di Carlo
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Carlo Sorrentino
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
194
|
Mandalawatta HP, Rajendra K, Fairfax K, Hewitt AW. Emerging trends in virus and virus-like particle gene therapy delivery to the brain. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102280. [PMID: 39206077 PMCID: PMC11350507 DOI: 10.1016/j.omtn.2024.102280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Recent advances in gene therapy and gene-editing techniques offer the very real potential for successful treatment of neurological diseases. However, drug delivery constraints continue to impede viable therapeutic interventions targeting the brain due to its anatomical complexity and highly restrictive microvasculature that is impervious to many molecules. Realizing the therapeutic potential of gene-based therapies requires robust encapsulation and safe and efficient delivery to the target cells. Although viral vectors have been widely used for targeted delivery of gene-based therapies, drawbacks such as host genome integration, prolonged expression, undesired off-target mutations, and immunogenicity have led to the development of alternative strategies. Engineered virus-like particles (eVLPs) are an emerging, promising platform that can be engineered to achieve neurotropism through pseudotyping. This review outlines strategies to improve eVLP neurotropism for therapeutic brain delivery of gene-editing agents.
Collapse
Affiliation(s)
| | - K.C. Rajendra
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Kirsten Fairfax
- School of Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Alex W. Hewitt
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
- School of Medicine, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
195
|
Carolin A, Frazer D, Yan K, Bishop CR, Tang B, Nguyen W, Helman SL, Horvat J, Larcher T, Rawle DJ, Suhrbier A. The effects of iron deficient and high iron diets on SARS-CoV-2 lung infection and disease. Front Microbiol 2024; 15:1441495. [PMID: 39296289 PMCID: PMC11408339 DOI: 10.3389/fmicb.2024.1441495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/22/2024] [Indexed: 09/21/2024] Open
Abstract
Introduction The severity of Coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is often dictated by a range of comorbidities. A considerable literature suggests iron deficiency and iron overload may contribute to increased infection, inflammation and disease severity, although direct causal relationships have been difficult to establish. Methods Here we generate iron deficient and iron loaded C57BL/6 J mice by feeding standard low and high iron diets, with mice on a normal iron diet representing controls. All mice were infected with a primary SARS-CoV-2 omicron XBB isolate and lung inflammatory responses were analyzed by histology, immunohistochemistry and RNA-Seq. Results Compared with controls, iron deficient mice showed no significant changes in lung viral loads or histopathology, whereas, iron loaded mice showed slightly, but significantly, reduced lung viral loads and histopathology. Transcriptional changes were modest, but illustrated widespread dysregulation of inflammation signatures for both iron deficient vs. controls, and iron loaded vs. controls. Some of these changes could be associated with detrimental outcomes, whereas others would be viewed as beneficial. Discussion Diet-associated iron deficiency or overload thus induced modest modulations of inflammatory signatures, but no significant histopathologically detectable disease exacerbations.
Collapse
Affiliation(s)
- Agnes Carolin
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - David Frazer
- Molecular Nutrition, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Kexin Yan
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Cameron R Bishop
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Bing Tang
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Wilson Nguyen
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Sheridan L Helman
- Molecular Nutrition, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Jay Horvat
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW, Australia
| | | | - Daniel J Rawle
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Andreas Suhrbier
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- GVN Centre of Excellence, Australian Infectious Disease Research Centre, Brisbane, QLD, Australia
| |
Collapse
|
196
|
Cordiano R, Gammeri L, Di Salvo E, Gangemi S, Minciullo PL. Pomegranate ( Punica granatum L.) Extract Effects on Inflammaging. Molecules 2024; 29:4174. [PMID: 39275022 PMCID: PMC11396831 DOI: 10.3390/molecules29174174] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024] Open
Abstract
Pomegranate is a notable source of nutrients, containing a considerable proportion of organic acids, polysaccharides, vitamins, fatty acids, and polyphenols such as flavonoids, phenolic acids, and tannins. It is also rich in nutritionally important minerals and chemical elements such as K, P, Na, Ca, Mg, and N. The presence of several bioactive compounds and metabolites in pomegranate has led to its incorporation into the functional food category, where it is used for its numerous therapeutic properties. Pomegranate's bioactive compounds have shown antioxidant, anti-inflammatory, and anticancer effects. Aging is a process characterized by the chronic accumulation of damages, progressively compromising cells, tissues, and organs over time. Inflammaging is a chronic, subclinical, low-grade inflammation that occurs during the aging process and is linked to many age-related diseases. This review aims to summarize and discuss the evidence of the benefits of pomegranate extract and its compounds to slow the aging processes by intervening in the mechanisms underlying inflammaging. These studies mainly concern neurodegenerative and skin diseases, while studies in other fields of application need to be more practical. Furthermore, no human studies have demonstrated the anti-inflammaging effects of pomegranate. In the future, supplementation with pomegranate extracts, polyphenols, or urolithins could represent a valuable low-risk complementary therapy for patients with difficult-to-manage diseases, as well as a valid therapeutic alternative for the topical or systemic treatment of skin pathologies.
