151
|
Nie L, Yang Z, Qin X, Lai KP, Qin J, Yang B, Su M. Vitamin C protects the spleen against PFOA-induced immunotoxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161266. [PMID: 36592905 DOI: 10.1016/j.scitotenv.2022.161266] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 06/17/2023]
Abstract
Perfluorooctanoic acid (PFOA) is widely used in industrial and consumer products of our daily life. It is well-documented that PFOA is closely associated with fatty liver disease. Recently, cumulating studies demonstrated the immunotoxicity of PFOA, but its harmful effect on the largest immune organ, spleen is still largely unknown. In the present study, we used PFOA-exposed mouse model together with comparative transcriptomic analysis to understand the molecular mechanisms underlying the immunotoxicity of PFOA. Furthermore, we investigated the possible use of vitamin C to reverse the PFOA-induced immunotoxicity in spleen. Our result showed that the PFOA exposure could reduce the spleen weight and plasma lymphocytes, and the splenic comparative transcriptomic analysis highlighted the alteration of cell proliferation, metabolism and immune response through the regulation of gene clusters including nicotinamide nucleotide transhydrogenases (NNT) and lymphocyte antigen 6 family member D and K (LY6D and LY6K). More importantly, the supplementation of vitamin C would relieve the PFOA-reduced spleen index and white blood cells. The bioinformatic analysis of transcriptome suggested its involvement in the spleen cell proliferation and immune response. For the first time, our study delineated the molecular mechanisms underlying the PFOA-induced immunotoxicity in the spleen. Furthermore, our results suggested that the supplementation of vitamin C had beneficial effect on the PFOA-altered spleen functions.
Collapse
Affiliation(s)
- Litao Nie
- Key Laboratory of Environmental Pollution and Integrative Omics, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin, PR China
| | - Zhiwen Yang
- Department of Clinical Pharmacy, Guigang City People's Hospital, The Eighth Affiliated Hospital of Guangxi Medical University, Guigang, PR China
| | - Xian Qin
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Keng Po Lai
- Key Laboratory of Environmental Pollution and Integrative Omics, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin, PR China
| | - Jingru Qin
- Department of Clinical Pharmacy, Guigang City People's Hospital, The Eighth Affiliated Hospital of Guangxi Medical University, Guigang, PR China
| | - Bin Yang
- College of Pharmacy, Guangxi Medical University, Nanning, PR China.
| | - Min Su
- Key Laboratory of Environmental Pollution and Integrative Omics, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin, PR China.
| |
Collapse
|
152
|
Milentyeva I, Fedorova A, Larichev T, Altshuler O. Biologically active compounds in Scutellaria baicalensis L. callus extract: Phytochemical analysis and isolation. FOODS AND RAW MATERIALS 2023. [DOI: 10.21603/2308-4057-2023-1-564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
Plant cells and tissue cultures are sources of secondary plant metabolites. Substances produced by callus cultures can expand the raw material base in pharmacy and food production. However, isolating biologically active substances from medicinal plants is a labor- and time-consuming process. As a result, new and efficient technological processes adapted for extraction from callus cultures are in high demand, and new algorithms of isolation and purification of biologically active substances remain a relevant task.
This research featured callus cultures of Scutellaria baicalensis. The procedures for phytochemical analysis and isolation of biologically active substances involved such physicochemical research methods as high-performance chromatography (HPLC), thin-layer chromatography (TLC), UV spectrometry, and IR spectrometry.
The high performance liquid chromatography confirmed the presence of flavonoids represented by baicalein (5,6,7-trioxyflavone), baicalin (baicalein 7-O-glucuronide), scutellarein (5,6,7,4-tetraoxyflavone), scutellarin (7-O-glucuronide scutellarein), vagonin, and oroxylin. The spectral analyses also detected skutebaicalin. The highest total content of diterpene belonged to the samples extracted with 70% ethanol at 70°C. The content of diterpene was 0.09 mg/cm3 in terms of betulin. The biologically active substances were isolated from the callus extracts of S. baicalensis with a recovery rate of ≥ 80%. The purification scheme made it possible to obtain highly-pure individual biologically active compounds: trans-cinnamic acid, baicalin, and oroxylin A had a purity of ≥ 95%; baicalein had a purity of ≥ 97%; scutellarin and luteolin reached ≥ 96%.
The new technological extraction method made it possible to obtain extracts from S. baicalensis callus cultures, which were tested for the component composition. The developed isolation algorithm and purification scheme yielded biologically active substances with a purification degree of ≥ 95%.
Collapse
|
153
|
Liu Y, Zhu J, Ding L. Involvement of RNA methylation modification patterns mediated by m7G, m6A, m5C and m1A regulators in immune microenvironment regulation of Sjögren's syndrome. Cell Signal 2023; 106:110650. [PMID: 36935085 DOI: 10.1016/j.cellsig.2023.110650] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/03/2023] [Indexed: 03/18/2023]
Abstract
Keratoconjunctivitis is the most common complication of Sjögren's syndrome (SS). It has always been a hot research topic due to its complex pathogenesis. A further understanding of keratoconjunctiva xerosis can be obtained by studying the primary diseases. 7-Methylguanine (m7G), N6-methyladenosine (m6A), 5-methylcytosine (m5C), and N1-methyladenosine (m1A) are newly discovered epigenetic mechanisms involved in the development of SS. This study aimed to investigate the effects of m7G, m6A, m5C, and m1A modifications on the immune microenvironment of SS. Three microarray datasets were downloaded from the Gene Omnibus Expression (GEO) database, including 56 SS samples and 35 normal samples. Then, genes with m7G, m6A, m5C, and m1A methylation were explored, and the RNA modification patterns mediated by 59 m7G, m6A, m5C, and m1A regulators were summarized. The effects of m7G, m6A, m5C, and m1A modifications on immune infiltrating cells were discussed. Eukaryotic translation initiation factor 3 subunit D(EIF3D) was closely related to monocytes, and the expression of EIF3D was higher in SS with less monocytes. Two distinct patterns of RNA modification mediated by the 59 m7G, m6A, m5C, and m1A regulators were also identified, which infiltrated immune cells differently. Moreover, the two distinct RNA patterns were enriched in different signaling pathways, and their biological functions were explored. The findings revealed that m7G, m6A, m5C, and m1A modifications played vital roles in the diversity and complexity of the immune microenvironment in SS.
Collapse
Affiliation(s)
- Yuxiu Liu
- Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China.
| | - Jianing Zhu
- Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Lin Ding
- Xinjiang Uygur Autonomous Region People's Hospital, 91 Longquan Street, Urumqi, Xinjiang Uygur Autonomous Region, China.
| |
Collapse
|
154
|
Wang Z, You T, Cai C, Su Q, Cheng J, Xiao J, Duan X. Biomimetic Gold Nanostructure with a Virus-like Topological Surface for Enhanced Antigen Cross-Presentation and Antitumor Immune Response. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 36897565 DOI: 10.1021/acsami.2c21028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The internalization of antigens by dendritic cells (DCs) is the initial critical step for vaccines to activate the immune response; however, the systemic delivery of antigens into DCs is hampered by various technical challenges. Here we show that a virus-like gold nanostructure (AuNV) can effectively bind to and be internalized by DCs due to its biomimetic topological morphology, thereby significantly promoting the maturation of DCs and the cross-presentation of the model antigen ovalbumin (OVA). In vivo experiments demonstrate that AuNV efficiently delivers OVA to draining lymph nodes and significantly inhibits the growth of MC38-OVA tumors, generating a ∼80% decrease in tumor volume. Mechanistic studies reveal that the AuNV-OVA vaccine induces a remarkable increase in the rate of maturation of DCs, OVA presentation, and CD4+ and CD8+ T lymphocyte populations in both lymph node and tumor and an obvious decrease in myeloid-derived suppressor cells and regulatory T cell populations in spleen. The good biocompatibility, strong adjuvant activity, enhanced uptake of DCs, and improved T cell activation make AuNV a promising antigen delivery platform for vaccine development.
Collapse
Affiliation(s)
- Zhenyu Wang
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Tingting You
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Chengyuan Cai
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Qianyi Su
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jinmei Cheng
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jisheng Xiao
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University; Department of Pharmacy, Zhujiang Hospital, Southern Medical University; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease; Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Xiaopin Duan
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
155
|
Serum CXCL5 Detects Early Hepatocellular Carcinoma and Indicates Tumor Progression. Int J Mol Sci 2023; 24:ijms24065295. [PMID: 36982370 PMCID: PMC10049661 DOI: 10.3390/ijms24065295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/05/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Chemokines or chemotactic cytokines play a pivotal role in the immune pathogenesis of liver cirrhosis and hepatocellular carcinoma (HCC). Nevertheless, comprehensive cytokine profiling data across different etiologies of liver diseases are lacking. Chemokines might serve as diagnostic and prognostic biomarkers. In our study, we analyzed serum concentrations of 12 inflammation-related chemokines in a cohort of patients (n = 222) with cirrhosis of different etiologies and/or HCC. We compared 97 patients with cirrhosis and treatment-naïve HCC to the chemokine profile of 125 patients with cirrhosis but confirmed absence of HCC. Nine out of twelve chemokines were significantly elevated in sera of cirrhotic patients with HCC compared to HCC-free cirrhosis controls (CCL2, CCL11, CCL17, CCL20, CXCL1, CXCL5, CXCL9, CXCL10, CXCL11). Among those, CXCL5, CXCL9, CXCL10, and CXCL11 were significantly elevated in patients with early HCC according to the Barcelona Clinic Liver Cancer (BCLC) stages 0/A compared to cirrhotic controls without HCC. In patients with HCC, CXCL5 serum levels were associated with tumor progression, and levels of CCL20 and CXCL8 with macrovascular invasion. Importantly, our study identified CXCL5, CXCL9, and CXCL10 as universal HCC markers, independent from underlying etiology of cirrhosis. In conclusion, regardless of the underlying liver disease, patients with cirrhosis share an HCC-specific chemokine profile. CXCL5 may serve as a diagnostic biomarker in cirrhotic patients for early HCC detection as well as for tumor progression.
Collapse
|
156
|
Zhang Y, Wang J, Ye Y, Zou Y, Chen W, Wang Z, Zou Z. Peripheral cytokine levels across psychiatric disorders: A systematic review and network meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry 2023; 125:110740. [PMID: 36893912 DOI: 10.1016/j.pnpbp.2023.110740] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/27/2023] [Accepted: 03/04/2023] [Indexed: 03/11/2023]
Abstract
Immune dysregulated cytokine production is involved in mental diseases. However, the results are inconsistent and the pattern of cytokine alterations has not been compared across disorders. We performed a network impact analysis of cytokine levels for different psychiatric disorders including schizophrenia, major depressive disorder, bipolar disorder, panic disorder, post-traumatic stress disorder and obsessive compressive disorder to evaluate their clinical impact across conditions. Studies were identified by searching the electronic databases up to 31/05/2022. A total of eight cytokines, together with (high-sensitivity) C-reactive proteins (hsCRP/CRP) were included in the network meta-analysis. The levels of proinflammatory cytokines, hsCRP/CRP and interleukin 6 (IL-6) were significantly increased in patients with psychiatric disorders when compared to controls. IL-6 showed no significant difference among comparisons between disorders according to the network meta-analysis. Interleukin 10 (IL-10) is significantly increased in patients with bipolar disorder compared to major depressive disorder. Further, the level of interleukin-1 beta (IL-1β) was significantly increased in major depressive disorder as compared to bipolar disorder. The level of interleukin 8 (IL-8) varied among these psychiatric disorders based on the network meta-analysis result. Overall, abnormal cytokine levels were found in psychiatric disorders, and some of the cytokines displayed differential characteristics in these disorders, especially IL-8, pointing to a role as potential biomarkers for general and differential diagnosis.
Collapse
Affiliation(s)
- Yuan Zhang
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | | | - Yu Ye
- Sichuan Provincial Center for Mental Health, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Yazhu Zou
- Sichuan Provincial Center for Mental Health, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Wei Chen
- Sichuan Provincial Center for Mental Health, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Zuxing Wang
- Sichuan Provincial Center for Mental Health, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Zhili Zou
- Sichuan Provincial Center for Mental Health, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China; Key Laboratory of psychosomatic medicine, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China.
| |
Collapse
|
157
|
Therapeutic Properties of Flavonoids in Treatment of Cancer through Autophagic Modulation: A Systematic Review. Chin J Integr Med 2023; 29:268-279. [PMID: 35809179 PMCID: PMC9282630 DOI: 10.1007/s11655-022-3674-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2022] [Indexed: 01/18/2023]
Abstract
Cancers have high morbidity and mortality rates worldwide. Current anticancer therapies have demonstrated specific signaling pathways as a target in the involvement of carcinogenesis. Autophagy is a quality control system for proteins and plays a fundamental role in cancer carcinogenesis, exerting an anticarcinogenic role in normal cells and can inhibit the transformation of malignant cells. Therefore, drugs aimed at autophagy can function as antitumor agents. Flavonoids are a class of polyphenolic secondary metabolites commonly found in plants and, consequently, consumed in diets. In this review, the systematic search strategy was used, which included the search for descriptors "flavonoids" AND "mTOR pathway" AND "cancer" AND "autophagy", in the electronic databases of PubMed, Cochrane Library, Web of Science and Scopus, from January 2011 to January 2021. The current literature demonstrates that flavonoids have anticarcinogenic properties, including inhibition of cell proliferation, induction of apoptosis, autophagy, necrosis, cell cycle arrest, senescence, impaired cell migration, invasion, tumor angiogenesis and reduced resistance to multiple drugs in tumor cells. We demonstrate the available evidence on the roles of flavonoids and autophagy in cancer progression and inhibition. (Registration No. CRD42021243071 at PROSPERO).
