151
|
Autoantibodies persist in relatives to systemic lupus erythematosus patients during 12 years follow-up. Lupus 2016; 26:723-728. [DOI: 10.1177/0961203316676378] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Background Systemic lupus erythematosus (SLE) is an autoimmune disease with presence of autoantibodies and characteristic multi-organ involvement. Relatives of SLE patients have an increased risk of autoantibody production and autoimmune diseases. Methods In 2001, 226 first degree relatives (FDRs) of a population-based cohort of SLE patients were examined for the prevalence of autoantibodies and self-reported health complaints. In 2013, 143 FDRs were re-investigated and deceased’s medical records were examined. Results Participants and non-participants were comparable regarding baseline characteristics, while deceased FDRs were older than participants, but with comparable ANA status. ANA status at baseline correlated to ANA status at follow-up. At follow-up, two FDRs reported SLE and 15 FDRs other autoimmune diseases. No observation at baseline alone could predict self-reported health. During follow-up 33 died at median age 76 years. Three deceased FDRs were diagnosed with an autoimmune disease. Conclusion The study showed that FDRs of SLE patients have an increased prevalence of ANA compared to healthy controls. The prevalence increased during follow-up, and ANA positive FDRs at baseline were prone to be ANA positive at follow-up. ANA positive FDRs had more self-reported autoimmune diseases, including SLE and rheumatoid arthritis, than reported from other population-based investigations.
Collapse
|
152
|
Tziotzios C, Stefanato CM, Fenton DA, Simpson MA, McGrath JA. Frontal fibrosing alopecia: reflections and hypotheses on aetiology and pathogenesis. Exp Dermatol 2016; 25:847-852. [DOI: 10.1111/exd.13071] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2016] [Indexed: 02/06/2023]
Affiliation(s)
- Christos Tziotzios
- St John's Institute of Dermatology; King's College London (Guy's Campus); London UK
| | | | - David A. Fenton
- St John's Institute of Dermatology; King's College London (Guy's Campus); London UK
| | - Michael A. Simpson
- Division of Genetics and Molecular Medicine; King's College London; Guy's Hospital; London UK
| | - John A. McGrath
- St John's Institute of Dermatology; King's College London (Guy's Campus); London UK
| |
Collapse
|
153
|
Kwon KS, Cho HY, Chung YJ. Recapitulation of Candidate Systemic Lupus Erythematosus-Associated Variants in Koreans. Genomics Inform 2016; 14:85-89. [PMID: 27729837 PMCID: PMC5056901 DOI: 10.5808/gi.2016.14.3.85] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 08/26/2016] [Accepted: 08/28/2016] [Indexed: 11/29/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease that affects multiple organ systems. Although the etiology of SLE remains unclear, it is widely accepted that genetic factors could be involved in its pathogenesis. A number of genome-wide association studies (GWASs) have identified novel single-nucleotide polymorphisms (SNPs) associated with the risk of SLE in diverse populations. However, not all the SNP candidates identified from non-Asian populations have been validated in Koreans. In this study, we aimed to replicate the SNPs that were recently discovered in the GWAS; these SNPs have not been validated in Koreans or have only been replicated in Koreans with an insufficient sample size to conclude any association. For this, we selected five SNPs (rs1801274 in FCGR2A and rs2286672 in PLD2, rs887369 in CXorf21, rs9782955 in LYST, and rs3794060 in NADSYN1). Through the replication study with 656 cases and 622 controls, rs1801274 in FCGR2A was found to be significantly associated with SLE in Koreans (odds ratio, 1.26, 95% confidence interval, 1.06 to 1.50; p = 0.01 in allelic model). This association was also significant in two other models (dominant and recessive). The other four SNPs did not show a significant association. Our data support that FCGR polymorphisms play important roles in the susceptibility to SLE in diverse populations, including Koreans.
Collapse
Affiliation(s)
- Ki-Sung Kwon
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.; Integrated Research Center for Genome Polymorphism, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Hye-Young Cho
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.; Integrated Research Center for Genome Polymorphism, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Yeun-Jun Chung
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.; Integrated Research Center for Genome Polymorphism, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| |
Collapse
|
154
|
Iwamoto T, Niewold TB. Genetics of human lupus nephritis. Clin Immunol 2016; 185:32-39. [PMID: 27693588 DOI: 10.1016/j.clim.2016.09.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 09/22/2016] [Accepted: 09/26/2016] [Indexed: 01/06/2023]
Abstract
Systemic lupus erythematosus (SLE) is an inflammatory autoimmune disease characterized by immune complex formation with multi-organ manifestations. Lupus nephritis (LN) is one of the most severe types of organ damage in SLE, and it clearly contributes to increased morbidity and mortality due to SLE. LN occurs more frequently and is more severe in non-European ancestral backgrounds, although the cause of this disparity remains largely unknown. Genetic factors play an important role in the pathogenesis of SLE. Although many SLE susceptibility genes have been identified, the genetic basis of LN is not as well understood. While some of the established general SLE susceptibility genes are associated with LN, recent discoveries highlight a number of genes with renal functions that are specifically associated with LN. Some of these genes associated with LN help to explain the disparity in the prevalence of nephritis between individuals with SLE, and also partially explain differences in LN between ancestral backgrounds. Moreover, not only the gene mutations, but also post-translational modifications seem to play important roles in the pathogenesis of LN. Overall it seems likely that a combination of general SLE susceptibility genes cooperate with LN specific risk genes to result in the genetic propensity for LN. In this review, we will outline the genetic contribution to LN and describe possible roles of LN susceptibility genes.
Collapse
Affiliation(s)
- Taro Iwamoto
- Division of Rheumatology & Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Timothy B Niewold
- Division of Rheumatology & Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
155
|
Zhang YM, Zhou XJ, Cheng FJ, Qi YY, Hou P, Zhao MH, Zhang H. Association of the IKZF1 5ʹ UTR variant rs1456896 with lupus nephritis in a northern Han Chinese population. Scand J Rheumatol 2016; 46:210-214. [PMID: 27684961 DOI: 10.1080/03009742.2016.1194458] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Y-M Zhang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, and Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Peking University, Ministry of Education, Beijing, China
| | - X-J Zhou
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, and Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Peking University, Ministry of Education, Beijing, China
| | - F-J Cheng
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, and Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Peking University, Ministry of Education, Beijing, China
| | - Y-Y Qi
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, and Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Peking University, Ministry of Education, Beijing, China
| | - P Hou
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, and Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Peking University, Ministry of Education, Beijing, China
| | - M-H Zhao
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, and Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Peking University, Ministry of Education, Beijing, China
| | - H Zhang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, and Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Peking University, Ministry of Education, Beijing, China
| |
Collapse
|
156
|
Li LJ, Huang Q, Pan HF, Ye DQ. Circular RNAs and systemic lupus erythematosus. Exp Cell Res 2016; 346:248-54. [DOI: 10.1016/j.yexcr.2016.07.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 07/20/2016] [Indexed: 01/01/2023]
|
157
|
Wallace DJ. Does my daughter have lupus? Lupus 2016; 25:957-8. [DOI: 10.1177/0961203316639382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 02/23/2016] [Indexed: 11/17/2022]
|
158
|
Long H, Yin H, Wang L, Gershwin ME, Lu Q. The critical role of epigenetics in systemic lupus erythematosus and autoimmunity. J Autoimmun 2016; 74:118-138. [PMID: 27396525 DOI: 10.1016/j.jaut.2016.06.020] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 06/29/2016] [Indexed: 02/09/2023]
Abstract
One of the major disappointments in human autoimmunity has been the relative failure on genome-wide association studies to provide "smoking genetic guns" that would explain the critical role of genetic susceptibility to loss of tolerance. It is well known that autoimmunity refers to the abnormal state that the dysregulated immune system attacks the healthy cells and tissues due to the loss of immunological tolerance to self-antigens. Its clinical outcomes are generally characterized by the presence of autoreactive immune cells and (or) the development of autoantibodies, leading to various types of autoimmune disorders. The etiology and pathogenesis of autoimmune diseases are highly complex. Both genetic predisposition and environmental factors such as nutrition, infection, and chemicals are implicated in the pathogenic process of autoimmunity, however, how much and by what mechanisms each of these factors contribute to the development of autoimmunity remain unclear. Epigenetics, which refers to potentially heritable changes in gene expression and function that do not involve alterations of the DNA sequence, has provided us with a brand new key to answer these questions. In the recent decades, increasing evidence have demonstrated the roles of epigenetic dysregulation, including DNA methylation, histone modification, and noncoding RNA, in the pathogenesis of autoimmune diseases, especially systemic lupus erythematosus (SLE), which have shed light on a new era for autoimmunity research. Notably, DNA hypomethylation and reactivation of the inactive X chromosome are two epigenetic hallmarks of SLE. We will herein discuss briefly how genetic studies fail to completely elucidate the pathogenesis of autoimmune diseases and present a comprehensive review on landmark epigenetic findings in autoimmune diseases, taking SLE as an extensively studied example. The epigenetics of other autoimmune diseases such as rheumatic arthritis, systemic sclerosis and primary biliary cirrhosis will also be summarized. Importantly we emphasize that the stochastic processes that lead to DNA modification may be the lynch pins that drive the initial break in tolerance.
Collapse
Affiliation(s)
- Hai Long
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, China
| | - Heng Yin
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, China
| | - Ling Wang
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - M Eric Gershwin
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California at Davis, Davis, CA, USA
| | - Qianjin Lu
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, China.
| |
Collapse
|
159
|
Abstract
PURPOSE OF REVIEW The field of systemic lupus erythematosus (SLE) genetics has been advancing rapidly in recent years. This review will summarize recent advances in SLE genetics. RECENT FINDINGS Genome-wide-association and follow-up studies have greatly expanded the list of associated polymorphisms, and much current work strives to integrate these polymorphisms into immune system biology and the pathogenic mediators involved in the disease. This review covers some current areas of interest, including genetic studies in non-European SLE patient populations, studies of pathogenic immune system subphenotypes such as type I interferon and autoantibodies, and a rapidly growing body of work investigating the functional consequences of the genetic polymorphisms associated with SLE. SUMMARY These studies provide a fascinating window into human SLE disease biology. As the work proceeds from genetic association signal to altered human biology, we move closer to tailoring interventions based upon an individual's genetic substrate.