Collapse
Affiliation(s)
- Raffaele Cordiano
- Unit and School of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| | - Luca Gammeri
- Unit and School of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| | - Eleonora Di Salvo
- Department of Biomedical and Dental Science and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy
| | - Sebastiano Gangemi
- Unit and School of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| | - Paola Lucia Minciullo
- Unit and School of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| |
Collapse
|
197
|
Zamanian MY, Nazifi M, Khachatryan LG, Taheri N, Ivraghi MS, Menon SV, Husseen B, Prasad KDV, Petkov I, Nikbakht N. The Neuroprotective Effects of Agmatine on Parkinson's Disease: Focus on Oxidative Stress, Inflammation and Molecular Mechanisms. Inflammation 2024:10.1007/s10753-024-02139-7. [PMID: 39225914 DOI: 10.1007/s10753-024-02139-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Agmatine (AGM), a naturally occurring polyamine derived from L-arginine, has shown significant potential for neuroprotection in Parkinson's Disease (PD) due to its multifaceted biological activities, including antioxidant, anti-inflammatory, and anti-apoptotic effects. This review explores the therapeutic potential of AGM in treating PD, focusing on its neuroprotective mechanisms and evidence from preclinical studies. AGM has been demonstrated to mitigate the neurotoxic effects of rotenone (ROT) by improving motor function, reducing oxidative stress markers, and decreasing levels of pro-inflammatory cytokines in animal models. Additionally, AGM protects against the loss of TH + neurons, crucial for dopamine synthesis. The neuroprotective properties of AGM are attributed to its ability to modulate several key pathways implicated in PD pathogenesis, such as inhibition of NMDA receptors, activation of Nrf2, and suppression of the HMGB1/ RAGE/ TLR4/ MyD88/ NF-κB signaling cascade. Furthermore, the potential of agmatine to promote neurorestoration is highlighted by its role in enhancing neuroplasticity elements such as CREB, BDNF, and ERK1/2. This review highlights agmatine's promising therapeutic potential in PD management, suggesting that it could offer both symptomatic relief and neuroprotective benefits, thereby modifying the disease course and improving the quality of life for patients. Further research is warranted to translate these preclinical findings into clinical applications.
Collapse
Affiliation(s)
- Mohammad Yasin Zamanian
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, 6718773654, Iran.
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, 6718773654, Iran.
| | - Mozhgan Nazifi
- Department of Neurology, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Lusine G Khachatryan
- Department of Pediatric Diseases, Filatov Clinical Institute of Children's Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), N.F, Moscow, Russia
| | - Niloofar Taheri
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | | | - Soumya V Menon
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Beneen Husseen
- Medical Laboratory Technique College, the Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique College, the Islamic University of Babylon, Babylon, Iraq
| | - K D V Prasad
- Symbiosis Institute of Business Management, Hyderabad, India
- Symbiosis International (Deemed University), Pune, India
| | - Iliya Petkov
- Department of Neurology, Medical University - Sofia, Sofia, Bulgaria
| | - Nikta Nikbakht
- Department of Physical Medicine and Rehabilitation, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
198
|
Mishra S, Banerjee S, Tiwari BS, Tiwari AK. Recent progress in CRISPR-Cas-system for neurological disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 210:231-261. [PMID: 39824583 DOI: 10.1016/bs.pmbts.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
Different neurological diseases including, Parkinson's, Alzheimer's, and Huntington's diseases extant momentous global disease burdens, affecting millions of lives for imposing a heavy disease burden on the healthcare systems. Despite various treatment strategies aimed at alleviating symptoms, treatments remain elusive and ineffective due to the disease's complexity. However, recent advancements in gene therapy via the CRISPR-Cas system offer ground-breaking and targeted treatment options. Based on a bacterial immune mechanism, the CRISPR-Cas system enables precise genome editing, allowing for the alteration of different genetic mutations and the possible cure of genetic diseases. In the context of neurological disorders, the CRISPR-Cas system shows a promising avenue by allowing researchers to conduct genome-editing which is implicated in neurodegenerative disease therapeutics. This book chapter provides an updated overview of the application of the CRISPR-Cas system for addressing target-specific therapeutic approaches for neurodegenerative disorders. Furthermore, we discuss the principles of the CRISPR-Cas mechanism, its role in modeling neurological disorders, identifying molecular targets, and developing gene-based therapies. Additionally, the chapter explores the recent clinical trials and CRISPR-Cas-mediated treatments for neurological conditions. By leveraging the accuracy and versatility of the CRISPR-Cas system, scientists can more effectively handle the genetic underpinnings of neurodegenerative diseases. Furthermore, the chapter extends the critical viewpoints on ethical considerations and technical limitations related to the clinical deployment of this revolutionizing technique.