Collapse
|
158
|
Abstract
Breast cancer remains a serious threaten to the women's health, discovery of potent treatment would help to improve the outcomes of breast cancer patients. Harmine extracted from Peganum harmala L , has been reported to exert tumor suppressive activity in several malignancies. Our objective was to demonstrate the effects of harmine on the malignant phenotypes of breast cancer cells. Breast cancer cell lines (MDA-MB-231, SKBR3, and MCF-7) and human normal breast cell line MCF-10A were employed in the present study. The MTT and colony formation assays were applied to the detection of cell viability and proliferation. Wound healing and transwell assays were performed to evaluate the alterations of cell migration and invasion after harmine treatment. Flow cytometry was applied to assess the effect of harmine in inducing cell apoptosis. Furthermore, western blotting assay was used to detect the biomarkers of epithelial-mesenchymal transition and phosphatidylinositol 3 kinase (PI3K) signaling pathway. The tumorigenesis ability was detected by subcutaneous implantation. Harmine dose-dependently suppressed the viability and proliferative capacity of breast cancer cells. Flow cytometry showed that harmine induced apoptosis in MCF-7 and MDA-MB-231 cells. In addition, harmine effectively inhibited the migration and invasion abilities of breast cancer cells. Western blotting indicated harmine significantly promoted E-cadherin and PTEN expression, while suppressed N-cadherin, vimentin, PI3K, p-mTOR, and AKT levels. Interfering the PTEN expression by siRNA partly rescued the activity of PI3K signaling pathway. Moreover, harmine injection also suppressed the tumorigenesis of breast cancer cells. Our results suggested that Hermine could suppress multiple malignant phenotypes and inhibit PI3K signaling, which supports that harmine might be a potential tumor-suppressive natural compound against breast cancer.
Collapse
|
159
|
Suhariadi F, Sugiarti R, Hardaningtyas D, Mulyati R, Kurniasari E, Saadah N, Yumni H, Abbas A. Work from home: A behavioral model of Indonesian education workers' productivity during Covid-19. Heliyon 2023; 9:e14082. [PMID: 36855679 PMCID: PMC9951094 DOI: 10.1016/j.heliyon.2023.e14082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/09/2023] [Accepted: 02/20/2023] [Indexed: 03/02/2023] Open
Abstract
Although it is not a new phenomenon, many present employees have not previously encountered it. The Covid-19 outbreak has turned the concept of Work from Home (WFH) into a legally regulated and severely enforced norm, which is now in effect. This idea is vital for developing practical organizational policies and procedures in the future in specific educational sectors pertinent to academics. The effectiveness of an individual's ability to cope with WFH was evaluated using a theoretical framework created to measure productivity. The model was evaluated on individuals from a top-ranking public university in Indonesia, chosen as the target population. A total number of 556 respondents responded to the survey questionnaire. AMOS was used to analyze statistical responses related to job crafting, work stress, organizational support, boredom, work engagement, productivity, and mental health. The structural equation analysis, also known as the SEM, was used for this work's measurement model. The findings revealed that the productive conduct of teaching teachers and staff played a substantial role in the success of the work-from-home situation. Conclusions The findings of this study indicate that the indicators used to measure productive behavior while working from home are accurate. As a result, the hypothesis has been proven correct. The study's ecological implications are explained in the relevant sections of this paper.
Collapse
Affiliation(s)
- Fendy Suhariadi
- Human Resources Development, Postgraduate School, Universitas Airlangga, Surabaya, Indonesia
| | - Rini Sugiarti
- Department of Psychology, Universitas Semarang, Indonesia
| | - Dwi Hardaningtyas
- Administration Science, Universitas 17 Agustus 1945 Surabaya, Indonesia.,FISIP, Universitas Wijaya Putra, Surabaya, Indonesia
| | - Rina Mulyati
- Psychology Faculty, Universitas Islam Indonesia, Indonesia
| | - Evi Kurniasari
- Psychology Faculty, Universitas 17 Agustus 1945 Samarinda, Indonesia
| | | | - Hilmi Yumni
- Politeknik Kesehatan, Kementrian Kesehatan Surabaya, Indonesia
| | - Ansar Abbas
- Department of Management, Faculty of Economics and Business, Universitas Airlangga, Surabaya, Indonesia.,MY Businss School, Muslim-Youth University, Islamabad, Pakistan
| |
Collapse
|
160
|
Shiau JP, Chuang YT, Yen CY, Chang FR, Yang KH, Hou MF, Tang JY, Chang HW. Modulation of AKT Pathway-Targeting miRNAs for Cancer Cell Treatment with Natural Products. Int J Mol Sci 2023; 24:ijms24043688. [PMID: 36835100 PMCID: PMC9961959 DOI: 10.3390/ijms24043688] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Many miRNAs are known to target the AKT serine-threonine kinase (AKT) pathway, which is critical for the regulation of several cell functions in cancer cell development. Many natural products exhibiting anticancer effects have been reported, but their connections to the AKT pathway (AKT and its effectors) and miRNAs have rarely been investigated. This review aimed to demarcate the relationship between miRNAs and the AKT pathway during the regulation of cancer cell functions by natural products. Identifying the connections between miRNAs and the AKT pathway and between miRNAs and natural products made it possible to establish an miRNA/AKT/natural product axis to facilitate a better understanding of their anticancer mechanisms. Moreover, the miRNA database (miRDB) was used to retrieve more AKT pathway-related target candidates for miRNAs. By evaluating the reported facts, the cell functions of these database-generated candidates were connected to natural products. Therefore, this review provides a comprehensive overview of the natural product/miRNA/AKT pathway in the modulation of cancer cell development.
Collapse
Affiliation(s)
- Jun-Ping Shiau
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ya-Ting Chuang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ching-Yu Yen
- School of Dentistry, Taipei Medical University, Taipei 11031, Taiwan
- Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Tainan 71004, Taiwan
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Kun-Han Yang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ming-Feng Hou
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (J.-Y.T.); (H.-W.C.); Tel.: +88-67-3121101 (ext. 8105) (J.-Y.T.); +88-67-3121101 (ext. 2691) (H.-W.C.)
| | - Hsueh-Wei Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (J.-Y.T.); (H.-W.C.); Tel.: +88-67-3121101 (ext. 8105) (J.-Y.T.); +88-67-3121101 (ext. 2691) (H.-W.C.)
| |
Collapse
|
161
|
Jiang H, Chen L, Li Y, Gao X, Yang X, Zhao B, Li Y, Wang Y, Yu X, Zhang X, Feng S, Chai Y, Meng H, Ren X, Bao T. Effects of acupuncture on regulating the hippocampal inflammatory response in rats exposed to post-traumatic stress disorder. Neurosci Lett 2023; 796:137056. [PMID: 36621587 DOI: 10.1016/j.neulet.2023.137056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/18/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023]
Abstract
Data from clinical and experimental studies have verified the efficacy and safety of acupuncture in the treatment of post-traumatic stress disorder (PTSD). However, the concrete mechanism has not been well elucidated. The stress-induced activation of inflammatory response is involved in the development and pathogenesis of PTSD. Here, we aimed to investigate the effects of acupuncture on regulating the hippocampal inflammatory response in rats exposed to PTSD. Forty male rats were randomly divided into control, model, acupuncture and sertraline group. Within 1 day after adaptive feeding, all rats were exposed to single prolonged stress (SPS), except for the rats in the control group. Rats in acupuncture group were exposed to acupuncture intervention at the acupoints of Baihui (GV20) and Yintang (GV29), 20 min once per day for 15 days. Rats in sertraline group were exposed to a suspension of sertraline and distilled water (0.2 mg/ml), once per day for 15 days continuously. Body weight and elevated plus maze experiment were detected at different time-points to evaluate the behavioral changes of rats. HE staining method was used to observe the basic pathological morphological changes in hippocampus. Immunofluorescence staining method was used to observe the activation of hippocampal microglia. The content of IL-6 and IL-1β in serum were detected by ELISA method. Compared with the control group, the body weight of rats in model group significantly decreased on 8 days, and the percentage of time in open arms and open arm entries decreased significantly on 15 days after SPS procedures, which indicated that SPS induced PTSD-like behavior in rats. Acupuncture exerted therapeutic effect. Simultaneously, the result of HE staining confirmed that SPS induced hippocampal morphological changes in SPS rats. Notably, acupuncture reversed the reduction and pathological injury to some extent. The results have also shown that acupuncture intervention effectively reversed the activated microglia of the hippocampus in rats. Moreover, the expression of IL-1β in serum was significantly decreased by acupuncture intervention. In summary, the present study demonstrated that the role of acupuncture in eliminating PTSD-like behavior might be connected with reversing the pathological process of the inflammatory response mediated by the activation of microglia induced by SPS.
Collapse
Affiliation(s)
- Huili Jiang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China.
| | - Lu Chen
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Yufei Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xingzhou Gao
- Beijing ChangPing District Hospital, Beijing, China
| | - Xinjing Yang
- Department of Traditional Chinese Medicine, South China Hospital of Shenzhen University, Shenzhen, China
| | - Bingcong Zhao
- Beijing Key Laboratory of Acupuncture Neuromodulation, Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Yahuan Li
- Beijing Increase Biomedical Company Limited, Beijing, China
| | - Yu Wang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xue Yu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | | | - Shixing Feng
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yemao Chai
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Hong Meng
- School of Science, Beijing Technology and Business University, Beijing, China
| | - Xiujun Ren
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Tuya Bao
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
162
|
Goldschen L, Ellrodt J, Amonoo HL, Feldman CH, Case SM, Koenen KC, Kubzansky LD, Costenbader KH. The link between post-traumatic stress disorder and systemic lupus erythematosus. Brain Behav Immun 2023; 108:292-301. [PMID: 36535611 PMCID: PMC10018810 DOI: 10.1016/j.bbi.2022.12.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 12/03/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a heterogeneous, multisystem autoimmune disorder characterized by unpredictable disease flares. Although the pathogenesis of SLE is complex, an epidemiologic link between posttraumatic stress disorder (PTSD) and the development of SLE has been identified, suggesting that stress-related disorders alter the susceptibility to SLE. Despite the strong epidemiologic evidence connecting PTSD and SLE, gaps remain in our understanding of how the two may be connected. Perturbations in the autonomic nervous system, neuroendocrine system, and at the genomic level may cause and sustain immune dysregulation that could lower the threshold for the development and propagation of SLE. We first describe shared risk factors for SLE and PTSD. We then describe potential biological pathways which may facilitate excessive inflammation in the context of PTSD. Among those genetically predisposed to SLE, systemic inflammation that accompanies chronic stress may fan the flames of smoldering SLE by priming immune pathways. Further studies on the connection between trauma and inflammation will provide important data on pathogenesis, risk factors, and novel treatments for SLE.
Collapse
Affiliation(s)
- Lauren Goldschen
- Department of Psychiatry, Brigham and Women's Hospital, 60 Fenwood Road, MA 02115, USA.
| | - Jack Ellrodt
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital, 60 Fenwood Road, Boston, MA 02115, USA
| | - Hermioni L Amonoo
- Department of Psychiatry, Brigham and Women's Hospital, 60 Fenwood Road, MA 02115, USA; Department of Psychosocial Oncology and Palliative Care, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Candace H Feldman
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital, 60 Fenwood Road, Boston, MA 02115, USA
| | - Siobhan M Case
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital, 60 Fenwood Road, Boston, MA 02115, USA
| | - Karestan C Koenen
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115, USA
| | - Laura D Kubzansky
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115, USA
| | - Karen H Costenbader
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital, 60 Fenwood Road, Boston, MA 02115, USA
| |
Collapse
|
163
|
Scangos KW, State MW, Miller AH, Baker JT, Williams LM. New and emerging approaches to treat psychiatric disorders. Nat Med 2023; 29:317-333. [PMID: 36797480 PMCID: PMC11219030 DOI: 10.1038/s41591-022-02197-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/21/2022] [Indexed: 02/18/2023]
Abstract
Psychiatric disorders are highly prevalent, often devastating diseases that negatively impact the lives of millions of people worldwide. Although their etiological and diagnostic heterogeneity has long challenged drug discovery, an emerging circuit-based understanding of psychiatric illness is offering an important alternative to the current reliance on trial and error, both in the development and in the clinical application of treatments. Here we review new and emerging treatment approaches, with a particular emphasis on the revolutionary potential of brain-circuit-based interventions for precision psychiatry. Limitations of circuit models, challenges of bringing precision therapeutics to market and the crucial advances needed to overcome these obstacles are presented.