Collapse
|
160
|
Harley JB, Harley ITW, Guthridge JM, James JA. The curiously suspicious: a role for Epstein-Barr virus in lupus. Lupus 2016; 15:768-77. [PMID: 17153849 DOI: 10.1177/0961203306070009] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
While the events initiating the development of autoantibodies in systemic lupus erythematosus (SLE) have not yet been convincingly established, newly developed tools for molecular investigation make such an undertaking increasingly practical. Applied to the earliest events in the sequence culminating in lupus autoimmunity, we present a critical potential role for Epstein-Barr virus (EBV) in the development and perhaps perpetuation of SLE. The expected properties for an environmental risk factor for SLE are found in this virus and the human host response against it. Existing data show the molecular progression to autoimmunity observed in SLE patient sera, the discovery of the first autoimmune epitopes in the Sm and Ro autoantigen systems, and the possible emergence of these autoantibodies from the heterologous antibodies against Epstein-Barr nuclear antigen-1 (EBNA-1). Further, existing data demonstrate association of SLE with EBV infection, even preceding the development of autoimmunity. Finally, the data are consistent with a proposed model of lupus pathogenesis that begins with antibodies to EBNA-1, predisposing to immune responses that develop crossreactive autoantibodies that culminate in the development of SLE autoimmunity.
Collapse
Affiliation(s)
- J B Harley
- Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | | | | | | |
Collapse
|
161
|
Abstract
In a single assay, gene microarrays generate tens of thousands of measurements for the relative levels of messenger RNA expression, and thus hold promise to uncover the regulation of transcriptional responses behind clinical phenotypes of various diseases. Systemic lupus erythematosus (SLE) offers a unique opportunity to study gene expression both systemically and organ specific, as the tissues involved and specifically peripheral blood cells are readily accessible for molecular analysis. In the current review we highlight the current knowledge related to gene microarray in SLE. We approached the following questions: 1) Can gene microarray technology be used to translate molecular profiles into meaningful and applicable clinical information? 2) Does the assessment of differential gene expression provide specific signatures that may contribute to diagnostic and prognostic markers of SLE? 3) Can clinicians be helped in monitoring disease activity by identification of drug response gene profile? 4) Does evaluation of differential gene expression provide clues to detect previously unrecognized genes associated with the disease? It is evident that though not all questions can be currently answered appropriately, gene expression studies in SLE have important implications and will not only be beneficial for SLE patients, but will also lead to a better understanding of other autoimmune inflammatory diseases, thereby leading to novel diagnostic and therapeutic strategies in autoimmunity.
Collapse
Affiliation(s)
- M Mandel
- Blood Center, Sheba Medical Center, Tel-Hashomer, Israel
| | | |
Collapse
|
162
|
|
163
|
Al-Mayouf SM, Al Sonbul A. Juvenile systemic lupus erythematosus in multicase families from Saudi Arabia: comparison of clinical and laboratory variables with sporadic cases. Lupus 2016; 15:616-8. [PMID: 17080920 DOI: 10.1177/096120330607192] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The object of this study was to compare patients with familial versus sporadic systemic lupus erythematosus (SLE) with respect to clinical, laboratory variables and outcome. The familial SLE group comprised 12 patients while the comparative group comprised 24 patients selected by systemic sampling from our pediatric rheumatology clinic database. Those patients are listed according to the date of referral, which represents a sampling frame. The first patient was chosen randomly and subsequent patients were chosen at intervals of three. The two groups were compared with respect to: demographic information, age of onset of SLE, disease and follow up duration, clinical and laboratory variables and outcome. The patients from the familial group were younger and had an earlier age of onset of disease ( P 0.03, 0.001 respectively). Seven patients with familial SLE were from the eastern region of Saudi Arabia ( P 0.006). The two groups were comparable with respect to gender, disease duration and follow-up. At diagnosis, the discoid rash was more frequent in the familial group ( P 0.03) while other clinical and laboratory variables including disease activity as measured by SLEDAI did not show significant differences. The mean dose of steroid and use of other immunosuppressive therapy were similar in both groups. Three patients from the familial group died; two of them had unusual complications (one patient had transverse myelitis and pancreatic pesudocyst and the other one had extensive pyoderma gangerunosum). All patients from the sporadic group are alive in stable condition but one patient had severe central nervous system disease. Familial SLE patients tend to be younger and more likely to have discoid rash, in addition a marked difference in the origin of patients was noted. These differences may be helpful in identifying SLE patients with a stronger genetic predisposition. The mortality among familial SLE patients is more frequent which may reflect the disease severity.
Collapse
Affiliation(s)
- S M Al-Mayouf
- Department of Pediatrics, Section of Rheumatology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.
| | | |
Collapse
|
164
|
Abstract
Preclinical studies have provided proof of concept for the feasibility and efficacy of gene therapy in human systemic lupus erythematosus (SLE). Successful efforts include gene constructs that alter the expression of cytokines or limit the cognate interaction of immune cells. Other efforts may include gene modified cell transfersuch as autologousB cells transfectedwith tolerogenicconstructsor T cells in which specific molecular aberrations have been corrected.
Collapse
Affiliation(s)
- V C Kyttaris
- Department of Cellular Injury, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | | | | |
Collapse
|
165
|
Hachiya Y, Kawasaki A, Oka S, Kondo Y, Ito S, Matsumoto I, Kusaoi M, Amano H, Suda A, Setoguchi K, Nagai T, Shimada K, Sugii S, Okamoto A, Chiba N, Suematsu E, Ohno S, Katayama M, Kono H, Hirohata S, Takasaki Y, Hashimoto H, Sumida T, Nagaoka S, Tohma S, Furukawa H, Tsuchiya N. Association of HLA-G 3' Untranslated Region Polymorphisms with Systemic Lupus Erythematosus in a Japanese Population: A Case-Control Association Study. PLoS One 2016; 11:e0158065. [PMID: 27331404 PMCID: PMC4917238 DOI: 10.1371/journal.pone.0158065] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 06/09/2016] [Indexed: 12/21/2022] Open
Abstract
HLA-G plays a role in fetal-maternal tolerance as well as immunoregulation, and has been suggested to be involved in autoimmune diseases and cancers. HLA-G encodes two potentially functional polymorphisms in the 3' untranslated region, 14bp insertion/deletion (14bp indel, rs371194629) and a single nucleotide polymorphism rs1063320, previously reported to affect HLA-G expression level or splicing isoform and to be associated with susceptibility to systemic lupus erythematosus (SLE). However, the results of SLE association studies are inconsistent, probably due to the small sample size of each study and lack of consideration of linkage disequilibrium (LD) with HLA-class II haplotypes in each population. In this study, we performed association studies of these polymorphisms on 843 patients with SLE and 778 healthy controls in a Japanese population, in many of whom HLA-DRB1 alleles have been genotyped at the four-digit level. LD was detected between DRB1*13:02, protective against multiple autoimmune diseases in the Japanese, and the rs1063320 G (D' = 0.86, r2 = 0.02) and with 14bp del (D' = 0.62, r2 = 0.01), but not between SLE-susceptible DRB1*15:01 and HLA-G. Although significant association with overall SLE was not detected, 14bp ins allele was significantly associated with SLE with the age of onset <20 years, when compared with healthy controls (P = 0.0067, PFDR = 0.039, OR 1.44, additive model) or with SLE patients with the age of onset ≥20 (P = 0.033, PFDR = 0.0495, OR 2.09, additive model). This association remained significant after conditioning on DRB1*13:02 or DRB1*15:01. On the other hand, significant association was detected between rs1063320 C and anti-RNP antibody and anti-Sm antibody positive SLE, which was dependent on negative LD with DRB1*13:02. eQTL analysis showed reduced HLA-G mRNA level in 14bp ins/ins individuals. In conclusion, our observations showed that HLA-G 14bp ins allele represents a genetic contribution on early-onset SLE independent of DRB1.