Collapse
Affiliation(s)
- Sarita Mishra
- National Forensic Sciences University, Gandhinagar, Gujarat, India
| | - Shuvomoy Banerjee
- Biochemistry Laboratory, Department of Biotechnology & Bioengineering, Institute of Advanced Research, Gandhinagar, Gujarat, India
| | - Budhi Sagar Tiwari
- Plant Cell & Molecular Biology Laboratory, Department of Biotechnology & Bioengineering, Institute of Advanced Research, Gandhinagar, Gujarat, India
| | - Anand Krishna Tiwari
- Genetics & Developmental Biology Laboratory, Department of Biotechnology & Bioengineering, Institute of Advanced Research, Gandhinagar, Gujarat, India.
| |
Collapse
|
199
|
Sayed AA. Back to Basics: The Diagnostic Value of a Complete Blood Count in the Clinical Management of COVID-19. Diagnostics (Basel) 2024; 14:1933. [PMID: 39272717 PMCID: PMC11393994 DOI: 10.3390/diagnostics14171933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Since the beginning of the COVID-19 pandemic, scientists have struggled significantly to understand the complexity of COVID-19 pathophysiology. COVID-19 has demonstrated a notoriously unpredictable clinical course. This unpredictability constituted a significant obstacle to clinicians in predicting the disease course among COVID-19 patients, more specifically, in predicting who would develop severe cases and possibly die from the infection. This brief report aims to assess the diagnostic value of using a complete blood count (CBC) and applying high-dimensional analysis, i.e., principal component analysis (PCA), on it to differentiate between patients with mild and severe COVID-19 infection. The data of 855 patients were retrieved from multiple centres in Saudi Arabia. Descriptive statistics, such as counts, percentages, and medians (interquartile ranges) were used to describe patients' characteristics and CBC parameters. Analytical statistics, such as the Mann-Whitney U test, were used to compare between survivors and non-survivors. PCA was applied using the CBC parameters, and the results were compared between survivors and non-survivors. Patients in this study had a median age of 41, with an almost equal ratio of men to women. Most participants were Saudis, and non-survivors were 13.22% of the total cohort. The median values of all CBC indices were within reference ranges; however, some statistically significant differences were observed between survivors and non-survivors. Non-survivors had lower hemoglobin levels and lower hematocrit, lymphocyte, and eosinophil counts but higher WBC and neutrophil counts compared to survivors. PCA on the CBC results of survivors yielded a significantly different profile than non-survivors, indicating the possibility of its use in the context of COVID-19. The diagnostic value of CBC in the clinical management of COVID-19 should be utilized in clinical guidelines for managing COVID-19 cases.
Collapse
Affiliation(s)
- Anwar A Sayed
- Department of Basic Medical Sciences, College of Medicine, Taibah University, Madinah 42353, Saudi Arabia
| |
Collapse
|
200
|
Liang Y, Zhao J, Dai T, Li X, Chen L, He Z, Guo M, Zhao J, Xu L. A review of KLF4 and inflammatory disease: Current status and future perspective. Pharmacol Res 2024; 207:107345. [PMID: 39134187 DOI: 10.1016/j.phrs.2024.107345] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/03/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024]
Abstract
Inflammation is the response of the human body to injury, infection, or other abnormal states, which is involved in the development of many diseases. As a member of the Krüppel-like transcription factors (KLFs) family, KLF4 plays a crucial regulatory role in physiological and pathological processes due to its unique dual domain of transcriptional activation and inhibition. A growing body of evidence has demonstrated that KLF4 plays a pivotal role in the pathogenesis of various inflammatory disorders, including inflammatory bowel disease, osteoarthritis, renal inflammation, pneumonia, neuroinflammation, and so on. Consequently, KLF4 has emerged as a promising new therapeutic target for inflammatory diseases. This review systematically generalizes the molecular regulatory network, specific functions, and mechanisms of KLF4 to elucidate its complex roles in inflammatory diseases. An in-depth study on the biological function of KLF4 is anticipated to offer a novel research perspective and potential intervention strategies for inflammatory diseases.
Collapse
Affiliation(s)
- Yidan Liang
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Jiamin Zhao
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Tengkun Dai
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Xin Li
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Longqin Chen
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Zhixu He
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Mengmeng Guo
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China.
| | - Juanjuan Zhao
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China.
| | - Lin Xu
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China; Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, Guizhou 563000, China.
| |
Collapse
|