Collapse
Affiliation(s)
- Katherine W Scangos
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
| | - Matthew W State
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Andrew H Miller
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Justin T Baker
- McLean Hospital Institute for Technology in Psychiatry, Belmont, MA, USA
| | - Leanne M Williams
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Mental Illness Research Education and Clinical Center (MIRECC), VA Palo Alto Health Care System, Palo Alto, CA, USA
| |
Collapse
|
164
|
Holanda FH, Ribeiro AN, Sánchez-Ortiz BL, de Souza GC, Borges SF, Ferreira AM, Florentino AC, Yoshioka SA, Moraes LS, Carvalho JCT, Ferreira IM. Anti-inflammatory potential of baicalein combined with silk fibroin protein in a zebrafish model (Danio rerio). Biotechnol Lett 2023; 45:235-253. [PMID: 36550336 PMCID: PMC9778464 DOI: 10.1007/s10529-022-03334-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/19/2022] [Accepted: 11/17/2022] [Indexed: 12/24/2022]
Abstract
Baicalein (BA) is a flavonoid with wide-ranging pharmacological activity. However, its biological evaluation is hampered by its low solubility in aqueous medium, making forms of incorporation that improve its solubility necessary. In the present study, BA was combined with a solution of silk fibroin protein (SF), a biomaterial used too as a drug carrier, to evaluate the anti-inflammatory potential of this combination, in vivo, in an experimental model, zebrafish (Danio rerio). Baicalein-silk fibroin (BASF) improved the DPPH (2,2-diphenyl-1-picryl-hydrazyl-hydrate) free radical scavenging rate (95%) in comparison with BA in solution. The acute toxicity study and histopathological analysis in zebrafish showed that BASF has low cytotoxic potential, except for the maxim dose of 2000 mg/kg. The use of BA in combination with SF enhanced the anti-inflammatory effect of flavonoids by inducing inflammatory peritoneal edema through carrageenan and achieved 77.6% inhibition of abdominal edema at a dose of 75 mg/kg. The results showed that the BASF, significantly increases the bioavailability and therapeutic effect of flavonoids and several results observed in this study may help in the development of new drugs.
Collapse
Affiliation(s)
- Fabrício H Holanda
- Biocatalysis and Applied Organic Synthesis Laboratory, Federal University of Amapá, Campus Universitário Marco Zero do Equador, Macapá, AP, Brazil
| | - Arlefe N Ribeiro
- Biocatalysis and Applied Organic Synthesis Laboratory, Federal University of Amapá, Campus Universitário Marco Zero do Equador, Macapá, AP, Brazil
| | - Brenda L Sánchez-Ortiz
- Drug Research Laboratory, Federal University of Amapá, Campus Universitário Marco Zero do Equador, Macapá, AP, Brazil
| | - Gisele C de Souza
- Drug Research Laboratory, Federal University of Amapá, Campus Universitário Marco Zero do Equador, Macapá, AP, Brazil
| | - Swanny F Borges
- Drug Research Laboratory, Federal University of Amapá, Campus Universitário Marco Zero do Equador, Macapá, AP, Brazil
| | - Adriana M Ferreira
- Drug Research Laboratory, Federal University of Amapá, Campus Universitário Marco Zero do Equador, Macapá, AP, Brazil
| | - Alexandro C Florentino
- Laboratório de Ictio e Genotoxidade, Federal University of Amapá, Campus Universitário Marco Zero do Equador, Macapá, AP, Brazil
| | - Sérgio A Yoshioka
- Biochemistry and Biomaterials Laboratory, Institute of Chemistry of São Carlos, University of São Paulo, Universidade de São Paulo, São Carlos, SP, Brazil
| | - Lienne S Moraes
- Biocatalysis and Applied Organic Synthesis Laboratory, Federal University of Amapá, Campus Universitário Marco Zero do Equador, Macapá, AP, Brazil
| | - José Carlos T Carvalho
- Drug Research Laboratory, Federal University of Amapá, Campus Universitário Marco Zero do Equador, Macapá, AP, Brazil
| | - Irlon M Ferreira
- Biocatalysis and Applied Organic Synthesis Laboratory, Federal University of Amapá, Campus Universitário Marco Zero do Equador, Macapá, AP, Brazil.
| |
Collapse
|
165
|
Wang H, Sun Y, Guo W, Wang J, Gao J, Peng W, Gu J. Identification and high-throughput quantification of baicalein and its metabolites in plasma and urine. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115853. [PMID: 36272493 DOI: 10.1016/j.jep.2022.115853] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/03/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Scutellaria baicalensis Georgi. contains varieties of function compounds, and it has been used as traditional drug for centuries. Baicalein is the highest amount of flavonoid found in Scutellaria baicalensis Georgi., which exerts various pharmacological activities and might be a promising drug to treat COVID-19. AIM OF THE STUDY The present work aims to investigate the metabolism of baicalein in humans after oral administration, and study the pharmacokinetics of BA and its seven metabolites in plasma and urine. MATERIALS AND METHODS The metabolism profiling and the identification of baicalein metabolites were performed on HPLC-Q-TOF. Then a column-switching method named MPX™-2 system was applied for the high-throughput quantificationof BA and seven metabolites. RESULTS Seven metabolites were identified using HPLC-Q-TOF, including sulfate, glucuronide, glucoside, and methyl-conjugated metabolites. Pharmacokinetic study found that BA was extensively metabolized in vivo, and only 5.65% of the drug remained intact in the circulatory system after single dosing. Baicalein-7-O-sulfate and baicalein-6-O-glucuronide-7-O-glucuronide were the most abundant metabolites. About 7.2% of the drug was excreted through urine and mostly was metabolites. CONCLUSION Seven conjugated metabolites were identified in our assay. A high-throughput HPLC-MS/MS method using column switch was established for quantifying BA and its metabolites. The method has good sensitivity and reproducibility, and successfully applied for the clinical pharmacokinetic study of baicalein and identified metabolites. We expect that our results will provide a metabolic and pharmacokinetic foundation for the potential application of baicalein in medicine.
Collapse
Affiliation(s)
- Hao Wang
- Research Center for Drug Metabolism, School of Life Sciences, Jilin University, Changchun, 130012, PR China; Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
| | - Yantong Sun
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130012, PR China
| | - Wei Guo
- Research Center for Drug Metabolism, School of Life Sciences, Jilin University, Changchun, 130012, PR China
| | - Jing Wang
- Research Center for Drug Metabolism, School of Life Sciences, Jilin University, Changchun, 130012, PR China
| | - Jingyi Gao
- Research Center for Drug Metabolism, School of Life Sciences, Jilin University, Changchun, 130012, PR China
| | - Wenwen Peng
- Research Center for Drug Metabolism, School of Life Sciences, Jilin University, Changchun, 130012, PR China
| | - Jingkai Gu
- Research Center for Drug Metabolism, School of Life Sciences, Jilin University, Changchun, 130012, PR China; Beijing Institute of Drug Metabolism, Beijing, 102209, PR China.
| |
Collapse
|
166
|
Yan J, Chen Y, Luo M, Hu X, Li H, Liu Q, Zou Z. Chronic stress in solid tumor development: from mechanisms to interventions. J Biomed Sci 2023; 30:8. [PMID: 36707854 PMCID: PMC9883141 DOI: 10.1186/s12929-023-00903-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/17/2023] [Indexed: 01/29/2023] Open
Abstract
Chronic stress results in disturbances of body hormones through the neuroendocrine system. Cancer patients often experience recurrent anxiety and restlessness during disease progression and treatment, which aggravates disease progression and hinders treatment effects. Recent studies have shown that chronic stress-regulated neuroendocrine systems secret hormones to activate many signaling pathways related to tumor development in tumor cells. The activated neuroendocrine system acts not only on tumor cells but also modulates the survival and metabolic changes of surrounding non-cancerous cells. Current clinical evidences also suggest that chronic stress affects the outcome of cancer treatment. However, in clinic, there is lack of effective treatment for chronic stress in cancer patients. In this review, we discuss the main mechanisms by which chronic stress regulates the tumor microenvironment, including functional regulation of tumor cells by stress hormones (stem cell-like properties, metastasis, angiogenesis, DNA damage accumulation, and apoptotic resistance), metabolic reprogramming and immune escape, and peritumor neuromodulation. Based on the current clinical treatment framework for cancer and chronic stress, we also summarize pharmacological and non-pharmacological therapeutic approaches to provide some directions for cancer therapy.
Collapse
Affiliation(s)
- Jiajing Yan
- grid.263785.d0000 0004 0368 7397MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631 China
| | - Yibing Chen
- grid.207374.50000 0001 2189 3846Department of Gynecology and Obstetrics, First Affiliated Hospital, Genetic and Prenatal Diagnosis Center, Zhengzhou University, Zhengzhou, 450001 China
| | - Minhua Luo
- grid.263785.d0000 0004 0368 7397MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631 China
| | - Xinyu Hu
- grid.263785.d0000 0004 0368 7397MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631 China
| | - Hongsheng Li
- grid.410737.60000 0000 8653 1072Department of Breast Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095 China
| | - Quentin Liu
- grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510631 China ,grid.411971.b0000 0000 9558 1426Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044 Liaoning China
| | - Zhengzhi Zou
- grid.263785.d0000 0004 0368 7397MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631 China ,grid.263785.d0000 0004 0368 7397Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631 China
| |
Collapse
|
167
|
Sumner JA, Cleveland S, Chen T, Gradus JL. Psychological and biological mechanisms linking trauma with cardiovascular disease risk. Transl Psychiatry 2023; 13:25. [PMID: 36707505 PMCID: PMC9883529 DOI: 10.1038/s41398-023-02330-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/28/2023] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death and disability worldwide, and experiences of psychological trauma have been associated with subsequent CVD onset. Identifying key pathways connecting trauma with CVD has the potential to inform more targeted screening and intervention efforts to offset elevated cardiovascular risk. In this narrative review, we summarize the evidence for key psychological and biological mechanisms linking experiences of trauma with CVD risk. Additionally, we describe various methodologies for measuring these mechanisms in an effort to inform future research related to potential pathways. With regard to mechanisms involving posttraumatic psychopathology, the vast majority of research on psychological distress after trauma and CVD has focused on posttraumatic stress disorder (PTSD), even though posttraumatic psychopathology can manifest in other ways as well. Substantial evidence suggests that PTSD predicts the onset of a range of cardiovascular outcomes in trauma-exposed men and women, yet more research is needed to better understand posttraumatic psychopathology more comprehensively and how it may relate to CVD. Further, dysregulation of numerous biological systems may occur after trauma and in the presence of posttraumatic psychopathology; these processes of immune system dysregulation and elevated inflammation, oxidative stress, mitochondrial dysfunction, renin-angiotensin system dysregulation, and accelerated biological aging may all contribute to subsequent cardiovascular risk, although more research on these pathways in the context of traumatic stress is needed. Given that many of these mechanisms are closely intertwined, future research using a systems biology approach may prove fruitful for elucidating how processes unfold to contribute to CVD after trauma.
Collapse
Affiliation(s)
- Jennifer A Sumner
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Shiloh Cleveland
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Tiffany Chen
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jaimie L Gradus
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| |
Collapse
|
168
|
Xiao J, Li Y, Rowley T, Huang J, Yolken RH, Viscidi RP. Immunotherapy targeting the PD-1 pathway alleviates neuroinflammation caused by chronic Toxoplasma infection. Sci Rep 2023; 13:1288. [PMID: 36690687 PMCID: PMC9870997 DOI: 10.1038/s41598-023-28322-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/17/2023] [Indexed: 01/25/2023] Open
Abstract
Toxoplasma gondii can infect the host brain and trigger neuroinflammation. Such neuroinflammation might persist for years if the infection is not resolved, resulting in harmful outcomes for the brain. We have previously demonstrated the efficacy of immunotherapy targeting the programmed cell death protein 1 (PD-1) pathway on clearance of Toxoplasma tissue cysts. We aimed to test whether parasite clearance would lead to the resolution of neuroinflammation in infected brains. We established chronic Toxoplasma infection in BALB/c mice using the cyst-forming Prugniaud strain. Mice then received αPD-L1 or isotype control antibodies. After completion of the therapy, mice were euthanized six weeks later. The number of brain tissue cysts, Toxoplasma-specific CD8 + T cell proliferation and IFN-γ secretion, serum cytokine and chemokine levels, and CNS inflammation were measured. In αPD-L1-treated mice, we observed reduced brain tissue cysts, increased spleen weight, elevated IFN-γ production by antigen-specific CD8 + T cells, and a general increase in multiple serum cytokines and chemokines. Importantly, αPD-L1-treated mice displayed attenuation of meningeal lymphocytes, reactive astrocytes, and C1q expression. The reduction in inflammation-related proteins is correlated with reduced parasite burden. These results suggest that promoting systemic immunity results in parasite clearance, which in turn alleviates neuroinflammation. Our study may have implications for some brain infections where neuroinflammation is a critical component.