Collapse
Affiliation(s)
- Yuki Hachiya
- Molecular and Genetic Epidemiology Laboratory, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Master’s Program in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Aya Kawasaki
- Molecular and Genetic Epidemiology Laboratory, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Master’s Program in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- * E-mail: (AK); (NT)
| | - Shomi Oka
- Molecular and Genetic Epidemiology Laboratory, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Clinical Research Center for Allergy and Rheumatology, Sagamihara Hospital, National Hospital Organization, Sagamihara, Kanagawa, Japan
| | - Yuya Kondo
- Master’s Program in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Department of Internal Medicine (Rheumatology), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Satoshi Ito
- Department of Internal Medicine (Rheumatology), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Department of Rheumatology, Niigata Rheumatic Center, Shibata, Niigata, Japan
| | - Isao Matsumoto
- Master’s Program in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Department of Internal Medicine (Rheumatology), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Makio Kusaoi
- Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine, Tokyo, Japan
| | - Hirofumi Amano
- Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine, Tokyo, Japan
| | - Akiko Suda
- Department of Rheumatology, Yokohama Minami Kyosai Hospital, Yokohama, Kanagawa, Japan
- Center for Rheumatic Diseases, Yokohama City University Medical Center, Yokohama, Kanagawa, Japan
| | - Keigo Setoguchi
- Allergy and Immunological Diseases, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Tatsuo Nagai
- Department of Rheumatology and Infectious Diseases, Kitasato University School of Medicine, Sagamihara, Japan
| | - Kota Shimada
- Department of Rheumatology, Tokyo Metropolitan Tama Medical Center, Fuchu, Tokyo, Japan
| | - Shoji Sugii
- Department of Rheumatology, Tokyo Metropolitan Tama Medical Center, Fuchu, Tokyo, Japan
| | - Akira Okamoto
- Department of Rheumatology, Himeji Medical Center, National Hospital Organization, Himeji, Hyogo, Japan
| | - Noriyuki Chiba
- Department of Rheumatology, Morioka Hospital, National Hospital Organization, Morioka, Iwate, Japan
| | - Eiichi Suematsu
- Department of Internal Medicine and Rheumatology, Clinical Research Institute, Kyushu Medical Center, National Hospital Organization, Fukuoka, Fukuoka, Japan
| | - Shigeru Ohno
- Center for Rheumatic Diseases, Yokohama City University Medical Center, Yokohama, Kanagawa, Japan
| | - Masao Katayama
- Department of Internal Medicine, Nagoya Medical Center, National Hospital Organization, Nagoya, Aichi, Japan
| | - Hajime Kono
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Shunsei Hirohata
- Department of Rheumatology and Infectious Diseases, Kitasato University School of Medicine, Sagamihara, Japan
| | - Yoshinari Takasaki
- Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine, Tokyo, Japan
| | | | - Takayuki Sumida
- Master’s Program in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Department of Internal Medicine (Rheumatology), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Shouhei Nagaoka
- Department of Rheumatology, Yokohama Minami Kyosai Hospital, Yokohama, Kanagawa, Japan
| | - Shigeto Tohma
- Clinical Research Center for Allergy and Rheumatology, Sagamihara Hospital, National Hospital Organization, Sagamihara, Kanagawa, Japan
| | - Hiroshi Furukawa
- Molecular and Genetic Epidemiology Laboratory, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Master’s Program in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Clinical Research Center for Allergy and Rheumatology, Sagamihara Hospital, National Hospital Organization, Sagamihara, Kanagawa, Japan
| | - Naoyuki Tsuchiya
- Molecular and Genetic Epidemiology Laboratory, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Master’s Program in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- * E-mail: (AK); (NT)
| |
Collapse
|
166
|
van der Meulen TA, Harmsen HJM, Bootsma H, Spijkervet FKL, Kroese FGM, Vissink A. The microbiome-systemic diseases connection. Oral Dis 2016; 22:719-734. [DOI: 10.1111/odi.12472] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 03/01/2016] [Accepted: 03/02/2016] [Indexed: 12/28/2022]
Affiliation(s)
- TA van der Meulen
- Department of Oral and Maxillofacial Surgery; University of Groningen; University Medical Center Groningen; Groningen The Netherlands
| | - HJM Harmsen
- Department of Medical Microbiology; University of Groningen; University Medical Center Groningen; Groningen The Netherlands
| | - H Bootsma
- Department of Rheumatology and Clinical Immunology; University of Groningen; University Medical Center Groningen; Groningen The Netherlands
| | - FKL Spijkervet
- Department of Oral and Maxillofacial Surgery; University of Groningen; University Medical Center Groningen; Groningen The Netherlands
| | - FGM Kroese
- Department of Rheumatology and Clinical Immunology; University of Groningen; University Medical Center Groningen; Groningen The Netherlands
| | - A Vissink
- Department of Oral and Maxillofacial Surgery; University of Groningen; University Medical Center Groningen; Groningen The Netherlands
| |
Collapse
|
167
|
Cause and consequences of the activated type I interferon system in SLE. J Mol Med (Berl) 2016; 94:1103-1110. [PMID: 27094810 PMCID: PMC5052287 DOI: 10.1007/s00109-016-1421-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 03/31/2016] [Accepted: 04/11/2016] [Indexed: 12/14/2022]
Abstract
Patients with systemic lupus erythematosus (SLE) have an increased expression of type I interferon (IFN)-regulated genes (an IFN signature), which is caused by an ongoing production of type I IFNs by plasmacytoid dendritic cells (pDCs). The reasons behind the continuous IFN production in SLE are the presence of self-derived IFN inducers and a lack of negative feed-back signals that downregulate the IFN response. In addition, several cells in the immune system promote the IFN production by pDCs and gene variants in the type I IFN signaling pathway contribute to the IFN signature. The type I IFNs act as an immune adjuvant and stimulate T cells, B cells, and monocytes, which all play an important role in the loss of tolerance and persistent autoimmune reaction in SLE. Consequently, new treatments aiming to inhibit the activated type I IFN system in SLE are now being developed and investigated in clinical trials.
Collapse
|
168
|
Weindel CG, Richey LJ, Bolland S, Mehta AJ, Kearney JF, Huber BT. B cell autophagy mediates TLR7-dependent autoimmunity and inflammation. Autophagy 2016; 11:1010-24. [PMID: 26120731 DOI: 10.1080/15548627.2015.1052206] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a heterogeneous autoimmune disease, defined by loss of B cell self-tolerance that results in production of antinuclear antibodies (ANA) and chronic inflammation. While the initiating events in lupus development are not well defined, overexpression of the RNA-recognizing toll-like receptor (TLR)7 has been linked to SLE in humans and mice. We postulated that autophagy plays an essential role in TLR7 activation of B cells for the induction of SLE by delivering RNA ligands to the endosomes, where this innate immune receptor resides. To test this hypothesis, we compared SLE development in Tlr7 transgenic (Tg) mice with or without B cell-specific ablation of autophagy (Cd19-Cre Atg5(f/f)). We observed that in the absence of B cell autophagy the 2 hallmarks of SLE, ANA and inflammation, were eliminated, thus curing these mice of lupus. This was also evident in the significantly extended survival of the autophagy-deficient mice compared to Tlr7.1 Tg mice. Furthermore, glomerulonephritis was ameliorated, and the serum levels of inflammatory cytokines in the knockout (KO) mice were indistinguishable from those of control mice. These data provide direct evidence that B cells require TLR7-dependent priming through an autophagy-dependent mechanism before autoimmunity is induced, thereafter involving many cell types. Surprisingly, hyper-IgM production persisted in Tlr7.1 Tg mice in the absence of autophagy, likely involving a different activation pathway than the production of autoantibodies. Furthermore, these mice still presented with anemia, but responded with a striking increase in extramedullary hematopoiesis (EMH), possibly due to the absence of pro-inflammatory cytokines.
Collapse
Key Words
- ANA, anti-nuclear Ab
- Ab, antibody
- Atg5 KO
- B cells
- B6, C57BL/6J
- BM, bone marrow
- BMD, BM derived
- BMDM, BMD macrophages
- BMDmDCs, BMD myeloid dendritic cells
- BMDpDCs, BMD plasmacytoid dendritic cells
- CFS3, colony stimulating factor 3 (granulocyte)
- CSF2, colony stimulating factor 2 (granulocyte-macrophage)
- DC, dendritic cell
- ELISA, enzyme-linked immunosorbent assay
- ELISpot, enzyme-linked immunospot assay
- EMH, extramedullary hematopoiesis
- FOB, follicular B cells
- GMP, granulocyte-macrophage progenitor
- H&E, hematoxylin and eosin stain
- IFN, interferon
- IHC, immunohistochemistry
- IL, interleukin
- Irf7, interferon regulatory factor 7
- KO, knockout
- LAP, LC3-associated phagocytosis
- LPS, lipopolysaccharide
- MZB, marginal zone B cells
- MZP, marginal zone precursor B cells
- NEAA, nonessential amino acids
- O/N, overnight
- PAS, periodic acid-Schiff
- PC, phosphocholine
- PCV, packed cell volume
- PEMs, peritoneal macrophages
- RBC, red blood cell
- RT, room temperature
- SLE, systemic lupus erythematosus
- T1B, transitional 1 B cells
- TLR, toll-like receptor
- TLR7
- Tg, transgenic
- WT, wild type
- YAA, Y-linked autoimmune accelerator
- autoimmunity
- ds, double stranded
- inflammation
- lupus
- mDC, myeloid DC
- pDC, plasmacytoid DC
- ss, single stranded
Collapse
Affiliation(s)
- Chi G Weindel
- a Graduate Program in Genetics; Sackler School of Graduate Biomedical Sciences; Tufts University School of Medicine ; Boston , MA , USA
| | | | | | | | | | | |
Collapse
|
169
|
Kang S, Rogers JL, Monteith AJ, Jiang C, Schmitz J, Clarke SH, Tarrant TK, Truong YK, Diaz M, Fedoriw Y, Vilen BJ. Apoptotic Debris Accumulates on Hematopoietic Cells and Promotes Disease in Murine and Human Systemic Lupus Erythematosus. THE JOURNAL OF IMMUNOLOGY 2016; 196:4030-9. [PMID: 27059595 DOI: 10.4049/jimmunol.1500418] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 03/05/2016] [Indexed: 11/19/2022]
Abstract
Apoptotic debris, autoantibody, and IgG-immune complexes (ICs) have long been implicated in the inflammation associated with systemic lupus erythematosus (SLE); however, it remains unclear whether they initiate immune-mediated events that promote disease. In this study, we show that PBMCs from SLE patients experiencing active disease, and hematopoietic cells from lupus-prone MRL/lpr and NZM2410 mice accumulate markedly elevated levels of surface-bound nuclear self-antigens. On dendritic cells (DCs) and macrophages (MFs), the self-antigens are part of IgG-ICs that promote FcγRI-mediated signal transduction. Accumulation of IgG-ICs is evident on ex vivo myeloid cells from MRL/lpr mice by 10 wk of age and steadily increases prior to lupus nephritis. IgG and FcγRI play a critical role in disease pathology. Passive transfer of pathogenic IgG into IgG-deficient MRL/lpr mice promotes the accumulation of IgG-ICs prior to significant B cell expansion, BAFF secretion, and lupus nephritis. In contrast, diminishing the burden IgG-ICs in MRL/lpr mice through deficiency in FcγRI markedly improves these lupus pathologies. Taken together, our findings reveal a previously unappreciated role for the cell surface accumulation of IgG-ICs in human and murine lupus.
Collapse
Affiliation(s)
- SunAh Kang
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599
| | - Jennifer L Rogers
- Division of Rheumatology, Allergy, and Immunology, Thurston Arthritis Research Center, Department of Medicine, University of North Carolina, Chapel Hill, NC 27599
| | - Andrew J Monteith
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599; Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599
| | - Chuancang Jiang
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences/National Institutes of Health, Research Triangle Park, NC 27709
| | - John Schmitz
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599; and
| | - Stephen H Clarke
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599
| | - Teresa K Tarrant
- Division of Rheumatology, Allergy, and Immunology, Thurston Arthritis Research Center, Department of Medicine, University of North Carolina, Chapel Hill, NC 27599
| | - Young K Truong
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC 27599
| | - Marilyn Diaz
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences/National Institutes of Health, Research Triangle Park, NC 27709
| | - Yuri Fedoriw
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599; and
| | - Barbara J Vilen
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599;
| |
Collapse
|
170
|
Genetic association study of systemic lupus erythematosus and disease subphenotypes in European populations. Clin Rheumatol 2016; 35:1161-8. [DOI: 10.1007/s10067-016-3235-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 03/11/2016] [Accepted: 03/12/2016] [Indexed: 01/10/2023]
|
171
|
Macedo ACL, Isaac L. Systemic Lupus Erythematosus and Deficiencies of Early Components of the Complement Classical Pathway. Front Immunol 2016; 7:55. [PMID: 26941740 PMCID: PMC4764694 DOI: 10.3389/fimmu.2016.00055] [Citation(s) in RCA: 181] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 02/05/2016] [Indexed: 12/24/2022] Open
Abstract
The complement system plays an important role in the innate and acquired immune response against pathogens. It consists of more than 30 proteins found in soluble form or attached to cell membranes. Most complement proteins circulate in inactive forms and can be sequentially activated by the classical, alternative, or lectin pathways. Biological functions, such as opsonization, removal of apoptotic cells, adjuvant function, activation of B lymphocytes, degranulation of mast cells and basophils, and solubilization and clearance of immune complex and cell lysis, are dependent on complement activation. Although the activation of the complement system is important to avoid infections, it also can contribute to the inflammatory response triggered by immune complex deposition in tissues in autoimmune diseases. Paradoxically, the deficiency of early complement proteins from the classical pathway (CP) is strongly associated with development of systemic lupus erythematous (SLE) - mainly C1q deficiency (93%) and C4 deficiency (75%). The aim of this review is to focus on the deficiencies of early components of the CP (C1q, C1r, C1s, C4, and C2) proteins in SLE patients.
Collapse
Affiliation(s)
- Ana Catarina Lunz Macedo
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; Faculty of Medicine, Children's Hospital, Clinics Hospital, University of São Paulo, São Paulo, Brazil
| | - Lourdes Isaac
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo , São Paulo , Brazil
| |
Collapse
|
172
|
Raj P, Rai E, Song R, Khan S, Wakeland BE, Viswanathan K, Arana C, Liang C, Zhang B, Dozmorov I, Carr-Johnson F, Mitrovic M, Wiley GB, Kelly JA, Lauwerys BR, Olsen NJ, Cotsapas C, Garcia CK, Wise CA, Harley JB, Nath SK, James JA, Jacob CO, Tsao BP, Pasare C, Karp DR, Li QZ, Gaffney PM, Wakeland EK. Regulatory polymorphisms modulate the expression of HLA class II molecules and promote autoimmunity. eLife 2016; 5:e12089. [PMID: 26880555 PMCID: PMC4811771 DOI: 10.7554/elife.12089] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 02/13/2016] [Indexed: 12/15/2022] Open
Abstract
Targeted sequencing of sixteen SLE risk loci among 1349 Caucasian cases and controls produced a comprehensive dataset of the variations causing susceptibility to systemic lupus erythematosus (SLE). Two independent disease association signals in the HLA-D region identified two regulatory regions containing 3562 polymorphisms that modified thirty-seven transcription factor binding sites. These extensive functional variations are a new and potent facet of HLA polymorphism. Variations modifying the consensus binding motifs of IRF4 and CTCF in the XL9 regulatory complex modified the transcription of HLA-DRB1, HLA-DQA1 and HLA-DQB1 in a chromosome-specific manner, resulting in a 2.5-fold increase in the surface expression of HLA-DR and DQ molecules on dendritic cells with SLE risk genotypes, which increases to over 4-fold after stimulation. Similar analyses of fifteen other SLE risk loci identified 1206 functional variants tightly linked with disease-associated SNPs and demonstrated that common disease alleles contain multiple causal variants modulating multiple immune system genes.
Collapse
Affiliation(s)
- Prithvi Raj
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Ekta Rai
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, India
| | - Ran Song
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Shaheen Khan
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Benjamin E Wakeland
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Kasthuribai Viswanathan
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Carlos Arana
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Chaoying Liang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Bo Zhang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Igor Dozmorov
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Ferdicia Carr-Johnson
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Mitja Mitrovic
- Department of Neurology, Yale School of Medicine, New Haven, United States
| | - Graham B Wiley
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, United States
| | - Jennifer A Kelly
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, United States
| | - Bernard R Lauwerys
- Pole de pathologies rhumatismales, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Bruxelles, Belgium
| | - Nancy J Olsen
- Division of Rheumatology, Department of Medicine, Penn State Medical School, Hershey, United States
| | - Chris Cotsapas
- Department of Neurology, Yale School of Medicine, New Haven, United States
| | - Christine K Garcia
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, United States
| | - Carol A Wise
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, United States
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, United States
- Sarah M. and Charles E. Seay Center for Musculoskeletal Research, Texas Scottish Rite Hospital for Children, Dallas, United States
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, United States
| | - John B Harley
- Cincinnati VA Medical Center, Cincinnati, United States
- Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Swapan K Nath
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, United States
| | - Judith A James
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, United States
| | - Chaim O Jacob
- Department of Medicine, University of Southern California, Los Angeles, United States
| | - Betty P Tsao
- Department of Medicine, University of California, Los Angeles, Los Angeles, United States
| | - Chandrashekhar Pasare
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
| | - David R Karp
- Rheumatic Diseases Division, Department of Medicine, University of Texas Southwestern Medical Center, Dallas, United States
| | - Quan Zhen Li
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Patrick M Gaffney
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, United States
| | - Edward K Wakeland
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
173
|
Salimi S, Noora M, Nabizadeh S, Rezaei M, Shahraki H, Milad MK, Naghavi A, Farajian-Mashhadi F, Zakeri Z, Sandoughi M. Association of the osteopontin rs1126616 polymorphism and a higher serum osteopontin level with lupus nephritis. Biomed Rep 2016; 4:355-360. [PMID: 26998275 DOI: 10.3892/br.2016.589] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 01/05/2016] [Indexed: 01/24/2023] Open
Abstract
Osteopontin (OPN) is a chemokine-like glycoprotein that has a prominent role in regulating inflammation and immunity. OPN polymorphisms and elevated OPN levels are associated with systemic lupus erythematosus (SLE) in several populations. The aim of present study was to evaluate the association between the OPN rs1126616 polymorphism and OPN level with SLE susceptibility. A total of 163 SLE patients and 180 age-, gender- and ethnically matched controls were genotyped for the rs1126616 polymorphism by the polymerase chain reaction-restriction fragment length polymorphism method. Serum OPN levels were assayed by the enzyme-linked immunosorbent assay. There was no association between the OPN rs1126616 C/T polymorphism and SLE. The frequency of the OPN rs1126616 CT genotype was significantly higher in SLE patients with nephritis compared to SLE patients without nephritis and controls. Additionally, the frequency of TT genotypes was higher in SLE patients with nephritis compared to controls. The serum OPN levels were significantly higher in SLE patients compared to controls (50.6±22 vs. 35.6±15.8 ng/ml, P<0.001). Increased serum OPN levels were observed in SLE patients with lupus nephritis and joint symptoms. There was no correlation between OPN levels and the OPN rs1126616 polymorphism. The present data suggest that the CT and TT genotypes of the OPN rs1126616 polymorphism could be a risk factor for lupus nephritis. The OPN level is associated with SLE and certain SLE manifestations. However, there was no association between the OPN rs1126616 C/T polymorphism and SLE susceptibility.
Collapse
Affiliation(s)
- Saeedeh Salimi
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan 9816743175, Iran; Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan 9816743175, Iran
| | - Mehrangiz Noora
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan 9816743175, Iran
| | - Sima Nabizadeh
- Department of English Language, School of Medicine, Zahedan University of Medical Sciences, Zahedan 9816743175, Iran
| | - Mahnaz Rezaei
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan 9816743175, Iran
| | - Hossain Shahraki
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan 9816743175, Iran
| | - Mohammadoo-Khorassani Milad
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan 9816743175, Iran; Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan 9816743175, Iran
| | - Anoosh Naghavi
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan 9816743175, Iran
| | - Farzaneh Farajian-Mashhadi
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan 9816743175, Iran; Department of Pharmacology, School of Medicine, Zahedan University of Medical Sciences, Zahedan 9816743175, Iran
| | - Zahra Zakeri
- Department of Internal Medicine, School of Medicine, Zahedan University of Medical Sciences, Zahedan 9816743175, Iran
| | - Mahnaz Sandoughi
- Department of Internal Medicine, School of Medicine, Zahedan University of Medical Sciences, Zahedan 9816743175, Iran
| |
Collapse
|
174
|
Straub RH, Schradin C. Chronic inflammatory systemic diseases: An evolutionary trade-off between acutely beneficial but chronically harmful programs. EVOLUTION MEDICINE AND PUBLIC HEALTH 2016; 2016:37-51. [PMID: 26817483 PMCID: PMC4753361 DOI: 10.1093/emph/eow001] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 12/23/2015] [Indexed: 12/14/2022]
Abstract
It has been recognized that during chronic inflammatory systemic diseases (CIDs) maladaptations of the immune, nervous, endocrine and reproductive system occur. Maladaptation leads to disease sequelae in CIDs. The ultimate reason of disease sequelae in CIDs remained unclear because clinicians do not consider bodily energy trade-offs and evolutionary medicine. We review the evolution of physiological supersystems, fitness consequences of genes involved in CIDs during different life-history stages, environmental factors of CIDs, energy trade-offs during inflammatory episodes and the non-specificity of CIDs. Incorporating bodily energy regulation into evolutionary medicine builds a framework to better understand pathophysiology of CIDs by considering that genes and networks used are positively selected if they serve acute, highly energy-consuming inflammation. It is predicted that genes that protect energy stores are positively selected (as immune memory). This could explain why energy-demanding inflammatory episodes like infectious diseases must be terminated within 3–8 weeks to be adaptive, and otherwise become maladaptive. Considering energy regulation as an evolved adaptive trait explains why many known sequelae of different CIDs must be uniform. These are, e.g. sickness behavior/fatigue/depressive symptoms, sleep disturbance, anorexia, malnutrition, muscle wasting—cachexia, cachectic obesity, insulin resistance with hyperinsulinemia, dyslipidemia, alterations of steroid hormone axes, disturbances of the hypothalamic-pituitary-gonadal (HPG) axis, hypertension, bone loss and hypercoagulability. Considering evolved energy trade-offs helps us to understand how an energy imbalance can lead to the disease sequelae of CIDs. In the future, clinicians must translate this knowledge into early diagnosis and symptomatic treatment in CIDs.