Collapse
Affiliation(s)
- Jianchun Xiao
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA.
| | - Ye Li
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA
| | - Treva Rowley
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA
| | - Jing Huang
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA
| | - Robert H Yolken
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA
| | - Raphael P Viscidi
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA
| |
Collapse
|
169
|
Chuang TC, Shao WS, Hsu SC, Lee SL, Kao MC, Wang V. Baicalein Induces G 2/M Cell Cycle Arrest Associated with ROS Generation and CHK2 Activation in Highly Invasive Human Ovarian Cancer Cells. Molecules 2023; 28:molecules28031039. [PMID: 36770705 PMCID: PMC9919047 DOI: 10.3390/molecules28031039] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
Ovarian cancer is a lethal gynecological cancer because drug resistance often results in treatment failure. The CHK2, a tumor suppressor, is considered to be an important molecular target in ovarian cancer due to its role in DNA repair. Dysfunctional CHK2 impairs DNA damage-induced checkpoints, reduces apoptosis, and confers resistance to chemotherapeutic drugs and radiation therapy in ovarian cancer cells. This provides a basis for finding new effective agents targeting CHK2 upregulation or activation to treat or prevent the progression of advanced ovarian cancer. Here, the results show that baicalein (5,6,7-trihydroxyflavone) treatment inhibits the growth of highly invasive ovarian cancer cells, and that baicalein-induced growth inhibition is mediated by the cell cycle arrest in the G2/M phase. Baicalein-induced G2/M phase arrest is associated with an increased reactive oxygen species (ROS) production, DNA damage, and CHK2 upregulation and activation. Thus, baicalein modulates the expression of DNA damage response proteins and G2/M phase regulatory molecules. Blockade of CHK2 activation by CHK2 inhibitors protects cells from baicalein-mediated G2/M cell cycle arrest. All the results suggest that baicalein has another novel growth inhibitory effect on highly invasive ovarian cancer cells, which is partly related to G2/M cell cycle arrest through the ROS-mediated DNA breakage damage and CHK2 activation. Collectively, our findings provide a molecular basis for the potential of baicalein as an adjuvant therapeutic agent in the treatment of metastatic ovarian cancer.
Collapse
Affiliation(s)
- Tzu-Chao Chuang
- Department of Chemistry, Tamkang University, New Taipei 251301, Taiwan
- Correspondence:
| | - Wei-Syun Shao
- Department of Chemistry, Tamkang University, New Taipei 251301, Taiwan
| | - Shih-Chung Hsu
- Department of Early Childhood Care and Education, University of Kang Ning, Taipei 114311, Taiwan
| | - Shou-Lun Lee
- Department of Biological Science and Technology, China Medical University, Taichung 406040, Taiwan
| | - Ming-Ching Kao
- Department of Biological Science and Technology, China Medical University, Taichung 406040, Taiwan
| | - Vinchi Wang
- Department of Neurology, Cardinal Tien Hospital, New Taipei 231009, Taiwan
- School of Medicine, College of Medicine, Fu-Jen Catholic University, New Taipei 242062, Taiwan
| |
Collapse
|
170
|
Effects of Cheonggukjang (Fermented Soybean) on the Development of Colitis-Associated Colorectal Cancer in Mice. Foods 2023; 12:foods12020383. [PMID: 36673473 PMCID: PMC9858590 DOI: 10.3390/foods12020383] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common type of cancer and is caused by multiple factors. Chronic inflammation, known to cause inflammatory bowel disease (IBD), is closely associated with CRC. Cheonggukjang (CJ), a traditional Korean fermented soybean, is a functional food with anti-inflammatory effects in the intestines, but its anti-cancer effects have not yet been explored. In this study, we investigated the cancer-protective effects of cheonggukjang in an azoxymethane/DSS (AOM/DSS)-induced colitis-associated colorectal cancer (CAC) mouse model. The CJ alleviated AOM/DSS-induced pathological symptoms such as colonic shortening, increased spleen weight, tumor formation, and histological changes. It also modulated pro-inflammatory and anti-inflammatory cytokine levels via the suppression of NF-κB and inflammatory mediator signaling pathways. Furthermore, the CJ improved intestinal integrity by regulating mucin-associated and tight junction proteins. In addition, it suppressed tumor growth by regulating apoptosis and proliferation. These results highlight the anti-tumor effects of CJ in an AOM/DSS-induced CAC mouse model.
Collapse
|
171
|
Yang AY, Liu HL, Yang YF. Study on the mechanism of action of Scutellaria barbata on hepatocellular carcinoma based on network pharmacology and bioinformatics. Front Pharmacol 2023; 13:1072547. [PMID: 36699068 PMCID: PMC9869961 DOI: 10.3389/fphar.2022.1072547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023] Open
Abstract
Background: Hepatocellular carcinoma is one of the most common cancers with the characteristics of invasion and high mortality. Current forms of prevention remain severe. Scutellaria barbata is widely used in traditional Chinese medicine treatment of various tumors. This study explored the mechanism of Scutellaria barbata in the treatment of hepatocellular carcinoma by network pharmacology and bioinformatics. Methods: The active ingredients of Scutellaria barbata and potential targets for the treatment of hepatocellular carcinoma were collected by network pharmacology. The protein interaction network was constructed to screen the core targets, and the association between the core targets and diseases was further verified by bioinformatics methods. Finally, the active ingredients corresponding to the targets closely related to the disease were screened for AMDE characteristics analysis. Molecular docking of drug-like ingredients with corresponding targets was performed. We used CCK-8 kit to determine the effect of active ingredients on cell proliferation. Results: 29 candidate active ingredients and 461 related targets of Scutellaria barbata were screened. A total of 8238 potential therapeutic targets for hepatocellular carcinoma were indentified. Finally, 373 potential targets for the treatment of HCC were obtained. The active ingredients: wogonin, Rhamnazin, eriodictyol, quercetin, baicalein, and luteolin, etc. The core targets were CDK1, CDK4, SRC, and E2F1. A total of 3056 GO enrichment entries were obtained, and 180 enrichment results were obtained by KEGG pathway analysis. Genes were mainly enriched in PI3K-Akt signaling pathway, IL-17 signaling pathway, TNF signaling pathway, apoptosis pathway, and hepatocellular carcinoma pathway. Molecular docking results showed that the screened compounds had strong binding ability with the corresponding target proteins. CCK8 assays showed that Rhamnazin and Luteolin suppressed the proliferation of HCC cells significantly compared with controls. Conclusion: This study revealed that the mechanism of Scutellaria barbata in the treatment of hepatocellular carcinoma may be that the active ingredients inhibit the expression of core genes and block the PI3K-AKT signaling pathway to inhibit the proliferation, and migration and induce apoptosis of cancer cells.
Collapse
Affiliation(s)
- An-Yin Yang
- Department of Liver Disease, Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hong-Li Liu
- Medical College of Southeast University, Nanjing, China
| | - Yong-Feng Yang
- Department of Liver Disease, Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China,*Correspondence: Yong-Feng Yang,
| |
Collapse
|
172
|
Banerjee A, Sriramulu S, Catanzaro R, He F, Chabria Y, Balakrishnan B, Hari S, Ayala A, Muñoz M, Pathak S, Marotta F. Natural Compounds as Integrative Therapy for Liver Protection against Inflammatory and Carcinogenic Mechanisms: From Induction to Molecular Biology Advancement. Curr Mol Med 2023; 23:216-231. [PMID: 35297348 DOI: 10.2174/1566524022666220316102310] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 10/20/2021] [Accepted: 12/25/2021] [Indexed: 02/08/2023]
Abstract
The liver is exposed to several harmful substances that bear the potential to cause excessive liver damage ranging from hepatitis and non-alcoholic fatty liver disease to extreme cases of liver cirrhosis and hepatocellular carcinoma. Liver ailments have been effectively treated from very old times with Chinese medicinal herbal formulations and later also applied by controlled trials in Japan. However, these traditional practices have been hardly well characterized in the past till in the last decades when more qualified studies have been carried out. Modern advances have given rise to specific molecular targets which are specifically good candidates for affecting the intricate mechanisms that play a role at the molecular level. These therapeutic regimens that mainly affect the progression of the disease by inhibiting the gene expression levels or by blocking essential molecular pathways or releasing cytokines may prove to play a vital role in minimizing the tissue damage. This review, therefore, tries to throw light upon the variation in the therapies for the treatment of benign and malignant liver disease from ancient times to the current date. Nonetheless, clinical research exploring the effectiveness of herbal medicines in the treatment of benign chronic liver diseases as well as prevention and treatment of HCC is still warranted.
Collapse
Affiliation(s)
- Antara Banerjee
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | - Sushmitha Sriramulu
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | - Roberto Catanzaro
- Dept of Clinical and Experimental Medicine, Section of Gastroenterology, University of Catania, Catania, Italy
| | - Fang He
- Dept of Nutrition, West China School of Public Health, Sichuan University, Chengdu, China
| | - Yashna Chabria
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | | | - Sruthi Hari
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | - Antonio Ayala
- Biochemistry and Clinical Biochemistry Department, Faculty of Pharmacy, University of Seville, Spain
| | - Mario Muñoz
- Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal
| | - Surajit Pathak
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | - Francesco Marotta
- ReGenera R&D International for Aging Intervention, Milano, Italy and Vitality and Longevity Medical Science Commission, FEMTEC World Federation
| |
Collapse
|
173
|
Orsolini L, Pompili S, Volpe U. C-Reactive Protein (CRP): A Potent Inflammation Biomarker in Psychiatric Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1411:135-160. [PMID: 36949309 DOI: 10.1007/978-981-19-7376-5_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
An increasing number of studies have investigated the role of inflammation in psychiatric disorders, by demonstrating how an altered/dysfunctional immunological and inflammatory system may underpin a psychiatric condition. Particularly, several studies specifically investigated the role of a neuroinflammatory biomarker, named C-reactive protein (CRP), in psychiatric disorders. Overall, even though scientific literature so far published still does not appear definitive, CRP is more likely reported to be elevated in several psychiatric disorders, including schizophrenia, mood disorders, anxiety disorders and post-traumatic stress disorder. Moreover, a low-grade inflammation (CRP >3 mg/L) has been more likely observed in a subgroup of patients affected with a more severe psychopathological symptomatology, more treatment resistance and worst clinical mental illness course, strengthening the hypothesis of the need for a different clinical and prognostic characterization based on this concomitant neuroinflammatory predisposition. However, even though further research studies are needed to confirm this preliminary evidence, CRP may represent a potential clinical routine biomarker which could be integrated in the clinical routine practice to better characterize clinical picture and course as well as address clinicians towards a personalized treatment.
Collapse
Affiliation(s)
- Laura Orsolini
- Unit of Clinical Psychiatry, Department of Clinical Neurosciences/DIMSC, Polytechnic University of Marche, Ancona, Italy.
| | - Simone Pompili
- Unit of Clinical Psychiatry, Department of Clinical Neurosciences/DIMSC, Polytechnic University of Marche, Ancona, Italy
| | - Umberto Volpe
- Unit of Clinical Psychiatry, Department of Clinical Neurosciences/DIMSC, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
174
|
He W, Ma P, Li X, Wang Y, Zhang Y. Comparison of peripheral blood T, B, and NK lymphocytes between frontline medical workers for treating patients of COVID-19 and normal outpatient and emergency medical workers in China. Front Psychiatry 2023; 14:1165614. [PMID: 37151983 PMCID: PMC10155498 DOI: 10.3389/fpsyt.2023.1165614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/30/2023] [Indexed: 05/09/2023] Open
Abstract
The outbreak of the novel coronavirus disease 2019 (COVID-19) has led to significant mental stress for frontline medical workers treating patients with confirmed COVID-19 in China. Psychological stress has an impact on the immune system. The number and percentage of lymphocyte subsets are standard indicators of cellular immune detection. Here, we reported the differences in CD3, CD4, CD8, CD19, and CD56 lymphocytes between 158 frontline medical workers and 24 controls from medical staffs of the outpatient and emergency departments. We found that frontline medical workers had significantly lower absolute values and percentages of CD19+ B cells, especially in the female and the aged ≥40 years subgroup. Stratification analysis showed that the absolute values of CD4+ T cells were significantly lower in the aged <40 years subgroup, while percentages of CD8+ T cells were lower and percentages of CD56+ NK cells were higher in the aged ≥40 years subgroup. In summary, this study suggests paying more attention to frontline medical workers' mental health and immune function, and properly providing them with psychological interventions and measures of care.
Collapse
Affiliation(s)
- Weijian He
- China-Japan Union Hospital of Jilin University, Changchun, China
- The Third Norman Bethune Clinical College of Jilin University, Changchun, China
| | - Piyong Ma
- Department of Critical Care Medicine, China–Japan Union Hospital of Jilin University, Changchun, China
| | - Xiuying Li
- Scientific Research Center, China–Japan Union Hospital of Jilin University, Changchun, China
| | - Yali Wang
- Department of Blood Transfusion, China–Japan Union Hospital of Jilin University, Changchun, China
- *Correspondence: Yucheng Zhang, ; Yali Wang,
| | - Yucheng Zhang
- Scientific Research Center, China–Japan Union Hospital of Jilin University, Changchun, China
- *Correspondence: Yucheng Zhang, ; Yali Wang,
| |
Collapse
|
175
|
Reive B, Johnston JN, Sánchez-Lafuente CL, Zhang L, Chang A, Zhang J, Allen J, Romay-Tallon R, Kalynchuk LE, Caruncho HJ. Intravenous Reelin Treatment Rescues Atrophy of Spleen White Pulp and Correlates to Rescue of Forced Swim Test Immobility and Neurochemical Alterations Induced by Chronic Stress. CHRONIC STRESS (THOUSAND OAKS, CALIF.) 2023; 7:24705470231164920. [PMID: 36970446 PMCID: PMC10034288 DOI: 10.1177/24705470231164920] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/06/2023] [Indexed: 03/24/2023]
Abstract
Reelin, an extracellular matrix protein with putative antidepressant-like properties, becomes dysregulated by chronic stress. Improvement in cognitive dysfunction and depression-like behavior induced by chronic stress has been reported with both intrahippocampal and intravenous Reelin treatment but the mechanisms responsible are not clear. To determine if treatment with Reelin modifies chronic stress-induced dysfunction in immune organs and whether this relates to behavioral and/or neurochemical outcomes, spleens were collected from both male (n = 62) and female (n = 53) rats treated with daily corticosterone injections for three weeks that received Reelin or vehicle. Reelin was intravenously administered once on the final day of chronic stress, or repeatedly, with weekly treatments throughout chronic stress. Behavior was assessed during the forced swim test and the object-in-place test. Chronic corticosterone caused significant atrophy of the spleen white pulp, but treatment with a single shot of Reelin restored white pulp in both males and females. Repeated Reelin injections also resolved atrophy in females. Correlations were observed between recovery of white pulp atrophy and recovery of behavioral deficits and expression of both Reelin and glutamate receptor 1 in the hippocampus, supporting a role of the peripheral immune system in the recovery of chronic stress-induced behaviors following treatment with Reelin. Our data adds to research indicating Reelin could be a valuable therapeutic target for chronic stress-related disorders including major depression.