Collapse
Affiliation(s)
- Rainer H Straub
- Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, Division of Rheumatology, Department of Internal Medicine, University Hospital Regensburg, Regensburg, Germany;
| | - Carsten Schradin
- Université De Strasbourg, IPHC-DEPE, 23 Rue Becquerel, Strasbourg 67087, France; CNRS (Centre National De La Recherche Scientifique), UMR7178, Strasbourg 67087, France; School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
175
|
Demirci FY, Wang X, Kelly JA, Morris DL, Barmada MM, Feingold E, Kao AH, Sivils KL, Bernatsky S, Pineau C, Clarke A, Ramsey-Goldman R, Vyse TJ, Gaffney PM, Manzi S, Kamboh MI. Identification of a New Susceptibility Locus for Systemic Lupus Erythematosus on Chromosome 12 in Individuals of European Ancestry. Arthritis Rheumatol 2016; 68:174-83. [PMID: 26316170 PMCID: PMC4747422 DOI: 10.1002/art.39403] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 08/18/2015] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Genome-wide association studies (GWAS) in individuals of European ancestry identified a number of systemic lupus erythematosus (SLE) susceptibility loci using earlier versions of high-density genotyping platforms. Followup studies on suggestive GWAS regions using larger samples and more markers identified additional SLE loci in subjects of European descent. This multistage study was undertaken to identify novel SLE loci. METHODS In stage 1, we conducted a new GWAS of SLE in a North American case-control sample of subjects of European ancestry (n = 1,166) genotyped on Affymetrix Genome-Wide Human SNP Array 6.0. In stage 2, we further investigated top new suggestive GWAS hits by in silico evaluation and meta-analysis using an additional data set of subjects of European descent (>2,500 individuals), followed by replication of top meta-analysis findings in another data set of subjects of European descent (>10,000 individuals) in stage 3. RESULTS As expected, our GWAS revealed the most significant associations at the major histocompatibility complex locus (6p21), which easily surpassed the genome-wide significance threshold (P < 5 × 10(-8)). Several other SLE signals/loci previously implicated in Caucasians and/or Asians were also confirmed in the stage 1 discovery sample, and the strongest signals were observed at 2q32/STAT4 (P = 3.6 × 10(-7)) and at 8p23/BLK (P = 8.1 × 10(-6)). Stage 2 meta-analyses identified a new genome-wide significant SLE locus at 12q12 (meta P = 3.1 × 10(-8)), which was replicated in stage 3. CONCLUSION Our multistage study identified and replicated a new SLE locus that warrants further followup in additional studies. Publicly available databases suggest that this newly identified SLE signal falls within a functionally relevant genomic region and near biologically important genes.
Collapse
MESH Headings
- Adult
- Case-Control Studies
- Casein Kinase II/genetics
- Cell Cycle Proteins/genetics
- Chromosomes, Human, Pair 12/genetics
- Chromosomes, Human, Pair 2
- Chromosomes, Human, Pair 6
- Chromosomes, Human, Pair 8
- Computer Simulation
- Female
- Genetic Predisposition to Disease
- Genome-Wide Association Study
- Genotype
- HLA-DQ alpha-Chains/genetics
- HLA-DQ beta-Chains/genetics
- Humans
- Lupus Erythematosus, Systemic/genetics
- Major Histocompatibility Complex/genetics
- Male
- Middle Aged
- Polymorphism, Single Nucleotide
- Quantitative Trait Loci
- STAT4 Transcription Factor/genetics
- Tenascin/genetics
- Transcriptome
- White People/genetics
- src-Family Kinases/genetics
Collapse
Affiliation(s)
- F. Yesim Demirci
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Xingbin Wang
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jennifer A. Kelly
- Arthritis & Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - David L. Morris
- Department of Medical & Molecular Genetics, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - M. Michael Barmada
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Eleanor Feingold
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Amy H. Kao
- Lupus Center of Excellence, Department of Medicine, Allegheny Health Network, Pittsburgh, PA 15224, USA
| | - Kathy L. Sivils
- Arthritis & Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Sasha Bernatsky
- Division of Rheumatology, Department of Medicine, McGill University, Montreal, QC H3G 1A4, Canada
| | - Christian Pineau
- Division of Rheumatology, Department of Medicine, McGill University, Montreal, QC H3G 1A4, Canada
| | - Ann Clarke
- Division of Rheumatology, Department of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Rosalind Ramsey-Goldman
- Division of Rheumatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Timothy J. Vyse
- Department of Medical & Molecular Genetics, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Patrick M. Gaffney
- Arthritis & Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Susan Manzi
- Lupus Center of Excellence, Department of Medicine, Allegheny Health Network, Pittsburgh, PA 15224, USA
| | - M. Ilyas Kamboh
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
176
|
Bogdanos DP, Smyk DS, Rigopoulou EI, Sakkas LI, Shoenfeld Y. Infectomics and autoinfectomics: a tool to study infectious-induced autoimmunity. Lupus 2015; 24:364-73. [PMID: 25801879 DOI: 10.1177/0961203314559088] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The exposome represents all exogenous and endogenous environmental exposures that begin at preconception and carry on throughout life, while the microbiome reflects the microbial component of the exposome. We recently introduced the concept of infectome and autoinfectome as a means of studying the totality of infections throughout life that participate in the induction as well as the progression of autoimmune diseases in an affected individual. The investigation of the autoinfectome could help us understand why some patients develop more than one autoimmune disease, a phenomenon also known as mosaic of autoimmunity. It could also explain the infectious and autoantibody burden of various autoimmune rheumatic diseases. The close interplay between infections and the immune system should be studied over time, long before the onset of autoaggression and autoimmunity. Tracking down each individual's exposure to infectious agents (as defined by the autoinfectome) would be important for the establishment of a causative link between infection and autoimmunity.
Collapse
Affiliation(s)
- D P Bogdanos
- Institute of Liver Studies, King's College London School of Medicine at King's College Hospital, London, UK Department of Medicine, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - D S Smyk
- Institute of Liver Studies, King's College London School of Medicine at King's College Hospital, London, UK
| | - E I Rigopoulou
- Department of Medicine, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - L I Sakkas
- Department of Medicine, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Y Shoenfeld
- The Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel Aviv University, Tel-Hashomer, Israel
| |
Collapse
|
177
|
Bentham J, Morris DL, Graham DSC, Pinder CL, Tombleson P, Behrens TW, Martín J, Fairfax BP, Knight JC, Chen L, Replogle J, Syvänen AC, Rönnblom L, Graham RR, Wither JE, Rioux JD, Alarcón-Riquelme ME, Vyse TJ. Genetic association analyses implicate aberrant regulation of innate and adaptive immunity genes in the pathogenesis of systemic lupus erythematosus. Nat Genet 2015; 47:1457-1464. [PMID: 26502338 PMCID: PMC4668589 DOI: 10.1038/ng.3434] [Citation(s) in RCA: 700] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 10/02/2015] [Indexed: 12/12/2022]
Abstract
Systemic lupus erythematosus (SLE) is a genetically complex autoimmune disease characterized by loss of immune tolerance to nuclear and cell surface antigens. Previous genome-wide association studies (GWAS) had modest sample sizes, reducing their scope and reliability. Our study comprised 7,219 cases and 15,991 controls of European ancestry, constituting a new GWAS, a meta-analysis with a published GWAS and a replication study. We have mapped 43 susceptibility loci, including ten new associations. Assisted by dense genome coverage, imputation provided evidence for missense variants underpinning associations in eight genes. Other likely causal genes were established by examining associated alleles for cis-acting eQTL effects in a range of ex vivo immune cells. We found an over-representation (n = 16) of transcription factors among SLE susceptibility genes. This finding supports the view that aberrantly regulated gene expression networks in multiple cell types in both the innate and adaptive immune response contribute to the risk of developing SLE.
Collapse
Affiliation(s)
- James Bentham
- Division of Genetics and Molecular Medicine, King's College London, UK
| | - David L Morris
- Division of Genetics and Molecular Medicine, King's College London, UK
| | | | | | - Philip Tombleson
- Division of Genetics and Molecular Medicine, King's College London, UK
| | | | - Javier Martín
- Instituto de Parasitología y Biomedicina López Neyra, CSIC, Granada, Spain
| | - Benjamin P Fairfax
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Julian C Knight
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Lingyan Chen
- Division of Genetics and Molecular Medicine, King's College London, UK
| | | | - Ann-Christine Syvänen
- Department of Medical Sciences, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Lars Rönnblom
- Department of Medical Sciences, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | | | - Joan E Wither
- Toronto Western Research Institute (TWRI), University Health Network, Toronto, Ontario, Canada
| | - John D Rioux
- Université de Montréal, Montreal, Quebec, Canada
- Montreal Heart Institute, Montreal, Quebec, Canada
| | - Marta E Alarcón-Riquelme
- Centro de Genómica e Investigación Oncológica (GENYO), Pfizer-Universidad de Granada-Junta de Andalucía, Granada, Spain
| | - Timothy J Vyse
- Division of Genetics and Molecular Medicine, King's College London, UK
- Division of Immunology, Infection and Inflammatory Disease, King's College London, UK
| |
Collapse
|
178
|
Nawrocki M, Strugała A, Piotrowski P, Wudarski M, Olesińska M, Jagodziński P. JHDM1D and HDAC1–3 mRNA expression levels in peripheral blood mononuclear cells of patients with systemic lupus erythematosus. Z Rheumatol 2015; 74:902-10. [DOI: 10.1007/s00393-015-1619-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
179
|
Bhattad S, Rawat A, Gupta A, Suri D, Garg R, de Boer M, Kuijpers TW, Singh S. Early Complement Component Deficiency in a Single-Centre Cohort of Pediatric Onset Lupus. J Clin Immunol 2015; 35:777-785. [PMID: 26563161 DOI: 10.1007/s10875-015-0212-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 11/05/2015] [Indexed: 11/26/2022]
Abstract
OBJECTIVES To assess complement levels C1q, C2, C3 and C4 in children with pediatric-onset lupus during the quiescent stage of disease. METHODS Thirty-four consecutive children with pediatric-onset SLE (onset below 12 years), in the quiescent stage were enrolled for the study. Twenty-nine age and sex matched healthy children were also enrolled for the purpose of comparison. Complement C1q and C2 levels were estimated by enzyme-linked immunosorbent assay (ELISA) whereas C3 and C4 were measured by end-point nephelometry. Genetic mutation analysis and functional assessment of classical complement pathway by ELISA were carried out in children with depressed levels of these complements. The study protocol was approved by the Institute Thesis Committee and the Institute Ethics Committee. RESULTS Mean complement C1q, C2, C3 and C4 levels were 50.32, 17.28, 1320 and 236 mg/L respectively. Levels of complements were low in 7/34 children with SLE. An early age at onset, low anti-dsDNA titres and predominant skin manifestations were noted in children with decreased levels of complement C1q. Mutation analysis of C1qA gene revealed a homozygous nonsense mutation: C1QA (NM_015991) c.622C>T, p.Q208X in one child. A homozygous acceptor splice site mutation at the -2 position of intron2 of C1QA (c.164-2A>C) was detected in another child. The age at onset of disease was early in both these children, at 2.5 and 1.5 years respectively. CONCLUSION Children with inherited deficiency of C1q and other early complement components present with early onset lupus that has a distinct clinical and immunological profile.
Collapse
Affiliation(s)
- Sagar Bhattad
- Pediatric Allergy and Immunology Unit, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Amit Rawat
- Pediatric Allergy and Immunology Unit, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India.
| | - Anju Gupta
- Pediatric Allergy and Immunology Unit, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Deepti Suri
- Pediatric Allergy and Immunology Unit, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Ravinder Garg
- Pediatric Allergy and Immunology Unit, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Martin de Boer
- Blood Cell Research, Sanquin Blood Supply Foundation, Amsterdam, The Netherlands
| | - Taco W Kuijpers
- Blood Cell Research, Sanquin Blood Supply Foundation, Amsterdam, The Netherlands
| | - Surjit Singh
- Pediatric Allergy and Immunology Unit, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
180
|
Ghodke-Puranik Y, Niewold TB. Immunogenetics of systemic lupus erythematosus: A comprehensive review. J Autoimmun 2015; 64:125-36. [PMID: 26324017 DOI: 10.1016/j.jaut.2015.08.004] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 08/12/2015] [Indexed: 12/24/2022]
Abstract
Our understanding of the genetic basis of systemic lupus erythematosus has progressed rapidly in recent years. While many genetic polymorphisms have been associated with disease susceptibility, the next major step involves integrating these genetic polymorphisms into the molecular mechanisms and cellular immunology of the human disease. In this review, we summarize some recent work in this area, including the genetics of the type I IFN response in SLE, including polygenic and monogenic factors, as well as epigenetic influences. Contributions of both HLA and non-HLA polymorphisms to the complex genetics of SLE are reviewed. We also review recent reports of specific gene deficits leading to monogenic SLE-like syndromes. The molecular functions of common SLE-risk variants are reviewed in depth, including regulatory variations in promoter and enhancer elements and coding-change polymorphisms, and studies which are beginning to define the molecular and cellular functions of these polymorphisms in the immune system. We discuss epigenetic influences on lupus, with an emphasis on micro-RNA expression and binding, as well as epigenetic modifications that regulate the expression levels of various genes involved in SLE pathogenesis and the ways epigenetic marks modify SLE susceptibility genes. The work summarized in this review provides a fascinating window into the biology and molecular mechanisms of human SLE. Understanding the functional mechanisms of causal genetic variants underlying the human disease greatly facilitates our ability to translate genetic associations toward personalized care, and may identify new therapeutic targets relevant to human SLE disease mechanisms.
Collapse
Affiliation(s)
| | - Timothy B Niewold
- Division of Rheumatology, Department of Immunology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
181
|
Association between rs2431697 T allele on 5q33.3 and systemic lupus erythematosus: case-control study and meta-analysis. Clin Rheumatol 2015; 34:1893-902. [PMID: 26251230 PMCID: PMC4624827 DOI: 10.1007/s10067-015-3045-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 06/16/2015] [Accepted: 07/27/2015] [Indexed: 12/31/2022]
Abstract
rs2431697 is located on 5q33.3, between pituitary tumor-transforming gene 1 and miR-146a. Several studies have estimated the association between rs2431697 and systemic lupus erythematosus risk. However, the results were inconsistent. A case-control study was carried out to explore the association between rs2431697 and systemic lupus erythematosus risk in a central Chinese population. Meta-analyses combining present with previous studies were conducted to further explore the association. Our case-control study included 322 cases and 353 controls. rs2431697 T allele was associated with increased risk of systemic lupus erythematosus (odds ratios (ORs) = 1.461, 95 % confidence intervals (CI) 1.091–1.957, P = 0.011). The association was stronger between T allele and the risk of anti-double-stranded DNA (dsDNA)-positive systemic lupus erythematosus (OR = 2.510, 95 % CI 1.545–4.077, P < 0.001). The meta-analyses included 8648 systemic lupus erythematosus patients and 10947 controls. rs2431697 T allele had an overall OR of 1.262 (95 % CI 1.205–1.323, P < 0.001) under fixed-effects model. After stratified by ethnicity, I2 reduced from 24.3 to 0 %. T allele had an OR of 1.213 (95 % CI 1.145–1.284, P < 0.001) in European descendant and 1.365 (95 % CI 1.259–1.480, P < 0.001) in Asian under fixed-effects model. Data on women were also extracted, and T allele had an OR of 1.337 (95 % CI 1.162–1.539, P < 0.001) under random-effects model. The pooled ORs were not influenced by each study in sensitivity analyses. There were no publication biases observed in these analyses. The results from our case-control study and the meta-analyses indicate that rs2431697 T allele significantly associates with the increased risk of systemic lupus erythematosus.
Collapse
|
182
|
Relle M, Weinmann-Menke J, Scorletti E, Cavagna L, Schwarting A. Genetics and novel aspects of therapies in systemic lupus erythematosus. Autoimmun Rev 2015; 14:1005-18. [PMID: 26164648 DOI: 10.1016/j.autrev.2015.07.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 07/06/2015] [Indexed: 02/06/2023]
Abstract
Autoimmune diseases, such as rheumatoid arthritis, multiple sclerosis, autoimmune hepatitis and inflammatory bowel disease, have complex pathogeneses and the factors which cause these disorders are not well understood. But all have in common that they arise from a dysfunction of the immune system, interpreting self components as foreign antigens. Systemic lupus erythematosus (SLE) is one of these complex inflammatory disorders that mainly affects women and can lead to inflammation and severe damage of virtually any tissue and organ. Recently, the application of advanced techniques of genome-wide scanning revealed more genetic information about SLE than previously possible. These case-control or family-based studies have provided evidence that SLE susceptibility is based (with a few exceptions) on an individual accumulation of various risk alleles triggered by environmental factors and also help to explain the discrepancies in SLE susceptibility between different populations or ethnicities. Moreover, during the past years new therapies (autologous stem cell transplantation, B cell depletion) and improved conventional treatment options (corticosteroids, traditional and new immune-suppressants like mycophenolate mofetile) changed the perspective in SLE therapeutic approaches. Thus, this article reviews genetic aspects of this autoimmune disease, summarizes clinical aspects of SLE and provides a general overview of conventional and new therapeutic approaches in SLE.
Collapse
Affiliation(s)
- Manfred Relle
- First Department of Medicine, University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
| | - Julia Weinmann-Menke
- First Department of Medicine, University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
| | - Eva Scorletti
- Division of Rheumatology, IRCCS Fondazione Policlinico San Matteo, Lombardy, Pavia, Italy
| | - Lorenzo Cavagna
- Division of Rheumatology, IRCCS Fondazione Policlinico San Matteo, Lombardy, Pavia, Italy
| | - Andreas Schwarting
- First Department of Medicine, University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany; Acura Centre of Rheumatology Rhineland-Palatinate, Bad Kreuznach, Germany.
| |
Collapse
|
183
|
Piotrowski P, Wudarski M, Sowińska A, Olesińska M, Jagodziński PP. TNF-308 G/A polymorphism and risk of systemic lupus erythematosus in the Polish population. Mod Rheumatol 2015; 25:719-23. [PMID: 25661739 DOI: 10.3109/14397595.2015.1008778] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Numerous studies have been performed with TNF-α-308 G/A (rs1800629) single nuclear polymorphism (SNP) to evaluate the risk of SLE in various ethnicities. However, the significance of TNF-α-308 G/A in both clinical and laboratory studies of the disease remains unclear. METHODS Using a high-resolution melting curve analysis, we assessed the prevalence of TNF-α-308 G/A SNP in SLE patients (n = 262) and controls (n = 528) in a Polish population. We also assessed the contribution of this SNP to various clinical symptoms and the presence of autoantibodies in SLE patients. RESULTS The p-value obtained using a χ(2) test for the trend of TNF-α-308 G/A was statistically significant (ptrend = 0.0297). However, using logistic regression analysis for the presence of the HLA-DRB1*03:01 haplotype, we observed that the TNF-α-308 G/A SNP may be the DRB1*03:01-dependent risk factor of SLE in the Polish population. There was a significant contribution of TNF-α-308 A/A and A/G genotypes to arthritis OR = [2.692 (1.503-4.822, p = 0.0007, pcorr = 0.0119)] as well as renal SLE manifestation OR = [2.632 (1.575-4.397, p = 0.0002, pcorr = 0.0034)]. There was a significant association between TNF-α-308 A/A and A/G genotypes and the presence of anti-Ro antibodies (Ab) OR = 3.375(1.711-6.658, p = 0.0003, pcorr = 0.0051). However, the logistic regression analysis revealed that only renal manifestations and the presence of anti-anti-Ro antibodies remained significant after adjustment to the presence of the HLA-DRB1*03:01 haplotype. CONCLUSION Our studies indicate that the TNF-α-308 G/A polymorphism may be a DRB1*03:01 haplotype-dependent genetic risk factor for SLE. However, this SNP was independently associated with renal manifestations and production of anti-Ro Ab.