Collapse
Affiliation(s)
- B.S. Reive
- Division of Medical Sciences, University of
Victoria, Victoria, Canada
| | | | | | - Lucy Zhang
- Mount Douglas
Secondary School, Victoria, Canada
| | - Aland Chang
- Mount Douglas
Secondary School, Victoria, Canada
| | | | - Josh Allen
- Division of Medical Sciences, University of
Victoria, Victoria, Canada
| | | | - Lisa E. Kalynchuk
- Division of Medical Sciences, University of
Victoria, Victoria, Canada
| | | |
Collapse
|
176
|
Sbisa AM, Madden K, Toben C, McFarlane AC, Dell L, Lawrence-Wood E. Potential peripheral biomarkers associated with the emergence and presence of posttraumatic stress disorder symptomatology: A systematic review. Psychoneuroendocrinology 2023; 147:105954. [PMID: 36308820 DOI: 10.1016/j.psyneuen.2022.105954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Evidence suggests posttraumatic stress disorder (PTSD) involves an interplay between psychological manifestations and biological systems. Biological markers of PTSD could assist in identifying individuals with underlying dysregulation and increased risk; however, accurate and reliable biomarkers are yet to be identified. METHODS A systematic review following the PRISMA guidelines was conducted. Databases included EMBASE, MEDLINE, and Cochrane Central. Studies from a comprehensive 2015 review (Schmidt et al., 2015) and English language papers published subsequently (between 2014 and May 2022) were included. Forty-eight studies were eligible. RESULTS Alterations in neuroendocrine and immune markers were most commonly associated with PTSD symptoms. Evidence indicates PTSD symptoms are associated with hypothalamic-pituitary-adrenal axis dysfunction as represented by low basal cortisol, a dysregulated immune system, characterized by an elevated pro-inflammatory state, and metabolic dysfunction. However, a considerable number of studies neglected to measure sex or prior trauma, which have the potential to affect the biological outcomes of posttraumatic stress symptoms. Mixed findings are indicative of the complexity and heterogeneity of PTSD and suggest the relationship between allostatic load, biological markers, and PTSD remain largely undefined. CONCLUSIONS In addition to prospective research design and long-term follow up, it is imperative future research includes covariates sex, prior trauma, and adverse childhood experiences. Future research should include exploration of biological correlates specific to PTSD symptom domains to determine whether underlying processes differ with symptom expression, in addition to subclinical presentation of posttraumatic stress symptoms, which would allow for greater understanding of biomarkers associated with disorder risk and assist in untangling directionality.
Collapse
Affiliation(s)
- Alyssa M Sbisa
- Phoenix Australia - Centre for Posttraumatic Mental Health, Department of Psychiatry, The University of Melbourne, Melbourne, Victoria, Australia.
| | - Kelsey Madden
- Phoenix Australia - Centre for Posttraumatic Mental Health, Department of Psychiatry, The University of Melbourne, Melbourne, Victoria, Australia
| | - Catherine Toben
- Discipline of Psychiatry, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | | | - Lisa Dell
- Phoenix Australia - Centre for Posttraumatic Mental Health, Department of Psychiatry, The University of Melbourne, Melbourne, Victoria, Australia
| | - Ellie Lawrence-Wood
- Phoenix Australia - Centre for Posttraumatic Mental Health, Department of Psychiatry, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
177
|
Burning down the house: reinventing drug discovery in psychiatry for the development of targeted therapies. Mol Psychiatry 2023; 28:68-75. [PMID: 36460725 DOI: 10.1038/s41380-022-01887-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 10/26/2022] [Accepted: 11/11/2022] [Indexed: 12/03/2022]
Abstract
Despite advances in neuroscience, limited progress has been made in developing new and better medications for psychiatric disorders. Available treatments in psychiatry rely on a few classes of drugs that have a broad spectrum of activity across disorders with limited understanding of mechanism of action. While the added value of more targeted therapies is apparent, a dearth of pathophysiologic mechanisms exists to support targeted treatments, and where mechanisms have been identified and drugs developed, results have been disappointing. Based on serendipity and early successes that led to the current drug armamentarium, a haunting legacy endures that new drugs should align with outdated and overinclusive diagnostic categories, consistent with the idea that "one size fits all". This legacy has fostered clinical trial designs focused on heterogenous populations of patients with a single diagnosis and non-specific outcome variables. Disturbingly, this approach likely contributed to missed opportunities for drugs targeting the hypothalamic-pituitary-adrenal axis and now inflammation. Indeed, cause-and-effect data support the role of inflammatory processes in neurotransmitter alterations that disrupt specific neurocircuits and related behaviors. This pathway to pathology occurs across disorders and warrants clinical trial designs that enrich for patients with increased inflammation and use primary outcome variables associated with specific effects of inflammation on brain and behavior. Nevertheless, such trial designs have not been routinely employed, and results of anti-inflammatory treatments have been underwhelming. Thus, to accelerate development of targeted therapeutics including in the area of inflammation, regulatory agencies and the pharmaceutical industry must embrace treatments and trials focused on pathophysiologic pathways that impact specific symptom domains in subsets of patients, agnostic to diagnosis. Moreover, closer collaboration among basic and clinical investigators is needed to apply neuroscience knowledge to reveal disease mechanisms that drive psychiatric symptoms. Together, these efforts will support targeted treatments, ultimately leading to new and better therapeutics in psychiatry.
Collapse
|
178
|
Bi J, Liu J, Chen X, Shi N, Wu H, Tang H, Mao J. MiR-155-5p-SOCS1/JAK1/STAT1 participates in hepatic lymphangiogenesis in liver fibrosis and cirrhosis by regulating M1 macrophage polarization. Hum Exp Toxicol 2023; 42:9603271221141695. [PMID: 36651907 DOI: 10.1177/09603271221141695] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND The role and underlying mechanism of liver macrophages and their derived miR-155-5p in hepatic lymphangiogenesis in liver fibrosis remain unclear. Here, we investigated the mechanism by which macrophages and miR-155-5p were involved in lymphangiogenesis during liver fibrosis and cirrhosis. METHODS In vivo, hepatic lymphatic vessel expansion was evaluated; the liver macrophage subsets, proportion of peripherally-derived macrophages and expressions of CCL25, MCP-1, VAP-1 and MAdCAM-1 were documented; and miR-155-5p in the peripheral blood and liver was detected. In vitro, macrophages with miR-155-5p overexpression and inhibition were used to clarify the effect of miR-155-5p on regulation of macrophage polarization and the possible signalling pathway. RESULTS Hepatic lymphangiogenesis was observed in mice with liver fibrosis and cirrhosis challenged with carbon tetrachloride (CCl4). In the liver, the number of M1 macrophages was associated with lymphangiogenesis and the degree of fibrosis. The liver recruitment of peripherally-derived macrophages occurred during liver fibrosis. The levels of miR-155-5p in the liver and peripheral blood gradually increased with aggravation of liver fibrosis. In vitro, SOCS1, a target of miR-155-5p, regulated macrophage polarization into the M1 phenotype through the JAK1/STAT1 pathway. CONCLUSION MiR-155-5p-SOCS1/JAK1/STAT1 pathway participates in hepatic lymphangiogenesis in mice with liver fibrosis and cirrhosis induced by CCl4 by regulating the polarization of macrophages into the M1 phenotype.
Collapse
Affiliation(s)
- Jian Bi
- Department of Gastroenterology, 74710First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P.R. China
| | - Jia Liu
- Department of Respiratory and Critical Disease, 74710First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P.R. China
| | - Xiuli Chen
- Department of Gastroenterology, 74710First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P.R. China
| | - Na Shi
- Department of Gastroenterology, 74710First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P.R. China
| | - Hao Wu
- Department of Gastroenterology, 74710First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P.R. China
| | - Haiying Tang
- Department of Respiratory and Critical Disease, 74710First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P.R. China
| | - Jingwei Mao
- Department of Gastroenterology, 74710First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P.R. China
| |
Collapse
|
179
|
Qi J, Li J, Bie B, Shi M, Zhu M, Tian J, Zhu K, Sun J, Mu Y, Li Z, Guo Y. miR-3,178 contributes to the therapeutic action of baicalein against hepatocellular carcinoma cells via modulating HDAC10. Phytother Res 2023; 37:295-309. [PMID: 36070933 DOI: 10.1002/ptr.7613] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 08/10/2022] [Accepted: 08/20/2022] [Indexed: 01/19/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common type of hepatic malignancies with high mortality and poor prognosis. Baicalein, one of the major and bioactive flavonoids isolated from Scutellaria baicalensis Georgi, which is reported to have anti-proliferation effect in varying cancers, including HCC, whose underlying molecular mechanism is still largely unknown. In this study, we found that baicalein significantly inhibited proliferation and colony formation, blocked cell cycle, and promoted apoptosis in HCC cells MHCC-97H and SMMC-7721 in vitro and reduced tumor volume and weight in vivo. Increased microRNA (miR)-3,178 levels and decreased histone deacetylase 10 (HDAC10) expression were found in cells treated with baicalein and in patients' HCC tissues. HDAC10 was identified as a target gene of miR-3,178 by luciferase activity and western blot. Both baicalein treatment and overexpression of miR-3,178 could downregulate HDAC10 protein expression and inactivated AKT, MDM2/p53/Bcl2/Bax and FoxO3α/p27/CDK2/Cyclin E1 signal pathways. Not only that, knockdown of miR-3,178 could partly abolish the effects of baicalein and the restoration of HDAC10 could abated miR-3,178-mediated role in HCC cells. Collectively, baicalein inhibits cell viability, blocks cell cycle, and induces apoptosis in HCC cells by regulating the miR-3,178/HDAC10 pathway. This finding indicated that baicalein might be promising for treatment of HCC.
Collapse
Affiliation(s)
- Junan Qi
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,The First Ward of Hepatobiliary Pancreatic and Spleen Surgery, Baoji Municipal Central Hospital, Baoji, China
| | - Jun Li
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, Xi'an, China
| | - Beibei Bie
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Pharmacy, Medical School, Xi'an Peihua University, Xi'an, China
| | - Mengjiao Shi
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, Xi'an, China
| | - Mengchen Zhu
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, Xi'an, China
| | - Jing Tian
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, Xi'an, China
| | - Kai Zhu
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, Xi'an, China
| | - Jin Sun
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, Xi'an, China
| | - Yanhua Mu
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, Xi'an, China
| | - Zongfang Li
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, Xi'an, China.,Key Laboratory of Environment and Disease-Related Gene, Ministry of Education, Xi'an Jiaotong University, Xi'an, China
| | - Ying Guo
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, Xi'an, China
| |
Collapse
|
180
|
Hartmann A, Vila-Verde C, Guimarães FS, Joca SR, Lisboa SF. The NLRP3 Inflammasome in Stress Response: Another Target for the Promiscuous Cannabidiol. Curr Neuropharmacol 2023; 21:284-308. [PMID: 35410608 PMCID: PMC10190150 DOI: 10.2174/1570159x20666220411101217] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/14/2022] [Accepted: 03/27/2022] [Indexed: 11/22/2022] Open
Abstract
Many psychiatric patients do not respond to conventional therapy. There is a vast effort to investigate possible mechanisms involved in treatment resistance, trying to provide better treatment options, and several data points toward a possible involvement of inflammatory mechanisms. Microglia, glial, and resident immune cells are involved in complex responses in the brain, orchestrating homeostatic functions, such as synaptic pruning and maintaining neuronal activity. In contrast, microglia play a major role in neuroinflammation, neurodegeneration, and cell death. Increasing evidence implicate microglia dysfunction in neuropsychiatric disorders. The mechanisms are still unclear, but one pathway in microglia has received increased attention in the last 8 years, i.e., the NLRP3 inflammasome pathway. Stress response and inflammation, including microglia activation, can be attenuated by Cannabidiol (CBD). CBD has antidepressant, anti-stress, antipsychotic, anti-inflammatory, and other properties. CBD effects are mediated by direct or indirect modulation of many receptors, enzymes, and other targets. This review will highlight some findings for neuroinflammation and microglia involvement in stress-related psychiatric disorders, particularly addressing the NLRP3 inflammasome pathway. Moreover, we will discuss evidence and mechanisms for CBD effects in psychiatric disorders and animal models and address its potential effects on stress response via neuroinflammation and NLRP3 inflammasome modulation.