Collapse
Affiliation(s)
- Piotr Piotrowski
- a Department of Biochemistry and Molecular Biology , Poznań University of Medical Sciences , Poznań , Poland
| | | | | | | | | |
Collapse
|
184
|
Ntatsaki E, Isenberg D. Risk factors for renal disease in systemic lupus erythematosus and their clinical implications. Expert Rev Clin Immunol 2015; 11:837-48. [DOI: 10.1586/1744666x.2015.1045418] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
185
|
Crampton SP, Morawski PA, Bolland S. Linking susceptibility genes and pathogenesis mechanisms using mouse models of systemic lupus erythematosus. Dis Model Mech 2015; 7:1033-46. [PMID: 25147296 PMCID: PMC4142724 DOI: 10.1242/dmm.016451] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Systemic lupus erythematosus (SLE) represents a challenging autoimmune disease from a clinical perspective because of its varied forms of presentation. Although broad-spectrum steroids remain the standard treatment for SLE, they have many side effects and only provide temporary relief from the symptoms of the disease. Thus, gaining a deeper understanding of the genetic traits and biological pathways that confer susceptibility to SLE will help in the design of more targeted and effective therapeutics. Both human genome-wide association studies (GWAS) and investigations using a variety of mouse models of SLE have been valuable for the identification of the genes and pathways involved in pathogenesis. In this Review, we link human susceptibility genes for SLE with biological pathways characterized in mouse models of lupus, and discuss how the mechanistic insights gained could advance drug discovery for the disease.
Collapse
Affiliation(s)
- Steve P Crampton
- Laboratory of Immunogenetics, National Institute of Allergic and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Peter A Morawski
- Laboratory of Immunogenetics, National Institute of Allergic and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Silvia Bolland
- Laboratory of Immunogenetics, National Institute of Allergic and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| |
Collapse
|
186
|
Silpa-archa S, Lee JJ, Foster CS. Ocular manifestations in systemic lupus erythematosus. Br J Ophthalmol 2015; 100:135-41. [PMID: 25904124 DOI: 10.1136/bjophthalmol-2015-306629] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 04/04/2015] [Indexed: 12/19/2022]
Abstract
Systemic lupus erythematosus (SLE) can involve many parts of the eye, including the eyelid, ocular adnexa, sclera, cornea, uvea, retina and optic nerve. Ocular manifestations of SLE are common and may lead to permanent blindness from the underlying disease or therapeutic side effects. Keratoconjunctivitis sicca is the most common manifestation. However, vision loss may result from involvement of the retina, choroid and optic nerve. Ocular symptoms are correlated to systemic disease activity and can present as an initial manifestation of SLE. The established treatment includes prompt systemic corticosteroids, steroid-sparing immunosuppressive drugs and biological agents. Local ocular therapies are options with promising efficacy. The early recognition of disease and treatment provides reduction of visual morbidity and mortality.
Collapse
Affiliation(s)
- Sukhum Silpa-archa
- Massachusetts Eye Research and Surgery Institution, Cambridge, Massachusetts, USA Ocular Immunology & Uveitis Foundation, Cambridge, Massachusetts, USA Faculty of Medicine, Department of Ophthalmology, Rajavithi Hospital, College of Medicine, Rangsit University, Bangkok, Thailand
| | - Joan J Lee
- Massachusetts Eye Research and Surgery Institution, Cambridge, Massachusetts, USA Ocular Immunology & Uveitis Foundation, Cambridge, Massachusetts, USA
| | - C Stephen Foster
- Massachusetts Eye Research and Surgery Institution, Cambridge, Massachusetts, USA Ocular Immunology & Uveitis Foundation, Cambridge, Massachusetts, USA Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
187
|
Lu-Fritts PY, Kottyan LC, James JA, Xie C, Buckholz JM, Pinney SM, Harley JB. Association of systemic lupus erythematosus with uranium exposure in a community living near a uranium-processing plant: a nested case-control study. Arthritis Rheumatol 2015; 66:3105-12. [PMID: 25103365 DOI: 10.1002/art.38786] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 07/10/2014] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To explore the hypothesis that cases of systemic lupus erythematosus (SLE) would be found more frequently in community members with high prior uranium exposure in the Fernald Community Cohort (FCC). METHODS A nested case-control study was performed using data from the FCC, a volunteer population of individuals who had resided near a uranium ore-processing plant in Fernald, Ohio during the years of plant operation; uranium plant workers were excluded. Members of the FCC were monitored for 18 years. SLE cases were identified using the American College of Rheumatology 1997 revised classification criteria, laboratory testing, and medical record review. Each case was matched to 4 controls by age, race, and sex. Sera from potential cases and controls were screened for autoantibodies. Cumulative exposure to uranium particulates was calculated using a dosimetry model. Logistic regression with covariates was used to calculate the odds ratios (ORs) with 95% confidence intervals (95% CIs) for the probability of an association between uranium exposure and SLE. RESULTS The FCC comprised 4,187 individuals with minimal levels of uranium exposure, 1,273 with moderate exposure, and 2,756 with high exposure. The diagnosis of SLE was confirmed in 23 of 31 individuals who had been assigned International Classification of Diseases, Ninth Revision codes for lupus, and was also confirmed in 2 of 43 individuals who had been prescribed hydroxychloroquine. The female to male ratio was 5.25:1. Of the 25 confirmed SLE cases, 12 were in the high exposure group. The presence of SLE was associated with higher levels of uranium exposure (OR 3.92, 95% CI 1.13-13.59; P = 0.031). CONCLUSION High uranium exposure is associated with SLE, as compared to matched controls, in this sample of uranium-exposed individuals. Potential explanations for this relationship include possible autoimmune or estrogen effects of uranium, somatic mutation, epigenetic effects, or effects of some other unidentified accompanying exposure.
Collapse
|
188
|
Asymmetric appearance of immunological abnormalities in close relatives of patients with systemic lupus erythematosus. Clin Immunol 2015; 157:226-7. [PMID: 25638415 DOI: 10.1016/j.clim.2015.01.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 01/22/2015] [Indexed: 11/21/2022]
|
189
|
Prechl J, Czirják L. The endothelial deprotection hypothesis for lupus pathogenesis: the dual role of C1q as a mediator of clearance and regulator of endothelial permeability. F1000Res 2015; 4:24. [DOI: 10.12688/f1000research.6075.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/26/2015] [Indexed: 11/20/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a heterogeneous multifactorial systemic autoimmune disease affecting several organs. SLE can start relatively early in life and results in impaired quality of life and shortened life expectancy because of a gradual disease progression leading to cardiovascular, renal and neoplastic disease. The basic mechanisms of the pathogenesis of the disease still remain to be clarified. It is clear that complement proteins play a key and complex role in the development of SLE. Complement component C1q has been known to be a fundamental component of lupus development, but most explanations focus on its role in apoptotic debris removal. Importantly, C1q was recently found to play a key role in the maintenance of vascular endothelial integrity.We suggest that apoptotic products, endothelial cells and extracellular matrix components, which display negatively charged moieties, compete for binding to molecules of the innate humoral immune response, like C1q. Genetic or acquired factors leading to an increased load of apoptotic cell debris and decrease or absence of C1q therefore interfere with the regulation of endothelial permeability and integrity. Furthermore, we suggest that lupus is the net result of an imbalance between the two functions of immune clearance and vascular endothelial integrity maintenance, an imbalance triggered and sustained by autoimmunity, which skews C1q consumption by IgG-mediated complement classical pathway activation on autoantigens. In this triangle of innate clearance, autoimmunity and endothelial integrity, C1q plays a central role.Hence, we interpret the pathogenesis of lupus by identifying three key components, namely innate immune clearance, autoimmunity and endothelial integrity and we establish a link between these components based on the protective role that innate clearance molecules play in endothelial renewal. By including the vasoprotective role of C1q in the interpretation of SLE development we attempt to provide novel explanations for the symptoms, organ damage, diagnostic and therapeutic difficulties of the disease.
Collapse
|
190
|
Prechl J, Czirják L. The endothelial deprotection hypothesis for lupus pathogenesis: the dual role of C1q as a mediator of clearance and regulator of endothelial permeability. F1000Res 2015; 4:24. [PMID: 25901277 PMCID: PMC4392829 DOI: 10.12688/f1000research.6075.2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/08/2015] [Indexed: 12/31/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a heterogeneous multifactorial systemic autoimmune disease affecting several organs. SLE can start relatively early in life and results in impaired quality of life and shortened life expectancy because of a gradual disease progression leading to cardiovascular, renal and neoplastic disease. The basic mechanisms of the pathogenesis of the disease still remain to be clarified. It is clear that complement proteins play a key and complex role in the development of SLE. Complement component C1q has been known to be a fundamental component of lupus development, but most explanations focus on its role in apoptotic debris removal. Importantly, C1q was recently found to play a key role in the maintenance of vascular endothelial integrity. We suggest that apoptotic products, endothelial cells and extracellular matrix components, which display negatively charged moieties, compete for binding to molecules of the innate humoral immune response, like C1q. Genetic or acquired factors leading to an increased load of apoptotic cell debris and decrease or absence of C1q therefore interfere with the regulation of endothelial permeability and integrity. Furthermore, we suggest that lupus is the net result of an imbalance between the two functions of immune clearance and vascular endothelial integrity maintenance, an imbalance triggered and sustained by autoimmunity, which skews C1q consumption by IgG-mediated complement classical pathway activation on autoantigens. In this triangle of innate clearance, autoimmunity and endothelial integrity, C1q plays a central role. Hence, we interpret the pathogenesis of lupus by identifying three key components, namely innate immune clearance, autoimmunity and endothelial integrity and we establish a link between these components based on the protective role that innate clearance molecules play in endothelial renewal. By including the vasoprotective role of C1q in the interpretation of SLE development we attempt to provide novel explanations for the symptoms, organ damage, diagnostic and therapeutic difficulties of the disease.