Collapse
Affiliation(s)
- Alice Hartmann
- Department of Pharmacology, School of Medicine of Ribeirão Preto (FMRP), University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Carla Vila-Verde
- Department of Pharmacology, School of Medicine of Ribeirão Preto (FMRP), University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Francisco S. Guimarães
- Department of Pharmacology, School of Medicine of Ribeirão Preto (FMRP), University of São Paulo (USP), Ribeirão Preto, Brazil
- Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, São Paulo, Brazil
| | - Sâmia R. Joca
- Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, São Paulo, Brazil
- BioMolecular Sciences Department, School of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo (USP);
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Sabrina F. Lisboa
- Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, São Paulo, Brazil
- BioMolecular Sciences Department, School of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo (USP);
| |
Collapse
|
181
|
Lou F, Long H, Luo S, Liu Y, Pu J, Wang H, Ji P, Jin X. Chronic restraint stress promotes the tumorigenic potential of oral squamous cell carcinoma cells by reprogramming fatty acid metabolism via CXCL3 mediated Wnt/β-catenin pathway. Exp Neurol 2023; 359:114268. [PMID: 36343679 DOI: 10.1016/j.expneurol.2022.114268] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/26/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Abstract
Chronic stress promotes tumor progression and may harm homeostasis of energy metabolism by disrupting key metabolic processes. Recently, emerging evidence that chemokines CXCL3 as a novel adipokine plays a new role in lipid metabolism and various human malignancies. However, the role and mechanism of the CXCL3 in oral squamous cell carcinoma (OSCC) progression and reprogramming lipid metabolism induced by chronic restraint stress is unclear. The analysis of transcriptome sequencing, LC-MS, GC-MS, CCK8, cell apoptosis assays, cell cycle analysis, qRT-PCR, ELISA, western blotting, immunofluorescence, immunohistochemistry, RNA interference and lentivirus transfection and a xenograft tumor growth and chronic restraint stress model were used to investigate the role of CXCL3 in the regulation of lipid metabolism and OSCC and explore the underlying molecular mechanisms. We showed that CXCL3 plays a critical role in in fatty acid de novo synthesis and tumor growth induced by chronic restraint stress. We demonstrated that chronic restraint stress promoted lipid accumulation, OSCC growth and metastasis in a mouse xenograft model. CXCL3 knockdown and FH535, an inhibitor of Wnt/β-catenin pathway, could attenuate fatty acid de novo synthesis, cell proliferation and epithelial-mesenchymal transition induced by chronic restraint stress in OSCC cells. Our findings demonstrate that chronic restraint stress promotes the proliferation and metastasis of OSCC by reprogramming fatty acid metabolism via CXCL3 mediated Wnt/β-catenin pathway. Our study provides novel insights to help understand the underlying mechanisms of CXCL3 in OSCC progression induced by chronic restraint stress.
Collapse
Affiliation(s)
- Fangzhi Lou
- Key Laboratory of Psychoseomadsy, Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China
| | - Huiqing Long
- Key Laboratory of Psychoseomadsy, Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China
| | - Shihong Luo
- Key Laboratory of Psychoseomadsy, Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China
| | - Yiyun Liu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Juncai Pu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Haiyang Wang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Ping Ji
- Key Laboratory of Psychoseomadsy, Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China
| | - Xin Jin
- Key Laboratory of Psychoseomadsy, Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China.
| |
Collapse
|
182
|
Pivac N, Vuic B, Sagud M, Nedic Erjavec G, Nikolac Perkovic M, Konjevod M, Tudor L, Svob Strac D, Uzun S, Kozumplik O, Uzun S, Mimica N. PTSD, Immune System, and Inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1411:225-262. [PMID: 36949313 DOI: 10.1007/978-981-19-7376-5_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Posttraumatic stress disorder (PTSD) is a severe trauma and stress-related disorder associated with different somatic comorbidities, especially cardiovascular and metabolic disorders, and with chronic low-grade inflammation. Altered balance of the hypothalamic-pituitary-adrenal (HPA) axis, cytokines and chemokines, C-reactive protein, oxidative stress markers, kynurenine pathways, and gut microbiota might be involved in the alterations of certain brain regions regulating fear conditioning and memory processes, that are all altered in PTSD. In addition to the HPA axis, the gut microbiota maintains the balance and interaction of the immune, CNS, and endocrine pathways forming the gut-brain axis. Disbalance in the HPA axis, gut-brain axis, oxidative stress pathways and kynurenine pathways, altered immune signaling and disrupted homeostasis, as well as the association of the PTSD with the inflammation and disrupted cognition support the search for novel strategies for treatment of PTSD. Besides potential anti-inflammatory treatment, dietary interventions or the use of beneficial bacteria, such as probiotics, can potentially improve the composition and the function of the bacterial community in the gut. Therefore, bacterial supplements and controlled dietary changes, with exercise, might have beneficial effects on the psychological and cognitive functions in patients with PTSD. These new treatments should be aimed to attenuate inflammatory processes and consequently to reduce PTSD symptoms but also to improve cognition and reduce cardio-metabolic disorders associated so frequently with PTSD.
Collapse
Affiliation(s)
- Nela Pivac
- Division of Molecular Medicine, Laboratory for Molecular Neuropsychiatry, Rudjer Boskovic Institute, Zagreb, Croatia.
| | - Barbara Vuic
- Division of Molecular Medicine, Laboratory for Molecular Neuropsychiatry, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Marina Sagud
- Department of Psychiatry, University Hospital Center Zagreb, Zagreb, Croatia
- University of Zagreb School of Medicine, Zagreb, Croatia
| | - Gordana Nedic Erjavec
- Division of Molecular Medicine, Laboratory for Molecular Neuropsychiatry, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Matea Nikolac Perkovic
- Division of Molecular Medicine, Laboratory for Molecular Neuropsychiatry, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Marcela Konjevod
- Division of Molecular Medicine, Laboratory for Molecular Neuropsychiatry, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Lucija Tudor
- Division of Molecular Medicine, Laboratory for Molecular Neuropsychiatry, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Dubravka Svob Strac
- Division of Molecular Medicine, Laboratory for Molecular Neuropsychiatry, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Suzana Uzun
- University of Zagreb School of Medicine, Zagreb, Croatia
- University Psychiatric Hospital Vrapce, Zagreb, Croatia
| | | | - Sandra Uzun
- Department for Anesthesiology, Reanimatology, and Intensive Care, University Hospital Center Zagreb, Zagreb, Croatia
| | - Ninoslav Mimica
- University of Zagreb School of Medicine, Zagreb, Croatia
- University Psychiatric Hospital Vrapce, Zagreb, Croatia
| |
Collapse
|
183
|
Tumor-Microenvironment Characterization of the MB49 Non-Muscle-Invasive Bladder-Cancer Orthotopic Model towards New Therapeutic Strategies. Int J Mol Sci 2022; 24:ijms24010123. [PMID: 36613562 PMCID: PMC9820528 DOI: 10.3390/ijms24010123] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Bacillus Calmette-Guérin (BCG) instillations for the treatment of non-muscle-invasive bladder cancer patients can result in significant side effects and treatment failure. Immune checkpoint blockade and/or decreasing tumor-infiltrating myeloid suppressor cells may be alternative or complementary treatments. Here, we have characterized immune cell infiltration and chemoattractant molecules in mouse orthotopic MB49 bladder tumors. Our data show a 100-fold increase in CD45+ immune cells from day 5 to day 9 tumors including T cells and mainly myeloid cells. Both monocytic myeloid-derived suppressor-cells (M-MDSC) and polymorphonuclear (PMN)-MDSC were strongly increased in day 9 tumors, with PMN-MDSC representing ca. 70% of the myeloid cells in day 12 tumors, while tumor associated macrophages (TAM) were only modestly increased. The kinetic of PD-L1 tumor expression correlated with published data from patients with PD-L1 expressing bladder tumors and with efficacy of anti-PD-1 treatment, further validating the orthotopic MB49 bladder-tumor model as suitable for designing novel therapeutic strategies. Comparison of chemoattractants expression during MB49 bladder tumors grow highlighted CCL8 and CCL12 (CCR2-ligands), CCL9 and CCL6 (CCR-1-ligands), CXCL2 and CXCL5 (CXCR2-ligands), CXCL12 (CXCR4-ligand) and antagonist of C5/C5a as potential targets to decrease myeloid suppressive cells. Data obtained with a single CCR2 inhibitor however showed that the complex chemokine crosstalk would require targeting multiple chemokines for anti-tumor efficacy.
Collapse
|
184
|
Zhao Y, Liu R, Li M, Liu P. The spleen tyrosine kinase (SYK): A crucial therapeutic target for diverse liver diseases. Heliyon 2022; 8:e12130. [PMID: 36568669 PMCID: PMC9768320 DOI: 10.1016/j.heliyon.2022.e12130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 09/14/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Spleen tyrosine kinase (SYK) is an enigmatic protein tyrosine kinase, and involved in signal transduction related with lots of cellular processes. It's highly expressed in the cells of hematopoietic origin and acts as an important therapeutic target in the treatment of autoimmune diseases and allergic disorders. In recent years, more and more evidences indicate that SYK is expressed in non-hematopoietic cells and effectively regulates various non-immune biological responses as well. In this review, we mainly summary the role of SYK in different liver diseases. Robust SYK expression has been discovered in hepatocytes, hepatic stellate cells, as well as Kupffer cells, which participates in the regulation of numerous signal transduction in various liver diseases (e.g. hepatitis, liver fibrosis and hepatocellular carcinoma). In addition, the blockage of SYK activity using small molecule modulators is considered as a significant therapeutic strategy against liver diseases, and both hepatic SYK and non-hepatic SYK could become highly promising therapeutic targets. Totally, even though some critical points about the significance of SYK in liver diseases treatment still need further elaboration, more reliable biotechnical or pharmacological therapy modes will be established based on the better understanding of the relationship between SYK and liver diseases.
Collapse
Affiliation(s)
- Yaping Zhao
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Rongrong Liu
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Miaomiao Li
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,Department of Regenerative Medicine, School of Pharmaceutical Science, Jilin University, Changchun, China
| | - Pengfei Liu
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,Department of Regenerative Medicine, School of Pharmaceutical Science, Jilin University, Changchun, China,Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education of China, Xi’an, China,Corresponding author.
| |
Collapse
|
185
|
Upregulation of miR-22-3p contributes to plumbagin-mediated inhibition of Wnt signaling in human colorectal cancer cells. Chem Biol Interact 2022; 368:110224. [DOI: 10.1016/j.cbi.2022.110224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 07/14/2022] [Accepted: 10/13/2022] [Indexed: 11/22/2022]
|
186
|
Immunogenetics of posttraumatic stress disorder (PTSD) in women veterans. Brain Behav Immun Health 2022; 26:100567. [DOI: 10.1016/j.bbih.2022.100567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
|
187
|
Rahmani AH, Almatroudi A, Khan AA, Babiker AY, Alanezi M, Allemailem KS. The Multifaceted Role of Baicalein in Cancer Management through Modulation of Cell Signalling Pathways. Molecules 2022; 27:8023. [PMID: 36432119 PMCID: PMC9692503 DOI: 10.3390/molecules27228023] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
The roles of medicinal plants or their purified bioactive compounds have attracted attention in the field of health sciences due to their low toxicity and minimal side effects. Baicalein is an active polyphenolic compound, isolated from Scutellaria baicalensis, and plays a significant role in the management of different diseases. Epidemiologic studies have proven that there is an inverse association between baicalein consumption and disease severity. Baicalein is known to display anticancer activity through the inhibition of inflammation and cell proliferation. Additionally, the anticancer potential of baicalein is chiefly mediated through the modulation of various cell-signaling pathways, such as the induction of apoptosis, autophagy, cell cycle arrest, inhibition of angiogenesis, signal transducer and activator of transcription 3, and PI3K/Akt pathways, as well as the regulation of other molecular targets. Therefore, the current review aimed to explore the role of baicalein in different types of cancer along with mechanisms of action. Besides this, the synergistic effects with other anti-cancerous drugs and the nano-formulation based delivery of baicalein have also been discussed.