Collapse
Affiliation(s)
- József Prechl
- Diagnosticum Zrt, Budapest, 1047, Hungary ; MTA-ELTE Immunology Research Group, Budapest, 1117, Hungary
| | - László Czirják
- Department of Rheumatology and Immunology, Clinic Center, University of Pécs, Pécs, 7632, Hungary
| |
Collapse
|
191
|
Worthington J, Eyre S. Principles of genetic epidemiology. Rheumatology (Oxford) 2015. [DOI: 10.1016/b978-0-323-09138-1.00011-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
192
|
Galarza-Delgado D, Arana-Guajardo A. How I diagnose and treat lupus. MEDICINA UNIVERSITARIA 2015. [DOI: 10.1016/j.rmu.2014.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
193
|
Zhang X, Li S, Zhang Y, Lu Y, Wang J, Xu J, Li X, Qin X. Meta-analysis of the relationship between 14bp insertion/deletion polymorphism of HLA-G gene and susceptibility to systemic lupus erythematosus. Hum Immunol 2014; 75:1171-6. [DOI: 10.1016/j.humimm.2014.10.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 10/09/2014] [Accepted: 10/09/2014] [Indexed: 10/24/2022]
|
194
|
A multilocus genetic study in a cohort of Italian SLE patients confirms the association with STAT4 gene and describes a new association with HCP5 gene. PLoS One 2014; 9:e111991. [PMID: 25369137 PMCID: PMC4219822 DOI: 10.1371/journal.pone.0111991] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 10/10/2014] [Indexed: 12/12/2022] Open
Abstract
Background Systemic lupus erythematosus (SLE) is an autoimmune disease with complex pathogenesis in which genes and environmental factors are involved. We aimed at analyzing previously identified loci associated with SLE or with other autoimmune and/or inflammatory disorders (STAT4, IL10, IL23R, IRAK1, PSORS1C1, HCP5, MIR146a, PTPN2, ERAP1, ATG16L1, IRGM) in a sample of Italian SLE patients in order to verify or confirm their possible involvement and relative contribution in the disease. Materials and methods Two hundred thirty-nine consecutive SLE patients and 278 matched healthy controls were enrolled. Study protocol included complete physical examination, and clinical and laboratory data collection. Nineteen polymorphisms were genotyped by allelic discrimination assays. A case-control association study and a genotype-phenotype correlation were performed. Results STAT4 was the most associated gene [P = 3×10−7, OR = 2.13 (95% CI: 1.59–2.85)]. IL10 confirmed its association with SLE [rs3024505: P = 0.02, OR = 1.52 (95% CI: 1.07–2.16)]. We describe a novel significant association between HCP5 locus and SLE susceptibility [rs3099844: P = 0.01, OR = 2.06 (95% CI: 1.18–3.6)]. The genotype/phenotype correlation analysis showed several associations including a higher risk to develop pericarditis with STAT4, and an association between HCP5 rs3099844 and anti-Ro/SSA antibodies. Conclusions STAT4 and IL10 confirm their association with SLE. We found that some SNPs in PSORS1C1, ATG16L1, IL23R, PTPN2 and MIR146a genes can determine particular disease phenotypes. HCP5 rs3099844 is associated with SLE and with anti-Ro/SSA. This polymorphism has been previously found associated with cardiac manifestations of SLE, a condition related with anti-Ro/SSA antibodies. Thus, our results may provide new insights into SLE pathogenesis.
Collapse
|
195
|
Dai C, Deng Y, Quinlan A, Gaskin F, Tsao BP, Fu SM. Genetics of systemic lupus erythematosus: immune responses and end organ resistance to damage. Curr Opin Immunol 2014; 31:87-96. [PMID: 25458999 DOI: 10.1016/j.coi.2014.10.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 10/10/2014] [Accepted: 10/10/2014] [Indexed: 01/13/2023]
Abstract
Systemic lupus erythematosus (SLE) is a prototypic systemic autoimmune disorder. Considerable progress has been made to delineate the genetic control of this complex disorder. In this review, selected aspects of human and mouse genetics related to SLE are reviewed with emphasis on genes that contribute to both innate and adaptive immunity and to genes that contribute directly to susceptibility to end organ damage. It is concluded that the interactions among these two major pathways will provide further insight into the pathogenesis of SLE. An interactive model of the two major pathways is proposed without emphasis on the importance of breaking tolerance to autoantigens.
Collapse
Affiliation(s)
- Chao Dai
- Division of Rheumatology, Center of Inflammation, Immunity and Regenerative Medicine, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, United States
| | - Yun Deng
- Division of Rheumatology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, United States
| | - Aaron Quinlan
- Department of Public Health Sciences, Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, United States
| | - Felicia Gaskin
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia School of Medicine, Charlottesville, VA 22908, United States
| | - Betty P Tsao
- Division of Rheumatology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, United States.
| | - Shu Man Fu
- Division of Rheumatology, Center of Inflammation, Immunity and Regenerative Medicine, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, United States.
| |
Collapse
|
196
|
Abstract
The complement system plays a major role in the autoimmune disease, systemic lupus erythematosus (SLE). However, the role of complement in SLE is complex since it may both prevent and exacerbate the disease. In this review, we explore the latest findings in complement-focused research in SLE. C1q deficiency is the strongest genetic risk factor for SLE, although such deficiency is very rare. Various recently discovered genetic associations include mutations in the complement receptors 2 and 3 as well as complement inhibitors, the latter related to earlier onset of nephritis. Further, autoantibodies are a distinct feature of SLE that are produced as the result of an adaptive immune response and how complement can affect that response is also being reviewed. SLE generates numerous disease manifestations involving contributions from complement such as glomerulonephritis and the increased risk of thrombosis. Furthermore, since most of the complement system is present in plasma, complement is very accessible and may be suitable as biomarker for diagnosis or monitoring of disease activity. This review highlights the many roles of complement for SLE pathogenesis and how research has progressed during recent years.
Collapse
Affiliation(s)
- Jonatan Leffler
- Division of Medical Protein Chemistry, Department of Laboratory Medicine Malmö, Lund University, Malmö, Sweden Division of Cell Biology and Immunology, Telethon Kids Institute, University of Western Australia, Subiaco, Australia
| | - Anders A Bengtsson
- Department of Clinical Sciences, Section of Rheumatology, Lund University, Skåne University Hospital Lund, Lund, Sweden
| | - Anna M Blom
- Division of Medical Protein Chemistry, Department of Laboratory Medicine Malmö, Lund University, Malmö, Sweden
| |
Collapse
|
197
|
Chance, genetics, and the heterogeneity of disease and pathogenesis in systemic lupus erythematosus. Semin Immunopathol 2014; 36:495-517. [PMID: 25102991 DOI: 10.1007/s00281-014-0440-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 06/30/2014] [Indexed: 12/30/2022]
Abstract
Systemic lupus erythematosus (SLE) is a remarkably complex and heterogeneous systemic autoimmune disease. Disease complexity within individuals and heterogeneity among individuals, even genetically identical individuals, is driven by stochastic execution of a complex inherited program. Genome-wide association studies (GWAS) have progressively improved understanding of which genes are most critical to the potential for SLE and provided illuminating insight about the immune mechanisms that are engaged in SLE. What initiates expression of the genetic program to cause SLE within an individual and how that program is initiated remains poorly understood. If we extrapolate from all of the different experimental mouse models for SLE, we can begin to appreciate why SLE is so heterogeneous and consequently why prediction of disease outcome is so difficult. In this review, we critically evaluate extrinsic versus intrinsic cellular functions in the clearance and elimination of cellular debris and how dysfunction in that system may promote autoimmunity to nuclear antigens. We also examine several mouse models genetically prone to SLE either because of natural inheritance or inheritance of induced mutations to illustrate how different immune mechanisms may initiate autoimmunity and affect disease pathogenesis. Finally, we describe the heterogeneity of disease manifestations in SLE and discuss the mechanisms of disease pathogenesis with emphasis on glomerulonephritis. Particular attention is given to discussion of how anti-DNA autoantibody initiates experimental lupus nephritis (LN) in mice.
Collapse
|
198
|
Modifying Effect ofN-Acetyltransferase 2 Genotype on the Association Between Systemic Lupus Erythematosus and Consumption of Alcohol and Caffeine-Rich Beverages. Arthritis Care Res (Hoboken) 2014; 66:1048-56. [DOI: 10.1002/acr.22282] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 01/02/2014] [Indexed: 01/10/2023]
|
199
|
Bryan AR, Wu EY. Complement deficiencies in systemic lupus erythematosus. Curr Allergy Asthma Rep 2014; 14:448. [PMID: 24816552 DOI: 10.1007/s11882-014-0448-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The complement system is a major, multifunctional part of innate immunity and serves as a bridge between the innate and adaptive immune systems. It consists of more than 30 distinct proteins that interact with one another in a specific sequence. There are three pathways of complement activation: the classical, the lectin, and the alternative pathways. The three pathways are initiated by distinct mechanisms, but they all generate the same core set of effector molecules. Inherited complete deficiencies in complement components are generally very rare and predispose to infections and autoimmune disease. One of the better described associations is between deficiencies in early classical pathway components and the development of systemic lupus erythematosus. The goal of this review will be to discuss the associations between and the causal mechanisms of complement deficiencies and systemic lupus erythematosus.
Collapse
Affiliation(s)
- Angela R Bryan
- Pediatric Rheumatology Division, Duke University Children's Health Center, 2301 Erwin Road, Durham, NC, 27710, USA,
| | | |
Collapse
|
200
|
James JA. Clinical perspectives on lupus genetics: advances and opportunities. Rheum Dis Clin North Am 2014; 40:413-32, vii. [PMID: 25034154 DOI: 10.1016/j.rdc.2014.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In recent years, genome-wide association studies have led to an expansion in the identification of regions containing confirmed genetic risk variants within complex human diseases, such as systemic lupus erythematosus (SLE). Many of the strongest SLE genetic associations can be divided into groups based on their potential roles in different processes implicated in lupus pathogenesis, including ubiquitination, DNA degradation, innate immunity, cellular immunity, lymphocyte development, and antigen presentation. Recent advances have also shown several genetic associations with SLE subphenotypes and subcriteria. Many areas for further exploration remain to move lupus genetic studies toward clinically informative end points.
Collapse
Affiliation(s)
- Judith A James
- Oklahoma Clinical & Translational Science Institute, University of Oklahoma Health Sciences Center, 920 Stanton L Young Boulevard, Oklahoma City, OK 73104, USA; Departments of Medicine, Pathology, Microbiology & Immunology, University of Oklahoma Health Sciences Center, 920 Stanton L Young Boulevard, Oklahoma City, OK 73104, USA.
| |
Collapse
|