Collapse
Affiliation(s)
- Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51542, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51542, Saudi Arabia
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51542, Saudi Arabia
| | - Ali Yousif Babiker
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51542, Saudi Arabia
| | - Malak Alanezi
- Department of Dentistry, Dr. Sulaiman Al Habib Medical Group, Qassim 51431, Saudi Arabia
| | - Khaled S. Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51542, Saudi Arabia
| |
Collapse
|
188
|
Pan J, Huang Z, Lin H, Cheng W, Lai J, Li J. M7G-Related lncRNAs predict prognosis and regulate the immune microenvironment in lung squamous cell carcinoma. BMC Cancer 2022; 22:1132. [PMID: 36333719 PMCID: PMC9636639 DOI: 10.1186/s12885-022-10232-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
Background N7-Methylguanosine (m7G) and long non-coding RNAs (lncRNAs) have been widely studied in cancer and have been found to be useful for assessing tumor progression. However, the role of m7G-related lncRNAs in lung squamous cell carcinoma (LUSC) remains unclear. Thus, it is crucial to identify m7G-associated lncRNAs with definitive prognostic value. This study aimed to investigate the prognostic value, correlation with tumor mutation burden, and impact on the tumor immune microenvironment of m7G-related lncRNAs in LUSC. Methods LUSC transcriptome data and clinical data were downloaded from The Cancer Genome Atlas, and an m7G-related lncRNA-mRNA co-expression network was constructed using Pearson’s correlation analysis. Cox regression analyses were used to determine a risk model for m7G-associated lncRNAs with prognostic value. The risk signature was verified using the Kaplan–Meier method, receiver operating characteristic curve analysis, and principal component analysis. A nomogram based on risk scores and clinical characteristics was then developed. Gene set enrichment analysis was used for functional annotation to analyze the risk signature. The association among the risk signature, tumor mutational burden, and tumor-infiltrating immune cells was then analyzed. RT-qPCR was used to investigate the expression of 6 m7G-related lncRNAs in LUSC cells. The cytological function of SRP14-AS1 was verified by wound-healing assay and transwell assay. Results A total of 293 m7G-related lncRNAs were identifed, 27 candidate m7G-related lncRNAs were signifcantly associated with overall survival (OS). Six of these lncRNAs (CYP4F26P, LINC02178, MIR22HG, SRP14-AS1, TMEM99, PTCSC2) were selected for establishment of the risk model. The OS of patients in the low-risk group was higher than that of patients in the high-risk group (p < 0.001). Multivariate cox regression analysis indicated that the model could be an independent prognostic factor for LUSC (HR = 1.859; 95% CI 1.452–2.380, p < 0.001). The ROC curve analysis revealed that the AUCs for OS in the 3-, and 5-year were 0.682, 0.657, respectively. GSEA analysis revealed that the risk model was closely related to immune-related pathways. Compared with normal lung epithelial cells, four m7G-related lncRNAs were higher expressed in cancer cells and two were lower expressed, among which knockdown of SRP14-AS1 promoted the proliferation and migration of LUSC cells. Conclusion A risk model based on six m7G-related lncRNAs with prognostic value may be a promising prognostic tool in LUSC and guide individualized patient treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-10232-z.
Collapse
|
189
|
Behnke A, Mack M, Fieres J, Christmann M, Bürkle A, Moreno-Villanueva M, Kolassa IT. Expression of DNA repair genes and its relevance for DNA repair in peripheral immune cells of patients with posttraumatic stress disorder. Sci Rep 2022; 12:18641. [PMID: 36333408 PMCID: PMC9636148 DOI: 10.1038/s41598-022-22001-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Abstract
Posttraumatic stress disorder (PTSD) involves elevated levels of cellular oxidative stress which jeopardizes the integrity of essential cell compartments. Previously, we demonstrated higher levels of DNA lesions in peripheral blood mononuclear cells (PBMCs) in PTSD. Retaining vital levels of DNA integrity requires cells to mobilize compensatory efforts in elevating their DNA-repair capacity. Accordingly, we hypothesized to find increased expression rates of the DNA-repair genes X-ray repair cross complementing 1 (XRCC1), poly (ADP-ribose) polymerase 1 (PARP1), and polymerase β (Polβ) in PBMCs of PTSD patients as compared to controls, leading to functionally relevant changes in DNA-repair kinetics. In a cohort of 14 refugees with PTSD and 15 without PTSD, we found significantly higher XRCC1 expression in PTSD patients than controls (U = 161.0, p = 0.009, Cohen's r = 0.49), and positive correlations between the severity of PTSD symptoms and the expression of XRCC1 (rS = 0.57, p = 0.002) and PARP1 (rS = 0.43, p = 0.022). Higher XRCC1 (F = 2.39, p = 0.010, η2p = 0.10) and PARP1 (F = 2.15, p = 0.022, η2p = 0.09) expression accounted for slower repair of experimentally X-ray irradiation-induced DNA damage, highlighting the possible physiological relevance of altered DNA-repair gene expression in PTSD. Our study provides first evidence for a compensatory regulation of DNA-repair mechanisms in PTSD. We discuss the implications of increased DNA damage and altered DNA-repair mechanisms in immune senescence, premature aging, and increased physical morbidity in PTSD.
Collapse
Affiliation(s)
- Alexander Behnke
- grid.6582.90000 0004 1936 9748Clinical and Biological Psychology, Institute of Psychology and Education, Ulm University, Albert-Einstein-Allee 47, 89081 Ulm, Germany
| | - Matthias Mack
- grid.6582.90000 0004 1936 9748Clinical and Biological Psychology, Institute of Psychology and Education, Ulm University, Albert-Einstein-Allee 47, 89081 Ulm, Germany ,grid.9811.10000 0001 0658 7699Molecular Toxicology, Department of Biology, University of Konstanz, 78457 Constance, Germany
| | - Judy Fieres
- grid.9811.10000 0001 0658 7699Molecular Toxicology, Department of Biology, University of Konstanz, 78457 Constance, Germany ,grid.9811.10000 0001 0658 7699Department of Sport Science, Human Performance Research Centre, University of Konstanz, 78457 Constance, Germany
| | - Markus Christmann
- grid.5802.f0000 0001 1941 7111Applied Toxicology, Institute of Toxicology, University of Mainz, 55131 Mainz, Germany
| | - Alexander Bürkle
- grid.9811.10000 0001 0658 7699Molecular Toxicology, Department of Biology, University of Konstanz, 78457 Constance, Germany
| | - María Moreno-Villanueva
- grid.9811.10000 0001 0658 7699Molecular Toxicology, Department of Biology, University of Konstanz, 78457 Constance, Germany ,grid.9811.10000 0001 0658 7699Department of Sport Science, Human Performance Research Centre, University of Konstanz, 78457 Constance, Germany
| | - Iris-Tatjana Kolassa
- grid.6582.90000 0004 1936 9748Clinical and Biological Psychology, Institute of Psychology and Education, Ulm University, Albert-Einstein-Allee 47, 89081 Ulm, Germany ,grid.9811.10000 0001 0658 7699Centre of Excellence for Psychotraumatology, Clinical Psychology and Neuropsychology, University of Konstanz, 78464 Constance, Germany
| |
Collapse
|
190
|
Talib WH, Abuawad A, Thiab S, Alshweiat A, Mahmod AI. Flavonoid-based nanomedicines to target tumor microenvironment. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
191
|
Lawn RB, Murchland AR, Kim Y, Chibnik LB, Tworoger SS, Rimm EB, Sumner JA, Roberts AL, Nishimi KM, Ratanatharathorn AD, Jha SC, Koenen KC, Kubzansky LD. Trauma, psychological distress and markers of systemic inflammation among US women: A longitudinal study. Psychoneuroendocrinology 2022; 145:105915. [PMID: 36115323 PMCID: PMC10448736 DOI: 10.1016/j.psyneuen.2022.105915] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Prior evidence links posttraumatic stress disorder (PTSD) and depression, separately, with chronic inflammation. However, whether effects are similar across each independently or potentiated when both are present is understudied. We evaluated combined measures of PTSD and depression in relation to inflammatory biomarker concentrations. METHODS Data are from women (n's ranging 628-2797) in the Nurses' Health Study II. Trauma exposure, PTSD, and depression symptoms were ascertained using validated questionnaires. We examined (a) a continuous combined psychological distress score summing symptoms for PTSD and depression, and (b) a categorical cross-classified measure of trauma/PTSD symptoms/depressed mood status (reference group: no trauma or depressed mood). Three inflammatory biomarkers (C-reactive protein [CRP], interleukin-6 [IL-6], tumor necrosis factor alpha receptor 2 [TNFR2]) were assayed from at least one of two blood samples collected 10-16 years apart. We examined associations of our exposures with levels of each biomarker concentration (log-transformed and batch-corrected) as available across the two time points (cross-sectional analyses; CRP, IL-6 and TNFR2) and with rate of change in biomarkers across time (longitudinal analyses; CRP and IL-6) using separate linear mixed effects models. RESULTS In sociodemographic-adjusted models accounting for trauma exposure, a one standard deviation increase in the continuous combined psychological distress score was associated with 10.2% (95% confidence interval (CI): 5.2-15.4%) higher CRP and 1.5% (95% CI: 0.5-2.5%) higher TNFR2 concentrations cross-sectionally. For the categorical exposure, women with trauma/PTSD symptoms/ depressed mood versus those with no trauma or depressed mood had 29.5% (95% CI: 13.3-47.9%) higher CRP and 13.1% (95% CI: 5.1-21.7%) higher IL-6 cross-sectionally. In longitudinal analysis, trauma/PTSD symptoms/depressed mood was associated with increasing CRP levels over time. CONCLUSIONS High psychological distress levels with trauma exposure is associated with elevated inflammation and is a potential biologic pathway by which distress can impact development of inflammatory-related chronic diseases, such as cardiovascular disease. Considering multiple forms of distress in relation to these pathways may provide greater insight into who is at risk for biologic dysregulation and later susceptibility to chronic diseases.
Collapse
Affiliation(s)
- Rebecca B Lawn
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Audrey R Murchland
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Yongjoo Kim
- College of Korean Medicine, Sangji University, Wonju, Republic of Korea
| | - Lori B Chibnik
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Shelley S Tworoger
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Eric B Rimm
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jennifer A Sumner
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Andrea L Roberts
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Kristen M Nishimi
- Mental Health Service, San Francisco Veterans Affairs Health Care System, San Francisco, CA, USA; Department of Psychiatry, University of California San Francisco, San Francisco, CA, USA
| | - Andrew D Ratanatharathorn
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Shaili C Jha
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Karestan C Koenen
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Laura D Kubzansky
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
192
|
Sherer ML, Voegtline KM, Park HS, Miller KN, Shuffrey LC, Klein SL, Osborne LM. The immune phenotype of perinatal anxiety. Brain Behav Immun 2022; 106:280-288. [PMID: 36115543 DOI: 10.1016/j.bbi.2022.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/12/2022] [Accepted: 09/11/2022] [Indexed: 10/31/2022] Open
Abstract
BACKGROUND Immune dysregulation has been linked to both psychiatric illness and pregnancy morbidity, including perinatal depression, but little is known about the immune phenotype of perinatal anxiety. Here, we sought to identify the unique immune profile of antenatal anxiety. MATERIALS AND METHODS Pregnant women (n = 107) were followed prospectively at 2nd and 3rd trimesters (T2, T3) and 6 weeks postpartum (PP6). Each visit included a blood draw and psychological evaluation, with clinical anxiety assessed using the Spielberg State-Trait Anxiety Scale. We enrolled both healthy controls and participants with anxiety alone; those with comorbid depression were excluded. Multiplex cytokine assays and flow cytometry were used to examine the association of anxiety symptoms with secreted immune markers and PBMC-derived immune cells. RESULTS K cluster means revealed three clusters of anxiety symptomatology; due to low numbers in the highest severity anxiety group, these were collapsed into two groups: Non-Anxiety and Anxiety. Principal components analysis revealed two distinct clusters of cytokine secretion including one cluster that consisted of many innate immune cytokines and differed between groups. Compared to women in the Non-Anxiety group, women in the Anxiety group had lower levels of cytokine expression during pregnancy and an increase in levels into the postpartum, whereas Non-Anxiety women experienced a time-dependent decline. Immune cell populations also differed between our two groups, with the Anxiety group showing a decrease in the ratio of B cells to T cells from pregnancy to postpartum, whereas the Non-Anxiety women showed an increase in this ratio over time. Women in the Anxiety group also demonstrated an increased ratio of cytotoxic to helper T cells throughout pregnancy, a modest increase in the Th1:Th2 ratio across pregnancy, and a lower ratio of Th17:TREG cells in the postpartum as compared with Non-Anxiety women. CONCLUSION These data suggest that the immune response throughout the antenatal period differs for women with anxiety symptoms compared to those without, suggestive of a unique immune phenotype of perinatal anxiety.
Collapse
Affiliation(s)
- Morgan L Sherer
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Kristin M Voegtline
- Division of General Pediatrics, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Han-Sol Park
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Kristen N Miller
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lauren C Shuffrey
- Department of Psychiatry, Columbia University Irving Medical Center, New York, USA
| | - Sabra L Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Lauren M Osborne
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Obstetrics & Gynecology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
193
|
Zhu Y, Chen L, Song B, Cui Z, Chen G, Yu Z, Song B. Insulin-like Growth Factor-2 (IGF-2) in Fibrosis. Biomolecules 2022; 12:1557. [PMID: 36358907 PMCID: PMC9687531 DOI: 10.3390/biom12111557] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 08/27/2023] Open
Abstract
The insulin family consists of insulin, insulin-like growth factor 1 (IGF-1), insulin-like growth factor 2 (IGF-2), their receptors (IR, IGF-1R and IGF-2R), and their binding proteins. All three ligands are involved in cell proliferation, apoptosis, protein synthesis and metabolism due to their homologous sequences and structural similarities. Insulin-like growth factor 2, a member of the insulin family, plays an important role in embryonic development, metabolic disorders, and tumorigenesis by combining with three receptors with different degrees of affinity. The main pathological feature of various fibrotic diseases is the excessive deposition of extracellular matrix (ECM) after tissue and organ damage, which eventually results in organic dysfunction because scar formation replaces tissue parenchyma. As a mitogenic factor, IGF-2 is overexpressed in many fibrotic diseases. It can promote the proliferation of fibroblasts significantly, as well as the production of ECM in a time- and dose-dependent manner. This review aims to describe the expression changes and fibrosis-promoting effects of IGF-2 in the skin, oral cavity, heart, lung, liver, and kidney fibrotic tissues.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhou Yu
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Baoqiang Song
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| |
Collapse
|
194
|
Wei W, Liu C, Wang C, Wang M, Jiang W, Zhou Y, Zhang S. Comprehensive pan-cancer analysis of N7-methylguanosine regulators: Expression features and potential implications in prognosis and immunotherapy. Front Genet 2022; 13:1016797. [PMID: 36339001 PMCID: PMC9633684 DOI: 10.3389/fgene.2022.1016797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/11/2022] [Indexed: 11/27/2022] Open
Abstract
Although immunotherapy has made great strides in cancer therapy, its effectiveness varies widely among individual patients as well as tumor types, and there is an urgent need to develop biomarkers for effectively assessing immunotherapy response. In recent years, RNA methylation regulators have demonstrated to be novel potential biomarkers for prognosis as well as immunotherapy of cancers, such as N6-methyladenine (m6A) and 5-methylcytosine (m5C). N7-methylguanosine (m7G) is a prevalent RNA modification in eukaryotes, but the relationship between m7G regulators and prognosis as well as tumor immune microenvironment is still unclear. In this study, a pan-cancer analysis of 26 m7G regulators across 17 cancer types was conducted based on the bioinformatics approach. On the one hand, a comprehensive analysis of expression features, genetic variations and epigenetic regulation of m7G regulators was carried out, and we found that the expression tendency of m7G regulators were different among tumors and their aberrant expression in cancers could be affected by single nucleotide variation (SNV), copy number variation (CNV), DNA methylation and microRNA (miRNA) separately or simultaneously. On the other hand, the m7Gscore was modeled based on single sample gene set enrichment analysis (ssGSEA) for evaluating the relationships between m7G regulators and cancer clinical features, hallmark pathways, tumor immune microenvironment, immunotherapy response as well as pharmacotherapy sensitivity, and we illustrated that the m7Gscore exhibited tight correlations with prognosis, several immune features, immunotherapy response and drug sensitivity in most cancers. In conclusion, our pan-cancer analysis revealed that m7G regulators may exert critical roles in the tumor progression and immune microenvironment, and have the potential as biomarkers for predicting prognosis, immunotherapy response as well as candidate drug compounds for cancer patients.
Collapse
Affiliation(s)
- Wei Wei
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Chao Liu
- Department of Vascular Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Caihong Wang
- Department of Pathology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Meng Wang
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Wei Jiang
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yaqian Zhou
- College of Chemistry and Materials Science, Northwest University, Xi’an, Shaanxi, China
| | - Shuqun Zhang
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
195
|
Huang Z, Lou K, Liu H. A novel prognostic signature based on N7-methylguanosine-related long non-coding RNAs in breast cancer. Front Genet 2022; 13:1030275. [PMID: 36313442 PMCID: PMC9608183 DOI: 10.3389/fgene.2022.1030275] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/03/2022] [Indexed: 12/24/2022] Open
Abstract
Long non-coding RNA (lncRNA) are closely associated with the occurrence and progression of tumors. However, research on N7-methylguanosine (m7G)-related lncRNA in breast cancer is lacking. Therefore, the present study explored the prognostic value, gene expression characteristics, and effects of m7G-related lncRNA on tumor immune cell infiltration and tumor mutational burden (TMB) in breast cancer. lncRNA expression matrices and clinical follow-up data of patients with breast cancer were obtained from The Cancer Genome Atlas, revealing eight significantly differentially expressed and prognostically relevant m7G-related lncRNAs in breast cancer tissues: BAIAP2-DT, COL4A2-AS1, FARP1-AS1, RERE-AS1, NDUFA6-DT, TFAP2A-AS1, LINC00115, and MIR302CHG. A breast cancer prognostic signature was created based on these m7G-related lncRNAs according to least absolute shrinkage and selection operator Cox regression. The prognostic signature combined with potential prognostic factors showed independent prognostic value, reliability, and specificity. Meanwhile, we constructed a risk score-based nomogram to assist clinical decision-making. Gene set enrichment analysis revealed that low- and high-risk group were associated with metabolism-related pathways. Our study demonstrated the association between tumor immune cell infiltration based on analyses with the CIBERSORT algorithm and prognostic signature. We also assessed the correlation between prognostic signature and TMB. Lastly, quantitative real-time polymerase chain reaction analysis was performed to validate differentially expressed lncRNAs. The effective prognostic signature based on m7G-related lncRNAs has the potential to predict the survival prognosis of patients with breast cancer. The eight m7G-related lncRNAs identified in this study might represent potential biomarkers and therapeutic targets of breast cancer.
Collapse
|
196
|
Khurana A, Navik U, Allawadhi P, Yadav P, Weiskirchen R. Spotlight on liver macrophages for halting liver disease progression and injury. Expert Opin Ther Targets 2022; 26:707-719. [PMID: 36202756 DOI: 10.1080/14728222.2022.2133699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
INTRODUCTION Over the past two decades, understanding of hepatic macrophage biology has provided astounding details of their role in the progression and regression of liver diseases. The hepatic macrophages constitute resident macrophages, Kupffer cells, and circulating bone marrow monocyte-derived macrophages, which play a diverse role in liver injury and repair. Imbalance in the macrophage population leads to pathological consequences and is responsible for the initiation and progression of acute and chronic liver injuries. Further, distinct populations of hepatic macrophages and their high heterogeneity make their complex role enigmatic. The unique features of distinct phenotypes of macrophages have provided novel biomarkers for defining the stages of liver diseases. The distinct mechanisms of hepatic macrophages polarization and recruitment have been at the fore front of research. In addition, the secretome of hepatic macrophages and their immune regulation has provided clinically relevant therapeutic targets. AREAS COVERED Herein we have highlighted the current understanding in the area of hepatic macrophages, and their role in the progression of liver injury. EXPERT OPINION It is essential to ascertain the physiological and pathological role of evolutionarily conserved distinct macrophage phenotypes in different liver diseases before viable approaches may see a clinical translation.
Collapse
Affiliation(s)
- Amit Khurana
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Pauwelsstr. 30, D-52074, Aachen, Germany
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda - 151401, Punjab, India
| | - Prince Allawadhi
- Department of Pharmacy, Vaish Institute of Pharmaceutical Education and Research (VIPER), Pandit Bhagwat Dayal Sharma University of Health Sciences (Pt. B. D. S. UHS), Rohtak - 124001, Haryana, India
| | - Poonam Yadav
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda - 151401, Punjab, India
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Pauwelsstr. 30, D-52074, Aachen, Germany
| |
Collapse
|
197
|
Matits L, Gumpp AM, Kolassa IT, Behnke A, Mack M. Störungsspezifische und transdiagnostische Veränderung der Inflammationsaktivität bei psychischen Störungen. ZEITSCHRIFT FUR KLINISCHE PSYCHOLOGIE UND PSYCHOTHERAPIE 2022. [DOI: 10.1026/1616-3443/a000666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Zusammenfassung. Theoretischer Hintergrund: Empirische Befunde deuten vermehrt auf eine erhöhte Entzündungsaktivität im Zusammenhang mit psychischen Störungen hin. Inwieweit sich inflammatorische Veränderungen über Störungen hinweg unterscheiden bzw. ob Inflammation ein transdiagnostisches Korrelat psychischer Störungen darstellt, ist bisher jedoch noch nicht eindeutig beantwortet. Fragestellung: Liegen spezifische inflammatorische Marker (z. B. Zytokine) über psychische Störungen hinweg verändert vor und/oder gibt es störungsspezifische Zytokinveränderungen bei Major Depression (MDD), Bipolarer Störung, Schizophrenie und Angststörungen inkl. Posttraumatischer Belastungsstörung (PTBS). Methode: Basierend auf einer Literaturrecherche werden aktuelle metaanalytische Befunde, die Studien bei Patient_innen mit MDD, Bipolarer Störung, Schizophrenie oder Angststörungen inkl. PTBS im Vergleich zu gesunden Kontrollen betrachten, zusammengetragen und vergleichend dargestellt. Ergebnisse: Aktuelle Evidenz verweist relativ konsistent auf Veränderungen des Immunsystems, wobei v. a. das Zytokin Interleukin (IL–) 6 und das C-reaktive Protein (CRP) störungsübergreifend leicht erhöht sind. Schlussfolgerungen: Perspektivisch könnten Patient_innen mit chronisch inflammatorischen Erkrankungen und psychischen Störungen von psychotherapiebegleitenden antiinflammatorischen Maßnahmen wie bspw. körperlicher Aktivität, antiinflammatorischer Ernährung und Entspannungsverfahren profitieren.
Collapse
Affiliation(s)
- Lynn Matits
- Sektion Sport- und Rehabilitationsmedizin, Innere Medizin, Universitätsklinikum Ulm, Deutschland
- Klinische & Biologische Psychologie, Institut für Psychologie und Pädagogik, Universität Ulm, Deutschland
| | - Anja Maria Gumpp
- Klinische & Biologische Psychologie, Institut für Psychologie und Pädagogik, Universität Ulm, Deutschland
| | - Iris-Tatjana Kolassa
- Klinische & Biologische Psychologie, Institut für Psychologie und Pädagogik, Universität Ulm, Deutschland
| | - Alexander Behnke
- Klinische & Biologische Psychologie, Institut für Psychologie und Pädagogik, Universität Ulm, Deutschland
| | - Matthias Mack
- Klinische & Biologische Psychologie, Institut für Psychologie und Pädagogik, Universität Ulm, Deutschland
| |
Collapse
|
198
|
Liu Y, Tian S, Ning B, Huang T, Li Y, Wei Y. Stress and cancer: The mechanisms of immune dysregulation and management. Front Immunol 2022; 13:1032294. [PMID: 36275706 PMCID: PMC9579304 DOI: 10.3389/fimmu.2022.1032294] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Advances in the understanding of psychoneuroimmunology in the past decade have emphasized the notion that stress and cancer are interlinked closely. Durable chronic stress accelerated tumorigenesis and progression, which is unfavorable for clinical outcomes of cancer patients. Available evidence has provided unprecedented knowledge about the role and mechanisms of chronic stress in carcinogenesis, the most well-known one is dysfunction of the hypothalamus-pituitary-adrenal (HPA) axis and the sympathetic nervous system (SNS). With abnormal activation of neuroendocrine system, stress-related hormones contribute to increased oncogenes expression, exacerbated chronic inflammation and impaired immunologic function. In addition, accumulating studies have demonstrated that diverse stress interventions including pharmacological approaches, physical exercises and psychological relaxation have been administered to assist in mental disorders reduction and life quality improvement in cancer patients. In this review, we systematically summarize the connection and mechanisms in the stress-immune-cancer axis identified by animal and clinical studies, as well as conclude the effectiveness and deficiencies of existing stress management strategies.
Collapse
Affiliation(s)
- Yixin Liu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Sheng Tian
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Biao Ning
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Tianhe Huang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yi Li
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yongchang Wei
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| |
Collapse
|
199
|
Li M, Li Q, Dong H, Zhao S, Ning J, Bai X, Yue X, Xie A. Pilose antler polypeptides enhance chemotherapy effects in triple-negative breast cancer by activating the adaptive immune system. Int J Biol Macromol 2022; 222:2628-2638. [DOI: 10.1016/j.ijbiomac.2022.10.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 11/05/2022]
|
200
|
Noushad S, Ansari B, Ahmed S. Effect of nature-based physical activity on post-traumatic growth among healthcare providers with post-traumatic stress. Stress Health 2022; 38:813-826. [PMID: 35191173 DOI: 10.1002/smi.3135] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 02/09/2022] [Accepted: 02/14/2022] [Indexed: 11/11/2022]
Abstract
The purpose of this randomized control trial was to observe the effect of nature-based physical activity in achieving post traumatic growth and to estimate the combined effect of nature and physical activity on the psychophysiological outcomes. A 3-month therapy was provided to participants meeting eligibility criteria to receive the walk-in nature (experimental group) or sit-in nature (control group) in the 1:1 ratio. At baseline and 3-month follow-up, participants were assessed with Trauma Symptom Checklist 40, Traumatic Stress Scale, Post-Traumatic Growth Inventory (PTGI), Cortisol, C-Reactive Protein (CRP), Interleukin-6 (IL-6), Brain-Derived Neurotropic Factor (BDNF) and heart rate variability. There was a significant effect of nature-based physical activity on traumatic stress and post-traumatic growth in comparison with the sit-in control. A significant post-interventional difference was observed in the mean PTGI score [F = 5.412, p = 0.022] between the experimental and control groups after 3 months of intervention. All the biochemical estimates, including CRP, BDNF, IL-6, and cortisol levels, were significantly altered in both post-intervention study groups (p < 0.01). Taken together, these results show that nature-based physical activity significantly improves psychophysiological outcomes induced as a result of post-traumatic growth and also reduces traumatic stress.
Collapse
Affiliation(s)
- Shamoon Noushad
- Department of Health, Physical Education and Sports Sciences, University of Karachi, Karachi, Pakistan.,Department of Physiology, Psychophysiology Research Lab, University of Karachi, Karachi, Pakistan
| | - Basit Ansari
- Department of Health, Physical Education and Sports Sciences, University of Karachi, Karachi, Pakistan
| | - Sadaf Ahmed
- Department of Physiology, Psychophysiology Research Lab, University of Karachi, Karachi, Pakistan
| |
Collapse
|